Sample records for superconductor material structure

  1. Fourth international cryogenic materials conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, R.P.; Clark, A.F.

    1982-01-01

    In a comprehensive and current collection of 911 papers on a vest range of materials research topics in the field of cryogenic technology, this 924-page volume presents the most recent work of an international spectrum of materials and cyrogenic engineers at industrial and academic laboratories and institutions. The papers are collected under the broad headings of structural alloys; nometallics and composites; flux pinning in superconductors; high field superconductors; A15 superconductors; multiply-connected superconductors; superconductor properties and measurements; strain effects in superconductors; superconductor performance; the fabrication of superconductors; and the fabrication of structural alloys and composits. Ample and adequate photographic, plot, schematic,more » and tabulation illustration are included; the volume is also cross-referenced and has an author, materials, and subject index. It is volume 28 in a series which annually updates the existing knowledge of all areas of low-temperature technology.« less

  2. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    NASA Astrophysics Data System (ADS)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  3. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    PubMed

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Low-loss, high-speed, high-T.sub.c superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.; Uherka, Kenneth L.

    1997-01-01

    A flywheel energy storage device including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure.

  5. Low-loss, high-speed, high-{Tc} superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.

    1997-06-24

    A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize the rotating iron structure. 15 figs.

  6. Low-loss, high-speed, high-T.sub.C superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.; Uherka, Kenneth L.

    1996-01-01

    A flywheel energy storage device including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize and levitate the rotating iron structure.

  7. Low-loss, high-speed, high-{Tc} superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.; Uherka, K.L.

    1996-07-30

    A flywheel energy storage device is disclosed including an iron structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet. The stationary permanent magnet levitates the iron structure while the superconductor structure can stabilize and levitate the rotating iron structure. 15 figs.

  8. Building blocks for correlated superconductors and magnets

    DOE PAGES

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials designmore » and synthesis.« less

  9. Towards the design of novel cuprate-based superconductors

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    The rapid maturation of materials databases combined with recent development of theories seeking to quantitatively link chemical properties to superconductivity in the cuprates provide the context to design novel superconductors. In this talk, we describe a framework designed to search for new superconductors, which combines chemical rules-of-thumb, insights of transition temperatures from dynamical mean-field theory, first-principles electronic structure tools, materials databases and structure prediction via evolutionary algorithms. We apply the framework to design a family of copper oxysulfides and evaluate the prospects of superconductivity.

  10. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  11. Crystallography, chemistry and structural disorder in the new high-Tc Bi-Ca-Sr-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Veblen, D. R.; Heaney, P. J.; Angel, R. J.; Finger, L. W.; Hazen, R. M.

    1988-01-01

    Diffraction experiments are reported which indicate that the new Bi-Ca-Sr-Cu-O layer-structure superconductor possesses a primitive orthorhombic unit cell with probable space group Pnnn. The material exhibits severe structural disorder which is primarily related to stacking within the layers. The apparent orthorhombic structure is an average resulting from orthorhombic material mixed with monoclinic domains in two twinned orientations. Two distinct types of structural disorder that are common in materials synthesized to date are also described. This disorder complicates the crystallographic analysis and suggests that X-ray and neutron diffraction methods may yield only an average structure.

  12. Shielding superconductors with thin films as applied to rf cavities for particle accelerators

    DOE PAGES

    Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; ...

    2015-10-29

    Determining the optimal arrangement of superconducting layers to withstand large-amplitude ac magnetic fields is important for certain applications such as superconducting radio-frequency cavities. In this paper, we evaluate the shielding potential of the superconducting-film–insulating-film–superconductor (SIS') structure, a configuration that could provide benefits in screening large ac magnetic fields. After establishing that, for high-frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters, we also solve numerically the Ginzburg-Landau equations. As a result, it is shownmore » that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.« less

  13. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    DOE PAGES

    Liu, Z. K.; Yang, L. X.; Wu, S. -C.; ...

    2016-09-27

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less

  14. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z. K.; Yang, L. X.; Wu, S. -C.

    Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln=Lu, Y), we directly observe the unusual topological surface states onmore » these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors.« less

  15. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  16. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic fieldmore » (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.« less

  17. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1990-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  18. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1991-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  19. TaRh2B2 and NbRh2B2: Superconductors with a chiral noncentrosymmetric crystal structure.

    PubMed

    Carnicom, Elizabeth M; Xie, Weiwei; Klimczuk, Tomasz; Lin, Jingjing; Górnicka, Karolina; Sobczak, Zuzanna; Ong, Nai Phuan; Cava, Robert J

    2018-05-01

    It is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials-even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties of superconductors is widely appreciated, although its study presents substantial challenges. The effect of a lack of a center of symmetry in a crystal structure, for example, has long been understood to necessitate that the wave function of the collective electron state that gives rise to superconductivity has to be more complex than usual. However, few nonhypothetical materials, if any, have actually been proven to display exotic superconducting properties as a result. We introduce two new superconductors that in addition to having noncentrosymmetric crystal structures also have chiral crystal structures. Because the wave function of electrons in solids is particularly sensitive to the host material's symmetry, crystal structure chirality is expected to have a substantial effect on their superconducting wave functions. Our two experimentally obtained chiral noncentrosymmetric superconducting materials have transition temperatures to superconductivity that are easily experimentally accessible, and our basic property characterization suggests that their superconducting properties may be unusual. We propose that their study may allow for a more in-depth understanding of how chirality influences the properties of superconductors and devices that incorporate them.

  20. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  1. Nondestructive x-ray Scattering Characterization of High Temperature Superconducting Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, T R

    The purpose of this CRADA was to characterize the structural properties of the superconductor material within the wires in order to determine which processing procedures produce the best superconductor texture and phase development, and hence the best ultimate current carrying capacity.

  2. Nanostructuring superconductors by ion beams: A path towards materials engineering

    NASA Astrophysics Data System (ADS)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-01

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  3. Electromechanical properties of superconductors for DOE fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekin, J.W.; Moreland, J.; Brauch, J.C.

    1986-03-01

    This is an interim report presenting data on superconductor performance under mechanical load, which are needed for the selection of superconductors and the mechanical design of superconducting magnets for DOE fusion energy systems. A further aim of the reported research is to measure and understand the electromechanical properties of promising new superconductor materials with strong application potential at high magnetic fields. Results include the following. The first strain vs. critical-current studies were made on a Chevrel-phase superconductor, PbMo/sub 6/S/sub 8/. Chevrel-phase superconductors were found to have a large strain effect, comparable in magnitude to A-15 superconductors like Nb/sub 3/Sn. Electromechanical-propertymore » measurements of an experimental liquid-tin-infiltrated Nb/sub 3/Sn conductor showed it to have an irreversible strain limit twice as large as bronze-process supercondutors and a significantly higher overall critical-current denstiy; the liquid-infiltration process thus has the potential for development of a practical Nb/sub 3/Sn conductors with both superior critical-current density and extremely good mechanical properties. Electromechanical parameters were obtained on several Nb/sub 3/Sn conductors that are candidate materials for superconducting fusion magnets, icluding conductors fabricated by the bronze, internal-tin, and jelly-roll processes. Thermal contraction data are reported on several new structural materials for superconductor sheathing and reinforcement, and a new diagnostic tool for probing the energy gap of practical superconductors has been developed using electron tunneling.« less

  4. Identifying the genes of unconventional high temperature superconductors.

    PubMed

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  5. Effect of Te doping on FeSe superconductor synthesized by powder-in-tube

    NASA Astrophysics Data System (ADS)

    Imaduddin, A.; Nisa, K.; Yudanto, S. D.; Nugraha, H.; Siswayanti, B.

    2017-04-01

    FeSe is a superconducting material, which has the simplest crystal structure among the Fe-based superconductors. It has no arsenic element, which is very harmful to the human body. In this study, we analyzed the effects of milling time and Te doping on FeSe superconductors. The synthesis of the samples were carried out using powder-in-tube method in a SS304 stainless steel tube. After the pressing process, followed by the sintering process at 500° C for 20 hours, the samples were removed from the tubes. Later, we analyzed its crystal structures, surfaces morphology and the superconductivity properties. Δ-FeSe phase (hexagonal, non-superconductor) and β-FeSe (tetragonal, superconductor) were formed in the samples, including minor phases of Fe and Fe3Se4. Te doping changed the crystal structure from β-FeSe and Δ-FeSe into FeSe0.5Te0.5. In addition, the onset critical temperature (TC, onset) shifted to higher temperature.

  6. Multiple topological electronic phases in superconductor MoC

    NASA Astrophysics Data System (ADS)

    Huang, Angus; Smith, Adam D.; Schwinn, Madison; Lu, Qiangsheng; Chang, Tay-Rong; Xie, Weiwei; Jeng, Horng-Tay; Bian, Guang

    2018-05-01

    The search for a superconductor with non-s -wave pairing is important not only for understanding unconventional mechanisms of superconductivity but also for finding new types of quasiparticles such as Majorana bound states. Materials with both topological band structure and superconductivity are promising candidates as p +i p superconducting states can be generated through pairing the spin-polarized topological surface states. In this work, the electronic and phonon properties of the superconductor molybdenum carbide (MoC) are studied with first-principles methods. Our calculations show that nontrivial band topology and s -wave Bardeen-Cooper-Schrieffer superconductivity coexist in two structural phases of MoC, namely the cubic α and hexagonal γ phases. The α phase is a strong topological insulator and the γ phase is a topological nodal-line semimetal with drumhead surface states. In addition, hole doping can stabilize the crystal structure of the α phase and elevate the transition temperature in the γ phase. Therefore, MoC in different structural forms can be a practical material platform for studying topological superconductivity.

  7. Bearing design for flywheel energy storage using high-TC superconductors

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  8. Mixed-mu superconducting bearings

    DOEpatents

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  9. A moving target: responding to magnetic and structural disorder in lanthanide- and actinide-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Eric D; Mitchell, Jeremy N; Booth, C H

    2009-01-01

    The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well asmore » between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, Gregory; Sadovskyy, Ivan A.; Glatz, Andreas

    For many technological applications of superconductors the performance of a material is determined by the highest current it can carry losslessly-the critical current. In turn, the critical current can be controlled by adding nonsuperconducting defects in the superconductor matrix. Here we report on systematic comparison of different local and global optimization strategies to predict optimal structures of pinning centers leading to the highest possible critical currents. We demonstrate performance of these methods for a superconductor with randomly placed spherical, elliptical, and columnar defects.

  11. Structure, Chemistry and Property Correlations in FeSe and 122 Pnictides

    NASA Astrophysics Data System (ADS)

    Cava, Robert

    2010-03-01

    Determining how crystal structure and chemical bonding influence the properties of solids is at the heart of collaborative research programs between materials physicists and solid state chemists. In some materials, the high Tc copper oxides and colossal magnetoresistance manganates, for example, the subtleties of how structure, bonding and properties are coupled yields an almost baffling complexity, while in others, such as many classical intermetallic superconductors, the properties are more easily understood, with bonding and structure playing a less profound role. The new superconducting pnictides appear to fall somewhere between these two limits, and have so far been the subject of relatively little study by solid state chemists. Here I will describe some of our recent work on superconducting FeSe and superconductor-related ``122'' (ThCr2Si2-type) solid solution phases as examples of the kinds of insights that structural and chemical studies can contribute to understanding these important materials.

  12. Electrical connection structure for a superconductor element

    DOEpatents

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  13. Toward superconducting critical current by design

    DOE PAGES

    Sadovskyy, Ivan A.; Jia, Ying; Leroux, Maxime; ...

    2016-03-31

    The interaction of vortex matter with defects in applied superconductors directly determines their current carrying capacity. Defects range from chemically grown nanostructures and crystalline imperfections to the layered structure of the material itself. The vortex-defect interactions are non-additive in general, leading to complex dynamic behavior that has proven difficult to capture in analytical models. With recent rapid progress in computational powers, a new paradigm has emerged that aims at simulation assisted design of defect structures with predictable ‘critical-current-by-design’: analogous to the materials genome concept of predicting stable materials structures of interest. We demonstrate the feasibility of this paradigm by combiningmore » large-scale time-dependent Ginzburg-Landau numerical simulations with experiments on commercial high temperature superconductor (HTS) containing well-controlled correlated defects.« less

  14. Mixed-mu superconducting bearings

    DOEpatents

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  15. NbTiN Based SIS Multilayer Structures for SRF Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Anne-marie; Eremeev, Grigory; Phillips, H

    2013-09-01

    For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less

  16. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3.

    PubMed

    Takahashi, Hiroki; Sugimoto, Akira; Nambu, Yusuke; Yamauchi, Touru; Hirata, Yasuyuki; Kawakami, Takateru; Avdeev, Maxim; Matsubayashi, Kazuyuki; Du, Fei; Kawashima, Chizuru; Soeda, Hideto; Nakano, Satoshi; Uwatoko, Yoshiya; Ueda, Yutaka; Sato, Taku J; Ohgushi, Kenya

    2015-10-01

    All the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ∼120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.

  17. Isotope and multiband effects in layered superconductors.

    PubMed

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  18. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    PubMed Central

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  19. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  20. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  1. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  2. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  3. Line group techniques in description of the structural phase transitions in some superconductors

    NASA Technical Reports Server (NTRS)

    Meszaros, CS.; Balint, A.; Bankuti, J.

    1995-01-01

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.

  4. Twisted multifilament superconductor

    NASA Technical Reports Server (NTRS)

    Coles, W. D. (Inventor)

    1973-01-01

    Masking selected portions of a ribbon and forming an intermetallic compound on the unmasked portions by a controlled diffusion reaction produces a twisted filamentary structure. The masking material prohibits the formation of superconductive material on predetermined areas of the substrate.

  5. Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors

    DOE PAGES

    Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...

    2014-11-24

    Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less

  6. Guided design of copper oxysulfide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Chuck-Hou; Birol, Turan; Kotliar, Gabriel

    2015-07-01

    We describe a framework for designing novel materials, combining modern first-principles electronic-structure tools, materials databases, and evolutionary algorithms capable of exploring large configurational spaces. Guided by the chemical principles introduced by Antipov et al., for the design and synthesis of the Hg-based high-temperature superconductors, we apply our framework to screen 333 proposed compositions to design a new layered copper oxysulfide, Hg(CaS)2CuO2. We evaluate the prospects of superconductivity in this oxysulfide using theories based on charge-transfer energies, orbital distillation and uniaxial strain.

  7. Chemical vapor deposition of high T sub c superconductors

    NASA Technical Reports Server (NTRS)

    Webb, G. W.; Engelhardt, J. J.

    1978-01-01

    The results are reported of an investigation into the synthesis and properties of high temperature superconducting materials. A chemical vapor deposition apparatus was designed and built which is suitable for the preparation of multicomponent metal films This apparatus was used to prepare a series of high T sub c A-15 structure superconducting films in the binary system Nb-Ge. The effect on T sub c of a variety of substrate materials was investigated. An extensive series of ternary alloys were also prepared. Conditions allowing the brittle high T sub c (approximately 18 K) A-15 structure superconductor Nb3A1 to be prepared in a low T sub c but ductile form were found. Some of the ways that the ductile (bcc) form can be cold worked or machined are described. Measurements of rate of transformation of cold worked bcc material to the high T sub c A-15 structure with low temperature annealing are given. Preliminary measurements indicate that this material has attractive high field critical current densities.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lu

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and onmore » potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.« less

  9. Method of manufacturing a high temperature superconductor with improved transport properties

    DOEpatents

    Balachandran, Uthamalingam; Siegel, Richard W.; Askew, Thomas R.

    2001-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase paramagnetic material. These components are combined to form a solid compacted mass with the paramagnetic material disposed on the grain boundaries of the polycrystaline high temperature superconductor.

  10. Processing of large grain Y-123 superconductors with pre-defined porous structures

    NASA Astrophysics Data System (ADS)

    Sudhakar Reddy, E.; Babu, N. Hari; Shi, Y.; Cardwell, D. A.; Schmitz, G. J.

    2005-02-01

    Porous superconductors have inherent cooling advantages over their bulk counterparts and, as a result, are emerging as an important class of materials for practical applications. Single-domain Y-Ba-Cu-O (YBCO) foams processed with a pre-defined, open porous structure, for example, have significant potential for use as elements in resistive superconducting fault current limiters. In this case, the interconnected porosity is ideal for producing reinforced composites with improved mechanical and heat conducting properties. In this paper we describe a few simple methods for fabricating large grain YBCO superconductors with various predefined porous structures via an infiltration process from tailored, porous Y2BaCuO5 (Y-211) pre-forms manufactured by a variety of techniques, including slurry-coating of standard polyurethane foams to replicate their structure. Foams produced by this method typically have a strut thickness of a few hundred µm and pore sizes ranging from 10 to 100 pores per inch (PPI). Foams with increased strut thickness of up to millimetre dimensions can be produced by embedding organic ball spacers within the Y-211 pre-form followed by a burn-out and sintering process. Single-domain YBCO bulk materials with cellular and pre-defined 3D interconnected porosity may be produced by a similar process using tailored wax structures in Y-211 castings.

  11. RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.

    DTIC Science & Technology

    MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES

  12. Line group techniques in description of the structural phase transitions in some superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meszaros, C.; Bankuti, J.; Balint, A.

    1994-12-31

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature Superconductors. As an example, the material YBa{sub 2}Cu{sub 3}O{sub 7-x} is discussed briefly.

  13. Aluminum and gold deposition on cleaved single crystals of Bi2CaSr2Cu2O8 superconductor

    NASA Astrophysics Data System (ADS)

    Wells, B. O.; Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-02-01

    We have used photoelectron spectroscopy to study the changes in the electronic structure of cleaved, single crystal Bi2CaSr2Cu2O8 caused by deposition of aluminum and gold. Al reacts strongly with the superconductor surface. Even the lowest coverages of Al reduces the valency of Cu in the superconductor, draws oxygen out of the bulk, and strongly modifies the electronic states in the valence band. The Au shows little reaction with the superconductor surface. Underneath Au, the Cu valency is unchanged and the core peaks show no chemically shifted components. Au appears to passivate the surface of the superconductor and thus may aid in the processing of the Bi-Ca-Sr-Cu-O material. These results are consistent with earlier studies of Al and Au interfaces with other, polycrystalline oxide superconductors. Comparing with our own previous results, we conclude that Au is superior to Ag in passivating the Bi-Ca-Sr-Cu-O surface.

  14. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  15. Lattice parameters guide superconductivity in iron-arsenides

    DOE PAGES

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-01-12

    The discovery of superconducting materials has led to their use in modern technological marvels, such as magnetic field sensors in MRI machines, powerful research magnets, and high-speed trains. Despite such applications, the uses of superconductors are not widespread due to high cooling costs. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), numerous studies have tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition uponmore » small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor of superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-based materials (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-based superconductors presented here, should guide synthesis of new materials and give clues for superconductivity.« less

  16. In-plane chemical pressure essential for superconductivity in BiCh2-based (Ch: S, Se) layered structure

    PubMed Central

    Mizuguchi, Yoshikazu; Miura, Akira; Kajitani, Joe; Hiroi, Takafumi; Miura, Osuke; Tadanaga, Kiyoharu; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    BiCh2-based compounds (Ch: S, Se) are a new series of layered superconductors, and the mechanisms for the emergence of superconductivity in these materials have not yet been elucidated. In this study, we investigate the relationship between crystal structure and superconducting properties of the BiCh2-based superconductor family, specifically, optimally doped Ce1−xNdxO0.5F0.5BiS2 and LaO0.5F0.5Bi(S1−ySey)2. We use powder synchrotron X-ray diffraction to determine the crystal structures. We show that the structure parameter essential for the emergence of bulk superconductivity in both systems is the in-plane chemical pressure, rather than Bi-Ch bond lengths or in-plane Ch-Bi-Ch bond angle. Furthermore, we show that the superconducting transition temperature for all REO0.5F0.5BiCh2 superconductors can be determined from the in-plane chemical pressure. PMID:26447333

  17. Phonon properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Goyal, Megha; Sinha, M. M.

    2018-05-01

    Earlier, it was thought there is antagonist relationship between superconductivity and ferromagnetic materials, But, a discovery of iron-based superconductors have removed this misconception. It gives an idea to make a review on the superconductivity properties of different materials. The new iron-based superconductors' present symmetry breaking competing phases in the form of tetragonal to orthorhombic transition. It consists of mainly four families [1111], [111], [122], and [11] type. Superconductivity of iron-based superconductors mainly related with the phonons and there is an excellent relation between phonons and superconductivity. Phonons properties are helpful in predicting the superconducting properties of materials. Phonon properties of iron-based superconductors in various phases are summarized in this study. We are presenting the review of phonon properties of iron-based superconductors.

  18. X-ray photoelectron spectroscopy characterization of a nonsuperconducting Y-Ba-Cu-O superconductor-normal-metal-superconductor barrier material

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Hunt, B. D.; Foote, M. C.; Bajuk, L. J.

    1992-01-01

    A film of a novel nonsuperconducting Y-Ba-Cu-O (YBCO) barrier material was grown using conditions similar to those reported by Agostinelli et al. (1991) for forming a cubic semiconducting (c-YBCO) phase, and the material was characterized using X-ray photoelectron spectroscopy (XPS). A comparison of the XPS spectra of this material to those obtained from the orthorhombic and tetragonal phases of YBCO (o-YBCO and t-YBCO, respectively) showed that the barrier material had spectral characteristics different from those of o-YBCO and t-YBCO, particularly in the O 1s region. Features associated with the Cu-O chain and surface-reconstructed Cu-O planes were absent, consistent with expectations for the simple perovskite crystal structure of c-YBCO proposed by Agostinelli et al.

  19. Influence of Strain on Thermal Conductivity of Silicon Nitride Thin Films

    DTIC Science & Technology

    2012-03-02

    free path of amorphous materials is of the same order as the structural disorder [46], rendering thermal conductivity size independent. Here, the phases...16] Manninen A J, Leivo M M and Pekola J P 1997 Refrigeration of a dielectric membrane by superconductor /insulator/ normal-metal/insulator... superconductor tunneling Appl. Phys. Lett. 70 1885–7 [17] Olson E A et al 2003 The design and operation of a MEMS differential scanning nanocalorimeter for high

  20. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, Kenneth C.; Lanagan, Michael T.; Miller, Dean J.; Sengupta, Suvankar; Parker, John C.; Hu, Jieguang; Balachandran, Uthamalingam; Siegel, Richard W.; Shi, Donglu

    1999-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology.

  1. Materials design for new superconductors

    DOE PAGES

    Norman, M. R.

    2016-05-23

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed in this paper,more » with a focus on surveying the periodic table in an attempt to identify cuprate analogues.« less

  2. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    DOEpatents

    Goretta, K.C.; Lanagan, M.T.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Hu, J.; Balachandran, U.; Siegel, R.W.; Shi, D.

    1999-07-27

    A method of preparing a high temperature superconductor is disclosed. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology. 4 figs.

  3. The intercalation chemistry of layered iron chalcogenide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less

  4. Experimental and Computational Studies of the Superconducting Phase Transition of Quasi 1D Superconductors

    NASA Astrophysics Data System (ADS)

    Wong, Chi Ho

    In this PhD project, the feasibility of establishing a state with vanishing resistance in quasi-1D superconductors are studied. In the first stage, extrinsic quasi-1D superconductors based on composite materials made by metallic nanowire arrays embedded in mesoporous silica substrates, such as Pb-SBA-15 and NbN-SBA-15 (fabricated by a Chemical Vapor Deposition technique) are investigated. Two impressive outcomes in Pb-SBA-15 are found, including an enormous enhancement of the upper critical field from 0.08T to 14T and an increase of the superconducting transition temperature onset s from 7.2 to 11K. The second stage is to apply Monte Carlo simulations to model the quasi-1D superconductor, considering its penetration depth, coherence length, defects, electron mean free path, tunneling barrier and insulating width between the nanowires. The Monte Carlo results provide a clear picture to approach to stage 3, which represents a study of the intrinsic quasi-1D superconductor Sc3CoC4, which contains parallel arrays of 1D superconducting CoC4 ribbons with weak transverse Josephson or Proximity interaction, embedded in a Sc matrix. According to our previous work, a BKT transition in the lateral plane is believed to be the physics behind the vanishing resistance of quasi-1D superconductors, because it activates a dimensional crossover from a 1D fluctuating superconductivity at high temperature to a 3D bulk phase coherent state in the entire material at low temperatures. Moreover, we decided to study thin 1D Sn nanowires without substrate, which display very similar superconducting properties to Pb-SBA-15 with a strong critical field and Tc enhancement. Finally, a preliminary research on a novel quasi-2D superconductor formed by parallel 2D mercury sheets that are separated by organic molecules is presented. The latter material may represent a model system to study the effect of a layered structure, which is believed to be an effective ingredient to design high temperature superconductors.

  5. Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN

    NASA Astrophysics Data System (ADS)

    Mao, Huican; Wang, Cao; Maynard-Casely, Helen E.; Huang, Qingzhen; Wang, Zhicheng; Cao, Guanghan; Li, Shiliang; Luo, Huiqian

    2017-03-01

    We report neutron diffraction and transport results on the newly discovered superconducting nitride ThFeAsN with T_c= 30 \\text{K} . No magnetic transition, but a weak structural distortion around 160 K, is observed by cooling from 300 K to 6 K. Analysis on the resistivity, Hall transport and crystal structure suggests that this material behaves as an electron optimally doped pnictide superconductor due to extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site, which, together with the low arsenic height, may enhance the electron itinerancy and reduce the electron correlations, thus suppressing the static magnetic order.

  6. Topological crystalline materials: General formulation, module structure, and wallpaper groups

    NASA Astrophysics Data System (ADS)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2017-06-01

    We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.

  7. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  8. Multi-layer articles and methods of making same

    DOEpatents

    Fritzemeier, Leslie G.; Zhang, Wei; Palm, Walter C.; Rupich, Martin W.

    2005-05-17

    The invention relates to superconductor articles, and compositions and methods for making superconductor articles. The methods can include using a precursor solution having a relatively small concentration of total free acid. The articles can include more than one layer of superconductor material in which at least one layer of superconductor material can be formed by a solution process, such as a solution process involving the use of metalorganic precursors.

  9. Tunnelling spectroscopy of Andreev states in graphene

    NASA Astrophysics Data System (ADS)

    Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2017-08-01

    A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.

