Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments
Rostami, Shermineh; Chini, Michael; Lim, Khan; Palastro, John P.; Durand, Magali; Diels, Jean-Claude; Arissian, Ladan; Baudelet, Matthieu; Richardson, Martin
2016-01-01
Broadband laser sources based on supercontinuum generation in femtosecond laser filamentation have enabled applications from stand-off sensing and spectroscopy to the generation and self-compression of high-energy few-cycle pulses. Filamentation relies on the dynamic balance between self-focusing and plasma defocusing – mediated by the Kerr nonlinearity and multiphoton or tunnel ionization, respectively. The filament properties, including the supercontinuum generation, are therefore highly sensitive to the properties of both the laser source and the propagation medium. Here, we report the anomalous spectral broadening of the supercontinuum for filamentation in molecular gases, which is observed for specific elliptical polarization states of the input laser pulse. The resulting spectrum is accompanied by a modification of the supercontinuum polarization state and a lengthening of the filament plasma column. Our experimental results and accompanying simulations suggest that rotational dynamics of diatomic molecules play an essential role in filamentation-induced supercontinuum generation, which can be controlled with polarization ellipticity. PMID:26847427
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.
2018-02-01
We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.
Use of a white light supercontinuum laser for confocal interference-reflection microscopy
Chiu, L-D; Su, L; Reichelt, S; Amos, WB
2012-01-01
Shortly after its development, the white light supercontinuum laser was applied to confocal scanning microscopy as a more versatile substitute for the multiple monochromatic lasers normally used for the excitation of fluorescence. This light source is now available coupled to commercial confocal fluorescence microscopes. We have evaluated a supercontinuum laser as a source for a different purpose: confocal interferometric imaging of living cells and artificial models by interference reflection. We used light in the range 460–700 nm where this source provides a reasonably flat spectrum, and obtained images free from fringe artefacts caused by the longer coherence length of conventional lasers. We have also obtained images of cytoskeletal detail that is difficult to see with a monochromatic laser. PMID:22432542
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
Imaging using a supercontinuum laser to assess tumors in patients with breast carcinoma
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.
2016-03-01
The supercontinuum laser light source has many advantages over other light sources, including broad spectral range. Transmission images of paired normal and malignant breast tissue samples from two patients were obtained using a Leukos supercontinuum (SC) laser light source with wavelengths in the second and third NIR optical windows and an IR- CCD InGaAs camera detector (Goodrich Sensors Inc. high response camera SU320KTSW-1.7RT with spectral response between 900 nm and 1,700 nm). Optical attenuation measurements at the four NIR optical windows were obtained from the samples.
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-García, J. C.; Jáuregui-Vázquez, D.; Sierra-Hernández, J. M.; Rojas-Laguna, R.; Mata-Chavez, R. I.; Samano-Aguilar, L. F.
2016-09-01
In this work, we study the changes of polarization at different wavelengths in a supercontinuum source generated through a microchip laser in the IR spectrum. We use a microchip laser pulsed as pumped source, 1064 nm of wavelength, and a photonic crystal fiber by generated a supercontinuum spectrum. We twist the fiber to the purpose to induce birefringence and study the changes of the state of polarization, and through bandpass filters we observe a single wavelength of the broad spectrum obtained. Besides, ellipticity study for different filters and its relation with the supercontinuum results is discussed.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Leonard, James D.; Ifarraguerri, Agustin I.; Islam, Mohammed N.; Alexander, Vinay V.; Zadnik, Jerome A.
2013-05-01
A fundamental limitation of current visible through shortwave infrared hyperspectral imaging systems is the dependence on solar illumination. This reliance limits the operability of such systems to small windows during which the sun provides enough solar radiation to achieve adequate signal levels. Similarly, nighttime collection is infeasible. This work discusses the development and testing of a high-powered super-continuum laser for potential use as an on-board illumination source coupled with a hyperspectral receiver to allow for day/night operability. A 5-watt shortwave infrared supercontinuum laser was developed, characterized in the lab, and tower-tested along a 1.6km slant path to demonstrate propagation capability as a spectral light source.
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Klose, Andrew; Ycas, Gabriel; Maser, Daniel L; Diddams, Scott A
2014-11-17
A source of ultrashort pulses of light in the 2 μm region was constructed using supercontinuum broadening from an erbium mode-locked laser. The output spectrum spanned 1000 nm to 2200 nm with an average power of 250 mW. A pulse width of 39 fs for part of the spectrum in the 2000 nm region, corresponding to less than six optical cycles, was achieved. A heterodyne measurement of the free-running mode-locked laser with a narrow-linewidth continuous wave laser resulted in a near shot noise-limited beat note with a signal-to-noise ratio of 45 dB in a 10 kHz resolution bandwidth. The relative intensity noise of the broadband system was investigated over the entire supercontinuum, and the integrated relative intensity noise of the 2000 nm portion of the spectrum was 1.7 × 10(-3). The long-term stability of the system was characterized, and intensity fluctuations in the spectrum were found to be highly correlated throughout the supercontinuum. Spectroscopic limitations due to the laser noise characteristics are discussed.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber.
Jain, D; Sidharthan, R; Moselund, P M; Yoo, S; Ho, D; Bang, O
2016-11-14
We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date.
Supercontinuum white light lasers for flow cytometry
Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.
2009-01-01
Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836
Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source
Huang, Jinqing; Parobek, Alexander; Ganim, Ziad
2016-01-01
Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634
NASA Astrophysics Data System (ADS)
Thapa, Rajesh; Rhonehouse, Dan; Nguyen, Dan; Wiersma, Kort; Smith, Chris; Zong, Jie; Chavez-Pirson, Arturo
2013-10-01
Mid-infrared sources are a key enabling technology for various applications such as remote chemical sensing, defense communications and countermeasures, and bio-photonic diagnostics and therapeutics. Conventional mid-IR sources include optical parametric amplifiers, quantum cascade lasers, synchrotron and free electron lasers. An all-fiber approach to generate a high power, single mode beam with extremely wide (1μm-5μm) and simultaneous wavelength coverage has significant advantages in terms of reliability (no moving parts or alignment), room temperature operation, size, weight, and power efficiency. Here, we report single mode, high power extended wavelength coverage (1μm to 5μm) supercontinuum generation using a tellurite-based dispersion managed nonlinear fiber and an all-fiber based short pulse (20 ps), single mode pump source. We have developed this mid IR supercontinuum source based on highly purified solid-core tellurite glass fibers that are waveguide engineered for dispersion-zero matching with Tm-doped pulsed fiber laser pumps. The conversion efficiency from 1922nm pump to mid IR (2μm-5μm) supercontinuum is greater than 30%, and approaching 60% for the full spectrum. We have achieved > 1.2W covering from 1μm to 5μm with 2W of pump. In particular, the wavelength region above 4μm has been difficult to cover with supercontinuum sources based on ZBLAN or chalcogenide fibers. In contrast to that, our nonlinear tellurite fibers have a wider transparency window free of unwanted absorption, and are highly suited for extending the long wavelength emission above 4μm. We achieve spectral power density at 4.1μm already exceeding 0.2mW/nm and with potential for higher by scaling of pump power.
Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands
NASA Astrophysics Data System (ADS)
Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.
2012-10-01
A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.
NASA Astrophysics Data System (ADS)
Fornaini, Carlo; Merigo, Elisabetta; Selleri, Stefano; Cucinotta, Annamaria
2016-03-01
With the introduction of more and more new wavelengths, one of the main problems of medical laser users was centered on the study of laser-tissue interactions with the aim of determining the ideal wavelength for their treatments. The aim of this ex vivo study was to determine, by means of the utilization of a supercontinuum source, the amount of transmitted energy of different wavelengths in different organ samples obtained by Sprague Dawley rats. Supercontinuum light is generated by exploiting high optical non-linearity in a material and it combines the broadband attributes of a lamp with the spatial coherence and high brightness of laser. Even if the single transmission measurement does not allow us to separate out the respective contribution of scattering and absorption, it gives us an evaluation of the wavelengths not interacting with the tissue. In this way, being possible to determine what of the laser wavelengths are not useful or active in the different kinds of tissue, physicians may choose the proper device for his clinical treatments.
Lee, Changho; Jeon, Mansik; Jeon, Min Yong; Kim, Jeehyun; Kim, Chulhong
2014-06-20
We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo.
Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian
2017-06-10
High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.
NASA Astrophysics Data System (ADS)
Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond
2010-02-01
Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...
2017-03-16
A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less
Dave, Utsav D; Uvin, Sarah; Kuyken, Bart; Selvaraja, Shankar; Leo, Francois; Roelkens, Gunther
2013-12-30
A 1,000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W -1m-1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W-1m-1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.
NASA Astrophysics Data System (ADS)
Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.
2018-02-01
Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.
Broadband upconversion imaging around 4 μm using an all-fiber supercontinuum source
NASA Astrophysics Data System (ADS)
Huot, Laurent; Moselund, Peter M.; Leick, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian
2017-02-01
We present a novel mid-infrared imaging system born from the combination of an all-fiber mid-IR supercontinuum source developed at NKT with ultra-sensitive upconversion detection technology from DTU Fotonik. The source delivers 100 mW of average power and its spectrum extends up to 4.5 μm. The infrared signal is passed through a sample and then focused into a bulk AgGaS2 crystal and subsequently mixed with a synchronous mixing signal at 1550 nm extracted from the pump laser of the supercontinuum. Through sum frequency generation, an upconverted signal ranging from 1030 nm to 1155 nm is generated and acquired using an InGaAs camera.
Microchip laser mid-infrared supercontinuum laser source based on an As2Se3 fiber.
Gattass, Rafael R; Brandon Shaw, L; Sanghera, Jasbinder S
2014-06-15
We report on a proof of concept for a compact supercontinuum source for the mid-infrared wavelength range based on a microchip laser and nonlinear conversion inside a selenide-based optical fiber. The spectrum extends from 3.74 to 4.64 μm at -10 dB from the peak and 3.65 to 4.9 μm at -20 dB from the peak; emitting beyond the wavelength range that periodically poled lithium niobate (PPLN) starts to display a power penalty. Wavelength conversion occurs inside the core of a single-mode fiber, resulting in a high-brightness emission source. A maximum average power of 5 mW was demonstrated, but the architecture is scalable to higher average powers.
Rudy, Charles W; Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L
2013-08-01
We report a supercontinuum spanning well over an octave of measurable bandwidth from about 1 to 3.7 μm in a 2.1 mm long As₂S₃ fiber taper using the in situ tapering method. A sub-100-fs mode-locked thulium-doped fiber laser system with ~300 pJ of pulse energy was used as the pump source. Third-harmonic generation was observed and currently limits the pump pulse energy and achievable spectral bandwidth.
Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source
NASA Astrophysics Data System (ADS)
Johnston, Paul S.; Lehmann, Kevin K.
2009-06-01
The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.
NASA Astrophysics Data System (ADS)
Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.
2018-03-01
We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )<0.2 ] and low-energy laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.
Ringsted, Tine; Dupont, Sune; Ramsay, Jacob; Jespersen, Birthe Møller; Sørensen, Klavs Martin; Keiding, Søren Rud; Engelsen, Søren Balling
2016-07-01
The supercontinuum laser is a new type of light source, which combines the collimation and intensity of a laser with the broad spectral region of a lamp. Using such a source therefore makes it possible to focus the light onto small sample areas without losing intensity and thus facilitate either rapid or high-intensity measurements. Single seed transmission analysis in the long wavelength (LW) near-infrared (NIR) region is one area that might benefit from a brighter light source such as the supercontinuum laser. This study is aimed at building an experimental spectrometer consisting of a supercontinuum laser source and a dispersive monochromator in order to investigate its capability to measure the barley endosperm using transmission experiments in the LW NIR region. So far, barley and wheat seeds have only been studied using NIR transmission in the short wavelength region up to 1100 nm. However, the region in the range of 2260-2380 nm has previously shown to be particularly useful in differentiating barley phenotypes using NIR spectroscopy in reflectance mode. In the present study, 350 seeds (consisting of 70 seeds from each of five barley genotypes) in 1 mm slices were measured by NIR transmission in the range of 2235-2381 nm and oils from the same five barley genotypes were measured in a cuvette with a 1 mm path length in the range of 2003-2497 nm. The spectra of the barley seeds could be classified according to genotypes by principal component analysis; and spectral covariances with reference analysis of moisture, β-glucan, starch, protein and lipid were established. The spectral variations of the barley oils were compared to the fatty acid compositions as measured using gas chromotography-mass spectrometry (GC-MS). © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Chen, Yewang; Ruan, Shuangchen; Wu, Xu; Guo, Chunyu; Liu, Weiqi; Yu, Jun; Luo, Ruoheng; Ren, Xikui; Zhu, Yihuai
2017-02-01
An ultra-flat and ultra-broadband supercontinuum (SC) is demonstrated in a 4-m photonic crystal fiber (PCF) pumped by an Yb-doped all-fiber noise-like pulses (NLP) laser. The Yb-doped fiber laser is seeded by a SESAM mode-locked fiber laser, and amplified by cascaded fiber amplifiers, with its center wavelength, repetition frequency and the average noise-like bunch duration of 1064.52 nm, 50.18 MHz, 9.14 ps, respectively. Pumped by this NLP laser, the SC source has a 3 dB bandwidth and a 7 dB bandwidth (ignore the pump residue) of 1440 nm and 1790 nm at the maximum average output power of 6.94 W. To the best of our knowledge, this flatness is significantly prominent for the performance of PCF-based SC sources.
NASA Astrophysics Data System (ADS)
Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike
2018-05-01
We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.
Multiphoton imaging with a nanosecond supercontinuum source
NASA Astrophysics Data System (ADS)
Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe
2016-03-01
Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, R. R.
2015-03-01
Supercontinuum light (SC) at wavelengths in the second (1,100 nm to 1,350 nm) and third (1,600 nm to 1,870 nm) NIR optical windows can be used to improve penetration depths of light through tissue and produce clearer images. Image quality is increased due to a reduction in scattering (inverse wavelength power dependence 1/λn, n≥1). We report on the use of a compact Leukos supercontinuum laser (model STM-2000-IR), which utilizes the spectral range from 700 nm to 2,400 nm and offers between 200 - 500 microwatt/nm power in the second and third NIR windows, with an InGaAs detector to image abnormalities hidden beneath thick tissue.
Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P
2014-06-01
A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Lindwasser, Lukas; Budansky, Yury; Leproux, Philippe; Alfano, Robert R.
2015-03-01
With the use of longer near-infrared (NIR) wavelengths, image quality can be increased due to less scattering (described by the inverse wavelength power dependence 1/λn where n≥1) and minimal absorption from water molecules. Longer NIR windows, known as the second (1100 nm to 1350 nm) and third (1600 to 1870 nm) NIR windows are utilized to penetrate more deeply into tissue media and produce high-quality images. An NIR supercontinuum (SC) laser light source, with wavelengths in the second and third NIR optical windows to image tissue provides ballistic imaging of tissue. The SC ballistic beam can penetrate depths of up to 10 mm through tissue.
Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.
Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2016-02-01
Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3 cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.
Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole
2018-04-01
We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.
Visible supercontinuum generation from a tunable mid-infrared laser
NASA Astrophysics Data System (ADS)
Marble, Christopher B.; O'Connor, Sean P.; Nodurft, Dawson T.; Yakovlev, Vladislav V.; Wharmby, Andrew W.
2018-02-01
Calcium fluoride, BK7 and fused silica are common optical materials used in lenses and windows. In this report, we discuss supercontinuum generation using tunable femtosecond mid-IR laser pulses with wavelengths ranging from 2.7 μm to 7.0 μm and pulse energies between 3 and 18 microjoules. We observed harmonic generation in fused silica and BK7, but not supercontinuum generation. Other borosilicate targets generated supercontinuum in both visible and near infrared regions of the spectrum. The visible supercontinuum was, in some instances, strong enough to be observed directly by the human eye. These results contribute to ongoing work being done to refine eye safety standards for femtosecond lasers.
Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm.
Wei, Chen; Zhu, Xiushan; Norwood, Robert A; Song, Feng; Peyghambarian, N
2013-12-02
High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules' "fingerprint" region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.
NASA Astrophysics Data System (ADS)
Tu, Haohua; You, Sixian; Sun, Yi; Spillman, Darold R.; Ray, Partha S.; Liu, George; Boppart, Stephen A.
2017-03-01
In contrast to a broadband Ti:sapphire laser that mode locks a continuum of emission and enables broadband biophotonic applications, supercontinuum generation moves the spectral broadening outside the laser cavity into a nonlinear medium, and may thus improve environmental stability and more readily enable clinical translation. Using a photonic crystal fiber for passive spectral broadening, this technique becomes widely accessible from a narrowband fixed-wavelength mode-locked laser. Currently, fiber supercontinuum sources have benefited single-photon biological imaging modalities, including light-sheet or confocal microscopy, diffuse optical tomography, and retinal optical coherence tomography. However, they have not fully benefited multiphoton biological imaging modalities with proven capability for high-resolution label-free molecular imaging. The reason can be attributed to the amplitude/phase noise of fiber supercontinuum, which is amplified from the intrinsic noise of the input laser and responsible for spectral decoherence. This instability deteriorates the performance of multiphoton imaging modalities more than that of single-photon imaging modalities. Building upon a framework of coherent fiber supercontinuum generation, we have avoided this instability or decoherence, and balanced the often conflicting needs to generate strong signal, prevent sample photodamage, minimize background noise, accelerate imaging speed, improve imaging depth, accommodate different modalities, and provide user-friendly operation. Our prototypical platforms have enabled fast stain-free histopathology of fresh tissue in both laboratory and intraoperative settings to discover a wide variety of imaging-based cancer biomarkers, which may reduce the cost and waiting stress associated with disease/cancer diagnosis. A clear path toward intraoperative multiphoton imaging can be envisioned to help pathologists and surgeons improve cancer surgery.
NASA Astrophysics Data System (ADS)
Sordillo, Laura A.; Sordillo, Peter P.; Budansky, Yury; Leproux, Philippe; Alfano, R. R.
2015-02-01
Many areas of the body such as the tibia have minimal tissue thickness overlying bone. Near-infrared (NIR) optical windows may be used to image more deeply to reveal abnormalities hidden beneath tissue. We report on the potential application of a compact Leukos supercontinuum laser source (model STM-2000-IR) with wavelengths in the four NIR optical windows (from 650 nm to 950 nm, 1,100 nm to 1,350 nm, 1,600 to 1,870, and 2,100 nm to 2,300 nm, respectively) and between 200 - 500 microwatt/nm power, with InGaAs (Goodrich Sensors Inc. SU320- 1.7RT) and InSb detectors (Teledyne Technologies) to image microfractures and abnormalities of bone hidden beneath tissue.
NASA Astrophysics Data System (ADS)
Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer
2013-02-01
An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.
Cavity Enhanced Absorption Spectroscopy using a Prism Cavity and Supercontinuum Source
NASA Astrophysics Data System (ADS)
Lehmann, Kevin K.; Johnston, Paul S.
2010-03-01
The multiplex advantage of current cavity enhanced spectrometers is limited by the limited high reflectivity bandwidth of the dielectric mirrors used to construct the high finesse cavity. We report on our development of a spectrometer that uses Brewster's angle retroreflectors that is excited with supercontinuum radiation generated by a 1.06 μm pumped photonic crystal fiber, which covers the 500-1800 nm spectral range. Recent progress will be discussed including modeling of the prism cavity losses, alternative prism materials for use in the UV and mid-IR, and a new higher power source pumped by a mode-locked laser.
Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser.
Buma, Takashi; Conley, Nicole C; Choi, Sang Won
2018-01-01
We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue between 1050-1714 nm using a pulsed supercontinuum laser based on a large-mode-area photonic crystal fiber. OR-PAM experiments of lipid-rich samples show the expected optical absorption peaks near 1210 and 1720 nm. These results show that pulsed supercontinuum lasers are promising for OR-PAM applications such as label-free histology of lipid-rich tissue and imaging small animal models of disease.
Mid-Infrared Fiber Lasers (Les fibres laser infrarouge moyen)
2010-09-01
Marcel Poulain, Université de Rennes / Le Verre Fluoré, France Fluoride Fiber Sources: Problems and Prospects Prof. Marcel Poulain from Rennes...University and Le Verre Fluoré, France, presented the problems and prospects of fluoride glass fiber sources. After some comments on pioneering...wavelength, etc. can be adjusted. Le Verre Fluoré has developed a commercialized supercontinuum source emitting from ∼0.7 µm to ∼4 µm Issues concerning
Coherent fiber supercontinuum for biophotonics
Tu, Haohua; Boppart, Stephen A.
2013-01-01
Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging. PMID:24358056
NASA Astrophysics Data System (ADS)
Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar
2017-08-01
Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.
NASA Astrophysics Data System (ADS)
Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole
2014-11-01
The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.
Tu, Haohua; Boppart, Stephen A.
2010-01-01
Spectrally-isolated narrowband Cherenkov radiation from commercial nonlinear photonic crystal fibers is demonstrated as an ultrafast optical source with a visible tuning range of 485–690 nm, which complementarily extends the near-infrared tuning range of 690–1020 nm from the corresponding femtosecond Ti:sapphire pump laser. Pump-to-signal conversion efficiency routinely surpasses 10%, enabling multimilliwatt visible output across the entire tuning range. Appropriate selection of fiber parameters and pumping conditions efficiently suppresses the supercontinuum generation typically associated with Cherenkov radiation. PMID:19506636
Adjustable supercontinuum laser source with low coherence length and low timing jitter
NASA Astrophysics Data System (ADS)
Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe
2010-04-01
This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.
Spectral ophthalmoscopy based on supercontinuum
NASA Astrophysics Data System (ADS)
Cheng, Yueh-Hung; Yu, Jiun-Yann; Wu, Han-Hsuan; Huang, Bo-Jyun; Chu, Shi-Wei
2010-02-01
Confocal scanning laser ophthalmoscope (CSLO) has been established to be an important diagnostic tool for retinopathies like age-related macular degeneration, glaucoma and diabetes. Compared to a confocal laser scanning microscope, CSLO is also capable of providing optical sectioning on retina with the aid of a pinhole, but the microscope objective is replaced by the optics of eye. Since optical spectrum is the fingerprint of local chemical composition, it is attractive to incorporate spectral acquisition into CSLO. However, due to the limitation of laser bandwidth and chromatic/geometric aberration, the scanning systems in current CSLO are not compatible with spectral imaging. Here we demonstrate a spectral CSLO by combining a diffraction-limited broadband scanning system and a supercontinuum laser source. Both optical sectioning capability and sub-cellular resolution are demonstrated on zebrafish's retina. To our knowledge, it is also the first time that CSLO is applied onto the study of fish vision. The versatile spectral CSLO system will be useful to retinopathy diagnosis and neuroscience research.
NASA Astrophysics Data System (ADS)
Valle-Atilano, F. J.; Estudillo-Ayala, J. M.; Filoteo-Razo, J. D.; Hernández-Garcia, J. C.; Lauterio-Cruz, J. P.; Jáuregui-Vázquez, D.; Ibarra-Escamilla, B.; Rojas-Laguna, R.; Pottiez, O.; Kuzin, E. A.
2016-03-01
In this work we show the changes of polarization at different wavelengths in the end of a photonic crystal fiber (PCF) by means bandpass filters in a supercontinuum light source. A linear and circular polarization was introduced in a piece of PCF, showing the changes of the polarization for each wavelength of each one of the filters from 450 to 700nm. We used a microchip laser as pumping source with wavelength of 532nm and short pulses of 650ps with repetition rate of 5kHz. We obtained a continuous spectrum in the visible spectral region, showing a comparison of the polarization state at the fiber input with respect to polarization state in the fiber output for different wavelengths by rotating the axes of the PCF.
NASA Astrophysics Data System (ADS)
Yamanaka, Masahito; Kawagoe, Hiroyuki; Nishizawa, Norihiko
2016-02-01
We describe the generation of a high-power, spectrally smooth supercontinuum (SC) in the 1600 nm spectral band for ultrahigh-resolution optical coherence tomography (UHR-OCT). A clean SC was achieved by using a highly nonlinear fiber with normal dispersion properties and a high-quality pedestal-free pulse obtained from a passively mode-locked erbium-doped fiber laser operating at 182 MHz. The center wavelength and spectral width were 1578 and 172 nm, respectively. The output power of the SC was 51 mW. Using the developed SC source, we demonstrated UHR-OCT imaging of biological samples with a sensitivity of 109 dB and an axial resolution of 4.9 µm in tissue.
Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber
NASA Astrophysics Data System (ADS)
Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.
2016-12-01
We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.
NASA Astrophysics Data System (ADS)
Torabzadeh, Mohammad; Stockton, Patrick; Kennedy, Gordon T.; Saager, Rolf B.; Durkin, Anthony J.; Bartels, Randy A.; Tromberg, Bruce J.
2018-02-01
Hyperspectral Imaging (HSI) is a growing field in tissue optics due to its ability to collect continuous spectral features of a sample without a contact probe. Spatial Frequency Domain Imaging (SFDI) is a non-contact wide-field spectral imaging technique that is used to quantitatively characterize tissue structure and chromophore concentration. In this study, we designed a Hyperspectral SFDI (H-SFDI) instrument which integrated a supercontinuum laser source to a wavelength tuning optical configuration and a sCMOS camera to extract spatial (Field of View: 2cm×2cm) and broadband spectral features (580nm-950nm). A preliminary experiment was also performed to integrate the hyperspectral projection unit to a compressed single pixel camera and Light Labeling (LiLa) technique.
NASA Astrophysics Data System (ADS)
Salido-Monzú, David; Wieser, Andreas
2018-04-01
The intermode beats generated by direct detection of a mode-locked femtosecond laser represent inherent high-quality and high-frequency modulations suitable for electro-optical distance measurement (EDM). This approach has already been demonstrated as a robust alternative to standard long-distance EDM techniques. However, we extend this idea to intermode beating of a wideband source obtained by spectral broadening of a femtosecond laser. We aim at establishing a technological basis for accurate and flexible multiwavelength distance measurement. Results are presented from experiments using beat notes at 1 GHz generated by two bandpass-filtered regions from both extremes of a coherent supercontinuum ranging from 550 to 1050 nm. The displacement measurements performed simultaneously on both colors on a short-distance setup show that noise and coherence of the wideband laser are adequate for achieving accuracies of about 0.01 mm on each channel with a potential improvement by accessing higher beat notes. Pointing and power instabilities have been identified as dominant sources of systematic deviations. Nevertheless, the results demonstrate the basic feasibility of the proposed technique. We consider this a promising starting point for the further development of multiwavelength EDM enabling increased accuracy over long distances through dispersion-based integral refractivity compensation and for remote surface material probing along with distance measurement in laser scanning.
Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion
NASA Astrophysics Data System (ADS)
Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.
2018-01-01
We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.
NASA Astrophysics Data System (ADS)
Meola, Joseph; Absi, Anthony; Islam, Mohammed N.; Peterson, Lauren M.; Ke, Kevin; Freeman, Michael J.; Ifaraguerri, Agustin I.
2014-06-01
Hyperspectral imaging systems are currently used for numerous activities related to spectral identification of materials. These passive imaging systems rely on naturally reflected/emitted radiation as the source of the signal. Thermal infrared systems measure radiation emitted from objects in the scene. As such, they can operate at both day and night. However, visible through shortwave infrared systems measure solar illumination reflected from objects. As a result, their use is limited to daytime applications. Omni Sciences has produced high powered broadband shortwave infrared super-continuum laser illuminators. A 64-watt breadboard system was recently packaged and tested at Wright-Patterson Air Force Base to gauge beam quality and to serve as a proof-of-concept for potential use as an illuminator for a hyperspectral receiver. The laser illuminator was placed in a tower and directed along a 1.4km slant path to various target materials with reflected radiation measured with both a broadband camera and a hyperspectral imaging system to gauge performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenbo; Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8; Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4
Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra.more » Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.« less
NASA Astrophysics Data System (ADS)
Reolon, David; Jacquot, Maxime; Verrier, Isabelle; Brun, Gérald; Veillas, Colette
2006-12-01
In this paper we propose group refractive index measurement with a spectral interferometric set-up using a broadband supercontinuum generated in an air-silica Microstructured Optical Fibre (MOF) pumped with a picosecond pulsed microchip laser. This source authorizes high fringes visibility for dispersion measurements by Spectroscopic Analysis of White Light Interferograms (SAWLI). Phase calculation is assumed by a wavelet transform procedure combined with a curve fit of the recorded channelled spectrum intensity. This approach provides high resolution and absolute group refractive index measurements along one line of the sample by recording a single 2D spectral interferogram without mechanical scanning.
Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard
2016-01-01
Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188
Aytac-Kipergil, Esra; Demirkiran, Aytac; Uluc, Nasire; Yavas, Seydi; Kayikcioglu, Tunc; Salman, Sarper; Karamuk, Sohret Gorkem; Ilday, Fatih Omer; Unlu, Mehmet Burcin
2016-12-08
Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5-10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies.
Aytac-Kipergil, Esra; Demirkiran, Aytac; Uluc, Nasire; Yavas, Seydi; Kayikcioglu, Tunc; Salman, Sarper; Karamuk, Sohret Gorkem; Ilday, Fatih Omer; Unlu, Mehmet Burcin
2016-01-01
Photoacoustic imaging is based on the detection of generated acoustic waves through thermal expansion of tissue illuminated by short laser pulses. Fiber lasers as an excitation source for photoacoustic imaging have recently been preferred for their high repetition frequencies. Here, we report a unique fiber laser developed specifically for multiwavelength photoacoustic microscopy system. The laser is custom-made for maximum flexibility in adjustment of its parameters; pulse duration (5–10 ns), pulse energy (up to 10 μJ) and repetition frequency (up to 1 MHz) independently from each other and covers a broad spectral region from 450 to 1100 nm and also can emit wavelengths of 532, 355, and 266 nm. The laser system consists of a master oscillator power amplifier, seeding two stages; supercontinuum and harmonic generation units. The laser is outstanding since the oscillator, amplifier and supercontinuum generation parts are all-fiber integrated with custom-developed electronics and software. To demonstrate the feasibility of the system, the images of several elements of standardized resolution test chart are acquired at multiple wavelengths. The lateral resolution of optical resolution photoacoustic microscopy system is determined as 2.68 μm. The developed system may pave the way for spectroscopic photoacoustic microscopy applications via widely tunable fiber laser technologies. PMID:27929049
Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm
NASA Astrophysics Data System (ADS)
Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.
1994-05-01
Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.
NASA Astrophysics Data System (ADS)
Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.
2009-07-01
Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.
Mid-IR super-continuum generation
NASA Astrophysics Data System (ADS)
Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.
2009-02-01
A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.
NASA Astrophysics Data System (ADS)
Vardanyan, Aleksandr O.; Oganesyan, David L.
2008-11-01
The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.
High power, high efficiency, continuous-wave supercontinuum generation using standard telecom fibers
NASA Astrophysics Data System (ADS)
Arun, S.; Choudhury, Vishal; Balaswamy, V.; Prakash, Roopa; Supradeepa, V. R.
2018-04-01
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power Ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm(>1 octave) from 880-1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
NASA Astrophysics Data System (ADS)
Baili, Amira; Cherif, Rim; Zghal, Mourad
2015-01-01
A new design of all-normal and near-zero flattened dispersion based on chalcogenide nanophotonic crystal fiber (PCF) has been proposed to generate smooth and ultra-broadband supercontinuum (SC) in the midinfrared (IR) region. With the optimized geometric parameters, the As2Se3 nano-PCF has been found to be suitable for two-octave supercontinuum generation (SCG). We designed a nano-PCF having a flat top dispersion curve with a maximum value of -2.3 [ps/(nm km)] and a large nonlinear coefficient equal to 7250 W around the wavelength of 5.24 μm. By numerical simulations, we predict the generation of a very broadband SC in the mid-IR region extending from 2 to 10 μm in only 2-mm fiber lengths by using a femtosecond laser having a full-width at half-maximum of 50 fs and a relatively low energy of E=80 pJ. The generated SC demonstrates perfect coherence property over the entire bandwidth. SC generation extended into the mid-IR spectral region has potential usefulness in a variety of applications requiring a broad and mid-IR spectrum, such as WDM sources, fiber sensing, IR spectroscopy, fiber laser, and optical tomography coherence.
Kudlinski, A; Lelek, M; Barviau, B; Audry, L; Mussot, A
2010-08-02
Using a low-cost microchip laser and a long photonic crystal fiber taper, we report a supercontinuum source with a very efficient visible conversion, especially in the blue region (around 420 nm). About 30 % of the total average output power is located in the 350-600 nm band, which is of primary importance in a number of biophotonics applications such as flow cytometry or fluorescence imaging microscopy for instance. We successfully demonstrate the use of this visible-enhanced source for a three-color imaging of HeLa cells in wide-field microscopy.
