Sample records for superconducting gap structure

  1. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  2. Gap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Sugimoto, A.; Gabovich, A. M.

    2018-05-01

    We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.

  3. Influence of twin boundaries on superconducting gap nodes in FeSe single crystal studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Iwaya, K.; Fu, Y.; Kasahara, S.; Watanabe, D.; Mizukami, Y.; Mikami, T.; Kawamoto, Y.; Kurata, S.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.

    2014-03-01

    We performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on high-quality FeSe single crystals grown by vapor transport technique to examine the superconducting-gap structure. In MBE-grown FeSe thin films, based on the V-shaped tunneling spectra, nodal superconductivity is suggested. It is interesting to investigate how the nodes are affected by various kinds of defects. We found that twin boundaries bring about drastic effects on the gap nodes. With approaching to the twin boundary, V-shaped spectra gradually change to U-shaped ones. Interestingly, in the area between the twin boundaries separated by about 30 nm, the gap node is completely lifted and there appears a finite gap over +/-0.4 meV. This unusual twin-boundary effect will give us a hint to elucidate the superconducting-gap structure.

  4. Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Altenfeld, D.; Hirschfeld, P. J.; Mazin, I. I.; Eremin, I.

    2018-02-01

    Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission spectroscopy data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015), 10.1103/PhysRevB.92.184513]. We show that all features present for the simple two-band model for the sign-changing s+--wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs and identify various features of these superconducting gap functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs due to the smallness of the pockets and the near proximity of two of the gap energies.

  5. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.

    2018-06-01

    The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.

  6. Superconducting cable connections and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less

  7. Pairing-dependent superconductivity gap and nonholonomic Andreev reflection in Weyl semimetal/Weyl superconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Duan, Wenye; Liu, Junfeng; Zhang, Chao; Ma, Zhongshui

    2018-04-01

    We study superconductivity states mediated by the BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairings in superconducting Weyl semimetals. It is found that a mixture of BCS and FFLO pairings results in a distinctive double-gap structure for superconducting states. With a heterojunction of a Weyl semimetal and a superconducting Weyl semimetal, we demonstrate the nonholonomic Andreev reflection and show that the intra- and internode Andreev reflections increase at the edges of the effective gap. The influence of interface potentials on the Andreev reflections is investigated. The conductance spectra arising from the mixed superconducting pairings is also analyzed.

  8. STM/STS study of the superconducting gap in SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Kawashima, Yuki; Ichimura, Koichi; Katono, Kazuhiro; Kurosawa, Tohru; Oda, Migaku; Tanda, Satoshi; Kamihara, Yoichi; Hosono, Hideo

    2015-02-01

    We report an electron tunneling study of SmFeAsO1-xFx in the low doping region (x=0, 0.045, 0.046, 0.069) by low temperature UHV-STM/STS. Superconducting gaps are observed for each superconducting sample x=0.045 (Tc=12.9 K), x=0.046 (Tc=32.9 K) and x=0.069 (Tc=46.9 K). We obtained corresponding superconducting gap size of ΔSC = 9.5 ± 0.5 meV, 9.75±0.25 meV and 11±1 meV. While Tc increases, ΔSC is kept the same. This suggests that the effective attractive interaction is the same and that there is some mechanism that suppresses the superconductivity in the low doping region. On the other hand, similar gap structures were found in a non-superconducting sample with x=0 at 7.8 K. The obtained gap size was ΔN = 8.5 ± 1.5 meV, which is almost the same as the superconducting gap in the superconducting samples (x=0.045, 0.046, 0.069).

  9. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    PubMed

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  10. Multigap superconductivity in the charge density wave superconductor LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Das, Debarchan; Gupta, Ritu; Bhattacharyya, A.; Biswas, P. K.; Adroja, D. T.; Hossain, Z.

    2018-05-01

    The superconducting gap structure of a charge density wave (CDW) superconductor LaPt2Si2 (Tc=1.6 K) having a quasi-two-dimensional crystal structure has been investigated using muon spin rotation/relaxation (μ SR ) measurements in transverse field (TF), zero field (ZF), and longitudinal field (LF) geometries. Rigorous analysis of TF-μ SR spectra in the superconducting state corroborates that the temperature dependence of the effective penetration depth, λL, derived from muon spin depolarization, fits to a two gap s wave model (i.e., s +s wave) suggesting that the Fermi surface contains two gaps of different magnitude rather than an isotropic gap expected for a conventional s wave superconductor. On the other hand, ZF μ SR data do not show any significant change in muon spin relaxation rate above and below the superconducting transition temperature indicating the fact that time-reversal symmetry is preserved in the superconducting state of this material.

  11. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

    PubMed Central

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2016-01-01

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801

  12. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.

    We demonstrate that the differential conductance, dI/dV, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two holelike Fermi surfaces, and a strongly anisotropic gap on the electronlike Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C-2 symmetry in the Fourier transformed differential conductance.

  13. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  14. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  15. Differential conductance and defect states in the heavy-fermion superconductor CeCoIn 5

    DOE PAGES

    John S. Van Dyke; Davis, James C.; Morr, Dirk K.

    2016-01-22

    We demonstrate that the electronic band structure extracted from quasiparticle interference spectroscopy [Nat. Phys. 9, 468 (2013)] and the theoretically computed form of the superconducting gaps [Proc. Natl. Acad. Sci. USA 111, 11663 (2014)] can be used to understand the dI/dV line shape measured in the normal and superconducting state of CeCoIn5 [Nat. Phys. 9, 474 (2013)]. In particular, the dI/dV line shape, and the spatial structure of defect-induced impurity states, reflects the existence of multiple superconducting gaps of d x2–y2 symmetry. As a result, these results strongly support a recently proposed microscopic origin of the unconventional superconducting state.

  16. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE PAGES

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.; ...

    2017-08-09

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  17. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  18. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  19. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOEpatents

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  20. Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Nyéki, J.; Saunders, J.

    2018-05-01

    In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.

  1. Large enhancement of thermoelectric effects in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin

    2018-05-01

    We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.

  2. Anisotropic superconductivity in β-(BDA-TTP)2SbF6: STM spectroscopy

    NASA Astrophysics Data System (ADS)

    Nomura, K.; Muraoka, R.; Matsunaga, N.; Ichimura, K.; Yamada, J.

    2009-03-01

    We have investigated the gap symmetry in the superconducting phase of β-(BDA-TTP)2SbF6 with use of the scanning tunneling microscope (STM). The tunneling spectra obtained on the conducting surface show a clear superconducting gap structure. Its functional form is of V-shaped similarly to κ-(BEDT-TTF)2X and suggests the anisotropic superconducting gap with line nodes. For lateral surfaces the shape of tunneling spectra varies from the U-shape with relatively large gap to the V-shape with small gap depending on the tunneling direction alternately twice between directional angle 0 and π. From the analysis of conductance curve taking the k dependence of the tunneling probability into account, it is found that the gap has maximum near the a* and c* axes and the nodes appear along near a*+c* and the a-c* directions. These indicate that the d like superconducting pair is formed in this system as the case of κ-(BEDT-TTF)2X. This node direction is consistent with the theoretical prediction based on the spin fluctuation mechanism. However, the zero-bias conductance peak has not been observed yet.

  3. Anomalous enhancement of the lower critical field deep in the superconducting state of LaRu4As12

    NASA Astrophysics Data System (ADS)

    Juraszek, J.; Bochenek, Ł.; Wawryk, R.; Henkie, Z.; Konczykowski, M.; Cichorek, T.

    2018-05-01

    LaRu4As12 with the critical temperature Tc = 10.4 K displays several features which point at a non-singlet superconducting order parameter, although the bcc crystal structure of the filled skutterudites does not favour the emergence of multiple energy gaps. LaRu4As12 displays an unexpected enhancement of the lower critical field deep in superconducting state which can be attributed to the existence of two superconducting gaps. At T = 0.4 K, the local magnetization measurements were performed utilizing miniaturized Hall sensors.

  4. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  5. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE PAGES

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin; ...

    2017-12-17

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  6. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  7. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  8. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  9. Glide-Plane Symmetry and Superconducting Gap Structure of Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Maier, Thomas

    This talk will provide a review of the implications of the glide plane symmetry of a single Fe-pnictide/chalcogen plane on the structure of the superconducting gap. It will be shown that `` η-pairing'' with non-zero total momentum occurs inevitably in this system, but that its contribution to the superconducting condensate has the usual even parity symmetry and time reversal symmetry is preserved. I will demonstrate that for a single plane the gap function, which appears in physical quantities, is identical to that found in 1 Fe per unit cell pseudo-crystal momentum calculations and discuss the effects of the symmetry breaking out-of-plane hopping integrals in three dimensions. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  10. Momentum dependence of the superconducting gap and in-gap states in MgB 2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB 2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ 0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to k F of the σ band that occur at some locations of the sample surface. As a result, themore » energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  11. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  12. Anisotropic type-I superconductivity and anomalous superfluid density in OsB2

    NASA Astrophysics Data System (ADS)

    Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M. V.

    2016-10-01

    We present a microscopic study of superconductivity in OsB2, and discuss the origin and characteristic length scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ —a rare property among compound materials. We show that the found coherence length and penetration depth corroborate the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed solely to a two-gap nature of superconductivity.

  13. Anisotropic type-I superconductivity and anomalous superfluid density in OsB 2

    DOE PAGES

    Bekaert, Jonas; Vercauteren, S.; Aperis, A.; ...

    2016-10-12

    Here, we present a microscopic study of superconductivity in OsB 2, and discuss the origin and characteristic length scales of the superconducting state. From first-principles we show that OsB 2 is characterized by three different Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations to reveal that OsB 2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare property among compound materials. We show that the found coherence length and penetration depth corroborate the measured thermodynamic criticalmore » field. Moreover, our calculation of the superconducting gap structure using anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional behavior of the superfluid density of OsB 2 measured in experiments as a function of temperature. This reveals that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed solely to a two-gap nature of superconductivity.« less

  14. Emergence of fully gapped s++-wave and nodal d-wave states mediated by orbital and spin fluctuations in a ten-orbital model of KFe2Se2

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi

    2011-04-01

    We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.

  15. Classification of "multipole" superconductivity in multiorbital systems and its implications

    NASA Astrophysics Data System (ADS)

    Nomoto, T.; Hattori, K.; Ikeda, H.

    2016-11-01

    Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the group-theoretical classification of various unconventional superconductivity emerging in symmorphic O , D4, and D6 space groups. The generalized Cooper pairs, which we here call "multipole" superconductivity, possess spin-orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital systems. From the classification, we obtain the following key consequences, which have never been focused in the long history of research in this field: (1) A superconducting gap function with Γ9⊗Γ9 in D6 possesses nontrivial momentum dependence different from the usual spin-1/2 classification. (2) Unconventional gap structure can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion. It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima, and thus, anisotropic s -wave superconductivity can be naturally explained even in the absence of competing fluctuations.

  16. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces

    PubMed Central

    Di Bernardo, A.; Diesch, S.; Gu, Y.; Linder, J.; Divitini, G.; Ducati, C.; Scheer, E.; Blamire, M.G.; Robinson, J.W.A.

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  17. Superconducting electromechanical rotating device having a liquid-cooled, potted, one layer stator winding

    DOEpatents

    Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.

    2001-01-01

    A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.

  18. Doping - dependent anisotropy of the superconducting gap in underdoped pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan

    2012-02-01

    The in-plane London penetration depth, δλ(T), was studied in single crystals of Ba1-xKxFe2As2 (``Ba122") and Ca10(Pt3As8)[(Fe1-xPtx)2As2]5 (``10-3-8"). Whereas in Ba122 magnetism and superconductivity coexist in the underdoped regime, the 10-3-8 compound exhibits a clear separation of two order parameters. By comparing the results obtained in these two systems, we could study general features of the superconducting gap structure as function of doping in the underdoped regime. Similar to all other pnictides, the low-temperature variation of London penetration depth exhibits a power-law behavior, δλ(T)= AT^n, in both systems. Moving towards the underdoped edge of the superconducting dome, the exponent n decreases well below scattering - limited value of n=2 and, at the same time, the pre-factor A increases. Both trends indicate an increasing anisotropy of the superconducting gap in more underdoped compounds. These and previous results suggest that the development of the superconducting gap anisotropy towards the underdoped edge of the superconducting dome is an intrinsic property of iron pnictides, similar to the known tendency on the overdoped side where magnetism and superconductivity do not interfere.[4pt] In collboration with M.A. Tanatar, H. Kim, The Ames Laboratory; Bing Shen, Hai-Hu Wen, Nanjing University; and N. Ni, R.J. Cava, Princeton University.

  19. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    NASA Astrophysics Data System (ADS)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  20. High-T c superconductivity in undoped ThFeAsN.

    PubMed

    Shiroka, T; Shang, T; Wang, C; Cao, G-H; Eremin, I; Ott, H-R; Mesot, J

    2017-07-31

    Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the s-wave superconducting gap in this compound from the standard s ± scenario.Exploring the interplay between the superconducting gap and the antiferromagnetic phase in Fe-based superconductors remains an open issue. Here, the authors show that Fermi-surface modifications by means of structural distortions and correlation effects are as important as doping in inducing superconductivity in undoped ThFeAsN.

  1. Magnetic, superconducting and electron-boson properties of GdO(F)FeAs oxypnictides

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, Tatiana; Sadakov, Andrey; Muratov, Andrei; Kuzmichev, Svetoslav; Khlybov, Yevgeny; Kulikova, Lyudmila; Eltsev, Yuri

    2018-05-01

    We performed comprehensive studies of nearly optimal fluorine-substituted GdO1-xFx FeAs oxypnictide superconductors with TC = 48 - 53 K . Specific heat measurements revealed a sharp peak at T = 3.5 K that shifts to lower temperatures with magnetic field increase. This peak corresponds to an antiferromagnetic ordering in Gd3+ ion sublattice and may indicate coexistence between superconducting and magnetic orderings. Andreev transport through artificially made constriction demonstrated two channels for the carriers from the band(s) with the large superconducting gap as well as from those with the small gap. As expected, the presence of a transport channel with the bands mixing (ΔL +ΔS) was not detected. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we determined two superconducting gaps, ΔS ≈ 2.7 meV , and ΔL ≈ 11.6 meV . The reproducible fine structure in the dI(V)/dV spectra of the Andreev contacts (satellites of the main subharmonic gap structure for ΔL) was interpreted as caused by a resonant emission of bosons with the energy ε0 = 12 - 15 meV ≈ΔL +ΔS during the process of multiple Andreev reflections (MAR) for normal carriers in ΔL-band(s) transport channel.

  2. Superconducting properties of lithographic lead break junctions

    NASA Astrophysics Data System (ADS)

    Weber, David; Scheer, Elke

    2018-01-01

    We have fabricated mechanically controlled break junction samples made of lead (Pb) by means of state-of-the-art nanofabrication methods: electron beam lithography and physical vapour deposition. The electrical and magnetic properties were characterized in a {}3{He} cryostat and showed a hard superconducting gap. Temperature and magnetic field dependence of tunnel contacts were compared and quantitatively described by including either thermal broadening of the density of states or pair breaking in the framework of a Skalski model, respectively. We show point contact spectra of few-atom contacts and present tunneling spectra exhibiting a superconducting double-gap structure.

  3. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  4. Superconductivity in LaPd2Al2-xGax compounds

    NASA Astrophysics Data System (ADS)

    Klicpera, M.; Pásztorová, J.; Javorský, P.

    2014-08-01

    The superconductivity in LaPd2Al2-xGax compounds was studied by means of electrical resistivity and specific heat measurements. The concentration development of the superconducting properties was revealed. The measured data deviate significantly from the Bardeen-Cooper-Schrieffer theory predictions and are discussed in the context of unconventional superconductivity. The electronic specific heat below {{T}_{SC}} follows almost quadratic temperature dependence, which might indicate an axial state with line nodes in the superconducting gap structure.

  5. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; ...

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  6. Two distinct superconducting phases in LiFeAs

    PubMed Central

    Nag, P. K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.

    2016-01-01

    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance. PMID:27297474

  7. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    NASA Technical Reports Server (NTRS)

    Denis, Kevin L.; Brown, Ari D.; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication. ?

  8. Temperature dependence of the superconducting energy gaps in Ca9.35La0.65(Pt3As8)(Fe2As2)5 single crystal.

    PubMed

    Seo, Yu-Il; Choi, Woo-Jae; Ahmad, D; Kimura, Shin-Ichi; Kwon, Yong Seung

    2018-06-05

    We measured the optical reflectivity R(ω) for an underdoped (Ca 0.935 La 0.065 ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 single crystal and obtained the optical conductivity [Formula: see text] using the K-K transformation. The normal state [Formula: see text] at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ω p1  = 1446 cm -1 and ω p2  = 6322 cm -1 ) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below T c . The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ 1  = 30 and Δ 2  = 50 cm -1 , respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state.

  9. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn1 -xInxTe for x ≥0.10

    NASA Astrophysics Data System (ADS)

    Smylie, M. P.; Claus, H.; Kwok, W.-K.; Louden, E. R.; Eskildsen, M. R.; Sefat, A. S.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Bokari, E.; Niraula, P. M.; Kayani, A.; Dewhurst, C. D.; Snezhko, A.; Welp, U.

    2018-01-01

    The temperature dependence of the London penetration depth Δ λ (T ) in the superconducting doped topological crystalline insulator Sn1 -xInxTe was measured down to 450 mK for two different doping levels, x ≈0.45 (optimally doped) and x ≈0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance Tc, indicating that ferroelectric interactions do not compete with superconductivity.

  10. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering.

    PubMed

    Bachmann, Maja D; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J; Bauer, Eric D; Ronning, Filip; Analytis, James G; Moll, Philip J W

    2017-05-01

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer ( T c ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.

  11. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    PubMed Central

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J.; Bauer, Eric D.; Ronning, Filip; Analytis, James G.; Moll, Philip J. W.

    2017-01-01

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale. PMID:28560340

  12. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  13. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  14. Impurity-generated non-Abelions

    NASA Astrophysics Data System (ADS)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.

  15. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    PubMed Central

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  16. Direct evidence for a pressure-induced nodal superconducting gap in the Ba 0.65Rb 0.35Fe 2As 2 superconductor

    DOE PAGES

    Guguchia, Z.; Amato, A.; Kang, J.; ...

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba 0.65Rb 0.35Fe 2As 2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant.more » More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  17. Penetration Depth Study of Superconducting Gap Structure of 2H-NbSe2

    NASA Astrophysics Data System (ADS)

    Fletcher, J. D.; Carrington, A.; Diener, P.; Rodière, P.; Brison, J. P.; Prozorov, R.; Olheiser, T.; Giannetta, R. W.

    2007-02-01

    We report measurements of the temperature dependence of both in-plane and out-of-plane penetration depths (λa and λc, respectively) in 2H-NbSe2. Measurements were made with a radio-frequency tunnel diode oscillator circuit at temperatures down to 100 mK. Analysis of the anisotropic superfluid density shows that a reduced energy gap is located on one or more of the quasi-two-dimensional Nb Fermi surface sheets rather than on the Se sheet, in contrast with some previous reports. This result suggests that the gap structure is not simply related to the weak electron-phonon coupling on the Se sheet and is therefore important for microscopic models of anisotropic superconductivity in this compound.

  18. Supercondutivity at 9K in Mo 5PB 2 with evidence for multiple gaps

    DOE PAGES

    McGuire, Michael A.; Parker, David S.

    2016-02-09

    Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo 5PB 2. This material adopts the Cr 5B 3 structure type common to superconducting Nb 5Si 3–xBx, Mo 5SiB 2, and W 5SiB 2, which have critical temperatures of 5.8–7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest T c value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo 5P 1.1B 1.9, and the upper critical field H c2 at T = 0more » is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate coupling (λ=1.0), phonon mediated superconductivity. Here, the temperature dependence of the heat capacity and upper critical field H c2 below T c suggest multiple superconducting gaps may be present.« less

  19. Multipole Superconductivity in Nonsymmorphic Sr_{2}IrO_{4}.

    PubMed

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-14

    Discoveries of marked similarities to high-T_{c} cuprate superconductors point to the realization of superconductivity in the doped J_{eff}=1/2 Mott insulator Sr_{2}IrO_{4}. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+. In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective J_{eff}=1/2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  20. Multipole Superconductivity in Nonsymmorphic Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-01

    Discoveries of marked similarities to high-Tc cuprate superconductors point to the realization of superconductivity in the doped Jeff=1 /2 Mott insulator Sr2IrO4. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+ . In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective Jeff=1 /2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  1. Mixed-pairing superconductivity in 5 d Mott insulators with antisymmetric exchange: Application to Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Zare, Mohammad-Hossein; Biderang, Mehdi; Akbari, Alireza

    2017-11-01

    We study the symmetry of the potential superconducting order parameter in 5 d Mott insulators with an eye toward hole-doped Sr2IrO4 . Using a mean-field method, a mixed singlet-triplet superconductivity, d +p , is observed due to the antisymmetric exchange originating from a quasi-spin-orbit coupling. Our calculation on ribbon geometry shows the possible existence of the topologically protected edge states, because of the nodal structure of the superconducting gap. These edge modes are spin polarized and emerge as zero-energy flat bands, supporting a symmetry-protected Majorana state, verified by evaluation of the winding number and Z2 topological invariant. At the end, a possible experimental approach for observation of these edge states and determination of the superconducting gap symmetry is discussed based on the quasiparticle interference technique.

  2. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE PAGES

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; ...

    2018-01-19

    The temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn x Te was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicating that ferroelectric interactionsmore » do not compete with superconductivity.« less

  3. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    The temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn x Te was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicating that ferroelectric interactionsmore » do not compete with superconductivity.« less

  4. Superconductivity, Pairing Symmetry, and Disorder in the Doped Topological Insulator Sn 1-xIn xTe for x >= 0.10.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    The temperature dependence of the London penetration depth Delta lambda(T) in the superconducting doped topological crystalline insulator Sn1-xInxTe was measured down to 450 mK for two different doping levels, x approximate to 0.45 (optimally doped) and x approximate to 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. The introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T-c, indicating that ferroelectric interactions domore » not compete with superconductivity.« less

  5. Superconductivity in the Narrow Gap Semiconductor RbBi 11/3Te 6

    DOE PAGES

    Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; ...

    2016-10-16

    Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less

  6. Electride and superconductivity behaviors in Mn5Si3-type intermetallics

    NASA Astrophysics Data System (ADS)

    Zhang, Yaoqing; Wang, Bosen; Xiao, Zewen; Lu, Yangfan; Kamiya, Toshio; Uwatoko, Yoshiya; Kageyama, Hiroshi; Hosono, Hideo

    2017-08-01

    Electrides are unique in the sense that they contain localized anionic electrons in the interstitial regions. Yet they exist with a diversity of chemical compositions, especially under extreme conditions, implying generalized underlying principles for their existence. What is rarely observed is the combination of electride state and superconductivity within the same material, but such behavior would open up a new category of superconductors. Here, we report a hexagonal Nb5Ir3 phase of Mn5Si3-type structure that falls into this category and extends the electride concept into intermetallics. The confined electrons in the one-dimensional cavities are reflected by the characteristic channel bands in the electronic structure. Filling these free spaces with foreign oxygen atoms serves to engineer the band topology and increase the superconducting transition temperature to 10.5 K in Nb5Ir3O. Specific heat analysis indicates the appearance of low-lying phonons and two-gap s-wave superconductivity. Strong electron-phonon coupling is revealed to be the pairing glue with an anomalously large ratio between the superconducting gap Δ0 and Tc, 2Δ0/kBTc = 6.12. The general rule governing the formation of electrides concerns the structural stability against the cation filling/extraction in the channel site.

  7. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals

    DOE PAGES

    Teknowijoyo, S.; Cho, K.; Tanatar, M. A.; ...

    2016-08-29

    A highly anisotropic superconducting gap is found in single crystals of FeSe by studying the London penetration depth Δλ measured down to 50 mK in samples before and after 2.5 MeV electron irradiation. The gap minimum increases with introduced pointlike disorder, indicating the absence of symmetry-imposed nodes. Surprisingly, the superconducting transition temperature T c increases by 0.4 K from T c0 ≈ 8.8 K while the structural transition temperature T s decreases by 0.9 K from T s0 ≈ 91.2 K after electron irradiation. Finally, we discuss several explanations for the T c enhancement and propose that local strengthening ofmore » the pair interaction by irradiation-induced Frenkel defects most likely explains the phenomenon.« less

  8. Realization of a mixed-symmetry superconducting gap in correlated organic metals

    NASA Astrophysics Data System (ADS)

    Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser

    Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.

  9. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less

  10. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    DOE PAGES

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; ...

    2017-05-24

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less

  11. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2: 207Pb nuclear magnetic resonance study

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Matano, K.; Zheng, Guo-qing

    2018-05-01

    We report the 207Pb nuclear magnetic resonance (NMR) measurements on polycrystalline sample of PbTaSe2 with noncentrosymmetric crystal structure and topological electronic band. The nuclear spin-lattice relaxation rate 1 /T1 shows a suppressed coherence peak below the superconducting transition temperature Tc=4.05 K and decreases as an exponential function of temperature. The penetration depth derived from the NMR spectrum is almost temperature independent below T =0.7 Tc. The Knight shift K decreases below Tc. These results suggest spin-singlet superconductivity with a fully opened gap 2 Δ =3.5 kBTc in PbTaSe2.

  12. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    NASA Astrophysics Data System (ADS)

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; Nowell, Hariott; Barnett, Sarah A.; Lei, Hechang; Zhu, Xiangde; Petrovic, Cedomir; Scanlon, David O.; Hoesch, Moritz

    2018-04-01

    The mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni0.01ZrTe3 to Ni0.05ZrTe3 . In the highest doped samples, bulk superconductivity with Tc

  13. Asymmetric d-wave superconducting topological insulator in proximity with a magnetic order

    NASA Astrophysics Data System (ADS)

    Khezerlou, M.; Goudarzi, H.; Asgarifar, S.

    2018-02-01

    In the framework of the Dirac-Bogoliubov-de Gennes formalism, we investigate the transport properties in the surface of a 3-dimensional topological insulator-based hybrid structure, where the ferromagnetic and superconducting orders are simultaneously induced to the surface states via the proximity effect. The superconductor gap is taken to be spin-singlet d-wave symmetry. The asymmetric role of this gap respect to the electron-hole exchange, in one hand, affects the topological insulator superconducting binding excitations and, on the other hand, gives rise to forming distinct Majorana bound states at the ferromagnet/superconductor interface. We propose a topological insulator N/F/FS junction and proceed to clarify the role of d-wave asymmetry pairing in the resulting subgap and overgap tunneling conductance. The perpendicular component of magnetizations in F and FS regions can be at the parallel and antiparallel configurations leading to capture the experimentally important magnetoresistance (MR) of junction. It is found that the zero-bias conductance is strongly sensitive to the magnitude of magnetization in FS region mzfs and orbital rotated angle α of superconductor gap. The negative MR only occurs in zero orbital rotated angle. This result can pave the way to distinguish the unconventional superconducting state in the relating topological insulator hybrid structures.

  14. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE PAGES

    Smylie, M. P.; Claus, H.; Kwok, W. -K.; ...

    2018-01-19

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  15. Superconductivity, pairing symmetry, and disorder in the doped topological insulator Sn 1 - x In x Te for x ≥ 0.10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smylie, M. P.; Claus, H.; Kwok, W. -K.

    In this paper, the temperature dependence of the London penetration depth Δλ(T) in the superconducting doped topological crystalline insulator Sn 1-xIn xTe was measured down to 450 mK for two different doping levels, x ≈ 0.45 (optimally doped) and x ≈ 0.10 (underdoped), bookending the range of cubic phase in the compound. The results indicate no deviation from fully gapped BCS-like behavior, eliminating several candidate unconventional gap structures. Critical field values below 1 K and other superconducting parameters are also presented. Finally, the introduction of disorder by repeated particle irradiation with 5 MeV protons does not enhance T c, indicatingmore » that ferroelectric interactions do not compete with superconductivity.« less

  16. Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira

    2017-09-01

    The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe4As4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Qres = 1.17(1) Å-1, corresponding to the (π ,π ) nesting wave vector in tetragonal notation, evolves below Tc. The characteristic energy of the spin resonance Eres = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe4As4 is the s± symmetry.

  17. Inducing Strong Superconductivity in WTe2 by a Proximity Effect.

    PubMed

    Huang, Ce; Narayan, Awadhesh; Zhang, Enze; Liu, Yanwen; Yan, Xiao; Wang, Jiaxiang; Zhang, Cheng; Wang, Weiyi; Zhou, Tong; Yi, Changjiang; Liu, Shanshan; Ling, Jiwei; Zhang, Huiqin; Liu, Ran; Sankar, Raman; Chou, Fangcheng; Wang, Yihua; Shi, Youguo; Law, Kam Tuen; Sanvito, Stefano; Zhou, Peng; Han, Zheng; Xiu, Faxian

    2018-06-21

    The search for proximity-induced superconductivity in topological materials has generated widespread interest in the condensed matter physics community. The superconducting states inheriting nontrivial topology at interfaces are expected to exhibit exotic phenomena such as topological superconductivity and Majorana zero modes, which hold promise for applications in quantum computation. However, a practical realization of such hybrid structures based on topological semimetals and superconductors has hitherto been limited. Here, we report the strong proximity-induced superconductivity in type-II Weyl semimetal WTe 2 , in a van der Waals hybrid structure obtained by mechanically transferring NbSe 2 onto various thicknesses of WTe 2 . When the WTe 2 thickness ( t WTe 2 ) reaches 21 nm, the superconducting transition occurs around the critical temperature ( T c ) of NbSe 2 with a gap amplitude (Δ p ) of 0.38 meV and an unexpected ultralong proximity length ( l p ) up to 7 μm. With the thicker 42 nm WTe 2 layer, however, the proximity effect yields T c ≈ 1.2 K, Δ p = 0.07 meV, and a short l p of less than 1 μm. Our theoretical calculations, based on the Bogoliubov-de Gennes equations in the clean limit, predict that the induced superconducting gap is a sizable fraction of the NbSe 2 superconducting one when t WTe 2 is less than 30 nm and then decreases quickly as t WTe 2 increases. This agrees qualitatively well with the experiments. Such observations form a basis in the search for superconducting phases in topological semimetals.

  18. Electronic structure of the ingredient planes of Bi2Sr2CaCu2O8 + δ and Bi2Sr2CuO6 + δ superconductors

    NASA Astrophysics Data System (ADS)

    Ma, Xucun

    Understanding the mechanism of high transition temperature superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of the ingredient planes (BiO, SrO, CuO2) of Bi2Sr2CaCu2O8 + δ (Bi-2212) and Bi2Sr2CuO6 + δ (Bi-2201) superconductors prepared by argon-ion bombardment and annealing (IBA) technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the charge reservoir planes and thus irrelevant directly to Cooper pairing. The CuO2 planes are exclusively characterized by a small gap inside the PG. The small gap becomes invisible near Tc, which we identify as the superconducting gap. The results constitute severe constraints on any microscopic model for high Tc superconductivity in cuprates. Contributors: Yan-Feng Lv, Wen-Lin Wang, Hao Ding, Yang Wang, Yong Zhong, Ying Ding, Ruidan Zhong, John Schneeloch, Gen-Da Gu, Lili Wang, Ke He, Shuai-Hua Ji, Lin Zhao, Xing-Jiang Zhou Can-Li Song, and Qi-Kun Xue. NSF and MOST of China.