  10. Chemical bond and superconductivity. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, R.P.

    1987-07-01

    The search for understanding of the physical mechanisms operating in the recently discovered high-T/sub c/ superconductors forces a re-examination of the basic concepts and physical assumptions of current theoretical approaches. The attractive interaction of a more-general theory may be rather more complicated than the electron-phonon interaction usually assumed. In fact, it probably contains the critical chemical parameters of the material. This is the motivation for the present work in which the focus is two-fold: first, to call attention to some recent developments in our understanding of the chemical bond, and second, to prepose that this new understanding is not onlymore » germane to the electronic structure of solids but also provides a new perspective on the relationship between the chemical bond and superconductivity. Studying the connection between chemical bonding and superconductivity would seem to be rather an academic exercise if it were not for the high-temperature superconductors. These materials have brought attention in a dramatic fashion to the ignorance that exists in relating chemistry to the important physical parameters of a superconductor. Although this point was raised in numerous contributions by Matthias, its full import was never so apparent when the superconductors were traditional metals and alloys.« less

  11. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, Donald E.

    1995-01-01

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.

  12. Method and composition for improving flux pinning and critical current in superconductors

    DOEpatents

    Morris, D.E.

    1995-07-04

    Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof. 14 figs.

  13. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  14. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  15. Superconductivity in layered BiS 2-based compounds

    DOE PAGES

    Yazici, D.; Jeon, I.; White, B. D.; ...

    2015-02-25

    Here, a novel family of superconductors based on BiS 2-based superconducting layers were discovered in 2012. In short order, other BiS 2-based superconductors with the same or related crystal structures were discovered with superconducting critical temperatures T c of up to 10 K. Many experimental and theoretical studies have been carried out with the goal of establishing the basic properties of these new materials and understanding the underlying mechanism for superconductivity. In this selective review of the literature, we distill the central discoveries from this extensive body of work, and discuss the results from different types of experiments on thesemore » materials within the context of theoretical concepts and models.« less

  16. Method and apparatus for forming ceramic oxide superconductors with ordered structure

    DOEpatents

    Nellis, W.J.; Maple, M.B.

    1987-12-23

    Disclosed are products and processes for making improved magnetic and superconducting articles from anisotropic starting materials by initially reducing the starting materials into a powdered form composed of particles of uniform directional crystal structures, forming a directionally uniform aggregate of particles by exposing the aggregate to a magnetic field of desired magnitude and direction, and then compacting the aggregate into an integral solid body. 2 Figs.

  17. Positron Annihilation Studies of the Electronic Structure of Selected High-Temperature Cuprate and Organic Superconductors.

    NASA Astrophysics Data System (ADS)

    Chan, Lie Ping

    The understanding of the electronic structure of the high-T_{c} superconductors could be important for a full theoretical description of the mechanism behind superconductivity in these materials. In this thesis, we present our measurements of the positron -electron momentum distributions of the cuprate superconductors Bi_2Sr_2CaCu _2O_8, Tl _2Ba_2Ca _2Cu_3O_ {10}, and the organic superconductor kappa-(BEDT)_2Cu(NCS) _2. We use the positron Two-dimensional Angular Correlation of Annihilation Radiation technique to make the measurements on single crystals and compare our high-statistics data with band structure calculations to determine the existence and nature of the respective Fermi surfaces. The spectra from unannealed Bi _2Sr_2CaCu _2O_8 exhibit effects of the superlattice modulation in the BiO_2 layers, and a theoretical understanding of the modulation effects on the electronic band structure is required to interpret these spectra. Since the present theory does not consider the modulation, we have developed a technique to remove the modulation effects from our spectra, and the resultant data when compared with the positron -electron momentum distribution calculation, yield features consistent with the predicted CuO_2 and BiO_2 Fermi surfaces. In the data from unannealed Tl_2Ba _2Ca_2Cu_3 O_{10}, we only observe indications of the TlO Fermi surfaces, and attribute the absence of the predicted CuO_2 Fermi surfaces to the poor sample quality. In the absence of positron-electron momentum calculations for kappa-(BEDT)_2Cu(NCS) _2, we compare our data to electronic band structure calculations, and observed features suggestive of the predicted Fermi surface contributions from the BEDT cation layers. A complete positron-electron calculation for kappa-(BEDT)_2 Cu(NCS)_2 is required to understand the positron wavefunction effects in this material.

  18. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOEpatents

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  19. Electronic structure of the bismuth family of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Donglai

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.

  20. Unconventional superconductivity in magic-angle graphene superlattices.

    PubMed

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-05

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  1. Unconventional superconductivity in magic-angle graphene superlattices

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  2. Fermiology of the strongly spin-orbit coupled superconductor Sn(1-x)In(x)Te: implications for topological superconductivity.

    PubMed

    Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi

    2013-05-17

    We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

  3. Multigap superconductivity in the charge density wave superconductor LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Das, Debarchan; Gupta, Ritu; Bhattacharyya, A.; Biswas, P. K.; Adroja, D. T.; Hossain, Z.

    2018-05-01

    The superconducting gap structure of a charge density wave (CDW) superconductor LaPt2Si2 (Tc=1.6 K) having a quasi-two-dimensional crystal structure has been investigated using muon spin rotation/relaxation (μ SR ) measurements in transverse field (TF), zero field (ZF), and longitudinal field (LF) geometries. Rigorous analysis of TF-μ SR spectra in the superconducting state corroborates that the temperature dependence of the effective penetration depth, λL, derived from muon spin depolarization, fits to a two gap s wave model (i.e., s +s wave) suggesting that the Fermi surface contains two gaps of different magnitude rather than an isotropic gap expected for a conventional s wave superconductor. On the other hand, ZF μ SR data do not show any significant change in muon spin relaxation rate above and below the superconducting transition temperature indicating the fact that time-reversal symmetry is preserved in the superconducting state of this material.

  4. Optical Tamm states in one-dimensional superconducting photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Abouti, O.; El Boudouti, E. H.; IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d'Ascq

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Differentmore » kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.« less

  5. Spin and lattice structures of single-crystalline SrFe2As2

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Ratcliff, W., II; Lynn, J. W.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Hu, Jiangping; Dai, Pengcheng

    2008-10-01

    We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2 , the parent compound of the FeAs-based superconductor (Sr,K)Fe2As2 . We find that SrFe2As2 exhibits an abrupt structural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c>a=b to orthorhombic with c>a>b . At almost the same temperature, Fe spins develop a collinear antiferromagnetic structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent with earlier work on the RFeAsO ( R=rare earth) families of materials and on BaFe2As2 , and therefore suggest that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition temperature superconductors.

  6. The magnitude of the magnetic field near the surface of a high-T(sub c) superconductor with a trapped flux

    NASA Technical Reports Server (NTRS)

    Overcash, Dan R.

    1991-01-01

    In 1986, much excitement was caused by the discovery of a class of materials that conducted electricity with zero resistance at temperatures above the boiling temperature of liquid nitrogen. This excitement was checked by the difficulties of manufacturing ceramics and the usefulness of high temperature superconductors that were restricted by their becoming high resistive conductors at small current densities. A lack of pinning of the magnetic field flux caused the return of high resistance as the current was increased in these materials. A study of the magnetic field near the surface of a high temperature superconductor is the first step in the search for a means of pinning the flux lines and increasing their critical current densities. The author found that a comparison between the defects in the surface of the superconductor and the magnetic field showed only a change in the field near the notch and the edge. No correlation was found between the surface grain or structure and the oscillations in the magnetic field. The observed changes in the magnetic field show resonances which may give an indication of the non-flux pinning in these superconductors. A flux pinning mechanism will increase the critical current densities; therefore, other methods of determining this field should be tried. The author proposes using a flux gate magnetometer with a detector wound on a ferrite core to measure the magnitude and direction of the magnetic field.

  7. The iron-age of superconductivity: structural correlations and commonalities among the various families having -Fe-Pn- slabs (Pn = P, As and Sb).

    PubMed

    Ganguli, Ashok K; Prakash, Jai; Thakur, Gohil S

    2013-01-21

    The fascination of mankind towards a sudden change of a property, like colour, shape, elasticity, viscosity, electrical conductivity and magnetism, is well known. If the change in property is such that it leads to disapperance of an existing property or development of a new property then the effect is magical. It is for this reason that superconductivity remains an enigma for scientists for over a century after Kammerlingh Onnes discovered that the electrical resistance of mercury falls to zero below a temperature of 4.2 K. Since then scientists have been enchanted by superconductivity. Over these hundred years attempts have been made to discover materials which show this effect at higher temperatures. After a very exciting period of Cu oxide superconductors (1986-1993) there has been a lull in the search for high T(c) materials. The discovery of superconductivity in 2008 at 26 K in LaOFeAs (F-doped) has renewed the excitement in the field of superconductivity. This breakthrough in an Fe-containing compound led to the discovery of several new families of Fe-based superconductors having either pnictogens (P, As) or chalcogen (Se, Te) of the type AFFeAs (A = alkaline-earth metal), AFe(2)As(2), AFeAs (A = alkali metals), A(3)M(2)O(5)Fe(2)As(2) (M = transition metals) and A(4)M(2)O(6)Fe(2)As(2). This review article discusses in detail the structural aspects of these new Fe-based superconductors which primarily consist of edge-shared distorted FeX(4) (X = pnictogen and chalcogen) tetrahedra and these tetrahedral layers are reponsible for enabling superconductivity. Extremely large upper critical field (>200 Tesla) of these superconductors make them promising for high field application. Structural commonalities and differences among different families of these superconductors have been outlined. We also discuss the common features and differences with the copper-oxide based superconductors. Here we have discussed all the Fe-based oxypnictide families (like LnOFePn, AFe(2)Pn(2), AFFePn and A(4)M(2)M'Fe(2)As(2)O(6)etc.) known today and have also included the phosphides and antimonides other than the arsenides. We have in addition discussed in detail the various factors like pressure, hole and electron doping, transition metal doping, which have not been reviewed earlier.

  8. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  9. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd High-Entropy Alloy Superconductors on a CsCl-Type Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolze, Karoline; Tao, Jing; von Rohr, Fabian O.

    We have synthesized previously unreported High-Entropy Alloys (HEAs) in the pentanary (ScZrNb) 1-x[RhPd] x and hexanary (ScZrNbTa) 1-x[RhPd] x systems. The materials have CsCl-type structures and mixed site occupancies. Both HEAs are type-II superconductors with strongly varying critical temperatures (T cs) depending on the valence electron count (VEC); the T cs increase monotonically with decreasing VEC within each series, and do not follow the trends seen for either crystalline or amorphous transition metal superconductors. The (ScZrNb) 0.65[RhPd] 0.35 HEA with the highest T c, ~9.3 K, also exhibits the largest µ 0H c2(0) = 10.7 T. The pentanary and hexanarymore » HEAs have higher superconducting transition tempera-tures than their simple binary intermetallic relatives with the CsCl-type structure and a surprisingly ductile mechanical behavior. The presence of niobium, even at the 20% level, has a positive impact on the T c. Nevertheless, niobium-free (ScZr) 0.50[RhPd] 0.50, as mother-compound of both superconducting HEAs found here, is itself superconducting, proving that superconductivity is an intrinsic feature of the bulk material.« less

  10. Sc–Zr–Nb–Rh–Pd and Sc–Zr–Nb–Ta–Rh–Pd High-Entropy Alloy Superconductors on a CsCl-Type Lattice

    DOE PAGES

    Stolze, Karoline; Tao, Jing; von Rohr, Fabian O.; ...

    2018-01-17

    We have synthesized previously unreported High-Entropy Alloys (HEAs) in the pentanary (ScZrNb) 1-x[RhPd] x and hexanary (ScZrNbTa) 1-x[RhPd] x systems. The materials have CsCl-type structures and mixed site occupancies. Both HEAs are type-II superconductors with strongly varying critical temperatures (T cs) depending on the valence electron count (VEC); the T cs increase monotonically with decreasing VEC within each series, and do not follow the trends seen for either crystalline or amorphous transition metal superconductors. The (ScZrNb) 0.65[RhPd] 0.35 HEA with the highest T c, ~9.3 K, also exhibits the largest µ 0H c2(0) = 10.7 T. The pentanary and hexanarymore » HEAs have higher superconducting transition tempera-tures than their simple binary intermetallic relatives with the CsCl-type structure and a surprisingly ductile mechanical behavior. The presence of niobium, even at the 20% level, has a positive impact on the T c. Nevertheless, niobium-free (ScZr) 0.50[RhPd] 0.50, as mother-compound of both superconducting HEAs found here, is itself superconducting, proving that superconductivity is an intrinsic feature of the bulk material.« less

  11. High-temperature superconducting superconductor/normal metal/superconducting devices

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Hunt, B. D.; Bajuk, L. J.

    1991-01-01

    We describe the fabrication and characterization of superconductor/normal metal/superconductor (SNS) devices made with the high-temperature superconductor (HTS) YBa2Cu3O(7-x). Structures of YBa2Cu3O(7-x)/Au/Nb on c-axis-oriented YBa2Cu3O(7-x) were made in both sandwich and edge geometries in order to sample the HTS material both along and perpendicular to the conducting a-b planes. These devices display fairly ideal Josephson properties at 4.2 K. In addition, devices consisting of YBa2Cu3O(7-x)/YBa2Cu3O(y)/YBa2Cu3O(7-x), with a 'normal metal' layer of reduced transition temperature YBa2Cu3O(7-x) were fabricated and show a great deal of promise for applications near 77 K. Current-voltage characteristics like those of the Resistively-Shunted Junction model are observed, with strong response to 10 GHz radiation above 60 K.

  12. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOEpatents

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  13. Superconductors

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  14. SNS Heterojunctions With New Combinations Of Materials

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.; Hunt, Brian D.; Foote, Marc C.

    1992-01-01

    New combinations of materials proposed for superconductor/normal-metal/superconductor (SNS) heterojunctions in low-temperature electronic devices such as fast switches, magnetometers, and mixers. Epitaxial heterojunctions formed between high-temperature superconductors and either oxide semiconductors or metals. Concept offers alternative to other three-layer heterojunction concepts; physical principles of operation permit SNS devices to have thicker barrier layers and fabricated more easily.

  15. Structural, electrical and mechanical properties of selenium doped thallium based high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Cavdar, S.; Kol, N.; Koralay, H.; Ozturk, O.; Asikuzun, E.; Tasci, A. T.

    2016-01-01

    In this study, highly-refined chemical powders were synthesized by having them ready in appropriate stoichiometric proportions with conventional solid state reaction method so that they would produce the superconductor TlPb0.3Sr2Ca1-xSexCu2Oy (x = 0; 0.4; 0.6; 1.0). This study aims to understand effect of the selenium doping on the superconducting, structural and mechanical properties of the aforementioned superconducting material. The effect of the doping rates on the structural and electrical properties of the sample has been identified. Electrical characteristics of the TlPb0.3Sr2Ca1-xSexCu2Oy material were measured using standard four point probe method. Structural characteristics were examined with the powder X-ray diffractometer (XRD) and scanning electron microscope (SEM). Mechanical properties were analyzed with Vickers microhardness measurements on the sample surface. According to the results, it was observed that the reflection comes from the (00l) and parallel planes increased with Se doping. Particle size increases with increasing doping ratio. According to results of the mechanical measurements, all samples exhibit indentation size effect (ISE) behavior. Comparing the obtained results with theoretical studies, it was understood that Hays Kendall approach is the best method in determination of mechanical properties and analyzing microhardness of the materials.

  16. Superconducting matrix fault current limiter with current-driven trigger mechanism

    DOEpatents

    Yuan; Xing

    2008-04-15

    A modular and scalable Matrix-type Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. An inductor is connected in series with the trigger superconductor in the trigger matrix and physically surrounds the superconductor. The current surge during a fault will generate a trigger magnetic field in the series inductor to cause fast and uniform quenching of the trigger superconductor to significantly reduce burnout risk due to superconductor material non-uniformity.

  17. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides.

    PubMed

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-06-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project.

  18. Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides

    PubMed Central

    Hosono, Hideo; Tanabe, Keiichi; Takayama-Muromachi, Eiji; Kageyama, Hiroshi; Yamanaka, Shoji; Kumakura, Hiroaki; Nohara, Minoru; Hiramatsu, Hidenori; Fujitsu, Satoru

    2015-01-01

    This review shows the highlights of a 4-year-long research project supported by the Japanese Government to explore new superconducting materials and relevant functional materials. The project found several tens of new superconductors by examining ∼1000 materials, each of which was chosen by Japanese experts with a background in solid state chemistry. This review summarizes the major achievements of the project in newly found superconducting materials, and the fabrication wires and tapes of iron-based superconductors; it incorporates a list of ∼700 unsuccessful materials examined for superconductivity in the project. In addition, described are new functional materials and functionalities discovered during the project. PMID:27877784

  19. NSSEFF Designing New Higher Temperature Superconductors

    DTIC Science & Technology

    2017-04-13

    electronic structure calculations are integrated with the synthesis of new superconducting materials, with the aim of providing a rigorous test of the...apparent association of high temperature superconductivity with electron delocalization transitions occurring at quantum critical points. We will use...realistic electronic structure calculations to assess which transition metal monopnictides are closest to electron delocalization, and hence optimal for

  20. Fe-vacancy and superconductivity in FeSe-based superconductors

    NASA Astrophysics Data System (ADS)

    Wang, C. H.; Chen, T. K.; Chang, C. C.; Lee, Y. C.; Wang, M. J.; Huang, K. C.; Wu, P. M.; Wu, M. K.

    2018-06-01

    This review summarizes recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high Tcs observed and for many similar features to the high Tc cuprate superconductors. These similarities suggest that understanding the FeSe based compounds could potentially help our understanding of the cuprates. We shall first review the common features observed in the FeSe-based system. It was found that with a careful control of material synthesizing processes, numerous rich phases have been observed in the FeSe-based system. Detailed studies show that the Fe-vacancy ordered phases found in the FeSe based compounds, which are non-superconducting Mott insulators, are the parent compounds of the superconductors. Superconductivity emerges from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Recent high temperature X-ray diffraction experiments show that the degree of structural distortion associated with the disorder of Fe-vacancy is closely related to volume fraction of the superconductivity observed. These results suggest the strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe based superconductors.

  1. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  2. Towards novel organic high-Tc superconductors: Data mining using density of states similarity search

    NASA Astrophysics Data System (ADS)

    Geilhufe, R. Matthias; Borysov, Stanislav S.; Kalpakchi, Dmytro; Balatsky, Alexander V.

    2018-02-01

    Identifying novel functional materials with desired key properties is an important part of bridging the gap between fundamental research and technological advancement. In this context, high-throughput calculations combined with data-mining techniques highly accelerated this process in different areas of research during the past years. The strength of a data-driven approach for materials prediction lies in narrowing down the search space of thousands of materials to a subset of prospective candidates. Recently, the open-access organic materials database OMDB was released providing electronic structure data for thousands of previously synthesized three-dimensional organic crystals. Based on the OMDB, we report about the implementation of a novel density of states similarity search tool which is capable of retrieving materials with similar density of states to a reference material. The tool is based on the approximate nearest neighbor algorithm as implemented in the ANNOY library and can be applied via the OMDB web interface. The approach presented here is wide ranging and can be applied to various problems where the density of states is responsible for certain key properties of a material. As the first application, we report about materials exhibiting electronic structure similarities to the aromatic hydrocarbon p-terphenyl which was recently discussed as a potential organic high-temperature superconductor exhibiting a transition temperature in the order of 120 K under strong potassium doping. Although the mechanism driving the remarkable transition temperature remains under debate, we argue that the density of states, reflecting the electronic structure of a material, might serve as a crucial ingredient for the observed high Tc. To provide candidates which might exhibit comparable properties, we present 15 purely organic materials with similar features to p-terphenyl within the electronic structure, which also tend to have structural similarities with p-terphenyl such as space group symmetries, chemical composition, and molecular structure. The experimental verification of these candidates might lead to a better understanding of the underlying mechanism in case similar superconducting properties are revealed.

  3. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  4. Analytical study of space processing of immiscible materials for superconductors and electrical contacts

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Collings, E. W.; Abbott, W. H.; Maringer, R. E.

    1977-01-01

    The results of a study conducted to determine the role space processing or materials research in space plays in the superconductor and electrical contact industries are presented. Visits were made to manufacturers, users, and research organizations connected with these products to provide information about the potential benefits of the space environment and to exchange views on the utilization of space facilities for manufacture, process development, or research. In addition, space experiments were suggested which could result in improved terrestrial processes or products. Notable examples of these are, in the case of superconductors, the development of Nb-bronze alloys (Tsuei alloys) and, in the electrical contact field, the production of Ag-Ni or Ag-metal oxide alloys with controlled microstructure for research and development activities as well as for product development. A preliminary experimental effort to produce and evaluate rapidly cooled Pb-Zn and Cu-Nb-Sn alloys in order to understand the relationship between microstructure and superconducting properties and to simulate the fine structure potentially achievable by space processing was also described.

  5. Weak links in high critical temperature superconductors

    NASA Astrophysics Data System (ADS)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.

  6. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  7. Chemical Substitution and High Pressure Effects on Superconductors in the LnOBiS$$_2$$ (Ln = La-Nd) System

    DOE PAGES

    Fang, Yuankan; Wolowiec, Christian T.; Yazici, Duygu; ...

    2015-12-14

    A large number of compounds which contain BiSmore » $$_2$$ layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS$$_2$$-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS$$_2$$ layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS$$_2$$-based compounds, with special attention given to the compounds in the LnOBiSS$$_2$$ (Ln = La-Nd) system. Strategies which are reported to be essential in optimizing superconductivity of these materials will also be discussed.« less

  8. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  9. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the cuprates, a superconducting 'dome' is formed upon doping the parent compounds, which exhibits antiferromagnetic and structural transitions at temperatures well above the superconducting critical temperature. This special section touches on several key aspects of these new iron-based superconductors. These topics include materials synthesis and basic characterization, the role of impurities and pairing symmetry, and mapping of the superconducting phase diagram as a function of chemical doping and pressure. Studies of transport, magnetic and optical properties account for a substantial portion of this special section. Particular attention is devoted to the role of magnetic excitations and the issue of the possible coexistence of magnetism and superconductivity. Attempts to understand the nature of the superconducting pairing are discussed from several angles, including tunneling spectroscopy and the London penetration depth. The vortex state is probed by magnetization, transport and neutron scattering, while the irreversible state is probed by studies of magnetic and transport critical current density.

  10. The use of high temperature superconductors to levitate lunar telescope

    NASA Technical Reports Server (NTRS)

    Brown, Beth A.

    1992-01-01

    The objective of this paper was to assist in the construction of a lunar telescope mirror model by conducting research on composite materials and other lightweight, rigid materials, and by determining how much weight can be levitated by available superconductors. It is believed that with the construction of four magnets suspended over four bulk superconductors (or vice versa), there should be no problems lifting a model mirror and stabilizing it at different positions. It may be necessary to increase the size and quality of the superconductors and/or magnets in order to achieve this.

  11. Superconductivity in dense carbon-based materials

    DOE PAGES

    Lu, Siyu; Liu, Hanyu; Naumov, Ivan I.; ...

    2016-03-08

    Guided by a simple strategy in searching of new superconducting materials we predict that high temperature superconductivity can be realized in classes of high-density materials having strong sp 3 chemical bonding and high lattice symmetry. Here, we examine in detail sodalite carbon frameworks doped with simple metals such as Li, Na, and Al. Though such materials share some common features with doped diamond, their doping level is not limited and the density of states at the Fermi level in them can be as high as that in the renowned MgB 2. Altogether, with other factors, this boosts the superconducting temperaturemore » (T c) in the materials investigated to higher levels compared to doped diamond. For example, the superconducting T c of sodalite-like NaC 6 is predicted to be above 100 K. This phase and a series of other sodalite-based superconductors are predicted to be metastable phases but are dynamically stable. In owing to the rigid carbon framework of these and related dense carbon-materials, these doped sodalite-based structures could be recoverable as potentially useful superconductors.« less

  12. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing [Albany, NY; Tekletsadik, Kasegn [Rexford, NY

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  13. Rigid levitation, flux pinning, thermal depinning and fluctuation in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Brandt, E. H.

    1991-01-01

    Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries.

  14. Percolative theories of strongly disordered ceramic high-temperature superconductors.

    PubMed

    Phillips, J C

    2010-01-26

    Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T(c) much larger than strongly coupled metallic superconductors like Pb (T(c) = 7.2 K, E(g)/kT(c) = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This "double percolation" model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T(c) in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T(c) ratios, and shows that these are similar to those of conventional strongly coupled superconductors.

  15. Performance of ceramic superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  16. Studies of High Critical Transition Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xue Zhi

    1990-01-01

    In early 1987 the high-T_{ rm c} superconductor, YBa_2 Cu_3O_{7 -delta}, with T_{ rm c} ~eq 90K was successfully made in our laboratory by a standard ceramic technique. Later Tl_2Ca _2Ba_2Cu_3 O_{10} with T _{rm c} ~eq 120K was produced by a special procedure. Structural analysis by x-ray diffraction showed that YBa_2 Cu_3O_{7 -delta} was responsible for the high -T_{rm c}, the so called 123 phase. It is an oxygen deficient perovskite with the orthorhombic structure, space group Pmmm, lattice constant a = 3.8243, b = 3.8862 and c = 11.667 A. Oxygen vacancies are very important to the superconducting properties. An impurity, Y_2BaCuO_5 , with a green colour, was identified as a semiconducting phase. A technique to grow single crystals of YBa _2Cu_3O_ {7-delta} is described. The crystals are rectangular up to 2 x 2 x 0.2 mm^3 in size. Two phases, Tl_2CaBa _2Cu_2O_8 (the 2122 phase) and Tl_2Ca _2Ba_2Cu _3O_{10} (the 2223 phase), are responsible for the high-T _{rm c} in the Tl-system; they have a tetragonal or pseudotetragonal structure with space group I4/mmm. Resistivity and magnetic ac susceptibility results show that high-T_{rm c} materials have a sharp superconducting transition and many properties in common with conventional superconductors. The shielding effect is closely related to the properties of grain boundaries. Magnetic ordering at low temperature (below 10K) of high-T_{rm c} materials was discovered by Mossbauer experiments with ^{57}Fe doped samples. Substitution of Fe for Cu reduced the superconducting transition temperature and the shielding effect. Theories of superconductivity for conventional and the new superconductors are reviewed and related to the experimental results.

  17. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  18. Non-trivial role of interlayer cation states in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Valenti, Roser; Guterding, Daniel; Jeschke, Harald O.; Glasbrenner, J. K.; Bascones, E.; Mazin, I. I.

    Unconventional superconductivity in iron pnictides and chalcogenides has been suggested to be controlled by the interplay of low-energy antiferromagnetic spin fluctuations and the particular topology of the Fermi surface in these materials. Under this assumption, one would expect the large class of isostructural and isoelectronic iron germanide compounds to be good superconductors, but they aren't. In this talk we will argue that superconductivity in iron germanides is suppressed by strong ferromagnetic tendencies, which surprisingly do not originate from changes in bond-angles or bond-distances with respect to iron pnictides, but are due to changes in the electronic structure in a wide range of energies happening upon substitution of atom species (As by Ge and the corresponding spacer cations). We will discuss the implications of these results in the general context of Fe-based superconductors. Funding by the Deutsche Forschungsgemeinschaft is acknowledged.