Application of supercontinuum radiation for mid-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kilgus, Jakob; Müller, Petra; Moselund, Peter M.; Brandstetter, Markus
2016-04-01
The emergence of new laser-based mid-infrared (MIR) sources, such as quantum cascade lasers (QCL), led to substantial developments in the field of MIR spectroscopy in the last decade. Recently, also MIR supercontinuum (SC) sources became available. They combine broadband spectral emission known from thermal sources emission with coherent properties known from laser sources like QCLs. Nevertheless, while the latter already find practical application in the field of optical sensing, SC sources have yet to prove their applicability. In this contribution we present the development, characterization and application of a measurement concept consisting of a fiber-coupled broadband MIR SC source (1.75 μm-4.2 μm, 75 mW optical power) and a fully-integrated MOEMS-based Fabry-Pérot microspectrometer (FPMS) for MIR spectroscopy. The main hindrance for the use of SC sources in spectroscopy so far, are the significant pulse-to-pulse fluctuations arising from the non-linear nature of the SC generation process. We show to what extent spectral averaging makes sense and evaluate the noise performance. By combining a SC source and a FPMS it was possible to significantly reduce noise in spectral, time and polarization domain, resulting in a set-up suitable for MIR spectroscopy. The performance of the set-up was characterized both in transmission and reflection geometry. Low-noise absorption spectra of oils, polymers and aqueous solutions of acetic acid were acquired . Furthermore, time-resolved measurements of the curing process of ethyl-2-cyanoacrylate and results of the chemical mapping of a painted metal surface are reported. The obtained results prove the concept of SC-FPMS promising for MIR spectroscopy, characterized by its simplicity and versatility.
Arun, S; Choudhury, Vishal; Balaswamy, V; Prakash, Roopa; Supradeepa, V R
2018-04-02
We demonstrate a simple module for octave spanning continuous-wave supercontinuum generation using standard telecom fiber. This module can accept any high power ytterbium-doped fiber laser as input. The input light is transferred into the anomalous dispersion region of the telecom fiber through a cascade of Raman shifts. A recently proposed Raman laser architecture with distributed feedback efficiently performs these Raman conversions. A spectrum spanning over 1000nm (>1 octave) from 880 to 1900nm is demonstrated. The average power from the supercontinuum is ~34W with a high conversion efficiency of 44%. Input wavelength agility is demonstrated with similar supercontinua over a wide input wavelength range.
Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.
Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M
2015-05-01
A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.
8.76 W mid-infrared supercontinuum generation in a thulium doped fiber amplifier
NASA Astrophysics Data System (ADS)
Michalska, Maria; Grzes, Pawel; Swiderski, Jacek
2018-07-01
A stable mid-infrared supercontinuum (SC) generation with a maximum average power of 8.76 W in a spectral band of 1.9-2.65 μm is reported. To broaden the bandwidth of SC, a 1.55 μm pulsed laser system delivering 1 ns pulses at a pulse repetition frequency of 500 kHz was used as a seed source for one-stage thulium-doped fiber amplifier. The power conversion efficiency for wavelengths longer than 2.4 μm and 2.5 μm was determined to be 28% and 18%, respectively, which is believed to be the most efficient power distribution towards the mid-infrared in SC sources based on Tm-doped fibers. The power spectral density of the continuum was calculated to be >13 mW/nm with a potential of further scaling-up. A long-term power stability test, showing power fluctuations <3%, proved the robustness and reliability of the developed SC source.
Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian
2016-06-01
We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.
NASA Astrophysics Data System (ADS)
Salem, Reza; Jiang, Zack; Liu, Dongfeng; Pafchek, Robert; Foy, Paul; Saad, Mohammed; Jenkins, Doug; Cable, Alex; Fendel, Peter
2016-03-01
We report mid-infrared supercontinuum (SC) generation in a dispersion-engineered step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm. The SC spans 1.8 octaves from 1.25 μm to 4.6 μm with an average output power of 270 mW. The pump source is an all-fiber femtosecond laser that generates sub-100 fs pulses at 50 MHz repetition rate with 570 mW average power. The indium fluoride fiber used for SC generation is designed to have a zerodispersion wavelength close to 1.9 μm. Two fiber lengths of 30 cm and 55 cm are selected for the SC generation experiments based on the numerical modelling results. The measured spectra and the numerical modelling results are presented showing good agreement for both lengths. The femtosecond pumping regime is a key requirement for generating a coherent SC. We show by modelling that the SC is coherent for a pump with the same pulse width and energy as our fiber laser and added quantum-limited noise. The results are promising for the realization of coherent and high-repetition-rate SC sources, two conditions that are critical for spectroscopy applications using FTIR spectrometers. Additionally, the entire SC system is built using optical fibers with similar core diameters, which enables integration into a compact platform.
NASA Astrophysics Data System (ADS)
Baselt, Tobias; Taudt, Christopher; Nelsen, Bryan; Lasagni, Andrés Fabián; Hartmann, Peter
2018-02-01
Optical coherence tomography benefits from the high brightness and bandwidth, as well as the spatial coherence of supercontinuum (SC) sources. The increase of spectral power density (SPD) over conventional light sources leads to shorter measuring times and higher resolutions. For some applications, only a portion of the broad spectral range can be used. Therefore, an increase of the SPD in specific limited spectral regions would provide a clear advantage over spectral filtering. This study describes a method to increase the SPD of SC sources by amplifying the excitation wavelength inside of a nonlinear photonic crystal fiber (PCF). An ytterbium-doped PCF was manufactured by a nanopowder process and used in a fiber amplifier setup as the nonlinear fiber medium. The performance of the fiber was compared with a conventional PCF that possesses comparable parameters. Finally, the system as a whole was characterized in reference to common solid-state laser-based photonic SC light sources. An order-of-magnitude improvement of the power density was observed between the wavelengths from 1100 to 1350 nm.
NASA Astrophysics Data System (ADS)
Woodbury, Daniel; Wahlstrand, Jared; Goers, Andy; Feder, Linus; Miao, Bo; Hine, George; Salehi, Fatholah; Milchberg, Howard
2016-10-01
We report on the use of single-shot supercontinuum spectral interferometry (SSSI) to make temporally and spatially resolved measurements of laser-induced avalanche breakdown in ambient air by a 200 ps pulse. By seeding the breakdown using an external 100 fs pulse, we demonstrate control over the timing and spatial characteristics of the avalanche. In addition, we calculate the collisional ionization rates at various laser intensities and demonstrate seeding of the avalanche breakdown both by multiphoton ionization and by photodetaching ions produced from a radioactive source. These observations provide proof-of-concept support for recent proposals to remotely measure radioactivity using laser-induced avalanche breakdown. This work supported by a DTRA, C-WMD Basic Research Program, and by the DOE NNSA Stewardship Science Graduate Fellowship, provided under Grant Number DE-NA0002135.
Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Junjie; Zeng Bin; Yu Yongli
2010-11-15
We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecondmore » pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.« less
Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide.
Liu, Xing; Pu, Minhao; Zhou, Binbin; Krückel, Clemens J; Fülöp, Attila; Torres-Company, Victor; Bache, Morten
2016-06-15
We experimentally show octave-spanning supercontinuum generation in a nonstoichiometric silicon-rich nitride waveguide when pumped by femtosecond pulses from an erbium fiber laser. The pulse energy and bandwidth are comparable to results achieved in stoichiometric silicon nitride waveguides, but our material platform is simpler to manufacture. We also observe wave-breaking supercontinuum generation by using orthogonal pumping in the same waveguide. Additional analysis reveals that the waveguide height is a powerful tuning parameter for generating mid-infrared dispersive waves while keeping the pump in the telecom band.
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Engelsholm, R. D.; Bang, O.
2018-03-01
Commercially available silica-fiber-based and ultra-broadband supercontinuum (SC) sources are typically generated by pumping close to the zero-dispersion wavelength (ZDW) of a photonic crystal fiber (PCF), using high-power picosecond or nanosecond laser pulses. Despite the extremely broad bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise (RIN) as a function of the pump pulse duration and fiber length. Furthermore, we experimentally demonstrate the role of the fiber length on the RIN of the ANDi SC, validating the results calculated numerically. In the end, we compare the RIN of a commercial SC source based on MI and the ANDi SC source developed here, which shows better noise performance when it is carefully designed.
NASA Astrophysics Data System (ADS)
Martin-Lopez, S.; Carrasco-Sanz, A.; Corredera, P.; Abrardi, L.; Hernanz, M. L.; Gonzalez-Herraez, M.
2006-12-01
The development of high-power cw fiber lasers has triggered a great interest in the phenomena of nonlinear pump spectral broadening and cw supercontinuum generation. These effects have very convenient applications in Raman amplification, optical fiber metrology, and fiber sensing. In particular, it was recently shown that pump incoherence has a strong impact in these processes. We study experimentally the effect of pump incoherence in nonlinear pump spectral broadening and cw supercontinuum generation in optical fibers. We show that under certain experimental conditions an optimum degree of pump incoherence yields the best performance in the broadening process. We qualitatively explain these results, and we point out that these results may have important implications in cw supercontinuum optimization.
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Chengmin; Han, Kai; Chen, Zilun; Pu, Dongsheng; Hou, Jing
2017-05-01
Supercontinuum generation directly from a nonlinear fiber amplifier, especially from a nonlinear ytterbium-doped fiber amplifier, attracts more and more attention due to its all-fiber structure, high optical to optical conversion efficiency, and high power output potential. However, the modeling of supercontinuum generation from a nonlinear fiber amplifier has been rarely reported. In this paper, the modeling of a tapered Ytterbium-doped fiber amplifier for visible extended to infrared supercontinuum generation is proposed based on the combination of the laser rate equations and the generalized nonlinear Schrödinger equation. Ytterbium-doped fiber amplifier generally can not generate visible extended supercontinuum due to its pumping wavelength and zero-dispersion wavelength. However, appropriate tapering and four-wave mixing makes the visible extended supercontinuum generation from an ytterbium-doped fiber amplifier possible. Tapering makes the zero-dispersion wavelength of the ytterbium-doped fiber shift to the short wavelength and minimizes the dispersion matching. Four-wave mixing plays an important role in the visible spectrum generation. The influence of pulse width and pump power on the supercontinuum generation is calculated and analyzed. The simulation results imply that it is promising and possible to fabricate a visible-to-infrared supercontinuum with low pump power and flat spectrum by using the tapered ytterbium-doped fiber amplifier scheme as long as the related parameters are well-selected.
1 kW peak power passively Q-switched Nd(3+)-doped glass integrated waveguide laser.
Charlet, B; Bastard, L; Broquin, J E
2011-06-01
Embedded optical sensors always require more compact, stable, and powerful laser sources. In this Letter, we present a fully integrated passively Q-switched laser, which has been realized by a Ag(+)/Na(+) ion exchange on a Nd(3+)-doped phosphate glass. A BDN-doped cellulose acetate thick film is deposited on the waveguide, acting as an upper cladding and providing a distributed saturable absorption. At λ=1054 nm, the device emits pulses of 1.3 ns FWHM with a repetition rate of 28 kHz. These performances, coupled with the 1 kW peak power, are promising for applications such as supercontinuum generation. © 2011 Optical Society of America
High efficiency IR supercontinuum generation and applications
NASA Astrophysics Data System (ADS)
Yin, Stuart (Shizhuo); Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Yang, Chia-En; Luo, Claire
2010-08-01
In this paper, we have reviewed our recent works on IR supercontinuum generation (SCG) and its applications. First, we provide a brief review on the physical mechanism of the supercontinuum generation. Second, the advance of SCG in single crystal sapphire fibers is reviewed and introduced. In particular, we discussed how to fabricate thinned sapphire fiber and use it for high efficiency SCG. Finally, experimental results of chemical analysis with supercontinuum source are reviewed.
Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain
NASA Astrophysics Data System (ADS)
Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar
2017-08-01
We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.
Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal
Silva, F.; Austin, D.R.; Thai, A.; Baudisch, M.; Hemmer, M.; Faccio, D.; Couairon, A.; Biegert, J.
2012-01-01
In supercontinuum generation, various propagation effects combine to produce a dramatic spectral broadening of intense ultrashort optical pulses. With a host of applications, supercontinuum sources are often required to possess a range of properties such as spectral coverage from the ultraviolet across the visible and into the infrared, shot-to-shot repeatability, high spectral energy density and an absence of complicated pulse splitting. Here we present an all-in-one solution, the first supercontinuum in a bulk homogeneous material extending from 450 nm into the mid-infrared. The spectrum spans 3.3 octaves and carries high spectral energy density (2 pJ nm−1–10 nJ nm−1), and the generation process has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our method, based on filamentation of femtosecond mid-infrared pulses in the anomalous dispersion regime, allows for compact new supercontinuum sources. PMID:22549836
NASA Astrophysics Data System (ADS)
Kano, Hideaki; Hamaguchi, Hiro-O.
2006-04-01
A supercontinuum light source generated with a femtosecond Ti:Sapphire oscillator has been used to obtain both vibrational and two-photon excitation fluorescence (TPEF) images of a living cell simultaneously at different wavelengths. Owing to an ultrabroadband spectral profile of the supercontinuum, multiple vibrational resonances have been detected through coherent anti-Stokes Raman scattering (CARS) process. In addition to the multiplex CARS process, multiple electronic states can be excited due to the broadband electronic two-photon excitation using the supercontinuum, giving rise to a two-photon excitation fluorescence (TPEF) signal. Using a living yeast cell whose nucleus is labeled by green fluorescent protein (GFP), we have succeeded in visualizing organelles such as mitochondria, septum, and nucleus through the CARS and the TPEF processes. The supercontinuum enables us to perform unique multi-nonlinear optical imaging through two different nonlinear optical processes.
NASA Astrophysics Data System (ADS)
Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas
2018-01-01
We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.
Multiband supercontinuum generation in an air-core revolver fibre
NASA Astrophysics Data System (ADS)
Yatsenko, Yu P.; Pleteneva, E. N.; Okhrimchuk, A. G.; Gladyshev, A. V.; Kosolapov, A. F.; Kolyadin, A. N.; Bufetov, I. A.
2017-06-01
Multiband supercontinuum generation in an air-core revolver fibre having a large number of transmission bands in a wide spectral range has been studied experimentally and theoretically for the first time. The fibre fabricated by us possesses unique dispersion and guidance characteristics for radiation transfer from one band to another despite the high losses at the band boundaries. In our experiments, launching 205-fs laser pulses of 110 μJ energy at 1028 nm into the fibre we have obtained a supercontinuum spanning the spectral range from 415 to 1593 nm, with 11 transmission bands. Numerical simulation suggests that, in the case of singlemode propagation of pulses with such energy in the fibre, the supercontinuum may span 14 transmission bands and have a spectral width above three octaves, with a long-wavelength edge at 4200 nm.
Progress in Cherenkov femtosecond fiber lasers
Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry
2016-01-01
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037
Progress in Cherenkov femtosecond fiber lasers.
Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry
2016-01-20
We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.
NASA Astrophysics Data System (ADS)
Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang
2018-01-01
We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.
Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F
2010-04-15
We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.
Spectral confocal reflection microscopy using a white light source
NASA Astrophysics Data System (ADS)
Booth, M.; Juškaitis, R.; Wilson, T.
2008-08-01
We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.
Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2 S step-index fibers
NASA Astrophysics Data System (ADS)
Wang, Yingying; Dai, Shixun; Han, Xin; Zhang, Peiqing; Liu, Yongxing; Wang, Xunsi; Sun, Shaochao
2018-03-01
We experimentally demonstrate the mid-infrared supercontinuum generation in a chalcogenide step-index fiber consisting of an As2Se3 core and an As2Se2 S cladding. The fiber with the core diameter of 21 μm was fabricated through the rod-in-tube technique and fiber-drawing process. The effect of pump wavelength, fiber length, and pump power on the spectral bandwidth and output power of the supercontinuum spectra generated from the fiber pumped by the ultrashort pulses of ∼ 150 fs with a repetition rate of 1000 Hz was systematically investigated. When pumping a 12-cm-long fiber at a wavelength of 6 . 5 μm with 14 mW pump laser power, a broadband supercontinuum spanning from 2 . 0 μm to 12 . 7 μm with an output power of 300 μW was obtained.
Advanced injection seeder for various applications: form LIDARs to supercontinuum sources
NASA Astrophysics Data System (ADS)
Grzes, Pawel
2017-12-01
The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.
Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G
2004-12-15
Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...
2017-08-17
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber
NASA Astrophysics Data System (ADS)
Jia, Zhixu; Yao, Chuanfei; Jia, Shijie; Wang, Fang; Wang, Shunbin; Zhao, Zhipeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping
2017-06-01
All-solid fluorotellurite fibers are fabricated by using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3 (TBY) and AlF3-based glasses, respectively. Since the refractive index (˜1.46) of AlF3-based glass is much lower than that (˜1.84) of TBY glass, the zero-dispersion-wavelength of the fabricated fiber can be tuned from 2145 to 1507 nm by varying the fiber core diameter from 50 to 3 μm. By using a 0.6 m long all-solid fluorotellurite fiber with a core diameter of ˜7 μm as the nonlinear medium and a 2 μm femtosecond fiber laser as the pump source, 4.5 W supercontinuum (SC) generation from 1017 to 3438 nm is obtained for a launched pump power of ˜10.48 W. The corresponding optical-to-optical conversion efficiency is about 42.9%. In addition, no any damage of the fluorotellurite fiber is observed during the operation of the above SC light source. Our results show that all-solid fluorotellurite fibers are promising nonlinear media for constructing high power mid-infrared SC light sources.
Porcel, Marco A G; Schepers, Florian; Epping, Jörn P; Hellwig, Tim; Hoekman, Marcel; Heideman, René G; van der Slot, Peter J M; Lee, Chris J; Schmidt, Robert; Bratschitsch, Rudolf; Fallnich, Carsten; Boller, Klaus-J
2017-01-23
We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov
We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less
Supercontinuum as a light source for miniaturized endoscopes.
Lu, M K; Lin, H Y; Hsieh, C C; Kao, F J
2016-09-01
In this work, we have successfully implemented supercontinuum based illumination through single fiber coupling. The integration of a single fiber illumination with a miniature CMOS sensor forms a very slim and powerful camera module for endoscopic imaging. A set of tests and in vivo animal experiments are conducted accordingly to characterize the corresponding illuminance, spectral profile, intensity distribution, and image quality. The key illumination parameters of the supercontinuum, including color rendering index (CRI: 72%~97%) and correlated color temperature (CCT: 3,100K~5,200K), are modified with external filters and compared with those from a LED light source (CRI~76% & CCT~6,500K). The very high spatial coherence of the supercontinuum allows high luminosity conduction through a single multimode fiber (core size~400μm), whose distal end tip is attached with a diffussion tip to broaden the solid angle of illumination (from less than 10° to more than 80°).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumao Tao; Xiaolin Wang; Xiao, H
Near-IR supercontinuum (SC) is generated based on a standard telecommunication single-mode (SM) fibre in an all-fibre format. The observed spectrum covers the spectral range from 1050 nm to 1700 nm. High-efficiency combining of the SC power is demonstrated for the first time, and the spectral SC properties are shown to be maintained after power combining. The results may find applications in sensing, spectroscopy and medicine. (control of laser radiation parameters)
Femtosecond Laser Filamentation for Atmospheric Sensing
Xu, Huai Liang; Chin, See Leang
2011-01-01
Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566
Modulated CMOS camera for fluorescence lifetime microscopy.
Chen, Hongtao; Holst, Gerhard; Gratton, Enrico
2015-12-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition. © 2015 Wiley Periodicals, Inc.
Ultrashort polarization-tailored bichromatic fields from a CEP-stable white light supercontinuum.
Kerbstadt, Stefanie; Timmer, Daniel; Englert, Lars; Bayer, Tim; Wollenhaupt, Matthias
2017-05-29
We apply ultrafast polarization shaping to an ultrabroadband carrier envelope phase (CEP) stable white light supercontinuum to generate polarization-tailored bichromatic laser fields of low-order frequency ratio. The generation of orthogonal linearly and counter-rotating circularly polarized bichromatic fields is achieved by introducing a composite polarizer in the Fourier plane of a 4 f polarization shaper. The resulting Lissajous- and propeller-type polarization profiles are characterized experimentally by cross-correlation trajectories. The scheme provides full control over all bichromatic parameters and allows for individual spectral phase modulation of both colors. Shaper-based CEP control and the generation of tailored bichromatic fields is demonstrated. These bichromatic CEP-stable polarization-shaped ultrashort laser pulses provide a versatile class of waveforms for coherent control experiments.
NASA Astrophysics Data System (ADS)
Ishizawa, Atsushi; Goto, Takahiro; Kou, Rai; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki
2017-07-01
We demonstrate on-chip octave-spanning supercontinuum (SC) generation with a Si-wire waveguide (SWG). We precisely controlled the SWG width so that the group velocity becomes flat over a wide wavelength range. By adjusting the SWG length, we could reduce the optical losses due to two-photon absorption and pulse propagation. In addition, for efficient coupling between the laser pulse and waveguide, we fabricated a two-step inverse taper at both ends of the SWG. Using a 600-nm-wide SWG, we were able to generate a broadband SC spectrum at wavelengths from 1060 to 2200 nm at a -40 dB level with only 50-pJ laser energy from an Er-doped fiber laser oscillator. We found that we can generate an on-chip broadband SC spectrum with an SWG with a length even as small as 1.7 mm.
Optimization of a Fabry-Perot Q-switch fiber optic laser
NASA Astrophysics Data System (ADS)
Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino
2013-11-01
Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.
Porquez, Jeremy G.; Cole, Ryan A.; Tabarangao, Joel T.; Slepkov, Aaron D.
2016-01-01
We demonstrate spectral-focusing based coherent anti-Stokes Raman scattering (SF-CARS) hyper-microscopy capable of probing vibrational frequencies from 630 cm−1 to 3250 cm−1 using a single Ti:Sapphire femtosecond laser operating at 800 nm, and a commercially-available supercontinuum-generating fibre module. A broad Stokes supercontinuum with significant spectral power at wavelengths between 800 nm and 940 nm is generated by power tuning the fibre module using atypically long and/or chirped ~200 fs pump pulses, allowing convenient access to lower vibrational frequencies in the fingerprint spectral region. This work significantly reduces the instrumental and technical requirements for multimodal CARS microscopy, while expanding the spectral capabilities of an established approach to SF-CARS. PMID:27867735
NASA Astrophysics Data System (ADS)
Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.
2018-02-01
Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.
Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source
NASA Astrophysics Data System (ADS)
Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi
2016-04-01
An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.
NASA Astrophysics Data System (ADS)
Gauthier, Jean-Christophe; Robichaud, Louis-Rafaël; Fortin, Vincent; Vallée, Réal; Bernier, Martin
2018-06-01
The quest for a compact and efficient broadband laser source able to probe the numerous fundamental molecular absorption lines in the mid-infrared (3-8 µm) for various applications has been going on for more than a decade. While robust commercial fiber-based supercontinuum (SC) systems have started to appear on the market, they still exhibit poor energy conversion into the mid-infrared (typically under 30%) and are generally not producing wavelengths exceeding 4.7 µm. Here, we present an overview of the results obtained from a novel approach to SC generation based on spectral broadening inside of an erbium-doped fluoride fiber amplifier seeded directly at 2.8 µm, allowing mid-infrared conversion efficiencies reaching up to 95% and spectral coverage approaching the transparency limit of ZrF4 (4.2 µm) and InF3 (5.5 µm) fibers. The general concept of the approach and the physical mechanisms involved are presented alongside the various configurations of the system to adjust the output characteristics in terms of spectral coverage and output power for different applications.
2016-07-20
AFRL-AFOSR-VA-TR-2016-0257 RESEARCH AND DEVELOPMENT OF HIGH ENERGY 2 - MICRON LASERS BASED ON TM: DOPED CERAMIC LASER GAIN MEDIA AND TM: DOPED...2010 to 01/03/2016 4. TITLE AND SUBTITLE RESEARCH AND DEVELOPMENT OF HIGH ENERGY 2 - MICRON LASERS BASED ON TM: DOPED CERAMIC LASER GAIN MEDIA AND...NOTES 14. ABSTRACT Our research and development of 2-μm femtosecond lasers has included development of mode-locked Tm:fiber lasers , super-continuum
Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source.
Moon, Sucbei; Kim, Dug Young
2006-11-27
We introduce a new high-speed Fourier-domain optical coherence tomography (FD-OCT) scheme based on a stretched pulse supercontinuum source. A wide-band short pulse of a supercontinuum source of which output spectrum spanned a wavelength range from 1,200 nm to 1,550 nm was stretched to a long pulse of 70-ns duration by using a dispersive fiber due to the group-velocity dispersion, and it was used directly as frequency-swept light for FD-OCT. The OCT spectral interferogram was acquired in the time domain and converted into the spectral domain by the pre-calibrated time-to-wavelength relation. Using this stretched-pulse OCT (SP-OCT) scheme, we have demonstrated an ultrahigh-speed axial-line scanning rate of 5 MHz. The axial resolution of 8 microm was achieved without re-calibration of the sweep characteristic owing to the passive nature of the frequency-sweeping mechanism.
Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching.
Guo, Hairun; Zhou, Binbin; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten
2015-02-15
Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime overlapping with common ultrafast laser wavelengths. There is no need for waveguide dispersion engineering. Here, we experimentally demonstrate SCG in standard lithium niobate (LN) waveguides without quasi-phase matching (QPM), pumped with femtosecond pulses in the normal dispersion regime. The observed large bandwidths (even octave spanning), together with other experimental data, indicate that negative nonlinearity solitons are indeed excited, which is backed up by numerical simulations. The QPM-free design reduces production complexity, extends the maximum waveguide length, and limits undesired spectral resonances. Finally, nonlinear crystals can be used where QPM is inefficient or impossible, which is important for mid-IR SCG. QPM-free waveguides in mid-IR nonlinear crystals can support negative nonlinearity solitons, as these waveguides have a normal dispersion at the emission wavelengths of mid-IR ultrafast lasers.
Broadband supercontinuum generation with femtosecond pulse width in erbium-doped fiber laser (EDFL)
NASA Astrophysics Data System (ADS)
Rifin, S. N. M.; Zulkifli, M. Z.; Hassan, S. N. M.; Munajat, Y.; Ahmad, H.
2016-11-01
We demonstrate two flat plateaus and the low-noise spectrum of supercontinuum generation (SCG) in a highly nonlinear fiber (HNLF), injected by an amplified picosecond pulse seed of a carbon nanotube-based passively mode locked erbium-doped fiber laser. A broad spectrum of width approximately 1090 nm spanning the range 1130-2220 nm is obtained and the pulse width is compressed to the shorter duration of 70 fs. Variations of the injected peak power up to 33.78 kW into the HNLF are compared and the broad spectrum SCG profiles slightly expand for each of the injected peak powers. This straightforward configuration of SCG offers low output power and ultra-narrow femtosecond pulse width. The results facilitate the development of all fiber time-domain spectroscopy systems based on the photoconductive antenna technique.
Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.
Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A
2016-07-25
We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.
Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Qiang; Guo, Zhengru; Zhang, Qingshan
Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less
Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides
NASA Astrophysics Data System (ADS)
Hickstein, Daniel D.; Kerber, Grace C.; Carlson, David R.; Chang, Lin; Westly, Daron; Srinivasan, Kartik; Kowligy, Abijith; Bowers, John E.; Diddams, Scott A.; Papp, Scott B.
2018-02-01
Supercontinuum generation (SCG) in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations of the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses during supercontinuum generation. We experimentally demonstrate a quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design space for SCG waveguides, allowing the spectrum to be engineered for specific applications.
Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope.
Klauss, André; Hille, Carsten
2017-01-01
The easySTED technology provides the means to retrofit a confocal microscope to a diffraction-unlimited stimulated emission depletion (STED) microscope.Although commercial STED systems are available today, for many users of confocal laser scanning microscopes the option of retrofitting their confocal system to a STED system ready for diffraction-unlimited imaging may present an attractive option. The easySTED principle allowing for a joint beam path of excitation and depletion light promises some advantages concerning technical complexity and alignment effort for such an STED upgrade. In the one beam path design of easySTED the use of a common laser source, either a supercontinuum source or two separate lasers coupled into the same single-mode fiber, becomes feasible. The alignment of the focal light distribution of the STED beam relative to that of the excitation beam in all three spatial dimensions is therefore omitted respectively reduced to coupling the STED laser into the common single-mode fiber. Thus, only minor modifications need to be applied to the beam path in the confocal microscope to be upgraded. Those comprise adding polarization control elements and the easySTED waveplate, and adapting the beamsplitter to the excitation/STED wavelength combination.
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Liu, Yuan-Zhi; Boppart, Stephen
2014-08-25
Optical sources in the visible region immediately adjacent to the near-infrared biological optical window are preferred in imaging techniques such as spectroscopic optical coherence tomography of endogenous absorptive molecules and two-photon fluorescence microscopy of intrinsic fluorophores. However, existing sources based on fiber supercontinuum generation are known to have high relative intensity noise and low spectral coherence, which may degrade imaging performance. Here we compare the optical noise and pulse compressibility of three high-power fiber Cherenkov radiation sources developed recently, and evaluate their potential to replace the existing supercontinuum sources in these imaging techniques.
Tellurite microstructure fibers with small hexagonal core for supercontinuum generation.
Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2009-07-06
Tellurite glass microstructure fibers with a 1 microm hexagonal core were fabricated successfully by accurately controlling the temperature field in the fiber-drawing process. The diameter ratio of holey region to core (DRHC) for the fiber can be adjusted freely in the range of 1-20 by pumping a positive pressure into the holes when drawing fiber, which provides much freedom in engineering the chromatic dispersion. With the increase of DRHC from 3.5 to 20, the zero dispersion wavelengths were shifted several hundred nanometers, the cutoff wavelength due to confinement loss was increased from 1600 nm to 3800 nm, and the nonlinear coefficient gamma was increased from 3.9 to 5.7 W(-1)/m. Efficient visible emissions due to third harmonic generation were found for fibers with a DRHC of 10 and 20 under the 1557 nm pump of a femtosecond fiber laser. One octave flattened supercontinuum spectrum was generated from fibers with a DRHC of 3.5, 10 and 20 by the 1064 nm pump of a picosecond fiber laser. To the best of our knowledge, we have for the first time fabricated a hexagonal core fiber by soft glass with such a small core size, and have demonstrated a large influence of the holey region on the dispersion, nonlinear coefficient and supercontinuum generation for such fiber.
Modulation instability initiated high power all-fiber supercontinuum lasers and their applications
NASA Astrophysics Data System (ADS)
Alexander, Vinay V.; Kulkarni, Ojas P.; Kumar, Malay; Xia, Chenan; Islam, Mohammed N.; Terry, Fred L.; Welsh, Michael J.; Ke, Kevin; Freeman, Michael J.; Neelakandan, Manickam; Chan, Allan
2012-09-01
High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ˜0.8 to 4 μm, >5 W in a near IR SC extending from ˜0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ˜0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ˜3.9 W in an SC extending from ˜0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ˜1.5 to ˜2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ˜2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ˜1.9 to 4.5 μm with ˜2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Karim, M. R.; Rahman, B. M. A.
2018-03-01
A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.
Polarization control of isolated high-harmonic pulses
NASA Astrophysics Data System (ADS)
Huang, Pei-Chi; Hernández-García, Carlos; Huang, Jen-Ting; Huang, Po-Yao; Lu, Chih-Hsuan; Rego, Laura; Hickstein, Daniel D.; Ellis, Jennifer L.; Jaron-Becker, Agnieszka; Becker, Andreas; Yang, Shang-Da; Durfee, Charles G.; Plaja, Luis; Kapteyn, Henry C.; Murnane, Margaret M.; Kung, A. H.; Chen, Ming-Chang
2018-06-01
High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.
Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers.