  19. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica

    Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less

  20. Local corrugation and persistent charge density wave in ZrTe 3 with Ni intercalation

    DOE PAGES

    Ganose, Alex M.; Gannon, Liam; Fabrizi, Federica; ...

    2018-04-03

    Here, the mechanism of emergent bulk superconductivity in transition-metal intercalated ZrTe 3 is investigated by studying the effect of Ni doping on the band structure and charge density wave (CDW). The study reports theoretical and experimental results in the range of Ni 0.01ZrTe 3 to Ni 0.05ZrTe 3. In the highest doped samples, bulk superconductivity with T c < T CDW is observed, with a reduced T CDW compared with pure ZrTe 3. Relativistic ab initio calculations reveal that Ni incorporation occurs preferentially through intercalation in the van der Waals gap. Analysis of the structural and electronic effects of intercalationmore » indicate buckling of the Te sheets adjacent to the Ni site akin to a locally stabilized CDW-like lattice distortion. In contrast to the changes of T CDW observed in resistivity, experiments with low-temperature x-ray diffraction, angle-resolved-photoemission spectroscopy, as well as temperature-dependent resistivity reveal the nearly unchanged persistence of the CDW into the regime of bulk superconductivity. The CDW gap is found to be unchanged in its extent in momentum space, with the gap size also unchanged or possibly slightly reduced upon Ni intercalation. Both experimental observations suggest that superconductivity coexists with the CDW in Ni xZrTe 3.« less

  1. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn 5

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; ...

    2015-01-15

    The London penetration depth, λ(T), was measured in single crystals of Ce 1-xR xCoIn 5, R=La, Nd and Yb down to T min ≈ 50 mK (T c/T min ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ T n, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd and Yb lead to similar monotonic suppressions of T c, however the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expectedmore » for a dirty nodal superconductor, Yb doping leads to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happen in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less

  2. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC superconductors (Tamegai et al), and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al). We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.

  3. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2.

    PubMed

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-06-01

    In exotic superconductors, including high- T c copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu 2 Si 2 , which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu 2 Si 2 , demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

  4. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  5. Superconducting gap structure in the electron doped BiS2-based superconductor

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Adroja, D. T.; Hillier, A. D.; Jha, R.; Awana, V. P. S.; Strydom, A. M.

    2017-07-01

    The influence of electron doping on semimetallic SrFBiS2 has been investigated by means of resistivity, zero and transverse  -  field (ZF/TF) muon spin relaxation/rotation (μSR) experiments. SrFBiS2 is semimetallic in its normal state and small amounts of La doping results in bulk superconductivity at 2.8 K, at ambient pressure. The temperature dependence of the superfluid density as determined by TF-μSR can be best modelled by an isotropic s  -  wave type superconducting gap. We have estimated the magnetic penetration depth {λL}(0)=1087 nm, superconducting carrier density {{n}s}=3.7× {{10}26} carriers m-3 and effective-mass enhancement m *  =  1.558 m e. Additionally, there is no clear sign of the occurrence of spontaneous internal magnetic fields below {{T}\\mathbf{c}} , which implies that the superconducting state in this material can not be categorized by the broken time-reversal symmetry which is in agreement with the previous theoretical prediction.

  6. Superconductivity, pseudo-gap, and stripe correlations in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Zhang, Zailan; Denis, Sylvain; Lebert, Blair W.; Bertran, Francois; Le Fèvre, Patrick; Taleb-Ibrahimi, Amina; Castellan, John-Paul; Bolloc'h, David Le; Jacques, Vincent L. R.; Sidis, Yvan; Baptiste, Benoît; Decorse, Claudia; Berthet, Patrick; Perfetti, Luca; d'Astuto, Matteo

    2018-05-01

    Under-doped La-214 cuprates show a charge- and spin-modulation known as "stripes" [1]. These stripe modulations are (quasi)-static close to 1/8 hole doping where superconductivity is suppressed. The pseudo-gap phase of other cuprate compounds recently also revealed charge modulation, but interpreted rather as a charge density wave (CDW) [2-4], that possibly competes with superconductivity. In this context, to better understand the interplay between the stripe phase and the superconductivity, we use angle-resolved photoemission spectroscopy to study the electronic band structure and gap in La-214 cuprates near 1/8 doping (La2-x-yNdySrxCuO4 (x = 0.12; y = 0.0 & 0.4)) and compare with the previous results in the same system [5] and La1.86Ba0.14CuO4 [6]. Our data shows a loss of spectral intensity towards the end of the Fermi arcs, that is possibly due to a strong renormalisation, as already pointed out elsewhere [6], with a noisy but still measurable gap. On the nodal direction no gap is observed within our statistics, but a sizeable decrease in intensity with temperature. Moreover, we do not see any shadow band, but our Fermi surface can be well modelled with a single electron band calculation in the tight binding approximation, even very close to the 1/8 doping La2-x-yNdySrxCuO4 with and without Nd substitution.

  7. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  8. Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn 5

    DOE PAGES

    Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.; ...

    2018-02-07

    Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less

  9. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    PubMed Central

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  10. Energy gap evolution across the superconductivity dome in single crystals of (Ba1-x K x )Fe2As2.

    PubMed

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A; Liu, Yong; Lograsso, Thomas A; Straszheim, Warren E; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J; Prozorov, Ruslan

    2016-09-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba 1- x K x )Fe 2 As 2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping ( x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ( T ), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ T n , we find that the exponent n is the highest and the T c suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t -matrix approach suggests the ubiquitous and robust nature of s ± pairing in IBSs and argues against a previously suggested transition to a d -wave state near x = 1 in this system.

  11. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder withmore » heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.« less

  12. Superconductivity pairing mechanism from cobalt impurity doping in FeSe: Spin (s±) or orbital (s++) fluctuation

    NASA Astrophysics Data System (ADS)

    Urata, T.; Tanabe, Y.; Huynh, K. K.; Yamakawa, Y.; Kontani, H.; Tanigaki, K.

    2016-01-01

    In high-superconducting transition temperature (Tc) iron-based superconductors, interband sign reversal (s±) and sign preserving (s++) s -wave superconducting states have been primarily discussed as the plausible superconducting mechanism. We study Co impurity scattering effects on the superconductivity in order to achieve an important clue on the pairing mechanism using single-crystal Fe1 -xCoxSe and depict a phase diagram of a FeSe system. Both superconductivity and structural transition/orbital order are suppressed by the Co replacement on the Fe sites and disappear above x = 0.036. These correlated suppressions represent a common background physics behind these physical phenomena in the multiband Fermi surfaces of FeSe. By comparing experimental data and theories so far proposed, the suppression of Tc against the residual resistivity is shown to be much weaker than that predicted in the case of general sign reversal and full gap s± models. The origin of the superconducting paring in FeSe is discussed in terms of its multiband electronic structure.

  13. Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors MNCl (M = Ti, Hf, Zr)

    NASA Astrophysics Data System (ADS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji

    2014-05-01

    The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.

  14. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2

    PubMed Central

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A.; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S.; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-01-01

    In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction. PMID:28691082

  15. Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: a point-contact Andreev-reflection study of Ba(Fe(1-x)Co(x))2As2 single crystals.

    PubMed

    Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S

    2010-12-03

    Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).

  16. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3 superconductor.

    PubMed

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  17. Investigation of scanning tunneling spectra on iron-based superconductor FeSe 0.5Te 0.5(in Chinese)

    DOE PAGES

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; ...

    2015-05-05

    FeSe 0.5Te 0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconductingmore » state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.« less

  18. Investigation of scanning tunneling spectra on iron-based superconductor FeSe 0.5Te 0.5 (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.

    FeSe 0.5Te 0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconductingmore » state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.« less

  19. The role of engineered materials in superconducting tunnel junction X-ray detectors - Suppression of quasiparticle recombination losses via a phononic band gap

    NASA Technical Reports Server (NTRS)

    Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.

    1992-01-01

    An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.

  20. Gap Symmetry of the Heavy Fermion Superconductor CeCu2Si2 at Ambient Pressure

    NASA Astrophysics Data System (ADS)

    Li, Yu; Liu, Min; Fu, Zhaoming; Chen, Xiangrong; Yang, Fan; Yang, Yi-feng

    2018-05-01

    Recent observations of two nodeless gaps in superconducting CeCu2 Si2 have raised intensive debates on its exact gap symmetry, while a satisfactory theoretical basis is still lacking. Here we propose a phenomenological approach to calculate the superconducting gap functions, taking into consideration both the realistic Fermi surface topology and the intra- and interband quantum critical scatterings. Our calculations yield a nodeless s±-wave solution in the presence of strong interband pairing interaction, in good agreement with experiments. This provides a possible basis for understanding the superconducting gap symmetry of CeCu2 Si2 at ambient pressure and indicates the potential importance of multiple Fermi surfaces and interband pairing interaction in understanding heavy fermion superconductivity.

  1. Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Kaindl, Robert A.; Carnahan, Marc A.; Orenstein, Joseph; Chemla, Daniel S.; Christen, Hans M.; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H.

    2002-01-01

    We report the first study of the optical conductivity of MgB 2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity σ(ω) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Δ0/kBTC~1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  2. Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.

    2018-05-01

    We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.

  3. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe 2 As 2 Superconductors

    DOE PAGES

    Zou, Qiang; Wu, Zhiming; Fu, Mingming; ...

    2017-02-03

    Combined scanning tunneling microscopy, spectroscopy, and local barrier height (LBH) studies show that low-temperature-cleaved optimally doped Ba(Fe 1–xCo x) 2As 2 crystals with x = 0.06, with T c = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba- and As-dominated surface terminations, respectively. Magnetic impurities, possibly due to Co or Fe atoms, are believed to createmore » local in-gap state and, in addition, suppress the superconducting coherence peaks. Lastly, this study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors and its relation with the electronic structures.« less

  4. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  5. Enhancement of the superconducting gap by nesting in CaKFe 4 As 4 : A new high temperature superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Daixiang; Kong, Tai; Meier, William R.

    We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe 4As 4. In contrast to the related CaFe 2As 2 compounds, CaKFe 4As 4 has a high T c of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearlymore » isotropic (within the explored portions of the Brillouin zone), but are significantly different for each of the Fermi surface (FS) sheets. Most importantly, we find that the momentum dependence of the gap magnitude plotted across the entire Brillouin zone displays a strong deviation from the simple cos( k x)cos( k y) functional form of the gap function, proposed by the scenario of Cooper pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed on FS sheets that are closest to the ideal nesting condition, in contrast to previous observations in other ferropnictides. Finally, these results provide strong support for the multiband character of superconductivity in CaKFe 4As 4, in which Cooper pairing forms on the electron and the hole bands interacting via a dominant interband repulsive interaction, enhanced by band nesting.« less

  6. Enhancement of the superconducting gap by nesting in CaKFe 4 As 4 : A new high temperature superconductor

    DOE PAGES

    Mou, Daixiang; Kong, Tai; Meier, William R.; ...

    2016-12-28

    We use high resolution angle resolved photoemission spectroscopy and density functional theory with measured crystal structure parameters to study the electronic properties of CaKFe 4As 4. In contrast to the related CaFe 2As 2 compounds, CaKFe 4As 4 has a high T c of 35 K at stochiometric composition. This presents a unique opportunity to study the properties of high temperature superconductivity in the iron arsenides in the absence of doping or substitution. The Fermi surface consists of several hole and electron pockets that have a range of diameters. We find that the values of the superconducting gap are nearlymore » isotropic (within the explored portions of the Brillouin zone), but are significantly different for each of the Fermi surface (FS) sheets. Most importantly, we find that the momentum dependence of the gap magnitude plotted across the entire Brillouin zone displays a strong deviation from the simple cos( k x)cos( k y) functional form of the gap function, proposed by the scenario of Cooper pairing driven by a short range antiferromagnetic exchange interaction. Instead, the maximum value of the gap is observed on FS sheets that are closest to the ideal nesting condition, in contrast to previous observations in other ferropnictides. Finally, these results provide strong support for the multiband character of superconductivity in CaKFe 4As 4, in which Cooper pairing forms on the electron and the hole bands interacting via a dominant interband repulsive interaction, enhanced by band nesting.« less

  7. Multilayered cuprate superconductor Ba2Ca5Cu6O12(O1-x,Fx) 2 studied by temperature-dependent scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.; Sekine, Ryotaro; Tanabe, Kenji; Tokiwa, Kazuyasu

    2017-05-01

    Scanning tunneling microscopy/spectroscopy (STM/STS) measurements were carried out on a multilayered cuprate superconductor Ba2Ca5Cu6O12 (O1 -x,Fx )2. STM topography revealed random spot structures with the characteristic length ≤0.5 nm. The conductance spectra d I /d V (V ) show the coexistence of smaller gaps ΔS and large gaps (pseudogaps) ΔL. The pseudogap-related features in the superconducting state were traced with the spatial resolution of ˜0.07 nm. Here, I and V are the tunnel current and bias voltage, respectively. The temperature, T , dependence of ΔS follows the reduced Bardeen-Cooper-Schrieffer (BCS) dependence. The hallmark ratio 2 ΔS(T =0 ) /kBTc equals to 4.9, which is smaller than those of other cuprate superconductors. Here, Tc is the superconducting critical temperature and kB is the Boltzmann constant. The larger gap ΔL survives in the normal state and even increases with T above Tc. The T dependencies of the spatial distributions for both relevant gaps (Δ map), as well as for each gap separately (ΔS and ΔL), were obtained. From the histogram of Δ map, the averaged gap values were found to be Δ¯S=˜24 meV and Δ¯L=˜79 meV. The smaller gap ΔS shows a spatially homogeneous distribution while the larger gap ΔL is quite inhomogeneous, indicating that rather homogeneous superconductivity coexists with the patchy distributed pseudogap. The spatial variation length ξΔ L of ΔL correlates with the scale of the topography spot structures, being approximately 0.4 nm. This value is considerably smaller than the coherence length of this class of superconductors, suggesting that ΔL is strongly affected by the disorder of the apical O/F.

  8. Calculations of the first frequency moment of the structure factor in the BCS model

    NASA Astrophysics Data System (ADS)

    Rendell, J. M.; Carbotte, J. P.

    1998-03-01

    We have calculated the first frequency moment of the dynamical structure factor, S(q,ω), known as the f-sum, using the BCS model of susceptibility, \\chi(q,ω), with phenomenological models of the normal state dispersion, tilde\\varepsilon_k, and the superconducting energy gap, Δ_k(T). We have found an explicit expression for the f-sum in both the normal state and the superconducting state. Numerically, we show that the f-sum is insensitive to temperature changes in the range 0 to the order of magnitude of T_c, to the state (normal or superconducting) and to the size and type of energy gap, Δ_k(T), in the superconducting state. The f-sum does depend intimately on the normal state dispersion model, tilde\\varepsilonk and on the filling in the first Brillouin zone. In addition, we show numerically that the f-sum is nearly constant for the Random Phase Approximation (RPA) of the susceptibility up to pseudo-potentials, U <= U_c, the critical potential. Thus, a large increase in Im \\chi(q_0,ω_0) at frequency ω0 and a potential U > 0 (e.g. examining the 41 meV peak at q0 = (π,π)), is compensated by commensurate reduction in Im \\chi(q_0,ω) at other frequencies.

  9. Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat

    NASA Astrophysics Data System (ADS)

    Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto

    2013-03-01

    Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.

  10. Anisotropic superconductivity and elongated vortices with unusual bound states in quasi-one-dimensional nickel-bismuth compounds

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2018-04-01

    We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.

  11. Direct evidence for a magnetic f-electron–mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5

    PubMed Central

    Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.

    2014-01-01

    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692

  12. Subgap transport in silicene-based superconducting hybrid structures

    NASA Astrophysics Data System (ADS)

    Li, Hai

    2016-08-01

    We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.

  13. Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P

    2017-12-21

    The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.

  14. Far-infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Carnahan, M. A.; Kaindl, R. A.; Chemla, D. S.; Christen, H. M.; Zhai, H. Y.; Paranthaman, M.; Lowndes, D. H.

    2002-03-01

    The prospect of unconventional coupling in the superconductor MgB2 motivates experiments which probe the density of states around the superconducting gap. The frequency and temperature dependent optical conductivity contains important spectroscopic information about the fundamental gap excitations as well as providing a contactless measure of the superconducting condensate. Here we present the first measurements of the far-infrared conductivity of MgB2 over a broad frequency range which spans excitations across its lowest-energy superconducting gap [1]. Thin films of MgB2 are grown on Al_2O3 substrates through e-beam evaporation and subsequent ex-situ annealing [2]. Both the real and imaginary parts of the conductivity are obtained - without recourse to Kramers-Kronig transformations - from terahertz time-domain spectroscopy. Below Tc we observe a depletion of oscillator strength due to the opening of a superconducting gap. We find a gap size of 2Δ ≈ 5 meV. This result, a value which is only half that expected in weak-coupling BCS theory, disfavors a conventional isotropic single-gap scenario. [1] R. Kaindl et al., Phys. Rev. Lett. (to appear). [2] M. Paranthaman et al., Appl. Phys. Lett. 78, 3669 (2001).

  15. Inelastic Neutron Scattering Studies of the Spin and Lattice Dynamics inIron Arsenide Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson, Andrew D; Osborn, R.; Rosenkranz, Stephen

    2009-01-01

    Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initiomore » calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely to be extended-s{sub {+-}} wave in character.« less

  16. Inelastic neutron scattering studies of the spin and lattice dynamics in iron arsenide compounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, R.; Rosenkranz, S.; Goremychkin, E. A.

    2009-03-20

    Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe{sub 2}As{sub 2} ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initiomore » calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T{sub c}, there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T{sub c}. Such resonances have been observed in the high-T{sub c} copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely to be extended-s{sub {+-}} wave in character.« less

  17. Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba ( F e 0.65 R u 0.35 ) 2 A s 2 : Effects of spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Okazaki, K.; Yoshida, T.

    Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less

  18. Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba ( F e 0.65 R u 0.35 ) 2 A s 2 : Effects of spin-orbit coupling

    DOE PAGES

    Liu, L.; Okazaki, K.; Yoshida, T.; ...

    2017-03-06

    Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less

  19. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  20. A Study of Production of Miscibility Gap Alloys with Controlled Structures

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Burka, J. A.; Davis, J. H.; Lee, J. A.

    1983-01-01

    Composite materials were directionally solidified using a new technique to align the constituents longitudinally along the length of the specimen. In some instances a tin coating was applied and diffused into the sample to form a high transition temperature superconducting phase. The superconducting properties were measured and compared with the properties obtained for powder composites and re-directionally solidified powder compacts. The samples which were compacted and redirectionally solidified showed the highest transition temperature and wildest transition range. This indicates that both steps, powder compaction and resolidification, determine the final superconducting properties of the material.

  1. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    PubMed

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-04

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  2. Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3

    NASA Astrophysics Data System (ADS)

    Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc

    2018-06-01

    SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.

  3. Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe 4 As 4

    DOE PAGES

    Cho, Kyuil; Fente, A.; Teknowijoyo, S.; ...

    2017-03-08

    Measurements of the London penetration depth Δλ(T) and tunneling conductance in single crystals of the recently discovered stoichiometric iron-based superconductor CaKFe 4As 4 (CaK1144) show nodeless, two-effective-gap superconductivity with a larger gap of about 6–10 meV and a smaller gap of about 1–4 meV. Having a critical temperature T c,onset ≈ 35.8 K, this material behaves similar to slightly overdoped (Ba 1–xK x)Fe 2As 2 (e.g., x = 0.54,T c ≈ 34 K), a known multigap s ± superconductor. Here, we conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap s± superconductivity is an essential property of high-temperaturemore » superconductivity in iron-based superconductors, independent of the degree of substitutional disorder.« less

  4. Evidence for k-dependent, in-plane anisotropy of the superconducting gap in Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Shen, Z. X.; Dessau, D. S.; Spicer, W. E.; Mitzi, D. B.; Lombardo, L.; Kapitulnik, A.; Arko, A. J.

    1992-11-01

    We find the superconducting gap in Bi2Sr2CaCu2O8+δ single crystals is anisotropic in k space by roughly a factor of 2 using angle-resolved photoemission spectroscopy. Matching the k-space symmetry of the gap values provides a stringent constraint on theories of the mechanism of high-temperature superconductivity. A review of the literature shows that many puzzling results can be explained by anisotropic gaps in the high-Tc cuprates.

  5. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  6. Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Setiawan, F.; Sau, Jay D.

    2018-03-01

    A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017), 10.1126/science.aag2792] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.

  7. Resilient Nodeless d -Wave Superconductivity in Monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Agterberg, D. F.; Shishidou, T.; O'Halloran, J.; Brydon, P. M. R.; Weinert, M.

    2017-12-01

    Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with s -wave superconductivity. Here, we develop a theory for the superconductivity based on coupling to fluctuations of checkerboard magnetic order (which has the same translation symmetry as the lattice). The electronic states are described by a symmetry based k .p -like theory and naturally account for the states observed by angle resolved photoemission spectroscopy. We show that a prediction of this theory is that the resultant superconducting state is a fully gapped, nodeless, d -wave state. This state, which would usually have nodes, stays nodeless because, as seen experimentally, the relevant spin-orbit coupling has an energy scale smaller than the superconducting gap.

  8. Complex superconductivity in the noncentrosymmetric compound Re 6Zr

    DOE PAGES

    Khan, Mojammel A.; Karki, A. B.; Samanta, T.; ...

    2016-10-24

    Here, we report the electronic structure, synthesis, and measurements of the magnetic, transport, and thermal properties of the polycrystalline noncentrosymmetric compound Re 6Zr . We observed a bulk superconducting transition at temperature T c ~ 6.7 K, and measured the resistivity, heat capacity, thermal conductivity, and the London penetration depth below the transition, as well as performed doping and pressure studies. From these measurements we extracted the critical field and the superconducting parameters of Re 6Zr. Lastly, our measurements indicate a relatively weak to moderate contribution from a triplet component to the order parameter, and favor a full superconducting gap,more » although we cannot exclude the existence of point nodes based on our data.« less

  9. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Thamizhavel, A; Hillier, A D; Paul, D McK; Singh, R P

    2018-01-22

    The properties of the noncentrosymmetric superconductor (α-[Formula: see text] structure) Nb 0.5 Os 0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (μSR) measurements. These measurements suggest that Nb 0.5 Os 0.5 is a weakly coupled ([Formula: see text]) type-II superconductor ([Formula: see text]), having a bulk superconducting transition temperature T c   =  3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb 0.5 Os 0.5 . The μSR measurements also confirm [Formula: see text]-wave superconductivity with the preserved time-reversal symmetry.

  10. Spin-triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9Mo6O17

    NASA Astrophysics Data System (ADS)

    Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas

    2015-10-01

    The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.

  11. Spin triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9 Mo6 O17

    NASA Astrophysics Data System (ADS)

    Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri

    The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.

  12. Two-gap superconductivity in Mo8Ga41 and its evolution upon vanadium substitution

    NASA Astrophysics Data System (ADS)

    Verchenko, V. Yu.; Khasanov, R.; Guguchia, Z.; Tsirlin, A. A.; Shevelkov, A. V.

    2017-10-01

    Zero-field and transverse-field muon spin rotation/relaxation (μ SR ) experiments were undertaken in order to elucidate the microscopic properties of a strongly coupled superconductor Mo8Ga41 with Tc=9.8 K. The upper critical field extracted from the transverse-field μ SR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8Ga41 is described using a model in which two s wave superconducting gaps are assumed. A V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7VGa41 is well described within the single s wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon V substitution indicate the emergence of a competing state in Mo7VGa41 that may be responsible for the closure of one of the superconducting gaps.

  13. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  14. Influence of disorder on the signature of the pseudogap and multigap superconducting behavior in FeSe

    NASA Astrophysics Data System (ADS)

    Rößler, Sahana; Huang, Chien-Lung; Jiao, Lin; Koz, Cevriye; Schwarz, Ulrich; Wirth, Steffen

    2018-03-01

    We investigated several FeSe single crystals grown by two different methods by utilizing experimental techniques, namely, resistivity, magnetoresistance, specific heat, scanning tunneling microscopy, and spectroscopy. The residual resistivity ratio (RRR) shows systematic differences between samples grown by chemical vapor transport and flux vapor transport, indicating variance in the amount of scattering centers. Although the superconducting transition temperature Tc is not directly related to RRR, our study evidences subtle differences in the features of an incipient ordering mode related to a depletion of density of states at the Fermi level. For instance, the onset temperature of anisotropic spin fluctuations at T*≈75 K, and the temperature of the opening up of a partial gap in the density of states at T**≈30 K, are not discernible in the samples with lower RRR. Further, we show that the functional dependence of the electronic specific heat below 2 K, which allows us to determine the nodal features as well as the small superconducting gap, differs significantly in crystals grown by these two different methods. Our investigation suggests that some of the controversies about the driving mechanism for the superconducting gap or its structure and symmetry are related to minute differences in the crystals arising due to the growth techniques used and the total amount of scattering centers present in the sample.

  15. Multigap superconductivity and Shubnikov-de Haas oscillations in single crystals of the layered boride OsB2

    NASA Astrophysics Data System (ADS)

    Singh, Yogesh; Martin, C.; Bud'Ko, S. L.; Ellern, A.; Prozorov, R.; Johnston, D. C.

    2010-10-01

    Single crystals of superconducting OsB2 [Tc=2.10(5)K] have been grown using a Cu-B eutectic flux. We confirm that OsB2 crystallizes in the reported orthorhombic structure (space group Pmmn ) at room temperature. Both the normal and superconducting state properties of the crystals are studied using various techniques. Heat capacity versus temperature C(T) measurements yield the normal state electronic specific heat coefficient γ=1.95(1)mJ/molK2 and the Debye temperature ΘD=539(2)K . The measured frequencies of Shubnikov-de Haas oscillations are in good agreement with those predicted by band structure calculations. Magnetic susceptibility χ(T,H) , electrical resistivity ρ(T) , and C(T,H) measurements ( H is the magnetic field) demonstrate that OsB2 is a bulk low- κ [κ(Tc)=2(1)] type-II superconductor that is intermediate between the clean and dirty limits [(ξ(T=0)/ℓ=0.97)] with a small upper critical magnetic field Hc2(T=0)=186(4)Oe . The penetration depth is λ(T=0)=0.300μm . An anomalous (not single-gap BCS) T dependence of λ was fitted by a two-gap model with Δ1(T=0)/kBTc=1.9 and Δ2(T=0)/kBTc=1.25 , respectively. The discontinuity in the heat capacity at Tc , ΔC/γTc=1.32 , is smaller than the weak-coupling BCS value of 1.43, consistent with the two-gap nature of the superconductivity in OsB2 . An anomalous increase in ΔC at Tc of unknown origin is found in finite H ; e.g., ΔC/γTc≈2.5 for H≈25Oe .

  16. Energy gap evolution across the superconductivity dome in single crystals of (Ba 1-xK x)Fe 2As 2

    DOE PAGES

    Cho, Kyuil; Konczykowski, Marcin; Teknowijoyo, Serafim; ...

    2016-09-30

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba 1$-$xK x)Fe 2As 2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconductingmore » dome. In this work, we conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ T n, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s ± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system.« less

  17. Color superconductivity from the chiral quark-meson model

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  18. Observation of enhanced superconductivity in the vicinity of Ar-induced nano-cavities in Pb(111).

    PubMed

    Song, Sang Yong; Seo, Jungpil

    2017-09-22

    Local variations of superconductivity have been studied using scanning tunneling microscopy around nano-cavities formed by Ar ions embedded in Pb(111). Various factors including the density of states at Fermi energy, electron-phonon couplings, and quantum well states, which are known to affect superconductivity, have been examined. We show that the superconductivity is enhanced near the nano-cavities and propose that quantum effects such as quantum confinement, proximity effect and multi-gap effect are possibly involved in determining the superconducting gap of this system. These results have important implications for the characterization and understanding of superconductivity at a nanometer scale.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teknowijoyo, S.; Cho, K.; Tanatar, M. A.

    A highly anisotropic superconducting gap is found in single crystals of FeSe by studying the London penetration depth Δλ measured down to 50 mK in samples before and after 2.5 MeV electron irradiation. The gap minimum increases with introduced pointlike disorder, indicating the absence of symmetry-imposed nodes. Surprisingly, the superconducting transition temperature T c increases by 0.4 K from T c0 ≈ 8.8 K while the structural transition temperature T s decreases by 0.9 K from T s0 ≈ 91.2 K after electron irradiation. Finally, we discuss several explanations for the T c enhancement and propose that local strengthening ofmore » the pair interaction by irradiation-induced Frenkel defects most likely explains the phenomenon.« less

  20. Superconductivity across Lifshitz transition and anomalous insulating state in surface K-dosed (Li0.8Fe0.2OH)FeSe.

    PubMed

    Ren, Mingqiang; Yan, Yajun; Niu, Xiaohai; Tao, Ran; Hu, Die; Peng, Rui; Xie, Binping; Zhao, Jun; Zhang, Tong; Feng, Dong-Lai

    2017-07-01

    In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity ( T c of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K dosing, scanning tunneling microscopy/spectroscopy, and angle-resolved photoemission spectroscopy, we studied the electronic structure and superconductivity of (Li 0.8 Fe 0.2 OH)FeSe in the deep electron-doped regime. We find that a Γ-centered electron band, which originally lies above the Fermi level ( E F ), can be continuously tuned to cross E F and contribute a new electron pocket at Γ. When this Lifshitz transition occurs, the superconductivity in the M-centered electron pocket is slightly suppressed, and a possible superconducting gap with a small size (up to ~5 meV) and a dome-like doping dependence is observed on the new Γ electron pocket. Upon further K dosing, the system eventually evolves into an insulating state. Our findings provide new clues to understand superconductivity versus Fermi surface topology and the correlation effect in FeSe-based superconductors.

  1. Superconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li0.8Fe0.2OH)FeSe

    PubMed Central

    Ren, Mingqiang; Yan, Yajun; Niu, Xiaohai; Tao, Ran; Hu, Die; Peng, Rui; Xie, Binping; Zhao, Jun; Zhang, Tong; Feng, Dong-Lai

    2017-01-01

    In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity (Tc of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K dosing, scanning tunneling microscopy/spectroscopy, and angle-resolved photoemission spectroscopy, we studied the electronic structure and superconductivity of (Li0.8Fe0.2OH)FeSe in the deep electron-doped regime. We find that a Γ-centered electron band, which originally lies above the Fermi level (EF), can be continuously tuned to cross EF and contribute a new electron pocket at Γ. When this Lifshitz transition occurs, the superconductivity in the M-centered electron pocket is slightly suppressed, and a possible superconducting gap with a small size (up to ~5 meV) and a dome-like doping dependence is observed on the new Γ electron pocket. Upon further K dosing, the system eventually evolves into an insulating state. Our findings provide new clues to understand superconductivity versus Fermi surface topology and the correlation effect in FeSe-based superconductors. PMID:28740865

  2. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  3. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyenis, András; Feldman, Benjamin E.; Randeria, Mallika T.

    Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn 5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave ordermore » parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase.« less

  5. Nodeless pairing in superconducting copper-oxide monolayer films on Bi 2Sr 2CaCu 2O 8+δ

    DOE PAGES

    Zhong, Yong; Wang, Yang; Han, Sha; ...