  19. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2017-12-09

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  20. Superconductivity and the periodic table: from elements to materials.

    PubMed

    Simon, Arndt

    2015-03-13

    Based on the normal-state electronic band structure, the necessary condition for a metal to become a superconductor is the simultaneous occurrence of flat and steep bands at the Fermi level. The sufficient condition at least for conventional superconductors is a strong enough coupling of the flat band states to the lattice, e.g. via phonons. Selected elements (Te) and compounds of the rare earth metals (RE(2)C(3), REC(2), RE(2)X(2)C(2) with X=halogen) and MgB(2) serve as examples to illustrate the idea. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Giant ultrafast Kerr effect in superconductors

    NASA Astrophysics Data System (ADS)

    Robson, Charles W.; Fraser, Kieran A.; Biancalana, Fabio

    2017-06-01

    We study the ultrafast Kerr effect and high-harmonic generation in superconductors by formulating a model for a time-varying electromagnetic pulse normally incident on a thin-film superconductor. It is found that superconductors exhibit exceptionally large χ(3 ) due to the progressive destruction of Cooper pairs, and display high-harmonic generation at low incident intensities, and the highest nonlinear susceptibility of all known materials in the THz regime. Our theory opens up avenues for accessible analytical and numerical studies of the ultrafast dynamics of superconductors.

  2. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  3. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  4. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  5. Processing of Mixed Oxide Superconductors

    DTIC Science & Technology

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  6. A Novel Variable-Focus Lens for HFGW

    NASA Astrophysics Data System (ADS)

    Woods, R. Clive

    2006-01-01

    Li and Torr published calculations claiming to show that gravitational waves (GWs) propagate inside superconductors with a phase velocity reduction (compared to free space) by a factor n ~ 300× and a wavenumber increase by a factor n. This gives major opportunities for designing future GW components able to focus, refract, reflect, and otherwise manipulate gravitational waves for efficient coupling to detectors, transmitters, generators, resonant chambers, and other sensors. To exploit this result, a novel type of HFGW lens design is proposed here using a magnetic field to adjust the focal length in an infinitely-variable manner. Type-II superconductors do not always completely expel large magnetic fields; above their lower critical field they allow vortices of magnetic flux to channel the magnetic field through the material. Within these vortices, the superconductor is magnetically quenched and so behaves as a non-superconductor. Varying the applied magnetic field varies the proportion of material that is quenched. This subsequently affects GW propagation behavior through a type II superconductor. Therefore, using a suitable non-uniform magnetic field, the GW optical path length may be arranged to vary in a technologically useful manner. A GW lens may be designed with focal length dependent upon the applied magnetic field. Such a lens would be invaluable in the design of advanced GW optics since focusing will be achieved electrically with no moving parts; for this reason it would be unparalleled in conventional optics. Since, therefore, variations in n (due to calculation error limits) can be compensated electrically, successful demonstration of this device would confirm the Li and Torr prediction much more easily than directly using a fixed lens structure. The device would also enable fast auto-focusing, zooming, and imaging tomography using electronic servos following development of the necessary HFGW detectors.

  7. Low resistivity contact to iron-pnictide superconductors

    DOEpatents

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  8. A Thermally Actuated Flux Pump for Energizing YBCO Pucks

    DTIC Science & Technology

    2016-05-01

    transmitted through the thermal magnetic material sweeping magnetic field lines into the superconducting puck. We used YBCO as the superconductor with...of the YBCO sweeping vortices into the superconductor . These vortices would gradually accumulate in the superconductor . Successes have been reported...superconducting flux pump,” PHYSICA C, vol. 468, pp. 153-159, 2008. [2] T. A. Coombs, Z. Hong, Y. Yan and C. D. Rawlings, “ Superconductors : The

  9. Realization of High-temperature Superconductivity in Nano-carbon Materials and Its Application

    DTIC Science & Technology

    2015-07-13

    hottest topics in condensed matter physics and also for application to zero- emission energy system. In particular, carbon-based superconductors have...ernission energy system. In particular, carbon-based superconductors have attracted significant attention for high transition temperature (T c). In...e-based superconductors have previously shown T c > 40K among various superconductors . In particular, carbon-base new SC exhibited T c < 20K in any

  10. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    NASA Astrophysics Data System (ADS)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  11. SRF MATERIALS OTHER THAN NIOBIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Anne-Marie

    2008-02-12

    For the past three decades, bulk niobium has been the material of choice for SRF cavity applications. Alternative materials, mainly Nb compounds and A15 compounds have been investigated with moderate effort in the past. In the recent years, RF cavity performance has approached the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternative materials to niobium. A few laboratories around the world are now investigating superconductors with higher transition temperature Tc for application to SRF cavities. This paper gives an overview of the results obtained and challengesmore » encountered for Nb compounds and A15 compounds, as well as for MgB2, for SRF cavity applications. An interesting alternative has been recently proposed by Alex Gurevich with the Superconductor-Insulator-Superconductor multilayer approach. This could potentially lead to further improvement in RF cavity performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  12. Fabrication of microwave guides using high-Tc superconductors. Final report, 15 July 1989-14 January 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, S.B.

    1990-01-14

    The objective of this study was to produce bulk high Tc superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x} with microwave conductivity at least as good or better than that of copper. The subsequent aim was to fabricate cylindrical wave guide using this material. The ultimate goal of this study is to produce YBa{sub 2}Cu{sub 3}O{sub 7-x} with microwave conductivity exceedingly higher (at least two orders of magnitude better) than that of copper. In principle, this is possible if the microstructure of the superconductor material is carefully controlled. The above-stated goal could be easily achieved if the large single crystals of YBa{sub 2}Cu{submore » 3}O{sub 7-x} are available or if the inside surface of a suitable substrate material in the form of hollow cylinder, could be coated with the superconductor material of high quality. The former approach, currently, seems to be far from practical realization.« less

  13. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  14. Development and evaluation of superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Lee, Burtrand; Hsi, Dennis; Modi, Vibhakar; Marone, Matt

    1990-01-01

    An approach to the application of high Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid-conductor process (RCP), involves the combination of a pre-formed, sintered, and tested superconductor material with an appropriate, rigid substrate via an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Emphasis was on the practical means to achieve functional, reliable, and reproducible components. Although all of the work described in this report involved a YBa2Cu3Osub(7-x) high Tc superconductor material, the techniques developed and conclusions reached are equally applicable to other high Tc materials.

  15. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    PubMed

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  16. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    PubMed

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  17. Highly oxidized superconductors

    DOEpatents

    Morris, D.E.

    1994-09-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  18. Highly oxidized superconductors

    DOEpatents

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  19. Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors

    DOE PAGES

    Pan, Bingying; Shen, Yao; Hu, Die; ...

    2017-07-25

    Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less

  20. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE PAGES

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse; ...

    2017-01-06

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  1. Reorientation of the diagonal double-stripe spin structure at Fe 1+yTe bulk and thin-film surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanke, Torben; Singh, Udai Raj; Cornils, Lasse

    Here, establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe 1+yTe, the parent compound of Fe 1+ySe 1$-x$Tex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe 1+yTe and thin films grown on the topological insulator Bi 2Te 3 is canted out of the high-symmetry directionsmore » of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.« less

  2. Electron-phonon interaction in the binary superconductor lutetium carbide LuC2 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dilmi, S.; Saib, S.; Bouarissa, N.

    2018-06-01

    Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.

  3. General Rule of Negative Effective Ueff System & Materials Design of High-Tc Superconductors by ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori

    2014-03-01

    Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.

  4. Versatile Titanium Silicide Monolayers with Prominent Ferromagnetic, Catalytic, and Superconducting Properties: Theoretical Prediction.

    PubMed

    Wu, Qisheng; Zhang, Jun-Jie; Hao, Peipei; Ji, Zhongyang; Dong, Shuai; Ling, Chongyi; Chen, Qian; Wang, Jinlan

    2016-10-06

    On the basis of global structure search and density functional theory calculations, we predict a new class of two-dimensional (2D) materials, titanium silicide (Ti 2 Si, TiSi 2 , and TiSi 4 ) monolayers. They are proved to be energetically, dynamically, and thermally stable and own excellent mechanical properties. Among them, Ti 2 Si is a ferromagnetic metal with a magnetic moment of 1.37 μ B /cell, while TiSi 2 is an ideal catalyst for the hydrogen evolution reaction with a nearly zero free energy of hydrogen adsorption. More importantly, electron-phonon coupling calculations suggest that TiSi 4 is a robust 2D phonon-mediated superconductor with a transition temperature of 5.8 K, and the transition temperature can be enhanced up to 11.7 K under a suitable external strain. The versatility makes titanium silicide monolayers promising candidates for spintronic materials, hydrogen evolution catalysts, and 2D superconductors.

  5. Tailoring the Crystal Structure Toward Optimal Super Conductors

    DTIC Science & Technology

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0210 TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS Emilia Morosan WILLIAM MARSH RICE UNIV HOUSTON TX Final...TAILORING THE CRYSTAL STRUCTURE TOWARD OPTIMAL SUPERCONDUCTORS 5a. CONTRACT NUMBER FA9550-11-1-0023 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...studied the properties of layered transition metal compounds in search of unconventional superconductors . The aim is to identify ground states competing

  6. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  7. Universal lower limit on vortex creep in superconductors

    DOE PAGES

    Eley, Serena Merteen; Miura, Masashi; Maiorov, Boris Alfredo; ...

    2017-02-13

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose–Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors4. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu 3O 7–δ. This was puzzling because Smore » is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu 3O 7–δ. Here, we report very slow creep in BaFe 2(As 0.67P 0.33) 2 films, and propose the existence of a universal minimum realizable S ~ Gi 1/2(T/T c) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. Furthermore, this limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.« less

  8. Universal lower limit on vortex creep in superconductors

    NASA Astrophysics Data System (ADS)

    Eley, S.; Miura, M.; Maiorov, B.; Civale, L.

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ~ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  9. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    PubMed Central

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  10. Monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Barfknecht, Andrew T. (Inventor); Garcia, Graham A. (Inventor); Russell, Stephen D. (Inventor); Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature superconducting device of the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  11. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. The disappearing momentum of the supercurrent in the superconductor-to-normal phase transformation

    NASA Astrophysics Data System (ADS)

    Hirsch, J. E.

    2016-06-01

    A superconductor in a magnetic field has surface currents that prevent the magnetic field from penetrating its interior. These currents carry kinetic energy and mechanical momentum. When the temperature is raised and the system becomes normal the currents disappear. Where do the kinetic energy and mechanical momentum of the currents go, and how? Here we propose that the answer to this question reveals a key necessary condition for materials to be superconductors, that is not part of conventional BCS-London theory: superconducting materials need to have hole carriers.

  13. High-temperature superconductor antenna investigations

    NASA Technical Reports Server (NTRS)

    Karasack, Vincent G.

    1990-01-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  14. Axial force in a superconductor magnet journal bearing

    NASA Astrophysics Data System (ADS)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  15. Superconductor-normal-superconductor with distributed Sharvin point contacts

    DOEpatents

    Holcomb, Matthew J.; Little, William A.

    1994-01-01

    A non-linear superconducting junction device comprising a layer of high transient temperature superconducting material which is superconducting at an operating temperature, a layer of metal in contact with the layer of high temperature superconducting material and which remains non-superconducting at the operating temperature, and a metal material which is superconducting at the operating temperature and which forms distributed Sharvin point contacts with the metal layer.

  16. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  17. Determination of spin polarization using an unconventional iron superconductor

    DOE PAGES

    Gifford, J. A.; Chen, B. B.; Zhang, J.; ...

    2016-11-21

    Here, an unconventional iron superconductor, SmO 0.7F 0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La 0.67Sr 0.33MnO 3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.

  18. Low resistivity contacts to YBa2Cu3O(7-x) superconductors

    NASA Technical Reports Server (NTRS)

    Hsi, Chi-Shiung; Haertling, Gene H.

    1991-01-01

    Silver, gold, platinum, and palladium metals were investigated as electroding materials for the YBa2Cu3O(7-x) superconductors. Painting, embedding, and melting techniques were used to apply the electrodes. Contact resistivities were determined by: (1) type of electrode; (2) firing conditions; and (3) application method. Electrodes fired for long times exhibited lower contact resistivities than those fired for short times. Low-resistivity contacts were found for silver and gold electrodes. Silver, which made good ohmic contact to the YBa2Cu3O(7-x) superconductor with low contact resistivities was found to be the best electroding material among the materials evaluated in this investigation.

  19. Method for improving performance of high temperature superconductors within a magnetic field

    DOEpatents

    Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  20. Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors

    DOE PAGES

    Kasahara, Y.; Takeuchi, Y.; Zadik, R. H.; ...

    2017-02-17

    Controlled access to the border of the Mott insulating state by variation of control parameters offers exotic electronic states such as anomalous and possibly high-transition-temperature (T c) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a superconductor for the first time in three-dimensional materials, but the impact of dimensionality and electron correlation on superconducting properties has remained unclear. Here we show that, near the Mott insulating phase, the upper critical field H c2 of the fulleride superconductors reaches values as high as ~90 T—the highest among cubic crystals. This is accompanied by a crossover from weak-more » to strong-coupling superconductivity and appears upon entering the metallic state with the dynamical Jahn–Teller effect as the Mott transition is approached. Lastly, these results suggest that the cooperative interplay between molecular electronic structure and strong electron correlations plays a key role in realizing robust superconductivity with high-T c and high-H c2.« less

  1. Upper critical field reaches 90 tesla near the Mott transition in fulleride superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasahara, Y.; Takeuchi, Y.; Zadik, R. H.

    Controlled access to the border of the Mott insulating state by variation of control parameters offers exotic electronic states such as anomalous and possibly high-transition-temperature (T c) superconductivity. The alkali-doped fullerides show a transition from a Mott insulator to a superconductor for the first time in three-dimensional materials, but the impact of dimensionality and electron correlation on superconducting properties has remained unclear. Here we show that, near the Mott insulating phase, the upper critical field H c2 of the fulleride superconductors reaches values as high as ~90 T—the highest among cubic crystals. This is accompanied by a crossover from weak-more » to strong-coupling superconductivity and appears upon entering the metallic state with the dynamical Jahn–Teller effect as the Mott transition is approached. Lastly, these results suggest that the cooperative interplay between molecular electronic structure and strong electron correlations plays a key role in realizing robust superconductivity with high-T c and high-H c2.« less

  2. Microwave surface resistance of bulk YBa2Cu3O6+x material

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Kalokitis, D.; Belohoubek, E.; Sundar, H. G. K.; Safari, A.

    1988-10-01

    Superconducting Y-Ba-Cu-O samples were prepared by conventional solid-state reaction. The microwave surface resistance of 1:2:3 compound superconductor material was measured in a special disk resonator structure at 10 GHz. At liquid-nitrogen temperatures the microwave surface resistance is comparable to that of Au. At lower temperature (~10 K) the surface resistance is an order of magnitude lower than that of Au at the same temperature.

  3. Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Dan, Yuichiro; Ikeda, Ryusuke

    2015-10-01

    Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.

  4. Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.

    PubMed

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-11-08

    Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

  5. Lattice parameters guide superconductivity in iron-arsenides

    NASA Astrophysics Data System (ADS)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  6. Lattice parameters guide superconductivity in iron-arsenides.

    PubMed

    Konzen, Lance M N; Sefat, Athena S

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  7. Fractal geometry of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Mosolov, A. B.

    1989-10-01

    Results of a study of the microstructure geometry of superconducting composites prepared from cryochemically produced powders of YBa2Cu3O(x) and Ag are reported. It is found that the structure of the superconducting cermets is characterized by fractal geometry, which could be important in describing the electrophysical (e.g., transport) and mechanical properties of such materials.

  8. Method for making a monolithic integrated high-T.sub.c superconductor-semiconductor structure

    NASA Technical Reports Server (NTRS)

    Burns, Michael J. (Inventor); de la Houssaye, Paul R. (Inventor); Russell, Stephen D. (Inventor); Garcia, Graham A. (Inventor); Barfknecht, Andrew T. (Inventor); Clayton, Stanley R. (Inventor)

    2000-01-01

    A method for the fabrication of active semiconductor and high-temperature perconducting devices on the same substrate to form a monolithically integrated semiconductor-superconductor (MISS) structure is disclosed. A common insulating substrate, preferably sapphire or yttria-stabilized zirconia, is used for deposition of semiconductor and high-temperature superconductor substructures. Both substructures are capable of operation at a common temperature of at least 77 K. The separate semiconductor and superconductive regions may be electrically interconnected by normal metals, refractory metal silicides, or superconductors. Circuits and devices formed in the resulting MISS structures display operating characteristics which are equivalent to those of circuits and devices prepared on separate substrates.

  9. Study of the glass formation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  10. Final Technical Report Grant No. DE-FG02-97ER45653 Lance E. De Long, Principal Investigator, University of Kentucky Period of Performance: 09/01/97 to 05/14/15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Long, Lance Eric

    Prior to 1997, the PI had studied the unusual upper critical magnetic field phase boundaries of several novel or exotic types of superconductors, including charge density wave materials such as NbSe 2, organic superconductors such as κ-(ET) 2Cu[N(CN) 2]Br, high-temperature oxide superconductors such as (Ba,K)BiO 3 and the cuprates, heavy fermion superconductors such as U 6Fe, UBe 13, URu 2Si 2 and UPt 3, and re-entrant Kondo alloys such as (La,Ce)Al 2 and ferromagnetic superconductors such as ErRh 4B 4. Most of these materials exhibited marked positive or negative curvature of H C2(T) which could not be explained by traditionalmore » pair-breaking models. It became clear that many of these materials had very short coherence lengths that made quantized vortices highly mobile (depinned) near the phase boundary, and the fundamental, equilibrium H C2(T) difficult to measure using finite field or current drives. These problems made the underlying physics obscure, and led to erroneous interpretations of experimental data in terms of models of exotic superconducting pairing mechanisms. Around 1995, these issues led the PI to take advantage of modern electron beam lithography techniques for patterning superconducting and ferromagnetic thin films on the nanoscale. Primarily due to strong magnetic shape anisotropy effects, EBL patterning has led to enhanced control of the spatial distribution and dynamics of topological defects such as domain walls and magnetic vortices, which can create serious energy dissipation and other limitations for modern devices. Moreover, finite size and interface effects also strongly alter phase transition temperatures and phase boundaries of superconducting and magnetic films, as well as introduce barriers to equilibration, enhanced fluctuations and alter magnetic relaxation. Geometrical frustration and spin ice behavior can also be systematically controlled in patterned film media. Film patterning thus provides an excellent tool for conducting highly-controlled, fundamental studies of cooperative phases and interactions in artificially structured condensed matter.« less

  11. Upper critical and irreversibility fields in Ni- and Co-doped pnictide bulk superconductors

    NASA Astrophysics Data System (ADS)

    Nikolo, Martin; Singleton, John; Solenov, Dmitry; Jiang, Jianyi; Weiss, Jeremy; Hellstrom, Eric

    2018-05-01

    A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)2As2 (large grain and small grain samples), Ba(Fe0.94Ni0.06)2As2, Ba(Fe0.92Co0.08)2As2, and Ba(Fe0.92Co0.09)2As2 polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H-T) phase diagrams, starting at 1.5 K, were measured. The higher temperature, upper critical field Hc2 data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The large values of the Maki fitting parameter α indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. Table of measured physical parameters allows us to compare these pnictide superconductors for different Co- and Ni- doping levels and granularity.

  12. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    NASA Astrophysics Data System (ADS)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  13. Ab-initio study of C15-type Laves phase superconductor LaRu2

    NASA Astrophysics Data System (ADS)

    Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur

    2017-01-01

    Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.

  14. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  15. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  16. Progress of research of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Tanaka, Shoji

    1991-01-01

    Research in the area of of high T(sub c) superconductors has made great progress in the last few years. New materials were found and the systematic investigation of these materials has contributed to understanding the mechanism of high T(sub c) superconductivity. The critical currents in thin films, bulks, and tapes increased drastically, and the origin of flux pinning will be clarified in the near future. The future of high T(sub c) superconductivity, in both the basic and applied research areas, is very optimistic. Recent activities in research of high T(sub c) superconductivity and superconductors in Japan are overviewed.

  17. 415th Brookhaven Lecture

    ScienceCinema

    Ivan Bozovic

    2017-12-09

    "Atomic-Layer Engineering of Cuprate Superconductors." Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the "high-temperature superconductors" of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.

  18. Topological states of condensed matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhang, Shou-Cheng

    Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

  19. Topological states of condensed matter

    DOE PAGES

    Wang, Jing; Zhang, Shou-Cheng

    2017-10-25

    Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

  20. Isoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    NASA Astrophysics Data System (ADS)

    von Rohr, Fabian O.; Cava, Robert J.

    2018-03-01

    High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.

  1. Depositing High-T(sub c) Superconductors On Normal-Conductor Wires

    NASA Technical Reports Server (NTRS)

    Kirlin, Peter S.

    1994-01-01

    Experiments have demonstrated feasibility of depositing thin layers of high-T(sub c) superconductor on normally electrically conductive wires. Superconductivity evident at and below critical temperature (T{sub c}) of 71 K. OMCVD, organometallic vapor deposition, apparatus coats Ag wire with layer high-T(sub c) superconductor. Superconductive phase of this material formed subsequently by annealing under controlled conditions.

  2. Formation of Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) Superconductors from an Undercooled Melt Via Aero-Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Gustafson, D. E.; Hofmeister, W. H.; Bayuzick, R. J.

    2001-01-01

    Melt processing of RE123 superconductors has gained importance in recent years. While the first high temperature superconductors (HTSCs) were made using traditional ceramic press and sinter technology, recent fabrication efforts have employed alternate processing techniques including laser ablation and ion beam assisted deposition for thin film fabrication of tapes and wires and melt growth for bulk materials. To optimize these techniques and identify other potential processing strategies, phase relation studies on HTSCs have been conducted on a wide variety of superconducting compounds using numerous processing strategies. This data has enhanced the understanding of these complex systems and allowed more accurate modeling of phase interactions. All of this research has proved useful in identifying processing capabilities for HTSCs but has failed to achieve a breakthrough for wide spread application of these materials. This study examines the role of full to partial substitution of Nd in the Y123 structure under rapid solidification conditions. Aero-acoustic levitation (AAL) was used to levitate and undercool RE123 in pure oxygen binary alloys with RE = Nd an Y along a range of compositions corresponding to Y(x)Nd(1-x) Ba2Cu3O(7-delta) (0 = or < x < or = 0.7) which were melted by a CO2 laser. Higher Y content spheres could not be melted in the AAL and were excluded from this report. Solidification structures were examined using scanning electron microscopy, electron dispersive spectroscopy, and powder x-ray diffraction to characterize microstructures and identify phases.

  3. Design of High Field Solenoids made of High Temperature Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductormore » (HTS). Finally, a technological winding process was proposed and the required tooling is designed.« less

  4. Emergence of superconductivity in heavy-electron materials

    PubMed Central

    Yang, Yi-feng; Pines, David

    2014-01-01

    Although the pairing glue for the attractive quasiparticle interaction responsible for unconventional superconductivity in heavy-electron materials has been identified as the spin fluctuations that arise from their proximity to a magnetic quantum critical point, there has been no model to describe their superconducting transition at temperature Tc that is comparable to that found by Bardeen, Cooper, and Schrieffer (BCS) for conventional superconductors, where phonons provide the pairing glue. Here we propose such a model: a phenomenological BCS-like expression for Tc in heavy-electron materials that is based on a simple model for the effective range and strength of the spin-fluctuation-induced quasiparticle interaction and reflects the unusual properties of the heavy-electron normal state from which superconductivity emerges. We show that it provides a quantitative understanding of the pressure-induced variation of Tc in the “hydrogen atoms” of unconventional superconductivity, CeCoIn5 and CeRhIn5, predicts scaling behavior and a dome-like structure for Tc in all heavy-electron quantum critical superconductors, provides unexpected connections between members of this family, and quantifies their variations in Tc with a single parameter. PMID:25489102

  5. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe 2 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jianjun; Lei, Hechang; Petrovic, Cedomir

    High pressure resistance, susceptibility, and Fe K β x-ray emission spectroscopy measurements were performed on Fe-ladder compound BaFe 2 Se 3 . Pressure-induced superconductivity was observed which is similar to the previously reported superconductivity in the BaFe 2 S 3 samples. The slope of local magnetic moment versus pressure shows an anomaly across the insulator-metal transition pressure in the BaFe 2 Se 3 samples. The local magnetic moment is continuously decreasing with increasing pressure, and the superconductivity appears only when the local magnetic moment value is comparable to the one in the iron-pnictide superconductors. Our results indicate that the compressedmore » BaFe 2 C h 3 ( C h = S , Se) is a new family of iron-based superconductors. Despite the crystal structures completely different from the known iron-based superconducting materials, the magnetism in this Fe-ladder material plays a critical role in superconductivity. This behavior is similar to the other members of iron-based superconducting materials.« less

  6. PREFACE: 10th International Conference on Materials and Mechanisms of Superconductivity (M2S-X)

    NASA Astrophysics Data System (ADS)

    Greene, L. H.; Zhu, J.-X.; Wang, H.; Meen, J.; Lorenz, B.; Dong, X. L.; dela Cruz, C. R.; Carlson, E.; Bud'ko, S. L.; Bauer, E.; Paglione, J.

    2013-07-01

    The 2012 Materials and Mechanisms of Superconductivity Conference (M2S 2012), which occurs every three years, brought together world experts and young scientists to discuss open questions in the fundamental physics and applications of superconductors, and to disseminate the latest theoretical and experimental research results in superconductors and related novel materials. This conference of 600 participants acted as a valuable training ground in this technologically important area. We focused on key unanswered questions in high-temperature cuprate superconductors, high-temperature iron-based superconductors, topological superconductors, organic superconductors, and heavy-electron superconductors. The discovery of new materials and novel technological applications for electronic devices and for energy transmission and storage was emphasized. There were special sessions on superconductivity and energy, and outreach sessions, and an evening public lecture. There were also junior researcher symposia interspersed within the conference, thus providing an ideal environment for advanced graduate students and postdoctoral researchers to explore the latest theoretical and experimental methods used to investigate challenging questions in the physics of materials as it relates to both fundamental science and technological applications. These proceedings are an archival testament to the excitement in the field and provide a valuable snapshot of the cutting-edge research of 2012. We hope this will be a valuable resource to active researchers in the field as well as an encouraging volume to excite new researchers to the ever-growing, multifaceted field of superconductivity. We thank Bernd Lorenz and his Publications Committee for their tremendously creative and diligent work in putting this volume together. This Conference would not have been possible without the tireless work of our Program Committee, Chaired by Rick Greene and Co-Chaired by Mike Norman. Becky McDuffee, our Conference Secretary, deserves special mention for her Olympian efforts. And of course, many thanks to all of our ~600 participants, who made this entire conference such a success. George Crabtree Laura Greene Peter Johnson The PDF also contains the organizing, program and publication committees, prize winners, conference photographs, sponsors and supporters.