Théberge, Francis; Thiré, Nicolas; Daigle, Jean-François; Mathieu, Pierre; Schmidt, Bruno E; Messaddeq, Younès; Vallée, Réal; Légaré, François
2014-11-15
We report on infrared supercontinuum (SC) generation through laser filamentation and subsequent nonlinear propagation in a step-index As2S3 fiber. The 100 μm core and high-purity As2S3 fiber used exhibit zero-dispersion wavelength around 4.5 μm, a mid-infrared background loss of 0.2 dB/m, and a maximum loss of only 0.55 dB/m at the S-H absorption peak around 4.05 μm. When pumping with ultrashort laser pulses slightly above the S-H absorption band, broadband infrared supercontinua were generated with a 20 dB spectral flatness spanning from 1.5 up to 7 μm. The efficiency and spectral shape of the SC produced by ultrashort pulses in large-core As2S3 fiber are mainly determined by its dispersion, the S-H contaminant absorption, and the mid-infrared nonlinear absorption.
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, Vasily; Hall, Gregory
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode
Goncharov, Vasily; Hall, Gregory
2016-08-25
Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less
Single photon ranging system using two wavelengths laser and analysis of precision
NASA Astrophysics Data System (ADS)
Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian
2013-09-01
The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.
Mid-infrared laser filaments in the atmosphere
Mitrofanov, A. V.; Voronin, A. A.; Sidorov-Biryukov, D. A.; Pugžlys, A.; Stepanov, E. A.; Andriukaitis, G.; Flöry, T.; Ališauskas, S.; Fedotov, A. B.; Baltuška, A.; Zheltikov, A. M.
2015-01-01
Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 μm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared. PMID:25687621
Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T
2017-04-03
We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities <0.1 within a few minutes of averaging and an instrument response time of <46 fs thereby demonstrating that that simple broadband continuum sources, although weak, are sufficient to create high quality 2D spectra with >200 nm bandwidth.
Fluctuations and correlations in modulation instability
NASA Astrophysics Data System (ADS)
Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.
2012-07-01
Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.
Supercontinuum generation through DNA-filled hollow core fiber for broadband absorption spectroscopy
NASA Astrophysics Data System (ADS)
Cho, Youngho; Park, Byeongho; Oh, Juyeong; Seo, Min Ah; Lee, Kwanil; Kim, Chulki; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Kim, Hyung Min; Lee, Hyuk Jae; Oh, Kyunghwan; Yeom, Dong-Il; Park, Sung Ha; Kim, Jae Hun
2015-07-01
In this study, we successfully generated the large bandwidth of supercontinuum spectra through hollow fibers filled with DNA. Also, by observing that spectra bandwidth was the widest in the order of the hollow core fiber filled with DNA modified by copper ion, the hollow core fiber with only DNA, and the bulk hollow core fiber, we demonstrated that DNA material modified with copper ions can further enhance the spectral bandwidth of supercontinuum. As a result, we anticipate that the SCG as a broadband light source can be used in analytical methods to demonstrate a wide range of biological and environmental questions.
Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier
NASA Astrophysics Data System (ADS)
Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing
2015-08-01
The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan; Khan, Sabih D; Shakya, Mahendra M; Moon, Eric; Chang, Zenghu
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashiko, Hiroki; Gilbertson, Steve; Li, Chengquan
2008-03-14
We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2{pi} radians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henn, T.; Kiessling, T., E-mail: tobias.kiessling@physik.uni-wuerzburg.de; Ossau, W.
We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables themore » investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.« less
Experimental study of THz electro-optical sampling crystals ZnSe, ZnTe and GaP
NASA Astrophysics Data System (ADS)
Zhukova, M.; Makarov, E.; Putilin, S.; Tsypkin, A.; Chegnov, V.; Chegnova, O.; Bespalov, V.
2017-11-01
The application of optoelectronic techniques to the generation and detection of THz radiation is now well established. Wide gap semiconductor crystals of groups II-VI, III-V and III-VI are abundantly used. However, some limitations are occurred while using powerful laser systems. In this paper we introduce experimental results of two-photon absorption (2PA) in ZnSe, ZnTe and GaP studied with femtosecond pump-probe supercontinuum spectroscopy. Using of supercontinuum helps us to measure 2PA absorption dynamics and nonlinear index of refraction in wide frequency ranges. Besides influence of Fe concentration in ZnSe:Fe crystals on transmitted THz radiation is described.
Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma; ...
2017-01-01
We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Timothy S.; Patankar, Siddharth; Floyd, Emma
We report on investigations concerning the shot-to-shot spectral stability properties of a supercontinuum source based on nonlinear processes such as self-phase modulation and optical wave-breaking in a highly concentrated K 2ZnCl 4 double salt solution. The use of a liquid medium offers both damage resistance and high third-order optical nonlinearity. Approximately 40 μJ pulses spanning a spectral range between 390 and 960 nm were produced with 3.8% RMS energy stability, using infrared input pulses of 500±50 fs FWHM durations and 2.42±0.04 mJ energies with an RMS stability of 2%. The spectral stability was quantified via acquiring single-shot spectra and studyingmore » shot-to-shot variation across a spectral range of 200–1100 nm, as well as by considering spectral correlations. The regional spectral correlation variations were indicative of nonlinear processes leading to sideband generation. Spectral stability and efficiency of energy transfer into the supercontinuum were found to weakly improve with increasing driver pulse energy, suggesting that the nonlinear broadening processes are more stable when driven more strongly, or that self-guiding effects in a filament help to stabilize the supercontinuum generation.« less
Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhi-Xu; Liu, Lai; Yao, Chuan-Fei
2014-02-14
We report supercontinuum (SC) generation in Tm{sup 3+} doped tellurite microstructured fibers (TMFs) pumped by a 1.56 μm femtosecond fiber laser. In comparison with SC generation in undoped TMFs, the SC spectral bandwidth and the spectral intensity in the wavelength region of >1.9 μm are evidently enlarged in Tm{sup 3+} doped TMFs owing to the contribution of the combination of linear gain of Tm{sup 3+} and the nonlinear optical effects to spectral broadening. Furthermore, a transition from SC generation to 1.887 μm lasing (Tm{sup 3+}: {sup 3}F{sub 4}→{sup 3}H{sub 6} transition) is observed in Tm{sup 3+} doped TMFs by varying the pulse widthmore » of the pump laser from 0.29 to 3.47 ps, which gives the evidence of the above spectral broadening mechanism. This is the first observation of the transition from SC generation to lasing, to the best of our knowledge.« less
Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography.
Maria, Michael; Bravo Gonzalo, Ivan; Feuchter, Thomas; Denninger, Mark; Moselund, Peter M; Leick, Lasse; Bang, Ole; Podoleanu, Adrian
2017-11-15
In this Letter, we investigate the possibility of using a commercially available Q-switch-pumped supercontinuum (QS-SC) source, operating in the kilohertz regime, for ultra-high resolution optical coherence tomography (UHR-OCT) in the 1300 nm region. The QS-SC source proves to be more intrinsically stable from pulse to pulse than a mode-locked-based SC (ML-SC) source while, at the same time, is less expensive. However, its pumping rate is lower than that used in ML-SC sources. Therefore, we investigate here specific conditions to make such a source usable for OCT. We compare images acquired with the QS-SC source and with a current state-of-the-art SC source used for imaging. We show that comparable visual contrast obtained with the two technologies is achievable by increasing the readout time of the camera to include a sufficient number of QS-SC pulses.
Chirp of the single attosecond pulse generated by a polarization gating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Zenghu
2005-02-01
The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less
CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source
NASA Astrophysics Data System (ADS)
Kano, Hideaki; Akiyama, Toshihiro; Inoko, Akihito; Kobayashi, Tsubasa; Leproux, Philippe; Couderc, Vincent; Kaji, Yuichi; Oshika, Tetsuro
2018-02-01
We have visualized living cells and tissues using an ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopic system by using a sub-nanosecond supercontinuum (SC) light source. Owing to the ultrabroadband spectral profile of the SC, we can generate multiplex CARS signals in the spectral range of 500-3800 cm-1, which covers the whole molecular fingerprint region, as well as the C-H and O-H stretching regions. Through the combination of the ultrabroadband multiplex CARS method with second harmonic generation (SHG) and third harmonic generation (THG) processes, we have successfully performed selective imaging of ciliary rootlet-composing Rootletin filaments in rat retina.
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
NASA Astrophysics Data System (ADS)
Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole
2018-02-01
We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...
2016-09-29
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Yi, Ji; Chen, Siyu; Shu, Xiao; Fawzi, Amani A.; Zhang, Hao F.
2015-01-01
We achieved human retinal imaging using visible-light optical coherence tomography (vis-OCT) guided by an integrated scanning laser ophthalmoscopy (SLO). We adapted a spectral domain OCT configuration and used a supercontinuum laser as the illumating source. The center wavelength was 564 nm and the bandwidth was 115 nm, which provided a 0.97 µm axial resolution measured in air. We characterized the sensitivity to be 86 dB with 226 µW incidence power on the pupil. We also integrated an SLO that shared the same optical path of the vis-OCT sample arm for alignment purposes. We demonstrated the retinal imaging from both systems centered at the fovea and optic nerve head with 20° × 20° and 10° × 10° field of view. We observed similar anatomical structures in vis-OCT and NIR-OCT. The contrast appeared different from vis-OCT to NIR-OCT, including slightly weaker signal from intra-retinal layers, and increased visibility and contrast of anatomical layers in the outer retina. PMID:26504622
NASA Astrophysics Data System (ADS)
Strutynski, C.; Mouawad, O.; Picot-Clémente, J.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F.
2017-11-01
Tellurite glasses are good candidates for the development of broadband supercontinuum (SC) laser sources in the 1-5 μm range. At the moment, beside very few exceptions, SC generation in TeO2-based microstructured optical fibers (MOFs) is limited to 3 μm in the mid-infrared (MIR). We present here an observation of an optical aging occurring in six-hole suspended-core tellurite MOFs. When exposed to atmospheric conditions, such fibers show an alteration of their transmission between 3 and 4 μm. This aging phenomenon leads to the growth of strong additional losses in this wavelengths range over time. Impact of the transmission degradation on spectral broadening is studied through numerical simulations of SC generation.
Fiber based infrared lasers and their applications in medicine, spectroscopy and metrology
NASA Astrophysics Data System (ADS)
Alexander, Vinay Varkey
In my thesis, I have demonstrated the development of fiber based infrared lasers and devices for applications in medicine, spectroscopy and metrology. One of the key accomplishments presented in this thesis for medical applications is the demonstration of a focused infrared laser to perform renal denervation both in vivo and in vitro. Hypertension is a significant health hazard in the US and throughout the world, and the laser based renal denervation procedure may be a potential treatment for resistant hypertension. Compared to current treatment modalities, lasers may be able to perform treatments with lesser collateral tissue damage and quicker treatment times helping to reduce patient discomfort and pain. An additional medical application demonstrated in this thesis is the use of infrared fiber lasers to damage sebaceous glands in human skin as a potential treatment for acne. Another significant work presented in this thesis is a field trial performed at the Wright Patterson Air Force Base using a Short Wave Infrared (SWIR) Supercontinuum (SC) laser as an active illumination source for long distance reflectance measurements. In this case, an SC laser developed as part of this thesis is kept on a 12 story tower and propagated through the atmosphere to a target kept 1.6 km away and used to perform spectroscopy measurements. In the future this technology may permit 24/7 surveillance based on looking for the spectral signatures of materials. Beyond applications in defense, this technology may have far reaching commercial applications as well, including areas such as oil and natural resources exploration. Beyond these major contributions to the state-of-the-art, this thesis also describes other significant studies such as power scalability of SWIR SC sources and non-invasive measurement of surface roughness.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Hang
2018-04-01
The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.
NASA Astrophysics Data System (ADS)
Hernández-Escobar, E.; Bello-Jiménez, M.; Pottiez, O.; Ibarra-Escamilla, B.; López-Estopier, R.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.
2017-10-01
The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results demonstrate a satisfactory flatness of ~3 dB over a bandwidth of ~1000 nm in the range from 1261 to 2261 nm, achieving to the best of our knowledge, one of the flattest SC generated from noise-like pulses.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.
2016-10-01
The case for new, portable, real-time mid-infrared (MIR) molecular sensing and imaging is discussed. We set a record in demonstrating extreme broad-band supercontinuum (SC) generated light 1.4-13.3 μm in a specially engineered, step-index MIR optical fiber of high numerical aperture. This was the first experimental demonstration truly to reveal the potential of MIR fibers to emit across the MIR molecular "fingerprint spectral region" and a key first step towards bright, portable, broadband MIR sources for chemical and biomedical, molecular sensing and imaging in real-time. Potential applications are in the healthcare, security, energy, environmental monitoring, chemical-processing, manufacturing and the agriculture sectors. MIR narrow-line fiber lasers are now required to pump the fiber MIR-SC for a compact all-fiber solution. Rare-earth-ion (RE-) doped MIR fiber lasers are not yet demonstrated >=4 μm wavelength. We have fabricated small-core RE-fiber with photoluminescence across 3.5-6 μm, and long excited-state lifetimes. MIR-RE-fiber lasers are also applicable as discrete MIR fiber sensors in their own right, for applications including: ship-to-ship free-space communications, aircraft counter-measures, coherent MIR imaging, MIR-optical coherent tomography, laser-cutting/ patterning of soft materials and new wavelengths for fiber laser medical surgery.
Ikeda-like chaos on a dynamically filtered supercontinuum light source
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent
2016-08-01
We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.
Effects of spatial coherence in diffraction phase microscopy.
Edwards, Chris; Bhaduri, Basanta; Nguyen, Tan; Griffin, Benjamin G; Pham, Hoa; Kim, Taewoo; Popescu, Gabriel; Goddard, Lynford L
2014-03-10
Quantitative phase imaging systems using white light illumination can exhibit lower noise figures than laser-based systems. However, they can also suffer from object-dependent artifacts, such as halos, which prevent accurate reconstruction of the surface topography. In this work, we show that white light diffraction phase microscopy using a standard halogen lamp can produce accurate height maps of even the most challenging structures provided that there is proper spatial filtering at: 1) the condenser to ensure adequate spatial coherence and 2) the output Fourier plane to produce a uniform reference beam. We explain that these object-dependent artifacts are a high-pass filtering phenomenon, establish design guidelines to reduce the artifacts, and then apply these guidelines to eliminate the halo effect. Since a spatially incoherent source requires significant spatial filtering, the irradiance is lower and proportionally longer exposure times are needed. To circumvent this tradeoff, we demonstrate that a supercontinuum laser, due to its high radiance, can provide accurate measurements with reduced exposure times, allowing for fast dynamic measurements.
Towards a table-top synchrotron based on supercontinuum generation
NASA Astrophysics Data System (ADS)
Petersen, Christian R.; Moselund, Peter M.; Huot, Laurent; Hooper, Lucy; Bang, Ole
2018-06-01
Recently, high brightness and broadband supercontinuum (SC) sources reaching far into the infrared (IR) have emerged with the potential to rival traditional broadband sources of IR radiation. Here, the brightness of these IR SC sources is compared with that of synchrotron IR beamlines and SiC thermal emitters (Globars). It is found that SC sources can deliver a brightness that is 5-6 orders of magnitude higher than Globars and 1-2 orders of magnitude higher than typical IR beamlines, matching the beamlines at least out to 10.6 μm (940 cm-1). This means that these sources can now cover nearly all of the 800-5000 cm-1 spectrum (2-12.5 μm) which is frequently used in IR spectroscopy and microscopy. To demonstrate applicability, such an IR SC source was used for transmission spectroscopy of highly scattering filtration membranes from 3500 to 1300 cm-1, and transmission microscopy of colon tissue at 1538 cm-1.
Bertani, Francesca R.; Ferrari, Luisa; Mussi, Valentina; Botti, Elisabetta; Costanzo, Antonio; Selci, Stefano
2013-01-01
A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods. PMID:24233077
152 fs nanotube-mode-locked thulium-doped all-fiber laser
Wang, Jinzhang; Liang, Xiaoyan; Hu, Guohua; Zheng, Zhijian; Lin, Shenghua; Ouyang, Deqin; Wu, Xu; Yan, Peiguang; Ruan, Shuangchen; Sun, Zhipei; Hasan, Tawfique
2016-01-01
Ultrafast fiber lasers with broad bandwidth and short pulse duration have a variety of applications, such as ultrafast time-resolved spectroscopy and supercontinuum generation. We report a simple and compact all-fiber thulium-doped femtosecond laser mode-locked by carbon nanotubes. The oscillator operates in slightly normal cavity dispersion at 0.055 ps2, and delivers 152 fs pulses with 52.8 nm bandwidth and 0.19 nJ pulse energy. This is the shortest pulse duration and the widest spectral width demonstrated from Tm-doped all-fiber lasers based on 1 or 2 dimensional nanomaterials, underscoring their growing potential as versatile saturable absorber materials. PMID:27374764
All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber
NASA Astrophysics Data System (ADS)
Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake
2012-06-01
We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.
NASA Astrophysics Data System (ADS)
Chin, S. L.; Lagacé, S.
1996-02-01
An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.
Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared.
Washburn, Brian R; Diddams, Scott A; Newbury, Nathan R; Nicholson, Jeffrey W; Yan, Man F; Jørgensen, Carsten G
2004-02-01
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.
1-J white-light continuum from 100-TW laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Yannick; Henin, Stefano; Bejot, Pierre
2011-01-15
We experimentally measured the supercontinuum generation using 3-J, 30-fs laser pulses and measured white-light generation at the level of 1 J. Such high energy is allowed by a strong contribution to the continuum by the photon bath, as compared to the self-guided filaments. This contribution due to the recently observed congestion of the filament number density in the beam profile at very high intensity also results in a wider broadening for positively chirped pulses rather than for negatively chirped ones, similar to broadening in hollow-core fibers.
Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers
NASA Astrophysics Data System (ADS)
Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.
2017-09-01
The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Liqiang; Chu, Tianshu; Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071
2011-11-15
In this paper, we theoretically discuss the combined chirp effects on the isolated attosecond generation when a model Ar is exposed to an intense 5-fs, 800-nm fundamental chirped pulse combined with a weak 10-fs, 1200-nm controlling chirped pulse. It shows that for the case of the chirp parameters {beta}{sub 1} = 6.1 (corresponding to the 800-nm field) and {beta}{sub 2} = 4.0 (corresponding to the 1200-nm field), both the harmonic cutoff energy and the supercontinuum can be remarkably extended resulting in a 663-eV bandwidth. Moreover, due to the introduction of the chirps, the short quantum path is selected to contributemore » to the harmonic spectrum. Finally, by superposing a properly selected harmonic spectrum in the supercontinuum region, an isolated pulse as short as 31 as (5 as) is generated without (with) phase compensation.« less
Liao, Meisong; Yan, Xin; Gao, Weiqing; Duan, Zhongchao; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake
2011-08-01
We try to obtain stable supercontinuum (SC) generation with broad bandwidth under relative simple pump conditions. We use a 1.3-m-long highly nonlinear tellurite microstructured fiber and pump it by a 15 ps 1064 nm fiber laser. One segment of the fiber is tapered from a core diameter of 3.4 μm to 1.3 μm. For the first time five-order stimulated Raman scatterings (SRSs) are observed for soft glass fibers. SC covering 730-1700 nm is demonstrated with the pump-pulse-energy of several nJ. The mechanisms of SC broadening are mainly SRS, self-phase modulation (SPM) and cross phase modulation (XPM). The tapered segment has two advantages. Firstly it increases the nonlinearity of fiber by several times. Secondly, it acts as a compensation for the dispersion of the untapered segment, and mitigates the walk-off between pump pulse and SRS peaks.
NASA Astrophysics Data System (ADS)
Yang, Peilong; Zhang, Peiqing; Dai, Shixun; Wu, Yuehao; Wang, Xunsi; Tao, Guangming; Nie, Qiuhua
2015-05-01
Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96-4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.
NASA Astrophysics Data System (ADS)
Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.
2016-11-01
The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.
Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C
2016-11-01
The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.
Lequime, Michel; Liukaityte, Simona; Zerrad, Myriam; Amra, Claude
2015-10-05
We present the improved structure and operating principle of a spectrophotometric mean that allows us for the recording of the transmittance of a thin-film filter over an ultra-wide range of optical densities (from 0 to 11) between 400 and 1000 nm. The operation of this apparatus is based on the combined use of a high power supercontinuum laser source, a tunable volume hologram filter, a standard monochromator and a scientific grade CCD camera. The experimentally recorded noise floor is in good accordance with the optical density values given by the theoretical approach. A demonstration of the sensitivity gain provided by this new set-up with respect to standard spectrophotometric means is performed via the characterization of various types of filters (band-pass, long-pass, short-pass, and notch).
Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H L; Wang, X L; Zhou, P
We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiationmore » parameters)« less
Carrier-envelope offset frequency stabilization of an ultrafast semiconductor laser
NASA Astrophysics Data System (ADS)
Jornod, Nayara; Gürel, Kutan; Wittwer, Valentin J.; Brochard, Pierre; Hakobyan, Sargis; Schilt, Stéphane; Waldburger, Dominik; Keller, Ursula; Südmeyer, Thomas
2018-02-01
We present the self-referenced stabilization of the carrier-envelope offset (CEO) frequency of a semiconductor disk laser. The laser is a SESAM-modelocked VECSEL emitting at a wavelength of 1034 nm with a repetition frequency of 1.8 GHz. The 270-fs pulses are amplified to 3 W and compressed to 120 fs for the generation of a coherent octavespanning supercontinuum spectrum. A quasi-common-path f-to-2f interferometer enables the detection of the CEO beat with a signal-to-noise ratio of 30 dB sufficient for its frequency stabilization. The CEO frequency is phase-locked to an external reference with a feedback signal applied to the pump current.
Mid-IR supercontinuum generation and applications: a review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Luo, Claire
2014-09-01
In this paper, a review on mid-IR supercontinuum generation (SCG) and its applications is presented. First, the physical mechanism of the supercontinuum generation in IR crystal fiber is introduced. Second, the recent progress on IR single crystal fiber, in particular ultrathin core double cladding IR single crystal fiber is described. Third, the transmission characteristics of mid-IR crystal fiber is illustrated. Fourth, the mid-IR supercontinuum generation in IR single crystal fiber is presented. Finally, the application of IR supercontinuum for smart target recognition is illustrated
Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.
Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J
2011-04-01
An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.
Jiang, Tongxiao; Wang, Aimin; Wang, Guizhong; Zhang, Wei; Niu, Fuzeng; Li, Chen; Zhang, Zhigang
2014-01-27
A tapered silica photonic crystal fiber was designed and fabricated to generate more than one octave spanning supercontinuum (from 550 nm to 1400 nm at -30 dB level), by an input pulse of 40 fs 200 pJ directly from an Yb:fiber ring laser. The low pulse energy spectrum broadening are favorable to generate the high contrast f ceo signals with low noise. The f ceo signal with 40 dB signal-to-noise ratio was detected, which helps to build a compact real-world frequency comb.
Light bullets in transparent dielectrics
NASA Astrophysics Data System (ADS)
Kandidov, Valerii; Chekalin, Sergey; Kompanets, Victor; Dormidonov, Alexander
2017-10-01
The state of research of the light bullets (LB) formation in the process of femtosecond laser pulse filamentation is presented. LB is a near single-cycle wave packet that is formed in the result of the light field self-organization in a nonlinear dispersive medium under matched spatiotemporal radiation self-compression in the regime of anomalous group-velocity dispersion (GVD). The formation of each LB is accompanied by the generation of a discrete portion of supercontinuum (SC) in the anti-Stokes region. LB is a short-lived robust object with parameters determined by fundamental properties of the medium and the laser pulse central wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Qianguang; Department of Physics, Xiaogan University, Xiaogan 432000; Hong Weiyi
2010-05-15
The high harmonic generation from asymmetric molecules with an {omega}+2{omega}/3 multicycle bichromatic laser pulse has been investigated. It is shown that the ionization asymmetry in consecutive half optical cycles for asymmetric molecules is further enhanced since the 2{omega}/3 control laser pulse further enhances the amplitude of the ionization peak at the center of the laser pulse. The 2{omega}/3 control laser pulse also significantly enlarges the difference of the photon energies emitted from the ejected electron in the half optical cycle at the central laser pulse and its next half optical cycle. In addition, a broadband supercontinuum is produced in themore » plateau of the spectrum, from which an isolated 90-as pulse can be directly obtained.« less
Multi-wavelength differential absorption measurements of chemical species
NASA Astrophysics Data System (ADS)
Brown, David M.
The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.
NASA Astrophysics Data System (ADS)
Chun-Lin, Louis Chang
Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct-current-modulated Fabry-Perot diode laser associated with a weak and pulsed noise spanning from 1045 to 1063 nm. Even though the contribution of input noise pulse is only <5%, it becomes a significant transient spike during amplification. The blue-shifted pulsed noise may be caused by band filling effect for quantum-well seed laser driven by high peak current. The study helps the development of adaptive pulse shaping for scaling peak power or energy at high efficiency. On the other hand, the broadband spike with a 3-dB bandwidth of 8.8 nm can support pulses to seed the amplifier for sub-nanosecond giant pulse generation. Because of the very weak seed laser, the design of high-gain preamplifier becomes critical. The utilization of single-mode core-pumped fiber preamplifier can not only improve the mode contrast without fiber coiling effect but also significantly suppress the fiber nonlinearity. The double-pass scheme was therefore studied both numerically and experimentally to improve energy extraction efficiency for the lack of attainable seed and core-pumped power. As a result, a record-high peak power of > 30 kW and energy of > 0.23 mJ was successfully achieved to the best of our knowledge from the output of clad-pumped power amplifier with a beam quality of M2 ˜1.1 in a diode-seeded 15-microm-core fiber MOPA system. After the power amplifier, the MOPA conversion efficiency can be dramatically improved to >56% for an energy gain of >63 dB at a moderate repetition rate of 20 kHz with a beam quality of M 2 <1.5. The output energy of >1.1 mJ with a pulse duration of ˜6.1 ns can result in a peak power up to >116 kW which is limited by fiber fuse in long-term operation. Such a condition able to generate the on-target laser intensity of > 60 GW/cm2 for applications is qualified to preliminarily create a laser-plasma light source. Moreover, the related simulation results also reveal the double-passed power amplifier can further simplify MOPA. Such an intense clad-pumped power amplifier can further become a nonlinear fiber amplifier in all-normal dispersion instead of a nonlinear passive fiber. The combination of laser amplification and nonlinear conversion together can therefore overcome the significant pump depletion during the propagation along the passive fiber for power scaling. As a result, an intense spectrum spanning from 980 to 1600 nm as a high-power nanosecond supercontinuum source can be successfully generated with a conversion efficiency of >65% and a record-high peak power of >116 kW to the best of our knowledge. Because of MOPA structure, the influence of input parameters of nonlinear fiber amplifier on supercontinuum parameters can also be studied. The onset and interplay of fiber nonlinearities can be revealed stage by stage. Such an unique and linearly-polarized light source composed of an intense pump and broad sideband seed is beneficial for efficiently driving the broadband tunable optical parametric amplification free from the bulkiness and timing jitter. Keywords: High power fiber laser and amplifier, ytterbium fiber, master oscillator power amplification, parasitic stimulated amplification, multi-pass fiber amplification, peak power/pulse energy scaling, fiber nonlinear optics, supercontinuum generation.
NASA Astrophysics Data System (ADS)
Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.
2016-03-01
Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.
Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.
2012-01-01
Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li
2015-07-31
Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensitymore » variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)« less
Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang
2007-08-01
The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.
NASA Astrophysics Data System (ADS)
Lobanov, S.; Goncharov, A. F.; Holtgrewe, N.; Konopkova, Z.; McWilliams, R. S.
2017-12-01
Thermal conductivity of deep planetary materials determines the planetary heat transport mode and properties (e.g. magnetic field) and can be used to decipher the planetary thermal history. Due to the lack of direct measurements of the lattice and radiative conductivity of the relevant materials at the planetary conditions, the current geodynamical models use theoretical calculations and extrapolations of the available experimental data. Here we describe our pulsed laser techniques that enable direct measurements of the lattice and radiative lattice conductivity of the Earth's mantle and core materials and also of noble gases and simple molecules present in the interiors of giant planets (e.g. hydrogen). Flash heating laser techniques working in a pump-probe mode that include time resolved two-side radiative and thermoreflection temperature probes employ various laser and photo-detector configurations, which provide a measure of the thermal fluxes propagating through the samples confined in the diamond anvil cell cavity. A supercontinuum ultra-bright broadband laser source empower accurate measurements of the optical properties of planetary materials used to extract the radiative conductivity. Finite element calculations serve to extract the temperature and pressure dependent thermal conductivity and temperature gradients across the sample. We report thermal conductivity measurements of the Earth's minerals (postperovskite, bridgmanite, ferropericlase) and their assemblies (pyrolite) and core materials (Fe and alloys with Si and O) at the realistic deep Earth's pressure temperature conditions. We thank J.-F.Lin, M. Murakami, J. Badro for contributing to this work.
A widely tunable dual-wavelength based on a microring resonator filter device
NASA Astrophysics Data System (ADS)
Amiri, Iraj S.; Ariannejad, M. M.; Tiu, Z. C.; Ooi, S. I.; Aidit, S. N.; Alizadeh, F.; Yupapin, P.
2018-06-01
We demonstrate a stable, tunable dual-wavelength (DW) generated by launching an in-house built supercontinuum (SC) into an add-drop microring resonator (MRR). The MRR is fabricated from a silicon–nitrogen–oxygen substrate. The frequency comb of the filtered SC is obtained with an experimental free spectral range (FSR) from 0.39 to 0.46 nm corresponding to 48.7–57 GHz within the wavelength range 1520–1660 nm. The stability of a generated DW within the ranges 1561.16 and 1561.57 nm over 120 min is examined, where high, stable DW with a very low power fluctuation is achieved. This work has demonstrated the use of waveguide based MRR in the fiber laser system, and a remarkable flat and low power fluctuations frequency comb is achieved using the in-house built SC source and MRR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
Liu, Weimin; Zhu, Liangdong; Fang, Chong
2012-09-15
We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.
Supercontinuum generation in an imaging fiber taper
NASA Astrophysics Data System (ADS)
Shi, Kebin; Omenetto, Fiorenzo G.; Liu, Zhiwen
2006-12-01
We report on supercontinuum generation in individual fibers of a commercial Schott imaging fiber taper. Supercontinuum spectrum covering a wavelength range from about 500 nm to 1 μm was obtained. Unlike conventional approaches which use either a single micro-structured photonic crystal fiber (PCF) or an individual fiber or PCF taper, the availability of many fibers in an imaging taper can open new possibilities to independently and controllably generate supercontinuum arrays.
Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide.
Granzow, N; Schmidt, M A; Chang, W; Wang, L; Coulombier, Q; Troles, J; Toupin, P; Hartl, I; Lee, K F; Fermann, M E; Wondraczek, L; Russell, P St J
2013-05-06
Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide "nano-spike", designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 µm, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 µm for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Xin, Xiang-Jun; Shen, Xiang-Wei; Zhang, Jin-Long; Zhou, Gui-Yao; Li, Shu-Guang; Hou, Lan-Tian
2011-05-01
By coupling a train of femtosecond pulses with 100 fs pulse width at a repetition rate of 76 MHz generated by a mode-locked Ti: sapphire laser into the fundamental mode of photonic crystal fibre (PCF) with central holes fabricated through extracting air from the central hole, the broad and ultra-flattened supercontinuum (SC) in the visible wavelengths is generated. When the fundamental mode experiences an anomalous dispersion regime, three phases in the SC generation process are primarily presented. The SC generation (SCG) in the wavelength range from 470 nm to 805 nm does not emerge significant ripples due to a higher pump peak power and the corresponding mode fields at different wavelengths are observed using Bragg gratings. The relative intensity fluctuations of output spectrum in the wavelength ranges of 530 nm to 640 nm and 543 nm to 590 nm are only 0.028 and 0.0071, respectively.
Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng
2017-09-01
We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.
Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott
2018-03-01
Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.
High efficiency IR supercontinuum generation and applications: a recent review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Cheng, Jiping; Luo, Claire
2012-10-01
In this paper, we have reviewed our recent works on IR supercontinuum generation (SCG) and its applications. First, we provide a brief review on the physical mechanism of the supercontinuum generation and our previous works in this field. Second, a thinner IR crystal fiber is fabricated. The supercontinuum generation in this thinner fiber is also demonstrated, which shows the enhanced performance. The suggestion for the future effort is also included.