    2016-07-12

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO 2 layers. Here, by growing CuO 2 monolayer films on Bi 2Sr 2CaCu 2O 8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherencemore » and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO 2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi 2Sr 2CaCu 2O 8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO 2 layers.« less

  6. Nodeless pairing in superconducting copper-oxide monolayer films on Bi 2Sr 2CaCu 2O 8+δ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Yong; Wang, Yang; Han, Sha

    We report that the pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO 2 layers. Here, by growing CuO 2 monolayer films on Bi 2Sr 2CaCu 2O 8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherencemore » and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO 2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. In conclusion, our results support an s-wave superconductivity in Bi 2Sr 2CaCu 2O 8+δ, which, we propose, originates from the modulation-doping resultant two-dimensional hole liquid confined in the CuO 2 layers.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut

    Superconductivity was discovered in the layered compound RbBi 11/3Te 6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. In addition, a sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi 11/3-ySb ySe xTe 6-x, revealed a dependence of the superconducting transition on composition that can increase the T c up to similar to 10%. The RbBi 11/3Te 6 system is the first member of the new homologous series Rb[Bimore » 2n+11/3Te 3n+6] with infinite Bi 2Te 3-like layers. Lastly, the large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors.« less

  8. Spectroscopic signatures of different symmetries of the superconducting order parameter in metal-decorated graphene

    NASA Astrophysics Data System (ADS)

    Saari, Timo; Nieminen, Jouko; Bansil, Arun

    2017-06-01

    Motivated by the recent experiments indicating superconductivity in metal-decorated graphene sheets, we investigate their quasi-particle structure within the framework of an effective tight-binding Hamiltonian augmented by appropriate BCS-like pairing terms for p-type order parameter. The normal state band structure of graphene is modified not only through interaction with adsorbed metal atoms, but also due to the folding of bands at Brillouin zone boundaries resulting from a \\sqrt{3}× \\sqrt{3}R{{30}\\circ} reconstruction. Several different types of pairing symmetries are analyzed utilizing Nambu-Gorkov Green’s function techniques to show that p+\\text{i}p -symmetric nearest-neighbor pairing yields the most enhanced superconducting gap. The character of the order parameter depends on the nature of the atomic orbitals involved in the pairing process and exhibits interesting angular and radial asymmetries. Finally, we suggest a method to distinguish between singlet and triplet type superconductivity in the presence of magnetic substitutional impurities using scanning tunneling spectroscopy.

  9. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaki, N.; Yang, H. -B.; Rameau, J. D.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of themore » phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J Sigma s(i)s(j), contained in the t - J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  10. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    DOE PAGES

    Zaki, Nader; Yang, Hongbo -B.; Rameau, Jon D.; ...

    2017-11-28

    The phase diagram associated with high-T c superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure ofmore » the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, JΣs is j, contained in the t-J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.« less

  11. Cuprate phase diagram and the influence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.

    2017-11-01

    The phase diagram associated with high-Tc superconductors is complicated by an array of different ground states. The parent material represents an antiferromagnetic insulator but with doping superconductivity becomes possible with transition temperatures previously thought unattainable. The underdoped region of the phase diagram is dominated by the so-called pseudogap phenomena, whereby in the normal state the system mimics superconductivity in its spectral response but does not show the complete loss of resistivity associated with the superconducting state. An understanding of this regime presents one of the great challenges for the field. In the present study we revisit the structure of the phase diagram as determined in photoemission studies. By careful analysis of the role of nanoscale inhomogeneities in the overdoped region, we are able to more carefully separate out the gaps due to the pseudogap phenomena from the gaps due to the superconducting transition. Within a mean-field description, we are thus able to link the magnitude of the doping-dependent pseudogap directly to the Heisenberg exchange interaction term, J ∑sisj , contained in the t -J model. This approach provides a clear indication that the pseudogap is associated with spin singlet formation.

  12. Undoped high-Tc superconductivity in T'-La1.8Eu0.2CuO4+δ revealed by 63,65Cu and 139La NMR: Bulk superconductivity and antiferromagnetic fluctuations

    NASA Astrophysics Data System (ADS)

    Fukazawa, Hideto; Ishiyama, Seiya; Goto, Masato; Kanamaru, Shuhei; Ohashi, Kohki; Kawamata, Takayuki; Adachi, Tadashi; Hirata, Michihiro; Sasaki, Takahiko; Koike, Yoji; Kohori, Yoh

    2017-10-01

    We performed 63,65Cu and 139La NMR measurements of T'-La1.8Eu0.2CuO4+δ (T'-LECO) with the Nd2CuO4-type structure (so-called T'-structure). As a result, we detected the 63,65Cu NMR signal under finite magnetic fields and found superconductivity without antiferromagnetic (AF) order only in the reduced T'-LECO, where excess apical oxygen atoms are properly removed. This indicates that the intrinsic ground state of the ideal T'-LECO is a paramagnetic and superconducting (SC) state. Below Tc, the Knight shift was found to rapidly decrease, which indicates the emergence of bulk superconductivity due to spin-singlet Cooper pairs in the reduced T'-LECO. In the SC state of the reduced T'-LECO, moreover, a characteristic temperature dependence of the spin-lattice relaxation rate 1/T1 was observed, which implies the existence of nodal lines in the SC gap. These findings suggest that the superconductivity in the reduced T'-LECO probably has d-wave symmetry. In the normal state of the reduced T'-LECO, on the other hand, AF fluctuations were found to exist from the temperature dependence of 1/T1T, though no clear pseudogap behavior was observed. This suggests that the AF correlation plays a key role in the superconductivity of undoped high-Tc cuprate superconductors with the T'-structure.

  13. Observation of pseudogap in MgB2

    NASA Astrophysics Data System (ADS)

    Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran

    2017-11-01

    We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.

  14. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures.

    PubMed

    Chen, Mingyang; Chen, Xiaoyu; Yang, Huan; Du, Zengyi; Wen, Hai-Hu

    2018-06-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi 2 Se 3 or Bi 2 Te 3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect-induced superconductivity in the Bi 2 Te 3 thin film on top of the iron-based superconductor FeTe 0.55 Se 0.45 . By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ 4 y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi 2 Te 3 /FeTe 0.55 Se 0.45 heterostructures.

  15. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures

    PubMed Central

    Du, Zengyi

    2018-01-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect–induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures. PMID:29888330

  16. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    NASA Astrophysics Data System (ADS)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  17. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  18. Gap structure in Fe-based superconductors with accidental nodes: The role of hybridization

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Chubukov, Andrey V.

    2015-06-01

    We study the effects of hybridization between the two electron pockets in Fe-based superconductors with s -wave gap with accidental nodes. We argue that hybridization reconstructs the Fermi surfaces and also induces an additional interpocket pairing component. We analyze how these two effects modify the gap structure by tracing the position of the nodal points of the energy dispersions in the superconducting state. We find three possible outcomes. In the first, the nodes simply shift their positions in the Brillouin zone; in the second, the nodes merge and disappear, in which case the gap function has either equal or opposite signs on the electron pockets; in the third, a new set of nodal points emerges, doubling the original number of nodes.

  19. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  20. Observation of multiple superconducting gaps in Fe1+y Se x Te 1-x through Andreev reflection

    NASA Astrophysics Data System (ADS)

    de, Debtanu; Diaz-Pinto, Carlos; Wu, Zheng; Hor, Pei-Herng; Peng, Haibing

    2011-03-01

    Iron-based superconductors have been under intensive study because of the high transition temperature and the intriguing physical mechanisms involving the superconductivity and magnetic orders. Theoretical studies on the role of spin fluctuation suggest unconventional S wave pairing and multiple superconducting (SC) gaps due to the five disjoint Fermi surfaces. However, this multiple SC-gap scenario has yet to be confirmed in experiments. Here we report the experimental observation of five SC gaps in Fe 1+y Se x Te 1-x from Andreev reflection spectra, along with negative differential conductance dips due to the pair breaking related to the largest SC gap. The evolution of the multiple SC gaps is further investigated as a function of both temperature and magnetic field. For the largest SC gap, the Andreev reflection signal persists above bulk Tc, suggesting the existence of phase incoherent Cooper pairs.

  1. PREFACE: Anisotropic and multiband pairing: from borides to multicomponent superconductivity Anisotropic and multiband pairing: from borides to multicomponent superconductivity

    NASA Astrophysics Data System (ADS)

    Annett, James; Kusmartsev, Feodor; Bianconi, Antonio

    2009-01-01

    In 2001, the discovery of superconductivity in MgB2 rapidly led to the understanding that its complex multi-sheeted Fermi surface had two distinct values of the gap parameter Δ, each with its own characteristic temperature dependence. While the theory of multigap superconductivity had been developed long ago, this was the first well studied example where multigap behaviour was observed clearly, and indeed is essential to understand the full superconducting properties of the material. Following this discovery, evidence for multigap behaviour has appeared in a number of materials, including cuprates, ruthenates, and most recently the iron pnictides. As well as multigap pairing on different Fermi-surface sheets, strong gap anisotropy in k-space and strong modulations of the gap in real space (e.g. stripes and phase separation models) are also important in cuprates. The aim of this special section is to present a selection of high-quality papers from experts in these diverse systems, showing the links and common physical issues arising from the existence of multi-component Cooper pairing. The papers collected together for the special section provide a snapshot of the current state of the understanding of multi-component superconductivity in a wide range of materials. In a model motivated by MgB2, Tanaka and Eschrig describe Abrikosov vortex lattice in a two-gap superconductor, examining how the vortex structure is modified by three-dimensionality or quasi two-dimensionality of the Fermi surface. The multi-sheeted Fermi surfaces of the nickel borocarbides are probed using angle-resolved positron annihilation spectroscopy, described by Dugdale et al, leading to a full three-dimensional picture of the complex Fermi surface in this superconducting material. Possible evidence for multigap superconductivity in the iron pnictides, obtained using Andreev point contact spectroscopy, is described by Samuely et al. The iron pnictides are also the subject of the article by Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiński et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.

  2. Superconducting gap evolution in overdoped BaFe₂(As 1-xP x)₂ single crystals through nanocalorimetry

    DOE PAGES

    Campanini, D.; Diao, Z.; Fang, L.; ...

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As 1-xP x)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T| T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/k BT c ~ 2.2. Increasing the phosphorus concentration x,more » the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γ r, all samples however show similar behavior [γ r(H) - γ r (H = 0)∝ H n, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  3. Superconductivity of lanthanum revisited

    NASA Astrophysics Data System (ADS)

    Loeptien, Peter; Zhou, Lihui; Wiebe, Jens; Khajetoorians, Alexander Ako; Wiesendanger, Roland

    2014-03-01

    The thickness dependence of the superconductivity in clean hexagonal lanthanum films grown on tungsten (110) is studied by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Fitting of the measured spectra to BCS theory yields the superconducting energy gaps from which the critical temperatures are determined. For the case of thick, bulk-like films, the bulk energy gap and critical temperature of dhcp lanthanum turn out to be considerably higher as compared to values from the literature measured by other techniques. In thin films the superconductivity is quenched by the boundary condition for the superconducting wavefunction imposed by the substrate and surface, leading to a linear decrease of the superconducting transition temperature as a function of the inverse film thickness. This opens up the possibility to grow lanthanum films with defined superconducting properties.

  4. Competition of superconductivity with the structural transition in M o 3 S b 7

    DOE PAGES

    Ye, G. Z.; Cheng, J. -G.; Yan, Jiaqiang; ...

    2016-12-14

    Prior to the superconducting transition at T c ≈ 2.3 K, Mo 3Sb 7 undergoes a symmetry-lowering, cubic-to-tetragonal structural transition at T s = 53 K. In this paper, we have monitored the pressure dependence of these two transitions by measuring the resistivity of Mo 3Sb 7 single crystals under various hydrostatic pressures up to 15 GPa. The application of external pressure enhances T c but suppresses T s until P c ≈ 10 GPa, above which a pressure-induced first order structural transition takes place and is manifested by the phase coexistence in the pressure range 8 ≤ P ≤more » 12 GPa. The cubic phase above 12 GPa is also found to be superconducting with a higher T c ≈ 6 K that decreases slightly with further increasing pressure. The variations with pressure of T c and T s satisfy the Bilbro-McMillan equation, i.e. T c nT s 1-n = constant, thus suggesting the competition of superconductivity with the structural transition that has been proposed to be accompanied with a spin-gap formation at T s. Finally, this scenario is supported by our first-principles calculations which imply the plausible importance of magnetism that competes with the superconductivity in Mo 3Sb 7.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Mojammel A.; Karki, A. B.; Samanta, T.

    Here, we report the electronic structure, synthesis, and measurements of the magnetic, transport, and thermal properties of the polycrystalline noncentrosymmetric compound Re 6Zr . We observed a bulk superconducting transition at temperature T c ~ 6.7 K, and measured the resistivity, heat capacity, thermal conductivity, and the London penetration depth below the transition, as well as performed doping and pressure studies. From these measurements we extracted the critical field and the superconducting parameters of Re 6Zr. Lastly, our measurements indicate a relatively weak to moderate contribution from a triplet component to the order parameter, and favor a full superconducting gap,more » although we cannot exclude the existence of point nodes based on our data.« less

  6. Studies on two-gap superconductivity in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Marcenat, C.; Klein, T.; Rodière, P.; Cario, L.; Samuely, P.

    2010-12-01

    We present the ac-calorimetry measurements of superconducting 2H-NbS2 in the temperature range down to 0.6 K and magnetic fields up to 8 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system - one of them with the coupling ratio below the BCS weak-coupling limit and the other above that value. These results support previous findings by scanning tunneling microscopy and spectroscopy measurements [I. Guillamón, H. Suderow, S. Vieira, L. Cario, et al., Phys. Rev. Lett. 101 (2008) 166407] of two pronounced features in density of states related to a two-gap superconductivity in this system.

  7. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3.

    PubMed

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-02-15

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor Sr x Bi 2 Se 3 . We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

  8. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  9. Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases

    NASA Astrophysics Data System (ADS)

    Simonson, Jack William

    Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.

  10. Superconductivity-induced features in the electronic Raman spectrum of monolayer graphene

    NASA Astrophysics Data System (ADS)

    García-Ruiz, A.; Mucha-Kruczyński, M.; Fal'ko, V. I.

    2018-04-01

    Using the continuum model, we investigate theoretically the contribution of the low-energy electronic excitations to the Raman spectrum of superconducting monolayer graphene. We consider superconducting phases characterised by an isotropic order parameter in a single valley and find a Raman peak at a shift set by the size of the superconducting gap. The height of this peak is proportional to the square root of the gap and the third power of the Fermi level, and we estimate its quantum efficiency as I ˜10-14 .

  11. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Xiang, Tao; Wu, Congjun

    2017-10-01

    When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.

  12. Hole superconductivity in a generalized two-band model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X.Q.; Hirsch, J.E.

    1992-06-01

    We study superconductivity in a two-band model that generalizes the model introduced by Suhl, Matthias, and Walker: All possible interaction terms coupling both bands are included. The pairing interaction is assumed to originate in the momentum dependence of the intraband interactions that arises in the model of hole superconductivity. The model generically displays a single critical temperature and two gaps, with the larger gap associated with the band with strongest holelike character to the carriers. The dependence of the critical temperature and of the magnitudes of the gaps on the various parameters in the Hamiltonian is studied.

  13. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  14. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  15. Tunnelling spectroscopy of gate-induced superconductivity in MoS2

    NASA Astrophysics Data System (ADS)

    Costanzo, Davide; Zhang, Haijing; Reddy, Bojja Aditya; Berger, Helmuth; Morpurgo, Alberto F.

    2018-06-01

    The ability to gate-induce superconductivity by electrostatic charge accumulation is a recent breakthrough in physics and nanoelectronics. With the exception of LaAlO3/SrTiO3 interfaces, experiments on gate-induced superconductors have been largely confined to resistance measurements, which provide very limited information about the superconducting state. Here, we explore gate-induced superconductivity in MoS2 by performing tunnelling spectroscopy to determine the energy-dependent density of states (DOS) for different levels of electron density n. In the superconducting state, the DOS is strongly suppressed at energy smaller than the gap Δ, which is maximum (Δ 2 meV) for n of 1 × 1014 cm-2 and decreases monotonously for larger n. A perpendicular magnetic field B generates states at E < Δ that fill the gap, but a 20% DOS suppression of superconducting origin unexpectedly persists much above the transport critical field. Conversely, an in-plane field up to 10 T leaves the DOS entirely unchanged. Our measurements exclude that the superconducting state in MoS2 is fully gapped and reveal the presence of a DOS that vanishes linearly with energy, the explanation of which requires going beyond a conventional, purely phonon-driven Bardeen-Cooper-Schrieffer mechanism.

  16. The effect of gap fluctuations on interacting and non-interacting polarization for nano-superconducting grains in electron- and hole-doped cuprates

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Alizadeh, A.

    2017-12-01

    The behavior of non-interacting and interacting polarization under influence of fluctuations of the superconducting gap with D-wave symmetry and under consideration of the gap dependence on nano- grain size is obtained in terms of the frequency, temperature and the size at zero and finite temperatures for rectangular cuprate nano-superconducting grains. By using Eliashberg equations and applying the relations of the fermionic dispersion for the hole-doped and electron-doped cuprates, we numerically compute the real part of size-dependent polarization for both types of cuprates. We show that the peak of real part of polarization moves to higher frequency by including the additional fluctuating part of gap (or the nano-size effect). Also, we obtain the temperatures for different frequencies, in which the effect of gap fluctuations fades. In the case of size-dependent gap, there is a critical frequency; for frequencies lower (higher) than the critical frequency, the nano-effect weakens (improves) the superconducting state. Moreover, it is concluded that the real part of polarization for hole- doped cuprates in terms of the grain size has more significant amount in comparison with electron-doped ones.

  17. The spatial distributions of large gap-like structure on Fe(Se,Te) single crystals observed by STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Sakai, Yuta; Nagasaka, Kouhei; Ekino, Toshikazu

    2015-11-01

    The nanoscale spatial distributions of large gap-like structure on superconducting FeSe1-xTex were investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The STM topography shows regular atomic lattice arrangements with the lattice spacing ∼0.38 nm, together with the randomly distributed large spots due to the excess Fe atoms. From the STS measurements, the small gap structures of Δ ∼ 7 meV were partly observed. On the other hand, the high-bias dI/dV curves exhibit the broad peak structures at the negative biases of VPG = -200 to -400 mV in the measured whole surface area. The average of these large gaps is |VPGave| ∼ 305 mV with the standard deviation of σ ∼ 48 mV. The spatial distributions of the VPG exhibit the domain structures consisting of the relatively smaller gaps (<250 meV), which correspond to the excess Fe positions. The small gap Δ ∼ 7 meV is also observed at those positions, suggesting that the excess Fe affects the electronic structures of FeSe1-xTex.

  18. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  19. Unconventional superconductivity and quantum criticality in the heavy fermions CeIrSi3 and CeRhSi3

    NASA Astrophysics Data System (ADS)

    Landaeta, J. F.; Subero, D.; Catalá, D.; Taylor, S. V.; Kimura, N.; Settai, R.; Īnuki, Y.; Sigrist, M.; Bonalde, I.

    2018-03-01

    In most strongly correlated electron systems superconductivity appears nearby a magnetic quantum critical point (QCP) which is believed to cause unconventional behaviors. In order to explore this physics, we present here a study of the heavy-fermion superconductors CeIrSi3 and CeRhSi3 carried out using a newly developed system for high-resolution magnetic penetration-depth measurements under pressure. Superconductivity in CeIrSi3 shows a change from an excitation spectrum with a line-nodal gap to one which is entirely gapful when pressure is close but not yet at the QCP. In contrast, CeRhSi3 does not possess a T =0 quantum phase transition and the superconducting phase remains for all accessible pressures with a nodal gap. Combining both results suggests that in these compounds unconventional superconducting behaviors are rather connected with the coexisting antiferromagnetic order. This study provides another viewpoint on the interplay of superconductivity, magnetism, and quantum criticality in CeIrSi3 and CeRhSi3 and maybe in other heavy fermions.

  20. Two gaps make a high-temperature superconductor?

    NASA Astrophysics Data System (ADS)

    Hüfner, S.; Hossain, M. A.; Damascelli, A.; Sawatzky, G. A.

    2008-06-01

    One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data which suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome. We focus on spectroscopic data from cuprate systems characterized by T_c^max\\sim 95\\,K , such as Bi2Sr2CaCu2O8+δ, YBa2Cu3O7-δ, Tl2Ba2CuO6+δ and HgBa2CuO4+δ, with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.

  1. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1-x Rh x )2As2 from London penetration depth measurements.

    PubMed

    Kim, Hyunsoo; Tanatar, M A; Martin, C; Blomberg, E C; Ni, Ni; Bud'ko, S L; Canfield, P C; Prozorov, R

    2018-06-06

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1-x Rh x ) 2 As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth [Formula: see text]. Single crystals with doping levels representative of an underdoped regime x  =  0.039 ([Formula: see text] K), close to optimal doping x  =  0.057 ([Formula: see text] K) and overdoped x  =  0.079 ([Formula: see text] K) and x  =  0.131([Formula: see text] K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, [Formula: see text]. The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2 As 2 and 3d-electron-doped Ba(Fe,Co) 2 As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2 As 2 samples. Our study supports the universal superconducting gap variation with doping and [Formula: see text] pairing at least in iron based superconductors of the BaFe 2 As 2 family.

  2. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  3. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; ...

    2018-05-08

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  4. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    NASA Astrophysics Data System (ADS)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  5. Conventional superconductivity in the type-II Dirac semimetal PdTe2

    NASA Astrophysics Data System (ADS)

    Das, Shekhar; Amit, Sirohi, Anshu; Yadav, Lalit; Gayen, Sirshendu; Singh, Yogesh; Sheet, Goutam

    2018-01-01

    The transition metal dichalcogenide PdTe2 was recently shown to be a unique system where a type-II Dirac semimetallic phase and a superconducting phase coexist. This observation has led to wide speculation on the possibility of the emergence of an unconventional topological superconducting phase in PdTe2. Here, through direct measurement of the superconducting energy gap by scanning tunneling spectroscopy, and temperature and magnetic-field evolution of same, we show that the superconducting phase in PdTe2 is conventional in nature. The superconducting energy gap is measured to be 326 μ eV at 0.38 K, and it follows a temperature dependence that is well described within the framework of Bardeen-Cooper-Schrieffer's theory of conventional superconductivity. This is surprising because our quantum oscillation measurements confirm that at least one of the bands participating in transport has topologically nontrivial character.

  6. Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures.

    PubMed

    Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S

    2016-04-13

    We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

  7. Electron localization mechanism in the normal state of high- T c superconductors

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    The ceramic compounds Gd 1- xPr xCu 3O 7- y (GdPr-123) with 0.0 ≤ x≤1.0, were synthesized by standard solid state reaction technique. XRD analysis shows a predominantly single phase perovskite structure with the orthorhombic Pmmm symmetry. The samples have been examined for superconductivity by measuring electrical resistivity within the temperature range 10-300 K. These measurements show a suppression of superconductivity with increasing x. It is observed that the critical Pr concentration ( x cr) required to suppress superconductivity is about 0.45, the samples with x < 0.45 become superconducting and are metallic in their normal state, the samples with x ≥ 0.45 do not become superconducting and show a semiconducting behavior above 10 K. To interpret the normal state properties of the samples, the quantum percolation theory based on localized states is applied. A cross-over between variable-range hopping (VRH) and Coulomb gap (CG) mechanisms is observed as a result of decreasing the Pr content.

  8. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM (TI) states at the interface. In turn, this amplitude is strongly impacted by electrostatic effects. In addition, these effects control the value of the chemical potential in the nanowire (nanoribbon), as well as the strength of the Rashba-type spin-orbit coupling - two key parameters that determine the stability of the topological superconducting phase. To account for these critical effects, a numerically efficient Poisson-Schrodinger scheme is developed.

  9. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  10. Superconductivity in the orthorhombic phase of thermoelectric CsPb{sub x}Bi{sub 4−x}Te{sub 6} with 0.3≤x≤1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R.X.; Yang, H.X., E-mail: hxyang@iphy.ac.cn; Tian, H.F.

    2015-12-15

    Experimental measurements clearly reveal the presence of bulk superconductivity in the CsPb{sub x}Bi{sub 4−x}Te{sub 6} (0.3≤x≤1.0) materials, i.e. the first member of the thermoelectric series of Cs[Pb{sub m}Bi{sub 3}Te{sub 5+m}], these materials have the layered orthorhombic structure containing infinite anionic [PbBi{sub 3}Te{sub 6}]{sup −} slabs separated with Cs{sup +} cations. Temperature dependences of electrical resistivity, magnetic susceptibility, and specific heat have consistently demonstrated that the superconducting transition in Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} occurs at T{sub c}=3.1 K, with a superconducting volume fraction close to 100% at 1.8 K. Structural study using aberration-corrected STEM/TEM reveals a rich variety of microstructuralmore » phenomena in correlation with the Pb-ordering and chemical inhomogeneity. The superconducting material Cs{sub 0.96}Pb{sub 0.25}Bi{sub 3.75}Te{sub 6.04} with the highest T{sub c} shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. Our study evidently demonstrates that superconductivity deriving upon doping of narrow-gap semiconductor is a viable approach for exploration of novel superconductors. - Graphical abstract: Bulk superconductivity is discovered in the orthorhombic Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} materials with the superconducting transition T{sub c}=3.1 K. The compound shows a clear ordered structure with a modulation wave vector of q≈a*/2+c*/1.35 on the a–c plane. - Highlights: • Bulk superconductivity is discovered in the orthorhombic CsPb{sub x}Bi{sub 4−x}Te{sub 6} materials. • The superconducting transition in Cs{sub 0.96}Pb{sub 0.22}Bi{sub 3.80}Te{sub 6.02} occurs at T{sub c}=3.1 K. • Physical property measurements concerning the bulk superconductivity were present. • Structural modulation due to Pb-ordering was observed.« less

  11. Effects of electron irradiation on resistivity and London penetration depth of Ba1-xKxFe2As2 (x <= 0.34) iron-pnictide superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, K; Konczykowski, M; Murphy, Jason

    2014-09-01

    Irradiation with 2.5 MeV electrons at doses up to 5.2×1019 electrons/cm2 was used to introduce pointlike defects in single crystals of Ba1-xKxFe2As2 with x=0.19 (Tc=14K),0.26 (Tc=32K), 0.32 (Tc=37K), and 0.34 (Tc=39K) to study the superconducting gap structure by probing the effect of nonmagnetic scattering on electrical resistivity ρ(T) and London penetration depth λ(T). For all compositions, the irradiation suppressed the superconducting transition temperature Tc and increased resistivity. The low-temperature behavior of λ(T) is best described by the power-law function, Δλ(T)=A(T/Tc)n. While substantial suppression of Tc supports s± pairing, in samples close to the optimal doping, x=0.26, 0.32, and 0.34, themore » exponent n remained high (n≥3), indicating almost exponential attenuation and thus a robust full superconducting gap. For the x=0.19 composition, which exhibits coexistence of superconductivity and long-range magnetism, the suppression of Tc was much more rapid, and the exponent n decreased toward the s± dirty limit of n=2. In this sample, the irradiation also suppressed the temperature of structural/magnetic transition Tsm from 103 to 98 K, consistent with the itinerant nature of the long-range magnetic order. Our results suggest that underdoped compositions, especially in the coexisting regime, are most susceptible to nonmagnetic scattering and imply that in multiband Ba1-xKxFe2As2 superconductors, the ratio of the interband to intraband pairing strength, as well as the related gap anisotropy, increases upon the departure from the optimal doping.« less

  12. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

    PubMed Central

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-01-01

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378

  13. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering.

    PubMed

    Peng, R; Xu, H C; Tan, S Y; Cao, H Y; Xia, M; Shen, X P; Huang, Z C; Wen, C H P; Song, Q; Zhang, T; Xie, B P; Gong, X G; Feng, D L

    2014-09-26

    The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

  14. Superconductivity bordering Rashba type topological transition

    DOE PAGES

    Jin, M. L.; Sun, F.; Xing, L. Y.; ...

    2017-01-04

    Strong spin orbital interaction (SOI) can induce unique quantum phenomena such as topological insulators, the Rashba effect, or p-wave superconductivity. Combining these three quantum phenomena into a single compound has important scientific implications. Here we report experimental observations of consecutive quantum phase transitions from a Rashba type topological trivial phase to topological insulator state then further proceeding to superconductivity in a SOI compound BiTeI tuned via pressures. The electrical resistivity measurement with V shape change signals the transition from a Rashba type topological trivial to a topological insulator phase at 2 GPa, which is caused by an energy gap closemore » then reopen with band inverse. Superconducting transition appears at 8 GPa with a critical temperature T C of 5.3 K. Structure refinements indicate that the consecutive phase transitions are correlated to the changes in the Bi–Te bond and bond angle as function of pressures. As a result, the Hall Effect measurements reveal an intimate relationship between superconductivity and the unusual change in carrier density that points to possible unconventional superconductivity.« less

  15. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  16. Ballistic superconductivity in semiconductor nanowires.

    PubMed

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P

    2017-07-06

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  17. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic fieldmore » (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.« less

  18. Superconducting Properties of CeIr3 Single Crystal

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki J.; Nakamura, Ai; Shimizu, Yusei; Maurya, Arvind; Homma, Yoshiya; Li, Dexin; Honda, Fuminori; Aoki, Dai

    2018-05-01

    Superconducting properties of CeIr3 single crystal with rhombohedral structure were examined for the first time using DC magnetization, specific heat, and electrical resistivity measurements. A bulk type-II superconductivity was clearly detected at Tc = 3.4 K, which is the second highest Tc among Ce-based intermetallic compounds. The thermodynamic properties as well as an upper critical field Hc2(0) ˜ 46.5 kOe for the H || c-axis are fully consistent with the weak-coupling BCS regime. The observed √{H} variation of C(H)/T becomes less pronounced upon cooling, possibly suggesting a suppression of low-energy quasiparticle excitations in an anisotropic s-wave gap in CeIr3, as observed in CeRu2. The origin of superconductivity is discussed from the viewpoints of the valence of Ce atom and Ir 5d-electron with a strong spin-orbit coupling.

  19. Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2

    PubMed Central

    Yuan, R. H.; Dong, T.; Song, Y. J.; Zheng, P.; Chen, G. F.; Hu, J. P.; Li, J. Q.; Wang, N. L.

    2012-01-01

    We report an in-plane optical spectroscopy study on the iron-selenide superconductor K0.75Fe1.75Se2. The measurement revealed the development of a sharp reflectance edge below Tc at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. PMID:22355735

  20. Tunable sub-gap radiation detection with superconducting resonators

    NASA Astrophysics Data System (ADS)

    Dupré, O.; Benoît, A.; Calvo, M.; Catalano, A.; Goupy, J.; Hoarau, C.; Klein, T.; Le Calvez, K.; Sacépé, B.; Monfardini, A.; Levy-Bertrand, F.

    2017-04-01

    We have fabricated planar amorphous indium oxide superconducting resonators ({T}{{c}}˜ 2.8 K) that are sensitive to frequency-selective radiation in the range of 7-10 GHz. Those values lay far below twice the superconducting gap that is worth about 200 GHz. The photon detection consists in a shift of the fundamental resonance frequency. We show that the detected frequency can be adjusted by modulating the total length of the superconducting resonator. We attribute those observations to the excitation of higher-order resonance modes. The coupling between the fundamental lumped and the higher order distributed resonance is due to the kinetic inductance nonlinearity with current. These devices, that we have called sub-gap kinetic inductance detectors, are to be distinguished from the standard kinetic inductance detectors in which quasi-particles are generated when incident light breaks down Cooper pairs.