  7. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  8. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures.

    PubMed

    Skopelitis, Petros; Cherotchenko, Evgenia D; Kavokin, Alexey V; Posazhennikova, Anna

    2018-03-09

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  9. Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures

    NASA Astrophysics Data System (ADS)

    Skopelitis, Petros; Cherotchenko, Evgenia D.; Kavokin, Alexey V.; Posazhennikova, Anna

    2018-03-01

    We predict a strong enhancement of the critical temperature in a conventional Bardeen-Cooper-Schrieffer (BCS) superconductor in the presence of a bosonic condensate of exciton polaritons. The effect depends strongly on the ratio of the cutoff frequencies for phonon and exciton-polariton mediated BCS superconductivity, respectively. We also discuss a possible design of hybrid semiconductor-superconductor structures suitable for the experimental observation of such an effect.

  10. Electro-physical properties of superconducting ceramic thick film prepared by partial melting method.

    PubMed

    Lee, Sang Heon

    2013-05-01

    BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.

  11. Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.

    2016-04-01

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  12. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  13. Method of producing highly oxidized superconductors containing barium, copper, and a third metal

    DOEpatents

    Morris, Donald E.

    1996-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  14. Positron annihilation in perovskite superconductors; Theory and experiment

    NASA Astrophysics Data System (ADS)

    Turchi, P. E. A.; Wachs, A. L.; Jean, Y. C.; Howell, R. H.; Wetzler, K. H.; Fluss, M. J.

    1988-06-01

    Positron Annihilation Spectroscopy is shown to be of potential value for probing the electronic structure and the changes accompanying the superconducting transition of the new high T c materials. The experimental results of electron-positron momentum distribution for La 2CuO 4 agree with a ligand field approach, suggesting a strong electron localization and the importance of the covalency.

  15. Degradation free epoxy impregnation of REBCO coils and cables

    NASA Astrophysics Data System (ADS)

    Barth, C.; Bagrets, N.; Weiss, K.-P.; Bayer, C. M.; Bast, T.

    2013-05-01

    In applications utilizing high-temperature superconductors (HTS) under high mechanical loads as high-field magnets or rotors of generators and motors, the rare-earth-barium-copper-oxide (REBCO) tapes have to be stabilized mechanically. This is achieved using support structures of structural materials and filling the voids in the support through the impregnation of the tapes. The impregnation prevents movement of the tapes and distributes mechanical loads evenly. With high mechanical strengths and low sensitivities to rapid temperature changes, epoxy resins are desired materials for the impregnation of superconductor tapes. However, a strong decrease of the current-carrying capabilities was observed in previous epoxy-impregnated REBCO coils. In this work the thermal expansion mismatches between epoxy resins and REBCO tapes are identified as the cause of these degradations. Fillers are used to reduce the thermal expansions of glues and resins. Mixtures with varying filler contents are analyzed systematically. Their thermal expansions and the corresponding degradations of short REBCO tape samples are measured. A mixture of epoxy resin and filler is found which allows degradation-free impregnation of REBCO tapes. This mixture is validated on a 1.2 m long 15 × 5 Roebel-assembled-coated-conductor (RACC) cable from Industrial Research Limited (IRL).

  16. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  17. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    PubMed

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  18. Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?

    NASA Astrophysics Data System (ADS)

    Chan, L. P.; Lynn, K. G.; Harshman, D. R.

    We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.

  19. Guideway structural design and power/propulsion/braking in relation to guideways. Volume 3: Appendix B: Maglev guideway structural design

    NASA Astrophysics Data System (ADS)

    Falkowski, K. M.; Key, F. S.; Kuznetsov, S. B.

    1993-01-01

    This final report summarizes work completed in the investigation of the power, propulsion, and braking systems for five different electrodynamic (EDS) Maglev configurations. System requirements and recommendations, including a cost analysis, are determined for each configuration. The analysis considers variations in vehicle length, acceleration'/deceleration criteria, airgap clearance, and maximum propulsion thrust. Five different guideway configurations have been considered, each of which is based on air-core magnets made from low-temperature superconductors (LTSC) - (NbTi, Nb3Sn) or the newer high-T(sub c) ceramic superconductors (HTSCs). The material requirements and cost of the guideway electrical components were studied as a function of the energy conversion efficiency, the stator block length, armature current density, stator temperature rise, and other parameters. The propulsion design focused on a dual-parallel, linear synchronous motor (LSM) with thrust modulation achieved by applying a variable frequency and voltage along the guideway. Critical design parameters were estimated using a three-dimensional computer model for the inductances, magnetic fields, and electromagnetic forces. The study also addressed the conceptual design of the magnet, cryostat, and refrigeration subsystems. Magnetic fields, forces, AC losses, superconductor stability, heat loading, and refrigeration demands were analyzed; a specific design shows limits of passive shielding.

  20. Anomalous Electron Spectrum and Its Relation to Peak Structure of Electron Scattering Rate in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Gao, Deheng; Mou, Yingping; Feng, Shiping

    2018-02-01

    The recent discovery of a direct link between the sharp peak in the electron quasiparticle scattering rate of cuprate superconductors and the well-known peak-dip-hump structure in the electron quasiparticle excitation spectrum is calling for an explanation. Within the framework of the kinetic-energy-driven superconducting mechanism, the complicated line-shape in the electron quasiparticle excitation spectrum of cuprate superconductors is investigated. It is shown that the interaction between electrons by the exchange of spin excitations generates a notable peak structure in the electron quasiparticle scattering rate around the antinodal and nodal regions. However, this peak structure disappears at the hot spots, which leads to that the striking peak-dip-hump structure is developed around the antinodal and nodal regions, and vanishes at the hot spots. The theory also confirms that the sharp peak observed in the electron quasiparticle scattering rate is directly responsible for the remarkable peak-dip-hump structure in the electron quasiparticle excitation spectrum of cuprate superconductors.

  1. Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Talebzadeh, Robabeh; Bavaghar, Mehrdad

    2018-05-01

    In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.

  2. Process for the production of superconductor containing filaments

    DOEpatents

    Tuominen, Olli P.; Hoyt, Matthew B.; Mitchell, David F.; Morgan, Carol W.; Roberts, Clyde Gordon; Tyler, Robert A.

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  3. Forming YBa2Cu3O7-x Superconductors On Copper Substrates

    NASA Technical Reports Server (NTRS)

    Mackenzie, J. Devin; Young, Stanley G.

    1991-01-01

    Experimental process forms layer of high-critical-temperature ceramic superconductor YBa2Cu3O7-x on surface of copper substrate. Offers possible solution to problem of finishing ceramic superconductors to required final sizes and shapes (difficult problem because these materials brittle and cannot be machined or bent). Further research necessary to evaluate superconducting qualities of surface layers and optimize process.

  4. Intrinsic Josephson effects in the magnetic superconductor RuSr2GdCu2O8.

    PubMed

    Nachtrab, T; Koelle, D; Kleiner, R; Bernhard, C; Lin, C T

    2004-03-19

    We have measured interlayer current transport in small-sized RuSr2GdCu2O8 single crystals. We find a clear intrinsic Josephson effect showing that the material acts as a natural superconductor-insulator-ferromagnet-insulator-superconductor superlattice. Thus far, we detected no unconventional behavior due to the magnetism of the RuO2 layers.

  5. Superconducting RF materials other than bulk niobium: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente-Feliciano, Anne-Marie

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  6. Superconducting RF materials other than bulk niobium: a review

    DOE PAGES

    Valente-Feliciano, Anne-Marie

    2016-09-26

    For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less

  7. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  8. Shielded high-Tc bscco tapes or wires for high field applications

    DOEpatents

    Balachandran, Uthamalingam; Lelovic, Milan; Eror, Nicholas G.

    2002-01-01

    A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.

  9. Shielded high-TC BSCCO tapes or wires for high field applications

    DOEpatents

    Balachandran, Uthamalingam; Lelovic, Milan; Eror, Nicholas G.

    2001-01-01

    A composite superconductor having an interior component of multiple filaments of superconducting Bi-2223 sheathed in a Ag or Ag alloy material, and a RE, TI or Hg based superconductor surrounding the interior component.

  10. Magnet Design Considerations for Fusion Nuclear Science Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y.; Kessel, C.; El-Guebaly, L.

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5more » T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  11. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGES

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; ...

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  12. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  13. Andreev reflection enhancement in semiconductor-superconductor structures

    NASA Astrophysics Data System (ADS)

    Bouscher, Shlomi; Winik, Roni; Hayat, Alex

    2018-02-01

    We develop a theoretical approach for modeling a wide range of semiconductor-superconductor structures with arbitrary potential barriers and a spatially dependent superconducting order parameter. We demonstrate asymmetry in the conductance spectrum as a result of a Schottky barrier shape. We further show that the Andreev reflection process can be significantly enhanced through resonant tunneling with appropriate barrier configuration, which can incorporate the Schottky barrier as a contributing component of the device. Moreover, we show that resonant tunneling can be achieved in superlattice structures as well. These theoretically demonstrated effects along with our modeling approach enable much more efficient Cooper pair injection into semiconductor-superconductor structures, including superconducting optoelectronic devices.

  14. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Superconductivity is the most dramatic and clear cut phenomenon in condensed matter physics. Realization of room temperature superconductors, which would lead to the revolution of our society, is an ultimate goal for researchers. The discovery of high Tc cuprate superconductors in 1986 by Bednorz and Müller triggered intensive research worldwide and the maximum critical temperature has been raised above 100 K. Scientific research on this break-through material clarified a new route to high Tc materials, carrier doping to a Mott insulator with anti-ferromagnetic ordering. High superconductivity occurs in the neighborhood of Mott-insulators and Fermi-metals. Such a view, which was completely new, now stands as a guiding principle for exploring new high Tc materials. Many theoretical approaches to the mechanism for cuprate superconductors have been carried out to understand this unexpected material and to predict new high Tc materials. In 2006 a new superconductor based on iron, LaFeOP, was discovered by a group at Tokyo Institute of Technology, Japan. Iron, as a ferromagnet, was believed to be the last element for the realization of superconductivity because of the way ferromagnetism competes against Cooper pair formation. Unexpectedly, however, the critical temperature remained at 4-6 K irrespective of hole/electron-doping. A large increase in the Tc to 26 K was then found in LaFe[O1-xFx]As by the same group (and was published on 23 February 2008, in the Journal of the American Chemical Society). The Tc of this material was further raised to 43 K under a pressure of 2 GPa and scientists in China then achieved a Tc of 56 K at ambient pressure by replacing La with other rare earth ions with smaller radius—a critical temperature that is second only to the high Tc cuprates. This fast progress has revitalized research within superconductivity and in 2008 there were more than seven international symposia specifically on Fe(Ni)-based superconductors. Through the rapid pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S-L Drechsler, N Kozlova, M Bartkowiak, J E Hamann-Borrero, G Behr, K Nenkov, H-H Klauss, H Maeter, A Amato, H Luetkens, A Kwadrin, R Khasanov, J Freudenberger, A Köhler, M Knupfer, E Arushanov, H Rosner, B Büchner and L Schultz Low-energy spin dynamics in the antiferromagnetic phase of CaFe2As2 N J Curro, A P Dioguardi, N ApRoberts-Warren, A C Shockley and P Klavins Muon spin rotation study of magnetism and superconductivity in BaFe2-xCoxAs2 and Pr1-xSrxFeAsO C Bernhard, A J Drew, L Schulz, V K Malik, M Rössle, Ch Niedermayer, Th Wolf, G D Varma, G Mu, H-H Wen, H Liu, G Wu and X H Chen Magnetic impurities in the pnictide superconductor Ba1-xKxFe2As2 Sutirtha Mukhopadhyay, Sangwon Oh, A M Mounce, Moohee Lee, W P Halperin, N Ni, S L Bud'ko, P C Canfield, A P Reyes and P L Kuhns Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2 M Kofu, Y Qiu, Wei Bao, S-H Lee, S Chang, T Wu, G Wu and X H Chen An NMR study on the F-doping evolution of the iron oxypnictide LaFeAs(O1-xFx) Y Nakai, S Kitagawa, K Ishida, Y Kamihara, M Hirano and H Hosono The peculiar physical properties and phase diagram of BaFe2-xCoxAs2 single crystals X F Wang, T Wu, G Wu, R H Liu, H Chen, Y L Xie and X H Chen Synthesis of LnFeAsO1-y superconductors (Ln=La and Nd) using the high-pressure technique Kiichi Miyazawa, Kunihiro Kihou, Motoyuki Ishikado, Parasharam M Shirage, Chul-Ho Lee, Nao Takeshita, Hiroshi Eisaki, Hijiri Kito and Akira Iyo Correlation effects in the iron pnictides Qimiao Si, Elihu Abrahams, Jianhui Dai and Jian-Xin Zhu Competition/coexisitence of magnetism and superconductivity in iron pnictides probed by muon spin rotation Soshi Takeshita and Ryosuke Kadono Impurity-induced in-gap state and Tc in sign-reversing s-wave superconductors: analysis of iron oxypnictide superconductors Yuko Senga and Hiroshi Kontani Intrinsic magnetic properties of the superconductor NdFeAsO0.9F0.1 from local and global measurements R Prozorov, M E Tillman, E D Mun and P C Canfield Elastic theory for the vortex-lattice melting in iron-based high-Tc superconductors Q-H Chen, Q-M Nie, J-P Lv and T-C Au Yeung Electronic properties of LaO1-xFxFeAs in the normal state probed by NMR/NQR H-J Grafe, G Lang, F Hammerath, D Paar, K Manthey, K Koch, H Rosner, N J Curro, G Behr, J Werner, N Leps, R Klingeler, H-H Klauss, F J Litterst and B Büchner AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity Deepa Kasinathan, Alim Ormeci, Katrin Koch, Ulrich Burkhardt, Walter Schnelle, Andreas Leithe-Jasper and Helge Rosner Impurity states in a family of antiferromagnetic iron arsenides Qiang Han and Z D Wang Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling K Haule and G Kotliar Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission Y Sekiba, T Sato, K Nakayama, K Terashima, P Richard, J H Bowen, H Ding, Y-M Xu, L J Li, G H Cao, Z-A Xu and T Takahashi Absorption and photoemission spectroscopy of rare-earth oxypnictides T Kroll, F Roth, A Koitzsch, R Kraus, D R Batchelor, J Werner, G Behr, B Büchner and M Knupfer Superconductivity in LnFePO (Ln = La, Pr and Nd) single crystals R E Baumbach, J J Hamlin, L Shu, D A Zocco, N M Crisosto and M B Maple Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hiroshi Kontani and Hideo Aoki Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides S Graser, T A Maier, P J Hirschfeld and D J Scalapino Investigation of superconducting gap structure in TbFeAsO0.9F0.1 using point contact Andreev reflection K A Yates, K Morrison, J A Rodgers, G B S Penny, J-W G Bos, J P Attfield and L F Cohen Competition of magnetism and superconductivity in underdoped (Ba1-xKx)Fe2As2 Marianne Rotter, Marcus Tegel, Inga Schellenberg, Falko M Schappacher, Rainer Pöttgen, Joachim Deisenhofer, Axel Günther, Florian Schrettle, Alois Loidl and Dirk Johrendt The superconductor KxSr1-xFe2As2: normal state and superconducting properties B Lv, M Gooch, B Lorenz, F Chen, A M Guloy and C W Chu Effect of 3d transition metal doping on the superconductivity in quaternary fluoroarsenide CaFeAsF Satoru Matsuishi, Yasunori Inoue, Takatoshi Nomura, Youichi Kamihara, Masahiro Hirano and Hideo Hosono Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO and NdFeAsO Michael A McGuire, Raphaël P Hermann, Athena S Sefat, Brian C Sales, Rongying Jin, David Mandrus, Fernande Grandjean and Gary J Long Heat capacity measurements on FeAs-based compounds: a thermodynamic probe of electronic and magnetic states P J Baker, S R Giblin, F L Pratt, R H Liu, G Wu, X H Chen, M J Pitcher, D R Parker, S J Clarke and S J Blundell Spin fluctuations, interband coupling and unconventional pairing in iron-based superconductors Zi-Jian Yao, Jian-Xin Li and Z D Wang Superconductivity induced by Ni doping in BaFe2As2 single crystals L J Li, Y K Luo, Q B Wang, H Chen, Z Ren, Q Tao, Y K Li, X Lin, M He, Z W Zhu, G H Cao and Z A Xu Metamagnetic transition in EuFe2As2 single crystals Shuai Jiang, Yongkang Luo, Zhi Ren, Zengwei Zhu, Cao Wang, Xiangfan Xu, Qian Tao, Guanghan Cao and Zhu'an Xu Pressure dependence of the thermoelectric power of the iron-based high-Tc superconductor SmFeAsO0.85 N Kang, P Auban-Senzier, C R Pasquier, Z A Ren, J Yang, G C Che and Z X Zhao Superconductivity in some heavy rare-earth iron arsenide REFeAsO1-δ (RE = Ho, Y, Dy and Tb) compounds Jie Yang, Xiao-Li Shen, Wei Lu, Wei Yi, Zheng-Cai Li, Zhi-An Ren, Guang-Can Che, Xiao-Li Dong, Li-Ling Sun, Fang Zhou and Zhong-Xian Zhao The delicate electronic and magnetic structure of the LaFePnO system (Pn = pnicogen) S Lebègue, Z P Yin and W E Pickett

  15. Electronic structure, irreversibility line and magnetoresistance of Cu 0.3Bi 2Se 3 superconductor

    DOE PAGES

    Hemian, Yi; Gu, Genda; Chen, Chao -Yu; ...

    2015-06-01

    Cu xBi 2Se 3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the Cu xBi 2Se 3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi 2Se 3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper criticalmore » field at zero temperature of ~4000 Oe for the Cu 0.3Bi 2Se 3 superconductor with a middle point T c of 1.9K. The relation between the upper critical field Hc2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu 0.3Bi 2Se 3 superconductors up to room temperature. As a result, these observations provide useful information for further study of this possible candidate for topological superconductors.« less

  16. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.

    PubMed

    Wang, Yong-Lei; Ma, Xiaoyu; Xu, Jing; Xiao, Zhi-Li; Snezhko, Alexey; Divan, Ralu; Ocola, Leonidas E; Pearson, John E; Janko, Boldizsar; Kwok, Wai-Kwong

    2018-06-11

    Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics 1 , such as data storage, memory and logic 2 . However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system 3,4 . Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure 5 . The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions 6 , electrons and holes in two-dimensional materials 7,8 , and topological insulators 9 , as well as colloids in soft materials 10-13 .

  17. Advantages of barium peroxide in the powder synthesis of perovskite superconductors

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Philipp, W. H.; Warner, J. D.; Garlick, R. G.; Pouch, J. J.

    1988-01-01

    This paper compares reaction chemistry, material processing, and material characteristics for the solid state reaction using BaCO3 or BaO2 in the synthesis of perovskite superconductors. Results are presented for weight loss and X-ray diffraction, sample morphology and homogeneity as monitored by SEM and EDS, and the superconductivity critical temperature and ac susceptibility. Greater mass density, increased sample homogeneity, lower resistance, and improved reproducibility for material are found when BaO32 is used.

  18. Modeling high-temperature superconductors and metallic alloys on the Intel IPSC/860

    NASA Astrophysics Data System (ADS)

    Geist, G. A.; Peyton, B. W.; Shelton, W. A.; Stocks, G. M.

    Oak Ridge National Laboratory has embarked on several computational Grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys from first principles and, in particular, the electronic structure of high-temperature superconductors. While the present focus of the project is on superconductivity, the approach is general enough to permit study of other properties of metallic alloys such as strength and magnetic properties. This paper describes the progress to date on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification. Performance of this code on the Intel iPSC/860 is also compared to a CRAY 2, CRAY YMP, and several workstations. Finally, some density of state calculations of two perovskite superconductors are given.

  19. Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor.

    PubMed

    Reyes, D; Continentino, M A; Deus, F; Thomas, C

    2018-05-02

    Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.

  20. Superconductivity-localization interplay and fluctuation magnetoresistance in epitaxial BaPb1 -xBixO3 thin films

    NASA Astrophysics Data System (ADS)

    Harris, D. T.; Campbell, N.; Uecker, R.; Brützam, M.; Schlom, D. G.; Levchenko, A.; Rzchowski, M. S.; Eom, C.-B.

    2018-04-01

    BaPb1 -xBixO3 is a superconductor, with transition temperature Tc=11 K, whose parent compound BaBiO3 possesses a charge ordering phase and perovskite crystal structure reminiscent of the cuprates. The lack of magnetism simplifies the BaPb1 -xBixO3 phase diagram, making this system an ideal platform for contrasting high-Tc systems with isotropic superconductors. Here we use high-quality epitaxial thin films and magnetotransport to demonstrate superconducting fluctuations that extend well beyond Tc. For the thickest films (thickness above ˜100 nm ) this region extends to ˜27 K , well above the bulk Tc and remarkably close to the higher Tc of Ba1 -xKxBiO3 (Tc=31 K). We drive the system through a superconductor-insulator transition by decreasing thickness and find the observed Tc correlates strongly with disorder. This material manifests strong fluctuations across a wide range of thicknesses, temperatures, and disorder presenting new opportunities for understanding the precursor of superconductivity near the 2D-3D dimensionality crossover.

  1. Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor

    NASA Astrophysics Data System (ADS)

    Reyes, D.; Continentino, M. A.; Deus, F.; Thomas, C.

    2018-05-01

    Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen–Cooper–Schrieffer-Bose–Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.

  2. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.« less

  3. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  4. Investigation of Pb doping on electrical, structural and superconducting properties of YBa2-xPbxCu3O7-δ superconductors

    NASA Astrophysics Data System (ADS)

    Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.

    2018-06-01

    In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.

  5. Method of producing highly oxidized superconductors containing barium, copper, and a third metal

    DOEpatents

    Morris, D.E.

    1996-02-20

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

  6. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Structure of In-Situ Deformations of Steel , TMS, San Diego, 2011 13. Jay Basinger, David Fullwood, Brent Adams, EBSD Detail Extraction for Greater Spatial...Its use has contributed to the development of new steels , aluminum alloys, high TC superconductors, electronic materials, lead-free solders, optical...Resolution The simulated pattern method has been used to recover lattice tetragonality in high-strength low- alloy steels . Since the level of

  7. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

    PubMed Central

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2016-01-01

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801

  8. A Brief Review of Recent Superconductivity Research at NIST

    PubMed Central

    Lundy, D. R.; Swartzendruber, L. J.; Bennett, L. H.

    1989-01-01

    A brief overview of recent superconductivity research at NIST is presented. Emphasis is placed on the new high-temperature oxide superconductors, though mention is made of important work on low-temperature superconductors, and a few historical notes are included. NIST research covers a wide range of interests. For the new high-temperature superconductors, research activities include determination of physical properties such as elastic constants and electronic structure, development of new techniques such as magnetic-field modulated microwave-absorption and determination of phase diagrams and crystal structure. For the low-temperature superconductors, research spans studying the effect of stress on current density to the fabrication of a new Josephson junction voltage standard. PMID:28053408

  9. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  10. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  11. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, V.R.; Sengupta, S.; Shi, D.

    1996-04-02

    A method of preparing high temperature superconductor single crystals is disclosed. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid. 2 figs.

  12. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  13. Method for harvesting rare earth barium copper oxide single crystals

    DOEpatents

    Todt, Volker R.; Sengupta, Suvankar; Shi, Donglu

    1996-01-01

    A method of preparing high temperature superconductor single crystals. The method of preparation involves preparing precursor materials of a particular composition, heating the precursor material to achieve a peritectic mixture of peritectic liquid and crystals of the high temperature superconductor, cooling the peritectic mixture to quench directly the mixture on a porous, wettable inert substrate to wick off the peritectic liquid, leaving single crystals of the high temperature superconductor on the porous substrate. Alternatively, the peritectic mixture can be cooled to a solid mass and reheated on a porous, inert substrate to melt the matrix of peritectic fluid while leaving the crystals melted, allowing the wicking away of the peritectic liquid.

  14. Terahertz frequency superconductor-nanocomposite photonic band gap

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.; Aly, Arafa H.

    2018-02-01

    In the present work, we discuss the transmittance properties of one-dimensional (1D) superconductor nanocomposite photonic crystals (PCs) in THz frequency regions. Our modeling is essentially based on the two-fluid model, Maxwell-Garnett model and the characteristic matrix method. The numerical results investigate the appearance of the so-called cutoff frequency. We have obtained the significant effect of some parameters such as the volume fraction, the permittivity of the host material, the size of the nanoparticles and the permittivity of the superconductor material on the properties of the cutoff frequency. The present results may be useful in the optical communications and photonic applications to act as tunable antenna in THz, reflectors and high-pass filter.

  15. The effects of shock wave compaction on the transition temperatures of A15 structure superconductors

    NASA Technical Reports Server (NTRS)

    Otto, G. H.

    1974-01-01

    Several superconductors with the A15 structure exhibit a positive pressure coefficient, indicating that their transition temperatures increase with applied pressure. Powders of the composition Nb3Al, Nb3Ge, Nb3(Al0.75Ge0.25), and V3Si were compacted by explosive shock waves. The superconducting properties of these materials were measured before and after compaction and it was found that regardless of the sign of the pressure coefficient, the transition temperature is always lowered. The decrease in transition temperature is associated with a decrease in the particle diameter. The shock wave passage through a 3Nb:1Ge powder mixture leads to the formation of at least one compound (probably Nb5Ge3). However, the formation of the A15 compound Nb3Ge is not observed. Elemental niobium powder can be compacted by converging shock waves close to the expected value of the bulk density. Under special circumstances a partial remelting in the center of the sample is observed.

  16. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    NASA Astrophysics Data System (ADS)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  17. The Discovery of a Class of High-Temperature Superconductors.

    ERIC Educational Resources Information Center

    Muller, K. Alex; Bednorz, J. Georg

    1987-01-01

    Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, Serena Merteen; Miura, Masashi; Maiorov, Boris Alfredo

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose–Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors4. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu 3O 7–δ. This was puzzling because Smore » is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu 3O 7–δ. Here, we report very slow creep in BaFe 2(As 0.67P 0.33) 2 films, and propose the existence of a universal minimum realizable S ~ Gi 1/2(T/T c) (T c is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. Furthermore, this limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.« less

  19. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Flom, Yury (Editor)

    1990-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference will focus on understanding high-temperature superconductivity with special emphases on materials issues and applications. AMSAHTS '90, will highlight the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC will be discussed by NASA and Navy specialists.