NASA Astrophysics Data System (ADS)
Schneider, Thomas
2015-03-01
High-quality frequency comb sources like femtosecond-lasers have revolutionized the metrology of fundamental physical constants. The generated comb consists of frequency lines with an equidistant separation over a bandwidth of several THz. This bandwidth can be broadened further to a super-continuum of more than an octave through propagation in nonlinear media. The frequency separation between the lines is defined by the repetition rate and the width of each comb line can be below 1 Hz, even without external stabilization. By extracting just one of these lines, an ultra-narrow linewidth, tunable laser line for applications in communications and spectroscopy can be generated. If two lines are extracted, the superposition of these lines in an appropriate photo-mixer produces high-quality millimeter- and THz-waves. The extraction of several lines can be used for the creation of almost-ideally sinc-shaped Nyquist pulses, which enable optical communications with the maximum-possible baud rate. Especially combs generated by low-cost, small-footprint fs-fiber lasers are very promising. However due to the resonator length, the comb frequencies have a typical separation of 80 - 100 MHz, far too narrow for the selection of single tones with standard optical filters. Here the extraction of single lines of an fs-fiber laser by polarization pulling assisted stimulated Brillouin scattering is presented. The application of these extracted lines as ultra-narrow, stable and tunable laser lines, for the generation of very high-quality mm and THz-waves with an ultra-narrow linewidth and phase noise and for the generation of sinc-shaped Nyquist pulses with arbitrary bandwidth and repetition rate is discussed.
Plasmon-shaped polarization gating for high-order-harmonic generation
NASA Astrophysics Data System (ADS)
Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang
2017-12-01
We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.
Supercontinuum Emission from Water using 40 fs Pulses in the External Tight Focusing Limit
NASA Astrophysics Data System (ADS)
Sreeja, S.; Rao, S. Venugopal; Bagchi, Suman; Sreedhar, S.; Prashant, T. Shuvan; Radhakrishnan, P.; Tewari, Surya P.; Kiran, P. Prem
2011-10-01
We present our results from the measurements of Supereonlinuum emission (SCE) resulting from the propagation ol" tightly foe used 40 femtosecond laser pulses through distilled water. The e fleet of linearly polarized (LP) and circularly polarized (CP) light pulses on the SCE: in different external focal geometries (f/6 & f/12) is studied in detail. A considerable shift in the minimum wavelength of SCF under tighter focusing limit is observed.
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Zhixu; Zheng, Kezhi; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012
We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under themore » pumping of the 1560 nm femtosecond fiber laser.« less
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Romano, Vito; Madden, Peter W.; Mason, Sharon; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2018-03-01
Ultra high axial resolution (UHR) was demonstrated early in the development of optical coherence tomography (OCT), but has not yet reached clinical practice. We present the combination of supercontinuum light source and line field (LF-) OCT as a technical and economical route to get UHR-OCT into clinic and other OCT application areas. We directly compare images of a human donor cornea taken with low and high resolution current generation clinical OCT systems with UHR-LF-OCT. These images highlight the massive information increase of UHR-OCT. Application to pharmaceutical pellets, and the functionality and imaging performance of different imaging spectrograph choices for LF- OCT are also demonstrated.
Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields
NASA Astrophysics Data System (ADS)
Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya
2018-03-01
Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.
Supercontinuum generation and analysis in extruded suspended-core As2S3 chalcogenide fibers
NASA Astrophysics Data System (ADS)
Si, Nian; Sun, Lihong; Zhao, Zheming; Wang, Xunsi; Zhu, Qingde; Zhang, Peiqing; Liu, Shuo; Pan, Zhanghao; Liu, Zijun; Dai, Shixun; Nie, Qiuhua
2018-02-01
Compared with the traditional fluoride fibers and tellurite fibers that can work in the near-infrared region, suspended-core fibers based on chalcogenide glasses have wider transmitting regions and higher nonlinear coefficients, thus the mid-infrared supercontinuum generations can be achieved easily. Rather than adopting the traditional fabrication technique of hole-drilling and air filling, we adopted a totally novel extrusion technique to fabricate As2S3 suspended-core fibers with four holes, and its mid-infrared supercontinuum generation was investigated systematically by integrating theoretical simulation and empirical results. The generalized nonlinear SchrÖdinger equation was used to simulate the supercontinuum generation in the As2S3 suspended-core fibers. The simulated supercontinuum generation in the As2S3 suspended-core fibers with different pump wavelengths (2-5 µm), increasing powers (0.3-4 kW), and various fiber lengths (1-50 cm) was obtained by a simulative software, MATLAB. The experimental results of supercontinuum generation via femtosecond optical parametric amplification (OPA) were recorded by changing fiber lengths (5-25 cm), pump wavelengths (2.9-5 µm), and pump powers (10-200 kW). The simulated consulting spectra are consistent with the experimental results of supercontinuum generation only if the fiber loss is sufficiently low.
Chen, He; Zhou, Xuanfeng; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing
2015-12-28
We demonstrate Watt-level flat visible supercontinuum (SC) generation in photonic crystal fibers, which is directly pumped by broadband noise-like pulses from an Yb-doped all-fiber oscillator. The novel SC generator is featured with elegant all-fiber-integrated architecture, high spectral flatness and high efficiency. Wide optical spectrum spanning from 500 nm to 2300 nm with 1.02 W optical power is obtained under the pump of 1.4 W noise-like pulse. The flatness of the spectrum in the range of 700 nm~1600 nm is less than 5 dB (including the pump residue). The exceptional simplicity, economical efficiency and the comparable performances make the noise-like pulse oscillator a competitive candidate to the widely used cascade amplified coherent pulse as the pump source of broadband SC. To the best of our knowledge, this is the first demonstration of SC generation which is directly pumped by an all-fiber noise-like pulse oscillator.
NASA Astrophysics Data System (ADS)
Hui, Zhanqiang; Zhang, Lingxuan; Zhang, Wenfu
2018-01-01
A silicon nitride (Si3N4)-based reverse strip/slot hybrid waveguide with single vertical silica slot is proposed to acquire extremely low and flat chromatic dispersion profile. This is achieved by design and optimization of the geometrical structural parameters of the reverse hybrid waveguide. The flat dispersion varying between ±10 ps/(nm.km) is obtained over 610 nm bandwidth. Both the effective area and nonlinear coefficient of the waveguide across the entire spectral range of interest are investigated. This led to design of an on-chip supercontinuum (SC) source with -30 dB bandwidth of 2996 nm covering from 1.209 to 4.205 μm. Furthermore, we discuss the output signal spectral and temporal characteristic as a function of the pump power. Our waveguide design offers a CMOS compatible, low-cost/high yield (no photolithography or lift-off processes are necessary) on-chip SC source for near- and mid-infrared nonlinear applications.
Controlled supercontinua via spatial beam shaping
NASA Astrophysics Data System (ADS)
Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.
2018-06-01
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.
As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation.
Xie, Shangran; Tani, Francesco; Travers, John C; Uebel, Patrick; Caillaud, Celine; Troles, Johann; Schmidt, Markus A; Russell, Philip St J
2014-09-01
A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be ∼2 dB at 1550 nm in the case of free-space in-coupling, which is ∼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 μm) is generated at 38 pJ input energy.
In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation
Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.
2013-01-01
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947
Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.
Vieweg, M; Gissibl, T; Pricking, S; Kuhlmey, B T; Wu, D C; Eggleton, B J; Giessen, H
2010-11-22
Selective filling of photonic crystal fibers with different media enables a plethora of possibilities in linear and nonlinear optics. Using two-photon direct-laser writing we demonstrate full flexibility of individual closing of holes and subsequent filling of photonic crystal fibers with highly nonlinear liquids. We experimentally demonstrate solitonic supercontinuum generation over 600 nm bandwidth using a compact femtosecond oscillator as pump source. Encapsulating our fibers at the ends we realize a compact ultrafast nonlinear optofluidic device. Our work is fundamentally important to the field of nonlinear optics as it provides a new platform for investigations of spatio-temporal nonlinear effects and underpins new applications in sensing and communications. Selective filling of different linear and nonlinear liquids, metals, gases, gain media, and liquid crystals into photonic crystal fibers will be the basis of new reconfigurable and versatile optical fiber devices with unprecedented performance. Control over both temporal and spatial dispersion as well as linear and nonlinear coupling will lead to the generation of spatial-temporal solitons, so-called optical bullets.
New Thomson scattering diagnostic on RFX-mod.
Alfier, A; Pasqualotto, R
2007-01-01
This article describes the completely renovated Thomson scattering (TS) diagnostic employed in the modified Reversed Field eXperiment (RFX-mod) since it restarted operation in 2005. The system measures plasma electron temperature and density profiles along an equatorial diameter, measuring in 84 positions with 7 mm spatial resolution. The custom built Nd:YLF laser produces a burst of 10 pulses at 50 Hz with energy of 3 J, providing ten profile measurements in a plasma discharge of about 300 ms duration. An optical delay system accommodates three scattering volumes in each of the 28 interference filter spectrometers. Avalanche photodiodes detect the Thomson scattering signals and allow them to be recorded by means of waveform digitizers. Electron temperature is obtained using an alternative relative calibration method, based on the use of a supercontinuum light source. Rotational Raman scattering in nitrogen has supplied the absolute calibration for the electron density measurements. During RFX-mod experimental campaigns in 2005, the TS diagnostic has demonstrated its performance, routinely providing reliable high resolution profiles.
Gallium nitride light sources for optical coherence tomography
NASA Astrophysics Data System (ADS)
Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.
2017-02-01
The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.
Nonlinear optical properties and supercontinuum spectrum of titania-modified carbon quantum dots
NASA Astrophysics Data System (ADS)
Kulchin, Yu N.; Mayor, A. Yu; Proschenko, D. Yu; Postnova, I. V.; Shchipunov, Yu A.
2016-04-01
We have studied the nonlinear optical properties and supercontinuum spectrum of solutions of carbon quantum dots prepared by a hydrothermal process from chitin and then coated with titania. The titania coating has been shown to have an activating effect on the carbon quantum dots, enhancing supercontinuum generation in the blue-violet spectral region and enabling their nonlinear optical characteristics to be varied.
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
NASA Astrophysics Data System (ADS)
Zheng, Wei
2014-11-01
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Mid-IR hyperspectral imaging for label-free histopathology and cytology
NASA Astrophysics Data System (ADS)
Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.
2018-02-01
Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.
A STED-FLIM microscope applied to imaging the natural killer cell immune synapse
NASA Astrophysics Data System (ADS)
Lenz, M. O.; Brown, A. C. N.; Auksorius, E.; Davis, D. M.; Dunsby, C.; Neil, M. A. A.; French, P. M. W.
2011-03-01
We present a stimulated emission depletion (STED) fluorescence lifetime imaging (FLIM) microscope, excited by a microstructured optical fibre supercontinuum source that is pumped by a femtosecond Ti:Sapphire-laser, which is also used for depletion. Implemented using a piezo-scanning stage on a laser scanning confocal fluorescence microscope system with FLIM realised using time correlated single photon counting (TCSPC), this provides convenient switching between confocal and STED-FLIM with spatial resolution down to below 60 nm. We will present our design considerations to make a robust instrument for biological applications including a comparison between fixed phase plate and spatial light modulator (SLM) approaches to shape the STED beam and the correlation of STED and confocal FLIM microscopy. Following our previous application of FLIM-FRET to study intercellular signalling at the immunological synapse (IS), we are employing STED microscopy to characterize the spatial distribution of cellular molecules with subdiffraction resolution at the IS. In particular, we are imaging cytoskeletal structure at the Natural Killer cell activated immune synapse. We will also present our progress towards multilabel STED microscopy to determine how relative spatial molecular organization, previously undetectable by conventional microscopy techniques, is important for NK cell cytotoxic function. Keywords: STED, Stimulated Emission Depletion Microscopy, Natural Killer (NK) cell, Fluorescence lifetime imaging, FLIM, Super resolution microscopy.
NASA Astrophysics Data System (ADS)
Xu, Xiao-Hu; Wang, Yan-Jun; Miao, Xiang-Yang
2018-05-01
We theoretically investigate the enhancement of high-order harmonic generation by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation from the hydrogen molecular ion in a dichromatic inhomogeneous laser field. An ultrabroad supercontinuum up to 300 orders spectral width is generated. It is found that not only the inhomogeneity, but also the dichromatic field contributes to the significant extension of the harmonic cutoff compared with a monochromatic inhomogeneous laser field. Meanwhile, the long quantum paths can be suppressed and short ones can be enhanced by selecting optimized inhomogeneous parameter β, intensity and carrier envelope phase of the dichromatic inhomogeneous laser field. Furthermore, by superposing a properly selected range of the harmonic spectrum in the continuum region, an isolated 29-as pulse is generated. Both the classical theory and quantum time-frequency analysis are adopted to explain the physical mechanism.
Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A
2006-05-29
We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.
Mid-infrared rogue wave generation in chalcogenide fibers
NASA Astrophysics Data System (ADS)
Liu, Lai; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake
2017-02-01
The supercontinuum generation and rogue wave generation in a step-index chalcogenide fiber are numerically investigated by solving the generalized nonlinear Schrödinger equation. Two noise models have been used to model the noise of the pump laser pulses to investigate the consistency of the noise modeling in rogue wave generation. First noise model is 0.1% amplitude noise which has been used in the report of rogue wave generation. Second noise model is the widely used one-photon-per-mode-noise and phase diffusion-noise. The results show that these two commonly used noise models have a good consistency in the simulations of rogue wave generation. The results also show that if the pump laser pulses carry more noise, the chance of a rogue wave with a high peak power becomes higher. This is harmful to the SC generation by using picosecond lasers in the chalcogenide fibers.
Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes.
Martinez, Amos; Yamashita, Shinji
2011-03-28
There is an increasing demand for all-fiber passively mode-locked lasers with pulse repetition rates in the order of gigahertz for their potential applications in fields such as telecommunications and metrology. However, conventional mode-locked fiber lasers typically operate at fundamental repetition rates of only a few megahertz. In this paper, we report all-fiber laser operation with fundamental repetition rates of 4.24 GHz, 9.63 GHz and 19.45 GHz. This is, to date and to the best of our knowledge, the highest fundamental repetition rate reported for an all-fiber laser. The laser operation is based on the passive modelocking of a miniature all-fiber Fabry-Pérot laser (FFPL) by a carbon nanotube (CNT) saturable absorber. The key components for such device are a very high-gain Er:Yb phosphosilicate fiber and a fiber compatible saturable absorber with very small foot print and very low losses. The laser output of the three lasers was close to transform-limited with a pulsewidth of approximately 1 ps and low noise. As a demonstration of potential future applications for this laser, we also demonstrated supercontinuum generation with a longitudinal mode-spacing of 0.08 nm by launching the laser operating at 9.63 GHz into 30 m of a highly nonlinear dispersion shifted fiber.
Multi-watt, multi-octave, mid-infrared femtosecond source
Hussain, Syed A.; Hartung, Alexander; Zawilski, Kevin T.; Schunemann, Peter G.; Habel, Florian; Pervak, Vladimir
2018-01-01
Spectroscopy in the wavelength range from 2 to 11 μm (900 to 5000 cm−1) implies a multitude of applications in fundamental physics, chemistry, as well as environmental and life sciences. The related vibrational transitions, which all infrared-active small molecules, the most common functional groups, as well as biomolecules like proteins, lipids, nucleic acids, and carbohydrates exhibit, reveal information about molecular structure and composition. However, light sources and detectors in the mid-infrared have been inferior to those in the visible or near-infrared, in terms of power, bandwidth, and sensitivity, severely limiting the performance of infrared experimental techniques. This article demonstrates the generation of femtosecond radiation with up to 5 W at 4.1 μm and 1.3 W at 8.5 μm, corresponding to an order-of-magnitude average power increase for ultrafast light sources operating at wavelengths longer than 5 μm. The presented concept is based on power-scalable near-infrared lasers emitting at a wavelength near 1 μm, which pump optical parametric amplifiers. In addition, both wavelength tunability and supercontinuum generation are reported, resulting in spectral coverage from 1.6 to 10.2 μm with power densities exceeding state-of-the-art synchrotron sources over the entire range. The flexible frequency conversion scheme is highly attractive for both up-conversion and frequency comb spectroscopy, as well as for a variety of time-domain applications. PMID:29713685
Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber.
Zhao, Saili; Yang, Hua; Zhao, Chujun; Xiao, Yuzhe
2017-04-03
Based on induced modulation instability, we present a numerical study on harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fibers. By selecting optimum modulation frequency, we achieve supercontinuum with a great improvement on spectrum stability when long-pulse is used as the pump. In this case, rogue wave can be obtained in the first segmented photonic crystal fiber with one zero dispersion wavelength in a controllable manner. Numerical simulations show that spectral range and flatness can be regulated in an extensive range by cascading a photonic crystal fiber with two zero dispersion wavelengths. Some novel phenomena are observed in the second segmented photonic crystal fiber. When the second zero dispersion wavelength is close to the first one, rogue wave is directly translated into dispersion waves, which is conducive to the generation of smoother supercontinuum. When the second zero dispersion wavelength is far away from the first one, rogue wave is translated into the form of fundamental soliton steadily propagating in the vicinity of the second zero dispersion wavelength. Meanwhile, the corresponding red-shifted dispersion wave is generated when the phase matching condition is met, which is beneficial to the generation of wider supercontinuum. The results presented in this work provide a better application of optical rogue wave to generate flat and broadband supercontinuum in cascaded photonic crystal fibers.
High efficiency IR supercontinuum generation and applications: a review
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Cheng, Jiping; Yao, Jimmy; Luo, Claire
2011-10-01
In this paper, we have reviewed our recent works on IR supercontinuum generation (SCG) and its applications. First, we provide a brief review on the physical mechanism of the supercontinuum generation and our previous works in this field. Second, the transmission characteristics of a new type of IR fibers is presented. Furthermore, the SCG generation in this new type of optical fiber is experimentally demonstrated. Finally, the suggestion for the future effort is discussed.
Impact of material absorption on supercontinuum generation in liquid core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Raja, Vasantha Jayakantha; Uthayakumar, T.; Porsezian, K.
2013-06-01
The impact of material absorption on supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) is presented. While PCFs with cores made from different glasses are well studied in previous works with saturable nonlinear response (SNL), in this paper, it is planned to investigate the dynamics of nonlinear processes of supercontinuum generation in high-index fiber with material absorption to understand the physical phenomena of pulse propagation.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction.
Milián, C; Marest, T; Kudlinski, A; Skryabin, D V
2017-05-01
We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.
NASA Astrophysics Data System (ADS)
Begum, Feroza; Namihira, Yoshinori; Kinjo, Tatsuya; Kaijage, Shubi
2011-02-01
This paper presents a simple index-guiding square photonic crystal fiber (SPCF) where the core is surrounded by air holes with two different diameters. The proposed design is simulated through an efficient full-vector modal solver based on the finite difference method with anisotropic perfectly matched layers absorbing boundary condition. The nearly zero ultra-flattened dispersion SPCF with low confinement loss, small effective area as well as broadband supercontinuum (SC) spectra is targeted. Numerical results show that the designed SPCF has been achieved at a nearly zero ultra-flattened dispersion of 0 ± 0.25 ps/(nm·km) in a wavelength range of 1.38 μm to 1.89 μm (510 nm band) which covers E, S, C, L and U communication bands, a low confinement loss of less than 10 -7 dB/m in a wavelength range of 1.3 μm to 2.0 μm and a wide SC spectrum (FWHM = 450 nm) by using picosecond pulses at a center wavelength of 1.55 μm. We then analyze the sensitivity of chromatic dispersion to small variations from the optimum value of specific structural parameters. The proposed index-guiding SPCF can be applicable in supercontinuum generation (SCG) covering such diverse fields as spectroscopy applications and telecommunication dense wavelength division multiplexing (DWDM) sources.
Whole life cycle of femtosecond ultraviolet filaments in water
NASA Astrophysics Data System (ADS)
Jarnac, Amélie; Tamosauskas, Gintaras; Majus, Donatas; Houard, Aurélien; Mysyrowicz, André; Couairon, Arnaud; Dubietis, Audrius
2014-03-01
We present measurements fully characterizing the whole life cycle of femtosecond pulses undergoing filamentation in water at 400 nm. The complete pulse dynamics is monitored by means of a four-dimensional mapping technique for the intensity distribution I (x,y,z,t) during the nonlinear interaction. Measured events (focusing or defocusing cycles, pulse splitting and replenishment, supercontinuum generation, conical emission, nonlinear absorption peaks) are mutually connected.The filament evolution from laser energy deposition in water, which is of paramount importance for a wide range of technological and medical applications, is interpreted in light of simulation results.
Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices.
Zhang, Qiming; Li, Ming; Hao, Qiang; Deng, Dinghuan; Zhou, Hui; Zeng, Heping; Zhan, Li; Wu, Xiang; Liu, Liying; Xu, Lei
2010-11-15
Chalcogenide (As(2)S(3)) nanofibers as narrow as 200 nm in diameter are drawn by the fiber pulling method, are successfully embedded in SU8 polymer, and form on-chip waveguides and high-Q microknot resonators (Q = 3.9 × 10(4)) with smooth cleaved end faces. Resonance tuning of resonators is realized by localized laser irradiation. Strong supercontinuum generation with a bandwidth of 500 nm is achieved in a 7-cm-long on-chip chalcogenide waveguide. Our result provides a method for the development of compact, high-optical-quality, and robust photonic devices.
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce
2015-06-01
Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.
Supercontinuum generation in silicon waveguides relying on wave-breaking.
Castelló-Lurbe, David; Silvestre, Enrique
2015-10-05
Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.
Ettabib, Mohamed A; Xu, Lin; Bogris, Adonis; Kapsalis, Alexandros; Belal, Mohammad; Lorent, Emerick; Labeye, Pierre; Nicoletti, Sergio; Hammani, Kamal; Syvridis, Dimitris; Shepherd, David P; Price, Jonathan H V; Richardson, David J; Petropoulos, Periklis
2015-09-01
We demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.45 to 2.79 μm (at the -30 dB point). The broadening is mainly driven by the generation of a dispersive wave in the 1.5-1.8 μm region and soliton fission. The SCG was modeled numerically, and excellent agreement with the experimental results was obtained.
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Porsezian, K.
2015-04-01
We investigate the modulational instability (MI) induced Supercontinuum generation (SCG) in exponential saturable nonlinearity. The pump power (P) is observed to behave in a unique way such that unlike the conventional Kerr case, the effective nonlinearity of saturable nonlinear system does not monotonously increases with an increase in power. The supercontinuum is observed at the shortest distance of propagation at power equal to the saturation power (Ps), whereas for all combinations of powers (P < Ps or P > Ps) spectral broadening occurs at longer distance.
A spatio-spectral polarization analysis of 1 µm-pumped bulk supercontinuum in a cubic crystal (YAG)
NASA Astrophysics Data System (ADS)
Choudhuri, Aradhana; Chatterjee, Gourab; Zheng, Jiaan; Hartl, Ingmar; Ruehl, Axel; Dwayne Miller, R. J.
2018-06-01
We present the first systematic study of the spatio-spectral polarization properties of a supercontinuum generated in a cubic crystal, yttrium-aluminum garnet (YAG), including a full spectral analysis of the white light core and surrounding ring structure. We observe no depolarization of the supercontinuum, and no spatial dependence of polarization ratios for any wavelength. We discuss the discrepancy of YAG's polarization behavior in the context of well-established results in literature reporting self-induced depolarization in other cubic crystals.
Temporal characterization of the wave-breaking flash in a laser plasma accelerator
NASA Astrophysics Data System (ADS)
Miao, Bo; Feder, Linus; Goers, Andrew; Hine, George; Salehi, Fatholah; Wahlstrand, Jared; Woodbury, Daniel; Milchberg, Howard
2017-10-01
Wave-breaking injection of electrons into a relativistic plasma wake generated in near-critical density plasma by sub-terawatt laser pulses generates an intense ( 1 μJ) and ultra-broadband (Δλ 300 nm) radiation flash. In this work we demonstrate the spectral coherence of this radiation and measure its temporal width using single-shot supercontinuum spectral interferometry (SSSI). The measured temporal width is limited by measurement resolution to 50 fs. Spectral coherence is corroborated by PIC simulations which show that the spatial extent of the acceleration trajectory at the trapping region is small compared to the radiation center wavelength. To our knowledge, this is the first temporal and coherence characterization of wave-breaking radiation. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulchin, Yu N; Vitrik, O B; Chekhlenok, A A
2013-12-31
We have studied the filamentation of femtosecond laser pulses (λ = 800 nm, ∼42 fs pulse duration) in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2- dioxaborine and the associated photomodification of the material. The results demonstrate that multiple filamentation occurs at pulse energies above 5 μJ. At a pulse energy of 1.5 mJ, it is accompanied by supercontinuum generation. The average filament length in PMMA is 9 mm and the filament diameter is ∼10 μm. An incident power density of ∼10{sup 12} W cm{sup -2} ensures inscription of the filament pattern owing to two-photon photochemical processes. Preliminary exposure to continuous light atmore » λ = 400 nm enables an ordered filament pattern to be written. (interaction of laser radiation with matter)« less
Broadband midinfrared frequency comb with tooth scanning
NASA Astrophysics Data System (ADS)
Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.
2015-03-01
Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.
Towards an analytical framework for tailoring supercontinuum generation.
Castelló-Lurbe, David; Vermeulen, Nathalie; Silvestre, Enrique
2016-11-14
A fully analytical toolbox for supercontinuum generation relying on scenarios without pulse splitting is presented. Furthermore, starting from the new insights provided by this formalism about the physical nature of direct and cascaded dispersive wave emission, a unified description of this radiation in both normal and anomalous dispersion regimes is derived. Previously unidentified physics of broadband spectra reported in earlier works is successfully explained on this basis. Finally, a foundry-compatible few-millimeters-long silicon waveguide allowing octave-spanning supercontinuum generation pumped at telecom wavelengths in the normal dispersion regime is designed, hence showcasing the potential of this new analytical approach.
Infrared laser spectroscopic trace gas sensing
NASA Astrophysics Data System (ADS)
Sigrist, Markus
2016-04-01
Chemical sensing and analyses of gas samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures. The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infared between 3 and 15 μm, whereas the near-infrared range covers the (10-100 times weaker) higher harmonics and combination bands. The availability of near-infrared and, particularly, of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices. Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme. In this tutorial talk I shall discuss the basic principles, present various experimental setups and illustrate the performance of selected systems for chemical sensing of selected key atmospheric species. Applications include an early example of continuous vehicle emission measurements with a mobile CO2-laser PAS system [1]. The fast analysis of C1-C4 alkanes at sub-ppm concentrations in gas mixtures is of great interest for the petrochemical industry and was recently achieved with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt vertical external cavity surface emitting laser (VECSEL) [2]. Another example concerns measurements on short-lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)
Isolated attosecond pulses in the water window
NASA Astrophysics Data System (ADS)
Chang, Zenghu
Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers have been the workhorse for the first generation attosecond light sources in the last decade. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. The center wavelength of Ti:Sapphire lasers is 800 nm. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum can be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by compressing pulses from Optical Parametric Amplifiers with gas-filled hollow-core fibers or by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The yield of harmonic generation depends strongly on the ellipticity of the driving fields, which is the foundation of polarization gating. When the width of the gate was set to less than one half of the laser cycle, a soft x-ray supercontinuum was generated. The intensity of the gated x-ray spectrum is sensitive to the carrier-envelope phase of the driving laser, which indicates that single isolated attosecond pulses were generated. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. This work has been supported by the DARPA PULSE program (W31P4Q1310017); the Army Research Office (W911NF-14-1-0383, W911NF-15-1- 0336); the Air Force Office of Scientific Research (FA9550-15-1-0037, FA9550-16-1-0149), and NSF 1506345.
Study of Nonlinear Propagation of Ultrashort Laser Pulses and Its Application to Harmonic Generation
NASA Astrophysics Data System (ADS)
Weerawarne, Darshana L.
Laser filamentation, which is one of the exotic nonlinear optical phenomena, is self-guidance of high-power laser beams due to the dynamic balance between the optical Kerr effect (self-focusing) and other nonlinear effects such as plasma defocusing. It has many applications including supercontinuum generation (SCG), high-order harmonic generation (HHG), lightning guiding, stand-off sensing, and rain making. The main focus of this work is on studying odd-order harmonic generation (HG) (i.e., 3o, 5o, 7o, etc., where o is the angular frequency) in centrosymmetric media while a high-power, ultrashort harmonic-driving pulse undergoes nonlinear propagation such as laser filamentation. The investigation of highly-controversial nonlinear indices of refraction by measuring low-order HG in air is carried out. Furthermore, time-resolved (i.e., pump-probe) experiments and significant harmonic enhancements are presented and a novel HG mechanism based on higher-order nonlinearities is proposed to explain the experimental results. C/C++ numerical simulations are used to solve the nonlinear Schrodinger equation (NLSE) which supports the experimental findings. Another project which I have performed is selective sintering using lasers. Short-pulse lasers provide a fascinating tool for material processing, especially when the conventional oven-based techniques fail to process flexible materials for smart energy/electronics applications. I present experimental and theoretical studies on laser processing of nanoparticle-coated flexible materials, aiming to fabricate flexible electronic devices.
Dinh, Quang Ho; Pniewski, Jacek; Van, Hieu Le; Ramaniuk, Aleksandr; Long, Van Cao; Borzycki, Krzysztof; Xuan, Khoa Dinh; Klimczak, Mariusz; Buczyński, Ryszard
2018-05-10
A photonic crystal fiber (PCF) made of fused silica glass, infiltrated with carbon tetrachloride (CCl 4 ), is proposed as a new source of supercontinuum (SC) light. Guiding properties in terms of effective refractive index, attenuation, and dispersion of the fundamental mode are studied numerically. As a result, two optimized structures are selected and verified against SC generation in detail. The dispersion characteristic of the first structure has the zero-dispersion wavelength at 1.252 μm, while the dispersion characteristic of the second structure is all-normal and equals -4.37 ps·nm -1 ·km -1 at 1.55 μm. SC generation was demonstrated for the wavelengths 1.064 μm, 1.35 μm, and 1.55 μm. We prove the possibility of coherent, octave-spanning SC generation with 300 fs pulses with only 0.8 nJ of energy in-coupled into the core with each of the studied structures. Proposed fibers are fully compatible with all-silica fiber systems and PCFs with wide mode area, and can also be used for all-fiber SC sources. The proposed solution may lead to new low-cost all-fiber optical systems.
Bi-Tapered Fiber Sensor Using a Supercontinuum Light Source for a Broad Spectral Range
NASA Astrophysics Data System (ADS)
Garcia Mina, Diego Felipe
We describe the fabrication bi-tapered optical fiber sensors designed for shorter wavelength operation and we study their optical properties. The new sensing system designed and built for the project is a specialty optical fiber that is single-mode in the visible/near infrared wavelength region of interest. In fabricating the tapered fiber we control the taper parameters, such as the down-taper and up-taper rate, shape and length, and the fiber waist diameter and length. The sensing is mode is via the electromagnetic field, which is evanescent outside the optical fiber and is confined close to the fiber's surface (within a couple hundred nanometers). The fiber sensor system has multiple advantages as a compact, simple device with an ability to detected tiny changes in the refractive index. We developed a supercontinuum light source to provide a wide spectral wavelength range from visible to near IR. The source design was based on coupling light from a femtosecond laser in a photonic crystal fiber designed for high nonlinearity. The output light was efficiently coupled into the bi-tapered fiber sensor and good signal to noise was achieved across the wavelength region. The bi-tapered fiber starts and ends with a single mode fiber in the waist region there are many modes with different propagation constants that couple to the environment outside the fiber. The signals have a strong periodic component as the wavelength is scanned; we exploit the periodicity in the signal using a discrete Fourier transform analysis to correlate signal phase changes with the refractive index changes in the local environment. For small index changes we also measure a strong correlation with the dominant Fourier amplitude component. Our experiments show that our phase-based signal processing technique works well at shorter wavelengths and we extract a new feature, the Fourier amplitude, to measure the refractive index difference. We conducted experiments using aqueous medium with controlled refractive index, such as water-glycerol mixtures. We find sensitivity to changes in the refractive index close to 0.00002 in so-called Refractive Index Units (RIUs). That is smaller than reported in recent literature, but by no means a limiting value. The technique is not limited to aqueous solutions surrounding the fiber, but it can also be adapted to study volatile organic compounds. Future improvements in the fiber sensing system are discussed, including adding thin films to the surface for label-free detection and to draw the electromagnetic field to the fiber's surface.
NASA Astrophysics Data System (ADS)
Taudt, Ch.; Baselt, T.; Nelsen, B.; Assmann, H.; Greiner, A.; Koch, E.; Hartmann, P.