  1. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3.

    PubMed

    Ge, Jian-Feng; Liu, Zhi-Long; Liu, Canhua; Gao, Chun-Lei; Qian, Dong; Xue, Qi-Kun; Liu, Ying; Jia, Jin-Feng

    2015-03-01

    Recent experiments on FeSe films grown on SrTiO3 (STO) suggest that interface effects can be used as a means to reach superconducting critical temperatures (Tc) of up to 80 K (ref. ). This is nearly ten times the Tc of bulk FeSe and higher than the record value of 56 K for known bulk Fe-based superconductors. Together with recent studies of superconductivity at oxide heterostructure interfaces, these results rekindle the long-standing idea that electron pairing at interfaces between two different materials can be tailored to achieve high-temperature superconductivity. Subsequent angle-resolved photoemission spectroscopy measurements of the FeSe/STO system revealed an electronic structure distinct from bulk FeSe (refs , ), with an energy gap vanishing at around 65 K. However, ex situ electrical transport measurements have so far detected zero resistance-the key experimental signature of superconductivity-only below 30 K. Here, we report the observation of superconductivity with Tc above 100 K in the FeSe/STO system by means of in situ four-point probe electrical transport measurements. This finding confirms FeSe/STO as an ideal material for studying high-Tc superconductivity.

  2. Method for making mirrored surfaces comprising superconducting material

    DOEpatents

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  3. Atomic-scale Visualization of Electronic Nematicity and Cooper Pairing in Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Allan, Milan P.

    2013-03-01

    The mechanism of high-temperature superconductivity in the relatively novel iron-based high-Tc superconductors is unresolved, both in terms of how the phases evolve with doping, and in terms of the actual Cooper pairing process. To explore these issues, we used spectroscopic-imaging scanning tunneling microscopy to study the electronic structure of CaFe2As2 in the antiferromagnetic-orthorhombic `parent' state from which the superconductivity emerges. We discovered and visualized the now widely studied electronic `nematicity' of this phase, whose suppression is associated with the emergence of superconductivity (Science 327, 181, 2010). As subsequent transport experiments discovered a related anisotropic conductance which increases with dopant concentration, the interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has become a pivotal focus of research. We find that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical and strongly anisotropic impurity states that are distributed randomly but aligned with the antiferromagnetic a-axis. We also demonstrate, by imaging their surrounding interference patterns, that these impurity states scatter quasiparticles and thus influence transport in a highly anisotropic manner (M.P. Allan et al., 2013). Next, we studied the momentum dependence of the energy gaps of iron-based superconductivity, now focusing on LiFeAs. If strong electron-electron interactions mediate the Cooper pairing, then momentum-space anisotropic superconducting energy gaps Δi (k) were predicted by multiple techniques to appear on the different electronic bands i. We introduced intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for the determination of anisotropic energy gaps to test these hypotheses and discovered the anisotropy, magnitude, and relative orientations of the energy gaps on multiple bands (Science 336, 563 (2012)). Finally, the electron-electron interactions generating Cooper pairing are often conjectured to involve bosonic spin fluctuations generated by interband scattering of electrons. We explore the STM signatures of both the interband scattering and the electron-boson coupling self-energy in LiFeAs, and detect the signatures of the electron-boson coupling (M.P. Allan et al., in preparation). In collaboration with A.W. Rost, T.-M. Chuang, F. Massee, M.S. Golden, Y. Xie, M.H. Fisher, E.-A. Kim, K. Lee, Ni Ni, S.L. Bud'ko, P.C. Canfield, Q. Wang, D.S. Dessau, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, D.J. Scalapino, A.P. Mackenzie and J.C. Davis

  4. Superconducting gap of the single crystal β-PdBi2

    NASA Astrophysics Data System (ADS)

    Matsuzaki, H.; Nagai, K.; Kase, N.; Nakano, T.; Takeda, N.

    2017-07-01

    We investigate superconducting and normal properties of the single crystal of β-PdBi2. The electrical resistivity ρ(T) shows superconductivity at Tc = 5.0 K. Residual resistivity ratio (RRR) is estimated to be 2.9 obtained from ρ(300 K)/ρ(5.0 K). The H c2 curve obtained from ρ(T) in magnetic fields shows cleat enhancement from the Wertharmer-Helfand-Hohenberg theory in dirty limit. Specific heat C(T) measurement shows that clear jump is observed at T c = 4.8 K. T-dependence of the electronic specific heat C e(T) suggests full-gap symmetry with a single gap and strong coupling with ΔC e/γT c = 1.8.

  5. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  6. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator

    NASA Astrophysics Data System (ADS)

    Manna, S.; Kamlapure, A.; Cornils, L.; Hänke, T.; Hedegaard, E. M. J.; Bremholm, M.; Iversen, B. B.; Hofmann, Ph.; Wiebe, J.; Wiesendanger, R.

    2017-01-01

    The discovery of high-temperature superconductivity in Fe-based compounds triggered numerous investigations on the interplay between superconductivity and magnetism, and on the enhancement of transition temperatures through interface effects. It is widely believed that the emergence of optimal superconductivity is intimately linked to the suppression of long-range antiferromagnetic (AFM) order, although the exact microscopic picture remains elusive because of the lack of atomically resolved data. Here we present spin-polarized scanning tunnelling spectroscopy of ultrathin FeTe1-xSex (x=0, 0.5) films on bulk topological insulators. Surprisingly, we find an energy gap at the Fermi level, indicating superconducting correlations up to Tc~6 K for one unit cell FeTe grown on Bi2Te3, in contrast to the non-superconducting bulk FeTe. The gap spatially coexists with bi-collinear AFM order. This finding opens perspectives for theoretical studies of competing orders in Fe-based superconductors and for experimental investigations of exotic phases in superconducting layers on topological insulators.

  7. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe 3–xSe x

    DOE PAGES

    Cui, Shan; He, Lan -Po; Hong, Xiao -Chen; ...

    2016-06-09

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe 3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe 3–x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe 3–x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependencemore » of κ 0/T manifests a multigap behavior. Lastly, these results demonstrate multiple nodeless superconducting gaps in ZrTe 3–x Se x, which indicates conventional superconductivity despite of the existence of a CDW QCP.« less

  8. Measurement of a superconducting energy gap in a homogeneously amorphous insulator.

    PubMed

    Sherman, D; Kopnov, G; Shahar, D; Frydman, A

    2012-04-27

    We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.

  9. Ultrasonic investigation of the superconducting properties of the Nb-Mo system

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.

    1972-01-01

    The superconducting properties of single crystals of Nb and two alloys of Nb with Mo were investigated by ultrasonic techniques. The results of measurements of the ultrasonic attenuation and velocities as a function of temperature, Mo composition, crystallographic direction, and ultrasonic frequency are reported. The attenuation and small velocity changes associated with the superconductivity of the samples are shown to be dependent on the sample resistivity ratio which varied from 4.3 for Nb-9% Mo to 6500 for pure Nb. The ultrasonic attenuation data are analyzed in terms of the superconducting energy gap term of the BCS theory. A new model is proposed for the analysis of ultrasonic attenuation in pure superconductors with two partially decoupled energy bands. To analyze the attenuation in pure superconducting Nb, the existence of two energy gaps was assumed to be associated with the two partially decoupled energy bands. One of the gaps was found to have the normal BCS value of 3.4 and the other gap was found to have the anomalously large value of 10. No experimental evidence was found to suggest that the second energy gap had a different transition temperature. The interpretation of the results for the Nb-Mo alloys is shown to be complicated by the possible existence of a second superconducting phase in Nb-Mo alloys with a transition temperature of 0.35 of the transition temperature of the first phase. The elastic constants of Nb and Nb-Mo alloys are shown to be approximately independent of Mo composition to nine atomic percent Mo. These results do not agree with the current microscopic theory of transition temperature for the transition elements.

  10. Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Hou, Xing-Yuan; Guan, Tong

    2015-05-18

    We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained inmore » the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.« less

  11. STM/STS study on electronic superstructures in the superconducting state of high-Tc cuprate Bi2Sr2CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Mizuta, S.; Kurosawa, T.; Takeyama, K.; Momono, N.; Ishii, Y.; Yoshida, H.; Oda, M.; Ido, M.

    2018-03-01

    We report STM/STS measurements at 8 K in underdoped Bi2Sr2CaCu2O8+δ crystals (T c = 76 K and hole-doping level p ∼ 0.12) whose energy spectra around the Fermi level are characterized by a two-gap structure consisting of spatially inhomogeneous pseudogap (PG) and comparatively homogeneous superconducting gap (SCG). Two electronic superstructures, checkerboard modulation (CBM) and Cu-O-Cu bond-centered modulation (BCM), are observed with mapping spectral weights at low energies within the SCG and the ratio of spectral weights at ±ΔPG (PG energy), respectively. On the basis of the present findings, we suggest that the lower-energy scale CBM is an intrinsic property of Cu-O planes and can coexist with the BCM whose characteristic energy is ∼ΔPG in identical regions in real space.

  12. Terahertz Mixing Characteristics of NbN Superconducting Tunnel Junctions and Related Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Li, J.

    2010-01-01

    High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.

  13. Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration.

    PubMed

    Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C

    2017-10-31

    Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

  14. μSR and NMR study of the superconducting Heusler compound YPd2Sn

    NASA Astrophysics Data System (ADS)

    Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.

    2013-09-01

    We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.

  15. Signature of multigap nodeless superconductivity in CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Iyo, A.; Yoshida, Y.; Eisaki, H.; Kawashima, K.; Hillier, A. D.

    2017-04-01

    A newly discovered family of high-Tc Fe-based superconductors, AeA Fe4As4 (Ae=Ca , Sr, Eu and A =K , Rb, Cs), offers further opportunities to understand unconventional superconductivity in these materials. In this Rapid Communication, we report on the superconducting and magnetic properties of CaKFe4As4 , studied using muon spectroscopy. Zero-field muon spin relaxation studies carried out on the CaKFe4As4 superconductor do not show any detectable magnetic anomaly at Tc or below, implying that time-reversal symmetry is preserved in the superconducting ground state. The temperature dependence of the superfluid density of CaKFe4As4 is found to be compatible with a two-gap s +s -wave model with gap values of 8.6(4) and 2.5(3) meV, similar to the other Fe-based superconductors. The presence of two superconducting energy gaps is consistent with theoretical and other experimental studies on this material. The value of the penetration depth at T =0 K has been determined as 289 (22 ) nm.

  16. The p-wave superconductivity in the presence of Rashba interaction in 2DEG

    PubMed Central

    Weng, Ke-Chuan; Hu, C. D.

    2016-01-01

    We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There are intraband and interband pairs scattering which result in the coupled gap equations. We find that there are isotropic and anisotropic components in the gap function. The latter has the form of cos φk where . The former is suppressed because the intraband and the interband scatterings nearly cancel each other. Hence, −the system should exhibit the p-wave superconductivity. We perform a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are considered, the effective coupling strength constant of this new superconductivity is about one-half of the s-wave case in the ordinary 2DEG because of the angular average of the additional in the anisotropic gap function. By taking into account of Umklapp processes, we find they are the major contribution in the electron-phonon coupling in superconductivity and enhance the transition temperature Tc. PMID:27459677

  17. Persistent ferromagnetism and topological phase transition at the interface of a superconductor and a topological insulator.

    PubMed

    Qin, Wei; Zhang, Zhenyu

    2014-12-31

    At the interface of an s-wave superconductor and a three-dimensional topological insulator, Majorana zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an interface will induce bound states that broaden into impurity bands inside (but near the edges of) the superconducting gap, which remains open unless the impurity concentration is too high. Next we find that an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field approximation, the ferromagnetic Curie temperature is found to be essentially independent of the superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity and persistent ferromagnetism at the interface allows realization of a novel topological phase transition from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new platform for topological quantum computation.

  18. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Park, W. K.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, Suchitra E.; Greene, L. H.

    2010-05-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe2As2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other with a V2/3 background conductance universally observed, extending even up to 100 meV for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe2As2 and superconducting (Ba0.6K0.4)Fe2As2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba0.6K0.4Fe2As2, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ~ 3.0-4.0 meV with 2Δ0/kBTc ~ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe0.9Co0.1)2As2, the G(V) curves typically display a zero-bias conductance peak.

  19. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    NASA Astrophysics Data System (ADS)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  20. Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212

    NASA Astrophysics Data System (ADS)

    He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun

    2015-03-01

    Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.

  1. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  2. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  3. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  4. Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud

    2018-06-01

    We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.

  5. Analytical assessment of some characteristic ratios for s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2018-04-01

    We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.

  6. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    NASA Astrophysics Data System (ADS)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  7. Observation of dx2-y-Like Superconducting Gap in an Electron-Doped High-Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.

    2001-02-01

    High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2-y-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.

  8. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  9. Imaging the coexistence of superconductivity and antiferromagnetism in Fe1+yTe1-xSex (x=0.1) using spin-polarized scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Haibiao; Aluru, Ramakrishna; Tsurkan, Vladimir; Loidl, Alois; Deisenhofer, Joachim; Wahl, Peter

    Magnetism has been widely thought to play an important role in unconventional superconductivity. In iron chalcogenide Fe1+yTe, the bicollinear antiferromagnetim (AFM) can be suppressed by Se doping, and consequently superconductivity appears. Though a competition between the two orders is expected, their relation has never been shown in details. Here, using spin-polarized scanning tunneling microscopy, we explore their relation at the atomic scale in an Fe1+yTe1-xSex (x=0.1) single crystal with TC = 10 K, in a regime of the phase diagram where a spin-glass phase has been detected. We clearly observe the short-range AFM order with domains of a lateral size of 10 nm embedded in a non-magnetic matrix. In addition we observe a superconducting gap with prominent coherent peaks in differential conductance spectroscopy with a gap size 2 Δ 4 mV. Surprisingly, no correlation between the superconducting properties (gap size and zero bias conductance) and the local AFM order is observed, while the coherence peaks are weakened by the existence of excess iron atoms. Our observations put constraints on theories that are aimed at explaining the relation between magnetism and unconventional superconductivity.

  10. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary.

    PubMed

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis

    2014-03-03

    The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.

  11. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  12. Cooperative Search of Autonomous Vehicles for Unknown Targets

    NASA Astrophysics Data System (ADS)

    Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu

    2013-01-01

    We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.

  13. Determination of gap solution and critical temperature in doped graphene superconductivity

    NASA Astrophysics Data System (ADS)

    Xu, Chenmei; Yang, Yisong

    2017-04-01

    It is shown that the gap solution and critical transition temperature are significantly enhanced by doping in a recently developed BCS formalism for graphene superconductivity in such a way that positive gap and transition temperature both occur in arbitrary pairing coupling as far as doping is present. The analytic construction of the BCS gap and transition temperature offers highly effective globally convergent iterative methods for the computation of these quantities. A series of numerical examples are presented as illustrations which are in agreement with the theoretical and experimental results obtained in the physics literature and consolidate the analytic understanding achieved.

  14. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    PubMed

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  15. Ballistic superconductivity in semiconductor nanowires

    PubMed Central

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  16. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2014-03-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  17. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-08-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  18. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO.

    PubMed

    Guo, Jing; Simonson, J W; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-01-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  19. The interplay of the gap, the magnetic resonance, and the van Hove singularity

    NASA Astrophysics Data System (ADS)

    Levy, Giorgio; Berthod, Christophe; Fischer, Oystein

    2007-03-01

    The characteristic features of the tunneling spectra in the Bi-based HTS are a d-wave like gap structure, strong and often asymmetric coherence peaks, and an asymmetric dip-hump structure at higher energy. Hoogenboom et al. [1] analysed the spectra of the two-layer compound Bi2212 and showed that all of these properties can be understood assuming d-wave superconductivity, a band structure as measured by ARPES, and an interaction of the quasiparticles with the magnetic resonant mode. In particular the asymmetric dip-hump results in this model from the interplay of the gap, the mode and the van Hove singularity present in the band structure. Here we analyse new data for the three-layer compound Bi2223. Unlike in Ref. [1], we perform full unconstrained least-square fits in order to determine the various parameters of the model directly from the experimental data. This allows us to determine the doping dependence of the gap and of the magnetic resonance energy. [1] B. W. Hoogenboom, C. Berthod, M. Peter, ø. Fischer, and A. A. Kordyuk, Phys. Rev. B 67, 224502 (2003).

  20. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  1. Superconducting parity effect across the Anderson limit

    PubMed Central

    Vlaic, Sergio; Pons, Stéphane; Zhang, Tianzhen; Assouline, Alexandre; Zimmers, Alexandre; David, Christophe; Rodary, Guillemin; Girard, Jean-Christophe; Roditchev, Dimitri; Aubin, Hervé

    2017-01-01

    How small can superconductors be? For isolated nanoparticles subject to quantum size effects, P.W. Anderson in 1959 conjectured that superconductivity could only exist when the electronic level spacing δ is smaller than the superconducting gap energy Δ. Here we report a scanning tunnelling spectroscopy study of superconducting lead (Pb) nanocrystals grown on the (110) surface of InAs. We find that for nanocrystals of lateral size smaller than the Fermi wavelength of the 2D electron gas at the surface of InAs, the electronic transmission of the interface is weak; this leads to Coulomb blockade and enables the extraction of electron addition energy of the nanocrystals. For large nanocrystals, the addition energy displays superconducting parity effect, a direct consequence of Cooper pairing. Studying this parity effect as a function of nanocrystal volume, we find the suppression of Cooper pairing when the mean electronic level spacing overcomes the superconducting gap energy, thus demonstrating unambiguously the validity of the Anderson criterion. PMID:28240294

  2. Bulk superconducting phase with a full energy gap in the doped topological insulator Cu(x)Bi₂Se₃.

    PubMed

    Kriener, M; Segawa, Kouji; Ren, Zhi; Sasaki, Satoshi; Ando, Yoichi

    2011-03-25

    The superconductivity recently found in the doped topological insulator Cu(x)Bi₂Se₃ offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu(x)Bi₂Se₃. Also, the evaluated effective mass of 2.6m(e) (m(e) is the free electron mass) points to a large mass enhancement in this material.

  3. Features of Superconducting Gaps Revealed by STM/STS in Iron Based Superconductors With and Without Hole Pockets

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Hai-Hu Wen Team

    The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.

  4. Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition.

    PubMed

    Sacépé, B; Chapelier, C; Baturina, T I; Vinokur, V M; Baklanov, M R; Sanquer, M

    2008-10-10

    Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.

  5. Order, disorder, and tunable gaps in the spectrum of Andreev bound states in a multiterminal superconducting device

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomohiro; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Yuli V.

    2017-01-01

    We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual proximity gap that separates the levels from zero energy as well as less usual "smile" gaps that split the levels of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level repulsion and Brownian "motion" upon changing the phases. At small values of the ratio (open limit), the levels are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of crossings: (i) with a regular phase dependence of the levels and (ii) crossings where the Brownian motion of the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains the observations both at a detailed level of random scattering in the device and at a phenomenological level of positively defined random matrices. The unusual properties of the spectrum originate from rather unobvious topological effects. The topology of the first kind is restricted to the semiclassical limit and related to the winding of the semiclassical Green function. It is responsible for the closing of the proximity gaps. The topology of the second kind comes about the discreteness of the number of modes in the point contacts and is responsible for the smile gaps. The topology of the third kind leads to the emergence of Weyl points in the spectrum and is not discussed in the context of this article.

  6. Unconventional Superconductivity in the BiS_{2}-Based Layered Superconductor NdO_{0.71}F_{0.29}BiS_{2}.

    PubMed

    Ota, Yuichi; Okazaki, Kozo; Yamamoto, Haruyoshi Q; Yamamoto, Takashi; Watanabe, Shuntaro; Chen, Chuangtian; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Takano, Yoshihiko; Shin, Shik

    2017-04-21

    We investigate the superconducting-gap anisotropy in one of the recently discovered BiS_{2}-based superconductors, NdO_{0.71}F_{0.29}BiS_{2} (T_{c}∼5  K), using laser-based angle-resolved photoemission spectroscopy. Whereas the previously discovered high-T_{c} superconductors such as copper oxides and iron-based superconductors, which are believed to have unconventional superconducting mechanisms, have 3d electrons in their conduction bands, the conduction band of BiS_{2}-based superconductors mainly consists of Bi 6p electrons, and, hence, the conventional superconducting mechanism might be expected. Contrary to this expectation, we observe a strongly anisotropic superconducting gap. This result strongly suggests that the pairing mechanism for NdO_{0.71}F_{0.29}BiS_{2} is an unconventional one and we attribute the observed anisotropy to competitive or cooperative multiple paring interactions.

  7. Critical fields and vortex pinning in overdoped Ba 0.2 K 0.8 Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, B.; Leroux, M.; Wang, Y. L.

    2015-05-19

    We determine the upper and lower critical fields, the penetration depth and the vortex pinning characteristics of single crystals of overdoped Ba 0.2K 0.8Fe 2As 2 with T c ~ 10 K. We find that bulk vortex pinning is weak and vortex dynamics to be dominated by the geometrical surface barrier. The temperature dependence of the lower critical field, H c1, displays a distinctive upturn at low temperatures, which is suggestive of two distinct superconducting gaps. Furthermore, the penetration depth, λ, varies linearly with temperature below 4 K indicative of line nodes in the superconducting gap. As a result, thesemore » observations can be well described in a model based on a multi-band nodal superconducting gap.« less

  8. Electron correlations and magnetism in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Birgeneau, Robert

    We have carried out a comprehensive study of the phase diagram, structures and phase transitions in the system RbxFeySe2-zSz. We find that the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase (y 1.5), the block AF phase (y 1,6) and the iron vacancy-free metallic phase (y 2). These phases are separated by first order transitions. In going from superconducting Rb0.8Fe2Se2 to non-superconducting Rb0.8Fe2S2 we observe in our ARPES experiments little change in the Fermi surface topology but an increase in the overall bandwidth by a factor of 2, hence demonstrating that moderate correlation is essential in achieving high Tc. We show also using neutron scattering that for z =0 there is a sharp magnetic resonance mode well below the superconducting gap which is replaced by a broad hump structure above the gap for z 1. This is accompanied by an insignificant change in Tc. This implies a concomitant change from sign-reversed to sign preserved Cooper-Pairing symmetry driven by the change in electron band width. In this talk we will discuss the overall significance of this rich behavior observed in this alkali Fe-chalcogenide system. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Quantum Materials Program (KC2202).

  9. Potential Antiferromagnetic Fluctuations in Hole-Doped Iron-Pnictide Superconductor Ba1-xKxFe2As2 Studied by 75As Nuclear Magnetic Resonance Measurement0.1143/JPSJ.81.054704

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Masanori; Yamada, Yuji; Saito, Taku

    2012-04-12

    We have performed 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on single-crystalline Ba1-xKxFe2As2 for x = 0.27–1. 75As nuclear quadruple resonance frequency (νQ) increases linearly with increasing x. The Knight shift K in the normal state shows Pauli paramagnetic behavior with a weak temperature T dependence. K increases gradually with increasing x. By contrast, the nuclear spin–lattice relaxation rate 1/T1 in the normal state has a strong T dependence, which indicates the existence of large antiferomagnetic (AF) spin fluctuations for all x's. The T dependence of 1/T1 shows a gaplike behavior below approximately 100 K formore » 0.6 < x < 0.9. This behaviors is well explained by the change in the band structure with the expansion of hole Fermi surfaces and the shrinkage and disappearance of electron Fermi surfaces at the Brillouin zone (BZ) with increasing x. The anisotropy of 1/T1, represented by the ratio of 1/T1ab to 1/T1c, is always larger than 1 for all x's, which indicates that stripe-type AF fluctuations are dominant in this system. The K in the superconducting (SC) state decreases, which corresponds to the appearance of spin-singlet superconductivity. The T dependence of 1/T1 in the SC state indicates a multiple-SC-gap feature. A simple two-gap model analysis shows that the larger superconducting gap gradually decreases with increasing x from 0.27 to 1 and a smaller gap decreases rapidly and nearly vanishes for x > 0.6 where electron pockets in BZ disappear.« less

  10. Anisotropic Eliashberg theory of MgB 2: Tc, isotope effects, superconducting energy gaps, quasiparticles, and specific heat

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.

    2003-03-01

    The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.

  11. Fully gapped superconductivity in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te

    DOE PAGES

    Du, Guan; Gu, G. D.; Du, Zengyi; ...

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb 0.5Sn 0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb 0.5Sn 0.5) 0.7In 0.3Te is produced by In doping in Pb 0.5Sn 0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb 0.5Sn 0.5) 0.7In 0.3Te on a (001)-oriented surface. The spectrum canmore » be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  12. On Pokrovskii's anisotropic gap equations in superconductivity theory

    NASA Astrophysics Data System (ADS)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  13. Enhanced Andreev reflection in gapped graphene

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zareyan, Malek

    2012-08-01

    We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene that presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN can enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.

  14. Polaronic behavior in a weak-coupling superconductor.

    PubMed

    Swartz, Adrian G; Inoue, Hisashi; Merz, Tyler A; Hikita, Yasuyuki; Raghu, Srinivas; Devereaux, Thomas P; Johnston, Steven; Hwang, Harold Y

    2018-02-13

    The nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities ([Formula: see text]-[Formula: see text] cm -3 ) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen-Cooper-Schrieffer (BCS) and Migdal-Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3 , using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimate the doping evolution of the dimensionless electron-phonon interaction strength ([Formula: see text]). Upon cooling below the superconducting transition temperature ([Formula: see text]), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling ([Formula: see text]). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. They further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron-phonon coupling strength.

  15. Polaronic behavior in a weak-coupling superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, Adrian G.; Inoue, Hisashi; Merz, Tyler A.

    We report the nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities (10 18–10 20 cm -3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen–Cooper–Schrieffer (BCS) and Migdal–Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimatemore » the doping evolution of the dimensionless electron–phonon interaction strength (λ). Upon cooling below the superconducting transition temperature (T c), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling (λ BCS≈0.1). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. Finally, they further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron–phonon coupling strength.« less

  16. Polaronic behavior in a weak-coupling superconductor

    DOE PAGES

    Swartz, Adrian G.; Inoue, Hisashi; Merz, Tyler A.; ...

    2018-01-30

    We report the nature of superconductivity in the dilute semiconductor SrTiO 3 has remained an open question for more than 50 y. The extremely low carrier densities (10 18–10 20 cm -3) at which superconductivity occurs suggest an unconventional origin of superconductivity outside of the adiabatic limit on which the Bardeen–Cooper–Schrieffer (BCS) and Migdal–Eliashberg (ME) theories are based. We take advantage of a newly developed method for engineering band alignments at oxide interfaces and access the electronic structure of Nb-doped SrTiO 3, using high-resolution tunneling spectroscopy. We observe strong coupling to the highest-energy longitudinal optic (LO) phonon branch and estimatemore » the doping evolution of the dimensionless electron–phonon interaction strength (λ). Upon cooling below the superconducting transition temperature (T c), we observe a single superconducting gap corresponding to the weak-coupling limit of BCS theory, indicating an order of magnitude smaller coupling (λ BCS≈0.1). These results suggest that despite the strong normal state interaction with electrons, the highest LO phonon does not provide a dominant contribution to pairing. Finally, they further demonstrate that SrTiO 3 is an ideal system to probe superconductivity over a wide range of carrier density, adiabatic parameter, and electron–phonon coupling strength.« less

  17. Universal heat conduction in Ce 1-xYb xCoIn 5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; ...

    2016-02-01

    In the heavy-fermion superconductor Ce 1-xYb xCoIn 5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value x nom = 0.2). Here we present systematic thermal conductivity measurements on Ce 1-xYb xCoIn 5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ 0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce 1-xYb xCoIn 5. Similar universal heat conduction is also observed in the CeCo(Inmore » 1–yCd y) 5 system. Furthermore, these results reveal a robust nodal d-wave gap in CeCoIn 5 upon Yb or Cd doping.« less

  18. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.

    PubMed

    Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming

    2016-11-01

    The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.

  19. Andreev rectifier: A nonlocal conductance signature of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.

    2018-01-01

    The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.

  20. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE PAGES

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; ...

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  1. Commensurate antiferromagnetic excitations as a signature of the pseudogap in the tetragonal high-T c cuprate HgBa 2CuO 4+δ

    DOE PAGES

    Chan, M. K.; Dorow, C. J.; Mangin-Thro, L.; ...

    2016-03-04

    We report that antiferromagnetic correlations have been argued to be the cause of the d-wave superconductivity and the pseudogap phenomena exhibited by the cuprates. Although the antiferromagnetic response in the pseudogap state has been reported for a number of compounds, there exists no information for structurally simple HgBa 2CuO 4+δ. We report neutron-scattering results for HgBa 2CuO 4+δ (superconducting transition temperature T c≈71 K, pseudogap temperature T*≈305 K) that demonstrate the absence of the two most prominent features of the magnetic excitation spectrum of the cuprates: the X-shaped ‘hourglass’ response and the resonance mode in the superconducting state. Instead, themore » response is Y-shaped, gapped and significantly enhanced below T*, and hence a prominent signature of the pseudogap state.« less

  2. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    NASA Astrophysics Data System (ADS)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  3. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  4. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    NASA Astrophysics Data System (ADS)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  5. Electronic structure of the bismuth family of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Donglai

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.

  6. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  7. The Pseudogap in Multiband Superconductivity

    NASA Astrophysics Data System (ADS)

    Kristoffel, N.; Rubin, P.

    2012-11-01

    The pseudogap (PG) excitation is analyzed as a natural event in multiband superconductivity. It corresponds to minimal quasiparticle excitation energy of an electron band not touched by the chemical potential. The critical points of the phase diagram are determined by vanishing conditions for normal state pseudogaps (NPG). For two bands (gapped or overlapping) these are positioned on edges of the superconducting dome. Theoretical background for a three-band system with two interband pairing channels is developed. There are three independent superconducting gaps (SCG). The PG is associated with the band component possessing a bare gap which can be quenched by doping. At low doping the PG and the SCG of another band component coexist. The critical point is not fixed in respect of the transition temperature (Tc) dome background. The depletion of the PG associated states is restored here. This effect can also be indirect by the participation of these states in determining the chemical potential position. At the critical point the PG looses its normal state contribution and continues as the SCG of the same band. Illustrative examples on the doping scale have been calculated.

  8. Probe-type of superconductivity by impurity in materials with short coherence length: the s-wave and η-wave phases study

    NASA Astrophysics Data System (ADS)

    Ptok, Andrzej; Jerzy Kapcia, Konrad

    2015-04-01

    The effects of a single non-magnetic impurity on superconducting states in the Penson-Kolb-Hubbard model have been analyzed. The investigations have been performed within the Hartree-Fock mean field approximation in two steps: (i) the homogeneous system is analysed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.