  20. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  1. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    PubMed Central

    Kolenda, Stefan; Machon, Peter

    2016-01-01

    Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509

  2. Josephson effect in multiterminal superconductor-ferromagnet junctions coupled via triplet components

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2016-03-01

    On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.

  3. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  4. Superconducting magnet and fabrication method

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  5. Visualizing spatial correlation: structural and electronic orders in iron-based superconductors on atomic scale

    NASA Astrophysics Data System (ADS)

    Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei

    Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  6. Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birge, Norman

    Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, S. A.; Plummer, G.; Fedor, J.

    Mapping the distribution of currents inside a superconductor is usually performed indirectly through imaging of the stray magnetic fields above the surface. Here, we show that by direct imaging of the Doppler shift contribution to the quasiparticle excitation spectrum in the superconductor using low temperature scanning tunneling microscopy, we obtain directly the distribution of supercurrents inside the superconductor. We demonstrate the technique at the example of superconductor/ferromagnet hybrid structure that produces intricate current pattern consisting of combination Meissner shielding currents and Abrikosov vortex currents.

  8. Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures

    DTIC Science & Technology

    2013-11-13

    manipulation, entanglement and detection ofMajorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthennore, we propose to...the formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions...Interactions between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum

  9. Topological Quantum Information Processing Mediated Via Hybrid Topogical Insulator Structures

    DTIC Science & Technology

    2014-03-28

    formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthermore...between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum...Topological Insulator - Superconductor Heterostructures," Physical Review B 84, 144507 (2011). 7 Hsiang-Hsuan Hung, Pouyan Ghaemi, Taylor L

  10. Laser surface interaction of high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Chen, C. H.; Mccann, M. P.; Phillips, R. C.

    1991-01-01

    During the past two years, one of the most exciting research fields in science has been the study of the newly discovered high-T(sub c) metal oxide superconductors. Although many theoretical models were proposed, there is no general agreement on any theory to explain these materials. One of the peculiar features of these high-T(sub c) materials is the noninteger number of oxygen atoms. The oxygen content is extremely critical to the superconductive properties. Take YBa2Cu3O(7-x) as an example. Its superconductive properties disappear whenever x is larger than 0.5. The existence of Cu(+ 3) was considered to account for x less than 0.5. However, results from mass spectroscopy of laser desorbed species indicate that significant quantities of oxygen molecules are trapped in the bulk of these high-T(sub c) superconductors. It appears that these trapped oxygen molecules may play key roles in superconductive properties. Preparation of superconductive thin films are considered very important for the applications of these new superconductors for the electronics industry. Fluorescence spectra and ion spectra following laser ablation of high-temperature superconductors were obtained. A real time monitor for preparation of superconductive thin films can possibly be developed.

  11. Plastic superconductor bearings any size-any shape: 77 K and up

    NASA Technical Reports Server (NTRS)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  12. Symmetry conditions of a nodal superconductor for generating robust flat-band Andreev bound states at its dirty surface

    NASA Astrophysics Data System (ADS)

    Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro

    2018-05-01

    We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .

  13. Topological superconductors: a review.

    PubMed

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  14. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  15. Topological superconductors: a review

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  16. Conventional magnetic superconductors

    DOE PAGES

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  17. Engineering topological superconductors using surface atomic-layer/molecule hybrid materials

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2015-08-01

    Surface atomic-layer (SAL) superconductors consisting of epitaxially grown metal adatoms on a clean semiconductor surface have been recently established. Compared to conventional metal thin films, they have two important features: (i) space-inversion symmetry-breaking throughout the system and (ii) high sensitivity to surface adsorption of foreign species. These potentially lead to manifestation of the Rashba effect and a Zeeman field exerted by adsorbed magnetic organic molecules. After introduction of the archetypical SAL superconductor Si(111)-(√7 × √3)-In, we describe how these features are utilized to engineer a topological superconductor with Majorana fermions and discuss its promises and expected challenges.

  18. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Vivek; Koshelev, Alexei E.

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  19. Local spin-density-wave order inside vortex cores in multiband superconductors

    DOE PAGES

    Mishra, Vivek; Koshelev, Alexei E.

    2015-08-13

    Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of the antiferromagnetism inside the cores of the vortices generated by the external magnetic field. The structure of a vortex in type II superconductors holds significant importance from the theoretical and the application points of view. In this paper, we consider the internal vortex structure in a two-band s± superconductor near a spin-density-wave instability. We treat the problem in a completely self-consistent manner within the quasiclassicalmore » Eilenberger formalism. We study the structure of the s± superconducting order and magnetic field-induced spin-density-wave order near an isolated vortex. Finally, we examine the effect of this spin-density-wave state inside the vortex cores on the local density of states.« less

  20. Synthesis and Characterization of Superconducting Electronic Materials.

    DTIC Science & Technology

    1984-11-15

    T.P. Orlando, A. Zieba , A. Zaleski, S. Sekine, E.J. McNiff,Jr., and B. B. Schwartz. Proceedings of the 1983 International Cryogenic Materials...Frequency Losses at High Fields in Multifilamentary Superconductors, A.J. Zaleski, T.P. Orlando, A. Zieba , B.B. Schwartz, and S. Foner. Accepted for...publication by J. Applied Physics. DOE Support. Low Frequency AC Losses in Multifilimentary Superconductors up to 15 Tesla, T.P. Orlando, A. Zieba , C.B

  1. Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect

    DTIC Science & Technology

    2016-02-12

    Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by

  2. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  3. High temperature superconductor analog electronics for millimeter-wavelength communications

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.

    1991-01-01

    The performance of high temperature superconductor (HTS) passive microwave circuits up to X-band was encouraging when compared to their metallic counterparts. The extremely low surface resistance of HTS films up to about 10 GHz enables a reduction in loss by as much as 100 times compared to copper when both materials are kept at about 77 K. However, a superconductor's surface resistance varies in proportion to the frequency squared. Consequently, the potential benefit of HTS materials to millimeter-wave communications requires careful analysis. A simple ring resonator was used to evaluate microstrip losses at Ka-band. Additional promising components were investigated such as antennas and phase shifters. Prospects for HTS to favorable impact millimeter-wave communications systems are discussed.

  4. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  5. Aging processes in disordered materials: High-Tc superconductors and ferromagnets

    NASA Astrophysics Data System (ADS)

    Pleimling, Michel

    2013-03-01

    Physical aging is generically encountered in systems far from equilibrium that evolve with slow dynamics. Well known examples can be found in structural glasses, spin glasses, magnetic systems, and colloids. Recent years have seen major breakthroughs in our understanding of aging processes in non-disordered systems. Progress in understanding aging in disordered systems has been much slower though. In this talk I discuss non-equilibrium relaxation in two different types of disordered systems: coarsening ferromagnets with disorder, characterized by a crossover from an initial power-law like growth of domains to a slower logarithmic growth regime, and interacting vortex lines in disordered type-II superconductors, where the interplay of vortex-vortex interaction and pinning results in a very rich non-equilibrium behavior. This work is supported by the US Department of Energy through grant DE-FG02-09ER46613.

  6. Preparation of highly oxidized RBa.sub.2 Cu.sub.4 O.sub.8 superconductors

    DOEpatents

    Morris, Donald E.

    1991-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. The compounds and structures thus formed are substantially nonsusceptible to variations in their oxygen content when subjected to changing temperatures, thereby forming a temperature-stable substantially single phase crystal.

  7. Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklitz, T.; Norman, M. R.

    2017-01-01

    We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3.

  8. Exotic magnetic states in Pauli-limited superconductors.

    PubMed

    Kenzelmann, M

    2017-03-01

    Magnetism and superconductivity compete or interact in complex and intricate ways. Here we review the special case where novel magnetic phenomena appear due to superconductivity, but do not exist without it. Such states have recently been identified in unconventional superconductors. They are different from the mere coexistence of magnetic order and superconductivity in conventional superconductors, or from competing magnetic and superconducting phases in many materials. We describe the recent progress in the study of such exotic magnetic phases, and articulate the many open questions in this field.

  9. Protecting Superconducting HTS-Antennas by Meta-Material Cloaks

    DTIC Science & Technology

    2014-04-30

    radiation efficiency for this antenna is 22.3\\%. However, if the normal conducting part is replaced with a superconductor , e.g. YBCO with RS=500µΩ, [8] the...loss resistance can be brought down due to the much lower surface resistance of the superconductor relative to the normal conductor. Chalupka et al...range [12]. In 1987, Wu et al. [13] discovered the HTS compound YBCO that has a TC of ≈ 92K, which was the first superconductor to have a TC greater

  10. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  11. Superconducting properties of copper oxide high-temperature superconductors

    PubMed Central

    Chen, Guanhua; Langlois, Jean-Marc; Guo, Yuejin; Goddard, William A.

    1989-01-01

    The equations for the magnon pairing theory of high-temperature copper-oxide-based superconductors are solved and used to calculate several properties, leading to results for specific heat and critical magnetic fields consistent with experimental results. In addition, the theory suggests an explanation of why there are two sets of transition temperatures (Tc ≈ 90 K and Tc ≈ 55 K) for the Y1Ba2Cu3O6+x class of superconductors. It also provides an explanation of why La2-xSrxCuO4 is a superconductor for only a small range of x (and suggests an experiment to independently test the theory). These results provide support for the magnon pairing theory of high-temperature superconductors. On the basis of the theory, some suggestions are made for improving these materials. PMID:16594038

  12. Making High-Temperature Superconductors By Melt Sintering

    NASA Technical Reports Server (NTRS)

    Golben, John P.

    1992-01-01

    Melt-sintering technique applied to YBa2Cu3O7-x system and to Bi/Ca/Sr/Cu-oxide system to produce highly oriented bulk high-temperature-superconductor materials extending to macroscopically usable dimensions. Processing requires relatively inexpensive and simple equipment. Because critical current two orders of magnitude greater in crystal ab plane than in crystal c direction, high degree of orientation greatly enhances critical current in these bulk materials, making them more suitable for many proposed applications.

  13. Percolation effect in thick film superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sali, R.; Harsanyi, G.

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density atmore » the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.« less

  14. Percolation effect in thick film superconductors: Using a Bi(Pb)SrCaCuO based paste to prepare a superconducting planar transformer

    NASA Technical Reports Server (NTRS)

    Sali, Robert; Harsanyi, Gabor

    1995-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  15. The color of polarization in cuprate superconductors

    NASA Technical Reports Server (NTRS)

    Hoff, H. A.; Osofsky, M. S.; Lechter, W. L.; Pande, C. S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed.

  16. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  17. Electronic structure Fermi liquid theory of high Tc superconductors: Comparison of predictions with experiments

    NASA Technical Reports Server (NTRS)

    Yu, Jaejun; Freeman, A. J.

    1991-01-01

    Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations.

  18. Modelling sodium cobaltate by mapping onto magnetic Ising model

    NASA Astrophysics Data System (ADS)

    Gemperline, Patrick; Morris, David Jonathan Pryce

    Fast Ion conductors are a class of crystals that are frequently used as battery materials, especially in smart phones, laptops, and other portable devices. Sodium Cobalt Oxide, NaxCoO2, falls into this class of crystals, but is unique because it possesses the ability to act as a thermoelectric material and a superconductor at different concentrations of Na+. The crystal lattice is mapped onto an Ising Magnetic Spin model and a Monte-Carol Simulation is used to find the most energetically favorable configuration of spins. This spin configuration is mapped back to the crystal lattice resulting in the most stable crystal structure of Sodium Cobalt Oxide at various concentrations. Knowing the atomic structures of the crystals will aid in the research of the materials capabilities and the possible uses of the material commercially. Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. Columbus OH: Ohio Supercomputer Center. and the John Hauck Foundation.

  19. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface

    NASA Astrophysics Data System (ADS)

    Gurevich, Alex; Kubo, Takayuki

    2017-11-01

    We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.

  20. Materials Discovery via CALYPSO Methodology

    NASA Astrophysics Data System (ADS)

    Ma, Yanming

    2014-03-01

    Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.

  1. Superconductivity in SnO: a nonmagnetic analog to Fe-based superconductors?

    PubMed

    Forthaus, M K; Sengupta, K; Heyer, O; Christensen, N E; Svane, A; Syassen, K; Khomskii, D I; Lorenz, T; Abd-Elmeguid, M M

    2010-10-08

    We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., β-FeSe, undergoes a transition to a superconducting state for p≳6 GPa with a maximum Tc of 1.4 K at p=9.3 GPa. The pressure dependence of Tc reveals a domelike shape and superconductivity disappears for p≳16 GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc as a function of pressure.

  2. Iron-based superconductors: Unity or diversity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kivelson, S. A.

    2010-02-24

    Superconductivity is among the most fascinating properties that a material can show. On the fundamental level, it represents a direct, macroscopic manifestation of coherent quantum mechanical behaviour, and its potential practical importance is almost unlimited, especially if new superconductors can be synthesized or discovered with still higher transition temperatures, Tc.

  3. Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet

    2014-09-01

    Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less

  4. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  5. Development of pair distribution function analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondreele, R.; Billinge, S.; Kwei, G.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. It has become more and more evident that structural coherence in the CuO{sub 2} planes of high-{Tc} superconducting materials over some intermediate length scale (nm range) is important to superconductivity. In recent years, the pair distribution function (PDF) analysis of powder diffraction data has been developed for extracting structural information on these length scales. This project sought to expand and develop this technique, use it to analyze neutron powder diffraction data, and apply it to problems. In particular, interest is in the area of high-{Tc} superconductors, although wemore » planned to extend the study to the closely related perovskite ferroelectric materials andother materials where the local structure affects the properties where detailed knowledge of the local and intermediate range structure is important. In addition, we planned to carry out single crystal experiments to look for diffuse scattering. This information augments the information from the PDF.« less

  6. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  7. Noncentrosymmetric superconductor BeAu

    NASA Astrophysics Data System (ADS)

    Amon, A.; Svanidze, E.; Cardoso-Gil, R.; Wilson, M. N.; Rosner, H.; Bobnar, M.; Schnelle, W.; Lynn, J. W.; Gumeniuk, R.; Hennig, C.; Luke, G. M.; Borrmann, H.; Leithe-Jasper, A.; Grin, Yu.

    2018-01-01

    Mixed spin-singlet and spin-triplet pairing can occur in noncentrosymmetric superconductors. In this respect, a comprehensive characterization of the noncentrosymmetric superconductor BeAu was carried out. It was established that BeAu undergoes a structural phase transition from a low-temperature noncentrosymmetric FeSi structure type to a high-temperature centrosymmetric structure in the CsCl type at Ts=860 K. The low-temperature modification exhibits a superconducting transition below Tc=3.3 K. The values of lower (Hc1=32 Oe) and upper (Hc2=335 Oe) critical fields are rather small, confirming that this type-II (κG-L=2.3 ) weakly coupled (λe-p=0.5 ,Δ Ce/γnTc≈1.26 ) superconductor can be well understood within the Bardeen-Cooper-Schrieffer theory. The muon spin relaxation analysis indicates that the time-reversal symmetry is preserved when the superconducting state is entered, supporting conventional superconductivity in BeAu. From the density functional band structure calculations, a considerable contribution of the Be electrons to the superconducting state was established. On average, a rather small mass renormalization was found, consistent with the experimental data.

  8. Plastic superconductor bearings any size, any shape, 77 k and up

    NASA Technical Reports Server (NTRS)

    Reick, Franklin G.

    1990-01-01

    Friction free bearings at 77 k or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape and postforming machining. The material is hard and abrasive. It's possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feel for LN2 can be used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material can be molded with the internal surfaces shielded by the Meissner effect. It might be thought of as the dc magnetic analogue of the Faraday cage and the inside can be called the Meissner space. It's selective. The ac fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  9. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  10. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  11. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  12. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less

  13. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    NASA Astrophysics Data System (ADS)

    Shaw, G.; Brisbois, J.; Pinheiro, L. B. G. L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N. M.; Scheerder, J. E.; Van de Vondel, J.; Melinte, S.; Vanderbemden, P.; Motta, M.; Ortiz, W. A.; Hasselbach, K.; Kramer, R. B. G.; Silhanek, A. V.

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  14. Rugged Low-Resistance Contacts To High-Tc Superconductors

    NASA Technical Reports Server (NTRS)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  15. High T(sub c) superconductors fabricated by plasma aerosol mist deposition technique

    NASA Technical Reports Server (NTRS)

    Wang, X. W.; Vuong, K. D.; Leone, A.; Shen, C. Q.; Williams, J.; Coy, M.

    1995-01-01

    We report new results on high T(sub c) superconductors fabricated by a plasma aerosol mist deposition technique, in atmospheric environment. Materials fabricated are YBaCuO, BiPbSrCaCuO, BaCaCuO precursor films for TlBaCaCuO, and other buffers such as YSZ. Depending on processing conditions, sizes of crystallites and/or particles are between dozens of nano-meters and several micrometers. Superconductive properties and other material characteristics can also be tailored.

  16. Modeling the Effects of Varying the Capacitance, Resistance, Temperature, and Frequency Dependence for HTS Josephson Junctions, DC SQUIDs and DC bi-SQUIDS

    DTIC Science & Technology

    2014-09-01

    junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...can sense minute magnetic fields approaching 1015 Tesla. These SQUIDs can be arranged in arrays with different coupling schemes and parameter values to...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This

  17. Electric field effect in superconductor-ferroelectric structures

    NASA Technical Reports Server (NTRS)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  18. Pressure-decoupled magnetic and structural transitions of the parent compound of iron-based 122 superconductors BaFe2As2

    PubMed Central

    Wu, J. J.; Lin, Jung-Fu; Wang, X. C.; Liu, Q. Q.; Zhu, J. L.; Xiao, Y. M.; Chow, P.; Jin, Changqing

    2013-01-01

    The recent discovery of iron ferropnictide superconductors has received intensive concern in connection with magnetically involved superconductors. Prominent features of ferropnictide superconductors are becoming apparent: the parent compounds exhibit an antiferromagnetic ordered spin density wave (SDW) state, the magnetic-phase transition is always accompanied by a crystal structural transition, and superconductivity can be induced by suppressing the SDW phase via either chemical doping or applied external pressure to the parent state. These features generated considerable interest in the interplay between magnetism and structure in chemically doped samples, showing crystal structure transitions always precede or coincide with magnetic transition. Pressure-tuned transition, on the other hand, would be more straightforward to superconducting mechanism studies because there are no disorder effects caused by chemical doping; however, remarkably little is known about the interplay in the parent compounds under controlled pressure due to the experimental challenge of in situ measuring both of magnetic and crystal structure evolution at high pressure and low temperatures. Here we show from combined synchrotron Mössbauer and X-ray diffraction at high pressures that the magnetic ordering surprisingly precedes the structural transition at high pressures in the parent compound BaFe2As2, in sharp contrast to the chemical-doping case. The results can be well understood in terms of the spin fluctuations in the emerging nematic phase before the long-range magnetic order that sheds light on understanding how the parent compound evolves from a SDW state to a superconducting phase, a key scientific inquiry of iron-based superconductors. PMID:24101468

  19. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  20. Variation of superconducting transition temperature by proximity effect in NbN/FeN bilayers

    NASA Astrophysics Data System (ADS)

    Hwang, Tae-Jong; Kim, Dong-Ho

    2017-09-01

    We report on the proximity effect in superconductor/ferromagnet bilayers made of a new combination of NbN for the superconductor and FeN for the ferromagnet. The bilayers were prepared by reactive magnetron sputtering on a thermally oxidized Si substrate. For a constant NbN layer thickness, the superconducting transition temperatures of the bilayers exhibited a nonmonotonic dependence on the thickness of the FeN layer. The results were interpreted in terms of the proximity effect between the superconductor and ferromagnetic materials.

  1. Nematicity, magnetism and superconductivity in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohmer, Anna E.; Kreisel, Andreas

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  2. Superconductivity in few-layer stanene

    DOE PAGES

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; ...

    2018-01-15

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  3. Optical magnetometry of superconductors using nitrogen - vacancy centers in diamond films

    NASA Astrophysics Data System (ADS)

    Joshi, K. R.; Nusran, N. M.; Cho, Kyuil; Tanatar, M. A.; Bud'Ko, S. L.; Canfield, P. C.; Prozorov, R.

    Spin-dependent fluorescence of nitrogen - vacancy (NV) centers in diamond has emerged as a promising tool for non-invasive sensitive magnetometry with excellent sensitivity. In this work, we employ ensembles of NV centers implanted at the surface of a diamond film to study magnetic induction as the function of position, magnetic field and temperature in superconductors after different cooling/heating protocols and magnetic history. One of the motivations of our work is to study the structure of the Meissner expulsion upon field cooling, where we observe significant deviations from the simple, textbook example. Another is to determine the lower superconducting critical field, Hc1. Conventional Nb is compared with borocarbides (LuNi2B2C) and iron-pnictides(CaKFe4As4). Supported by the USDOE/Office of Science BES Materials Science and Engineering Division under contract DE-AC02-07CH11358.

  4. Superconductivity in few-layer stanene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. Inmore » situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Thus, our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.« less

  5. Nematicity, magnetism and superconductivity in FeSe.

    PubMed

    Böhmer, Anna E; Kreisel, Andreas

    2018-01-17

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c , ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  6. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal structure of explosively compacted high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Kotsis, I.; Enisz, M.; Oravetz, D.; Szalay, A.

    1995-01-01

    A superconductor, of composition Y(Ba,K,Na)2Cu3O(x)/F(y) and a composite of composition Y(Ba,K,Na)2Cu3O(x)/F(y) + Ag, with changing K, Na and F content but a constant silver content (Ag = 10 mass%) was prepared using a single heat treatment. the resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 micron, 0-63 micron and 63-900 micron and explosively compacted, using an explosive pressure of 10(exp 4) MPa and a subsequent heat treatment. Best results were obtained with the 63-900 micron fraction of composition Y(Ba(1.95) K(0.01)Cu3O(x)F(0),(05)/Ag: porosity less than 0.01 cu cm/g and current density 2800 A/sq cm at 77K.

  7. Nematicity, magnetism and superconductivity in FeSe

    NASA Astrophysics Data System (ADS)

    Böhmer, Anna E.; Kreisel, Andreas

    2018-01-01

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of these phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. The experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.

  8. Nematicity, magnetism and superconductivity in FeSe

    DOE PAGES

    Bohmer, Anna E.; Kreisel, Andreas

    2017-12-15

    Iron-based superconductors are well known for their complex interplay between structure, magnetism and superconductivity. FeSe offers a particularly fascinating example. This material has been intensely discussed because of its extended nematic phase, whose relationship with magnetism is not obvious. Superconductivity in FeSe is highly tunable, with the superconducting transition temperature, T c, ranging from 8 K in bulk single crystals at ambient pressure to almost 40 K under pressure or in intercalated systems, and to even higher temperatures in thin films. In this topical review, we present an overview of nematicity, magnetism and superconductivity, and discuss the interplay of thesemore » phases in FeSe. We focus on bulk FeSe and the effects of physical pressure and chemical substitutions as tuning parameters. In conclusion, the experimental results are discussed in the context of the well-studied iron-pnictide superconductors and interpretations from theoretical approaches are presented.« less

  9. Superconductivity in few-layer stanene

    NASA Astrophysics Data System (ADS)

    Liao, Menghan; Zang, Yunyi; Guan, Zhaoyong; Li, Haiwei; Gong, Yan; Zhu, Kejing; Hu, Xiao-Peng; Zhang, Ding; Xu, Yong; Wang, Ya-Yu; He, Ke; Ma, Xu-Cun; Zhang, Shou-Cheng; Xue, Qi-Kun

    2018-04-01

    A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.

  10. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    PubMed

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  11. Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

    PubMed Central

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X. J.

    2014-01-01

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. PMID:25502774

  12. Photothermal measurements of high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Fanton, J. T.; Mitzi, D. B.; Kapitulnik, A.; Khuri-Yakub, B. T.; Kino, G. S.; Gazit, D.; Feigelson, R. S.

    1989-08-01

    We demonstrate a photothermal method for making point measurements of the thermal conductivities of high Tc superconductors. Images made at room temperature on polycrystalline materials show the thermal inhomogeneities. Measurements on single-crystal Bi2Sr2CaCu2Ox compounds reveal a very large anisotropy of about 7:1 in the thermal conductivity.

  13. Heat capacity of high-purity lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, P.H.; Finnemore, D.K.; Bevolo, A.J.

    1980-04-01

    A study of the specific heat of high-purity single-phase dhcp La shows that this material is an intrinsic type-II superconductor with a kappa of about 2.4. The temperature dependence of the free energy is characteristic of an intermediate coupling superconductor with 2..delta../k/sub B/T/sub c/ approx. = 3.7.

  14. Innovative Techniques for Studying New Materials and New Developments in Solid State Physics

    DTIC Science & Technology

    1992-09-14

    acoustic resonators to study superfluid-filled silica aerogel , high Tc superconductors, and quasicrystals", to be published in J. Low Temp. Phys. 4. J. D...McKenna, and J. D. Maynard, "Using acoustic resonators to study superfluid-filled silica aerogel , high Tc superconductors, and quasicrystals", Symposium

  15. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  16. Optimization of a superconducting linear levitation system using a soft ferromagnet

    NASA Astrophysics Data System (ADS)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro

    2013-04-01

    The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  17. Optimization of a Non-arsenic Iron-based Superconductor for Wire Fabrication

    DOE PAGES

    Mitchell, Jonathan E; Hillesheim, D A; Bridges, Craig A; ...

    2015-03-13

    Here we report on the optimization of synthesis of iron selenide-based superconducting powders and the fabrication of selenide-based wire. The powders were synthesized by an ammonothermal method, whereby Ba is intercalated between FeSe layers to produce Ba x(NH 3) yFe 2Se 2, with tetragonal structure similar to AFe 2X 2 (X: As, Se), '122', superconductors. The optimal T c (up to 38 K) and Meissner and shielding superconducting fractions are obtained from the shortest reaction time (t) of reactants in liquid ammonia (30 min). With the increase of t, a second crystalline 122 phase, with a smaller unit cell, emerges.more » A small amount of NH 3 is released from the structure above ~200 °C, which results in loss of superconductivity. However, in the confined space of niobium/Monel tubing, results indicate there is enough pressure for some of NH 3 to remain in the crystal lattice, and thermal annealing can be performed at temperatures of up to 780 °C, increasing wire density and yielded a reasonable T c ≈ 16 K. Here, we report of the first successful wire fabrication of non-arsenic high-T c iron-based superconductor. We find that although bulk materials are estimated to carry critical current densities >100 kA cm ₋2 (4 K, self-field), the current transport within wires need to be optimized (J c ~ 1 kA cm ₋2).« less

  18. Superconductor Permanent Magnets for Advanced Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Putman, Phil; Zhou, Yuxiang; Salama, Kamel; Robertson, Tony; Bond, Deborah D.