2017-06-01
Within this work an alternative approach to precision surface profilometry based on a low-coherence interferometer is presented. Special emphasis is placed on the characterization of edge effects, which influence the measurement result on sharp edges and steep slopes. In contrast to other works, this examination focuses on the comparison of very broadband light sources such as a supercontinuum white-light source (SC; 380 - 1100 nm) and a laser-driven plasma light source (LDP; 200 - 1100 nm) and their influence on the formation of these effects. The interferometer is equipped with one of these broadband light sources and a defined dispersion over a given spectral range. The spectral width of the light sources in combination with the dispersive element defines the possible measurement range and resolution. Instead of detecting the signals only in a one-dimensional manner, an imaging spectrometer on the basis of a high resolution CMOS-camera is set-up. Through the introduction of a defined dispersion, a controlled phase variation in the spectral domain is created. This phase variation is dependent on the optical path difference between both arms and can therefore be used as a measure for the height of a structure which is present in one arm. The results of measurements on a 100 nm height standard with both selected light sources have been compared. Under consideration of the coherence length of both light sources of 1.58 μm for the SC source and 1.81 m for the LDP source differences could be recorded. Especially at sharp edges, the LDP light source could record height changes with slopes twice as steep as the SC source. Furthermore, it became obvious, that measurements with the SC source tend to show edge effects like batwings due to diffraction. Additional effects on the measured roughness and the flatness of the profile were investigated and discussed.
Hakobyan, Sargis; Wittwer, Valentin J; Brochard, Pierre; Gürel, Kutan; Schilt, Stéphane; Mayer, Aline S; Keller, Ursula; Südmeyer, Thomas
2017-08-21
We demonstrate the first self-referenced full stabilization of a diode-pumped solid-state laser (DPSSL) frequency comb with a GHz repetition rate. The Yb:CALGO DPSSL delivers an average output power of up to 2.1 W with a typical pulse duration of 96 fs and a center wavelength of 1055 nm. A carrier-envelope offset (CEO) beat with a signal-to-noise ratio of 40 dB (in 10-kHz resolution bandwidth) is detected after supercontinuum generation and f-to-2f interferometry directly from the output of the oscillator, without any external amplification or pulse compression. The repetition rate is stabilized to a reference synthesizer with a residual integrated timing jitter of 249 fs [10 Hz - 1 MHz] and a relative frequency stability of 10 -12 /s. The CEO frequency is phase-locked to an external reference via pump current feedback using home-built modulation electronics. It achieves a loop bandwidth of ~150 kHz, which results in a tight CEO lock with a residual integrated phase noise of 680 mrad [1 Hz - 1 MHz]. We present a detailed characterization of the GHz frequency comb that combines a noise analysis of the repetition rate f rep , of the CEO frequency f CEO , and of an optical comb line at 1030 nm obtained from a virtual beat with a narrow-linewidth laser at 1557 nm using a transfer oscillator. An optical comb linewidth of about 800 kHz is assessed at 1-s observation time, for which the dominant noise sources of f rep and f CEO are identified.
Gürel, Kutan; Wittwer, Valentin J; Hakobyan, Sargis; Schilt, Stéphane; Südmeyer, Thomas
2017-03-15
We demonstrate the first diode-pumped Ti:sapphire laser frequency comb. It is pumped by two green laser diodes with a total pump power of 3 W. The Ti:sapphire laser generates 250 mW of average output power in 61-fs pulses at a repetition rate of 216 MHz. We generated an octave-spanning supercontinuum spectrum in a photonic-crystal fiber and detected the carrier envelope offset (CEO) frequency in a standard f-to-2f interferometer setup. We stabilized the CEO-frequency through direct current modulation of one of the green pump diodes with a feedback bandwidth of 55 kHz limited by the pump diode driver used in this experiment. We achieved a reduction of the CEO phase noise power spectral density by 140 dB at 1 Hz offset frequency. An advantage of diode pumping is the ability for high-bandwidth modulation of the pump power via direct current modulation. After this experiment, we studied the modulation capabilities and noise properties of green pump laser diodes with improved driver electronics. The current-to-output-power modulation transfer function shows a bandwidth larger than 1 MHz, which should be sufficient to fully exploit the modulation bandwidth of the Ti:sapphire gain for CEO stabilization in future experiments.
Femtosecond deep-infrared optical parametric oscillator pumped directly by a Ti:sapphire laser
NASA Astrophysics Data System (ADS)
O'Donnell, Callum; Chaitanya Kumar, S.; Zawilski, Kevin T.; Schunemann, Peter G.; Ebrahim-Zadeh, Majid
2018-02-01
We report a high-repetition-rate femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the nonlinear optical crystal, CdSiP2 (CSP), pumped directly by a Ti:sapphire laser, for the first time. By pumping CSP at <1 μm, we have achieved practical output powers at the longest wavelengths generated by any Ti:sapphire-pumped OPO. Using a combination of pump wavelength tuning, type-I critical phase-matching, and cavity delay tuning, we have generated continuously tunable radiation across 6654-8373 nm (1194-1503 cm-1) at 80.5 MHz repetition rate, providing up to 20 mW of average power at 7314 nm and <7 mW beyond 8000 nm, with idler spectra exhibiting bandwidths of 140-180 nm across the tuning range. Moreover, the near-IR signal is tunable across 1127-1192 nm, providing up to 37 mW of average power at 1150 nm. Signal pulses, characterised using intensity autocorrelation, have durations of 260-320 fs, with corresponding time-bandwidth product of ΔυΔτ 1. The idler and signal output exhibit a TEM00 spatial profile with single-peak Gaussian distribution. With an equivalent spectral brightness of 6.68×1020 photons s-1 mm-2 sr-1 0.1% BW-1, this OPO represents a viable table-top alternative to synchrotron and supercontinuum sources for deep-IR applications in spectroscopy, metrology and medical diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, F.; Batebi, S., E-mail: s-batebi@guilan.ac.ir; Soofi, M. Q.
2017-03-15
Our work is based on high harmonic generation in a gaseous medium (helium ion), by exploiting gold bowtie nanostructures as laser field amplifiers. As the result of emission of a laser pulse, the wave function of the atom varies with time; so, it is necessary to solve 1D time-dependent Schrödinger equation by means of split operator method. By illumination of a short duration, long wavelength three color laser pulse inside the gap, the enhanced field not only changes with time, but also varies in space. In this work we considered this space inhomogeneity in linear and nonlinear schemes. We showmore » that in nonlinear case, the plateau region is more extended. We also show that in larger gaps, cutoff occurs on higher frequencies. But limitation of electron motion in bowtie nanostructures leads to the choice of an optimum 16 nm gap size in our case. We predict that, by the superposition of supercontinuum harmonics, a 26 attosecond pulse can be generated.« less
Mid-infrared supercontinuum generation in multimode step index chalcogenide fiber
NASA Astrophysics Data System (ADS)
Ben Khalifa, Ameni; Ben Salem, Amine; Cherif, Rim; Zghal, Mourad
2016-09-01
In this paper, we propose a design of a high numerical aperture multimode hybrid step-index fiber for mid-infrared (mid- IR) supercontinuum generation (SCG) where two chalcogenide glass compositions As40Se60 and Ge10As23.4Se66.6 for the core and the cladding are selected, respectively. Aiming to get accurate modeling of the SCG by the fundamental mode, we solve the multimode generalized nonlinear Schrödinger equations and demonstrate nonlinear coupling and energy transfer between high order modes. The proposed study points out the impact of nonlinear mode coupling that should be taken into account in order to successfully predict the mid-infrared supercontinuum generation in highly nonlinear multimode fibers.
Toward unstained cytology and complete blood counts at the point of care (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zuluaga, Andres F.; Pierce, Mark C.; MacAulay, Calum E.
2017-02-01
Cytology tests, whether performed on body fluids, aspirates, or scrapings are commonly used to detect, diagnose, and monitor a wide variety of health conditions. Complete blood counts (CBCs) quantify the number of red and white blood cells in a blood volume, as well as the different types of white blood cells. There is a critical unmet need for an instrument that can perform CBCs at the point of care (POC), and there is currently no product in the US that can perform this test at the bedside. We have developed a system that is capable of tomographic images with sub-cellular resolution with consumer-grade broadband (LED) sources and CMOS detectors suitable for POC implementation of CBC tests. The systems consists of cascaded static Michelson and Sagnac interferometers that map phase (encoding depth) and a transverse spatial dimension onto a two-dimensional output plane. Our approach requires a 5 microliter sample, can be performed in 5 minutes or less, and does not require staining or other processing as it relies on intrinsic contrast. We will show results directly imaging and differentiating unstained blood cells using supercontinuum fiber lasers and LEDs as sources and CMOS cameras as sensors. We will also lay out the follow up steps needed, including image segmentation, analysis and classification, to verify performance and advance toward CBCs that can be performed bedside and do not require CLIA-certified laboratories.
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
NASA Astrophysics Data System (ADS)
Bozhenkov, S. A.; Beurskens, M.; Dal Molin, A.; Fuchert, G.; Pasch, E.; Stoneking, M. R.; Hirsch, M.; Höfel, U.; Knauer, J.; Svensson, J.; Trimino Mora, H.; Wolf, R. C.
2017-10-01
The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.
New fiber laser for lidar developments in disaster management
NASA Astrophysics Data System (ADS)
Besson, C.; Augere, B.; Canat, G.; Cezard, N.; Dolfi-Bouteyre, A.; Fleury, D.; Goular, D.; Lombard, L.; Planchat, C.; Renard, W.; Valla, M.
2014-10-01
Recent progress in fiber technology has enabled new laser designs along with all fiber lidar architectures. Their asset is to avoid free-space optics, sparing lengthy alignment procedures and yielding compact setups that are well adapted for field operations and on board applications thanks to their intrinsic vibration-resistant architectures. We present results in remote sensing for disaster management recently achieved with fiber laser systems. Field trials of a 3-paths lidar vibrometer for the remote study of modal parameters of buildings has shown that application-related constraints were fulfilled and that the obtained results are consistent with simultaneous in situ seismic sensors measurements. Remote multi-gas detection can be obtained using broadband infrared spectroscopy. Results obtained on methane concentration measurement using an infrared supercontinuum fiber laser and analysis in the 3-4 μm band are reported. For gas flux retrieval, air velocity measurement is also required. Long range scanning all-fiber wind lidars are now available thanks to innovative laser architectures. High peak power highly coherent pulses can be extracted from Er3+:Yb3+ and Tm3+ active fibers using methods described in the paper. The additional laser power provides increased coherent lidar capability in range and scanning of large areas but also better system resistance to adverse weather conditions. Wind sensing at ranges beyond 10 km have been achieved and on-going tests of a scanning system dedicated to airport safety is reported.
NASA Astrophysics Data System (ADS)
Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.
2018-02-01
Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.
Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus
2006-11-15
For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.
Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm
NASA Astrophysics Data System (ADS)
Jin, Lei; Yamanaka, Masahito; Sonnenschein, Volker; Tomita, Hideki; Iguchi, Tetsuo; Sato, Atsushi; Oh-hara, Toshinari; Nishizawa, Norihiko
2017-01-01
We report a tunable mid-infrared frequency comb working at 184 MHz, which is based on difference frequency generation in a periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT) crystal pumped by high-power supercontinuum pulses. Supercontinuum pulses from two fibers with different dispersion properties were examined. With a photonic crystal fiber (PCF) having normal dispersion properties, a tunable wavelength range of 2.9-4.7 µm was achieved. With another PCF having zero dispersion at 1040 nm, a maximum power of 1.34 mW was observed at 3.9 µm. The high coherence of the pulses generated with this scheme was verified experimentally, and a fringe visibility of 0.90 was observed.
NASA Astrophysics Data System (ADS)
Barrick, Jessica; Doblas, Ana; Sears, Patrick R.; Ostrowski, Lawrence E.; Oldenburg, Amy L.
2017-02-01
While traditional, flying-spot, spectral domain OCT systems can achieve MHz linerates, they are limited by the need for mechanical scanning to produce a B-mode image. Line-field OCT (LF OCT) removes the need for mechanical scanning by simultaneously recording all A-lines on a 2D CMOS sensor. Our LF OCT system operates at the highest A-line rate of any spectral domain (SD) LF OCT system reported to date (1,024,000 A-lines/s). This is comparable with the fastest flying-spot SDOCT system reported. Additionally, all OCT systems face a tradeoff between imaging speed and sensitivity. Long exposure times improve sensitivity but can lead to undesirable motion artifacts. LF OCT has the potential to relax this tradeoff between sensitivity and imaging speed because all A-lines are exposed during the entire frame acquisition time. However, this advantage has not yet been realized due to the loss of power-per-A-line by spreading the illumination light across all A-lines on the sample. Here we use a supercontinuum source to illuminate the sample with 500mW of light in the 605-950 nm wavelength band, effectively providing 480 µW of power-per-A-line, with axial and lateral resolutions of 1.8 µm and 14 µm, respectively. With this system we achieve the highest reported sensitivity (113 dB) of any LF OCT system. We then demonstrate the capability of this system by capturing the rapidly beating cilia of human bronchial-epithelial cells in vitro. The combination of high speed and high sensitivity offered by supercontinuum-based LF SD OCT offers new opportunities for studying cell and tissue dynamics.
Mouawad, O; Amrani, F; Kibler, B; Picot-Clémente, J; Strutynski, C; Fatome, J; Désévédavy, F; Gadret, G; Jules, J-C; Heintz, O; Lesniewska, E; Smektala, F
2014-10-06
We analyze optical and structural aging in As₂S₃ microstructured optical fibers (MOFs) that may have an impact on mid-infrared supercontinuum generation. A strong alteration of optical transparency at the fundamental OH absorption peak is measured for high-purity As₂S₃ MOF stored in atmospheric conditions. The surface evolution and inherent deviation of corresponding chemical composition confirm that the optical and chemical properties of MOFs degrade upon exposure to ambient conditions because of counteractive surface process. This phenomenon substantially reduces the optical quality of the MOFs and therefore restrains the spectral expansion of generated supercontinuum. This aging process is well confirmed by the good matching between previous experimental results and the reported numerical simulations based on the generalized nonlinear Schrödinger equation.
Frequency-agile dual-comb spectroscopy
NASA Astrophysics Data System (ADS)
Millot, Guy; Pitois, Stéphane; Yan, Ming; Hovhannisyan, Tatevik; Bendahmane, Abdelkrim; Hänsch, Theodor W.; Picqué, Nathalie
2016-01-01
Spectroscopic gas sensing and its applications to, for example, trace detection or chemical kinetics, require ever more demanding measurement times, acquisition rates, sensitivities, precisions and broad tuning ranges. Here, we propose a new approach to near-infrared molecular spectroscopy, utilizing advanced concepts of optical telecommunications and supercontinuum photonics. We generate, without mode-locked lasers, two frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span. The output of a frequency-agile continuous-wave laser is split and sent into two electro-optic intensity modulators. Flat-top low-noise frequency combs are produced by wave-breaking in a nonlinear optical fibre of normal dispersion. With a dual-comb spectrometer, we record Doppler-limited spectra spanning 60 GHz within 13 μs and an 80 kHz refresh rate, at a tuning speed of 10 nm s-1. The sensitivity for weak absorption is enhanced by a long gas-filled hollow-core fibre. New opportunities for real-time diagnostics may be opened up, even outside the laboratory.
Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S
2015-11-01
We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.
Short-pulse lasers for weather control
NASA Astrophysics Data System (ADS)
Wolf, J. P.
2018-02-01
Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.
NASA Astrophysics Data System (ADS)
Meadows, Alexander R.; Cupal, Josef; Hříbek, Petr; Durák, Michal; Kramer, Daniel; Rus, Bedřich
2017-05-01
We present the design of a collinear femtosecond optical parametric amplification (OPA) system producing a tunable output at wavelengths between 1030 nm and 1080 nm from a Ti:Sapphire pump laser at a wavelength of 795 nm. Generation of a supercontinuum seed pulse is followed by one stage of amplification in Beta Barium Borate (BBO) and two stages of amplification in Potassium Titanyle Arsenate (KTA), resulting in a 225 μJ output pulse with a duration of 90 fs. The output of the system has been measured by self-referenced spectral interferometry to yield the complete spectrum and spectral phase of the pulse. When compared to KTP, the greater transparency of KTA in the spectral range from 3 - 4 μm allows for reduced idler absorption and enhanced gain from the OPA process when it is pumped by the fundamental frequency of a Ti:sapphire laser. In turn, the use of the Ti:sapphire fundamental at 795 nm as a pump improves the efficiency with which light can be converted to wavelengths between 1030 nm and 1080 nm and subsequently used to test components for Nd-based laser systems. This OPA system is operated at 1 kHz for diagnostic development and laser-induced damage threshold testing of optical components for the ELI-Beamlines project.
Yin, Ke; Zhu, Rongzhen; Zhang, Bin; Jiang, Tian; Chen, Shengping; Hou, Jing
2016-09-05
Fiber based supercontinuum (SC) sources with output spectra covering the infrared atmospheric window are very useful in long-range atmospheric applications. It is proven that silica fibers can support the generation of broadband SC sources ranging from the visible to the short-wave infrared region. In this paper, we present the generation of an ultrahigh-brightness spectrally-flat 2-2.5 μm SC source in a cladding pumped thulium-doped fiber amplifier (TDFA) numerically and experimentally. The underlying physical mechanisms behind the SC generation process are investigated firstly with a numerical model which includes the fiber gain and loss, the dispersive and nonlinear effects. Simulation results show that abundant soliton pulses are generated in the TDFA, and they are shifted towards the long wavelength side very quickly with the nonlinearity of Raman soliton self-frequency shift (SSFS), and eventually the Raman SSFS process is halted due to the silica fiber's infrared loss. A spectrally-flat 2-2.5 μm SC source could be generated as the result of the spectral superposition of these abundant soliton pulses. These simulation results correspond qualitatively well to the following experimental results. Then, in the experiment, a cladding pumped large-mode-area TDFA is built for pursuing a high-power 2-2.5 μm SC source. By enhancing the pump strength, the output SC spectrum broadens to the long wavelength side gradually. At the highest pump power, the obtained SC source has a maximum average power of 203.4 W with a power conversion efficiency of 38.7%. It has a 3 dB spectral bandwidth of 545 nm ranging from 1990 to 2535 nm, indicating a power spectral density in excess of 370 mW/nm. Meanwhile, the output SC source has a good beam profile. This SC source, to the best of our knowledge, is the brightest spectrally-flat 2-2.5 μm light source ever reported. It will be highly desirable in a lot of long-range atmospheric applications, such as broad-spectrum LIDAR, free space communication and hyper-spectral imaging.
Tombelaine, Vincent; Lesvigne, Christelle; Leproux, Philippe; Grossard, Ludovic; Couderc, Vincent; Auguste, Jean-Louis; Blondy, Jean-Marc; Huss, Guillaume; Pioger, Paul-Henri
2005-09-19
Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350-1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.
NASA Astrophysics Data System (ADS)
Nolte, Lena; Antonopoulos, Georgios C.; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2018-02-01
Scanning laser optical tomography (SLOT) is a 3D imaging technique, based on the principle of computed tomography to visualize samples up to magnitude of several centimeters. Intrinsic contrast mechanisms as absorption, scattering and autofluorescence provide information about the 3D architecture and composition of the sample. Another valuable intrinsic contrast mechanism is second harmonic generation (SHG), which is generated in noncentrosymmetric materials and commonly used to image collagen in biological samples. The angular dependence of the SHG signal, however, produces artifacts in reconstructed optical tomography datasets (OPT, SLOT). Thus, successful use of this intrinsic contrast mechanism is impaired. We investigate these artifacts by simulation and experiment and propose an elimination procedure that enables successful reconstruction of SHG-SLOT data. Nevertheless, in many cases specific labeling of certain structures is necessary to make them visible. Using multiple dyes in one sample can lead to crosstalk between the different channels and reduce contrast of the images. Also autofluorescence of the sample itself can account for that. By using multispectral imaging in combination with spectral unmixing techniques, this loss can be compensated. Therefore either a spectrally resolved detection path, or spectrally resolved excitation is required. Therefore we integrated a white supercontinuum light source in our SLOT-setup that enables a spectral selection of the excitation beam and extended the detection path to a four channel setup. This enables the detection of three fluorescence channels and one absorption channel in parallel, and increases the contrast in the reconstructed 3D images significantly.
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation
Li, Peng -Cheng; Sheu, Yae -Lin; Jooya, Hossein Z.; ...
2016-09-06
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories aremore » dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. As a result, it also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.« less
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation
Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z.; Zhou, Xiao-Xin; Chu, Shih-I
2016-01-01
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse. PMID:27596056
Exploration of laser-driven electron-multirescattering dynamics in high-order harmonic generation.
Li, Peng-Cheng; Sheu, Yae-Lin; Jooya, Hossein Z; Zhou, Xiao-Xin; Chu, Shih-I
2016-09-06
Multiple rescattering processes play an important role in high-order harmonic generation (HHG) in an intense laser field. However, the underlying multi-rescattering dynamics are still largely unexplored. Here we investigate the dynamical origin of multiple rescattering processes in HHG associated with the odd and even number of returning times of the electron to the parent ion. We perform fully ab initio quantum calculations and extend the empirical mode decomposition method to extract the individual multiple scattering contributions in HHG. We find that the tunneling ionization regime is responsible for the odd number times of rescattering and the corresponding short trajectories are dominant. On the other hand, the multiphoton ionization regime is responsible for the even number times of rescattering and the corresponding long trajectories are dominant. Moreover, we discover that the multiphoton- and tunneling-ionization regimes in multiple rescattering processes occur alternatively. Our results uncover the dynamical origin of multiple rescattering processes in HHG for the first time. It also provides new insight regarding the control of the multiple rescattering processes for the optimal generation of ultrabroad band supercontinuum spectra and the production of single ultrashort attosecond laser pulse.
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.; Uthayakumar, T.
2013-08-01
We investigate the modulational instability induced supercontinuum generation (MI-SCG) under versatile saturable nonlinear (SNL) responses. We identify and discuss the salient features of saturable nonlinear responses of various functional forms such as exponential, conventional and coupled type on modulational instability (MI) and the subsequent supercontinuum (SC) process. Firstly, we analyze the impact of SNL on the MI spectrum and found both analytically and numerically that MI gain and bandwidth is maximum for exponential nonlinearity in comparison to other types of SNL's. We also reported the unique behavior of the SNL system in the MI dynamics. Following the MI analysis, the proceeding section deals with the supercontinuum generation (SCG) process by virtue of MI. We examine exclusively the impact of each form of SNL on the SC spectrum and predicted numerically that exponential case attains the phase matching earlier and thus enable to achieve broad spectrum at a relatively shorter distance of propagation than the other cases of SNL's. Thus a direct evidence of SCG from MI is emphasized and the impact of SNL in MI-SCG is highlighted. To analyze the quality of the output continuum spectrum, we performed the coherence analysis for MI-SCG in the presence of SNL.
Optical rogue waves and stimulated supercontinuum generation
NASA Astrophysics Data System (ADS)
Solli, Daniel R.; Ropers, Claus; Jalali, Bahram
2010-06-01
Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.
Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy
NASA Astrophysics Data System (ADS)
Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.
2017-11-01
We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.
1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA.
Hudson, Darren D; Baudisch, Matthias; Werdehausen, Daniel; Eggleton, Benjamin J; Biegert, Jens
2014-10-01
Using a 3.1-μm optical parametric chirped-pulse amplifier (OPCPA), we generate a supercontinuum in a step-index chalcogenide fiber that spans from 1.6 to 5.9 μm at the -20 dB points. The rugged step-index geometry allows for long-term operation, while the spectral bandwidth is limited by the transmission of the As2S3 fiber.
NASA Astrophysics Data System (ADS)
Eiichirou, Kawamori
2018-04-01
We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.
A novel fiber laser development for photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Yavas, Seydi; Aytac-Kipergil, Esra; Arabul, Mustafa U.; Erkol, Hakan; Akcaalan, Onder; Eldeniz, Y. Burak; Ilday, F. Omer; Unlu, Mehmet B.
2013-03-01
Photoacoustic microscopy, as an imaging modality, has shown promising results in imaging angiogenesis and cutaneous malignancies like melanoma, revealing systemic diseases including diabetes, hypertension, tracing drug efficiency and assessment of therapy, monitoring healing processes such as wound cicatrization, brain imaging and mapping. Clinically, photoacoustic microscopy is emerging as a capable diagnostic tool. Parameters of lasers used in photoacoustic microscopy, particularly, pulse duration, energy, pulse repetition frequency, and pulse-to-pulse stability affect signal amplitude and quality, data acquisition speed and indirectly, spatial resolution. Lasers used in photoacoustic microscopy are typically Q-switched lasers, low-power laser diodes, and recently, fiber lasers. Significantly, the key parameters cannot be adjusted independently of each other, whereas microvasculature and cellular imaging, e.g., have different requirements. Here, we report an integrated fiber laser system producing nanosecond pulses, covering the spectrum from 600 nm to 1100 nm, developed specifically for photoacoustic excitation. The system comprises of Yb-doped fiber oscillator and amplifier, an acousto-optic modulator and a photonic-crystal fiber to generate supercontinuum. Complete control over the pulse train, including generation of non-uniform pulse trains, is achieved via the AOM through custom-developed field-programmable gate-array electronics. The system is unique in that all the important parameters are adjustable: pulse duration in the range of 1-3 ns, pulse energy up to 10 μJ, repetition rate from 50 kHz to 3 MHz. Different photocoustic imaging probes can be excited with the ultrabroad spectrum. The entire system is fiber-integrated; guided-beam-propagation rendersit misalignment free and largely immune to mechanical perturbations. The laser is robust, low-cost and built using readily available components.
White Light Generation in Human Saliva
NASA Astrophysics Data System (ADS)
Santhosh, C.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Alti, K.; Mathur, D.
2011-07-01
Interaction of intense, femto-second pulses of infrared light (800 nm) with water generates white light supercontinuum due to nonlinear optical effects. This supercontinuum was found to be suppressed by the addition of alpha amylase, a major protein in the human saliva. We have studied the suppression of supper continuum by human saliva, collected from healthy subjects with and without smoking habits. Suppression of the blue-sided components was observed significantly in non-smokers saliva than chain smokers.
Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm
NASA Astrophysics Data System (ADS)
Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan
2009-06-01
Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.
U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.
Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis
2017-12-25
In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.
Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E
2018-04-14
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-04-01
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
Narrowband supercontinuum control using phase shaping
NASA Astrophysics Data System (ADS)
Austin, Dane R.; Bolger, Jeremy A.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Brown, Thomas G.
2006-12-01
We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.
SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics
NASA Astrophysics Data System (ADS)
El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado
2018-02-01
In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).
NASA Astrophysics Data System (ADS)
Wang, Liyun; Yuan, Jinhui; Wang, Kuiru; Kang, Zhe; Sang, Xinzhu; Yu, Chongxiu; Yan, Binbin
2016-11-01
In this paper, the supercontinuum (SC) generation in a carbon disulfide (CS2)-filled photonic crystal fiber (PCF) with strong slow nonlinearity is investigated. When the PCF is pumped at 1.55 μm in the anomalous dispersion region, we obtain highly coherent SC spanning from 0.99 to 2.32 μm, at -40 dB level. Moreover, the influences of the slow nonlinearity, the input pulse width, the pulse peak power, the fiber length, and the temperature on the supercontinuum generation (SCG) are studied. The role of the slow nonlinearity in enhancing the coherence of SC is proved. To our best knowledge, this is the first demonstration on generating the octave-spanning SC with high coherence using the slow nonlinearity of CS2. CS2 is a material that has high nonlinearity coefficient and well transparency in infrared. What's more, the slow nonlinearity is very strong in this material.
NASA Astrophysics Data System (ADS)
Hossain, Md. Nazmul; Alam, M. Shah; Mohsin, K. M.; Hasan, Dihan Md. Nuruddin
2011-08-01
A liquid crystal infiltrated spiral photonic crystal fiber (LCSPCF) is presented here for electrical tuning of two zero dispersion wavelengths (ZDWs) in the present communication window. The proposed LCSPCF shows tunability of the ZDWs from 1433 nm to 2136 nm due to the rotation of the infiltrated LC mesogen induced by the external electric field. Therefore, the ZDW can easily be shifted towards the available pump wavelength for effective supercontinuum generation (SCG) over a broad wavelength region. By tuning the bandwidth (BW) in between the two ZDWs the extension of the generated supercontinuum (SC) spectrum can also be electrically controlled. This will help the SCG in our desired band with optimum power budget. Moreover, the index guiding mechanism of the proposed soft glass LCSPCF shows improvement over the narrow operational bandwidth and the low nonlinearity of the band-gap guided silica LCPCF. Additionally, the solid core of the proposed LCSPCF is less lossy than the previously proposed liquid crystal core PCF.
Multidepth imaging by chromatic dispersion confocal microscopy
NASA Astrophysics Data System (ADS)
Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.
2012-03-01
Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.
NASA Astrophysics Data System (ADS)
Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.
2007-02-01
Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.
Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc
2017-05-01
Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.
Spectral stability of supercontinuum generation in condensed mediums
NASA Astrophysics Data System (ADS)
Wang, Jier; Zhang, Yizhu; Shen, Huifeng; Jiang, Yuhai; Wang, Zhongyang
2017-07-01
The features of the supercontinuum generation (SCG) using intense femtosecond pulses are systematically investigated in condensed mediums [sapphire, BK7 glass, ultraviolet (UV)-fused silica, and fluoride crystals]. By optimizing the experimental conditions and choosing suitable mediums, the bandwidth of the SCG can be extended to the UV regime with good spectral stability. This study demonstrates that materials with high bandgap present high efficiency for SCG, particularly in the short wavelength region. The achievable short wavelength and low power-density threshold of the SCG exhibit complicated correlations with the bandgap of condensed mediums.
Supercontinuum generation in a tapered tellurite microstructured optical fiber
NASA Astrophysics Data System (ADS)
Yan, X.; Ohishi, Y.
2014-07-01
Supercontinuum generation (SCG) was investigated in tapered tellurite microstructured optical fibers (MOFs) for various taper profiles. We emphasize on the procedure for finding the dispersion profile that achieve the best width of the SC spectra. An enhancement of the SCG is achieved by varying the taper waist diameter along its length in a carefully designed, and an optimal degree of tapering is found to exist for tapers with an axially uniform waist. We also show the XFROG spectrograms of the pulses propagating through different tapered fibers, confirming the optimized taper conditions.
Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
NASA Astrophysics Data System (ADS)
Syu, Jia-Pu; Su, Min-Jyun; Chen, Po-Wei; Ke, Chang-Chih; Chiou, Shih-Hwa; Kuo, Wen-Chuan
2018-02-01
This study presents a spectral domain optical coherence tomography (SD-OCT) using supercontinuum laser combined with a fundus photography for in vivo high-resolution imaging of retinal degeneration in Royal College of Surgeons (RCS-/- rat). These findings were compared with the Sprague-Dawley (SD) rats and the corresponding histology. Quantitative measurements show that changes in thickness were not significantly different between SD control and young RCS retinas (4 weeks). However, in old RCS rats (55 weeks), the thickness of photoreceptor layer decreased significantly as compared to young RCS rats (both 4 weeks and 5 weeks). After contrast enhancement method, this platform will be useful for the quantitative evaluation of the degree of retinal degeneration, treatment outcome after therapy, and drug screening development in the future.
Electron path control of high-order harmonic generation by a spatially inhomogeneous field
NASA Astrophysics Data System (ADS)
Mohebbi, Masoud; Nazarpoor Malaei, Sakineh
2016-04-01
We theoretically investigate the control of high-order harmonics cut-off and as-pulse generation by a chirped laser field using a metallic bow tie-shaped nanostructure. The numerical results show that the trajectories of the electron wave packet are strongly modified, the short quantum path is enhanced, the long quantum path is suppressed and the low modulated spectrum of the harmonics can be remarkably extended. Our calculated results also show that, by confining electron motion, a broadband supercontinuum with the width of 1670 eV can be produced which directly generates an isolated 34 as-pulse without phase compensation. To explore the underlying mechanism responsible for the cut-off extension and the quantum path selection, we perform time-frequency analysis and a classical simulation based on the three-step model.