  9. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    NASA Astrophysics Data System (ADS)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  10. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to exist when topological insulators are interfaced with superconductors. The observation of Majorana fermions would not only be fundamentally important, but would also lead to applications in fault-tolerant topological quantum computation. By interfacing topological insulator nanoribbons with superconducting electrodes, we observe distinct signatures of proximity-induced superconductivity, which is found to be present in devices with channel lengths that are much longer than the normal transport characteristic lengths. This might suggest preferential coupling of the proximity effect to a ballistic surface channel of the topological insulator. In addition, when the electrodes are in the superconducting state, we observe periodic magnetoresistance oscillations which suggest the formation of vortices in the proximity-induced region of the nanoribbons. Our results demonstrate that proximity-induced superconductivity and vortices can be realized in our nanoribbon geometry, which accomplishes a first important step towards the search for Majorana fermions in condensed matter. In Chapter 5, I will discuss experiments on a magnetically-doped topological insulator (Mn-doped Bi2Se3) to induce a surface state gap. The metallic Dirac cone surface states of a topological insulator are expected to be protected against small perturbations by time-reversal symmetry. However, these surface states can be dramatically modified and a finite energy gap can be opened at the Dirac point by breaking the time-reversal symmetry via magnetic doping. The interplay between magnetism and topological surface states is predicted to yield novel phenomena of fundamental interest such as a topological magneto-electric effect, a quantized anomalous Hall effect, and the induction of magnetic monopoles. Our systematic measurements reveal a close correlation between the onset of ferromagnetism and quantum corrections to diffusive transport, which crosses over from the symplectic (weak anti-localization) to the unitary (weak localization) class. A comprehensive interpretation of data obtained from electrical transport, angle-resolved photoemission spectroscopy, superconducting quantum interference device magnetometry, and scanning tunneling microscopy indicates that the ferromagnetism responsible for modifications in the surface states occurs in nanoscale regions on the surface where magnetic atoms segregate during sample growth. This suggests that some aspects of the observed magnetoconductance may indeed originate from surface transport despite the non-ideal nature of the samples. These observations are consistent with the prediction of a time-reversal symmetry breaking gap, which is further supported by angle-resolved photoemission spectroscopy measurements.

  11. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    NASA Astrophysics Data System (ADS)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  12. Momentum Dependence of Charge Excitations in YBa2Cu3O7-δ and Nd2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Ishii, Kenji

    2006-03-01

    Resonant inelastic x-ray scattering (RIXS) studies at Cu K-edge on high-Tc superconducting cuprates, YBa2Cu3O7-δ and Nd2-xCexCuO4 are presented. The superconductivity occurs in the vicinity of the Mott insulating state and it is important to clarify the nature of the Mott gap and its doping dependence. Because RIXS has an advantage that we can measure charge excitation in a wide energy-momentum space, it gives a unique opportunity to study the electronic structure of materials. We apply this technique to high-Tc superconducting cuprates. In particular the electronic structure of strongly correlated metals is in the focus of our RIXS study. The experiments were performed at BL11XU of SPring-8, Japan, where a specially designed spectrometer for inelastic x-ray scattering is installed. In optimally doped YBa2Cu3O7-δ, anisotropic spectra are observed in the ab plane of a twin-free crystal. The Mott gap excitation from the one-dimensional CuO chain is enhanced at 2 eV near the zone boundary of the chain direction, while the excitation from the CuO2 plane is broad at 1.5-4 eV and almost independent of momentum. Theoretical calculation based on the one-dimensional and two-dimensional Hubbard model reproduces the observed features in the RIXS spectra when smaller values of the on-site Coulomb energy of the chain than that of the plane are assumed. This means that the charge transfer gap of the chain is smaller than that of the plane. On the other hand, both interband excitation across the Mott gap and intraband excitation in the upper Hubbard band are observed in the electron-doped Nd2-xCexCuO4. The intensity of the interband excitation is concentrated at ˜ 2 eV near the zone boundary while a dispersion relation with a momentum-dependent width emerges in the intraband excitation. The author would like to acknowledge to his collaborators, K. Tsutsui, Y. Endoh, T. Tohyama, K. Kuzushita, T. Inami, K. Ohwada, M. Hoesch, M. Tsubota, Y. Murakami, J. Mizuki, S. Maekawa, T. Masui, S. Tajima, and K. Yamada. The crystal growth of YBa2Cu3O7-δ was supported by the New Energy and Industrial Technology Development Organization (NEDO) as the Collaborative Research and Development of Fundamental Technologies for Superconductivity Applications.

  13. Enhanced superconductivity of fullerenes

    DOEpatents

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  14. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron-pnictide single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xin; Park, W.K.; Yuan, H.Q.

    2010-04-23

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parentmore » compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder–Tinkham–Klapwijk model, the data show a gap size of ~ 3.0–4.0 meV with 2Δ{sub 0}/k{sub B}T{sub c} ~ 2.0–2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.« less

  15. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xin; Park, W. K.; Yuan, H. Q.

    2010-01-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parentmore » compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of {approx} 3.0-4.0 meV with 2{Delta}{sub 0}/k{sub B}T{sub c} {approx} 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family (Fe-1111). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.« less

  16. Toward the theory of fermionic condensation

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2017-04-01

    The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal-insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.

  17. Weak interband-coupling superconductivity in the filled skutterudite LaPt4Ge12

    NASA Astrophysics Data System (ADS)

    Zhang, J. L.; Pang, G. M.; Jiao, L.; Nicklas, M.; Chen, Y.; Weng, Z. F.; Smidman, M.; Schnelle, W.; Leithe-Jasper, A.; Maisuradze, A.; Baines, C.; Khasanov, R.; Amato, A.; Steglich, F.; Gumeniuk, R.; Yuan, H. Q.

    2015-12-01

    The superconducting pairing state of LaPt4Ge12 is studied by measuring the magnetic penetration depth λ (T ,B ) and superfluid density ρs(T ) using a tunnel-diode-oscillator (TDO)-based method and transverse-field muon-spin rotation (TF -μ SR ) spectroscopy. The penetration depth follows an exponential-type temperature dependence at T ≪Tc , but increases linearly with magnetic field at T =1.5 K. A detailed analysis demonstrates that both λL(T ) and ρsTDO(T ) , measured in the Meissner state using the TDO method, are well described by a two-gap γ model with gap sizes of Δ1(0 ) =1.31 kBTc and Δ2(0 ) =1.80 kBTc , and weak interband coupling. In contrast, ρsμ SR(T ) , derived from the μ SR data, can be fitted by a single-gap BCS model with a gap close to Δ2(0 ) . We conclude that LaPt4Ge12 is a marginal two-gap superconductor and the small gap Δ1 seems to be suppressed by a small magnetic field applied in the μ SR experiments. In comparison, the 4 f electrons in PrPt4Ge12 may enhance the interband coupling and, therefore, give rise to more robust multiband superconductivity.

  18. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    NASA Astrophysics Data System (ADS)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  19. Noncontact Measurement Of Critical Current In Superconductor

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  20. Tunable Superconducting Split Ring Resonators

    DTIC Science & Technology

    2012-09-19

    microwave field-strength distortion and quality- factor dependence on tuning. Feedback for changes in design and fabrication, (4) design and fabrication...elements. For many applications tuning of the resonance frequency of the SRR is needed. Classically this is done by varactor diodes. Their capacitance ... capacitance of the gap to form a resonator circuit. The advantage of such a circuit is its quite low resonance frequency compared to other structures

  1. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  2. 119Sn-NMR investigations on superconducting Ca 3Ir 4Sn 13: Evidence for multigap superconductivity

    DOE PAGES

    Sarkar, R.; Petrovic, C.; Bruckner, F.; ...

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca 3Ir 4Sn 13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T 1), namely the Hebel–Slichter coherence peak just below the T c, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below T c indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T 1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  3. Thermal expansion of coexistence of ferromagnetism and superconductivity

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature Tc↑ of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  4. Andreev reflection in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Rostami, Habib; Asgari, Reza

    2014-01-01

    Andreev reflection in a monolayer molybdenum disulfide superconducting-normal (S/N) hybrid junction is investigated. We find, by using a modified Dirac Hamiltonian and the scattering formalism, that the perfect Andreev reflection happens at normal incidence with p-doped S and N regions. The probability of the Andreev reflection and the resulting Andreev conductance, in this system, are demonstrated to be large in comparison with the corresponding gapped graphene structure. We further investigate the effect of a topological term (β ) in the Hamiltonian and show that it results in an enhancement of the Andreev conductance with p-doped S and N regions, while in the corresponding structure with an n-doped S region it is strongly reducible in comparison. This effect can be explained in terms of the dependence of the Andreev reflection probability on the sign of β and the chemical potential in the superconducting region.

  5. Langmuir vacuum and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veklenko, B. A.

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  6. Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2-xSex

    NASA Astrophysics Data System (ADS)

    Ang, R.; Miyata, Y.; Ieki, E.; Nakayama, K.; Sato, T.; Liu, Y.; Lu, W. J.; Sun, Y. P.; Takahashi, T.

    2013-09-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) of layered chalcogenide 1T-TaS2-xSex to elucidate the electronic states especially relevant to the occurrence of superconductivity. We found a direct evidence for a Ta-5d-derived electron pocket associated with the superconductivity, which is fragile against a Mott-gap opening observed in the insulating ground state for S-rich samples. In particular, a strong electron-electron interaction-induced Mott gap driven by a Ta 5d orbital also exists in the metallic ground state for Se-rich samples, while finite ARPES intensity near the Fermi level likely originating from a Se 4p orbital survives, indicative of the orbital-selective nature of the Mott transition. Present results suggest that effective electron correlation and p-d hybridization play a crucial role to tune the superconductivity and Mott metal-insulator transition.

  7. Superconducting states of topological surface states in β-PdBi2 investigated by STM/STS

    NASA Astrophysics Data System (ADS)

    Iwaya, Katsuya; Okawa, Kenjiro; Hanaguri, Tetsuo; Kohsaka, Yuhki; Machida, Tadashi; Sasagawa, Takao

    We investigate superconducting (SC) states of topological surface states in β-PdBi2 using very low temperature STM. Characteristic quasiparticle interference patterns strongly support the existence of the spin-polarized surface states at the Fermi level in the normal state. A fully-opened SC gap well described by the conventional BCS model is observed, indicating the SC gap opening at the spin-polarized Fermi surfaces. Considering a possible mixing of odd- and even parity orbital functions in C4v group symmetry lowered from D4h near the surface, we suggest that the SC gap consists of the mixture of s- and p-wave SC gap functions in the two-dimensional state.

  8. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+delta

    PubMed

    Pan; Hudson; Lang; Eisaki; Uchida; Davis

    2000-02-17

    Although the crystal structures of the copper oxide high-temperature superconductors are complex and diverse, they all contain some crystal planes consisting of only copper and oxygen atoms in a square lattice: superconductivity is believed to originate from strongly interacting electrons in these CuO2 planes. Substituting a single impurity atom for a copper atom strongly perturbs the surrounding electronic environment and can therefore be used to probe high-temperature superconductivity at the atomic scale. This has provided the motivation for several experimental and theoretical studies. Scanning tunnelling microscopy (STM) is an ideal technique for the study of such effects at the atomic scale, as it has been used very successfully to probe individual impurity atoms in several other systems. Here we use STM to investigate the effects of individual zinc impurity atoms in the high-temperature superconductor Bi2Sr2CaCu2O8+delta. We find intense quasiparticle scattering resonances at the Zn sites, coincident with strong suppression of superconductivity within approximately 15 A of the scattering sites. Imaging of the spatial dependence of the quasiparticle density of states in the vicinity of the impurity atoms reveals the long-sought four-fold symmetric quasiparticle 'cloud' aligned with the nodes of the d-wave superconducting gap which is believed to characterize superconductivity in these materials.

  9. From antiferromagnetic insulator to correlated metal in pressurized and doped LaMnPO.

    PubMed

    Simonson, J W; Yin, Z P; Pezzoli, M; Guo, J; Liu, J; Post, K; Efimenko, A; Hollmann, N; Hu, Z; Lin, H-J; Chen, C-T; Marques, C; Leyva, V; Smith, G; Lynn, J W; Sun, L L; Kotliar, G; Basov, D N; Tjeng, L H; Aronson, M C

    2012-07-03

    Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.

  10. Pressure-induced topological insulator-to-metal transition and superconductivity in Sn-doped B i1.1S b0.9T e2S

    NASA Astrophysics Data System (ADS)

    An, Chao; Chen, Xuliang; Wu, Bin; Zhou, Yonghui; Zhou, Ying; Zhang, Ranran; Park, Changyong; Song, Fengqi; Yang, Zhaorong

    2018-05-01

    Tetradymite-type topological insulator Sn-doped B i1.1S b0.9T e2S (Sn-BSTS), with a surface state Dirac point energy well isolated from the bulk valence and conduction bands, is an ideal platform for studying the topological transport phenomena. Here, we present high-pressure transport studies on single-crystal Sn-BSTS, combined with Raman scattering and synchrotron x-ray diffraction measurements. Over the studied pressure range of 0.7-37.2 GPa, three critical pressure points can be observed: (i) At ˜9 GPa, a pressure-induced topological insulator-to-metal transition is revealed due to closure of the bulk band gap, which is accompanied by changes in slope of the Raman frequencies and a minimum in c /a within the pristine rhombohedral structure (R -3 m ); (ii) at ˜13 GPa, superconductivity is observed to emerge, along with the R -3 m to a C 2 /c (monoclinic) structural transition; (iii) at ˜24 GPa, the superconducting transition onset temperature TC reaches a maximum of ˜12 K , accompanied by a second structural transition from the C 2 /c to a body-centered cubic I m -3 m phase.

  11. Electronic structure and lattice dynamics at the interface of single layer FeSe and SrTiO3

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Balatsky, Alexander; Zhu, Jian-Xin

    Recent discovery of high-temperature superconductivity with the superconducting energy gap opening at temperatures close to or above the liquid nitrogen boiling point in the single-layer FeSe grown on SrTiO3 has attracted significant interest. It suggests that the interface effects can be utilized to enhance the superconductivity. It has been shown recently that the coupling between the electrons in FeSe and vibrational modes at the interface play an important role. Here we report on a detailed study of electronic structure and lattice dynamics in the single-layer FeSe/SrTiO3 interface by using the state-of-art electronic structure method within the density functional theory. The nature of the vibrational modes at the interface and their coupling to the electronic degrees of freedom are analyzed. In addition, the effect of hole and electron doping in SrTiO3 on the electron-mode coupling strength is also considered. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the DOE Office of Basic Energy Sciences.

  12. Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films.

    PubMed

    Zhang, W H; Liu, X; Wen, C H P; Peng, R; Tan, S Y; Xie, B P; Zhang, T; Feng, D L

    2016-03-09

    Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

  13. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation

    PubMed Central

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-01-01

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high—temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T3 dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s—wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s—wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry. PMID:26286229

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haoxiang; Zhou, Xiaoqing; Nummy, Thomas

    Layered nickelates have the potential for exotic physics similar to high T C superconducting cuprates as they have similar crystal structures and these transition metals are neighbors in the periodic table. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate La 4Ni 3O 10 revealing its electronic structure and correlations, finding strong resemblances to the cuprates as well as a few key differences. We find a large hole Fermi surface that closely resembles the Fermi surface of optimally hole-doped cuprates, including its d x2-y2 orbital character, hole filling level, and strength of electronic correlations. However, inmore » contrast to cuprates, La 4Ni 3O 10 has no pseudogap in the d x2-y2 band, while it has an extra band of principally d 3z2-r2 orbital character, which presents a low temperature energy gap. Furthermore, these aspects drive the nickelate physics, with the differences from the cuprate electronic structure potentially shedding light on the origin of superconductivity in the cuprates.« less

  15. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Run; Dai, Yaomin; Xu, Bing

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  16. Anomalous phonon behavior in superconducting CaKFe 4 As 4 : An optical study

    DOE PAGES

    Yang, Run; Dai, Yaomin; Xu, Bing; ...

    2017-02-08

    Here, the temperature dependence of ab-plane optical conductivity of CaKFe 4As 4 has been measured below and above its superconducting transition temperature T c≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm –1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ 1 ≃ 9 meV and Δ 2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cmmore » –1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less

  17. Evolution of superconducting gap and metallic ground state in cuprates from transport

    NASA Astrophysics Data System (ADS)

    Taillefer, Louis

    2006-03-01

    We report on fundamental characteristics of the ground state of cuprates in the limit of T=0, for both normal and superconducting states, obtained from transport measurements on high-quality single crystals of YBCO and Tl-2201, as a function of hole concentration. The superconducting gap is extracted from thermal conductivity; it is found to scale with the superconducting transition temperature throughout the overdoped regime, with a gap-to-Tc ratio of 5 [1]. The normal state is accessed by suppressing superconductivity with magnetic fields up to 60 T and is characterized by the limiting behavior of its electrical resistivity; while carrier localization is observed in YBCO at low temperature for carrier concentrations p below 0.1 hole/planar Cu, at p=0.1 and above the material remains highly metallic down to T=0 [2]. This shows that the non-superconducting state of underdoped cuprates, deep in the pseudogap phase, is remarkably similar to that of strongly overdoped cuprates, e.g. at p=0.3. We compare these results with similar measurements on other cuprates and discuss their implication for our understanding of the cuprate phase diagram. [1] In collaboration with: D.G. Hawthorn, S.Y. Li, M. Sutherland, E. Boaknin, R.W. Hill, C. Proust, F. Ronning, M. Tanatar, J. Paglione, D. Peets, R. Liang, D.A. Bonn, W.N. Hardy, and N.N. Kolesnikov. [2] In collaboration with: C. Proust, M. Sutherland, N. Doiron- Leyraud, S.Y. Li, R. Liang, D.A. Bonn, W.N. Hardy, N.E. Hussey, S. Adachi, S. Tajima, J. Levallois, and M. Narbone.

  18. Spectroscopy of infrared-active phonons in high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.

    1995-01-01

    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.

  19. Superconductivity and spin excitations in orbitally ordered FeSe

    NASA Astrophysics Data System (ADS)

    Kreisel, Andreas; Mukherjee, Shantanu; Hirschfeld, P. J.; Andersen, B. M.

    We provide a band-structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on the Fe-based superconductor FeSe, including a mean-field like orbital ordering in the dxz /dyz channel, and show that this model also accounts for the temperature dependence of the measured Knight shift and the spin-relaxation rate. An RPA calculation of the dynamical spin susceptibility yields spin excitations which are peaked at wave vector (π , 0) in the 1-Fe Brillouin zone, with a broad maximum at energies of order a few meV. Furthermore, the superconducting gap structure obtained from spin fluctuation theory exhibits nodes on the electron pockets, consistent with the 'V'-shaped density of states measured by tunneling spectroscopy on this material. The redistribution of spectral weight in the superconducting state creates a (π , 0) ''neutron resonance'' as seen in recent experiments. Comparing to various experimental results, we give predictions for further studies A.K. and B.M.A. acknowledge financial support from a Lundbeckfond fellowship (Grant No. A9318). P.J.H. was partially supported by the Department of Energy under Grant No. DE-FG02-05ER46236.

  20. Doping-evolution of the superconducting gap in single crystals of (Ca 1-x La x ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 superconductor from London penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, K.; Tanatar, M. A.; Ni, N.

    2014-09-19

    The doping-evolution of the superconducting gap structure in iron-based superconductor (Ca 1-xLax)10(Pt3As8)(Fe2As2)5(x = 0.04, 0.06, 0.09, 0.11, and 0.18) was probed by high-resolution measurements of the London penetration depth, λ(T). The samples spanned compositions from underdoped to slightly overdoped with superconducting critical temperatures, Tc, from 12.7 K (x = 0.04) through (optimal) 23.3 K (x = 0.11) to 21.9 K (x = 0.18). The low-temperature variation (up to 0.3 Tc ) of λ(T) was analysed using a power-law function, Δλ = ATn. For compositions close to the optimal doping, (x = 0.09, 0.11, and 0.18), characterized by Tc > 20K,more » Δλ(T) shows a tendency to saturation, indicative of a full gap on the Fermi surface. Fitting over the lowest temperature range (T < 0.1 Tc) gives n = 2.6. This value is well outside the range 1 ≤ n ≤ 2 expected for the line-nodal superconductor. The exponent n decreased to n ~ 2 in the two most underdoped compositions x = 0.04 (Tc = 12.7 K) and 0.06 (Tc = 18.2 K), implying the development of a notable gap anisotropy revealed by the enhanced influence of pair-breaking scattering. This decrease is accompanied by a significant increase of the total variation of the penetration depth Δλ in a fixed temperature interval (e.g., Tmin - 0.3Tc). Both the decrease of the exponent and the increase of the absolute value of Δλ in the underdoped regime are similar to the observations in other charge-doped iron-based superconductors, such as doped BaFe2As2 and NaFeAs, suggesting a universal behavior in iron-based superconductors.« less

  1. Detection of s-wave superconductivity on monolayer CuO2 films on Bi2Sr2CaCu2O8+δ.

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhong, Yong; Han, Sha; Lv, Yanfeng; Wang, Wenlin; Zhang, Ding; Ding, Hao; Zhang, Yimin; Wang, Lili; He, Ke; Song, Canli; Ma, Xucun; Xue, Qikun

    High temperature superconductivity emerges when the CuO2 layer touches the doped charge reservoir blocks. The redistributed charge carriers at these interfaces condense into coherent Cooper pairs, albeit the exact underlying mechanism is still highly controversial. Targeting at this, we have mimicked the CuO2/charge reservoir interface by depositing the monolayer CuO2 films on optimal doped Bi2Sr2CaCu2O8+δ substrates. Direct investigation on these superconducting CuO2 films, however, yields results in stark contrast with the common recognition. Despite of the well-known V shaped pseudogap, a U shaped gap is identified. This U shaped gap disappears at TC and is indifference to K, Cs and Ag adsorbates, in line with the traditional s-wave superconductivity. In view of these results, we propose that superconductivity in cuprates may indeed stem from the modulation doping induced two dimensional hole liquid, which is confined in the CuO2 layers. NSF and MOST of China.

  2. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    PubMed

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  3. Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO3

    PubMed Central

    Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; Xie, Yanwu; He, Ruihua; Tang, Shujie; He, Junfeng; Li, Wei; Jia, Tao; Rebec, Slavko N.; Ma, Eric Yue; Yan, Hao; Hashimoto, Makoto; Lu, Donghui; Mo, Sung-Kwan; Hikita, Yasuyuki; Moore, Robert G.; Hwang, Harold Y.; Lee, Dunghai; Shen, Zhixun

    2017-01-01

    The observation of replica bands in single-unit-cell FeSe on SrTiO3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of Tc over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces, and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism. PMID:28186084

  4. Ubiquitous strong electron–phonon coupling at the interface of FeSe/SrTiO 3

    DOE PAGES

    Zhang, Chaofan; Liu, Zhongkai; Chen, Zhuoyu; ...

    2017-02-10

    The observation of replica bands in single-unit-cell FeSe on SrTiO 3 (STO)(001) by angle-resolved photoemission spectroscopy (ARPES) has led to the conjecture that the coupling between FeSe electrons and the STO phonons are responsible for the enhancement of T c over other FeSe-based superconductors. However the recent observation of a similar superconducting gap in single-unit-cell FeSe/STO(110) raised the question of whether a similar mechanism applies. Here we report the ARPES study of the electronic structure of FeSe/STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO(001) and STO(110) bare surfaces,more » and observe similar replica bands separated by approximately the same energy, indicating this coupling is a generic feature of the STO surfaces and interfaces. Lastly, our findings suggest that the large superconducting gaps observed in FeSe films grown on different STO surface terminations are likely enhanced by a common mechanism.« less

  5. Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3

    NASA Astrophysics Data System (ADS)

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai

    2018-05-01

    Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.

  6. Microscopic investigation of the weakly correlated noncentrosymmetric superconductor SrAuSi3

    NASA Astrophysics Data System (ADS)

    Barbero, N.; Biswas, P. K.; Isobe, M.; Amato, A.; Morenzoni, E.; Hillier, A. D.; Ott, H.-R.; Mesot, J.; Shiroka, T.

    2018-01-01

    SrAuSi3 is a noncentrosymmetric superconductor (NCS) with Tc=1.54 K, which to date has been studied only via macroscopic techniques. By combining nuclear-magnetic-resonance and muon-spin-rotation measurements, we investigate both the normal and the superconducting phase of SrAuSi3 at a local level. In the normal phase, our data indicate a standard metallic behavior with weak electron correlations and a Korringa constant Sexp=1.31 ×10-5 sK. The latter, twice the theoretical value, can be justified by the Moriya theory of exchange enhancement. In the superconducting phase, the material exhibits conventional BCS-type superconductivity with a weak-coupling s -wave pairing, a gap value Δ (0 )=0.213 (2 ) meV, and a magnetic penetration depth λ (0 )=398 (2 ) nm. The experimental proof of weak correlations in SrAuSi3 implies that correlation effects can be decoupled from those of antisymmetric spin-orbit coupling, thus enabling accurate band-structure calculations in the weakly correlated NCSs.

  7. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure.

    PubMed

    Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M

    2016-09-29

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.

  8. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure

    PubMed Central

    Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.

    2016-01-01

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268

  9. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  10. Discovery of orbital-selective Cooper pairing in FeSe

    DOE PAGES

    Sprau, P. O.; Kostin, A.; Kreisel, A.; ...

    2017-07-07

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  11. Discovery of orbital-selective Cooper pairing in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprau, P. O.; Kostin, A.; Kreisel, A.

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  12. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  13. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La 2-x(Sr;Ba) xCuO 4

    DOE PAGES

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La 2-xBa xCuO 4 (LBCO) with 0 ≤ x ≤ 0.095 and La 2-xSr xCuO 4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossingsmore » of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  14. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    NASA Astrophysics Data System (ADS)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  15. Superconducting proximity effect in topological materials

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  16. Engineering of an ultra-thin molecular superconductor by charge transfer

    DOEpatents

    Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark

    2016-06-07

    A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.

  17. The dynamic process and microscopic mechanism of extraordinary terahertz transmission through perforated superconducting films

    PubMed Central

    Wu, J. B.; Zhang, X.; Jin, B. B.; Liu, H. T.; Chen, Y. H.; Li, Z. Y.; Zhang, C. H.; Kang, L.; Xu, W. W.; Chen, J.; Wang, H. B.; Tonouchi, M.; Wu, P. H.

    2015-01-01

    Superconductor is a compelling plasmonic medium at terahertz frequencies owing to its intrinsic low Ohmic loss and good tuning property. However, the microscopic physics of the interaction between terahertz wave and superconducting plasmonic structures is still unknown. In this paper, we conducted experiments of the enhanced terahertz transmission through a series of superconducting NbN subwavelength hole arrays, and employed microscopic hybrid wave model in theoretical analysis of the role of hybrid waves in the enhanced transmission. The theoretical calculation provided a good match of experimental data. In particular, we obtained the following results. When the width of the holes is far below wavelength, the enhanced transmission is mainly caused by localized resonance around individual holes. On the contrary, when the holes are large, hybrid waves scattered by the array of holes dominate the extraordinary transmission. The surface plasmon polaritions are proved to be launched on the surface of superconducting film and the excitation efficiency increases when the temperature approaches critical temperature and the working frequency goes near energy gap frequency. This work will enrich our knowledge on the microscopic physics of extraordinary optical transmission at terahertz frequencies and contribute to developing terahertz plasmonic devices. PMID:26498994

  18. Characterizing the electronic ground states of single-layer NbSe2 via STM/STS

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ugeda, Miguel; Bradley, Aaron; Zhang, Yi; Onishi, Seita; Ruan, Wei; Ojeda-Aristizabal, Claudia; Ryu, Hyejin; Edmonds, Mark; Tsai, Hsin-Zon; Riss, Alexander; Mo, Sung-Kwan; Lee, Dunghai; Zettl, Alex; Hussain, Zahid; Shen, Zhi-Xun; Crommie, Michael

    Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring collective electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 the CDW sets in at TCDW = 33K and superconductivity sets in at Tc = 7.2K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. Here we present an electronic characterization study of a single 2D layer of NbSe2 by means of low temperature scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that the CDW order remains intact in 2D and exhibits a robust 3 x 3 superlattice. Superconductivity also still occurs but its onset is depressed to 1.6K. Our STS measurements at 5K reveal a CDW gap of Δ = 4 meV at the Fermi energy, which is accessible via STS due to the removal of bands crossing the Fermi surface in the 2D limit. Our observations are consistent with the predicted simplified (compared to bulk) electronic structure of single-layer NbSe2, thus providing new insight into CDW formation and superconductivity in this model strongly-correlated system.

  19. Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

    NASA Astrophysics Data System (ADS)

    Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin

    2017-03-01

    Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

  20. Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements

    NASA Astrophysics Data System (ADS)

    Acharya, Swagata; Weber, Cédric; Plekhanov, Evgeny; Pashov, Dimitar; Taraphder, A.; Van Schilfgaarde, Mark

    2018-04-01

    High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La2 CuO4 (LCO) with Sr (LSCO), or electron doped, such as Nd2 CuO4 (NCO) with Ce (NCCO). In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW) and dynamical mean-field theory (DMFT), we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d -wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between Tc and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-Tc superconductivity.

  1. Hydrocarbon deposition in gaps of tungsten and graphite tiles in Experimental Advanced Superconducting Tokamak edge plasma parameters

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Yang, Zhongshi; Luo, Guang-Nan

    2015-09-01

    The three-dimensional (3D) Monte Carlo code PIC-EDDY has been utilized to investigate the mechanism of hydrocarbon deposition in gaps of tungsten tiles in the Experimental Advanced Superconducting Tokamak (EAST), where the sheath potential is calculated by the 2D in space and 3D in velocity particle-in-cell method. The calculated results for graphite tiles using the same method are also presented for comparison. Calculation results show that the amount of carbon deposited in the gaps of carbon tiles is three times larger than that in the gaps of tungsten tiles when the carbon particles from re-erosion on the top surface of monoblocks are taken into account. However, the deposition amount is found to be larger in the gaps of tungsten tiles at the same CH4 flux. When chemical sputtering becomes significant as carbon coverage on tungsten increases with exposure time, the deposition inside the gaps of tungsten tiles would be considerable.

  2. The Pressure Coefficients of the Superconducting Order Parameters at the Ground State of Ferromagnetic Superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.; Chaudhury, R.

    2014-04-01

    We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.

  3. Superconducting coil and method of stress management in a superconducting coil

    DOEpatents

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  4. Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2

    NASA Astrophysics Data System (ADS)

    Bareille, C.; Boariu, F. L.; Schwab, H.; Lejay, P.; Reinert, F.; Santander-Syro, A. F.

    2014-07-01

    Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.

  5. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  7. Quasiparticle Excitations in the Superconducting State of FeSe Probed by Thermal Hall Conductivity in the Vicinity of the BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Watashige, Tatsuya; Arsenijević, Stevan; Yamashita, Takuya; Terazawa, Daiki; Onishi, Takafumi; Opherden, Lars; Kasahara, Shigeru; Tokiwa, Yoshifumi; Kasahara, Yuichi; Shibauchi, Takasada; von Löhneysen, Hilbert; Wosnitza, Jochen; Matsuda, Yuji

    2017-01-01

    There is growing evidence that the superconducting semimetal FeSe (Tc ˜ 8 K) is in the crossover regime between weak-coupling Bardeen-Cooper-Schrieffer (BCS) and strong-coupling Bose-Einstein-condensate (BEC) limits. We report on longitudinal and transverse thermal conductivities, κxx and κxy, respectively, in magnetic fields up to 20 T. The field dependences of κxx and κxy imply that a highly anisotropic small superconducting gap forms at the electron Fermi-surface pocket whereas a more isotropic and larger gap forms at the hole pocket. Below ˜1.0 K, both κxx and κxy exhibit distinct anomalies (kinks) at the upper critical field Hc2 and at a field H* slightly below Hc2. The analysis of the thermal Hall angle (κxy/κxx) indicates a change of the quasiparticle scattering rate at H*. These results provide strong support to the previous suggestion that above H* a distinct field-induced superconducting phase emerges with an unprecedented large spin imbalance.