    2005-02-01

    Improved trapped fields of 17 T at 29 K and 11.2 T at 47 K have been reported for the melt-textured YBCO superconductor material. Such high field strengths give the possibility for producing superconductor permanent magnets (SCPM) for plasma-related space propulsion applications, such as the anti-matter trap, magnetohydrodynamic (MHD) propulsion and electrical power generation, and others that are under development or being studied. The SCPM could be beneficial in reducing the weight-to-power ratio for the associated delivery and containment systems needed for plasma interactions that are inherently imbedded in many of these propulsion systems. In this paper, a review of the superconductor literature is presented, followed by uses of the SCPM in high-performance space propulsion applications.

  19. Flux pinning characteristics and irreversibility line in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Matsushita, T.; Ihara, N.; Kiuchi, M.

    1995-01-01

    The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.

  20. Prediction of a new class of half-metallic ferromagnets from first principles [A new class of half-metallic ferromagnets from first principles

    DOE PAGES

    Griffin, Sinead M.; Neaton, Jeffrey B.

    2017-09-12

    Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less

  1. Superconducting proximity effect in topological materials

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  2. The Physics and Chemistry of Materials

    NASA Astrophysics Data System (ADS)

    Gersten, Joel I.; Smith, Frederick W.

    2001-06-01

    A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.

  3. Summary Report of the Summer Conference of the DARPA-Materials Research Council Held in La Jolla, California on 6-30 July 1987

    DTIC Science & Technology

    1987-07-01

    that any array detector have very broad dynamic range. iv.) Analytical methods used in extracting structural data from experimental observations from...important influence on magnet design and on specialized magnetic devices ( SQUID devices) and forms the basis for promising electronic devices ’Josephson...printable inks using 123 powders. (2) Control of interfacial reactions between the superconductors and the dielectric. (3) Development of suitable

  4. Aperiodic topological order in the domain configurations of functional materials

    NASA Astrophysics Data System (ADS)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  5. Electron refrigeration in hybrid structures with spin-split superconductors

    NASA Astrophysics Data System (ADS)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  6. Superconductivity between standard types: Multiband versus single-band materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagov, A.; Shanenko, A. A.; Milošević, M. V.

    In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors interchange at the Ginzburg-Landau parameter κ = 1/√2. At lower temperatures this point unfolds into a narrow but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the transitional domain in between applies also to multiband superconductors. However, the intertype domain notably widens in the presence of multiple bands and can become extremely large when the systemmore » has a significant disparity between the band parameters. It is concluded that many multiband superconductors, such as recently discovered borides and iron-based materials, can belong to the intertype regime.« less

  7. Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui; Ji, Qiucheng; Hu, Kangkang; Gao, Bo; Li, Wei; Mu, Gang; Xie, Xiaoming

    2017-07-01

    The anisotropy of iron-based superconductors is much smaller than that of the cuprates and that predicted by theoretical calculations. A credible understanding for this experimental fact is still lacking up to now. Here we experimentally study the magnetic-field-angle dependence of electronic resistivity in the superconducting phase of an iron-based superconductor CaFe{}0.882Co{}0.118AsF, and find the strongest anisotropy effect of the upper critical field among the iron-based superconductors based on the framework of Ginzburg-Landau theory. The evidence of the energy band structure and charge density distribution from electronic structure calculations demonstrates that the observed strong anisotropic effect mainly comes from the strong ionic bonding in between the ions of Ca2+ and F-, which weakens the interlayer coupling between the layers of FeAs and CaF. This finding provides a significant insight into the nature of the experimentally-observed strong anisotropic effect of electronic resistivity, and also paves the way for designing exotic two-dimensional artificial unconventional superconductors in the future.

  8. New organic superconductors beta-(BDA-TTP)2X [BDA-TTP + 2,5-bis(1,3-dithian-2ylidene)-1,3,4,6-tetrathiapentalene; X(-) = SbF6(-), AsF6(-), and PF6(-)].

    PubMed

    Yamada, J; Watanabe, M; Akutsu, H; Nakatsuji, S; Nishikawa, H; Ikemoto, I; Kikuchi, K

    2001-05-09

    The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.

  9. Tunneling conductance in semiconductor-superconductor hybrid structures

    NASA Astrophysics Data System (ADS)

    Stenger, John; Stanescu, Tudor D.

    2017-12-01

    We study the differential conductance for charge tunneling into a semiconductor wire-superconductor hybrid structure, which is actively investigated as a possible scheme for realizing topological superconductivity and Majorana zero modes. The calculations are done based on a tight-binding model of the heterostructure using both a Blonder-Tinkham-Klapwijk approach and a Keldysh nonequilibrium Green's function method. The dependence of various tunneling conductance features on the coupling strength between the semiconductor and the superconductor, the tunnel barrier height, and temperature is systematically investigated. We find that treating the parent superconductor as an active component of the system, rather than a passive source of Cooper pairs, has qualitative consequences regarding the low-energy behavior of the differential conductance. In particular, the presence of subgap states in the parent superconductor, due to disorder and finite magnetic fields, leads to characteristic particle-hole asymmetric features and to the breakdown of the quantization of the zero-bias peak associated with the presence of Majorana zero modes localized at the ends of the wire. The implications of these findings for the effort toward the realization of Majorana bound states with true non-Abelian properties are discussed.

  10. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    PubMed

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  11. Advanced Fabrication Processes for Superconducting Very Large Scale Integrated Circuits

    DTIC Science & Technology

    2015-10-13

    transistors. There are several reasons for this gigantic disparity: insufficient funding and lack of profit-driven investments in superconductor ...Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers,” IEEE Trans. Appl. Supercond., vol...vol. 25, No. 3, 1301704, June 2015. [7] V. Ambegaokar and A. Baratoff, “Tunneling between superconductors ,” Phys. Rev. Lett., vol. 10, no. 11, pp

  12. Superconductor cable

    DOEpatents

    Allais, Arnaud [Hannover, DE; Schmidt, Frank [Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  13. Persistent superconductor currents in holographic lattices.

    PubMed

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  14. Ferromagnet / superconductor oxide superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic Energy Sciences, contract No.W-31-109-ENG-38. ^1GFMC, Departamento de F'isica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain ^2Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). 28049 Cantoblanco. Madrid. ^3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ^4Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6031, USA

  15. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  16. Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    NASA Astrophysics Data System (ADS)

    Kvorning, T.; Hansson, T. H.; Quelle, A.; Smith, C. Morais

    2018-05-01

    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral superconductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes.

  17. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  18. Correlation between superconductivity and bond angle of CrAs chain in non-centrosymmetric compounds A2Cr3As3 (A = K, Rb)

    PubMed Central

    Wang, Zhe; Yi, Wei; Wu, Qi; Sidorov, Vladimir A.; Bao, Jinke; Tang, Zhangtu; Guo, Jing; Zhou, Yazhou; Zhang, Shan; Li, Hang; Shi, Youguo; Wu, Xianxin; Zhang, Ling; Yang, Ke; Li, Aiguo; Cao, Guanghan; Hu, Jiangping; Sun, Liling; Zhao, Zhongxian

    2016-01-01

    Non-centrosymmetric superconductors, whose crystal structure is absent of inversion symmetry, have recently received special attentions due to the expectation of unconventional pairings and exotic physics associated with such pairings. The newly discovered superconductors A2Cr3As3 (A = K, Rb), featured by the quasi-one dimensional structure with conducting CrAs chains, belongs to such kind of superconductor. In this study, we are the first to report the finding that superconductivity of A2Cr3As3 (A = K, Rb) has a positive correlation with the extent of non-centrosymmetry. Our in-situ high pressure ac susceptibility and synchrotron x-ray diffraction measurements reveal that the larger bond angle of As-Cr-As (defined as α) in the CrAs chains can be taken as a key factor controlling superconductivity. While the smaller bond angle (defined as β) and the distance between the CrAs chains also affect the superconductivity due to their structural connections with the α angle. We find that the larger value of α-β, which is associated with the extent of the non-centrosymmetry of the lattice structure, is in favor of superconductivity. These results are expected to shed a new light on the underlying mechanism of the superconductivity in these Q1D superconductors and also to provide new perspective in understanding other non-centrosymmetric superconductors. PMID:27886268

  19. Correlation between superconductivity and bond angle of CrAs chain in non-centrosymmetric compounds A2Cr3As3 (A = K, Rb).

    PubMed

    Wang, Zhe; Yi, Wei; Wu, Qi; Sidorov, Vladimir A; Bao, Jinke; Tang, Zhangtu; Guo, Jing; Zhou, Yazhou; Zhang, Shan; Li, Hang; Shi, Youguo; Wu, Xianxin; Zhang, Ling; Yang, Ke; Li, Aiguo; Cao, Guanghan; Hu, Jiangping; Sun, Liling; Zhao, Zhongxian

    2016-11-25

    Non-centrosymmetric superconductors, whose crystal structure is absent of inversion symmetry, have recently received special attentions due to the expectation of unconventional pairings and exotic physics associated with such pairings. The newly discovered superconductors A 2 Cr 3 As 3 (A = K, Rb), featured by the quasi-one dimensional structure with conducting CrAs chains, belongs to such kind of superconductor. In this study, we are the first to report the finding that superconductivity of A 2 Cr 3 As 3 (A = K, Rb) has a positive correlation with the extent of non-centrosymmetry. Our in-situ high pressure ac susceptibility and synchrotron x-ray diffraction measurements reveal that the larger bond angle of As-Cr-As (defined as α) in the CrAs chains can be taken as a key factor controlling superconductivity. While the smaller bond angle (defined as β) and the distance between the CrAs chains also affect the superconductivity due to their structural connections with the α angle. We find that the larger value of α-β, which is associated with the extent of the non-centrosymmetry of the lattice structure, is in favor of superconductivity. These results are expected to shed a new light on the underlying mechanism of the superconductivity in these Q1D superconductors and also to provide new perspective in understanding other non-centrosymmetric superconductors.

  20. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beringer, Douglas

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less

  1. Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, P. J.; Bending, S. J.; Kim, J.

    2015-12-28

    We demonstrate that the magnetic state of a superconducting spin valve, that is normally controlled with an external magnetic field, can also be manipulated by varying the temperature which increases the functionality and flexibility of such structures as switching elements. In this case, switching is driven by changes in the magnetostatic energy due to spontaneous Meissner screening currents forming in the superconductor below the critical temperature. Our scanning Hall probe measurements also reveal vortex-mediated pinning of the ferromagnetic domain structure due to the pinning of quantized stray fields in the adjacent superconductor. The ability to use temperature as well asmore » magnetic field to control the local magnetisation structure raises the prospect of potential applications in magnetic memory devices.« less

  2. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    NASA Technical Reports Server (NTRS)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  3. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  4. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 62 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  5. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors

    PubMed Central

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-01-01

    A major problem in the field of high-transition temperature (Tc) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high–energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba1−xKxFe2As2. We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high-Tc superconductivity in the iron-based superconductors. PMID:28875162

  6. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    PubMed

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  7. Experimental evidence for a transverse magnetization of the Abrikosov lattice in anisotropic superconductors

    NASA Technical Reports Server (NTRS)

    Farrel, D. E.; Williams, C. M.; Wolf, S. A.; Bansal, N. P.; Kogan, V. G.

    1988-01-01

    The torque on a superconductor in a magnetic field H has been thought to be dominated by trapped flux or sample shape effects, but it has recently been suggested that an anisotropic type-II material should experience an intrinsic torque for H(c1) much less than H, which in turn is less than H(c2). The predicted phenomenon results from transverse magnetization of the Abrikosov lattice. Measurements are presented on copper-oxide superconductors which delineate the experimental regime in which extrinsic effects are negligible and confirm the existence of the predicted intrinsic torque.

  8. Two-dimensional chiral topological superconductivity in Shiba lattices

    PubMed Central

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-01-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal. PMID:27465127

  9. Aluminum-stabilized Nb/sub 3/Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1984-02-10

    This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  10. Aluminum-stabilized Nb[sub 3]Sn superconductor

    DOEpatents

    Scanlan, R.M.

    1988-05-10

    Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.

  11. Studies of superconducting materials with muon spin rotation

    NASA Technical Reports Server (NTRS)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  12. Recent Topics of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang; Brown, Stuart; Kagoshima, Seiichi; Kanoda, Kazushi; Kuroki, Kazuhiko; Mori, Hatsumi; Ogata, Masao; Uji, Shinya; Wosnitza, Jochen

    2012-01-01

    Recent developments in research into superconductivity in organic materials are reviewed. In the epoch-defining quasi-one-dimensional TMTSF superconductors with Tc ˜ 1 K, Tc decreases monotonically with increasing pressure, as do signatures of spin fluctuations in the normal state, providing good evidence for magnetically-mediated pairing. Upper critical fields exceed the Zeeman-limiting field by several times, suggesting triplet pairing or a transition to an inhomogeneous superconducting state at high magnetic fields, while triplet pairing is ruled out at low fields by NMR Knight-shift measurements. Evidence for a spatially inhomogeneous superconducting state, Fulde--Ferrel--Larkin--Ovchinnikov state, which has long been sought in various superconducting systems, is now captured by thermodynamic and transport measurements for clean and highly two-dimensional BEDT-TTF and BETS superconductors. Some of the layered superconductors also serve as model systems for Mott physics on anisotropic triangular lattice. For example, the Nernst effect and the pseudo-gap behavior in NMR relaxation are enhanced near to the Mott transition. In the case of increasing spin frustration, the superconducting transition temperature is depressed, and antiferromagnetic ordering is eliminated altogether in the adjacent Mott insulating phase. There is an increasing number of materials exhibiting superconductivity in competition or cooperation with charge order. Theoretical studies shed light on the role of spin and/or charge fluctuations for superconductivity appearing under conditions close to those of correlation-induced insulating phases in the diversity of organic materials.

  13. Synthesis of sodium polyhydrides at high pressures

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  14. High-Temperature Superconductors as Electromagnetic Deployment and Support Structures in Spacecraft. [NASA NIAC Phase I

    NASA Technical Reports Server (NTRS)

    Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.

    2012-01-01

    This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.

  15. The electronic structure of Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ superconductors studied using ultraviolet and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Dessau, D. S.; Wells, B. O.; Borg, A.; Ellis, W.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1989-07-01

    Photoemission measurements on single crystals of La-doped 2212 (Bi 2.0Sr 1.8La 0.3Ca 0.8Cu 2.1O 8+δ) superconductors were carried out utilizing both synchrotron and Al K α (1486.6 eV) radiation. A quantitative analysis of the photoemission data in comparison with similar data for the undoped 2212 material indicates that the La atoms preferentially occupy the Sr sites in the SrO layer next to the BiO plane. Evidence of alternation of the electronic environment of the Bi atoms is found in the Bi 5d core level spectra which show a shoulder at ≈ 1.2 eV higher binding energy, presumably due to the partial substitution of trivalent La ions (La 3+) for divalent Sr ions (Sr 2+). As for the undoped 2212 material, the photoemission spectra reveal a clear Fermi level cut-off at room temperature, single component O ls core level emission, and a Cu 2p satellite to main line intensity ratio of 0.4.

  16. First-principles study on elastic and superconducting properties of Nb3Sn and Nb3Al under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Gao, Peifeng; Wang, Xingzhe; Zhou, Youhe

    2015-10-01

    The low temperature superconducting materials, such as Nb3Sn and Nb3Al, have similar crystal structures and elastic properties. However, their critical-temperature degradations always show the distinct way under mechanical stresses. In this study, first-principles calculations for the low temperature superconductors based on plane-wave pseudo-potential density functional theory within the generalized gradient approximation are implemented, and the elastic moduli of Nb3Sn and Nb3Al and those superconductivities in the presence of hydrostatic pressure are evaluated. The Debye temperatures are obtained by the bulk moduli and shear moduli of superconducting materials. The MacMillan equation is further used to acquire the critical temperatures of Nb3Sn and Nb3Al under different hydrostatic pressures. It is found that the elastic constants and bulk moduli of the low temperature superconductors are enhanced by the applied hydrostatic pressure, while the critical temperatures usually are decreased with the pressure. Additionally, the decrease of critical-temperature for Nb3Sn is more sensitive to the hydrostatic pressure than the one for Nb3Al. The prediction results show good agreement with the experimental results in the literatures qualitatively.

  17. Novel phases and superconductivity of tin sulfide compounds

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph M.; Nguyen-Cong, Kien; Steele, Brad A.; Oleynik, Ivan I.

    2018-05-01

    Tin sulfides, SnxSy, are an important class of materials that are actively investigated as novel photovoltaic and water splitting materials. A first-principles evolutionary crystal structure search is performed with the goal of constructing the complete phase diagram of SnxSy and discovering new phases as well as new compounds of varying stoichiometry at ambient conditions and pressures up to 100 GPa. The ambient phase of SnS2 with P 3 ¯ m 1 symmetry remains stable up to 28 GPa. Another ambient phase, SnS, experiences a series of phase transformations including α-SnS to β-SnS at 9 GPa, followed by β-SnS to γ-SnS at 40 GPa. γ-SnS is a new high-pressure metallic phase with P m 3 ¯ m space group symmetry stable up to 100 GPa, which becomes a superconductor with a maximum Tc = 9.74 K at 40 GPa. Another new metallic compound, Sn3S4 with I 4 ¯ 3 d space group symmetry, is predicted to be stable at pressures above 15 GPa, which also becomes a superconductor with relatively high Tc = 21.9 K at 30 GPa.

  18. High Tc superconductors: The scaling of Tc with the number of bound holes associated with charge transfer neutralizing the multivalence cations

    NASA Technical Reports Server (NTRS)

    Vezzoli, G. C.; Chen, M. F.; Craver, F.

    1991-01-01

    It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.

  19. Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity.

    PubMed

    Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N  = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c  = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .

  20. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE PAGES

    Li, L.; Zheng, Q.; Zou, Q.; ...

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  1. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Zheng, Q.; Zou, Q.

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  2. Electronic materials high-T(sub c) superconductivity polymers and composites structural materials surface science and catalysts industry participation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.

  3. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  4. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.

    PubMed

    Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro

    2015-04-10

    Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

  5. Orbital-dependent electron correlation effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming

    The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.

  6. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe.

    PubMed

    Lu, X F; Wang, N Z; Wu, H; Wu, Y P; Zhao, D; Zeng, X Z; Luo, X G; Wu, T; Bao, W; Zhang, G H; Huang, F Q; Huang, Q Z; Chen, X H

    2015-03-01

    Iron selenide superconductors exhibit a number of unique characteristics that are helpful for understanding the mechanism of superconductivity in high-Tc iron-based superconductors more generally. However, in the case of AxFe2Se2 (A = K, Rb, Cs), the presence of an intergrown antiferromagnetic insulating phase makes the study of the underlying physics problematic. Moreover, FeSe-based systems intercalated with alkali metal ions, NH3 molecules or organic molecules are extremely sensitive to air, which prevents the further investigation of their physical properties. It is therefore desirable to find a stable and easily accessible FeSe-based superconductor to study its physical properties in detail. Here, we report the synthesis of an air-stable material, (Li0.8Fe0.2)OHFeSe, which remains superconducting at temperatures up to ~40 K, by means of a novel hydrothermal method. The crystal structure is unambiguously determined by a combination of X-ray and neutron powder diffraction and nuclear magnetic resonance. Moreover, antiferromagnetic order is shown to coexist with superconductivity. This synthetic route opens a path for exploring superconductivity in other related systems, and confirms the appeal of iron selenides as a platform for understanding superconductivity in iron pnictides more broadly.

  7. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  8. Isotope effect on electron-phonon interaction in the multiband superconductor MgB 2

    DOE PAGES

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; ...

    2016-04-07

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB 2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E 2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg 10B 2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  9. "Fluctuoscopy" of Superconductors

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic fluctuations close to critical temperature T c0and quantum fluctuations at zero temperature and in vicinity of the second critical field H c2(0). Then in the frameworks of the Ginzburg-Landau theory, we discuss the characteristic crossovers in fluctuation properties of superconductive nanoparticles and layered superconductors. We present the general expression for fluctuation magneto-conductivity valid through all phase diagram of superconductor and apply it to study of the quantum phase transition close to H c2(0). Fluctuation analysis of this transition allows us to present the scenario of fluctuation defragmentation of the Abrikosov lattice.

  10. Equilibrium properties of superconducting niobium at high magnetic fields: A possible existence of a filamentary state in type-II superconductors [Possible existence of a filamentary state in type-II superconductors

    DOE PAGES

    Kozhevnikov, V.; Valente-Feliciano, A. -M.; Curran, P. J.; ...

    2017-05-17

    The standard interpretation of the phase diagram of type-II superconductors was developed in the 1960s and has since been considered a well-established part of classical superconductivity. However, upon closer examination a number of fundamental issues arises that leads one to question this standard picture. To address these issues we studied equilibrium properties of niobium samples near and above the upper critical field H c2 in parallel and perpendicular magnetic fields. The samples investigated were very high quality films and single-crystal disks with the Ginzburg-Landau parameters 0.8 and 1.3, respectively. A range of complementary measurements has been performed, which include dcmore » magnetometry, electrical transport, muon spin rotation spectroscopy, and scanning Hall-probe microscopy. Contrary to the standard scenario, we observed that a superconducting phase is present in the sample bulk above H c2 and the field H c3 is the same in both parallel and perpendicular fields. Our findings suggest that above H c2 the superconducting phase forms filaments parallel to the field regardless of the field orientation. Near H c2 the filaments preserve the hexagonal structure of the preceding vortex lattice of the mixed state, and the filament density continuously falls to zero at H c3. Finally, our paper has important implications for the correct interpretation of the properties of type-II superconductors and can be essential for practical applications of these materials.« less

  11. What can Andreev bound states tell us about superconductors?

    PubMed

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  12. Final report. Superconducting materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Ruvalds

    1999-09-11

    Our group has discovered a many body effect that explains the surprising divergence of the spin susceptibility which has been measured by neutron scattering experiments on high temperature superconductors and vanadium oxide metals. Electron interactions on nested - i.e., nearly parallel paths - have been analyzed extensively by our group, and such processes provide a physical explanation for many anomalous features that distinguish cuprate superconductors from ordinary metals.

  13. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  14. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  15. Modeling and simulating vortex pinning and transport currents for high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Sockwell, K. Chad

    Superconductivity is a phenomenon characterized by two hallmark properties, zero electrical resistance and the Meissner effect. These properties give great promise to a new generation of resistance free electronics and powerful superconducting magnets. However this possibility is limited by the extremely low critical temperature the superconductors must operate under, typically close to 0K. The recent discovery of high temperature superconductors has brought the critical temperature closer to room temperature than ever before, making the realization of room temperature superconductivity a possibility. Simulations of superconducting technology and materials will be necessary to usher in the new wave of superconducting electronics. Unfortunately these new materials come with new properties such as effects from multiple electron bands, as is the case for magnesium diboride. Moreover, we must consider that all high temperature superconductors are of a Type II variety, which possess magnetic tubes of flux, known as vortices. These vortices interact with transport currents, creating an electrical resistance through a process known as flux flow. Thankfully this process can be prevented by placing impurities in the superconductor, pinning the vortices, making vortex pinning a necessary aspect of our model. At this time there are no other models or simulations that are aimed at modeling vortex pinning, using impurities, in two-band materials. In this work we modify an existing Ginzburg-Landau model for two-band superconductors and add the ability to model normal inclusions (impurities) with a new approach which is unique to the two-band model. Simulations in an attempt to model the material magnesium diboride are also presented. In particular simulations of vortex pinning and transport currents are shown using the modified model. The qualitative properties of magnesium diboride are used to validate the model and its simulations. One main goal from the computational end of the simulations is to enlarge the domain size to produce more realistic simulations that avoid boundary pinning effects. In this work we also implement the numerical software library Trilinos in order to parallelize the simulation to enlarge the domain size. Decoupling methods are also investigated with a goal of enlarging the domain size as well. The One-Band Ginzburg-Landau model serves as a prototypical problem in this endeavor and the methods shown that enlarge the domain size can be easily implemented in the two-band model.

  16. Theory of quantum metal to superconductor transitions in highly conducting systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure whichmore » is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.« less

  17. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  18. Phase dynamics of single long Josephson junction in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Chimouriya, Shanker Pd.; Ghimire, Bal Ram; Kim, Ju H.

    2018-05-01

    A system of perturbed sine Gordon equations is derived to a superconductor-insulator-superconductor (SIS) long Joseph-son junction as an extension of the Ambegaokar-Baratoff relation, following the long route of path integral formalism. A computer simulation is performed by discretizing the equations using finite difference approximation and applied to the MgB2 superconductor with SiO2 as the junction material. The solution of unperturbed sG equation is taken as the initial profile for the simulation and observed how the perturbation terms play the role to modify it. It is found initial profile deformed as time goes on. The variation of total Josephson current has also been observed. It is found that, the perturbation terms play the role for phase frustration. The phase frustration achieves quicker for high tunneling current.

  19. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors

    DOE PAGES

    Kuo, H. -H.; Chu, J. -H.; Palmstrom, J. C.; ...

    2016-05-19

    A key actor in the conventional theory of superconductivity is the induced interaction between electrons mediated by the exchange of virtual collective fluctuations (phonons in the case of conventional s-wave superconductors). Other collective modes that can play the same role, especially spin fluctuations, have been widely discussed in the context of high-temperature and heavy Fermion superconductors. The strength of such collective fluctuations is measured by the associated susceptibility. Here we use differential elastoresistance measurements from five optimally doped iron-based superconductors to show that divergent nematic susceptibility appears to be a generic feature in the optimal doping regime of these materials.more » This observation motivates consideration of the effects of nematic fluctuations on the superconducting pairing interaction in this family of compounds and possibly beyond.« less

  20. Lateral restoring force on a magnet levitated above a superconductor

    NASA Technical Reports Server (NTRS)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  1. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  2. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC superconductors (Tamegai et al), and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al). We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.

  3. Thermoelectric power as a probe of density of states in correlated actinide materials: The case of PuCoGa 5 superconductor

    DOE PAGES

    Gofryk, K.; Griveau, J. -C.; Riseborough, P. S.; ...

    2016-11-09

    We present measurements of the thermoelectric power of the plutonium-based unconventional superconductor PuCoGa 5. The data is interpreted within a phenomenological model for the quasiparticle density of states of intermediate valence systems and the results are compared with results obtained from photoemission spectroscopy. The results are consistent with intermediate valence nature of 5f-electrons, furthermore, we propose that measurements of the Seebeck coefficient can be used as a probe of density of states in this material, thereby providing a link between transport measurements and photoemission in strongly correlated materials. Here, we discuss these results and their implications for the electronic structuremore » determination of other strongly correlated systems, especially nuclear materials.« less

  4. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  5. Materials discovery at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Wang, Yanchao; Lv, Jian; Ma, Yanming

    2017-02-01

    Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.