CARS hyperspectral imaging of cartilage aiming for state discrimination of cell
NASA Astrophysics Data System (ADS)
Shiozawa, Manabu; Shirai, Masataka; Izumisawa, Junko; Tanabe, Maiko; Watanabe, Koichi
2016-03-01
Non-invasive cell analyses are increasingly important for medical field. A CARS microscope is one of the non-invasive imaging equipments and enables to obtain images indicating molecular distribution. Some studies on discrimination of cell state by using CARS images of lipid are reported. However, due to low signal intensity, it is still challenging to obtain images of the fingerprint region (800~1800 cm-1), in which many spectrum peaks correspond to compositions of a cell. Here, to identify cell differentiation by using multiplex CARS, we investigated hyperspectral imaging of fingerprint region of living cells. To perform multiplex CARS, we used a prototype of a compact light source, which consists of a microchip laser, a single-mode fiber, and a photonic crystal fiber to generate supercontinuum light. Assuming application to regenerative medicine, we chose a cartilage cell, whose differentiation is difficult to be identified by change of the cell morphology. Because one of the major components of cartilage is collagen, we focused on distribution of proline, which accounts for approximately 20% of collagen in general. The spectrum quality was improved by optical adjustments about power branching ratio and divergence of broadband Stokes light. Hyperspectral images were successfully obtained by the improvement. Periphery of a cartilage cell was highlighted in CARS image of proline, and this result suggests correspondence with collagen generated as extracellular matrix. A possibility of cell analyses by using CARS hyperspectral imaging was indicated.
NASA Astrophysics Data System (ADS)
Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin
2017-11-01
We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.
Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F
2014-03-15
Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.
The contribution of reorientational nonlinearity of CS2 liquid in supercontinuum generation
NASA Astrophysics Data System (ADS)
Porsezian, K.; Raja, R. Vasantha Jayakantha; Husakou, Anton; Hermann, Joachim
2011-08-01
We aim to study the nonlinear optical phenomena with femtosecond pulse propagation in liquid-core photonic crystal fibers filled with CS2. In particular, we intend to study the effect of slow nonlinearity due to reorientational contribution of liquid molecules on broadband supercontinuum generation in the femtosecond regime using appropriately modified nonlinear Schrödinger equation. We show that the response of the slow nonlinearity enhances broadening of the pulse and changes the dynamics of the generated solitons. To analyse the quality of the pulse, the stability analysis and coherence of the SCG are studied numerically.
Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide
NASA Astrophysics Data System (ADS)
Sakunasinha, Panarit; Suwanarat, Suksan; Chiangga, Surasak
2015-07-01
We present results of numerical simulations of a supercontinuum generation (SCG) in a Ge11:5As24Se64:5 chalcogenide rectangular waveguide with air as an upper cladding and the lower cladding is magnesium fluoride. A broadband infrared 1.3-3.0 μm SCG could be achieved by pumping with femtosecond pulses in the two zero dispersion wavelengths. The effect of chirp on SCG spectrum has been also investigated. The simulation shows a significant SCG spectral flatness in the mid-infrared range with positive frequency chirp input pulses.
Imaging of high-pressure fuel sprays in the near-nozzle region with supercontinuum illumination
NASA Astrophysics Data System (ADS)
Zheng, Yipeng; Si, Jinhai; Tan, Wenjiang; Wang, Mingxin; Yang, Bo; Hou, Xun
2018-04-01
We employ a supercontinuum (SC) illumination to image the high-pressure fuel sprays in the near-nozzle region. The effect of speckles in the images is significantly mitigated using the SC illumination to improve the identifiability of the microstructures in the spray. The microstructures in the near-nozzle region, i.e., lobes, holes, ligaments, and bridges, are clearly imaged for different fuel pressures and nozzle orifice diameters. The shadowgraphs captured in the experiments also show the spray cone angle of spray is strongly dependent on the injection pressures and nozzle orifice diameters.
Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures
NASA Astrophysics Data System (ADS)
Han, Junbo; Yao, Linhua; Ma, Zongwei
we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).
Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex
NASA Astrophysics Data System (ADS)
Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.
2018-03-01
We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Chu, Tianshu
2017-10-01
Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.
CEO stabilized frequency comb from a 1-μm Kerr-lens mode-locked bulk Yb:CYA laser.
Yu, Zijiao; Han, Hainian; Xie, Yang; Peng, Yingnan; Xu, Xiaodong; Wei, Zhiyi
2016-02-08
We report the first Kerr-lens mode-locked (KLM) bulk frequency comb in the 1-μm spectral regime. The fundamental KLM Yb:CYA laser is pumped by a low-noise, high-bright 976-nm fiber laser and typically provides 250-mW output power and 57-fs pulse duration. Only 58-mW output pulses were launched into a 1.3-m photonic crystal fiber (PCF) for one octave-spanning supercontinuum generation. Using a simplified collinear f-2f interferometer, the free-running carrier-envelope offset (CEO) frequency was measured to be 42-dB signal-to-noise ratio (SNR) for a 100-kHz resolution and 9.6-kHz full width at half maximum (FWHM) under a 100-Hz resolution. A long-term CEO control at 23 MHz was ultimately realized by feeding the phase error signal to the pump power of the oscillator. The integrated phase noise (IPN) of the locked CEO was measured to be 316 mrad with an integrated range from 1 Hz to 10 MHz. The standard deviation and Allan deviation for more than 4-hour recording are 1.6 mHz and 5.6 × 10(-18) (for 1-s gate time), respectively. This is, to the best of our knowledge, the best stability achieved among the 1-μm solid-state frequency combs.
Towards the mid-infrared optical biopsy
NASA Astrophysics Data System (ADS)
Seddon, Angela B.; Benson, Trevor M.; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Sojka, Lukasz; Stone, Nick; Jayakrupakar, Nallala; Lloyd, Gavin R.; Lindsay, Ian; Ward, Jon; Farries, Mark; Moselund, Peter M.; Napier, Bruce; Lamrini, Samir; Møller, Uffe; Kubat, Irnis; Petersen, Christian R.; Bang, Ole
2016-03-01
We are establishing a new paradigm in mid-infrared molecular sensing, mapping and imaging to open up the midinfrared spectral region for in vivo (i.e. in person) medical diagnostics and surgery. Thus, we are working towards the mid-infrared optical biopsy (`opsy' look at, bio the biology) in situ in the body for real-time diagnosis. This new paradigm will be enabled through focused development of devices and systems which are robust, functionally designed, safe, compact and cost effective and are based on active and passive mid-infrared optical fibers. In particular, this will enable early diagnosis of external cancers, mid-infrared detection of cancer-margins during external surgery for precise removal of diseased tissue, in one go during the surgery, and mid-infrared endoscopy for early diagnosis of internal cancers and their precision removal. The mid-infrared spectral region has previously lacked portable, bright sources. We set a record in demonstrating extreme broad-band supercontinuum generated light 1.4 to 13.3 microns in a specially engineered, high numerical aperture mid-infrared optical fiber. The active mid-infrared fiber broadband supercontinuum for the first time offers the possibility of a bright mid-infrared wideband source in a portable package as a first step for medical fiber-based systems operating in the mid-infrared. Moreover, mid-infrared molecular mapping and imaging is potentially a disruptive technology to give improved monitoring of the environment, energy efficiency, security, agriculture and in manufacturing and chemical processing. This work is in part supported by the European Commission: Framework Seven (FP7) Large-Scale Integrated Project MINERVA: MId-to-NEaR- infrared spectroscopy for improVed medical diAgnostics (317803; www.minerva-project.eu).
NASA Astrophysics Data System (ADS)
Ohta, Takayuki; Hashizume, Hiroshi; Takeda, Keigo; Ishikawa, Kenji; Ito, Masafumi; Hori, Masaru
2014-10-01
Biological applications employing non-equilibrium plasma processing has been attracted much attention. It is essential to monitor the changes in an intracellular structure of the cell during the plasma exposure. In this study, we have analyzed the molecular structure of biological samples using multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy. Two picosecond pulse lasers with fundamental (1064 nm) or the supercontinuum (460-2200 nm) were employed as a pump and Stokes beams of multiplex CARS microspectroscopy, respectively. The pump and the Stokes laser beams were collinearly overlapped and tightly focused into a sample using an objective lens of high numerical aperture. The CARS signal was collected by another microscope objective lens which is placed facing the first one. After passing through a short pass filter, the signal was dispersed by a polychromator, and was detected by a charge-coupled device camera. The sample was sandwiched by a coverslip and a glass bottom dish for the measurements and was placed on a piezo stage. The CARS signals of the quinhydrone crystal at 1655, 1584, 1237 and 1161 cm-1 were assigned to the C-C, C =O stretching, O-H and C-O stretching vibrational modes, respectively.
A trillion frames per second: the techniques and applications of light-in-flight photography.
Faccio, Daniele; Velten, Andreas
2018-06-14
Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.
Light propagation in gas-filled kagomé hollow core photonic crystal fibres
NASA Astrophysics Data System (ADS)
Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.
2018-04-01
We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.
NASA Astrophysics Data System (ADS)
Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.
2018-04-01
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Kowligy, Abijith S; Lind, Alex; Hickstein, Daniel D; Carlson, David R; Timmers, Henry; Nader, Nima; Cruz, Flavio C; Ycas, Gabriel; Papp, Scott B; Diddams, Scott A
2018-04-15
We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ (2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.
Real-time spectral characterization of a photon pair source using a chirped supercontinuum seed.
Erskine, Jennifer; England, Duncan; Kupchak, Connor; Sussman, Benjamin
2018-02-15
Photon pair sources have wide ranging applications in a variety of quantum photonic experiments and protocols. Many of these protocols require well controlled spectral correlations between the two output photons. However, due to low cross-sections, measuring the joint spectral properties of photon pair sources has historically been a challenging and time-consuming task. Here, we present an approach for the real-time measurement of the joint spectral properties of a fiber-based four wave mixing source. We seed the four wave mixing process using a broadband chirped pulse, studying the stimulated process to extract information regarding the spontaneous process. In addition, we compare stimulated emission measurements with the spontaneous process to confirm the technique's validity. Joint spectral measurements have taken many hours historically and several minutes with recent techniques. Here, measurements have been demonstrated in 5-30 s depending on resolution, offering substantial improvement. Additional benefits of this approach include flexible resolution, large measurement bandwidth, and reduced experimental overhead.
Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Lindsay, Ian; Nallala, Jayakrupakar; Moselund, Peter
2017-02-01
A prototype mid-infrared spectral imaging system for rapid assessment of cells for cytological diagnosis is reported. Based on a fibre optic super-continuum source that has large spectral brightness and is coupled in to an acousto-optic tuneable filter that can rapidly scan over a set of wavelengths that are chosen to give a high level of selectivity for a specific skin disease. The system has the potential to collect an image cube of 100 wavelengths and 300k pixels in 2 seconds so that cells on living people could be analysed. The system has been evaluated with colon cells over 2700- 3100 cm-1.
Yu, Xiang-xiang; Wang, Yu-hua
2014-01-13
Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.
Effect of a weak CW trigger on optical rogue waves in the femtosecond supercontinuum generation.
Li, Qian; Duan, Xiaoqi
2015-06-15
We numerically study the characteristics of optical rogue waves in the femtosecond supercontinuum (SC) generation and use the CW triggering mechanism to control the SC generation. Detailed simulation results show for the first time that a weak CW trigger can manipulate the behaviors of optical rogue waves in the femtosecond SC regime. For the proposed CW triggering technique which requires only wavelength tuning and is a handy approach for the active control of SC, the resultant spectrum can be greatly broadened, and the noise properties of the SC can be significantly improved in terms of both of the coherence and intensity stability.
Zhang, Lin; Lin, Qiang; Yue, Yang; Yan, Yan; Beausoleil, Raymond G; Willner, Alan E
2012-01-16
We propose a novel silicon waveguide that exhibits four zero-dispersion wavelengths for the first time, to the best of our knowledge, with a flattened dispersion over a 670-nm bandwidth. This holds a great potential for exploration of new nonlinear effects and achievement of ultra-broadband signal processing on a silicon chip. As an example, we show that an octave-spanning supercontinuum assisted by dispersive wave generation can be obtained in silicon, over a wavelength range from 1217 to 2451 nm, almost from bandgap wavelength to half-bandgap wavelength. Input pulse is greatly compressed to 10 fs.
NASA Astrophysics Data System (ADS)
Yu, Guoyang; Song, Yunfei; Wang, Yang; He, Xing; Liu, Yuqiang; Liu, Weilong; Yang, Yanqiang
2011-12-01
A modified photon echo (PE) technique, the supercontinuum probing photon echo (SCPPE), is introduced and performed to investigate the vibrational coherence in organic dye IR780 perchlorate doped polyvinyl alcohol (PVA) film. The coherences of multiple vibrational states which belong to four vibrational modes create complex oscillations in SCPPE signal. The frequencies of vibrational modes are confirmed from the results of Raman calculation which accord fairly well with the results of Raman scattering experiment. Compared with conventional one-color PE, the SCPPE technique can realize broadband detection and make the experiment about vibrational coherence more efficient.
Roy Chaudhuri, Partha
2014-01-01
In this work, a new design of ultraflat dispersion PCF based on square-lattice geometry with all uniform air holes towards broadband smooth SCG around the C-band of wavelength has been presented. The air hole of the inner ring was infiltrated with liquid of certain refractive indices. Numerical investigations establish a near zero ultraflattened dispersion of 0 ± 0.78 ps/nm/km in a wavelength range of 1496 nm to 2174 nm (678 nm bandwidth) covering most of the communications bands with the first zero dispersion wavelength around 1.54 μm. With the optimized ultraflattened fiber, we have achieved a broadband SC spectrum with FWHM of 350 nm with the central wavelength of 1550 nm with less than a meter long of the fiber by using a picosecond pulse laser. We have also analyzed the sensitivity of the optimized dispersion design by small variations from the optimum value of the geometrical structural parameters. Our investigations establish that for a negative change of PCF parameters, the profile retains the smooth and flat SCG spectra; however, for a positive change, the smooth and a flat spectrum is lost. The new design of the fiber will be capable of covering huge diverse field of DWDM sources, spectroscopy, meteorology, optical coherence tomography, and optical sensing. PMID:27355018
A current-assisted CMOS photonic sampler with two taps for fluorescence lifetime sensing
NASA Astrophysics Data System (ADS)
Ingelberts, H.; Kuijk, M.
2016-04-01
Imaging based on fluorescence lifetime is becoming increasingly important in medical and biological applications. State-of- the-art fluorescence lifetime microscopes either use bulky and expensive gated image intensifiers coupled to a CCD or single-photon detectors in a slow scanning setup. Numerous attempts are being made to create compact, cost-effective all- CMOS imagers for fluorescence lifetime sensing. Single-photon avalanche diode (SPAD) imagers can have very good timing resolution and noise characteristics but have low detection efficiency. Another approach is to use CMOS imagers based on demodulation detectors. These imagers can be either very fast or very efficient but it remains a challenge to combine both characteristics. Recently we developed the current-assisted photonic sampler (CAPS) to tackle these problems and in this work, we present a new CAPS with two detection taps that can sample a fluorescence decay in two time windows. In the case of mono-exponential decays, two windows provide enough information to resolve the lifetime. We built an electro-optical setup to characterize the detector and use it for fluorescence lifetime measurements. It consists of a supercontinuum pulsed laser source, an optical system to focus light into the detector and picosecond timing electronics. We describe the structure and operation of the two-tap CAPS and provide basic characterization of the speed performance at multiple wavelengths in the visible and near-infrared spectrum. We also record fluorescence decays of different visible and NIR fluorescent dyes and provide different methods to resolve the fluorescence lifetime.
NASA Astrophysics Data System (ADS)
Tawfik, Walid
2015-06-01
In this work, we could experimentally achieved the generation of white-light laser pulses of few-cycle fs pulses using a neon-filled hollow-core fiber. The observed pulses reached 6-fs at at repetition rate of 1 kHz using 2.5 mJ of 31 fs femtosecond pulses. The pulse compressing achieved by the supercontinuum produced in static neon-filled hollow fibers while the dispersion compensation is achieved by five pairs of chirped mirrors. We showed that gas pressure can be used to continuously vary the bandwidth from 350 nm to 900 nm. Furthermore, the applied technique allows for a straightforward tuning of the pulse duration via the gas pressure whilst maintaining near-transform-limited pulses with constant output energy, thereby reducing the complications introduced by chirped pulses. Through measurements of the transmission through the fiber as a function of gas pressure, a high throughput exceeding 60% was achieved. Adaptive pulse compression is achieved by using the spectral phase obtained from a spectral phase interferometry for direct electric field reconstruction (SPIDER) measurement as feedback for a liquid crystal spatial light modulator (SLM). The spectral phase of these supercontinua is found to be extremely stable over several hours. This allowed us to demonstrate successful compression to pulses as short as 5.2 fs with controlled wide spectral bandwidth, which could be used to excite different states in complicated molecules at once.
Path length and spectrum of single-cycle mid-IR light bullets in transparent dielectrics
NASA Astrophysics Data System (ADS)
Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.
2018-04-01
Filamentation of femtosecond laser radiation with a wavelength of 800 – 3900 nm and a power slightly exceeding the critical self-focusing power is studied using the spectral method and the method of laser coloration in LiF crystal. It is found that the length of a filament formed in the single-pulse regime increases with increasing excitation wavelength from a few tens of micrometres at 80 nm to hundreds of micrometres at 3900 nm. In the spectral region of anomalous group velocity dispersion, starting from 2600 nm, the initially smooth luminescence profile of the long-lived induced colour centres acquires a periodic structure, demonstrating the formation of a light bullet with a duration of about one cycle of the light field oscillation and a diameter smaller than 10 μm. The path length of such bullets does not exceed 0.5 mm in the single-pulse regime and 2.7 mm in the waveguide regime. A consequence of periodic modulation of the bullet light field in the process of propagation, observed experimentally and confirmed by calculations, is the appearance of sidebands near the excitation wavelength, as well as the appearance of visible spectral components in the supercontinuum radiation, whose angular divergence increases with increasing wavelength.
PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis
Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil
2011-01-01
A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin; Bache, Morten
2014-03-01
Formation and interaction of few-cycle solitons in a lithium niobate ridge waveguide are numerically investigated. The solitons are created through a cascaded phase-mismatched second-harmonic generation process, which induces a dominant self-defocusing Kerr-like nonlinearity on the pump pulse. The inherent material self-focusing Kerr nonlinearity is overcome over a wide wavelength range, and self-defocusing solitons are supported from 1100 to 1900 nm, covering the whole communication band. Single cycle self-compressed solitons and supercontinuum generation spanning 1.3 octaves are observed when pumped with femtosecond nanojoule pulses at 1550 nm. The waveguide is not periodically poled, as quasi-phase-matching would lead to detrimental nonlinear effects impeding few-cycle soliton formation.
Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai
2010-12-06
The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.
White light supercontinuum generation in a Y-shaped microstructured tapered fiber pumped at 1064 nm.
Cascante-Vindas, J; Díez, A; Cruz, J L; Andrés, M V
2010-07-05
We report the generation of supercontinuum in a Ge-doped Y-shape tapered fiber pumped at 1064 nm in the ns pump regime. The taper was designed to have long taper transitions and a taper waist with a core diameter of 0.9 mum. The large air-filling fraction and diameter of the air-hole microstructure reduces the confinement loss at long wavelengths so, enabling the extension of the spectrum to longer wavelengths. Along the taper transition the zero-dispersion wavelength decreases as the diameter of the taper becomes smaller. The spectral components generated along the taper transition pump the taper waist, enhancing the generation of short wavelengths. A flat spectrum spanning from 420 nm to 1850 nm is reported.
NASA Astrophysics Data System (ADS)
Chen, Peng; Xue, Zugang; Tian, Youmei; Zhao, Zheming; Wang, Xunsi; Liu, Zijun; Zhang, Peiqing; Dai, Shixun; Nie, Qiuhua; Wang, Rongping
2018-06-01
Two kinds of step-index As-S fibers have been fabricated by an isolated extrusion method with a numerical aperture (NA) of 0.52, but with different core size of 10 or 50 µm. With a femtosecond laser pumping, their supercontinnum (SC) generation spectra were recorded in order to testify the effect of high-order modes on SC generation. The spectra spanning from 1.0 to 6.7 µm and from 1.5 to 8.6 µm can be obtained in a 16-cm-long fiber with 10 µm-core diameter pumping by central wavelength of 2.9 and 4.0 µm, respectively. The results show that high-order modes would deplete the spectra spanning in red-shifting part. The SC generation in small-core fiber is much more efficient than that in large-core fiber. This is the first comparative investigation on the SC generation from the quasi single- and multi-mode ChG fibers under the same conditions.
Bright half-cycle optical radiation from relativistic wavebreaking
NASA Astrophysics Data System (ADS)
Miao, Bo; Goers, Andy; Hine, George; Feder, Linus; Salehi, Fatholah; Wahlstrand, Jared; Milchberg, Howard
2015-11-01
Wavebreaking injection of electrons into relativistic plasma wakes generated in near-critical density hydrogen plasmas by sub-terawatt laser pulses is observed to generate an extremely energetic and ultra-broadband radiation flash. The flash is coherent, with a bandwidth of Δλ / λ ~ 0 . 7 consistent with half-cycle optical emission of duration ~ 1 fs from violent unidirectional acceleration of electrons to light speed from rest over a distance much less than the radiated wavelength. We studied the temporal duration and coherence of the flash by interfering it in the frequency domain with a well-characterized Xe supercontinuum pulse. Fringes across the full flash spectrum were observed with high visibility, and the extracted flash spectral phase supports it being a nearly transform-limited pulse. To our knowledge, this is the first evidence of bright half-cycle optical emission. This research is supported by the Defense Threat Reduction Agency, the US Department of Energy, and the Air Force Office of Scientific Research.
Femtosecond pulse inscription of a selective mode filter in large mode area fibers
NASA Astrophysics Data System (ADS)
Krämer, Ria G.; Voigtländer, Christian; Freier, Erik; Liem, Andreas; Thomas, Jens U.; Richter, Daniel; Schreiber, Thomas; Tünnermann, Andreas; Nolte, Stefan
2013-02-01
We present a selective mode filter inscribed with ultrashort pulses directly into a few mode large mode area (LMA) fiber. The mode filter consists of two refractive index modifications alongside the fiber core in the cladding. The refractive index modifications, which were of approximately the same order of magnitude as the refractive index difference between core and cladding have been inscribed by nonlinear absorption of femtosecond laser pulses (800 nm wavelength, 120 fs pulse duration). If light is guided in the core, it will interact with the inscribed modifications causing modes to be coupled out of the core. In order to characterize the mode filter, we used a femtosecond inscribed fiber Bragg grating (FBG), which acts as a wavelength and therefore mode selective element in the LMA fiber. Since each mode has different Bragg reflection wavelengths, an FBG in a multimode fiber will exhibit multiple Bragg reflection peaks. In our experiments, we first inscribed the FBG using the phase mask scanning technique. Then the mode filter was inscribed. The reflection spectrum of the FBG was measured in situ during the inscription process using a supercontinuum source. The reflectivities of the LP01 and LP11 modes show a dependency on the length of the mode filter. Two stages of the filter were obtained: one, in which the LP11 mode was reduced by 60% and one where the LP01 mode was reduced by 80%. The other mode respectively showed almost no losses. In conclusion, we could selectively filter either the fundamental or higher order modes.
NASA Astrophysics Data System (ADS)
Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien
2016-09-01
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Modulational-instability-induced supercontinuum generation with saturable nonlinear response
NASA Astrophysics Data System (ADS)
Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.
2010-07-01
We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS2-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.
Modulational-instability-induced supercontinuum generation with saturable nonlinear response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.
2010-07-15
We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS{sub 2}-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schroedinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We alsomore » observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.« less
Mid-infrared supercontinuum generation in tapered As2S3 chalcogenide planar waveguide
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.
2016-10-01
We numerically demonstrate mid-infrared supercontinuum generation in a non-uniformly tapered chalcogenide planar waveguide. This planar rib waveguide of As2S3 glass on MgF2 is 2 cm long with increasing etch depth longitudinally to manage the total dispersion. This waveguide has zero dispersion at two wavelengths. The dispersion profile varies along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave emission and enhancement of energy transfer efficiency between solitons and dispersive waves. Numerical simulations are conducted for secant input pulses at a wavelength of 1.55 μm with a width of 50 fs and peak power of 2 kW. Results show this proposed scheme significantly broadens the generated continuum, extending from ~1 to ~7 μm.
NASA Astrophysics Data System (ADS)
Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.
2017-04-01
The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.
Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography
Yao, Xinwen; Gan, Yu; Marboe, Charles C.; Hendon, Christine P.
2016-01-01
Abstract. We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well. PMID:27001162
Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Yao, Xinwen; Gan, Yu; Marboe, Charles C.; Hendon, Christine P.
2016-06-01
We present an ultrahigh-resolution spectral domain optical coherence tomography (OCT) system in 800 nm with a low-noise supercontinuum source (SC) optimized for myocardial imaging. The system was demonstrated to have an axial resolution of 2.72 μm with a large imaging depth of 1.78 mm and a 6-dB falloff range of 0.89 mm. The lateral resolution (5.52 μm) was compromised to enhance the image penetration required for myocardial imaging. The noise of the SC source was analyzed extensively and an imaging protocol was proposed for SC-based OCT imaging with appreciable contrast. Three-dimensional datasets were acquired ex vivo on the endocardium side of tissue specimens from different chambers of fresh human and swine hearts. With the increased resolution and contrast, features such as elastic fibers, Purkinje fibers, and collagen fiber bundles were observed. The correlation between the structural information revealed in the OCT images and tissue pathology was discussed as well.
NASA Astrophysics Data System (ADS)
Mathur, Deepak
2015-01-01
This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to invoking dissociative attachment in quantification of stress levels in humans. The prognosis is extremely good for more intense interaction of AMO physics and biology; by way of future predictions attention is drawn to only two of very many opportunities for such interactions: application of attosecond techniques and tunnelling experiments to biological problems.
NASA Astrophysics Data System (ADS)
Butterworth, J. H.; Jayasuriya, D.; Li, Q. Q.; Furniss, D.; Moneim, N. A.; Barney, E.; Sujecki, S.; Benson, T. M.; Sanghera, J. S.; Seddon, A. B.
2014-02-01
In the 21st century, cancer has become a common and feared illness. Early detection is crucial for delivering the most effective treatment of patients, yet current diagnostic tests depend upon the skill of a consultant clinician and histologist for recognition of the cancerous cells. Therefore it is necessary to develop a medical diagnostic system which can analyze and image tissue instantly, removing the margin of human error and with the additional benefit of being minimally invasive. The molecular fingerprint of biological tissue lies within the mid-infrared (IR) region of the electromagnetic spectrum, 3-25μm wavelength. This can be used to determine a tissue spectral map and provide information about the absence or existence of disease, potentially in real-time and in vivo. However, current mid-IR broadband sources are not bright enough to achieve this. One alternative is to develop broadband, mid-IR, supercontinuum generation (SCG). Chalcogenide glass optical fibers have the potential to provide such mid-IR SC light. A popular chalcogenide glass fiber type is based on Ge-As-Se. For biomedical applications it is prudent to avoid the use of arsenic, on account of its toxicity. This paper investigates replacing arsenic with antimony, towards Ge-Sb-Se smallcore optical fibers for SCG. Physical properties of candidate glass pairs are investigated for glass stability via differential thermal analysis etc. and fiber optical loss measurements of associated fibers are assessed. These results are compared to analogous arsenic-containing chalcogenide glasses and optical fibers, and conclusions are drawn focusing on whether there is potential for antimony chalcogenide glass to be used for SCG for mid-infrared medical diagnostics.
Integrated optics reflectometer
Couch, Philip R; Murphy, Kent A.; Gunther, Michael F; Gause, Charles B
2017-01-31
An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.
Phase-matching of attosecond XUV supercontinuum
NASA Astrophysics Data System (ADS)
Gilbertson, Steve; Mashiko, Hiroki; Li, Chengquan; Khan, Sabih; Shakya, Mahendra; Moon, Eric; Chang, Zenghu
2008-05-01
Adding a weak second harmonic field to an ellipticity dependent polarization gating field allowed for the production of XUV supercontinua from longer (˜10 fs) input pulses in argon. The spectra support 200 as single isolated pulses. This technique, dubbed double optical gating (DOG), demonstrated a large enhancement of the harmonic yield as compared with polarization gating. These results can be attributed to the reduced depletion of the ground state of the target from the leading edge of the pulse and the increased intensity inside the polarization gate width. Through optimization of the harmonic generation process under the phase matching conditions, we were able to further increase the harmonic flux. The parameters included the target gas pressure, laser focus position, input pulse duration, and polarization gate width. By varying the CE phase of the pulse, we were able to verify that the results were indeed from DOG due to its unique 2 pi dependence on the harmonic spectrum. We were able to extend our results to neon. Its higher ionization potential allowed an extension of the harmonic cutoff for the production of even shorter pulses.
NASA Astrophysics Data System (ADS)
Yang, Wen-Xing; Xie, Xiao-Tao; Chen, Ai-Xi; Huang, Ziwen; Lee, Ray-Kuang
2016-05-01
We present a theoretical investigation of high-order-harmonic generation (HHG) via bichromatic plasmonic near fields with metal nanoparticles. Bichromatic plasmonic near fields, which depend on temporal waveform synthesis, are generated when a metallic nanoparticle subjected to a moderate-intensity (<1012W /cm2 ) bichromatic few-cycle pulse. By means of a windowed Fourier transform of the time-dependent acceleration, we show that the differences in energies and level crossing between the adiabatic states of a two-level Hamiltonian are responsible for the cutoff energy of harmonics. Thus, we can manipulate the adiabatic states, and consequently the HHG spectra, by means of the bichromatic plasmonic near fields. In contrast to the case of a monochromatic field alone, a significant cutoff extension can be achieved via optimization of the bichromatic few-cycle pulse. Moreover, the supercontinuum in the bichromatic field shows a higher energy spectrum along with a broader bandwidth, which is beneficial for the efficient generation of broadband-isolated ultrashort extreme ultraviolet pulses from few-cycle laser fields.
Polarization and dispersion properties of elliptical hole golden spiral photonic crystal fiber
NASA Astrophysics Data System (ADS)
Agrawal, A.; Kejalakshmy, N.; Rahman, B. M. A.; Grattan, K. T. V.
2010-06-01
An elliptical air-hole golden spiral photonic crystal fiber (EGS-PCF) is analyzed with the full-vectorial finite element method. The air-holes in the EGS-PCF are arranged in a spiral pattern governed by the Golden Ratio, where the design has been inspired by the optimal arrangement of seeds found in nature. The EGS-PCF exhibits extremely high birefringence (˜0.022 at operating wavelength 1550 nm) which is particularly useful for generating a polarization stable supercontinuum (SC). The fiber can also be designed to have a Zero Dispersion Wavelength (ZDW) at a suitable wavelength for only one polarization and large negative dispersion for the other, leading to a single-polarization SC. In addition, the fiber dispersion can be designed to obtain ZDWs at 800 nm and 1064 nm simultaneously, which can facilitate broadband supercontinuum generation (SCG) through multi-wavelength pumping.
An efficient method for supercontinuum generation in dispersion-tailored Lead-silicate fiber taper
NASA Astrophysics Data System (ADS)
Chen, Z.; Ma, S.; Dutta, N. K.
2010-08-01
In this paper we theoretically study the broadband mid-IR supercontinuum generation (SCG) in a lead-silicate microstructured fiber (the glass for simulation is SF57). The total dispersion of the fiber can be tailored by changing the core diameter of the fiber so that dispersion profiles with two zero dispersion wavelengths (ZDWs) can be obtained. Numerical simulations of the SCG process in a 4 cm long SF57 fiber/fiber taper seeded by femto-second pulses at telecommunications wavelength of 1.55 µm are presented. The results show that a fiber taper features a continuous shift of the longer zero dispersion wavelength. This extends the generated continuum to a longer wavelength region compared to fibers with fixed ZDWs. The phase-matching condition (PMC) is continuously modified in the fiber taper and the bandwidth of the generated dispersive waves (DWs) is significantly broadened.