  8. Muon-spin-rotation study of the superconducting properties of Mo3Sb7

    NASA Astrophysics Data System (ADS)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Bukowski, Z.

    2008-11-01

    We present the microscopic properties of superconducting state in Mo3Sb7 (Tc=2.2K) using muon-spin rotation measurements. The zero-field-cooled and field-cooled (FC) data with an applied transverse field of 40 mT reveal an irreversibility in the muon relaxation rates and precessional frequencies below 2 K. We have also found an anomaly around 0.5 K, which may be related to a process of the vortex melting or some change in vortex-lattice symmetry. The temperature dependence of FC muon relaxation rate can be analyzed using a phenomenological double-gap s -wave model. The observation of a nonlinear field dependence of the muon relaxation rate is consistent with the occurrence of two superconducting gaps. Moreover, the magnetic penetration depth λ , coherence length ξ , superconducting carrier density ns , and effective-mass enhancement m∗ have been found to be λ≈665nm , ξ≈12.5nm , ns≈1.2×1027carriers/m3 , and m∗≈18.7me , respectively.

  9. Modeling tunneling for the unconventional superconducting proximity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  10. STS studies of the pi-band superconductivity in MgB2 in a transverse field

    NASA Astrophysics Data System (ADS)

    Griggs, C.; Eskildsen, M. R.; Zhigadlo, N. D.; Karpinski, J.

    2012-02-01

    Since being discovered MgB2 has become the paradigm for two-band/two-gap superconductivity. Early scanning tunneling spectroscopy (STS) measurements, showed a rapid suppression of the superconductivty in the isotropic π-band for modest applied fields H c. These measurements were performed with the tunnel current (It) parallel to the crystalline c-axis which couple, almost exclusively, to the π-band, and with the suppression attributed to vortex core overlap. Here we report STS measurements performed in a transverse field, such that Itc H. In this configuration no vortices are cutting through the image plane, and instead the superconducting phase is affected by the Meissner currents running within one penetration depth of the sample surface. Within this field orientation we observe far less suppression of the superconducting state in the π-band compared to the earlier measurements with H c. A clear gap is seen up to H= 0.9 T.

  11. Modeling tunneling for the unconventional superconducting proximity effect

    DOE PAGES

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...

    2016-10-12

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  12. Colloquium: High pressure and road to room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the future use of tunneling spectroscopy. This feature leads to nonmonotonic and strongly asymmetric pressure dependence of Tc . Other hydrides, e.g., CaH6 and MgH6 , can be expected to display even higher values of Tc up to room temperature. The fundamental challenge lies in the creation of a structure capable of displaying high Tc at ambient pressure.

  13. Measurement of proximity induced superconductivity in MoTe2

    NASA Astrophysics Data System (ADS)

    Wang, Wudi; Liu, Minhao; Gibson, Quinn; Cava, Â. R. J.; Ong, N. P.

    MoTe2 is predicted to have type-II Weyl nodes and many of its novel transport properties have been predicted and studied. Here we reported an experiment on the superconductivity in MoTe2 induced by proximity effect. We fabricated a SQUIPT-like device on mechanical exfoliated MoTe2 micro flakes via nanofabrication. The device contains an Aluminum tunneling probe with AlOx barrier and Al contact. We measured tunneling current from probe to the sample. By fitting the differential conductance (dI/dV), we obtained the superconducting gaps in MoTe2. The dependence of gap in MoTe2 on temperature and magnetic field was measured. We also measured the current-phase relation in Al-MoTe2-Al Josephson junctions with an inductance based measurement technique.

  14. High-temperature superconductivity using a model of hydrogen bonds.

    PubMed

    Kaplan, Daniel; Imry, Yoseph

    2018-05-29

    Recently, there has been much interest in high-temperature superconductors and more recently in hydrogen-based superconductors. This work offers a simple model that explains the behavior of the superconducting gap based on naive BCS (Bardeen-Cooper-Schrieffer) theory and reproduces most effects seen in experiments, including the isotope effect and [Formula: see text] enhancement as a function of pressure. We show that this is due to a combination of the factors appearing in the gap equation: the matrix element between the proton states and the level splitting of the proton.

  15. Novel model of stator design to reduce the mass of superconducting generators

    NASA Astrophysics Data System (ADS)

    Kails, Kevin; Li, Quan; Mueller, Markus

    2018-05-01

    High temperature superconductors (HTS), with much higher current density than conventional copper wires, make it feasible to develop very powerful and compact power generators. Thus, they are considered as one promising solution for large (10 + MW) direct-drive offshore wind turbines due to their low tower head mass. However, most HTS generator designs are based on a radial topology, which requires an excessive amount of HTS material and suffers from cooling and reliability issues. Axial flux machines on the other hand offer higher torque/volume ratios than the radial machines, which makes them an attractive option where space and transportation becomes an issue. However, their disadvantage is heavy structural mass. In this paper a novel stator design is introduced for HTS axial flux machines which enables a reduction in their structural mass. The stator is for the first time designed with a 45° angle that deviates the air gap closing forces into the vertical direction reducing the axial forces. The reduced axial forces improve the structural stability and consequently simplify their structural design. The novel methodology was then validated through an existing design of the HTS axial flux machine achieving a ∼10% mass reduction from 126 tonnes down to 115 tonnes. In addition, the air gap flux density increases due to the new claw pole shapes improving its power density from 53.19 to 61.90 W kg‑1. It is expected that the HTS axial flux machines designed with the new methodology offer a competitive advantage over other proposed superconducting generator designs in terms of cost, reliability and power density.

  16. Specific heat of FeSe: Two gaps with different anisotropy in superconducting state

    NASA Astrophysics Data System (ADS)

    Muratov, A. V.; Sadakov, A. V.; Gavrilkin, S. Yu.; Prishchepa, A. R.; Epifanova, G. S.; Chareev, D. A.; Pudalov, V. M.

    2018-05-01

    We present detailed study of specific heat of FeSe single crystals with critical temperature Tc = 8.45 K at 0.4 - 200 K in magnetic fields 0 - 9 T. Analysis of the electronic specific heat at low temperatures shows the coexistence of isotropic s-wave gap and strongly anisotropic extended s-wave gap without nodes. It was found two possibilities of superconducting gap parameters which give equally description of experimental data: (i) two gaps with approximately equal amplitudes and weight contribution to specific heat: isotropic Δ1 = 1.7 meV (2Δ1 /kBTc =4.7) and anisotropic gap with the amplitude Δ2max = 1.8 meV (2 Δ2max /kBTc =4.9 and anisotropy parameter m = 0.85); (ii) two gaps with substantially different values: isotropic large gap Δ1 = 1.65 meV (2Δ1 /kBTc = 4.52) and anisotropic small gap Δ2max = 0.75 meV (2Δ2max /kBTc = 2) with anisotropy parameter m = 0.71 . These results are confirmed by the field behavior of the residual electronic specific heat γr.

  17. Tracing the evolution of the two energy gaps in magnesium diboride under pressure

    NASA Astrophysics Data System (ADS)

    Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.

    2015-04-01

    We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.

  18. Revealing the magnetic proximity effect in EuS/Al bilayers through superconducting tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Strambini, E.; Golovach, V. N.; De Simoni, G.; Moodera, J. S.; Bergeret, F. S.; Giazotto, F.

    2017-10-01

    A ferromagnetic insulator in contact with a superconductor is known to induce an exchange splitting of the singularity in the Bardeen-Cooper-Schrieffer (BCS) density of states (DoS). The magnitude of the splitting is proportional to the exchange field that penetrates into the superconductor to a depth comparable with the superconducting coherence length and which ranges in magnitude from a few to a few tens of tesla. We study this magnetic proximity effect in EuS/Al bilayers and show that the domain structure of the EuS affects the positions and the line shapes of the exchange-split BCS peaks. Remarkably, a clear exchange splitting is observed even in the unmagnetized state of the EuS layer, suggesting that the domain size of the EuS is comparable with the superconducting coherence length. Upon magnetizing the EuS layer, the splitting increases while the peaks change shape. Conductance measurements as a function of bias voltage at the lowest temperatures allowed us to relate the line shape of the split BCS DoS to the characteristic domain structure in the ultrathin EuS layer. These results pave the way to engineering triplet superconducting correlations at domain walls in EuS/Al bilayers. Furthermore, the hard gap and large splitting observed in our tunneling spectroscopy measurements make EuS/Al an excellent candidate for substituting strong magnetic fields in experiments studying Majorana bound states.

  19. ?-BiPd: a clean noncentrosymmetric superconductor

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Srinivasan; Joshi, Bhanu; Thamizhavel, A.

    2017-12-01

    We present a comprehensive review of the normal and superconducting state properties of a high-quality single crystal of monoclinic BiPd (?-BiPd, space group ?). The superconductivity of this crystal below 3.8 K is established by measuring its properties using bulk as well as spectroscopic techniques. BiPd is one of the cleanest noncentrosymmetric superconductors that display superconductivity with multiple energy gaps. Evidence of multiple energy gaps was found in heat capacity, point contact (PC) spectroscopy, penetration depth, muon spin rotation, small angle neutron scattering and NMR/NQR measurements. Moreover, Muon spin rotation measurements also suggest strong field dependence of the penetration depth of this superconductor. Unusual superconducting properties due to possible s and p wave mixing are shown by the observation of Andreev bound state in PC measurements as well as the suppressed coherence peak in the temperature dependence of the spin-lattice relaxation in the NQR measurements. This surmise is at variance with the recent STM measurements (different crystal). The observed unusual properties and multiband superconductivity are extremely sensitive to disorder in BiPd. Finally, there is a possibility of tuning the electron correlations by selective substitution in BiPd, thus making it an important system for further investigations.

  20. Superconductivity and charge density wave in ZrTe 3–xSe x

    DOE PAGES

    Zhu, Xiangde; Ning, Wei; Li, Lijun; ...

    2016-06-02

    Charge density wave (CDW), the periodic modulation of the electronic charge density, will open a gap on the Fermi surface that commonly leads to decreased or vanishing conductivity. On the other hand superconductivity, a commonly believed competing order, features a Fermi surface gap that results in infinite conductivity. Here we report that superconductivity emerges upon Se doping in CDW conductor ZrTe 3 when the long range CDW order is gradually suppressed. Superconducting critical temperature T c(x) in ZrTe 3–xSe x (0 ≤ x ≤ 0.1) increases up to 4 K plateau for 0.04 ≤ x ≤ 0.07. Further increase inmore » Se content results in diminishing T c and filametary superconductivity. The CDW modes from Raman spectra are observed in x = 0.04 and 0.1 crystals, where signature of ZrTe 3 CDW order in resistivity vanishes. As a result, the electronic-scattering for high T c crystals is dominated by local CDW fluctuations at high temperatures, the resistivity is linear up to highest measured T = 300 K and contributes to substantial in-plane anisotropy.« less

  1. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor.

    PubMed

    Ishida, Y; Saitoh, T; Mochiku, T; Nakane, T; Hirata, K; Shin, S

    2016-01-05

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲ 70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O(8+δ) and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc.

  2. Quasi-particles ultrafastly releasing kink bosons to form Fermi arcs in a cuprate superconductor

    PubMed Central

    Ishida, Y.; Saitoh, T.; Mochiku, T.; Nakane, T.; Hirata, K.; Shin, S.

    2016-01-01

    In a conventional framework, superconductivity is lost at a critical temperature (Tc) because, at higher temperatures, gluing bosons can no longer bind two electrons into a Cooper pair. In high-Tc cuprates, it is still unknown how superconductivity vanishes at Tc. We provide evidence that the so-called ≲70-meV kink bosons that dress the quasi-particle excitations are playing a key role in the loss of superconductivity in a cuprate. We irradiated a 170-fs laser pulse on Bi2Sr2CaCu2O8+δ and monitored the responses of the superconducting gap and dressed quasi-particles by time- and angle-resolved photoemission spectroscopy. We observe an ultrafast loss of superconducting gap near the d-wave node, or light-induced Fermi arcs, which is accompanied by spectral broadenings and weight redistributions occurring within the kink binding energy. We discuss that the underlying mechanism of the spectral broadening that induce the Fermi arc is the undressing of quasi-particles from the kink bosons. The loss mechanism is beyond the conventional framework, and can accept the unconventional phenomena such as the signatures of Cooper pairs remaining at temperatures above Tc. PMID:26728626

  3. Superconductivity in highly disordered NbN nanowires.

    PubMed

    Arutyunov, K Yu; Ramos-Álvarez, A; Semenov, A V; Korneeva, Yu P; An, P P; Korneev, A A; Murphy, A; Bezryadin, A; Gol'tsman, G N

    2016-11-25

    The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c  ∼ (1-T/T c ) 3/2 . We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c . Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.

  4. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope.

    PubMed

    Singh, U R; Enayat, M; White, S C; Wahl, P

    2013-01-01

    We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.

  5. Anisotropic two-gap superconductivity and the absence of a Pauli paramagnetic limit in single-crystalline LaO0.5F0.5BiS2

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Yip, K. Y.; Cheung, Y. W.; Chan, Y. T.; Niu, Q.; Kajitani, J.; Higashinaka, R.; Matsuda, T. D.; Yanase, Y.; Aoki, Y.; Lai, K. T.; Goh, Swee K.

    2018-03-01

    Ambient-pressure-grown LaO0.5F0.5BiS2 with a superconducting transition temperature Tc˜3 K possesses a highly anisotropic normal state. By a series of electrical resistivity measurements with a magnetic-field direction varying between the crystalline c axis and the a b plane, we present datasets displaying the temperature dependence of the out-of-plane upper critical field Hc2 ⊥(T ) , the in-plane upper critical field Hc2 ∥(T ) , as well as the angular dependence of Hc 2 at fixed temperatures for ambient-pressure-grown LaO0.5F0.5BiS2 single crystals. The anisotropy of the superconductivity, Hc2 ∥/Hc2 ⊥ , reaches ˜16 on approaching 0 K, but it decreases significantly near Tc. A pronounced upward curvature of Hc2 ∥(T ) is observed near Tc, which we analyze using a two-gap model. Moreover, Hc2 ∥(0 ) is found to exceed the Pauli paramagnetic limit, which can be understood by considering the strong spin-orbit coupling associated with Bi as well as the breaking of the local inversion symmetry at the electronically active BiS2 bilayers. Hence, LaO0.5F0.5BiS2 with a centrosymmetric lattice structure is a unique platform to explore the physics associated with local parity violation in the bulk crystal.

  6. Fermiology and electron dynamics of trilayer nickelate La 4Ni 3O 10

    DOE PAGES

    Li, Haoxiang; Zhou, Xiaoqing; Nummy, Thomas; ...

    2017-09-26

    Layered nickelates have the potential for exotic physics similar to high T C superconducting cuprates as they have similar crystal structures and these transition metals are neighbors in the periodic table. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate La 4Ni 3O 10 revealing its electronic structure and correlations, finding strong resemblances to the cuprates as well as a few key differences. We find a large hole Fermi surface that closely resembles the Fermi surface of optimally hole-doped cuprates, including its d x2-y2 orbital character, hole filling level, and strength of electronic correlations. However, inmore » contrast to cuprates, La 4Ni 3O 10 has no pseudogap in the d x2-y2 band, while it has an extra band of principally d 3z2-r2 orbital character, which presents a low temperature energy gap. Furthermore, these aspects drive the nickelate physics, with the differences from the cuprate electronic structure potentially shedding light on the origin of superconductivity in the cuprates.« less

  7. Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas

    2012-07-30

    The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less

  8. Superconducting Open-Framework Allotrope of Silicon at Ambient Pressure

    NASA Astrophysics Data System (ADS)

    Sung, Ha-Jun; Han, W. H.; Lee, In-Ho; Chang, K. J.

    2018-04-01

    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P 6 /m -Si6 can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P 6 /m -NaSi6 , which is predicted through first-principles study at high pressure. We identify that both P 6 /m -NaSi6 and P 6 /m -Si6 are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

  9. Superconducting Open-Framework Allotrope of Silicon at Ambient Pressure.

    PubMed

    Sung, Ha-Jun; Han, W H; Lee, In-Ho; Chang, K J

    2018-04-13

    Diamond Si is a semiconductor with an indirect band gap that is the basis of modern semiconductor technology. Although many metastable forms of Si were observed using diamond anvil cells for compression and chemical precursors for synthesis, no metallic phase at ambient conditions has been reported thus far. Here we report the prediction of pure metallic Si allotropes with open channels at ambient pressure, unlike a cubic diamond structure in covalent bonding networks. The metallic phase termed P6/m-Si_{6} can be obtained by removing Na after pressure release from a novel Na-Si clathrate called P6/m-NaSi_{6}, which is predicted through first-principles study at high pressure. We identify that both P6/m-NaSi_{6} and P6/m-Si_{6} are stable and superconducting with the critical temperatures of about 13 and 12 K at ambient pressure, respectively. The prediction of new Na-Si and Si clathrate structures presents the possibility of exploring new exotic allotropes useful for Si-based devices.

  10. In situ/non-contact superfluid density measurement apparatus

    NASA Astrophysics Data System (ADS)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  11. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    NASA Astrophysics Data System (ADS)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  12. μ SR and magnetometry study of superconducting 5% Pt-doped IrTe 2

    DOE PAGES

    Wilson, M. N.; Medina, T.; Munsie, T. J.; ...

    2016-11-11

    In this paper, we present magnetometry and muon spin rotation ( SR) measurements of the superconducting dichalcogenide Ir 0.95Pt 0.05Te 2. From both sets of measurements we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. Finally, we therefore see no evidence for exotic superconductivity in Ir 0.95Pt 0.05Te 2.

  13. μ SR and magnetometry study of superconducting 5% Pt-doped IrTe2

    NASA Astrophysics Data System (ADS)

    Wilson, M. N.; Medina, T.; Munsie, T. J.; Cheung, S. C.; Frandsen, B. A.; Liu, L.; Yan, J.; Mandrus, D.; Uemura, Y. J.; Luke, G. M.

    2016-11-01

    We present magnetometry and muon spin rotation (μ SR ) measurements of the superconducting dichalcogenide Ir0.95Pt0.05Te2 . From both sets of measurements, we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s -wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. We therefore see no evidence for exotic superconductivity in Ir0.95Pt0.05Te2 .

  14. Large enhancement of superconductivity in Zr point contacts.

    PubMed

    Aslam, Mohammad; Singh, Chandan; Das, Shekhar; Kumar, Ritesh; Datta, Soumya; Halder, Soumyadip; Gayen, Sirshendu; Kabir, Mukul; Sheet, Goutam

    2018-04-30

    For certain complex superconducting systems, the superconducting properties get enhanced under mesoscopic point contacts made of elemental non-superconducting metals. However, understanding of the mechanism through which such contact induced local enhancement of superconductivity happens has been limited due to the complex nature of such compounds. In this paper we present a large enhancement of superconducting transition temperature (T<sub>c</sub>) and superconducting energy gap (Δ) in a simple elemental superconductor Zr. While bulk Zr shows a critical temperature around 0.6K, superconductivity survives at Ag/Zr and Pt/Zr point contacts up to 3K with a corresponding five-fold enhancement of Δ. Further, the first-principles calculations on a model system provide useful insights. We show that the enhancement in superconducting properties can be attributed to a modification in the electron-phonon coupling accompanied by an enhancement of the density of states which involves the appearance of a new electron band at the Ag/Zr interfaces. © 2018 IOP Publishing Ltd.

  15. The overdoped region of the high Tc superconducting Bi2212 revisited

    NASA Astrophysics Data System (ADS)

    Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.

    High-resolution angle-resolved photoemission (ARPES) is used to probe the temperature dependence of the gaps observed in the antinodal region of the Fermi surface (FS) in overdoped Bi2212. In particular we study samples with doping levels greater than 0.19, the latter having previously been determined to be the doping level associated with a Fermi surface reconstruction. Careful simulation of the measured ARPES spectra indicates that any gap observed in this region of the FS at these doping levels is a reflection of the range of superconducting gaps associated with inhomogeneities observed in STM studies of the same systems. With this observation we are able to reexamine the phase diagram associated with the Bi2212 system and discuss the origin of the pseudogap associated with the underdoped region. This work is supported in part by the Center for Emergent Superconductivity (CES), an EFRC funded by the U.S. DOE. The work is also supported in part by the U.S. DOE under Contract No. DE-AC02- 98CH10886 at BNL and Contract No. DE-AC02-06CH11357 at ANL.

  16. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    PubMed

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  17. Superconducting properties of under- and over-doped BaxK1‑xBiO3 perovskite oxide

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, D.; Kaczmarek, A. Z.; Szczȩśniak, R.; Turchuk, S. V.; Zhao, H.; Drzazga, E. A.

    2018-06-01

    In this study, we investigate the thermodynamic properties of the BaxK1‑xBiO3 (BKBO) superconductor in the under- (x = 0.5) and over-doped (x = 0.7) regime, within the framework of the Migdal-Eliashberg formalism. The analysis is conducted to verify that the electron-phonon pairing mechanism is responsible for the induction of the superconducting phase in the mentioned compound. In particular, we show that BKBO is characterized by the relatively high critical value of the Coulomb pseudopotential, which changes with doping level and does not follow the Morel-Anderson model. In what follows, the corresponding superconducting band gap size and related dimensionless ratio are estimated to increase with the doping, in agreement with the experimental predictions. Moreover, the effective mass of electrons is found to take on high values in the entire doping and temperature region. Finally, the characteristic dimensionless ratios for the superconducting band gap, the critical magnetic field and the specific heat for the superconducting state are predicted to exceed the limits set within the Bardeen-Cooper-Schrieffer theory, suggesting pivotal role of the strong-coupling and retardation effects in the analyzed compound. Presented results supplement our previous investigations and account for the strong-coupling phonon-mediated character of the superconducting phase in BKBO at any doping level.

  18. Phase competition and anomalous thermal evolution in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  19. High speed superconducting flywheel system for energy storage

    NASA Astrophysics Data System (ADS)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  20. Air gap winding method and support structure for a super conducting generator and method for forming the same

    DOEpatents

    Hopeck, James Frederick

    2003-11-25

    A method of forming a winding support structure for use with a superconducting rotor wherein the method comprises providing an inner support ring, arranging an outer support ring around the inner support ring, coupling first and second support blocks to the outer support ring and coupling a lamination to the first and second support blocks. A slot is defined between the support blocks and between the outer support ring and the lamination to receive a portion of a winding. An RTV fills any clearance space in the slot.

  1. Neutron scattering study of spin ordering and stripe pinning in superconducting La 1.93 Sr 0.07 CuO 4

    DOE PAGES

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; ...

    2015-11-20

    Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La 1.93 Sr 0.07 CuO 4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO 6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO 2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La 2-xSr xCuO 4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less

  2. Neutron scattering study of spin ordering and stripe pinning in superconducting La 1.93 Sr 0.07 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.

    Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La 1.93 Sr 0.07 CuO 4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO 6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO 2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La 2-xSr xCuO 4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less

  3. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  4. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    NASA Technical Reports Server (NTRS)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  5. μ SR Investigation of Superconducting PbTaSe2

    NASA Astrophysics Data System (ADS)

    Wilson, Murray; Hallas, Alannah; Cai, Yipeng; Guo, Shengli; Gong, Zizhou; Ali, Mazhar; Cava, Robert; Uemura, Yasutomo; Luke, Graeme

    Noncentrosymmetric superconductors are a topic of considerable interest in the condensed matter physics community. These materials have the potential to exhibit exotic superconducting states, particularly in the presence of strong spin orbit coupling. PbTaSe2 is a noncentrosymmetric material which has very strong spin orbit coupling, and is superconducting with a TC of 3.6 K. Previous studies of this material have identified exotic properties such as Dirac cones gapped by spin-orbit coupling, a topological semi-metal state, and possible multi-band superconductivity. To further explore this material, it is of considerable interest to investigate the pairing symmetry of the superconducting state, and determine whether odd-parity superconductivity may exist. In this talk we will present a μSR investigation of the penetration depth temperature dependece to infer the pairing symmetry. We will also present zero field μSR measurements which suggest that this material has an even-parity superconducting state.

  6. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  7. From single magnetic adatoms on superconductors to coupled spin chains

    NASA Astrophysics Data System (ADS)

    Franke, Katharina J.

    Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.

  8. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5

    PubMed Central

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-01-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397

  9. Bi-2212/1T-TaS 2 Van der Waals junctions: Interplay of proximity induced high-T c superconductivity and CDW order

    DOE PAGES

    Li, Ang J.; Zhu, Xiaochen; Stewart, G. R.; ...

    2017-07-05

    Understanding the coexistence, competition and/or cooperation between superconductivity and charge density waves (CDWs) in the transition metal dichalcogenides (TMDs) is an elusive goal which, when realized, promises to reveal fundamental information on this important class of materials. Here in this paper, we use four-terminal current-voltage measurements to study the Van der Waals interface between freshly exfoliated flakes of the high-T c superconductor, Bi-2212, and the CDW-dominated TMD layered material, 1T-TaS 2. For highly transparent barriers, there is a pronounced Andreev reflection feature providing evidence for proximity-induced high-Tc superconductivity in 1T-TaS 2 with a surprisingly large energy gap (~20 meV) equalmore » to half that of intrinsic Bi-2212 (~40 meV). Our systematic study using conductance spectroscopy of junctions with different transparencies also reveals the presence of two separate boson modes, each associated with a “dip-hump” structure. Finally, we infer that the proximityinduced high-T c superconductivity in the 1T-TaS 2 is driven by coupling to the metastable metallic phase coexisting within the Mott commensurate CDW (CCDW) phase and associated with a concomitant change of the CCDW order parameter in the interfacial region.« less

  10. Bi-2212/1T-TaS2 Van der Waals junctions: Interplay of proximity induced high-T c superconductivity and CDW order.

    PubMed

    Li, Ang J; Zhu, Xiaochen; Stewart, G R; Hebard, Arthur F

    2017-07-05

    Understanding the coexistence, competition and/or cooperation between superconductivity and charge density waves (CDWs) in the transition metal dichalcogenides (TMDs) is an elusive goal which, when realized, promises to reveal fundamental information on this important class of materials. Here, we use four-terminal current-voltage measurements to study the Van der Waals interface between freshly exfoliated flakes of the high-T c superconductor, Bi-2212, and the CDW-dominated TMD layered material, 1T-TaS 2 . For highly transparent barriers, there is a pronounced Andreev reflection feature providing evidence for proximity-induced high-T c superconductivity in 1T-TaS 2 with a surprisingly large energy gap (~20 meV) equal to half that of intrinsic Bi-2212 (~40 meV). Our systematic study using conductance spectroscopy of junctions with different transparencies also reveals the presence of two separate boson modes, each associated with a "dip-hump" structure. We infer that the proximity-induced high-T c superconductivity in the 1T-TaS 2 is driven by coupling to the metastable metallic phase coexisting within the Mott commensurate CDW (CCDW) phase and associated with a concomitant change of the CCDW order parameter in the interfacial region.

  11. Bi-2212/1T-TaS 2 Van der Waals junctions: Interplay of proximity induced high-T c superconductivity and CDW order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ang J.; Zhu, Xiaochen; Stewart, G. R.

    Understanding the coexistence, competition and/or cooperation between superconductivity and charge density waves (CDWs) in the transition metal dichalcogenides (TMDs) is an elusive goal which, when realized, promises to reveal fundamental information on this important class of materials. Here in this paper, we use four-terminal current-voltage measurements to study the Van der Waals interface between freshly exfoliated flakes of the high-T c superconductor, Bi-2212, and the CDW-dominated TMD layered material, 1T-TaS 2. For highly transparent barriers, there is a pronounced Andreev reflection feature providing evidence for proximity-induced high-Tc superconductivity in 1T-TaS 2 with a surprisingly large energy gap (~20 meV) equalmore » to half that of intrinsic Bi-2212 (~40 meV). Our systematic study using conductance spectroscopy of junctions with different transparencies also reveals the presence of two separate boson modes, each associated with a “dip-hump” structure. Finally, we infer that the proximityinduced high-T c superconductivity in the 1T-TaS 2 is driven by coupling to the metastable metallic phase coexisting within the Mott commensurate CDW (CCDW) phase and associated with a concomitant change of the CCDW order parameter in the interfacial region.« less

  12. Nonexponential London Penetration Depth of FeAs-Based Superconducting RFeAsO[subscript 0.9]F[subscript 0.1] (R=La, Nd) Single Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, C.; Tillman, M.E.; Kim, H.

    2009-07-31

    The superconducting penetration depth {lambda}(T) has been measured in RFeAsO{sub 0.9}F{sub 0.1} (R=La, Nd) single crystals (R-1111). In Nd-1111, we find an upturn in {lambda}(T) upon cooling and attribute it to the paramagnetism of the Nd ions, similar to the case of the electron-doped cuprate Nd-Ce-Cu-O. After the correction for paramagnetism, the London penetration depth variation is found to follow a power-law behavior, {Delta}{lambda}L(T) {proportional_to} T{sup 2} at low temperatures. The same T{sup 2} variation of {lambda}(T) was found in nonmagnetic La-1111 crystals. Analysis of the superfluid density and of penetration depth anisotropy over the full temperature range is consistentmore » with two-gap superconductivity. Based on this and on our previous work, we conclude that both the RFeAsO (1111) and BaFe{sub 2}As{sub 2} (122) families of pnictide superconductors exhibit unconventional two-gap superconductivity.« less

  13. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  14. Spin Polarization and Color Superconductivity in the Nambu-Jona-Lasinio Model

    NASA Astrophysics Data System (ADS)

    Matsuoka, Hiroaki; Tsue, Yasuhiko; da Providência, João; Providência, Constança; Yamamura, Masatoshi

    In this research we study a possibility that spins of quarks may polarize at large quark chemical potential. In order to discuss this possibility, we introduce a tensor-type interaction into the Nambu-Jona-Lasinio model. Here we pay attention to the relationship between chiral condensate, spin polarization and color superconductivity. It is shown that, at large quark chemical potential and low temperature, the coexisting phase where both the spin-polarized condensate and color superconducting gap exist together may be realized.

  15. Superconducting magnet for a Ku-band maser.

    NASA Technical Reports Server (NTRS)

    Berwin, R.; Wiebe, E.; Dachel, P.

    1972-01-01

    A superconducting magnet to provide a uniform magnetic field of up to 8000 G in a 1.14-cm gap for the 15.3-GHz (Ku-band) traveling wave maser is described. The magnet operates in a persistent mode in the vacuum environment of a closed-cycle helium refrigerator (4.5 K). The features of a superconducting switch, which has both leads connected to 4.5 K heat stations and thereby does not receive heat generated by the magnet charging leads, are described.

  16. Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.

    PubMed

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-11-08

    Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

  17. Anisotropic scattering rate in Fe-substituted Bi 2Sr 2Ca(Cu 1-xFex) 2O 8+δ

    DOE PAGES

    Naamneh, M.; Lubashevsky, Y.; Lahoud, E.; ...