  6. Effects of sudden density changes in disordered superconductors and semiconductors

    NASA Astrophysics Data System (ADS)

    Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe

    Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  7. Contact spectroscopy of high-temperature superconductors (Review). I - Physical and methodological principles of the contact spectroscopy of high-temperature superconductors. Experimental results for La(2-x)Sr(x)CuO4 and their discussion

    NASA Astrophysics Data System (ADS)

    Ianson, I. K.

    1991-03-01

    Research in the field of high-temperature superconductors based on methods of tunneling and microcontact spectroscopy is reviewed in a systematic manner. The theoretical principles of the methods are presented, and various types of contacts are described and classified. Attention is given to deviations of the measured volt-ampere characteristics from those predicted by simple theoretical models and those observed for conventional superconductors. Results of measurements of the energy gap and fine structure of volt ampere characteristic derivatives are presented for La(2-x)Sr(x)CuO4.

  8. A hidden pseudogap under the 'dome' of superconductivity in electron-doped high-temperature superconductors.

    PubMed

    Alff, L; Krockenberger, Y; Welter, B; Schonecke, M; Gross, R; Manske, D; Naito, M

    2003-04-17

    The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.

  9. Synthesis of sodium polyhydrides at high pressures

    DOE PAGES

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; ...

    2016-07-28

    Archetypal ionic NaH is the only known compound of sodium and hydrogen. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH 3 and NaH 7) above 40 GPa and 2,000 K. Moreover, we combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results supportmore » the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.« less

  10. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  11. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  12. Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6.

    PubMed

    Li, Yan-Ling; Luo, Wei; Chen, Xiao-Jia; Zeng, Zhi; Lin, Hai-Qing; Ahuja, Rajeev

    2013-11-26

    Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.

  13. Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO

    PubMed Central

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-01-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3−xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3−xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions. PMID:27941805

  14. Microscopic investigation of the weakly correlated noncentrosymmetric superconductor SrAuSi3

    NASA Astrophysics Data System (ADS)

    Barbero, N.; Biswas, P. K.; Isobe, M.; Amato, A.; Morenzoni, E.; Hillier, A. D.; Ott, H.-R.; Mesot, J.; Shiroka, T.

    2018-01-01

    SrAuSi3 is a noncentrosymmetric superconductor (NCS) with Tc=1.54 K, which to date has been studied only via macroscopic techniques. By combining nuclear-magnetic-resonance and muon-spin-rotation measurements, we investigate both the normal and the superconducting phase of SrAuSi3 at a local level. In the normal phase, our data indicate a standard metallic behavior with weak electron correlations and a Korringa constant Sexp=1.31 ×10-5 sK. The latter, twice the theoretical value, can be justified by the Moriya theory of exchange enhancement. In the superconducting phase, the material exhibits conventional BCS-type superconductivity with a weak-coupling s -wave pairing, a gap value Δ (0 )=0.213 (2 ) meV, and a magnetic penetration depth λ (0 )=398 (2 ) nm. The experimental proof of weak correlations in SrAuSi3 implies that correlation effects can be decoupled from those of antisymmetric spin-orbit coupling, thus enabling accurate band-structure calculations in the weakly correlated NCSs.

  15. Magnetic manipulation of topological states in p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-05-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC). In this work we investigate the magnetic field response of one-dimensional (1d) PSCs and we focus on the relation between the structure of the Cooper pair spin-configuration and the occurrence of topological phases with an enhanced number N of Majorana fermions per edge. The topological phase diagram, consisting of phases harboring Majorana modes, becomes significantly modified when one tunes the strength of the applied field, the direction of the d-vector and allows for long range hopping amplitudes in the 1d PSC. We find transitions between phases with different number N of Majorana fermions per edge and we show how they can be both induced by a variation of the hopping strength and a spin rotation of d.

  16. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi 2 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaba, Tomoya; Lawson, B. J.; Tinsman, Colin

    2017-01-27

    The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi 2Se 3) is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb)-doped Bi 2Se 3. As a result,more » the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi 2Se 3.« less

  17. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE PAGES

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  18. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    PubMed Central

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis. PMID:26306543

  19. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    DTIC Science & Technology

    2015-12-01

    accelerating structure. The SRF linear accelerator stores RF fields within its niobium cavities. Superconductors require less average RF power than...is needed to cool the superconductor for the SRF linear accelerator. A current outstanding research topic is the RF frequency to use for the SRF

  20. Electronic structure of the ingredient planes of the cuprate superconductor Bi 2Sr 2CuO 6+δ: A comparison study with Bi 2Sr 2CaCu 2O 8+δ

    DOE PAGES

    Yan -Feng Lv; Gu, G. D.; Wang, Wen -Lin; ...

    2016-04-15

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi 2Sr 2CuO 6+δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose themore » interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Furthermore, our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.« less

  1. Manipulatable Andreev reflection due to the interplay between the DIII-class topological and s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qi; Yi, Guang-Yu; Han, Yu; Jiang, Cui; Gong, Wei-Jiang

    2018-07-01

    We construct one mesoscopic circuit in which one quantum dot couples to one DIII-class topological superconductor and one s-wave superconductor, in addition to its connection with the metallic lead. And then, the Andreev reflection current in the metallic lead is evaluated. It is found that the two kinds of superconductors drive the Andreev reflection in the constructive manner. Next as finite superconducting phase difference is taken into account, the Andreev reflection oscillates in period π/2, and it can be suppressed in the low-energy region if the superconducting phase difference is (n + 1/2) π/2 (n ∈ Integer). Such a result is almost independent of the increase of the intradot Coulomb interaction. Therefore, this structure can assist to realize the manipulation of the Andreev reflection. Also, the result in this work provides useful information for understanding the property of the DIII-class topological superconductor.

  2. Primary research efforts on exploring the commercial possibilities of thin film growth and materials purification in space

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The progress made on research programs in the 1987 to 1988 year is reported. The research is aimed at producing thin film semiconductors and superconductor materials in space. Sophisticated vacuum chambers and equipment were attained for the epitaxial thin film growth of semiconductors, metals and superconductors. In order to grow the best possible epitaxial films at the lowest possible temperatures on earth, materials are being isoelectronically doped during growth. It was found that isoelectrically doped film shows the highest mobility in comparison with films grown at optimal temperatures. Success was also attained in growing epitaxial films of InSb on sapphire which show promise for infrared sensitive devices in the III-V semiconductor system.

  3. Crystal structure of the pyrochlore oxide superconductor KOs{sub 2}O{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaura, Jun-Ichi; Yonezawa, Shigeki; Muraoka, Yuji

    2006-01-15

    We report the single-crystal X-ray analysis of the structure of the pyrochlore oxide superconductor KOs{sub 2}O{sub 6}. The structure was identified as the {beta}-pyrochlore structure with space group Fd3-bar m and lattice constant a=10.089(2)A at 300K: the K atom is located at the 8b site, not at the 16d site as in conventional pyrochlore oxides. We found an anomalously large atomic displacement parameter U{sub iso}=0.0735(8)A{sup 2} at 300K for the K cation, which suggests that the K cation weakly bound to an oversized Os{sub 12}O{sub 18} cage exhibits intensive rattling, as recently observed for clathrate compounds. The rattling of Amore » cations is a common feature in the series of {beta}-pyrochlore oxide superconductors AOs{sub 2}O{sub 6} (A=Cs, Rb and K), and is greatest for the smallest K cation.« less

  4. Unusual two-dimensional behavior of iron-based superconductors with low anisotropy

    NASA Astrophysics Data System (ADS)

    Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.

    2017-10-01

    We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.

  5. Broken rotational symmetry on the Fermi surface of a high-Tc superconductor

    DOE PAGES

    Ramshaw, B. J.; Harrison, N.; Sebastian, S. E.; ...

    2017-02-13

    Broken fourfold rotational (C 4) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high-T c cuprates this broken symmetry has never been observed on the Fermi surface. Here we report a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high transition temperature (high-T c) superconductor YBa 2Cu 3O 6.58, directly revealing broken C 4 symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C 2 symmetry ofmore » the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C 4 symmetry breaking in the Fermi surface reconstruction of YBa 2Cu 3O 6+δ , and suggests a striking degree of universality among unconventional superconductors.« less

  6. Vortices in high-performance high-temperature superconductors

    DOE PAGES

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; ...

    2016-09-21

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. In this paper, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Finally, we discuss an emerging new paradigm of criticalmore » current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg–Landau approach to simulating vortex dynamics.« less

  7. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  8. Analyse des proprietes electroniques de supraconducteurs a l'aide de la theorie de la fonctionnelle de la densite

    NASA Astrophysics Data System (ADS)

    Blackburn, Simon

    In this thesis, the electronic structure of different kinds of superconductors is explored with the density functional theory. A brief explanation of this theory is done in the introduction. The Hubbard model is also presented as it can be used to solve shortcomings of the theory in some materials such as cuprates. The blend of the two theories is the DFT+U which is used to describe materials with strongly correlated electrons. Afterward, a paper describing the electron-phonon coupling in the superconductor NbC1- xNx is presented. Results from this work show the role of the Fermi surface in the electron pairing mechanism leading to superconductivity. Based on these results, a model is developed explaining how the critical temperature is influenced by the change in frequency of the vibration modes. Then, quantum oscillation results based on a detailed analysis of Fermi surfaces, allowing a direct comparison with experimental data, are presented within two papers. The first one is about a material in the iron pnictide family, the LaFe2P2. Our calculations show that the Fermi surface of this material is different from the superconducting doped BaFe2As2 which explains why this material shows no sign of superconductivity. The second paper is about the heavy fermion system YbCoIn5. To do this, a new efficient method to calculate de Haas-van Alphen frequencies is developed. Finally, a paper on superconducting YBa2Cu3O6.5 is presented. Using DFT+U, the role of various magnetic orders on the Fermi surface are studied. The results allow a better understanding of the measured quantum oscillations in this material.

  9. Adaptation of superconducting fault current limiter to high-speed reclosing

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yanabu, S.

    2009-10-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  10. Synthesis and Superconducting Properties of the High Transition Temperature Superconductor BARIUM(1-X) Potassium(x)bismuth Trioxide

    NASA Astrophysics Data System (ADS)

    Folkerts, Timothy John

    A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.

  11. Theoretical studies of the electronic properties of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.

    1990-11-01

    The first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method for electronic structure studies has been applied to a variety of complex inorganic crystals. The theory and the practice of the OLCAO method in the local density approximation are discussed in detail. Recent progress in the study of electronic and optical properties of a large list of ceramic systems are summarized. Eight selected topics on different ceramic crystals focusing on specific points of interest are presented as examples. The materials discussed are AlN, Cu2O, beta-Si3N4, Y2O3, LiB3O5, ferroelectric crystals, Fe-B compounds, and the YBa2Cu3O7 superconductor.

  12. The Effect of Sintering Temperature on The Rolled Silver-Sheathed Monofilament Bi,Pb-Sr-Ca-Cu-O Superconducting Wire

    NASA Astrophysics Data System (ADS)

    Hendrik; Sebleku, P.; Siswayanti, B.; Pramono, A. W.

    2017-05-01

    The manufacture of high critical temperature (Tc) Bi, Pb-Sr-Ca-Cu-O (HTS BPSCCO) superconductor wire fabricated by power-in-tube (PIT) is a multi-step process. The main difficulty is that the value of Tc superconductor wire determined by various factors for each step. The objective of this research is to investigate the effect of sintering parameters on the properties of final rolled material. The fabrication process of 1 m rolled-silver sheath monofilament superconductor BPSCCO wire using mechanical deformation process including rolling and drawing has been carried out. The pure silver powders were melted and formed into pure silver (Ag) tube. The tube was 10 mm in diameter with a sheath material: superconductor powders ratio of about 6 : 1. Starting powders, containing the nominal composition of Bi2-Sr2-Cam-1-Cum-Oy, were inserted into the pure silver tube and rolled until it reached a diameter of 4 mm. A typical area reduction ratio of about 5% per step has been proposed to prevent microcracking during the cold-drawing process. The process of rolling of the silver tube was subsequently repeated to obtain three samples and then followed by heat-treated at 820 °C, 840 °C, and 860 °C, respectively. The surface morphology was analyzed by using SEM; the crystal structure was studied by using X-RD, whereas the superconductivity was investigated by using temperature dependence resistivity measurement by using four-point probe technique. SEM images showed the porosity of the cross-sectional surface of the samples. The sample with low heating temperature showed porosity more than the one with high temperature. The value of critical temperature (Tc) of the sample with a dwelling time of heating of 8 hours is 70 K. At above 70 K, it shows the behavior of conductor properties. However, the porosity increased as the heating time increased up to 24 hours. The critical temperature was difficult to be identified due to its porosity. According to XRD results, the Bi-2212 phase is prominent in all samples.

  13. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    NASA Astrophysics Data System (ADS)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  14. JPRS Report, Science & Technology, Europe & Latin America.

    DTIC Science & Technology

    1987-08-28

    Rhine Westfalia) has recently agreed to purchase a new high performance laser which is supposed to • prepare the ground for new processing and...Transition Temperature Lies Within a Very Limited Area"] [Excerpts] VDI-N, Bochum, 15/5/87— High temperature, high current superconductors with a transition...applications of superconductive materials. Dr Kahn was able to produce a high temperature superconductor with high current flow based on the known oxide

  15. Orbital loop currents in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Klug, Markus; Kang, Jian; Fernandes, Rafael M.; Schmalian, Jörg

    2018-04-01

    We show that the antiferromagnetic state commonly observed in the phase diagrams of the iron-based superconductors necessarily triggers loop currents characterized by charge transfer between different Fe 3 d orbitals. This effect is rooted on the glide-plane symmetry of these materials and on the existence of an atomic spin-orbit coupling that couples states at the X and Y points of the 1-Fe Brillouin zone. In the particular case in which the magnetic moments are aligned parallel to the magnetic ordering vector direction, which is the moment configuration most commonly found in the iron-based superconductors, these loop currents involve the dx y orbital and either the dy z orbital (if the moments point along the y axis) or the dx z orbitals (if the moments point along the x axis). We show that the two main manifestations of the orbital loop currents are the emergence of magnetic moments in the pnictide/chalcogen site and an orbital-selective band splitting in the magnetically ordered state, both of which could be detected experimentally. Our results highlight the unique intertwining between orbital and spin degrees of freedom in the iron-based superconductors, and reveal the emergence of an unusual correlated phase that may impact the normal state and superconducting properties of these materials.

  16. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    2011-12-01

    In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe1+yTe1-xSex (11), and AxFe2-ySe2 (A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, Tc, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In AxFe2-ySe2, superconductivity with Tc ~ 30 K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors.

  17. Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor

    NASA Astrophysics Data System (ADS)

    ‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof

    2018-01-01

    The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.

  18. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  19. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE PAGES

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin; ...

    2017-12-17

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  20. Huge critical current density and tailored superconducting anisotropy in SmFeAsO₀.₈F₀.₁₅ by low-density columnar-defect incorporation.

    PubMed

    Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K

    2013-01-01

    Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.

  1. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  2. Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides.

    PubMed

    de la Barrera, Sergio C; Sinko, Michael R; Gopalan, Devashish P; Sivadas, Nikhil; Seyler, Kyle L; Watanabe, Kenji; Taniguchi, Takashi; Tsen, Adam W; Xu, Xiaodong; Xiao, Di; Hunt, Benjamin M

    2018-04-12

    Systems simultaneously exhibiting superconductivity and spin-orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin-orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin-orbit coupling in the atomic layer limit, metallic 2H-TaS 2 and 2H-NbSe 2 . We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin-orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.

  3. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    PubMed

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  4. Reconciling STS and ARPES data for the correlated superconductor LiFeAs

    NASA Astrophysics Data System (ADS)

    Hong, Jongbae; Abergel, David

    The inconsistency between the density of states revealed by scanning tunneling spectroscopy (STS) and that given by angle-resolved photoemission spectroscopy (ARPES) is a substantial problem for understanding the nature of strongly correlated superconductors such as Fe-based LiFeAs and the cuprates. We reveal that the two side peaks commonly appearing in both pnictide and cuprate superconductors are the result of the non-equilibrium behavior associated with singlet cotunneling from the tip to the strongly correlated sample. We accurately reproduce the STS line shape of the Fe-based LiFeAs using a sample density of states which coincides with ARPES data, thereby producing a unified description for these materials.

  5. Nanoscale interplay of strain and doping in a high-temperature superconductor

    DOE PAGES

    Zeljkovic, Ilija; Gu, Genda; Nieminen, Jouko; ...

    2014-11-07

    The highest temperature superconductors are electronically inhomogeneous at the nanoscale, suggesting the existence of a local variable which could be harnessed to enhance the superconducting pairing. Here we report the relationship between local doping and local strain in the cuprate superconductor Bi₂Sr₂CaCu₂O₈₊ x. We use scanning tunneling microscopy to discover that the crucial oxygen dopants are periodically distributed, in correlation with local strain. Our picoscale investigation of the intra-unit-cell positions of all oxygen dopants provides essential structural input for a complete microscopic theory.

  6. Suppression of the "Quasiclassical" proximity gap in correlated-metal--superconductor structures.

    PubMed

    Nikolić, Branislav K; Freericks, J K; Miller, P

    2002-02-18

    We study the energy and spatial dependence of the local density of states in a superconductor--correlated-metal--superconductor Josephson junction, where the correlated metal is a non-Fermi liquid (described by the Falicov-Kimball model). Many-body correlations are treated with dynamical mean-field theory, extended to inhomogeneous systems. While quasiclassical theories predict a minigap in the spectrum of a disordered Fermi liquid which is proximity-coupled within a mesoscopic junction, we find that increasing electron correlations destroy any minigap that might be opened in the absence of many-body correlations.

  7. Influence of microstructure on superconductivity in KxFe2−ySe2 and evidence for a new parent phase K2Fe7Se8

    PubMed Central

    Ding, Xiaxin; Fang, Delong; Wang, Zhenyu; Yang, Huan; Liu, Jianzhong; Deng, Qiang; Ma, Guobin; Meng, Chong; Hu, Yuhui; Wen, Hai-Hu

    2013-01-01

    The search for new superconducting materials has been spurred on by the discovery of iron-based superconductors whose structure and composition is qualitatively different from the cuprates. The study of one such material, KxFe2−ySe2 with a critical temperature of 32 K, is made more difficult by the fact that it separates into two phases—a dominant antiferromagnetic insulating phase K2Fe4Se5, and a minority superconducting phase whose precise structure is as yet unclear. Here we perform electrical and magnetization measurements, scanning electron microscopy and microanalysis, X-ray diffraction and scanning tunnelling microscopy on KxFe2−ySe2 crystals prepared under different quenching processes to better understand the relationship between its microstructure and its superconducting phase. We identify a three-dimensional network of superconducting filaments within this material and present evidence to suggest that the superconducting phase consists of a single Fe vacancy for every eight Fe-sites arranged in a √8 x √10 parallelogram structure. PMID:23695691

  8. Consortium for Materials Development in Space. Technical section

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Several topics related to materials development in space are discussed. Physical vapor transport crystal growth, the mass spectroscopic facility, surface coatings and catalyst production by electrodeposition, mass transfer by diffusion, electrooptical organic materials, and high temperature superconductors are among the topics covered.

  9. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  10. Levitation in physics.

    PubMed

    Brandt, E H

    1989-01-20

    Several physical effects allow free floatation of solid and even liquid matter. Materials may be levitated by a jet of gas, by intense sound waves, or by beams of laser light. In addition, conductors levitate in strong radio-frequency fields, charged particles in alternating electric fields, and magnets above superconductors or vice versa. Although levitation by means of ferromagnets is unstable, supper-conductors may be suspended both above and below a magnet as a result of flux pinning. Levitation is used for containerless processing and investigation of materials, for frictionless bearings and high-speed ground transportation, for spectroscopy of single atoms and microparticles, and for demonstrating superconductivity in the new oxide superconductors.

  11. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test ofmore » that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs.« less

  12. Orbital selective pairing and gap structures of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  13. Orbital selective pairing and gap structures of iron-based superconductors

    DOE PAGES

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.; ...

    2017-05-08

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  14. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: a review

    NASA Astrophysics Data System (ADS)

    Smidman, M.; Salamon, M. B.; Yuan, H. Q.; Agterberg, D. F.

    2017-03-01

    In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

  15. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A superconducting battery material: Lithium gold boride (LiAu3B)

    NASA Astrophysics Data System (ADS)

    Aydin, Sezgin; Şimşek, Mehmet

    2018-04-01

    The superconducting and potential cathode material properties of ternary boride of LiAu3B have been investigated by density functional first principles. The Li-concentration effects on the actual electronic and structural properties, namely the properties of LixAu9B3 (x = 0, 1, 2) sub-systems are studied. It is remarkably shown that the existence of Li-atoms has no considerable effect on the structural properties of Au-B skeleton in LiAu3B. Then, it can be offered as a potential cathode material for Li-ion batteries with the very small volume deviation of 0.42%, and the suitable average open circuit voltage of ∼1.30 V. Furthermore, the vibrational and superconducting properties such as electron-phonon coupling constant (λ) and critical temperature (Tc) of LiAu3B are studied. The calculated results suggest that LiAu3B should be a superconductor with Tc ∼5.8 K, also.

  17. Magnetic-Field-Tunable Superconducting Rectifier

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  18. Potential aerospace applications of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on Earth Orbit Systems (EOS) with HTS leads. IR detectors on these EOS missions are cooled to a 4.2K to improve their signal to noise ratio. They are connected to data acquisitions systems using manganin wires (low thermal conductors) to reduce the heat load on the cryogen. Replacing these wires with HTS leads will increase the lifetime of these missions by about 50 percent. This is a promising application that is ready for actual implementation on such systems. The analysis also show that an the number of IR detectors increase in larger EOS systems, substantial increase in the lifetime of each mission will be realized by using HTS leads instead of the manganin ones.

  19. Tailoring Superconductivity with Quantum Dislocations.

    PubMed

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  20. Investigations of Crossed Andreev Reflection in Hybrid Superconductor-Ferromagnet Structures

    ERIC Educational Resources Information Center

    Colci O'Hara, Madalina

    2009-01-01

    Cooper pair splitting is predicted to occur in hybrid devices where a superconductor is coupled to two ferromagnetic wires placed at a distance less than the superconducting coherence length. This thesis searches for signatures of this process, called crossed Andreev reflection (CAR), in three device geometries. The first devices studied are…

  1. Apparatus and method for measuring and imaging surface resistance

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1993-08-24

    Apparatus and method for determining and imaging superconductor surface resistance. The apparatus comprises modified Gaussian confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor.

  2. Magnetic Linear Accelerator (MAGLAC) as Driver for Impact Fusion (IF)

    DTIC Science & Technology

    1979-07-01

    qualitatively different. For example, a superconductor levitated by Meis- sner effect ("flux exculsion") would be vertically stable for z > a/2; an iron...These include, for example, 1. Further material research on superconductors under high magnetic field and high frequencies. 2. Theoretical and...DEFENSE PENTAGON IMSHJNGT0N5& 20301-7100 £?1C ^ALITY INSPECTED 4 This paper presents considerations on the design of a magnetic linear accelerator

  3. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  4. Flywheel energy storage with superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  5. Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors

    DTIC Science & Technology

    2012-05-14

    in the literature. Figure 6. CV, charge-discharge behavior, and stability of the N-GNWs/CC as supercapacitor . The Reagon plot with...comparison of conventional carbon materials and our CNWs/CC has been sketched. For conventional materials, irregular packing of the nanomaterials has been

  6. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T/sub c/ bulk material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dijkkamp, D.; Venkatesan, T.; Wu, X.D.

    We report the first successful preparation of thin films of Y-Ba-Cu-O superconductors using pulsed excimer laser evaporation of a single bulk material target in vacuum. Rutherford backscattering spectrometry showed the composition of these films to be close to that of the bulk material. Growth rates were typically 0.1 nm per laser shot. After an annealing treatment in oxygen the films exhibited superconductivity with an onset at 95 K and zero resistance at 85 and 75 K on SrTiO/sub 3/ and Al/sub 2/O/sub 3/ substrates, respectively. This new deposition method is relatively simple, very versatile, and does not require the usemore » of ultrahigh vacuum techniques.« less

  7. Enhanced superconductivity in aluminum-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninova, Vera; Jensen, Christopher; Zimmerman, William; Prestigiacomo, Joseph; Osofsky, Michael; Kim, Heungsoo; Bassim, Nabil; Xing, Zhen; Qazilbash, Mumtaz; Smolyaninov, Igor

    One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature Tc in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar Tc enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  8. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor.

    PubMed

    von Rohr, Fabian; Winiarski, Michał J; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-11-15

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.

  9. Positron studies of defected metals, metallic surfaces

    NASA Astrophysics Data System (ADS)

    Bansil, A.

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-(Tc) superconductors, in particular, (1) momentum density and positron experiments, (2) angle-resolved photoemission intensities, and (3) effects of disorder and substitutions in the high-(Tc)'s. The specific progress made in each of these problems is summarized.

  10. Electronic properties of high-temperature superconductors and novel carbon-based conductors and superconductors

    NASA Astrophysics Data System (ADS)

    Fuhrer, Michael Sears

    This thesis is divided into three sections. The first section discusses the electrical transport properties of a highly anisotropic high temperature superconductor, Bi2Sr2CaCu2O8, in magnetic fields. High temperature superconductivity has greatly expanded the study of vortex matter: the state of the quantized magnetic field excitations, or vortices, in a superconductor. The effects of tilted fields and fields parallel to the planes are studied: striking deviations from the expectations of a simple anisotropic superconductivity model are found, indicating that the layered structure of high temperature superconductors plays a significant role in determining the dynamics and phases of vortex matter. For the case of parallel magnetic fields, the Josephson vortex state, a new phase transition is identified, the melting of the Josephson vortex lattice. A mechanism for Josephson vortex lattice melting is proposed to explain the differences in the phase diagrams from the usual case of Abrikosov vortex lattice melting. The second section discusses experiments on C60-containing solids. A method for growing high quality single crystals of C60 is described. Isotopically pure single crystal samples of the fulleride superconductor Rb3C60 were synthesized in order to measure the carbon isotope effect on superconductivity. By measuring the superconducting transitions in the resistance of single crystals of Rb3C60, the carbon isotope effect was determined with unprecedented accuracy. Measurement of the isotope effect gives essential information for determination of the superconducting parameters, necessary for a complete theoretical picture of superconductivity in this material. New intercalated graphite compounds containing C60, and their electronic properties, are also discussed. The third section discusses the electrical transport and magnetotransport properties of mats of single-walled carbon nanotubes. Single-walled nanotubes are an intriguing new physical system: nanowires of pure carbon with nanometerscale diameters and lengths of microns. The previously unexplained low-temperature properties are shown to be due to localization. The radius of the localized states is determined, and the hopping conduction is found to be three-dimensional in nature. The magnetotransport also agrees with models of variable range hopping in two or greater dimensions, indicating that mats of single-walled nanotubes are well-connected metallic networks.