NASA Astrophysics Data System (ADS)
Min, Xiaolin; Liu, Rong; Fu, Bo; Xu, Kexin
2017-06-01
In the non-invasive sensing of blood glucose by near-infrared diffuse reflectance spectroscopy, the spectrum is highly susceptible to the unstable and complicated background variations from the human body and the environment. In in vitro analyses, background variations are usually corrected by the spectrum of a standard reference sample that has similar optical properties to the analyte of interest. However, it is hard to find a standard sample for the in vivo measurement. Therefore, the floating reference measurement method is proposed to enable relative measurements in vivo, where the spectra under some special source-detector distance, defined as the floating reference position, are insensitive to the changes in glucose concentration due to the absorption effect and scattering effect. Because the diffuse reflectance signals at the floating reference positions only reflect the information on background variations during the measurement, they can be used as the internal reference. In this paper, the theoretical basis of the floating reference positions in a semi-infinite turbid medium was discussed based on the steady-state diffusion equation and its analytical solutions in a semi-infinite turbid medium (under the extrapolated boundary conditions). Then, Monte-Carlo (MC) simulations and in vitro experiments based on a custom-built continuous-moving spatially resolving double-fiber NIR measurement system, configured with two types of light source, a super luminescent diode (SLD) and a super-continuum laser, were carried out to verify the existence of the floating reference position in 5%, 10% and 20% Intralipid solutions. The results showed that the simulation values of the floating reference positions are close to the theoretical results, with a maximum deviation of approximately 0.3 mm in 1100-1320 nm. Great differences can be observed in 1340-1400 nm because the optical properties of Intralipid in this region don not satisfy the conditions of the steady-state diffusion equation. For the in vitro experiments, floating reference positions exist in 1220 nm and 1320 nm under two types of light source, and the results are quite close. However, the reference positions obtained from experiments are further from the light source compared with those obtained in the MC simulation. For the turbid media and the wavelengths investigated, the difference is up to 1 mm. This study is important for the design of optical fibers to be applied in the floating reference measurement.
You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D
2016-08-02
Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength.
Catheter-based time-gated near-infrared fluorescence/OCT imaging system
NASA Astrophysics Data System (ADS)
Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric
2018-02-01
We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.
Scott, Jill R [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID
2007-07-10
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Scott, Jill R.; Tremblay, Paul L.
2004-11-23
A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.
Frequency domain tailoring for intra-pulse frequency mixing.
Ernotte, G; Lassonde, P; Légaré, F; Schmidt, B E
2016-10-17
Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.
High throughput laser processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harley, Gabriel; Pass, Thomas; Cousins, Peter John
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
NASA Astrophysics Data System (ADS)
Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.
2018-03-01
Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.
NASA Astrophysics Data System (ADS)
Porsezian, K.; Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Ganapathy, R.
2013-07-01
The supercontinuum generation (SCG) in liquid core photonic crystal fiber (LCPCF) with versatile nonlinear response and the spectral broadening in dual core optical fiber is presented. The analysis is presented in two phase, phase I deals with the SCG in LCPCF with the effect of saturable nonlinearity and re-orientational nonlinearity. We identify and discuss the generic nature of the saturable nonlinearity and reorientational nonlinearity in the SCG, using suitable model. For the physical explanation, modulational instability and soliton fission techniques is implemented to investigate the impact of saturable nonlinear response and slow nonlinear response, respectively. It is observed that the saturable nonlinearity inevitably suppresses the MI and the subsequent SCG. On the other hand, the re-orientational nonlinearity contributes to the slow nonlinear response in addition to the conventional fast response due to the electronic contribution. The phase II features the exclusive investigation of the spectral broadening in the dual core optical fiber.
NASA Astrophysics Data System (ADS)
Heidt, Alexander M.
2014-03-01
This talk will give an overview of the unique properties of supercontinuum generation (SCG) in all-normal dispersion (ANDi) fibers pumped by ultrashort pulses and the possibilities they offer for ultrafast photonics applications. In contrast to their anomalously pumped counterparts, the SCG process in ANDi fibers conserves a single ultrashort pulse in the time domain, completely suppresses soliton formation and decay, and avoids noise-amplifying nonlinear dynamics. The resulting spectra combine the best of both worlds - the broad, more than octave-spanning bandwidths usually associated with anomalous dispersion pumping with the high temporal coherence, pulse-to-pulse stability and well-defined temporal pulse characteristics known from the normal dispersion regime. These characteristics are ideally suited for ultrafast photonics, and I will present application examples including the generation of high quality single-cycle pulses and their amplification, as well as ultrafast spectroscopy. This talk will also explore the exciting new possibilities enabled by extending this approach into the mid-IR spectral region using novel soft glass fiber designs.
Femtosecond pump-supercontinuum probe and transient lens spectroscopy of adonixanthin.
Lenzer, Thomas; Schubert, Steffen; Ehlers, Florian; Lohse, Peter W; Scholz, Mirko; Oum, Kawon
2009-03-15
The ultrafast internal conversion (IC) dynamics of adonixanthin in organic solvents were studied by pump-supercontinuum probe (PSCP) and transient lens (TL) spectroscopy after photoexcitation to the S(2) state. Transient PSCP spectra in the range 344-768 nm provided the spectral evolution of the S(0)-->S(2) ground state bleach and S(1)-->S(n) excited state absorption. Time constants were tau(2) =115 and 111 fs for the S(2)-->S(1) IC and tau(1)=6.4 and 5.8 ps for the S(1)-->S(0) IC in acetone and methanol, respectively. There was only an insignificant polarity dependence of tau(1), underlining the negligible importance of intramolecular charge transfer (ICT) in the lowest-lying excited state of C(40) carotenoids with carbonyl substitution on the beta-ionone ring. A blueshift and a spectral narrowing of the S(1)-->S(n) ESA band, likely due to solvation dynamics, and formation of the adonixanthin radial cation at high pump energies via resonant two-photon ionization were found.
NASA Astrophysics Data System (ADS)
Kawamori, Eiichirou
2017-09-01
A transition from Langmuir wave turbulence (LWT) to coherent Langmuir wave supercontinuum (LWSC) is identified in one-dimensional particle-in-cell simulations as the emergence of a broad frequency band showing significant temporal coherence of a wave field accompanied by a decrease in the von Neumann entropy of classical wave fields. The concept of the von Neumann entropy is utilized for evaluation of the phase-randomizing degree of the classical wave fields, together with introduction of the density matrix of the wave fields. The transition from LWT to LWSC takes place when the energy per one plasmon (one wave quantum) exceeds a certain threshold. The coherent nature, which Langmuir wave systems acquire through the transition, is created by four wave mixings of the plasmons. The emergence of temporal coherence and the decrease in the phase randomization are considered as the development of long-range order and spontaneous symmetry breaking, respectively, indicating that the LWT-LWSC transition is a second order phase transition phenomenon.
Investigation on RGB laser source applied to dynamic photoelastic experiment
NASA Astrophysics Data System (ADS)
Li, Songgang; Yang, Guobiao; Zeng, Weiming
2014-06-01
When the elastomer sustains the shock load or the blast load, its internal stress state of every point will change rapidly over time. Dynamic photoelasticity method is an experimental stress analysis method, which researches the dynamic stress and the stress wave propagation. Light source is one of very important device in dynamic photoelastic experiment system, and the RGB laser light source applied in dynamic photoelastic experiment system is innovative and evolutive to the system. RGB laser is synthesized by red laser, green laser and blue laser, either as a single wavelength laser light source, also as synthesized white laser light source. RGB laser as a light source for dynamic photoelastic experiment system, the colored isochromatic can be captured in dynamic photoelastic experiment, and even the black zero-level stripe can be collected, and the isoclinics can also be collected, which conducively analysis and study of transient stress and stress wave propagation. RGB laser is highly stable and continuous output, and its power can be adjusted. The three wavelengths laser can be synthesized by different power ratio. RGB laser light source used in dynamic photoelastic experiment has overcome a number of deficiencies and shortcomings of other light sources, and simplifies dynamic photoelastic experiment, which has achieved good results.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2014-10-14
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2012-09-11
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
Scott, Jill R.; Tremblay, Paul L.
2008-08-19
A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Liu, Katheryn
2018-05-01
An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-01
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources. PMID:28067288
NASA Astrophysics Data System (ADS)
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-01
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today’s ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.
Yang, Heewon; Han, Byungheon; Shin, Junho; Hou, Dong; Chung, Hayun; Baek, In Hyung; Jeong, Young Uk; Kim, Jungwon
2017-01-09
Ultrafast electron-based coherent radiation sources, such as free-electron lasers (FELs), ultrafast electron diffraction (UED) and Thomson-scattering sources, are becoming more important sources in today's ultrafast science. Photocathode laser is an indispensable common subsystem in these sources that generates ultrafast electron pulses. To fully exploit the potentials of these sources, especially for pump-probe experiments, it is important to achieve high-precision synchronization between the photocathode laser and radio-frequency (RF) sources that manipulate electron pulses. So far, most of precision laser-RF synchronization has been achieved by using specially designed low-noise Er-fibre lasers at telecommunication wavelength. Here we show a modular method that achieves long-term (>1 day) stable 10-fs-level synchronization between a commercial 79.33-MHz Ti:sapphire laser oscillator and an S-band (2.856-GHz) RF oscillator. This is an important first step toward a photocathode laser-based femtosecond RF timing and synchronization system that is suitable for various small- to mid-scale ultrafast X-ray and electron sources.
Free-flying experiment to measure the Schawlow-Townes linewidth limit of a 300 THz laser oscillator
NASA Technical Reports Server (NTRS)
Byer, R. L.; Byvik, C. E.
1988-01-01
Recent advances in laser diode-pumped solid state laser sources permit the design and testing of laser sources with linewidths that approach the Schawlow-Townes limit of 1 Hz/mW of output power. Laser diode pumped solid state ring oscillators have been operated with CW output power levels of 25 mW at electrical efficiencies that exceed 6 percent. These oscillators are expected to operate for lifetimes that approach those of the laser diode sources which is now approaching 20,000 hours. The efficiency and lifetime of these narrow linewidth laser sources will enable space measurements of gravity waves, remote sensing applications (including local range rate and measurements), and laser sources for frequency and time standards. A free-flight experiment, 'SUNLITE', is being designed to measure the linewidth of this all-solid-state laser system.
NASA Astrophysics Data System (ADS)
Dua, Puneit
Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.
NASA Astrophysics Data System (ADS)
Wendt, Klaus; Gottwald, Tina; Hanstorp, Dag; Mattolat, Christoph; Raeder, Sebastian; Rothe, Sebastian; Schwellnus, Fabio; Havener, Charles; Lassen, Jens; Liu, Yuan
2010-02-01
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. A recent trend is the complementary installation of reliable state-of-the-art all solid-state Ti:Sapphire laser systems. To date, 35 elements of the Periodic Table are available at laser ion sources by using these novel laser systems, which complements the overall accessibility to 54 elements including use of traditional dye lasers. Recent progress in the field concerns the identification of suitable optical excitation schemes for Ti:Sapphire laser excitation as well as technical developments of the source in respect to geometry, cavity material as well as by incorporation of an ion guide system in the form of the laser ion source trap LIST.
Diode pumped solid-state laser oscillators for spectroscopic applications
NASA Technical Reports Server (NTRS)
Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.
1987-01-01
The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.
Source technology as the foundation for modern infra-red counter measures (IRCM)
NASA Astrophysics Data System (ADS)
Grasso, Robert J.
2010-10-01
Protection of military aircraft from IR guided threats is paramount to ensure the survivability of aircrews, platforms, and to ensure mission success. At the foundation of all IRCM systems is the source; that component that provides the in-band radiant energy required for threat defeat. As such, source technology has evolved with IRCM technology to encompass the evolving systems architectures that encompass IRCM: 1) "Hot Brick" omni-directional sources; 2) arc lamps, and; 3) lasers. Lasers, as IRCM sources continue to evolve to meet the challenges of ever-evolving threats, superior techniques, economy of installation, and superior source technology. Lasers represent the single greatest advance in IRCM source technology and continue to evolve to meet ever more sophisticated threats. And have been used with great effect in all modern IRCM systems; evolving from frequency doubled CO2 lasers, to solid state lasers with OPOs, to semiconductor lasers including Quantum Cascade Lasers (QCLs); these last devices represent the latest advance in IRCM source technology offering all-band coverage, architectural simplicity, and economy of scale. While QCLs represent the latest advance in IRCM laser technology, fiber lasers show much promise in addressing multi-band operation as well as the ability to be coherently combined to achieve even greater output capability. Also, ultra-short pulse lasers are evolving to become practical for IRCM applications. Stay tuned ......
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, Thomas J
A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.
Nowak, Krzysztof M; Ohta, Takeshi; Suganuma, Takashi; Yokotsuka, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru; Endo, Akira
2012-11-15
In this Letter, we investigate, for the first time to our knowledge, the spectral properties of a quantum-cascade laser (QCL) from a point of view of a new application as a laser seeder for a nanosecond-pulse high-repetition frequency CO(2) laser operating at 10.6 μm wavelength. The motivation for this work is a renewed interest in such a pulse format and wavelength driven by a development of extreme UV (EUV) laser-produced-plasma (LPP) sources. These sources use pulsed multikilowatt CO(2) lasers to drive the EUV-emitting plasmas. Basic spectral performance characteristics of a custom-made QCL chip are measured, such as tuning range and chirp rate. The QCL is shown to have all essential qualities of a robust seed source for a high-repetition nanosecond-pulsed CO(2) laser required by EUV LPP sources.
Femtosecond laser-electron x-ray source
Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard
2004-04-20
A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.
Filamentation in Air with Ultrashort Mid-Infrared Pulses
2011-05-09
remote sensing [11, 12], lightning guiding [13–15], supercontinuum generation ( SCG ) [16], pulse compression [17], and THz generation [18]. Although...shock) and push the pulse toward positive times [23, 24, 46, 54, 55] [see Fig. 3(a) at ζ = 0.6]. Subsequently, the pulse collapses at ζ = 0.9, and SCG
Guo, Hairun; Zhou, Binbin; Zeng, Xianglong; Bache, Morten
2014-05-19
We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.
Engineering ultra-flattened normal dispersion photonic crystal fiber with silica material
NASA Astrophysics Data System (ADS)
Ferhat, Mohamed Lamine; Cherbi, Lynda; Bahloul, Lies; Hariz, Abdelhafid
2017-05-01
The tailoring of the group velocity dispersion (GVD) of an optical fiber is critical in many applications, influence on the bandwidth of information transmission in optical communication systems, successful utilization of nonlinear optical properties in applications such as supercontinuum generation, wavelength conversion and harmonic generation via stimulated Raman scattering ...In this work, we propose a design of ultra-flattened photonic crystal fiber by changing the diameter of the air holes of the cladding rings. The geometry is composed of only four rings, hexagonal structure of air holes and silica as background of the solid core. As a result, we present structures with broadband flat normal dispersion on many wavelengths bands useful for several applications. We obtain flat normal dispersion over 1000 nm broadband flat normal dispersion below -7 [ps/nm.km], and ultra-flat near zero normal dispersion below -0.2 [ps/nm.km] over 150 nm. The modeled photonic crystal fiber would be valuable for the fabrication of ultra-flattened-dispersion fibers, and have potential applications in wide-band high-speed optical communication systems, supercontinuum generation and many other applications.
Schlieren with a laser diode source
NASA Technical Reports Server (NTRS)
Burner, A. W.; Franke, J. M.
1981-01-01
The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.
Particle damage sources for fused silica optics and their mitigation on high energy laser systems.
Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S
2017-05-15
High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.
Ablation of film stacks in solar cell fabrication processes
Harley, Gabriel; Kim, Taeseok; Cousins, Peter John
2013-04-02
A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.
Development and thermal management of 10 kW CW, direct diode laser source
NASA Astrophysics Data System (ADS)
Zhu, Hongbo; Hao, Mingming; Zhang, Jianwei; Ji, Wenyu; Lin, Xingchen; Zhang, Jinsheng; Ning, Yongqiang
2016-01-01
We report on the development of direct diode laser source with high-power and high reliability. The laser source was realized by the polarization and wavelength combination of four diode laser stacks. When at the operating current of 122 A, the source was capable of producing 10,120 W output while maintaining 46% electro-optical conversion efficiency. The maximum temperature on the lens was decreased from 442.2 K to 320 K by utilizing an efficient thermal dissipation structure, and the corresponding maximum von Mises stress was reduced from 75.4 MPa to 14 MPa. In addition, a reliability test demonstrated that our laser source was reliable and potential in the applications of laser cladding and heat treatment.
A linearly frequency-swept high-speed-rate multi-wavelength laser for optical coherence tomography
NASA Astrophysics Data System (ADS)
Wang, Qiyu; Wang, Zhaoying; Yuan, Quan; Ma, Rui; Du, Tao; Yang, Tianxin
2017-02-01
We proposed and demonstrated a linearly frequency-swept multi-wavelength laser source for optical coherence tomography (OCT) eliminating the need of wavenumber space resampling in the postprocessing progress. The source consists of a multi-wavelength fiber laser source (MFS) and an optical sweeping loop. In this novel laser source, an equally spaced multi-wavelength laser is swept simultaneously by a certain step each time in the frequency domain in the optical sweeping loop. The sweeping step is determined by radio frequency (RF) signal which can be precisely controlled. Thus the sweeping behavior strictly maintains a linear relationship between time and frequency. We experimentally achieved linear time-frequency sweeping at a sweeping rate of 400 kHz with our laser source.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE
NASA Astrophysics Data System (ADS)
Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus
2017-08-01
At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.
NASA Astrophysics Data System (ADS)
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Utility and safety of a novel surgical microscope laser light source
Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi
2018-01-01
Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
Early, James W.; Lester, Charles S.
2003-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.
Effect of laser speckle on light from laser diode-pumped phosphor-converted light sources.
Aquino, Felipe; Jadwisienczak, Wojciech M; Rahman, Faiz
2017-01-10
Laser diode (LD) pumped white light sources are being developed as an alternative to light-emitting diode-pumped sources for high efficiency and/or high brightness applications. While several performance metrics of laser-pumped phosphor-converted light sources have been investigated, the effect of laser speckle has not been sufficiently explored. This paper describes our experimental studies on how laser speckle affects the behavior of light from laser-excited phosphor lamps. A single LD pumping a phosphor plate was the geometry explored in this work. Overall, our findings are that the down-converted light did not exhibit any speckle, whereas speckle was present in the residual pump light but much reduced from that in direct laser light. Furthermore, a thicker coating of small-grained phosphors served to effectively reduce speckle through static pump light diffusion in the phosphor coating. Our investigations showed that speckle is not of concern in illumination from LD-pumped phosphor-converted light sources.
Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang
2014-06-02
All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.
Laser technologies for ultrasensitive groundwater dating using long-lived isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling
In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.
A tunable mid-infrared laser source for remote sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
1991-01-01
Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.
Discrete wavelength-locked external cavity laser
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey S. (Inventor); Silver, Joel A. (Inventor)
2005-01-01
An external cavity laser (and method of generating laser light) comprising: a laser light source; means for collimating light output by the laser light source; a diffraction grating receiving collimated light; a cavity feedback mirror reflecting light received from the diffraction grating back to the diffraction grating; and means for reliably tuning the external cavity laser to discrete wavelengths.
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.
2016-11-01
We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.
Practical Design and Applications of Ultrafast Semiconductor Disk Lasers
NASA Astrophysics Data System (ADS)
Baker, Caleb W.
Vertical External Cavity Surface Emitting Lasers (VECSELs) have become well established in recent years for their design flexibility and promising power scalability. Recent efforts in VECSEL development have focused heavily on expanding the medium into the ultrafast regime of modelocked operation. Presented in this thesis is a detailed discussion regarding the development of ultrafast VECSEL devices. Achievements in continuous wave (CW) operation will be highlighted, followed by several chapters detailing the engineering challenges and design solutions which enable modelocked operation of VECSELs in the ultrafast regime, including the design of the saturable absorbers used to enforce modelocking, management of the net group delay dispersion (GDD) inside the cavity, and the design of the active region to support pulse durations on the order of 100 fs. Work involving specific applications - VECSELs emitting on multiple wavelengths simultaneously and the use of VECSEL seed oscillators for amplification and spectral broadening - will also be presented. Key experimental results will include a novel multi-fold cavity design that produced record-setting peak powers of 6.3 kW from a modelocked VECSEL, an octave-spanning supercontinuum with an average power of 2 W generated using a VECSEL seed and a 2-stage Yb fiber amplifier, and two separate experiments where a VECSEL was made to emit on multiple wavelengths simultaneously in modelocked and highly stable CW operation, respectively. Further, many diagnostic and characterization measurements will be presented, most notably the in-situ probing of a VECSEL gain medium during stable modelocked operation with temporal resolution on the order of 100 fs, but also including characterization of the relaxation rates in different saturable absorber designs and the effectiveness of different methods for managing the net GDD of a device.
Microwave tunable laser source: A stable, precision tunable heterodyne local oscillator
NASA Technical Reports Server (NTRS)
Sachse, G. W.
1980-01-01
The development and capabilities of a tunable laser source utilizing a wideband electro-optic modulator and a CO2 laser are described. The precision tunability and high stability of the device are demonstrated with examples of laboratory spectroscopy. Heterodyne measurements are also presented to demonstrate the performance of the laser source as a heterodyne local oscillator. With the use of five CO2 isotope lasers and the 8 to 18 GHz sideband offset tunability of the modulator, calculations indicate that 50 percent spectral coverage in the 9 to 12 micron region is achievable. The wavelength accuracy and stability of this laser source is limited by the CO2 laser and is more than adequate for the measurement of narrow Doppler-broadened line profiles. The room-temperature operating capability and the programmability of the microwave tunable laser source are attractive features for its in-the-field implementation. Although heterodyne measurements indicated some S/N degradation when using the device as a local oscillator, there does not appear to be any fundamental limitation to the heterodyne efficiency of this laser source. Through the use of a lower noise-figure traveling wave tube amplifier and optical matching of the output beam with the photomixer, a substantial increase in the heterodyne S/N is expected.
New laser system for highly sensitive clinical pulse oximetry
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; Hamza, Mohammad
1996-04-01
This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A. Douglas; Choma, Michael A.; Cao, Hui
2015-01-01
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications. PMID:25605946
Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging.
Redding, Brandon; Cerjan, Alexander; Huang, Xue; Lee, Minjoo Larry; Stone, A Douglas; Choma, Michael A; Cao, Hui
2015-02-03
The spatial coherence of laser sources has limited their application to parallel imaging and projection due to coherent artifacts, such as speckle. In contrast, traditional incoherent light sources, such as thermal sources or light emitting diodes (LEDs), provide relatively low power per independent spatial mode. Here, we present a chip-scale, electrically pumped semiconductor laser based on a novel design, demonstrating high power per mode with much lower spatial coherence than conventional laser sources. The laser resonator was fabricated with a chaotic, D-shaped cavity optimized to achieve highly multimode lasing. Lasing occurs simultaneously and independently in ∼1,000 modes, and hence the total emission exhibits very low spatial coherence. Speckle-free full-field imaging is demonstrated using the chaotic cavity laser as the illumination source. The power per mode of the sample illumination is several orders of magnitude higher than that of a LED or thermal light source. Such a compact, low-cost source, which combines the low spatial coherence of a LED with the high spectral radiance of a laser, could enable a wide range of high-speed, full-field imaging and projection applications.
PHARAO space atomic clock: new developments on the laser source
NASA Astrophysics Data System (ADS)
Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.
2017-11-01
The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.
Only lasers can be used for low level laser therapy
Moskvin, Sergey Vladimirovich
2017-01-01
The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! PMID:29130447
NASA Astrophysics Data System (ADS)
Rerucha, Simon; Yacoot, Andrew; Pham, Tuan M.; Cizek, Martin; Hucl, Vaclav; Lazar, Josef; Cip, Ondrej
2017-04-01
We demonstrated that an iodine stabilized distributed Bragg reflector (DBR) diode based laser system lasing at a wavelength in close proximity to λ =633 nm could be used as an alternative laser source to the helium-neon lasers in both scientific and industrial metrology. This yields additional advantages besides the optical frequency stability and coherence: inherent traceability, wider optical frequency tuning range, higher output power and high frequency modulation capability. We experimentally investigated the characteristics of the laser source in two major steps: first using a wavelength meter referenced to a frequency comb controlled with a hydrogen maser and then on an interferometric optical bench testbed where we compared the performance of the laser system with that of a traditional frequency stabilized He-Ne laser. The results indicate that DBR diode laser system provides a good laser source for applications in dimensional (nano)metrology, especially in conjunction with novel interferometric detection methods exploiting high frequency modulation or multiaxis measurement systems.
NASA Astrophysics Data System (ADS)
Guo, Hairun; Herkommer, Clemens; Billat, Adrien; Grassani, Davide; Zhang, Chuankun; Pfeiffer, Martin H. P.; Weng, Wenle; Brès, Camille-Sophie; Kippenberg, Tobias J.
2018-06-01
Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500-4,000 cm-1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.
A practical implementation of multi-frequency widefield frequency-domain FLIM
Chen, Hongtao
2013-01-01
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequency widefield FD-FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine wave modulation. This allows parallel multi-frequency FLIM measurement using the Fast Fourier Transform and the cross-correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restored the loss of optical resolution caused by the defocusing effect when the voltage at the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit-free lifetime analysis of FLIM images. Here our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multi-frequency FLIM system is a valuable and simple tool in fluorescence imaging studies. PMID:23296945
Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.
Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K
2018-01-25
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Laser Sources for Generation of Ultrasound
NASA Technical Reports Server (NTRS)
Wagner, James W.
1996-01-01
Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.
Ultraviolet 320 nm laser excitation for flow cytometry.
Telford, William; Stickland, Lynn; Koschorreck, Marco
2017-04-01
Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husko, Chad; Wulf, Matthias; Lefrancois, Simon
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides
Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...
2016-04-15
Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less
Gain determination of optical active doped planar waveguides
NASA Astrophysics Data System (ADS)
Šmejcký, J.; Jeřábek, V.; Nekvindová, P.
2017-12-01
This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.
Method of mounting a fuel pellet in a laser-excited fusion reactor
Hirsch, Robert L.
1979-01-01
Laser irradiation means for irradiating a target, wherein a single laser light beam from a source and a mirror close to the target are used with aperture means for directing laser light to interact with the target over a broad area of the surface, and for protecting the laser light source.
Effects of laser source parameters on the generation of narrow band and directed laser ultrasound
NASA Technical Reports Server (NTRS)
Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.
1992-01-01
Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
PHARAO laser source flight model: Design and performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.
2015-03-15
In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the lasermore » source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.« less
Efficient source for the production of ultradense deuterium D(-1) for laser-induced fusion (ICF).
Andersson, Patrik U; Lönn, Benny; Holmlid, Leif
2011-01-01
A novel source which simplifies the study of ultradense deuterium D(-1) is now described. This means one step further toward deuterium fusion energy production. The source uses internal gas feed and D(-1) can now be studied without time-of-flight spectral overlap from the related dense phase D(1). The main aim here is to understand the material production parameters, and thus a relatively weak laser with focused intensity ≤10(12) W cm(-2) is employed for analyzing the D(-1) material. The properties of the D(-1) material at the source are studied as a function of laser focus position outside the emitter, deuterium gas feed, laser pulse repetition frequency and laser power, and temperature of the source. These parameters influence the D(-1) cluster size, the ionization mode, and the laser fragmentation patterns.
Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration
NASA Astrophysics Data System (ADS)
Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.
2018-05-01
For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.
Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers
NASA Technical Reports Server (NTRS)
Duerksen, Gary L.; Krainak, Michael A.
1999-01-01
Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.
Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Duerksen, Gary L.
1999-01-01
Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.
Super-contrast photoacoustic resonance imaging
NASA Astrophysics Data System (ADS)
Gao, Fei; Zhang, Ruochong; Feng, Xiaohua; Liu, Siyu; Zheng, Yuanjin
2018-02-01
In this paper, a new imaging modality, named photoacoustic resonance imaging (PARI), is proposed and experimentally demonstrated. Being distinct from conventional single nanosecond laser pulse induced wideband PA signal, the proposed PARI method utilizes multi-burst modulated laser source to induce PA resonant signal with enhanced signal strength and narrower bandwidth. Moreover, imaging contrast could be clearly improved than conventional single-pulse laser based PA imaging by selecting optimum modulation frequency of the laser source, which originates from physical properties of different materials beyond the optical absorption coefficient. Specifically, the imaging steps is as follows: 1: Perform conventional PA imaging by modulating the laser source as a short pulse to identify the location of the target and the background. 2: Shine modulated laser beam on the background and target respectively to characterize their individual resonance frequency by sweeping the modulation frequency of the CW laser source. 3: Select the resonance frequency of the target as the modulation frequency of the laser source, perform imaging and get the first PARI image. Then choose the resonance frequency of the background as the modulation frequency of the laser source, perform imaging and get the second PARI image. 4: subtract the first PARI image from the second PARI image, then we get the contrast-enhanced PARI results over the conventional PA imaging in step 1. Experimental validation on phantoms have been performed to show the merits of the proposed PARI method with much improved image contrast.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.
NASA Astrophysics Data System (ADS)
Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee
2017-05-01
Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
Power play in the supercontinuum spectra of saturable nonlinear media
NASA Astrophysics Data System (ADS)
Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.
2014-04-01
We investigate the role of pump power in the generation of supercontinua spectra induced by modulational instability (MI) in saturable nonlinear media (SNL). First, we analyze the dynamics of MI in the SNL using linear stability analysis. We then deal with the generation of a broadband spectrum by virtue of the instability process, and identify the unique behavior of MI in the SNL system. Unlike the case of Kerr-type nonlinearity, the so-called critical modulational frequency (CMF) does not monotonically increase, but behaves in a unique way, such that the increase in power increases the CMF up to the saturation power, and a further increase in power decreases the CMF. This behavior is identified to be unusual in the context of MI and thus makes the study of MI and supercontinuum generation (SCG) of interest. In order to confirm the above stated behavior in relation to SCG, we numerically analyzed the SCG using a split-step Fourier method, and the results confirm that at input power equal to saturation power, phase matching occurs at a short distance relative to other power levels and leads to a maximum enhancement of SCG in certain SNL materials.
Dobryakov, A L; Kovalenko, S A; Weigel, A; Pérez-Lustres, J L; Lange, J; Müller, A; Ernsting, N P
2010-11-01
A setup for pump/supercontinuum-probe spectroscopy is described which (i) is optimized to cancel fluctuations of the probe light by single-shot referencing, and (ii) extends the probe range into the near-uv (1000-270 nm). Reflective optics allow 50 μm spot size in the sample and upon entry into two separate spectrographs. The correlation γ(same) between sample and reference readings of probe light level at every pixel exceeds 0.99, compared to γ(consec)<0.92 reported for consecutive referencing. Statistical analysis provides the confidence interval of the induced optical density, ΔOD. For demonstration we first examine a dye (Hoechst 33258) bound in the minor groove of double-stranded DNA. A weak 1.1 ps spectral oscillation in the fluorescence region, assigned to DNA breathing, is shown to be significant. A second example concerns the weak vibrational structure around t=0 which reflects stimulated Raman processes. With 1% fluctuations of probe power, baseline noise for a transient absorption spectrum becomes 25 μOD rms in 1 s at 1 kHz, allowing to record resonance Raman spectra of flavine adenine dinucleotide in the S(0) and S(1) state.
1980-11-01
finite aperture size 5. A. E. Siegman , "Unstable optical resonators for laser of the YAG rod, applications," Proc. IEEE 53, 217-287 (1965); "Unstable...Pumped LiNbO3 Tunable Source Radial Birefringent Element Computer Controlled Laser Attenuator Slab Configuration Laser Source 20. ABSTRACT (Continue on...have invented and demonstrated a computer controlled laser attenu- ator. .... Cont inued DD Il 7 1473 EDITION OF I NOV 01 IS OBSOLETE UNCLASSIFIEDAN
Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion
Kanesue, Takeshi; Ikeda, Shunsuke
2016-12-20
A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less
Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development
NASA Astrophysics Data System (ADS)
Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.
2017-10-01
Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.
Laser ion source with solenoid field
NASA Astrophysics Data System (ADS)
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro
2014-11-01
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.
11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium
NASA Astrophysics Data System (ADS)
Sané, S. S.; Bennetts, S.; Debs, J. E.; Kuhn, C. C. N.; McDonald, G. D.; Altin, P. A.; Close, J. D.; Robins, N. P.
2012-04-01
We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J F
2007-01-31
This final report will cover work performed over the period of November 11, 2005 to September 30, 2006 on the contract to develop technologies using laser sources for radiation effects sciences. The report will discuss four topic areas; the laser source experiments on the Gekko Laser at Osaka, Japan, planning for the Charge State Freeze Out experiments to be performed in calendar year 2007, a review of previous xenon gasbags on the LANL Trident laser to provide planning support to the May-June 2007 HELEN experiments.
Laser discrimination by stimulated emission of a phosphor
NASA Technical Reports Server (NTRS)
Mathur, V. K.; Chakrabarti, K.
1991-01-01
A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.
Only lasers can be used for low level laser therapy.