    2015-05-27

    We measured the electronic structure of Fe substituted Bi2212 using Angle Resolved Photoemission Spectroscopy (ARPES). We find that the substitution does not change the momentum dependence of the superconducting gap but induces a very anisotropic enhancement of the scattering rate. A comparison of the effect of Fe substitution to that of Zn substitution suggests that the Fe reduces T c so effectively because it supresses very strongly the coherence weight around the anti-nodes.

  18. Direct evidence of superconductivity and determination of the superfluid density in buried ultrathin FeSe grown on SrTiO3

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Salman, Z.; Song, Q.; Peng, R.; Zhang, J.; Shu, L.; Feng, D. L.; Prokscha, T.; Morenzoni, E.

    2018-05-01

    Bulk FeSe is superconducting with a critical temperature Tc≅8 K and SrTiO3 is insulating in nature, yet high-temperature superconductivity has been reported at the interface between a single-layer FeSe and SrTiO3. Angle-resolved photoemission spectroscopy and scanning tunneling microscopy measurements observe a gap opening at the Fermi surface below ≈60 K. Elucidating the microscopic properties and understanding the pairing mechanism of single-layer FeSe is of utmost importance as it is a basic building block of iron-based superconductors. Here, we use the low-energy muon spin rotation/relaxation technique to detect and quantify the supercarrier density and determine the gap symmetry in FeSe grown on SrTiO3 (100). Measurements in applied field show a temperature-dependent broadening of the field distribution below ˜60 K, reflecting the superconducting transition and formation of a vortex state. Zero-field measurements rule out the presence of magnetism of static or fluctuating origin. From the inhomogeneous field distribution, we determine an effective sheet supercarrier density ns2 D≃6 ×1014cm-2 at T →0 K, which is a factor of 4 larger than expected from ARPES measurements of the excess electron count per Fe of 1 monolayer FeSe. The temperature dependence of the superfluid density ns(T ) can be well described down to ˜10 K by simple s -wave BCS, indicating a rather clean superconducting phase with a gap of 10.2(1.1) meV. The result is a clear indication of the gradual formation of a two-dimensional vortex lattice existing over the entire large FeSe/STO interface and provides unambiguous evidence for robust superconductivity below 60 K in ultrathin FeSe.

  19. Tuning across the BCS-BEC crossover in superconducting Fe1+ySexTe1-x : An angle-resolved photoemission study

    NASA Astrophysics Data System (ADS)

    Rinott, Shahar; Ribak, Amit; Chashka, Khanan; Randeria, Mohit; Kanigel, Amit

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) was never realized in quantum materials. It is difficult to realize because, unlike in ultra cold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe1+ySexTe1-x by tuning the Fermi energy ɛF via chemical doping, which permits us to systematically change Δ /ɛF from 0 . 16 to 0 . 50 , where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multi-band superconductors which go beyond those addressed in the context of cold atoms.

  20. Development of Tunneling Spectroscopy Apparatus for Kelvin and Sub-Kelvin Measurements of Superconducting Energy Gaps by Multi-disciplinary students at a Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Eckhardt, Matt

    2014-03-01

    Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.

  1. Holographic superconductor on a novel insulator

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Wu, Meng-He

    2018-01-01

    We construct a holographic superconductor model, based on a gravity theory, which exhibits novel metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity. This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high {T}{{c}} cuprates. We expect that this work can shed light on understanding the mechanism of high {T}{{c}} superconductivity from the holographic side. Supported by Natural Science Foundation of China (11575195, 11775036, 11305018), Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by Natural Science Foundation of Liaoning Province (201602013)

  2. Piezoelectric tunable microwave superconducting cavity

    NASA Astrophysics Data System (ADS)

    Carvalho, N. C.; Fan, Y.; Tobar, M. E.

    2016-09-01

    In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements. Experiments were conducted at room and dilution refrigerator temperatures showing a large dynamic range up to 4 GHz and 1 GHz, respectively, and were compared to a finite element method model simulated data. At elevated microwave power input, nonlinear thermal effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the re-entrant cavity.

  3. In-plane magnetic penetration depth of superconducting CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Khasanov, Rustem; Meier, William R.; Wu, Yun; Mou, Daixiang; Bud'ko, Sergey L.; Eremin, Ilya; Luetkens, Hubertus; Kaminski, Adam; Canfield, Paul C.; Amato, Alex

    2018-04-01

    The temperature dependence of the in-plane magnetic penetration depth (λa b) in an extensively characterized sample of superconducting CaKFe4As4(Tc≃35 K ) was investigated using muon-spin rotation (μ SR ). A comparison of λab -2(T ) measured by μ SR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μ SR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ0=2.4 (2 ) meV . Our data suggest that in CaKFe4As4 the s± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.

  4. Two regimes in the magnetic field response of superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Kohen, A.; Giubileo, F.; Proslier, Th.; Bobba, F.; Cucolo, A. M.; Sacks, W.; Noat, Y.; Troianovski, A.; Roditchev, D.

    2007-05-01

    Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.

  5. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides.

    PubMed

    Drees, Y; Li, Z W; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2014-12-23

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

  6. Effect of the connection gap on the heat-load characteristics of a liquid nitrogen bayonet coupling

    NASA Astrophysics Data System (ADS)

    Tsai, H. H.; Liu, C. P.; Hsiao, F. Z.; Huang, T. Y.; Li, H. C.; Chiou, W. S.; Chang, S. H.; Lin, T. F.

    2012-12-01

    A transfer system for liquid nitrogen (LN2) installed at National Synchrotron Radiation Research Center (NSRRC) to provide LN2 required for the superconducting equipment and experimental stations has a LN2 transfer line of length 160 m and pipeline of inner diameter 25 mm, a phase separator (250 L) and an automatic filling station. The end uses include two cryogenic systems, one Superconducting Radio Frequency (SRF) cavity, five superconducting magnets, monochromators for the beam line and filling of mobile Dewars. The transfer line is segmented and connected with bayonet couplings. The aim of this work was to investigate, by numerical simulation, the effects on the heat load of the gap thickness of the bayonet assembly and the thickness of vacuum insulation. A numerical correlation was created that has become a basis to minimize the head load for future design of bayonet couplings.

  7. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    NASA Astrophysics Data System (ADS)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  8. Electronic structure of the ingredient planes of the cuprate superconductor Bi 2Sr 2CuO 6+δ: A comparison study with Bi 2Sr 2CaCu 2O 8+δ

    DOE PAGES

    Yan -Feng Lv; Gu, G. D.; Wang, Wen -Lin; ...

    2016-04-15

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi 2Sr 2CuO 6+δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose themore » interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Furthermore, our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.« less

  9. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGES

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; ...

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  10. Phase competition and anomalous thermal evolution in high-temperature superconductors

    DOE PAGES

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; ...

    2017-07-12

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T * for the strange normal state well above the superconducting transition temperature. However, recently the T * within the superconducting dome was reported to unexpectedly exhibit back-bending likely in themore » cuprate Bi 2 Sr 2 CaCu 2 O 8 + δ . We show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t - t ' - t ' ' - J - V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. Particularly, the T * back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. These results imply that the revised phase diagram is likely to take place in high-temperature superconductors.« less

  11. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  12. Investigation of superconducting and normal-state properties of the filled-skutterudite system PrPt 4 Ge 12 - x Sb x

    DOE PAGES

    Jeon, I.; Huang, K.; Yazici, D.; ...

    2016-03-07

    We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less

  13. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

  14. Superconductivity induced by flexural modes in non-σh-symmetric Dirac-like two-dimensional materials: A theoretical study for silicene and germanene

    NASA Astrophysics Data System (ADS)

    Fischetti, Massimo V.; Polley, Arup

    2018-04-01

    In two-dimensional crystals that lack symmetry under reflections on the horizontal plane of the lattice (non-σh-symmetric), electrons can couple to flexural modes (ZA phonons) at first order. We show that in materials of this type that also exhibit a Dirac-like electron dispersion, the strong coupling can result in electron pairing mediated by these phonons, as long as the flexural modes are not damped or suppressed by additional interactions with a supporting substrate or gate insulator. We consider several models: The weak-coupling limit, which is applicable only in the case of gapped and parabolic materials, like stanene and HfSe2, thanks to the weak coupling; the full gap-equation, solved using the constant-gap approximation and considering statically screened interactions; its extensions to energy-dependent gap and to dynamic screening. We argue that in the case of silicene and germanene superconductivity mediated by this process can exhibit a critical temperature of a few degrees K, or even a few tens of degrees K when accounting for the effect of a high-dielectric-constant environment. We conclude that the electron/flexural-modes coupling should be included in studies of possible superconductivity in non-σh-symmetric two-dimensional crystals, even if alternative forms of coupling are considered.

  15. Nuclear magnetic resonance in low-symmetry superconductors

    NASA Astrophysics Data System (ADS)

    Cavanagh, D. C.; Powell, B. J.

    2018-01-01

    We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.

  16. Superconducting gap in cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeev K.; Kumari, Anita; Gupta, Anushri; Indu, B. D.

    2018-05-01

    The many body quantum dynamical evaluation of double time thermodynamic electron Green's functions followed by generalized electron density of states (EDOS) is used to study the superconducting gap (SG). The dependence of EDOS on defects, anharmonicity and electron-phonon interactions makes the problem quite complicated and challenging but furnishes the more realistic grounds to study the SG both in conventional and high temperature superconductors (HTS). For simplicity, only electron-phonon interaction has been taken up to evaluate the intricate integral to enumerate the SG for representative cuprate HTS: YBa2Cu3O7-δ and results show 2Δ/kBTc ⋍ 7.2.

  17. Heat switch technology for cryogenic thermal management

    NASA Astrophysics Data System (ADS)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  18. Dependence of the quasiparticle recombination rate on the superconducting gap and TC

    NASA Astrophysics Data System (ADS)

    Carr, G. L.; Xi, Xiaoxiang; Hwang, J.; Tashiro, H.; Reitze, D. H.; Tanner, D. B.

    2010-03-01

    The relaxation of excess quasiparticles in a BCS superconductor is known to depend on quantities such as the quasiparticle & phonon density of states, and their coupling (Kaplan et al, Phys. Rev. B 14 4854, 1976). Disorder or an applied field can disrupt superconductivity, as evidenced by a reduced TC. We consider some simple modifications to the quasiparticle density of states consistent with a suppressed energy gap and TC, leading to changes in the intrinsic and effective (measured) rates for excess quasiparticles to recombine into pairs. We review some results for disordered MoGe and discuss the magnetic-field dependence of the recombination process.

  19. Discovery of a superconducting high-entropy alloy.

    PubMed

    Koželj, P; Vrtnik, S; Jelen, A; Jazbec, S; Jagličić, Z; Maiti, S; Feuerbacher, M; Steurer, W; Dolinšek, J

    2014-09-05

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36  Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3  K, an upper critical field μ0H_c2≈8.2  T, a lower critical field μ0Hc1≈32  mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2  meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  20. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    NASA Astrophysics Data System (ADS)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  1. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  2. Decoupling of critical temperature and superconducting gaps in irradiated films of a Fe-based superconductor

    NASA Astrophysics Data System (ADS)

    Daghero, Dario; Tortello, Mauro; Ummarino, Giovanni A.; Piatti, Erik; Ghigo, Gianluca; Hatano, Takafumi; Kawaguchi, Takahiko; Ikuta, Hiroshi; Gonnelli, Renato S.

    2018-07-01

    We report on direct measurements of the energy gaps (carried out by means of point-contact Andreev reflection spectroscopy, PCARS) and of the critical temperature in thin, optimally doped, epitaxial films of BaFe2(As1-x P x )2 irradiated with 250 MeV Au ions. The low-temperature PCARS spectra (taken with the current flowing along the c axis) can be fitted by a modified Blonder-Tinkham-Klapwijk model with two nodeless gaps; this is not in contrast with the possible presence of node lines suggested by various experiments in literature. Up to a fluence Φ = 7.3 × 1011 cm-2, we observe a monotonic suppression of the critical temperature and of the gap amplitudes Δ1 and Δ2. Interestingly, while T c decreases by about 3%, the gaps decrease much more (by about 37% and 25% respectively), suggesting a decoupling between high-temperature and low-temperature superconducting properties. An explanation for this finding is proposed within an effective two-band Eliashberg model, in which such decoupling is inherently associated to defects created by irradiation.

  3. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  4. Nematic superconductivity in CuxBi2Se3 : Surface Andreev bound states

    NASA Astrophysics Data System (ADS)

    Hao, Lei; Ting, C. S.

    2017-10-01

    We study theoretically the topological surface states (TSSs) and the possible surface Andreev bound states (SABSs) of CuxBi2Se3 , which is known to be a topological insulator at x =0 . The superconductivity (SC) pairing of this compound is assumed to have broken spin-rotation symmetry, similar to that of the A-phase of 3He as suggested by recent nuclear-magnetic resonance experiments. For both spheroidal and corrugated cylindrical Fermi surfaces with the hexagonal warping terms, we show that the bulk SC gap is rather anisotropic; the minimum of the gap is negligibly small as compared to the maximum of the gap. This would make the fully gapped pairing effectively nodal. For a clean system, our results indicate the bulk of this compound to be a topological superconductor with the SABSs appearing inside the bulk SC gap. The zero-energy SABSs, which are Majorana fermions, together with the TSSs not gapped by the pairing, produce a zero-energy peak in the surface density of states (SDOS). The SABSs are expected to be stable against short-range nonmagnetic impurities, and the local SDOS is calculated around a nonmagnetic impurity. The relevance of our results to experiments is discussed.

  5. Deep data mining in a real space: Separation of intertwined electronic responses in a lightly doped BaFe 2As 2

    DOE PAGES

    Ziatdinov, Maxim; Maksov, Artem; Li, Li; ...

    2016-10-25

    Electronic interactions present in material compositions close to the superconducting dome play a key role in the manifestation of high-T c superconductivity. In many correlated electron systems, however, the parent or underdoped states exhibit strongly inhomogeneous electronic landscape at the nanoscale that may be associated with competing, coexisting, or intertwined chemical disorder, strain, magnetic, and structural order parameters. Here we demonstrate an approach based on a combination of scanning tunneling microscopy/spectroscopy and advanced statistical learning for an automatic separation and extraction of statistically significant electronic behaviors in the spin density wave regime of a lightly (~1%) gold-doped BaFe 2As 2.more » Lastly, we show that the decomposed STS spectral features have a direct relevance to fundamental physical properties of the system, such as SDW-induced gap, pseudogap-like state, and impurity resonance states.« less

  6. Deep data mining in a real space: Separation of intertwined electronic responses in a lightly doped BaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziatdinov, Maxim; Maksov, Artem; Li, Li

    Electronic interactions present in material compositions close to the superconducting dome play a key role in the manifestation of high-T c superconductivity. In many correlated electron systems, however, the parent or underdoped states exhibit strongly inhomogeneous electronic landscape at the nanoscale that may be associated with competing, coexisting, or intertwined chemical disorder, strain, magnetic, and structural order parameters. Here we demonstrate an approach based on a combination of scanning tunneling microscopy/spectroscopy and advanced statistical learning for an automatic separation and extraction of statistically significant electronic behaviors in the spin density wave regime of a lightly (~1%) gold-doped BaFe 2As 2.more » Lastly, we show that the decomposed STS spectral features have a direct relevance to fundamental physical properties of the system, such as SDW-induced gap, pseudogap-like state, and impurity resonance states.« less

  7. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  8. Superconductivity and fluctuations in Ba 1–pK pFe 2As 2 and Ba(Fe 1–nCo n) 2As 2

    DOE PAGES

    Böhm, T.; Hosseinian Ahangharnejhad, R.; Jost, D.; ...

    2016-08-11

    In this paper, we study the interplay of fluctuations and superconductivity in BaFe 2As 2 (Ba-122) compounds with Ba and Fe substituted by K (p doping) and Co (n doping), respectively. To this end, we measured electronic Raman spectra as a function of polarization and temperature. We observe gap excitations and fluctuations for all doping levels studied. The response from fluctuations is much stronger for Co substitution and, according to the selection rules and the temperature dependence, originates from the exchange of two critical spin fluctuations with characteristic wave vectors (±π,0) and (0,±π). At 22% K doping (p = 0.22),more » we find the same selection rules and spectral shape for the fluctuations but the intensity is smaller by a factor of 5. Since there exists no nematic region above the orthorhombic spin-density-wave (SDW) phase, the identification of the fluctuations via the temperature dependence is not possible. The gap excitations in the superconducting state indicate strongly anisotropic near-nodal gaps for Co substitution which make the observation of collective modes difficult. The variation with doping of the spectral weights of the A 1g and B 1g gap features does not support the influence of fluctuations on Cooper pairing. Thus, the observation of Bardasis–Schrieffer modes inside the nearly clean gaps on the K-doped side remains the only experimental evidence for the relevance of fluctuations for pairing.« less

  9. Superconducting nanoribbon with a constriction: A quantum-confined Josephson junction

    NASA Astrophysics Data System (ADS)

    Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M. V.

    2018-04-01

    Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.

  10. (DARPA) Topologically Protected Quantum Information Processing In Spin-Orbit Compled Semiconductors

    DTIC Science & Technology

    2013-12-17

    expression for the disorder suppression of the superconducting quasiparticle gap in the topological superconducting states carrying MFs. Our principle...assisted electron transfer amplitude (derived from the fractionalization property of the MFs) the quasiparticle tunneling from to through the...mesoscopic rings, the energy-level of such a quasiparticle excitation spectrum in the ring is expected to develop a periodic dependence on

  11. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  12. Superconducting proximity effect in a topological insulator using Fe(Te, Se)

    NASA Astrophysics Data System (ADS)

    Zhao, He; Rachmilowitz, Bryan; Ren, Zheng; Han, Ruobin; Schneeloch, J.; Zhong, Ruidan; Gu, Genda; Wang, Ziqiang; Zeljkovic, Ilija

    2018-06-01

    Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-Tc superconductors have predominantly been used in this effort, but small energy scales of ˜1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator B i2T e3 in a range of thicknesses on top of a high-Tc superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect Δind as high as ˜3.5 meV, which is the largest reported gap induced by proximity to an s -wave superconductor to date. We find that Δind decays with B i2T e3 thickness, but remains finite even after the topological surface states have been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gapped B i2T e3 surface state due to Cooper pairing. Our results establish Fe-based high-Tc superconductors as a promising new platform for realizing high-Tc topological superconductivity.

  13. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  14. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  15. Superconducting properties of the s ± -wave state: Fe-based superconductors

    DOE PAGES

    Bang, Yunkyu; Stewart, G. R.

    2017-02-13

    Although the pairing mechanism of Fe-based superconductors (FeSCs) has not yet been settled with consensus with regard to the pairing symmetry and the superconducting (SC) gap function, the vast majority of experiments support the existence of spin-singlet signchanging s-wave SC gaps on multi-bands (s±-wave state). This multi-band s±-wave state is a very unique gap state per se and displays numerous unexpected novel SC properties, such as a strong reduction of the coherence peak, non-trivial impurity effects, nodal-gap-like nuclear magnetic resonance signals, various Volovik effects in the specific heat (SH) and thermal conductivity, and anomalous scaling behaviors with a SH jumpmore » and condensation energy versus Tc, etc. In particular, many of these non-trivial SC properties can easily be mistaken as evidence for a nodal-gap state such as a d-wave gap. In this review, we provide detailed explanations of the theoretical principles for the various non-trivial SC properties of the s±-wave pairing state, and then critically compare the theoretical predictions with experiments on FeSCs. This will provide a pedagogical overview of to what extent we can coherently understand the wide range of different experiments on FeSCs within the s±-wave gap model.« less

  16. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  17. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  18. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE PAGES

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.; ...

    2017-11-14

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  19. Anisotropy and multiband superconductivity in Sr 2 RuO 4 determined by small-angle neutron scattering studies of the vortex lattice [Anisotropy and multiband superconductivity in Sr 2 RuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, S. J.; Morgenlander, W.; Louden, E. R.

    Despite numerous studies the exact nature of the order parameter in superconducting Sr 2RuO 4 remains unresolved. We have extended previous small-angle neutron scattering studies of the vortex lattice in this material to a wider field range, higher temperatures, and with the field applied close to both the <100> and <110> basal plane directions. Measurements at high field were made possible by the use of both spin polarization and analysis to improve the signal-to-noise ratio. Rotating the field towards the basal plane causes a distortion of the square vortex lattice observed for H // <001> and also a symmetry changemore » to a distorted triangular symmetry for fields close to <100>.The vortex lattice distortion allows us to determine the intrinsic superconducting anisotropy between the c axis and the Ru-O basal plane, yielding a value of ~60 at low temperature and low to intermediate fields. This greatly exceeds the upper critical field anisotropy of ~20 at low temperature, reminiscent of Pauli limiting. Indirect evidence for Pauli paramagnetic effects on the unpaired quasiparticles in the vortex cores are observed, but a direct detection lies below the measurement sensitivity. The superconducting anisotropy is found to be independent of temperature but increases for fields > 1 T, indicating multiband superconductvity in Sr 2RuO 4. Lastly, the temperature dependence of the scattered intensity provides further support for gap nodes or deep minima in the superconducting gap.« less

  20. Demonstration of quantum advantage in machine learning

    NASA Astrophysics Data System (ADS)

    Ristè, Diego; da Silva, Marcus P.; Ryan, Colm A.; Cross, Andrew W.; Córcoles, Antonio D.; Smolin, John A.; Gambetta, Jay M.; Chow, Jerry M.; Johnson, Blake R.

    2017-04-01

    The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, limiting the obtained advantage. Here we solve an oracle-based problem, known as learning parity with noise, on a five-qubit superconducting processor. Executing classical and quantum algorithms using the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a significant quantum advantage already emerges in existing noisy systems.

  1. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    NASA Astrophysics Data System (ADS)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  2. Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices.

    PubMed

    Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter

    2018-02-14

    Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

  3. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves.

    PubMed

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2016-11-09

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  4. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5

    DOE PAGES

    Song, Yu; Van Dyke, John; Lum, I. K.; ...

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less

  5. Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity.

    PubMed

    Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N  = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c  = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .

  6. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE PAGES

    Li, L.; Zheng, Q.; Zou, Q.; ...

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  7. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Zheng, Q.; Zou, Q.

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  8. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  9. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  10. Evidence for the coexistence of an anisotropic superconducting gap and nonlocal effects in the nonmagnetic superconductor LuNi2B2C.

    PubMed

    Park, Tuson; Chia, Elbert E M; Salamon, M B; Bauer, E D; Vekhter, I; Thompson, J D; Choi, Eun Mi; Kim, Heon Jung; Lee, Sung-Ik; Canfield, P C

    2004-06-11

    A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H (alpha=0). A slightly disordered sample, however, develops anomalous secondary minima along <110> for mu(0)H>1 T, leading to an eightfold pattern at 2 K and 1.5 T. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and nonlocal effects.

  11. Design of a gap tunable flux qubit with FastHenry

    NASA Astrophysics Data System (ADS)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  12. Plasmon and exciton superconductivity mechanisms in layered structures

    NASA Technical Reports Server (NTRS)

    Gabovich, A. M.; Pashitskiy, E. A.; Uvarova, S. K.

    1977-01-01

    Plasmon and exciton superconductivity mechanisms are discussed. Superconductivity in a three layer metal semiconductor metal and insulator semimetal insulator sandwich structure was described in terms of the temperature dependent Green function of the longitudinal (Coulomb) field. The dependences of the superconducting transition temperature on structure parameters were obtained. In a semiconducting film, as a result of interactions of degenerate free carriers with excitons, superconductivity exists only in a certain range of parameter values, and the corresponding critical temperature is much lower than in the plasmon mechanism of superconductivity.

  13. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits

    NASA Technical Reports Server (NTRS)

    Itoh, Tatsuo

    1991-01-01

    The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.

  14. In-plane magnetic penetration depth of superconducting CaKFe 4 As 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khasanov, Rustem; Meier, William R.; Wu, Yun

    Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less

  15. Electronic transport through Al/InN nanowire/Al junctions

    DOE PAGES

    Lu, Tzu -Ming; Wang, George T.; Pan, Wei; ...

    2016-02-10

    We report non-linear electronic transport measurement of Al/Si-doped n-type InN nanowire/Al junctions performed at T = 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. In addition to the resistance dip at zero bias, several resistance peaks can be identified at bias voltages above the superconducting gap of the electrodes, while no resistance dip is observed at the superconducting gap. The resistance peaks disappear as the Al electrodes turn normal beyond the critical magnetic field except one which remains visible atmore » fields several times higher than critical magnetic field. An unexpected non-monotonic magnetic field dependence of the peak position is observed. As a result, we discuss the physical origin of these observations and propose that the resistance peaks could be the McMillan-Rowell oscillations arising from different closed paths localized near different regions of the junctions.« less

  16. In-plane magnetic penetration depth of superconducting CaKFe 4 As 4

    DOE PAGES

    Khasanov, Rustem; Meier, William R.; Wu, Yun; ...

    2018-04-09

    Here, the temperature dependence of the in-plane magnetic penetration depth (λ ab) in an extensively characterized sample of superconducting CaKFe 4As 4(T c≃35K) was investigated using muon-spin rotation (μSR). A comparison of λ –2 ab(T) measured by μSR with the one inferred from angle-resolved photoemission spectroscopy (ARPES) data confirms the presence of multiple gaps at the Fermi level. An agreement between μSR and ARPES requires the presence of additional bands, which are not resolved by ARPES experiments. These bands are characterized by small superconducting gaps with an average zero-temperature value of Δ 0=2.4(2)meV. Our data suggest that in CaKFe 4Asmore » 4 the s ± order parameter symmetry acquires a more sophisticated form by allowing a sign change not only between electron and hole pockets, but also within pockets of similar type.« less

  17. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  18. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  19. Superconductivity in correlated BEDT-TTF molecular conductors: Critical temperatures and gap symmetries

    NASA Astrophysics Data System (ADS)

    Zantout, Karim; Altmeyer, Michaela; Backes, Steffen; Valentí, Roser

    2018-01-01

    Starting from an ab initio-derived two-site dimer Hubbard Hamiltonian on a triangular lattice, we calculate the superconducting gap functions and critical temperatures for representative κ -(BEDT-TTF ) 2X superconductors by solving the linearized Eliashberg equation using the two-particle self-consistent approach (TPSC) extended to multisite problems. Such an extension allows for the inclusion of molecule degrees of freedom in the description of these systems. We present both benchmarking results for the half-filled dimer model as well as detailed investigations for the 3/4-filled molecule model. Remarkably, we find in the latter model that the phase boundary between the two most competing gap symmetries discussed in the context of these materials—dx y and the recently proposed eight-node s +dx2-y2 gap symmetry—is located within the regime of realistic model parameters and is especially sensitive to the degree of in-plane anisotropy in the materials as well as to the value of the on-site Hubbard repulsion. We show that these results provide a more complete and accurate description of the superconducting properties of κ -(BEDT-TTF ) 2X than previous random phase approximation (RPA) calculations and, in particular, we discuss predicted critical temperatures in comparison to experiments. Finally, our findings suggest that it may be even easier to experimentally switch between the two pairing symmetries as previously anticipated by invoking pressure, chemical doping, or disorder effects.

  20. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    PubMed Central

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  1. Tuning of superconductivity by Ni substitution into noncentrosymmetric ThC o1 -xN ixC2

    NASA Astrophysics Data System (ADS)

    Grant, T. W.; Cigarroa, O. V.; Rosa, P. F. S.; Machado, A. J. S.; Fisk, Z.

    2017-07-01

    The recently discovered noncentrosymmetric superconductor ThCoC2 was observed to show unusual superconducting behavior with a critical temperature of Tc=2.65 K . Here we investigate the effect of nickel substitution on the superconducting state in ThC o1 -xN ixC2 . Magnetization, resistivity, and heat capacity measurements demonstrate Ni substitution has a dramatic effect with critical temperature increased up to Tc=12.1 K for x =0.4 Ni concentration, which is a rather high transition temperature for a noncentrosymmetric superconductor. In addition, the unusual superconducting characteristics observed in pure ThCoC2 appear to be suppressed or tuned with Ni substitution towards a more conventional fully gapped superconductor.

  2. Interpolation of Superconducting Gravity Observations Using Least-Squares Collocation Method

    NASA Astrophysics Data System (ADS)

    Habel, Branislav; Janak, Juraj

    2014-05-01

    A pre-processing of the gravity data measured by superconducting gravimeter involves removing of spikes, offsets and gaps. Their presence in observations can limit the data analysis and degrades the quality of obtained results. Short data gaps are filling by theoretical signal in order to get continuous records of gravity. It requires the accurate tidal model and eventually atmospheric pressure at the observed site. The poster presents a design of algorithm for interpolation of gravity observations with a sampling rate of 1 min. Novel approach is based on least-squares collocation which combines adjustment of trend parameters, filtering of noise and prediction. It allows the interpolation of missing data up to a few hours without necessity of any other information. Appropriate parameters for covariance function are found using a Bayes' theorem by modified optimization process. Accuracy of method is improved by the rejection of outliers before interpolation. For filling of longer gaps the collocation model is combined with theoretical tidal signal for the rigid Earth. Finally, the proposed method was tested on the superconducting gravity observations at several selected stations of Global Geodynamics Project. Testing demonstrates its reliability and offers results comparable with the standard approach implemented in ETERNA software package without necessity of an accurate tidal model.

  3. Superconductivity induced by interfacial coupling to magnons

    NASA Astrophysics Data System (ADS)

    Rohling, Niklas; Fjærbu, Eirik Løhaugen; Brataas, Arne

    2018-03-01

    We consider a thin normal metal sandwiched between two ferromagnetic insulators. At the interfaces, the exchange coupling causes electrons within the metal to interact with magnons in the insulators. This electron-magnon interaction induces electron-electron interactions, which in turn can result in p -wave superconductivity. We solve the gap equation numerically and estimate the critical temperature. In yttrium iron garnet (YIG)-Au-YIG trilayers, superconductivity sets in at temperatures somewhere in the interval between 1 and 10 K. EuO-Au-EuO trilayers require a lower temperature, in the range from 0.01 to 1 K.

  4. Superconducting Proximity Effect in Graphene Nanodevices: A Transport and Tunneling Study

    NASA Astrophysics Data System (ADS)

    Wang, I.-Jan

    Provided that it is in good electrical contact with a superconductor, a normal metal can acquire superconducting properties when the temperature is low enough. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and, because of the richness of its physics, continues to fascinate many scientists. In this thesis, we present our study of the superconducting proximity effect in a hybrid system made by bringing graphene, a mono- layer of carbon atoms arranged in a hexagonal lattice, into contact with metallic BCS superconductors. Here graphene plays two roles: First it is a truly 2-dimensional crystal whose electron gas can be accessed on the surface easily. This property allows both transparent electrical contact with superconductors and direct observation of electronic properties made by a variety of probing schemes. Second, with its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions. Graphene's first role may facilitate endeavors to reach a deeper understanding of proximity effects. However, it is predicted that in its second role graphene may give rise to exotic phenomena in superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regard to both fabrication and characterization. Two key elements have been recognized as necessary in fabrication: a graphene device with low disorder and a large induced gap in the normal region. In addition, a deeper understanding of the microscopic mechanism of supercurrent transport in graphene or any 2-dimensional system in general, is bound to provide a basis for abundant insights or may even produce surprises. The research discussed in this thesis has been shaped by this overall approach. An introduction to the basic electronic properties of graphene is given in Chapter 1, which presents the band structure of graphene based on a tight-binding model. In addition, gate-tunability and the chiral nature of Dirac fermions in graphene, both of which are essential in our experiments, are also discussed. Chapter 2 provides a theoretical background to superconductivity, with an emphasis on its manifestation in inhomogeneous systems at the mesoscopic scale. The Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long- and short-junction limits. We will also show how the existence of impurity affects the physics presented in our experiments. Chapter 3 demonstrates the first graphene-based superconducting devices that we investigated. Fabrication and low-temperature measurement techniques of SGS junctions made of graphene and NbN, a type II superconductor with a large gap (TC ~ 12K) and a large critical field (HC2 > 9T ) are also discussed. Chapter 4 focuses on the development of h-BN-encapsulated graphene Josephson junctions. The pick-up and transfer techniques for the 2- dimensional Van der Waals materials that we used to make these heterostructures are described in details. The device we fabricated in this way exhibits ballistic transport characteristics, i.e. the signs of low disorder in graphene, in both normal and superconducting regimes. In Chapter 5, the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. In order to study the intrinsic properties of the sample, we developed a new fabrication scheme aiming at preserving the pristine nature of the 2-DEGS as well as to minimize the doping introduced by external probes. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2-dimensional limit, but also what we call the "Andreev scattering state" in the energy continuum.