  11. Development of high Tc (greater than 110K) Bi, Tl and Y-based materials as superconducting circuit elements

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.; Lee, Burtrand; Grabert, Gregory; Gilmour, Phillip

    1991-01-01

    This report is presented in two parts. Part 1 deals primarily with Bi-based materials and a small amount of work on a Y-based composition while Part 2 covers work on Tl-based materials. In Part 1, a reliable and reproducible process for producing bulk bismuth-based superconductors has been developed. It is noted however, that a percentage of the tapecast material experiences curling and fracturing after a 30 hour sintering period and is thus in need of further examination. The Bi-Sr-Ca-Cu-O (BSCCO) material has been characterized by critical temperature data, X-ray diffraction data, and surface morphology. In the case of T sub c, it is not critical to anneal the material. It appears that the BSCCO material has the possibility of producing a better grounding strap than that of the 123 material. Attempts to reproduce near room temperature superconductors in the Y-Ba-Cu-O system were unsuccessful. In Part 2, several methods of processing the high temperature superconductor Tl2Ba2Ca2Cu3O10 were investigated; i.e., different precursor compositions were sintered at various sintering times and temperatures. The highest superconductig temperature was found to be 117.8K when fired at 900 C for three hours. Higher sintering temperatures produced a melted sample which was nonsuperconducting at liquid nitrogen temperature. Also, a preliminary study found Li2O substitutions for copper appeared to increase the transition temperature and create fluxing action upon sintering. It was suggested that lower sintering temperatures might be obtained with lithium additions to produce reliable Tl2Ba2Ca2Cu3O10 processing methods.

  12. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    NASA Astrophysics Data System (ADS)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  13. Electronic inhomogeneity in a Kondo lattice

    PubMed Central

    Bauer, E. D.; Yang, Yi-feng; Capan, C.; Urbano, R. R.; Miclea, C. F.; Sakai, H.; Ronning, F.; Graf, M. J.; Balatsky, A. V.; Movshovich, R.; Bianchi, A. D.; Reyes, A. P.; Kuhns, P. L.; Thompson, J. D.; Fisk, Z.

    2011-01-01

    Inhomogeneous electronic states resulting from entangled spin, charge, and lattice degrees of freedom are hallmarks of strongly correlated electron materials; such behavior has been observed in many classes of d-electron materials, including the high-Tc copper-oxide superconductors, manganites, and most recently the iron–pnictide superconductors. The complexity generated by competing phases in these materials constitutes a considerable theoretical challenge—one that still defies a complete description. Here, we report a manifestation of electronic inhomogeneity in a strongly correlated f-electron system, using CeCoIn5 as an example. A thermodynamic analysis of its superconductivity, combined with nuclear quadrupole resonance measurements, shows that nonmagnetic impurities (Y, La, Yb, Th, Hg, and Sn) locally suppress unconventional superconductivity, generating an inhomogeneous electronic “Swiss cheese” due to disrupted periodicity of the Kondo lattice. Our analysis may be generalized to include related systems, suggesting that electronic inhomogeneity should be considered broadly in Kondo lattice materials.

  14. Hybrid crystals of cuprates and iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  15. Metamaterial superconductors

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.; Smolyaninova, Vera N.

    2018-05-01

    Searching for natural materials exhibiting larger electron-electron interactions constitutes a traditional approach to high-temperature superconductivity research. Very recently, we pointed out that the newly developed field of electromagnetic metamaterials deals with the somewhat related task of dielectric response engineering on a sub-100-nm scale. Considerable enhancement of the electron-electron interaction may be expected in such metamaterial scenarios as in epsilon near-zero (ENZ) and hyperbolic metamaterials. In both cases, dielectric function may become small and negative in substantial portions of the relevant four-momentum space, leading to enhancement of the electron pairing interaction. This approach has been verified in experiments with aluminum-based metamaterials. Metamaterial superconductor with Tc=3.9 K have been fabricated, which is three times that of pure aluminum (Tc=1.2 K), which opens up new possibilities to improve the Tc of other simple superconductors considerably. Taking advantage of the demonstrated success of this approach, the critical temperature of hypothetical niobium, MgB2- and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial, the projected Tc appears to reach 250 K.

  16. The role of Hund's coupling in the correlations and the nematicity of iron superconductors

    NASA Astrophysics Data System (ADS)

    Bascones, Elena

    Since their discovery in 2008 the strength and the nature of correlations in iron superconductors have been widely discussed. Understanding the correlations is key to unveil the nature of the superconducting, nematic and magnetic instabilities which appear in the phase diagram. Due to their multi-orbital character, correlations in iron superconductors are strongly affected by Hund's coupling and these materials have been classified by some authors as Hund metals. For a long time there has been a strong controversy on the nature of correlations induced by Hund's coupling and its relation to Mott physics. While some authors describe Hund metals as strongly correlated systems which are not in proximity to a Mott insulating state, others, have described iron superconductors as doped Mott insulators. In the talk, after some introduction, I will first show our recent results which show that while the spin polarization of the atoms, promoted by Hund's coupling induces strong correlations, this does not necessary mean that the total charge is more localized. On the contrary, in some cases this polarization promotes itinerancy. I will then present a generic framework to address the correlations in iron superconductors and discuss the role of Hund's coupling in the nematicity of iron superconductors, with special emphasis on FeSe. Funding from Ministerio de Ciencia y Tecnología FIS2011-29689, FIS2014-53219-P and Fundacion Ramon Areces.

  17. The phenomenon of voltage controlled switching in disordered superconductors.

    PubMed

    Ghosh, Sanjib; De Munshi, D

    2014-01-15

    The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device.

  18. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    NASA Astrophysics Data System (ADS)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  19. The Effect of Twins on Critical Currents of High Tc Superconductors

    DTIC Science & Technology

    1989-01-01

    particles to stick together due to electrostatic forces. To overcome this we have formed a slurry of the material in liquid nitrogen and flash...can use and the liquid convection tends to counteract the separation process. We have-now designed a magnetic track which particles will slide down with...Currents of High Tc Superconductors" - A.M. Campbell and M.F. Ashby The initial work on levitation forces and separation of superconducting powders has

  20. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1–xFe2–ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  1. High-T c superconductivity in undoped ThFeAsN.

    PubMed

    Shiroka, T; Shang, T; Wang, C; Cao, G-H; Eremin, I; Ott, H-R; Mesot, J

    2017-07-31

    Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the s-wave superconducting gap in this compound from the standard s ± scenario.Exploring the interplay between the superconducting gap and the antiferromagnetic phase in Fe-based superconductors remains an open issue. Here, the authors show that Fermi-surface modifications by means of structural distortions and correlation effects are as important as doping in inducing superconductivity in undoped ThFeAsN.

  2. Field-Free Nucleation of Antivortices and Giant Vortices in Nonsuperconducting Materials

    NASA Astrophysics Data System (ADS)

    Amundsen, Morten; Ouassou, Jabir Ali; Linder, Jacob

    2018-05-01

    Giant vortices with higher phase winding than 2 π are usually energetically unfavorable, but geometric symmetry constraints on a superconductor in a magnetic field are known to stabilize such objects. Here, we show via microscopic calculations that giant vortices can appear in intrinsically nonsuperconducting materials, even without any applied magnetic field. The enabling mechanism is the proximity effect to a host superconductor where a current flows, and we also demonstrate that antivortices can appear in this setup. Our results open the possibility to study electrically controllable topological defects in unusual environments, which do not have to be exposed to magnetic fields or intrinsically superconducting, but instead display other types of order.

  3. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.

    PubMed

    Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming

    2016-11-01

    The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.

  4. Chemical stability of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  5. Vortex Escape from Columnar Defect in a Current-Loaded Superconductor

    NASA Astrophysics Data System (ADS)

    Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.

    2018-06-01

    The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.

  6. Terminal structure

    DOEpatents

    Schmidt, Frank [Langenhagen, DE; Allais, Arnaud [Hannover, DE; Mirebeau, Pierre [Villebon sur Yvette, FR; Ganhungu, Francois [Vieux-Reng, FR; Lallouet, Nicolas [Saint Martin Boulogne, FR

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  7. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    NASA Technical Reports Server (NTRS)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  8. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2016-02-01

    This volume of Journal of Physics: Conference Series contains both invited and contributed papers presented at the International Symposium on "New Quantum Phases Emerging from Novel Crystal Structure", which was held from 24-25 September 2015 at the Minami-Osawa Campus of Tokyo Metropolitan University (TMU). The Graduate School of Science and Engineering of TMU is now promoting a research project on "New Quantum Phases Emerging from Novel Crystal Structure" with the support of the university. This is the cooperative project involving the electrical and electronic engineering and physics departments to discover new quantum phases in strongly correlated electron systems on novel crystal structures, with geometrically characteristic properties such as cage, layered, and geometrical frustrated structures. In this international symposium, we have mainly picked up BiS2-based layered superconductors, cage-structure materials such as 1-2-20 and filled skutterudites, geometrically frustrated systems such as pyrochlore compounds, and noncentrosymmetric materials. Topics on other materials with exotic crystal structure have been also discussed. I believe that this symposium provides a good opportunity to present recent research results on magnetism and superconductivity in such materials, and to discuss future directions of research on strongly correlated electron systems with novel crystal structure. I would like to give thanks, on behalf of the organizing committee, to all participants of the TMU International Symposium and all members of the Advisory Committee, who have contributed to the success of this symposium. I further thank the TMU Research Organization for the financial support of this symposium.

  9. Optimization of the Processing Parameters of High Temperature Superconducting Glass-Ceramics: Center Director's Discretionary Fund Final Report

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Kaukler, W. F.

    1993-01-01

    A number of promising glass forming compositions of high Tc superconducting Ba-Sr-Ca-Cu-O (BSCCO) materials were evaluated for their glass-ceramic crystallization ability. The BSCCO ceramics belonging to the class of superconductors in the Ba-Sr-Ca-Cu-O system were the focus of this study. By first forming the superconducting material as a glass, subsequent devitrification into the crystalline (glass-ceramic) superconductor can be performed by thermal processing of the glass preform body. Glass formability and phase formation were determined by a variety of methods in another related study. This study focused on the nucleation and crystallization of the materials. Thermal analysis during rapid cooling aids in the evaluation of nucleation and crystallization behavior. Melt viscosity is used to predict glass formation ability.

  10. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  11. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    PubMed Central

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; Klimczuk, Tomasz; Cava, Robert Joseph

    2016-01-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. PMID:27803330

  12. Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor

    DOE PAGES

    von Rohr, Fabian; Winiarski, Michał J.; Tao, Jing; ...

    2016-11-01

    High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphous materials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellentmore » intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials.« less

  13. High pressure transport and structural studies on Nb 3Ga superconductor

    DOE PAGES

    Mkrtcheyan, Vahe; Kumar, Ravhi; Baker, Jason; ...

    2014-11-24

    We investigated the crystal structure of A-15 superconductor Nb 3Ga with a critical temperature T c = 16.5 K by high pressure x-ray diffraction (HPXRD) using synchrotron x-rays and a diamond anvil cell under Ne pressure medium. Furthermore, the high pressure structural results indicate that Nb 3Ga is stable up to 41 GPa. The P-V plot shows an anomaly around 15 GPa even though there are no pressure induced structural transitions are observed. High pressure resistance measurements were performed up to 0.5 GPa to understand the variation of T c under pressure. Finally, our results show a positive pressure effectmore » on T c.« less

  14. Superconducting Continuous Graphene Fibers via Calcium Intercalation.

    PubMed

    Liu, Yingjun; Liang, Hui; Xu, Zhen; Xi, Jiabin; Chen, Genfu; Gao, Weiwei; Xue, Mianqi; Gao, Chao

    2017-04-25

    Superconductors are important materials in the field of low-temperature magnet applications and long-distance electrical power transmission systems. Besides metal-based superconducting materials, carbon-based superconductors have attracted considerable attention in recent years. Up to now, five allotropes of carbon, including diamond, graphite, C 60 , CNTs, and graphene, have been reported to show superconducting behavior. However, most of the carbon-based superconductors are limited to small size and discontinuous phases, which inevitably hinders further application in macroscopic form. Therefore, it raises a question of whether continuously carbon-based superconducting wires could be accessed, which is of vital importance from viewpoints of fundamental research and practical application. Here, inspired by superconducting graphene, we successfully fabricated flexible graphene-based superconducting fibers via a well-established calcium (Ca) intercalation strategy. The resultant Ca-intercalated graphene fiber (Ca-GF) shows a superconducting transition at ∼11 K, which is almost 2 orders of magnitude higher than that of early reported alkali metal intercalated graphite and comparable to that of commercial superconducting NbTi wire. The combination of lightness and easy scalability makes Ca-GF highly promising as a lightweight superconducting wire.

  15. Signature of multigap nodeless superconductivity in CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Iyo, A.; Yoshida, Y.; Eisaki, H.; Kawashima, K.; Hillier, A. D.

    2017-04-01

    A newly discovered family of high-Tc Fe-based superconductors, AeA Fe4As4 (Ae=Ca , Sr, Eu and A =K , Rb, Cs), offers further opportunities to understand unconventional superconductivity in these materials. In this Rapid Communication, we report on the superconducting and magnetic properties of CaKFe4As4 , studied using muon spectroscopy. Zero-field muon spin relaxation studies carried out on the CaKFe4As4 superconductor do not show any detectable magnetic anomaly at Tc or below, implying that time-reversal symmetry is preserved in the superconducting ground state. The temperature dependence of the superfluid density of CaKFe4As4 is found to be compatible with a two-gap s +s -wave model with gap values of 8.6(4) and 2.5(3) meV, similar to the other Fe-based superconductors. The presence of two superconducting energy gaps is consistent with theoretical and other experimental studies on this material. The value of the penetration depth at T =0 K has been determined as 289 (22 ) nm.

  16. Oxypnictide SmFeAs(O,F) superconductor: a candidate for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Iida, Kazumasa; Hänisch, Jens; Tarantini, Chiara; Kurth, Fritz; Jaroszynski, Jan; Ueda, Shinya; Naito, Michio; Ichinose, Ataru; Tsukada, Ichiro; Reich, Elke; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2013-07-01

    The recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties. Here we report on a high critical current density of over 105 A/cm2 at 45 T and 4.2 K for both main field orientations, feature favourable for high-field magnet applications. Additionally, by investigating the pinning properties, we observed a dimensional crossover between the superconducting coherence length and the FeAs interlayer distance at 30-40 K, indicative of a possible intrinsic Josephson junction in SmFeAs(O,F) at low temperatures that can be employed in electronics applications such as a terahertz radiation source and a superconducting Qubit.

  17. Oxypnictide SmFeAs(O,F) superconductor: a candidate for high–field magnet applications

    PubMed Central

    Iida, Kazumasa; Hänisch, Jens; Tarantini, Chiara; Kurth, Fritz; Jaroszynski, Jan; Ueda, Shinya; Naito, Michio; Ichinose, Ataru; Tsukada, Ichiro; Reich, Elke; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard

    2013-01-01

    The recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties. Here we report on a high critical current density of over 105 A/cm2 at 45 T and 4.2 K for both main field orientations, feature favourable for high-field magnet applications. Additionally, by investigating the pinning properties, we observed a dimensional crossover between the superconducting coherence length and the FeAs interlayer distance at 30–40 K, indicative of a possible intrinsic Josephson junction in SmFeAs(O,F) at low temperatures that can be employed in electronics applications such as a terahertz radiation source and a superconducting Qubit. PMID:23823976

  18. Thermoelectric properties of FeAs based superconductors, with thick perovskite- and Sm-O fluorite-type blocking layers

    NASA Astrophysics Data System (ADS)

    Singh, S. J.; Shimoyama, J.; Ogino, H.; Kishio, K.

    2015-11-01

    The transport properties (electrical resistivity, Hall and Seebeck coefficient, and thermal conductivity) of iron based superconductors with thick perovskite-type oxide blocking layers and fluorine-doped SmFeAsO were studied to explore their possible potential for thermoelectric applications. The thermal conductivity of former compounds depicts the dominated role of phonon and its value decreases rapidly below the Tc, suggesting the addition of scattering of phonons. Both the Seebeck coefficient (S) and Hall coefficient (RH) of all samples were negative in the whole temperature region below 300 K, indicating that the major contribution to the normal state conductivity is by electrons. In addition, the profile of S(T) and RH(T) of all samples have similar behaviours as would be expected for a multi-band superconductors. Although the estimated thermoelectric figure of merit (ZT) of these compounds was much lower than that of practically applicable thermoelectric materials, however its improvement can be expected by optimizing microstructure of the polycrystalline materials, such as densification and grain orientation.

  19. Non-equlibrium relaxation of vortex lines in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.

    2013-03-01

    Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  20. Direct evidence of hidden local spin polarization in a centrosymmetric superconductor LaO0.55 F0.45BiS2.

    PubMed

    Wu, Shi-Long; Sumida, Kazuki; Miyamoto, Koji; Taguchi, Kazuaki; Yoshikawa, Tomoki; Kimura, Akio; Ueda, Yoshifumi; Arita, Masashi; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Okuda, Taichi

    2017-12-04

    Conventional Rashba spin polarization is caused by the combination of strong spin-orbit interaction and spatial inversion asymmetry. However, Rashba-Dresselhaus-type spin-split states are predicted in the centrosymmetric LaOBiS 2 system by recent theory, which stem from the local inversion asymmetry of active BiS 2 layer. By performing high-resolution spin- and angle-resolved photoemission spectroscopy, we have investigated the electronic band structure and spin texture of superconductor LaO 0.55 F 0.45 BiS 2 . Here we present direct spectroscopic evidence for the local spin polarization of both the valence band and the conduction band. In particular, the coexistence of Rashba-like and Dresselhaus-like spin textures has been observed in the conduction band. The finding is of key importance for fabrication of proposed dual-gated spin-field effect transistor. Moreover, the spin-split band leads to a spin-momentum locking Fermi surface from which superconductivity emerges. Our demonstration not only expands the scope of spintronic materials but also enhances the understanding of spin-orbit interaction-related superconductivity.

  1. Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes

    NASA Astrophysics Data System (ADS)

    Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2017-08-01

    Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.

  2. Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prestemon, S,; Trillaud, F.; Caspi, S.

    2008-08-17

    The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECRmore » ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.« less

  3. Advances in superconductivity and Co3O4 nanoparticles as flux pinning center in (Bi, Pb)-2223/Ag superconductor tapes

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Jannah, A. N.

    2017-09-01

    Many new superconducting materials have been discovered in recent years. This includes hydrogen sulfide which superconducts at 203 K under high pressure and Fe-As based materials. To this date the copper oxide-based materials remain as the highest transition temperature superconductor under normal pressure. In this paper we discuss the use of nano-sized particle as pinning center in the Ag-sheathed high temperature superconductor tapes to enhance the transport properties. When the size d of the pinning center is between the coherence length ξ and the penetration depth λ (ξ < d < λ), a stronger interaction between the pinning center and flux lines leading to higher transport critical current density, Jc can be expected. The effect of nanoparticle with size between the coherence length and the penetration depth i.e. ξ < d < λ, Co3O4 on superconductor tapes is discussed in this paper. Three types of Bi(Pb)-Sr-Ca-Cu-O starting materials namely from co-precipitation method without Co3O4 and with 30 nm and 50 nm Co3O4 addition have been prepared. The composition of the 30 nm and 50 nm Co3O4 added samples is (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.02 and (Bi1.6Pb0.4)Sr2Ca2Cu3O10-(Co3O4)0.01, respectively. The tapes (˜2-3 cm long) were heated at 845°C for 100 and 150 h. All nanoparticles added tapes showed higher Jc compared to the non-added tapes. By comparing the current results with our previously reported results, the tapes with 30 nm Co3O4 sintered for 50 h showed the highest Jc at all temperatures. This work also showed that smaller magnetic nanoparticles enhanced Jc better than larger particles, A longer sintering time (> 50 h) degraded Jc.

  4. The Current Experimental Status of the High Tc Problem

    NASA Astrophysics Data System (ADS)

    Greene, Richard

    Over 50,000 experimental papers have been published since 1987 on the copper oxide (cuprate) high Tc superconductors. In this talk, I will attempt to summarize the experimental properties that we presently understand and those that we don't yet understand. I will not speculate on the ``unknown unknowns'', although some examples of these have appeared during the past 30 years of research. I may also present a few slides about the status of iron-based superconductors, the other major class of unconventional high Tc materials.

  5. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    NASA Astrophysics Data System (ADS)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  6. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  7. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE PAGES

    Kreisel, A.; Nelson, R.; Berlijn, T.; ...

    2016-12-27

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  8. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  9. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, A.; Nelson, R.; Berlijn, T.

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  10. Electronic conduction in doped multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  11. Elastic properties of iron-based superconductor SrFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Horikoshi, Keita; Imai, Jo; Nakanishi, Yoshiki; Nakamura, Mitsuteru; Kobayashi, Tatsuya; Adachi, Toru; Miyasaka, Shigeki; Tajima, Setsuko; Yoshizawa, Masahito

    2018-05-01

    We have measured the transverse elastic constants C44 and C66 of iron-based superconductor SrFe2(As1-xPx)2 (Sr122) single crystals as a function of temperature. Under-doped samples show elastic anomalies towards the structural/magnetic transition temperature. Optimal sample shows an upturn at the superconducting transition temperature in both C44 and C66. These behavior is similar to Ba122, while only C66 shows anomaly for Ba122. The elastic anomalies were analyzed by Jahn-Teller formula, and it was found that the Jahn-Teller energy of C44 is much larger than that of C66. This indicates that monoclinic structural fluctuations exist inherently in Sr122 in addition to the known tetragonal fluctuations. Co-existence of these diverse fluctuations and their cooperation are a key to investigate the mechanism and properties of superconductivity in iron based superconductors.

  12. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors.

    PubMed

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-22

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS 2 F is a newly discovered member in the BiS 2 -based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the T c enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS 2 F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the T c enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS 2 -based superconductors.

  13. Electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx investigated by laser photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Malaeb, Walid; Awad, Ramadan; Hibino, Taku; Kamihara, Yoichi; Kondo, Takeshi; Shin, Shik

    2018-05-01

    We have implemented laser photoemission spectroscopy (PES) to investigate the electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx (LaEu1111) which is an interesting compound in the "1111" family showing a high value of the superconducting (SC) transition temperature (Tc) due to Eu doping. At least two energy scales were observed from the PES data in the SC compound: One at ∼14 meV closing around Tc and thus corresponding to the SC gap. Another energy scale appears at ∼35 meV and survives at temperatures above Tc which represents the pseudogap (PG). The non-SC sample (La,Eu)FeAsO shows a PG at ∼ 41 meV. These observations in this new superconductor are consistent with the general trend followed by other compounds in the "1111" family.

  14. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...

    2017-10-30

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  15. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  16. Quantum Electronic Matter in Two Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenstein, James

    Most often, the electrical properties of a material are described as either "conducting" or "insulating". Copper, everyone knows, is a good conductor. It is the foundation of the electrical infrastructure of the nation. Glass, on the other hand, is an excellent insulator. But do these two words describe all the possibilities? The answer is emphatically no, and the basic subject of the research funded by this grant is aimed at fleshing out a more complete description of the electrical properties of materials. Many people are aware that there are also special materials called superconductors. A superconductor (e.g. aluminum when cooledmore » to very low temperatures) is like a regular conductor except that it conducts electricity with no energy loss at all. Ordinary metals get hot when current flows through them; witness the toaster in your kitchen. In a superconductor something very special is going on: The electrons in the metal don't behave individually as they do in an ordinary conductor. Instead they act collectively. It is this collective aspect that makes superconductors so interesting to physicists. So now we have metals, insulators and superconductors. Is there anything else? We now know the answer is yes. In this research we examine special conducting materials, ones in which the mobile electrons are confined to move on a plane surface (as opposed to motion in all three directions). Examples of such "2D" materials include electrons confined to the interface between two otherwise insulating materials (as in the so-called "semiconductor heterostructures" used here) and the single atomic layer of carbon atoms now known as "graphene". Materials like these are not just museum curiosities; each of the billions of transistors in every smart-phone has a 2D electron system in it. In the work supported by this grant, the focus is on both collective conducting states in semiconductor heterostructures and on the conducting properties of graphene and its few-layer cousins. In particular, the exotic collective (and deeply quantum mechanical) electronic phases which develop when a large magnetic field is applied have been a major focus of effort. Significant results have been obtained from both ordinary electrical measurements and from more sophisticated thermoelectric studies of such systems. Related studies of few-layer graphenes have elucidated the transition from the two- to three-dimensional electrical properties of carbon-based conductors. Investigations like these expand our understanding of electronic materials general. While there are certainly immediate fundamental scientific pay-offs, it is also true that research of this kind ultimately leads to technological breakthroughs in the long term. By way of example, superconductivity was undoubtedly regarded as a useless novelty when it was discovered in 1911. Who could have known then that it would become crucial to the medical revolution brought about by magnetic resonance imaging decades later?« less

  17. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal statemore » in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. Finally, this review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.« less

  18. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    DOE PAGES

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-03-27

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal statemore » in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. Finally, this review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.« less

  19. Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.; Galda, A.; Glatz, A.

    2018-01-01

    Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the critical temperature and quantum fluctuations at zero temperature in the vicinity of the second critical field. The analysis of the latter allows us to present fluctuation formation as a fragmentation of the Abrikosov lattice. This review highlights a series of experimental findings followed by microscopic description and numerical analysis of the effects of fluctuations on numerous properties of superconductors in the entire phase diagram and beyond the superconducting phase.

  20. Improved performance characteristics of a high temperature superconductor bolometer using photo-thermoelectrical feedback

    NASA Astrophysics Data System (ADS)

    Kaila, M. M.; Russell, G. J.

    2000-12-01

    We have designed a liquid nitrogen cooled detector where a thermoelectric feedback is combined with electrothermal feedback to produce an improvement of three orders of magnitude in the response time of the detector. We have achieved this by considering a parallel resistance combination of thermoelectric and High Temperature Superconductor (HTSC) material legs of an approximate geometry 1mm /spl times/ 2 mm /spl times/ 1micron operated at 80K. One end of this thermocouple acts as the sensitive area where the radiation is absorbed. The other end remains unexposed and stays basically at substrate temperature. It is found that micron thick films in our bolometer produce characteristics very close to those found for nanometer thick films required in semiconductor detectors and Low Temperature Superconductor (LTSC) bolometers.

Top