Moskvin, Sergey Vladimirovich
2017-12-01
The question of lasers' exclusivity, as well as the degree of influence of special properties of low-intensity laser illumination (LILI), such as coherence, polarity and monochromaticity, on the effectiveness of low level laser therapy (LLLT) continues to cause arguments. The study analyzes publications from 1973 to 2016, in which laser and conventional light sources are compared, and the following conclusions are drawn. First, there are a lot of publications with incorrect comparison or unfounded statements. Secondly, other sources of light are often meant by LILI without any justification. Thirdly, all studies, in which the comparison is carried out correctly and close parameters of the impact and the model are used, have a firm conclusion that laser light is much more effective. Fourthly, it is uniquely identified that the most important parameter that determines the efficiency of lasers is monochromaticity, i.e., a much narrower spectral width than for all other light sources. Only laser light sources can be used for LLLT! © Author(s) 2017. This article is published with open access by China Medical University.
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi; Ikeda, Shunsuke
A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less
RF synchronized short pulse laser ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu
A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less
Generation and application of ultrashort coherent mid-infrared electromagnetic radiation
NASA Astrophysics Data System (ADS)
Wandel, Scott
Particle accelerators are useful instruments that help address critical issues for the future development of nuclear energy. Current state-of-the-art accelerators based on conventional radio-frequency (rf) cavities are too large and expensive for widespread commercial use, and alternative designs must be considered for supplying relativistic beams to small-scale applications, including medical imaging, secu- rity screening, and scientific research in a university-scale laboratory. Laser-driven acceleration using micro-fabricated dielectric photonic structures is an attractive approach because such photonic microstructures can support accelerating fields that are 10 to 100 times higher than that of rf cavity-based accelerators. Dielectric laser accelerators (DLAs) use commercial lasers as a driving source, which are smaller and less expensive than the klystrons used to drive current rf-based accelerators. Despite the apparent need for compact and economical laser sources for laser-driven acceleration, the availability of suitable high-peak-power lasers that cover a broad spectral range is currently limited. To address the needs of several innovative acceleration mechanisms like DLA, it is proposed to develop a coherent source of mid-infrared (IR) electromagnetic radiation that can be implemented as a driving source of laser accelerators. The use of ultrashort mid-IR high peak power laser systems in various laser-driven acceleration schemes has shown the potential to greatly reduce the optical pump intensities needed to realize high acceleration gradients. The optical intensity needed to achieve a given ponderomotive potential is 25 times less when using a 5-mum mid-IR laser as compared to using a 1-mum near-IR solid-state laser. In addition, dielectric structure breakdown caused by multiphoton ionization can be avoided by using longer-wavelength driving lasers. Current mid-IR laser sources do not produce sufficiently short pulse durations, broad spectral bandwidths, or high energies as required by certain accelerator applications. The use of a high-peak-power mid-IR laser system in DLA could enable tabletop accelerators on the MeV to GeV scale for security scanners, medical therapy devices, and compact x-ray light sources. This dissertation reports on the design and construction of a simple and robust, short-pulse parametric source operating at a center wavelength of 5 mum. The design and construction of a high-energy, short-pulse 2-mum parametric source is also presented, which serves as a surrogate pumping source for the 5-mum source. An elegant method for mid-IR pulse characterization is demonstrated, which makes use of ubiquitous silicon photodetectors, traditionally reserved for the characterization of near-IR radiation. In addition, a dual-chirped parametric amplification technique is extended into the mid-IR spectral region, producing a bandwidth-tunable mid-IR source in a simple design without sacrificing conversion efficiency. The design and development of a compact single-shot mid-IR prism spectrometer is also reported, and its implementation in a number of condensed matter studies at the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is discussed. Rapid tuning and optimization of a high-energy parametric laser system using the mid-IR spectrometer is demonstrated, which significantly enhances the capabilities of performing optical measurements on superconducting materials using the LCLS instrument. All of the laser sources and optical technologies presented in this dissertation were developed using relatively simple designs to provide compact and cost-e ective systems to address some of the challenges facing accelerator and IR spectroscopy technologies. (Abstract shortened by ProQuest.).
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
ARPA solid state laser and nonlinear materials program
NASA Astrophysics Data System (ADS)
Moulton, Peter F.
1994-06-01
The Research Division of Schwartz Electro-Optics, as part of the ARPA Solid State Laser and Nonlinear Materials Program, conducted a three-year study 'Erbium-Laser-Based Infrared Sources.' The aim of the study was to improve the understanding of semiconductor-laser-pumped, infrared (IR) solid state lasers based on the trivalent rare-earth ion erbium (Er) doped into a variety of host crystals. The initial program plan emphasized operation of erbium-doped materials on the 2.8-3.0 micrometers laser transition. Pulsed, Q-switched sources using that transition, when employed as a pump source for parametric oscillators, can provide tunable mid-IR energy. The dynamics of erbium lasers are more complex than conventional neodymium (Nd)-doped lasers and we intended to use pump-probe techniques to measure the level and temporal behavior of gain in various materials. To do so we constructed a number of different cw Er-doped lasers as probe sources and employed the Cr:LiSAF(LiSrAlF6) laser as a pulsed pump source that would simulate pulsed diode arrays. We identified the 970-nm wavelength pump band of Er as the most efficient and were able to make use of recently developed cw and pulsed InGaAs strained-quantum-well diode lasers in the effort. At the conclusion of the program we demonstrated the first pulsed diode bar pumping of the most promising materials for pulsed operation, the oxide garnets YSGG and GGG and the fluoride BaY2F8.
New laser sources for clinical treatment and diagnostics of neonatal jaundice
NASA Astrophysics Data System (ADS)
Hamza, Mostafa; El-Ahl, Mohammad H. S.; Hamza, Ahmad M.
2001-06-01
An elevated serum bilirubin concentration in the newborn infant presents a therapeutic as well as a diagnostic problem to the physician. It has long been recognized that high levels of bilirubin cause irreversible brain damage and even death. The authors introduce the use of semiconductor diode lasers and diode-pumped solid-state lasers that can be used for solving such diagnostic and therapeutic problems. These new laser sources can improve the ergonomics of using laser, enhance performance capabilities and reduce the cost of employing laser energy to pump bilirubin out of an infant's body. The choice of laser wavelengths follows the principles of bilirubinometry and phototherapy of neonatal jaundice. The wide spread use of these new laser sources for clinical monitoring and treatment of neonatal hyperbilirubinemia will be made possible as each incremental or quantum jump cost reduction is achieved. Our leading clinical experience as well as the selection rules of laser wavelengths will be presented.
Beam current controller for laser ion source
Okamura, Masahiro
2014-10-28
The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.
Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources
NASA Astrophysics Data System (ADS)
Sizyuk, Tatyana; Hassanein, Ahmed
2014-08-01
Photon sources produced by laser beams with moderate laser intensities, up to 1014 W/cm2, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5% ± 1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6.× nm wavelengths, and water-window microscopy utilizing 2.48 nm (La-α) and 2.88 nm (He-α) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.× nm sources.
Laser ion source with solenoid field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanesue, Takeshi, E-mail: tkanesue@bnl.gov; Okamura, Masahiro; Fuwa, Yasuhiro
2014-11-10
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAGmore » laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Laser ion source with solenoid field
Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; ...
2014-11-12
Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10 11,more » which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less
Laser-driven powerful kHz hard x-ray source
NASA Astrophysics Data System (ADS)
Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie
2017-08-01
A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.
text only NLC Home Page NLC Technical SLAC Sources Damping Rings S & L Band Linacs Engineering ; Presentations Injector System Documentation Talks and Presentations The NLC ZDR ISG Reports Sources Lasers Photocathodes Electron Source Laser Maintenance Facility Positron Source Sources Technical Notes Sources Meeting
A compact tunable polarized X-ray source based on laser-plasma helical undulators
Luo, J.; Chen, M.; Zeng, M.; Vieira, J.; Yu, L. L.; Weng, S. M.; Silva, L. O.; Jaroszynski, D. A.; Sheng, Z. M.; Zhang, J.
2016-01-01
Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because of their extremely high accelerating gradients. However, X-ray radiation from such devices still lacks tunability, especially of the intensity and polarization distributions. Here we propose a tunable polarized radiation source based on a helical plasma undulator in a plasma channel guided wakefield accelerator. When a laser pulse is initially incident with a skew angle relative to the channel axis, the laser and accelerated electrons experience collective spiral motions, which leads to elliptically polarized synchrotron-like radiation with flexible tunability on radiation intensity, spectra and polarization. We demonstrate that a radiation source with millimeter size and peak brilliance of 2 × 1019 photons/s/mm2/mrad2/0.1% bandwidth can be made with moderate laser and electron beam parameters. This brilliance is comparable with third generation synchrotron radiation facilities running at similar photon energies, suggesting that laser plasma based radiation sources are promising for advanced applications. PMID:27377126
Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.
Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki
2007-09-15
We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.
Multi-keV X-ray area source intensity at SGII laser facility
NASA Astrophysics Data System (ADS)
Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei
2018-05-01
Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.
Low-threshold, CW, all-solid-state Ti:Al2O3 laser
NASA Technical Reports Server (NTRS)
Harrison, James; Finch, Andrew; Rines, David M.; Rines, Glen A.; Moulton, Peter F.
1991-01-01
A CW Ti:Al2O3 ring laser with a threshold power of 119 mW is demonstrated. It provides a tunable source of single-frequency, diffraction-limited radiation that is suitable for injection seeding. The Ti:Al2O3 laser is operated with a diode-laser-pumped, frequency-doubled, Nd:YAG laser as the sole pump source.
Luminescent light source for laser pumping and laser system containing same
Hamil, Roy A.; Ashley, Carol S.; Brinker, C. Jeffrey; Reed, Scott; Walko, Robert J.
1994-01-01
The invention relates to a pumping lamp for use with lasers comprising a porous substrate loaded with a component capable of emitting light upon interaction of the component with exciting radiation and a source of exciting radiation. Preferably, the pumping lamp comprises a source of exciting radiation, such as an electron beam, and an aerogel or xerogel substrate loaded with a component capable of interacting with the exciting radiation, e.g., a phosphor, to produce light, e.g., visible light, of a suitable band width and of a sufficient intensity to generate a laser beam from a laser material.
Sher, Mark H.; Macklin, John J.; Harris, Stephen E.
1989-09-26
A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
High reliability low jitter pulse generator
Savage, Mark E.; Stoltzfus, Brian S.
2013-01-01
A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.
Aflatouni, Firooz; Hashemi, Hossein
2012-01-15
A wideband laser phase noise reduction scheme is introduced where the optical field of a laser is single sideband modulated with an electrical signal containing the discriminated phase noise of the laser. The proof-of-concept experiments on a commercially available 1549 nm distributed feedback laser show linewidth reduction from 7.5 MHz to 1.8 kHz without using large optical cavity resonators. This feed-forward scheme performs wideband phase noise cancellation independent of the light source and, as such, it is compatible with the original laser source tunability without requiring tunable optical components. By placing the proposed phase noise reduction system after a commercial tunable laser, a tunable coherent light source with kilohertz linewidth over a tuning range of 1530-1570 nm is demonstrated.
The 1.083 micron tunable CW semiconductor laser
NASA Technical Reports Server (NTRS)
Wang, C. S.; Chen, Jan-Shin; Lu, Ken-Gen; Ouyang, Keng
1991-01-01
A tunable CW laser is desired to produce light equivalent to the helium spectral line at 1.08 microns. This laser will serve as an optical pumping source for He-3 and He-4 atoms used in space magnetometers. This light source can be fabricated either as a semiconductor laser diode or a pumped solid state laser. Continuous output power of greater than 10 mW is desired. Semiconductor lasers can be thermally tuned, but must be capable of locking onto the helium resonance lines. Solid state lasers must have efficient pumping sources suitable for space configuration. Additional requirements are as follows: space magnetometer applications will include low mass (less than 0.5 kg), low power consumption (less than 0.75 W), and high stability/reliability for long missions (5-10 years).
2016-08-25
AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a. CONTRACT NUMBER 5b. GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose
Method and device for remotely monitoring an area using a low peak power optical pump
Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.
2014-07-22
A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
Song, Hajun; Hwang, Sejin; Song, Jong-In
2017-05-15
This study presents an optical frequency switching scheme for a high-speed broadband terahertz (THz) measurement system based on the photomixing technique. The proposed system can achieve high-speed broadband THz measurements using narrow optical frequency scanning of a tunable laser source combined with a wavelength-switchable laser source. In addition, this scheme can provide a larger output power of an individual THz signal compared with that of a multi-mode THz signal generated by multiple CW laser sources. A swept-source THz tomography system implemented with a two-channel wavelength-switchable laser source achieves a reduced time for acquisition of a point spread function and a higher depth resolution in the same amount of measurement time compared with a system with a single optical source.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
Method and apparatus for controlling carrier envelope phase
Chang, Zenghu [Manhattan, KS; Li, Chengquan [Sunnyvale, CA; Moon, Eric [Manhattan, KS
2011-12-06
A chirped pulse amplification laser system. The system generally comprises a laser source, a pulse modification apparatus including first and second pulse modification elements separated by a separation distance, a positioning element, a measurement device, and a feedback controller. The laser source is operable to generate a laser pulse and the pulse modification apparatus operable to modify at least a portion of the laser pulse. The positioning element is operable to reposition at least a portion of the pulse modification apparatus to vary the separation distance. The measurement device is operable to measure the carrier envelope phase of the generated laser pulse and the feedback controller is operable to control the positioning element based on the measured carrier envelope phase to vary the separation distance of the pulse modification elements and control the carrier envelope phase of laser pulses generated by the laser source.
Disruptive laser diode source for embedded LIDAR sensors
NASA Astrophysics Data System (ADS)
Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier
2017-02-01
Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources will be given. Future work leads will be discussed for miniaturization of the laser diode and drastic cost reduction.
Characterization of a Ho:Tm:Cr:YAG laser with a Cr:GSAG laser as pumping source
NASA Technical Reports Server (NTRS)
Henderson, George W.
1989-01-01
Rare earth lasers were in existance since the first laser was developed. The primary lasing elements for the class of lasers in the infrared was neodymium and chromium. However, the need for eye safe lasers in the mid-infrared range has prompted an enormous amount of research to the use of other elements. Holmium was investigated extensively as the source of infrared radiation for atmospheric research as well as medical research. The results and procedure are briefly discussed.
NASA Astrophysics Data System (ADS)
Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.
2017-05-01
Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.
Imaging System With Confocally Self-Detecting Laser.
Webb, Robert H.; Rogomentich, Fran J.
1996-10-08
The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
Multi-point laser ignition device
McIntyre, Dustin L.; Woodruff, Steven D.
2017-01-17
A multi-point laser device comprising a plurality of optical pumping sources. Each optical pumping source is configured to create pumping excitation energy along a corresponding optical path directed through a high-reflectivity mirror and into substantially different locations within the laser media thereby producing atomic optical emissions at substantially different locations within the laser media and directed along a corresponding optical path of the optical pumping source. An output coupler and one or more output lenses are configured to produce a plurality of lasing events at substantially different times, locations or a combination thereof from the multiple atomic optical emissions produced at substantially different locations within the laser media. The laser media is a single continuous media, preferably grown on a single substrate.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
Applications of laser wakefield accelerator-based light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Felicie; Thomas, Alec G. R.
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Applications of laser wakefield accelerator-based light sources
Albert, Felicie; Thomas, Alec G. R.
2016-10-01
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
High-power fiber-coupled 100W visible spectrum diode lasers for display applications
NASA Astrophysics Data System (ADS)
Unger, Andreas; Küster, Matthias; Köhler, Bernd; Biesenbach, Jens
2013-02-01
Diode lasers in the blue and red spectral range are the most promising light sources for upcoming high-brightness digital projectors in cinemas and large venue displays. They combine improved efficiency, longer lifetime and a greatly improved color space compared to traditional xenon light sources. In this paper we report on high-power visible diode laser sources to serve the demands of this emerging market. A unique electro-optical platform enables scalable fiber coupled sources at 638 nm with an output power of up to 100 W from a 400 μm NA0.22 fiber. For the blue diode laser we demonstrate scalable sources from 5 W to 100 W from a 400 μm NA0.22 fiber.
Tri-channel single-mode terahertz quantum cascade laser.
Wang, Tao; Liu, Jun-Qi; Liu, Feng-Qi; Wang, Li-Jun; Zhang, Jin-Chuan; Wang, Zhan-Guo
2014-12-01
We report on a compact THz quantum cascade laser source emitting at, individually controllable, three different wavelengths (92.6, 93.9, and 95.1 μm). This multiwavelength laser array can be used as a prototype of the emission source of THz wavelength division multiplex (WDM) wireless communication system. The source consists of three tapered single-mode distributed feedback (DFB) terahertz quantum cascade lasers fabricated monolithically on a single chip. All array elements feature longitudinal as well as lateral single-mode in the entire injection range. The peak output powers of individual lasers are 42, 73, and 37 mW at 10 K, respectively.
Temporal narrowing of neutrons produced by high-intensity short-pulse lasers
Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...
2015-07-28
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucksbaum, P.H.; Ceglio, N.M.
This volume contains the papers delivered at the conference which chronicle the major advances in short-wavelength laser physics and technology. It is divided into the following sections: Sources of Short-Wavelength Radiation; Applications of Short-Wavelength Radiation; High-Intensity Laser Sources; and High-Intensity Laser-Matter Interactions.
On the use of a laser ablation as a laboratory seismic source
NASA Astrophysics Data System (ADS)
Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane
2017-04-01
Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the experimental data with simulations. Meanwhile, CT-scan X-ray images of these limestone cores will be used to check the relative pertinences of velocity tomography images produced by this newly developed laser ablation seismic source.
Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W
2016-02-01
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.
2016-02-15
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less
Laser and optical system for laser assisted hydrogen ion beam stripping at SNS
Liu, Y.; Rakhman, A.; Menshov, A.; ...
2016-12-01
A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.
Laser and optical system for laser assisted hydrogen ion beam stripping at SNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Rakhman, A.; Menshov, A.
A high-efficiency laser assisted hydrogen ion (H-) beam stripping was recently successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This study reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.
Quality improvement of polymer parts by laser welding
NASA Astrophysics Data System (ADS)
Puetz, Heidrun; Treusch, Hans-Georg; Welz, M.; Petring, Dirk; Beyer, Eckhard; Herziger, Gerd
1994-09-01
The growing significance of laser technology in industrial manufacturing is also observed in case of plastic industry. Laser cutting and marking are established processes. Laser beam welding is successfully practiced in processes like joining foils or winding reinforced prepregs. Laser radiation and its significant advantages of contactless and local heating could even be an alternative to conventional welding processes using heating elements, vibration or ultrasonic waves as energy sources. Developments in the field of laser diodes increase the interest in laser technology for material processing because in the near future they will represent an inexpensive energy source.
NASA Astrophysics Data System (ADS)
Bradu, Adrian; Jackson, David A.; Podoleanu, Adrian
2018-03-01
Typically, swept source optical coherence tomography (SS-OCT) imaging instruments are capable of a longer axial range than their camera based (CB) counterpart. However, there are still various applications that would take advantage for an extended axial range. In this paper, we propose an interferometer configuration that can be used to extend the axial range of the OCT instruments equipped with conventional swept-source lasers up to a few cm. In this configuration, the two arms of the interferometer are equipped with adjustable optical path length rings. The use of semiconductor optical amplifiers in the two rings allows for compensating optical losses hence, multiple paths depth reflectivity profiles (Ascans) can be combined axially. In this way, extremely long overall axial ranges are possible. The use of the recirculation loops produces an effect equivalent to that of extending the coherence length of the swept source laser. Using this approach, the achievable axial imaging range in SS-OCT can reach values well beyond the limit imposed by the coherence length of the laser, to exceed in principle many centimeters. In the present work, we demonstrate axial ranges exceeding 4 cm using a commercial swept source laser and reaching 6 cm using an "in-house" swept source laser. When used in a conventional set-up alone, both these lasers can provide less than a few mm axial range.
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
NASA Astrophysics Data System (ADS)
Cheng, Tonglei; Liao, Meisong; Xue, Xiaojie; Li, Jiang; Gao, Weiqing; Li, Xia; Chen, Danping; Zheng, Shupei; Pan, Yubai; Suzuki, Takenobu; Ohishi, Yasutake
2016-03-01
We design and fabricate a silica optical fiber doped with yttrium aluminosilicate (YAS, Y2O3-Al2O3-SiO2) nanoparticles in the core. The optical fiber is drawn directly from a silica tube with YAG (Y3Al5O12) ceramics and silica powders (the molar ratio 1:18) in the core at the temperature of ∼1950 °C. The YAS nanoparticles are formed during the optical fiber drawing process. Supercontinuum (SC) generation in the optical fiber is investigated at different pump wavelength. At the pump wavelength of ∼1750 nm which is in the deep anomalous dispersion region, SC spectrum evolution is mainly due to multiple solitons and dispersive waves (DWs), and three pairs of multiple optical solitons and DWs are observed. When the pump wavelength shifts to ∼1500 nm which is close to the zero-dispersion wavelength (ZDW), flattened SC spectrum with ±7 dB uniformity is obtained at the wavelength region of ∼990-1980 nm, and only one obvious soliton and DW are observed. At the pump wavelength of ∼1100 nm, a narrow SC spectrum from ∼1020 to 1180 nm is obtained in the normal dispersion region due to self-phase modulation (SPM) effect.
High-Speed Operation of Interband Cascade Lasers
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.
2010-01-01
Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links
Low-Coherence light source design for ESPI in-plane displacement measurements
NASA Astrophysics Data System (ADS)
Heikkinen, J. J.; Schajer, G. S.
2018-01-01
The ESPI method for surface deformation measurements requires the use of a light source with high coherence length to accommodate the optical path length differences present in the apparatus. Such high-coherence lasers, however, are typically large, delicate and costly. Laser diodes, on the other hand, are compact, mechanically robust and inexpensive, but unfortunately they have short coherence length. The present work aims to enable the use of a laser diode as an illumination source by equalizing the path lengths within an ESPI interferometer. This is done by using a reflection type diffraction grating to compensate for the path length differences. The high optical power efficiency of such diffraction gratings allows the use of much lower optical power than in previous interferometer designs using transmission gratings. The proposed concept was experimentally investigated by doing in-plane ESPI measurements using a high-coherence single longitudinal mode (SLM) laser, a laser diode and then a laser diode with path length optimization. The results demonstrated the limitations of using an uncompensated laser diode. They then showed the effectiveness of adding a reflection type diffraction grating to equalize the interferometer path lengths. This addition enabled the laser diode to produce high measurement quality across the entire field of view, rivaling although not quite equaling the performance of a high-coherence SLM laser source.
Single frequency stable VCSEL as a compact source for interferometry and vibrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudzik, Grzegorz; Rzepka, Janusz
2010-05-28
Developing an innovative PS-DAVLL (Polarization Switching DAVLL) method of frequency stabilization, which used a ferroelectric liquid crystal cell as quarter wave plate, rubidium cell and developed ultra-stable current source, allowed to obtain a frequency stability of 10{sup -9}(frequency reproducibility of 1,2centre dot10{sup -8}) and reductions in external dimensions of laser source. The total power consumption is only 1,5 Watt. Because stabilization method used in the frequency standard is insensitive to vibration, the semiconductor laser interferometer was built for measuring range over one meter, which can also be used in industry for the accurate measurement of displacements with an accuracy ofmore » 1[mum/m]. Measurements of the VCSEL laser parameters are important from the standpoint of its use in laser interferometry or vibrometry, like narrow emission line DELTAnu{sub FWHM} = 70[MHz] equivalent of this laser type and stability of linear polarization of VCSEL laser. The undoubted advantage of the constructed laser source is the lack of mode-hopping effect during continuous work of VCSEL.« less
Generation of 369.4 nm Radiation by Efficient Doubling of a Diode Laser
NASA Technical Reports Server (NTRS)
Williams, A.; Seidel, D. J.; Maleki, J.
1993-01-01
A resonant cavity second harmonic generation system has been developed to produce 369.4 nm radiation from a 738.8 nm diode laser with 10 mW nominal output power. This system utilizes a polarization technique to lock the cavity to the laser frequency. In this paper we report on an evaluation of the system using a Titanium:Sapphire laser as the input source, and preliminary results with a diode laser source. To our knowledge, this is the deepest uv light ever produced by frequency-doubling a diode laser.
Innovative ceramic slab lasers for high power laser applications
NASA Astrophysics Data System (ADS)
Lapucci, Antonio; Ciofini, Marco
2005-09-01
Diode Pumped Solid State Lasers (DPSSL) are gaining increasing interest for high power industrial application, given the continuous improvement in high power diode laser technology reliability and affordability. These sources open new windows in the parameter space for traditional applications such as cutting , welding, marking and engraving for high reflectance metallic materials. Other interesting applications for this kind of sources include high speed thermal printing, precision drilling, selective soldering and thin film etching. In this paper we examine the most important DPSS laser source types for industrial applications and we describe in details the performances of some slab laser configurations investigated at our facilities. The different architectures' advantages and draw-backs are briefly compared in terms of performances, system complexity and ease of scalability to the multi-kW level.
Off-line-locked laser diode species monitor system
NASA Technical Reports Server (NTRS)
Lee, Jamine (Inventor); Goldstein, Neil (Inventor); Richtsmeier, Steven (Inventor); Bien, Fritz (Inventor); Gersh, Michael (Inventor)
1995-01-01
An off-line-locked laser diode species monitor system includes: reference means for including at least one known species having a first absorption wavelength; a laser source for irradiating the reference means and at least one sample species having a second absorption wavelength differing from the first absorption wavelength by a predetermined amount; means for locking the wavelength of the laser source to the first wavelength of the at least one known species in the reference means; a controller for defeating the means for locking and for displacing the laser source wavelength from said first absorption wavelength by said predetermined amount to the second absorption wavelength; and a sample detector device for determining laser radiation absorption at the second wavelength transmitted through the sample to detect the presence of the at least one sample species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurin, I.; Bramati, A.; Giacobino, E.
2005-09-15
Semiconductor lasers are particularly well suited for the implementation of pump-noise suppression, yielding a reduction of the intensity noise in the laser. In this simple picture, the maximal amount of squeezing is equal to the quantum efficiency. However, experimental results on intensity noise reduction by pump-noise suppression are usually above this limit. This discrepancy suggests that additional noise sources must be involved. Here we successful y interpret the full noise behavior of a single-mode laser diode far above threshold by considering two excess noise sources: the leakage current fluctuations across the laser and the Petermann excess noise. We have estimatedmore » the contribution of each noise source using the results of the correlations between the laser output intensity noise and the voltage fluctuations across the laser diode (light-voltage correlations) and obtained good agreement between our theory and experimental results.« less
A microchip laser source with stable intensity and frequency used for self-mixing interferometry.
Zhang, Shaohui; Zhang, Shulian; Tan, Yidong; Sun, Liqun
2016-05-01
We present a stable 40 × 40 × 30 mm(3) Laser-diode (LD)-pumped-microchip laser (ML) laser source used for self-mixing interferometry which can measure non-cooperative targets. We simplify the coupling process of pump light in order to make its polarization and intensity robust against environmental disturbance. Thermal frequency stabilization technology is used to stabilize the laser frequency of both LD and ML. Frequency stability of about 1 × 10(-7) and short-term intensity fluctuation of 0.1% are achieved. The theoretical long-term displacement accuracy limited by frequency and intensity fluctuation is about 10 nm when the measuring range is 0.1 m. The line-width of this laser is about 25 kHz corresponding to 12 km coherent length and 6 km measurement range for self-mixing interference. The laser source has been equipped to a self-mixing interferometer, and it works very well.
Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding
NASA Astrophysics Data System (ADS)
Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad
The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.
OCT imaging with temporal dispersion induced intense and short coherence laser source
NASA Astrophysics Data System (ADS)
Manna, Suman K.; le Gall, Stephen; Li, Guoqiang
2016-10-01
Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.
Demonstration of miniaturized 20mW CW 280nm and 266nm solid-state UV laser sources
NASA Astrophysics Data System (ADS)
Landru, Nicolas; Georges, Thierry; Beaurepaire, Julien; Le Guen, Bruno; Le Bail, Guy
2015-02-01
Visible 561 nm and 532 nm laser emissions from 14-mm long DPSS monolithic cavities are frequency converted to deep UV 280 nm and 266 nm in 16-mm long monolithic external cavities. Wavelength conversion is fully insensitive to mechanical vibrations and the whole UV laser sources fit in a miniaturized housing. More than 20 mW deep UV laser emission is demonstrated with high power stability, low noise and good beam quality. Aging tests are in progress but long lifetimes are expected thanks to the cavity design. Protein detection and deep UV resonant Raman spectroscopy are applications that could benefit from these laser sources.
Research for the jamming mechanism of high-frequency laser to the laser seeker
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming
2013-08-01
High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, Brian E.; Park, Jesung; Carbajal, Esteban
Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex usermore » developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.« less
Overview of selected seminal optical science and photonics processes in nature
NASA Astrophysics Data System (ADS)
Alfano, Robert R.
2016-03-01
This presentation gives an overview on some of seminal research in optical science, condensed matter physics, biophysics, biology, biomedical, nonlinear optics, and structure light propagation and interactions at CCNY and GTE Labs over past 46 years. The advent of ultrafast laser pulses with picosecond and femtosecond pulses and optical spectroscopy (label free native fluorescence and Raman) has led to unravel some of mysteries in the molecular world leading to breakthroughs in various areas of science and medicine. The following topics are discussed: white light continuum called now Supercontinuum (SC); first direct measurement of Optical Phonon's lifetimes; first observation of creation of daughter vibrations in time from excited mother vibration in liquids; first direct measurement of creation and decay of Spin Angular Momentum of electrons in GaAs where picosecond Circular Polarized Light carrying Optical Spin Angular Momentum is generated; Pulse break up into ballistic, snake and diffusive components in scattering media such as um beads and tissues; and use of optical spectroscopy for first cancer detection in label free tissues. Most recently, advances in Biomedical Optics showed that Tryptophan as a key biomarker for aggressive cancers; there are three new optical windows with the Golden window #3 the best for penetrating tissue from 1600 nm to 1800 nm; Complex light with OAM offers potential deeper tissue penetration and Resonance Raman excited using magic 532 nm wavelength in tissues.
NASA Astrophysics Data System (ADS)
Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.
In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.
Compact laser accelerators for X-ray phase-contrast imaging
Najmudin, Z.; Kneip, S.; Bloom, M. S.; Mangles, S. P. D.; Chekhlov, O.; Dangor, A. E.; Döpp, A.; Ertel, K.; Hawkes, S. J.; Holloway, J.; Hooker, C. J.; Jiang, J.; Lopes, N. C.; Nakamura, H.; Norreys, P. A.; Rajeev, P. P.; Russo, C.; Streeter, M. J. V.; Symes, D. R.; Wing, M.
2014-01-01
Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications. With advances in laser plasma acceleration, electron beams can now be generated at energies comparable to those used in light sources, but in university-sized laboratories. By making use of the strong transverse focusing of plasma accelerators, bright sources of betatron radiation have been produced. Here, we demonstrate phase-contrast imaging of a biological sample for the first time by radiation generated by GeV electron beams produced by a laser accelerator. The work was performed using a greater than 300 TW laser, which allowed the energy of the synchrotron source to be extended to the 10–100 keV range. PMID:24470414
Solid state laser media driven by remote nuclear powered fluorescence
Prelas, Mark A.
1992-01-01
An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.
Optical laser systems at the Linac Coherent Light Source
Minitti, Michael P.; Robinson, Joseph S.; Coffee, Ryan N.; ...
2015-04-22
Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.
Early, James W.; Lester, Charles S.
2002-01-01
In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source
NASA Astrophysics Data System (ADS)
Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira
2017-01-01
Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.
Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.
Telford, William G
2015-12-01
Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on behalf of ISAC.
NASA Technical Reports Server (NTRS)
Matsuoka, N.; Yamaguchi, S.; Nanri, K.; Fujioka, T.; Richter, D.; Tittel, F. K.
2001-01-01
A Yb fiber laser pumped cw narrow-linewidth tunable mid-IR source based on a difference frequency generation (DFG) in a periodically poled LiNbO3 (PPLN) crystal for trace gas detection was demonstrated. A high power Yb fiber laser and a distributed feedback (DFB) laser diode were used as DFG pump sources. This source generated mid-IR at 3 microns with a powers of 2.5 microW and a spectral linewidth of less than 30 MHz. A frequency tuning range of 300 GHz (10 cm-1) was obtained by varying the current and temperature of the DFB laser diode. A high-resolution NH3 absorption Doppler-broadened spectrum at 3295.4 cm-1 (3.0345 microns) was obtained at a cell pressure of 27 Pa from which a detection sensitivity of 24 ppm m was estimated.