  5. Point-contact tunneling in monophasic and polyphasic Y-Ba-Cu-O samples: Experiment and model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, R.S.; Andreone, D.; Lacquaniti, V.

    1989-02-01

    Tunneling experiments using large-area point-contact structures have been performed on several monophasic polycrystalline Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ samples and on polyphasic samples containing, mixed with the previous superconducting phase, also about 11% of the so-called green phase (BaY/sub 2/CuO/sub 5/). Both niobium and Y-Ba-Cu-O tips were used as counterelectrodes and measurements were made at 4.2 and 77 K. Results obtained at different experimental conditions show great reproducibility indicating the presence of the gap voltage at about 20 mV in the dynamic resistance curves. A phenomenological model was then developed to interpret in a quantitative way our data by meansmore » of a decomposition of the experimental conductance into a background component and a superconducting-tunneling component. The former results essentially in a parabolic contribution versus the bias voltage typical of a tunneling between normallike junction electrodes while the latter component is smeared out in voltage by a large amount of broadening. Using the model in a least-squares fit of the experimental data of Nb/Y-Ba-Cu-O junctions, values V/sub G/ = 21.3 +- 0.8 mV and V/sub G/ = 22.0 +- 0.6 mV for the voltage gaps at 4.2 K of monophasic and polyphasic materials, respectively, have been determined. These results have been well confirmed by measurements on Y-Ba-Cu-O/Y-Ba-Cu-O junctions while, at 77 K, there are no indications of a superconducting tunneling. We obtained also the parameters of the background conductance, which indicates the presence of a nonsuperconducting layer at the surface of the material.« less

  6. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering.

    PubMed

    Wu, Lihua; Yang, Jiong; Zhang, Tiansong; Wang, Shanyu; Wei, Ping; Zhang, Wenqing; Chen, Lidong; Yang, Jihui

    2016-03-02

    Rashba semiconductors are of great interest in spintronics, superconducting electronics and thermoelectrics. Bulk BiTeI is a new Rashba system with a giant spin-split band structure. 2D-like thermoelectric response has been found in BiTeI. However, as optimizing the carrier concentration, the bipolar effect occurs at elevated temperature and deteriorates the thermoelectric performance of BiTeI. In this paper, band gap engineering in Rashba semiconductor BiTeI through Br-substitution successfully reduces the bipolar effect and improves the thermoelectric properties. By utilizing the optical absorption and Burstein-Moss-effect analysis, we find that the band gap in Rashba semiconductor BiTeI increases upon bromine substitution, which is consistent with theoretical predictions. Bipolar transport is mitigated due to the larger band gap, as the thermally-activated minority carriers diminish. Consequently, the Seebeck coefficient keeps increasing with a corresponding rise in temperature, and thermoelectric performance can thus be enhanced with a ZT  =  0.5 at 570 K for BiTeI0.88Br0.12.

  7. Crystal structure, magnetic susceptibility and thermopower of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+y

    NASA Astrophysics Data System (ADS)

    Magelschots, I.; Andersen, N. H.; Lebech, B.; Wisniewski, A.; Jacobsen, C. S.

    1992-12-01

    An experimental study of superconducting and non-superconducting Nd 1.85Ce 0.15CuO 4+ y, including structure determination by neutron powder diffraction, recording of oxygen changes by gas volumetry, and susceptibility and thermoelectric measurements, is reported. Difference neutron diffraction patterns from samples prepared on-line at the spectrometer show that the structures of superconducting and non-superconducting samples are identical within the limits set by the statistical errors of our data. Simultaneous gas volumetric measurements reveal that Δy<0.03 (1) when the sample is oxidized from the superconducting to the non-superconducting state. Structural refinements confirm that Nd 1.85Ce 0.15CuO 4+ y has the T‧-type tetragonal structure reported in the literature, but additional oxygen may be located on the apical O(3) oxygen site of the T-type structure, with a total oxygen content of 4+ y=4.03 (5). Consistent with this result, we find very small values of the thermoelectric power indicating that Nd 1.85Ce 0.15CuO 4+ y is close to the formal threshold, yc=0.075, between electron and hole conduction, but surprisingly, the thermoelectric power of the superconducting sample is positive, while it is negative in the non-superconducting sample below 210 K.

  8. Nano-fabricated superconducting radio-frequency composites, method for producing nano-fabricated superconducting rf composites

    DOEpatents

    Norem, James H.; Pellin, Michael J.

    2013-06-11

    Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.

  9. Effect of nonmagnetic impurities on s+/- superconductivity in the presence of incipient bands

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter

    Several Fe chalcogenide superconductors without hole pockets at the Fermi level display high temperature superconductivity, in apparent contradiction to naive spin fluctuation pairing arguments. Recently, scanning tunneling microscopy measurements have measured the influence of impurities on some of these materials, and claimed that non-magnetic impurities do not create in-gap states, leading to the conclusion that the gap must be s+ +, i.e. conventional s wave with no gap sign change. Here we present various ways sign-changing gaps can be consistent with the absence of such bound states. In particular, we calculate the bound states for an s+/- system with a hole pocket below the Fermi level, and show that the nonmagnetic impurity bound state energy generically tracks the gap edge in the system, thereby rendering it unobservable. A failure to observe a bound state in the case of a nonmagnetic impurity can therefore not be used as an argument to exclude sign-changing pairing states. XC, SM and PJH were supported by NSF-DMR-1407502. VM was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  10. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  11. Peculiar phase diagram with isolated superconducting regions in ThFeAsN1‑x O x

    NASA Astrophysics Data System (ADS)

    Li, Bai-Zhuo; Wang, Zhi-Cheng; Wang, Jia-Lu; Zhang, Fu-Xiang; Wang, Dong-Ze; Zhang, Feng-Yuan; Sun, Yu-Ping; Jing, Qiang; Zhang, Hua-Fu; Tan, Shu-Gang; Li, Yu-Ke; Feng, Chun-Mu; Mei, Yu-Xue; Wang, Cao; Cao, Guang-Han

    2018-06-01

    ThFeAsN1‑x O x () system with heavy electron doping has been studied by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility and specific heat. The non-doped compound exhibits superconductivity at K, which is possibly due to an internal uniaxial chemical pressure that is manifested by the extremely small value of As height with respect to the Fe plane. With the oxygen substitution, the T c value decreases rapidly to below 2 K for , and surprisingly, superconductivity re-appears in the range of with a maximum of 17.5 K at x  =  0.3. For the normal-state resistivity, while the samples in intermediate non-superconducting interval exhibit Fermi liquid behavior, those in other regions show a non-Fermi-liquid behavior. The specific heat jump for the superconducting sample of x  =  0.4 is , which is discussed in terms of anisotropic superconducting gap. The peculiar phase diagram in ThFeAsN1‑x O x presents additional ingredients for understanding the superconducting mechanism in iron-based superconductors.

  12. Magnetic structure and spin excitations in BaMn 2Bi 2

    DOE PAGES

    Calder, Stuart A.; Saparov, Bayrammurad I; Cao, H. B.; ...

    2014-02-19

    We present a single crystal neutron scattering study of BaMn 2Bi 2, a recently synthesized material with the same ThCr 2Si 2type structure found in several Fe-based unconventional superconducting materials. We show long range magnetic order, in the form of a G-type antiferromagnetic structure, to exist up to 390 K with an indication of a structural transition at 100 K. Utilizing inelastic neutron scattering we observe a spin-gap of 16 meV, with spin-waves extending up to 55 meV. We find these magnetic excitations are well fit to a J 1-J 2-J c Heisenberg model and present values for the exchangemore » interactions. The spin wave spectrum appears to be unchanged by the 100 K structural phase transition.« less

  13. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  14. Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5

    NASA Astrophysics Data System (ADS)

    Shang, T.; Pang, G. M.; Baines, C.; Jiang, W. B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; Yuan, H. Q.; Shiroka, T.

    2018-01-01

    The noncentrosymmetric superconductor Re24Ti5 , a time-reversal symmetry- (TRS-) breaking candidate with Tc=6 K , was studied by means of muon-spin rotation/relaxation (μ SR ) and tunnel-diode oscillator techniques. At the macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat-capacity measurements. The low-temperature penetration depth, superfluid density, and electronic heat capacity all evidence an s -wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field μ SR below Tc indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re24Ti5 . The concomitant occurrence of TRS breaking also in the isostructural Re6(Zr ,Hf ) compounds hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.

  15. Phase-driven collapse of the Cooper condensate in a nanosized superconductor

    NASA Astrophysics Data System (ADS)

    Ronzani, Alberto; D'Ambrosio, Sophie; Virtanen, Pauli; Giazotto, Francesco; Altimiras, Carles

    2017-12-01

    Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with nonzero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition, or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to π over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response (up to 27 mV/Φ0) observed near the onset of the superconducting gap collapse regime is exploited to realize magnetic flux detectors with noise-equivalent resolution as low as 260 n Φ0/√{Hz} .

  16. Mathematical analysis of the multiband BCS gap equations in superconductivity

    NASA Astrophysics Data System (ADS)

    Yang, Yisong

    2005-01-01

    In this paper, we present a mathematical analysis for the phonon-dominated multiband isotropic and anisotropic BCS gap equations at any finite temperature T. We establish the existence of a critical temperature T so that, when TT, the only nonnegative gap solution is the zero solution, representing the normal phase. Furthermore, when T=T, we prove that the only gap solution is the zero solution and that the positive gap solution depend on the temperature T

  17. Surface-micromachined magnetic undulator with period length between 10μm and 1 mm for advanced light sources

    NASA Astrophysics Data System (ADS)

    Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro

    2012-07-01

    A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  18. Structural differences between superconducting and non-superconducting CaCuO2/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Zarotti, Francesca; Di Castro, Daniele; Felici, Roberto; Balestrino, Giuseppe

    2018-06-01

    A study of the interface structure of superconducting and non-superconducting CaCuO2/SrTiO3 heterostructures grown on NdGaO3(110) substrates is reported. Using the combination of high resolution x-ray reflectivity and surface diffraction, the crystallographic structure of superconducting and non-superconducting samples has been investigated. The analysis has demonstrated the excellent sharpness of the CaCuO2/SrTiO3 interface (roughness smaller than one perovskite unit cell). Furthermore, we were able to discriminate between the superconducting and the non-superconducting phase. In the former case, we found an increase of the spacing between the topmost Ca plane of CaCuO2 block and the first TiO2 plane of the overlaying STO block, relative to the non-superconducting case. These results are in agreement with the model that foresees a strong oxygen incorporation in the interface Ca plane in the superconducting heterostructures.

  19. Progress on the superconducting undulator for ANKA and on the instrumentation for R and D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas

    2010-06-23

    Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, plannedmore » to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R and D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.« less

  20. Progress on the superconducting undulator for ANKA and on the instrumentation for R&D

    NASA Astrophysics Data System (ADS)

    Casalbuoni, Sara; Baumbach, Tilo; Grau, Andreas; Hagelstein, Michael; de Jauregui, David Saez; Boffo, Cristian; Borlein, Markus; Walter, Wolfgang; Magerl, Andreas; Mashkina, Elena; Vassiljev, Nikita

    2010-06-01

    Superconducting undulators show a larger magnetic field strength for the same gap and period length, as compared to permanent magnet devices, which allows to generate X-ray beams of higher brilliance and with harder spectrum. The worldwide first short period length superconducting undulator is in operation since 2005 at the synchrotron light source ANKA in Karlsruhe [1]. To further drive the development in this field a research and development program is being carried out. In this contribution we report on the last progress of the construction of a 1.5 m long superconducting undulator with a period length of 15 mm, planned to be installed in ANKA beginning 2010 to be the light source of the new beamline NANO for high resolution X-ray scattering. The key specifications of the system are an undulator parameter K higher than 2 (with a magnetic gap of 5 mm) and a phase error smaller than 3.5 degrees. Cryocoolers will keep the coils at 4.2 K for a beam heat load of 4 W. The ongoing R&D includes improvements in understanding of the magnetic field properties and of the beam heat load mechanisms. The tools and instruments under development to fulfill these tasks are also discussed.

  1. Nonlinear electrodynamics of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Zutic, Igor

    We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal and angular dependences. In contrast, with gap functions which only have quasinodes, these quantities do not display power laws in the applied field, and their temporal and angular dependences are not separable. We discuss how to perform measurements so as to maximize the nonlinear signal, and how to determine the gap function symmetry.

  2. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  3. μ SR study of the noncentrosymmetric superconductor PbTaSe2

    NASA Astrophysics Data System (ADS)

    Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M.

    2017-06-01

    We present muon spin rotation and relaxation (μ SR ) measurements on the noncentrosymmetric superconductor PbTaSe2. From measurements in an applied transverse field between Hc 1 and Hc 2, we extract the superfluid density as a function of temperature in the vortex state. These data can be fit with a fully gapped two-band model, consistent with previous evidence from ARPES, thermal conductivity, and resistivity. Furthermore, zero-field measurements show no evidence for a time-reversal symmetry-breaking field greater than 0.05 G in the superconducting state. This makes exotic fully gapped spin-triplet states unlikely, and hence we contend that PbTaSe2 is characterized by conventional BCS s -wave superconductivity in multiple bands.

  4. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  5. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  6. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    NASA Astrophysics Data System (ADS)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  7. Observation of topological superconductivity on the surface of an iron-based superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; Ota, Yuichi; Kondo, Takeshi; Okazaki, Kozo; Wang, Zhijun; Wen, Jinsheng; Gu, G. D.; Ding, Hong; Shin, Shik

    2018-04-01

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe1–xSex (x = 0.45; superconducting transition temperature Tc = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below Tc. Our study shows that the surface states of FeTe0.55Se0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.

  8. Interface induced high temperature superconductivity in single unit-cell FeSe on SrTiO{sub 3}(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Guanyu; Zhang, Ding; Liu, Chong

    2016-05-16

    We report high temperature superconductivity in one unit-cell (1-UC) FeSe films grown on SrTiO{sub 3} (STO)(110) substrate by molecular beam epitaxy. By in-situ scanning tunneling microscopy measurement, we observe a superconducting gap as large as 17 meV on the 1-UC FeSe films. Transport measurements on 1-UC FeSe/STO(110) capped with FeTe layers reveal superconductivity with an onset transition temperature (T{sub C}) of 31.6 K and an upper critical magnetic field of 30.2 T. We also find that T{sub C} can be further increased by external electric field although the effect is weaker than that on STO(001) substrate.

  9. Tunneling probe of fluctuating superconductivity in disordered thin films

    NASA Astrophysics Data System (ADS)

    Dentelski, David; Frydman, Aviad; Shimshoni, Efrat; Dalla Torre, Emanuele G.

    2018-03-01

    Disordered thin films close to the superconductor-insulator phase transition (SIT) hold the key to understanding quantum phase transition in strongly correlated materials. The SIT is governed by superconducting quantum fluctuations, which can be revealed, for example, by tunneling measurements. These experiments detect a spectral gap, accompanied by suppressed coherence peaks, on both sides of the transition. Here we describe the insulating side in terms of a fluctuating superconducting field with finite-range correlations. We perform a controlled diagrammatic resummation and derive analytic expressions for the tunneling differential conductance. We find that short-range superconducting fluctuations suppress the coherence peaks even in the presence of long-range correlations. Our approach offers a quantitative description of existing measurements on disordered thin films and accounts for tunneling spectra with suppressed coherence peaks.

  10. Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit.

    PubMed

    Löptien, P; Zhou, L; Khajetoorians, A A; Wiebe, J; Wiesendanger, R

    2014-10-22

    The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.

  11. Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit

    NASA Astrophysics Data System (ADS)

    Löptien, P.; Zhou, L.; Khajetoorians, A. A.; Wiebe, J.; Wiesendanger, R.

    2014-10-01

    The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.

  12. Electron band structure of the high pressure cubic phase of AlH3

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Zarifi, Niliffar; Yim, Wai-Leung; Tse, J. S.

    2012-07-01

    The electronic band structure of the cubic Pm3n phase of AlH3 stable above 100 GPa is examined with semi-local, Tran-Blaha modified Becke-Johnson local density approximation (TB-mBJLDA), screened hybrid density functionals and GW methods. The shift of the conduction band to higher energy with increasing pressure is predicted by all methods. However, there are significant differences in detail band structure. In the pressure range from 90 to160 GPa, semi-local, hybrid functional and TB-mBJLDA calculations predicted that AlH3 is a poor metal. In comparison, GW calculations show a gap opening at 160 GPa and AlH3 becomes a small gap semi-conductor. From the trends of the calculated band shifts, it can be concluded that the favourable conditions leading to the nesting of Fermi surfaces predicted by semi-local calculation have disappeared if the exchange term is included. The results highlight the importance of the correction to the exchange energy on the band structure of hydrogen dominant dense metal hydrides at high pressure hydrides and may help to rationalize the absence of superconductivity in AlH3 from experimental measurements.

  13. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    PubMed

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  14. Electron Doping a Kagome Spin Liquid

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel

    In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.

  15. Pressure and high-Tc superconductivity in sulfur hydrides.

    PubMed

    Gor'kov, Lev P; Kresin, Vladimir Z

    2016-05-11

    The paper discusses fundamentals of record-TC superconductivity discovered under high pressure in sulfur hydride. The rapid increase of TC with pressure in the vicinity of Pcr ≈ 123GPa is interpreted as the fingerprint of a first-order structural transition. Based on the cubic symmetry of the high-TC phase, it is argued that the lower-TC phase has a different periodicity, possibly related to an instability with a commensurate structural vector. In addition to the acoustic branches, the phonon spectrum of H3S contains hydrogen modes with much higher frequencies. Because of the complex spectrum, usual methods of calculating TC are here inapplicable. A modified approach is formulated and shown to provide realistic values for TC and to determine the relative contributions of optical and acoustic branches. The isotope effect (change of TC upon Deuterium for Hydrogen substitution) originates from high frequency phonons and differs in the two phases. The decrease of TC following its maximum in the high-TC phase is a sign of intermixing with pairing at hole-like pockets which arise in the energy spectrum of the cubic phase at the structural transition. On-pockets pairing leads to the appearance of a second gap and is remarkable for its non-adiabatic regime: hydrogen mode frequencies are comparable to the Fermi energy.

  16. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    PubMed

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  17. Structure for HTS composite conductors and the manufacture of same

    DOEpatents

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  18. Structure for hts composite conductors and the manufacture of same

    DOEpatents

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  19. Magnetism in structures with ferromagnetic and superconducting layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Radu, F.

    2017-01-15

    The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in themore » states of clusters, domains, and Abrikosov vortices.« less

  20. BCS and generalized BCS superconductivity in relativistic quantum field theory. II. Numerical calculations

    NASA Astrophysics Data System (ADS)

    Ohsaku, Tadafumi

    2002-08-01

    We solve numerically various types of the gap equations developed in the relativistic BCS and generalized BCS framework, presented in part I of this paper. We apply the method for not only the usual solid metal but also other physical systems by using homogeneous fermion gas approximation. We examine the relativistic effects on the thermal properties and the Meissner effect of the BCS and generalized BCS superconductivity of various cases.

  1. International Symposium on Magnetic Suspension Technology, Part 2

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1992-01-01

    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, a symposium was held. The proceedings are presented. The sessions covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems.

  2. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead ofmore » on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.« less

  3. Room temperature deposition of superconducting NbN for superconductor-insulator-superconductor junctions

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Leduc, H. G.; Thakoor, A. P.; Lambe, J.; Khanna, S. K.

    1986-01-01

    The deposition of stoichiometric B1-crystal-structure (111) NbN films on glass or sapphire substrates by reactive dc magnetron sputtering is reported. High-purity Ar-N2 mixtures are used in the apparatus described by Thakoor et al. (1985), and typical deposition parameters are given as background pressure about 10 ntorr, voltage -325 V, current 1 A, deposition rate 1.35 nm/s, film thickness 500 nm, P(Ar) 5-17 mtorr, initial P(N2) 2-6 mtorr, and room temperature. The N2 consumption-injection characteristics are studied and found to control NbN formation using well-conditioned Nb targets. Films with transition temperatures 15-16 K are obtained at P(Ar) = 12.9 + or - 0.2 mtorr and P(N2) = 3.7 + or - 0.1 mtorr. SIS junctions of area about 0.001 sq cm fabricated using the NbN films are shown to have I-V characteristics with nonlinearity parameter about 110 and NbN superconducting-gap parameter Delta = about 2.8 meV.

  4. Electron doping a kagome spin liquid

    DOE PAGES

    Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.

    2016-10-13

    Herbertsmithite, ZnCu 3(OH) 6Cl 2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLi xCu 3(OH) 6Cl 2 from x=0 to x=1.8 (3/5 per Cu 2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, ourmore » results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less

  5. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  6. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy

    PubMed Central

    Yang, Huan; Wang, Zhenyu; Fang, Delong; Deng, Qiang; Wang, Qiang-Hua; Xiang, Yuan-Yuan; Yang, Yang; Wen, Hai-Hu

    2013-01-01

    The origin of superconductivity in the iron pnictides remains unclear. One suggestion is that superconductivity in these materials has a magnetic origin, which would imply a sign-reversal s± pairing symmetry. Another suggests it is the result of orbital fluctuations, which would imply a sign-equal s++ pairing symmetry. There is no consensus yet which of these two distinct and contrasting pairing symmetries is the right one in iron pnictide superconductors. Here we explore the nature of the pairing symmetry in the superconducting state of Na(Fe0.97−xCo0.03Cux)As by probing the effect of scattering of Cooper pairs by non-magnetic Cu impurities. Using scanning tunnelling spectroscopy, we identify the in-gap quasiparticle states induced by the Cu impurities, showing signatures of Cooper pair breaking by these non-magnetic impurities–a process that is only consistent with s± pairing. This experiment provides strong evidence for the s± pairing. PMID:24248097

  7. Sharp low-energy feature in single-particle spectra due to forward scattering in d-wave cuprate superconductors.

    PubMed

    Hong, Seung Hwan; Bok, Jin Mo; Zhang, Wentao; He, Junfeng; Zhou, X J; Varma, C M; Choi, Han-Yong

    2014-08-01

    There is an enormous interest in the renormalization of the quasiparticle (qp) dispersion relation of cuprate superconductors both below and above the critical temperature T_{c} because it enables the determination of the fluctuation spectrum to which the qp's are coupled. A remarkable discovery by angle-resolved photoemission spectroscopy (ARPES) is a sharp low-energy feature (LEF) in qp spectra well below the superconducting energy gap but with its energy increasing in proportion to T_{c} and its intensity increasing sharply below T_{c}. This unexpected feature needs to be reconciled with d-wave superconductivity. Here, we present a quantitative analysis of ARPES data from Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} (Bi2212) using Eliashberg equations to show that the qp scattering rate due to the forward scattering impurities far from the Cu-O planes is modified by the energy gap below T_{c} and shows up as the LEF. This is also a necessary step to analyze ARPES data to reveal the spectrum of fluctuations promoting superconductivity.

  8. Superconducting and magnetic properties of Sr 3 Ir 4 Sn 13

    DOE PAGES

    Biswas, P. K.; Amato, A.; Khasanov, R.; ...

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr₃Ir₄Sn₁₃. From magnetization measurements the lower and upper critical fields of Sr₃Ir₄Sn₁₃ are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr₃Ir₄Sn₁₃. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth λ. The dependence of λ⁻² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr₃Ir₄Sn₁₃ withmore » a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature λ(0) is 291(3) nm. The ratio Δ(0)/k BT c = 2.1(1) indicates that Sr₃Ir₄Sn₁₃ should be considered as a strong-coupling superconductor.« less

  9. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE PAGES

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...

    2017-05-12

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  10. Percolative theories of strongly disordered ceramic high-temperature superconductors.

    PubMed

    Phillips, J C

    2010-01-26

    Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T(c) much larger than strongly coupled metallic superconductors like Pb (T(c) = 7.2 K, E(g)/kT(c) = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This "double percolation" model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T(c) in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T(c) ratios, and shows that these are similar to those of conventional strongly coupled superconductors.

  11. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  12. Unconventional superconductivity and surface pairing symmetry in half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Yu, Jiabin; Liu, Chao-Xing

    2018-06-01

    Signatures of nodal line/point superconductivity [Kim et al., Sci. Adv. 4, eaao4513 (2018), 10.1126/sciadv.aao4513; Brydon et al., Phys. Rev. Lett. 116, 177001 (2016), 10.1103/PhysRevLett.116.177001] have been observed in half-Heusler compounds, such as LnPtBi (Ln = Y, Lu). Topologically nontrivial band structures, as well as topological surface states, have also been confirmed by angular-resolved photoemission spectroscopy in these compounds [Liu et al., Nat. Commun. 7, 12924 (2016), 10.1038/ncomms12924]. In this paper, we present a systematical classification of possible gap functions of bulk states and surface states in half-Heusler compounds and the corresponding topological properties based on the representations of crystalline symmetry group. Different from all the previous studies based on the four band Luttinger model, our study starts with the six-band Kane model, which involves both four p-orbital type of Γ8 bands and two s-orbital type of Γ6 bands. Although the Γ6 bands are away from the Fermi energy, our results reveal the importance of topological surface states, which originate from the band inversion between Γ6 and Γ8 bands, in determining surface properties of these compounds in the superconducting regime by combining topological bulk state picture and nontrivial surface state picture.

  13. Peculiar phase diagram with isolated superconducting regions in ThFeAsN1-x O x.

    PubMed

    Li, Bai-Zhuo; Wang, Zhi-Cheng; Wang, Jia-Lu; Zhang, Fu-Xiang; Wang, Dong-Ze; Zhang, Feng-Yuan; Sun, Yu-Ping; Jing, Qiang; Zhang, Hua-Fu; Tan, Shu-Gang; Li, Yu-Ke; Feng, Chun-Mu; Mei, Yu-Xue; Wang, Cao; Cao, Guang-Han

    2018-06-27

    ThFeAsN 1-x O x ([Formula: see text]) system with heavy electron doping has been studied by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility and specific heat. The non-doped compound exhibits superconductivity at [Formula: see text] K, which is possibly due to an internal uniaxial chemical pressure that is manifested by the extremely small value of As height with respect to the Fe plane. With the oxygen substitution, the T c value decreases rapidly to below 2 K for [Formula: see text], and surprisingly, superconductivity re-appears in the range of [Formula: see text] with a maximum [Formula: see text] of 17.5 K at x  =  0.3. For the normal-state resistivity, while the samples in intermediate non-superconducting interval exhibit Fermi liquid behavior, those in other regions show a non-Fermi-liquid behavior. The specific heat jump for the superconducting sample of x  =  0.4 is [Formula: see text], which is discussed in terms of anisotropic superconducting gap. The peculiar phase diagram in ThFeAsN 1-x O x presents additional ingredients for understanding the superconducting mechanism in iron-based superconductors.

  14. Signatures of Induced Superconductivity in NbTi Contacted InAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Shabani, Javad; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris

    We have studied electrical transport through InAs quantum wells grown by MBE with unannealed superconducting NbTi contacts deposited ex-situ and patterned by optical photolithography. Characterization of the InAs 2DEG's without superconducting contacts yields typical mobilities greater than 100,000 cm2/Vs at a density of 4e11 cm-2. NbTi-InAs-NbTi (SNS) and NbTi-InAs (SN) devices with dimensions greater than 1 µm are fabricated using optical lithography. Although the dimensions of the fabricated SNS devices are too large to observe a supercurrent, signatures of superconductivity induced in the InAs are present. We observe two superconducting critical temperatures: one of the NbTi leads (Tc~8K), and a second (Tc <4.5K) attributed to superconductivity induced in the InAs channel. dI/dV vs V spectroscopy on SNS junctions below the second critical temperature shows a conductance maximum at zero applied voltage while conductance minima appear at finite bias voltage which is attributed to the presence of an induced superconducting gap in the InAs quantum well. This work has been supported by Microsoft research.

  15. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  16. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    NASA Astrophysics Data System (ADS)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  17. Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts

    NASA Astrophysics Data System (ADS)

    Jerome, Denis; Yonezawa, Shingo

    2016-03-01

    It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors.

  18. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE PAGES

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; ...

    2018-03-08

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  19. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  20. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2

    NASA Astrophysics Data System (ADS)

    Wilfert, Stefan; Schmitt, Martin; Schmidt, Henrik; Mauerer, Tobias; Sessi, Paolo; Wang, Hangdong; Mao, Qianhui; Fang, Minghu; Bode, Matthias

    2018-01-01

    We report on the structural and superconducting electronic properties of the heavy-electron superconductor TlNi2Se2 . By using a variable-temperature scanning tunneling microscopy (VT-STM) the coexistence of (√{2 }×√{2 }) R 45∘ and (2 ×1 ) surface reconstructions is observed. Similar to earlier observations on the "122" family of Fe-based superconductors, we find that their respective surface fraction strongly depends on the temperature during cleavage, the measurement temperature, and the sample's history. Cleaving at low temperature predominantly results in the (√{2 }×√{2 }) R 45∘ -reconstructed surface. A detailed analysis of the (√{2 }×√{2 }) R 45∘ -reconstructed domains identifies (2 ×1 ) -ordered dimers, tertramers, and higher order even multimers as domain walls. Higher cleaving temperatures and the warming of low-temperature-cleaved samples increases the relative weight of the (2 ×1 ) surface reconstruction. By slowly increasing the sample temperature Ts inside the VT-STM we find that the (√{2 }×√{2 }) R 45∘ surface reconstructions transforms into the (2 ×1 ) structure at Ts=123 K. We identify the polar nature of the TlNi2Se2 (001) surface as the most probable driving mechanism of the two reconstructions, as both lead to a charge density ρ =0.5 e- , thereby avoiding divergent electrostatic potentials and the resulting "polar catastrophe." Low-temperature scanning tunneling spectroscopy (STS) performed with normal metal and superconducting probe tips shows a superconducting gap which is best fit with an isotropic s wave. We could not detect any correlation between the local surface reconstruction, suggesting that the superconductivity is predominantly governed by TlNi2Se2 bulk properties. Correspondingly, temperature- and field-dependent data reveal that both the critical temperature and critical magnetic field are in good agreement with bulk values obtained earlier from transport measurements. In the superconducting state the formation of an Abrikosov lattice is observed without any zero bias anomaly at the vortex core.

Top