Sample records for supercritical extraction process

  1. Supercritical Fluid Fractionation of JP-8

    DTIC Science & Technology

    1991-12-26

    applications, such as coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and ipracticed...PRINCIPLES OF SUPERCRITICAL FLUID EXTRACTION 8 A. Background on Supercritical Fluid Solubility 8 B. Supercritical Fluid Extraction Process ...Operation I0 1. Batch Extraction of Solid Materials 10 2. Counter-Current Continuous SCF Processing of Liquid 15 Products 3. Supercritical Fluid Extraction vs

  2. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].

    PubMed

    Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu

    2011-08-01

    To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.

  4. Bio-oil production from biomass via supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds weremore » identified by GC-MS obtained in acetone and ethanol respectively.« less

  5. Two-structured solid particle model for predicting and analyzing supercritical extraction performance.

    PubMed

    Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh

    2017-07-14

    Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  7. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials.

    PubMed

    Wrona, Olga; Rafińska, Katarzyna; Możeński, Cezary; Buszewski, Bogusław

    2017-11-01

    There has been growing interest in the application of supercritical solvents over the last several years, many of the applications industrial in nature. The purpose of plant material extraction is to obtain large amounts of extract rich in the desired active compounds in a time-sensitive and cost-effective manner. The productivity and profitability of a supercritical fluid extraction (SFE) process largely depends on the selection of process parameters, which are elaborated upon in this paper. Carbon dioxide (CO2) is the most desirable solvent for the supercritical extraction of natural products. Its near-ambient critical temperature makes it suitable for the extraction of thermolabile components without degradation. A new approach has been adopted for SFE in which the solubility of nonpolar supercritical CO2 can be enhanced by the addition of small amounts of cosolvent.

  8. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  9. Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth

    USDA-ARS?s Scientific Manuscript database

    In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...

  10. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  11. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  12. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  13. Supercritical fluid extraction and processing of foods

    USDA-ARS?s Scientific Manuscript database

    Consumers are aware of the processing techniques used to manufacture food and health supplements and are concerned about the impact of those processes on their health and the environment. Processes that use supercritical fluids as an alternative to solvents that are used to extract nutrients and bio...

  14. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2.

    PubMed

    Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V

    2017-01-01

    Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .

  15. The ultrasonic-enhanced factor of mass-transfer coefficient in the supercritical carbon dioxide extraction

    NASA Astrophysics Data System (ADS)

    Luo, Benyi; Lu, Yigang

    2008-10-01

    Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.

  16. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  17. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These findings indicate that hydrocarbon solubility does not exert a strong influence on hydrocarbon behavior in the systems studied. Other factors such as coal composition and maceral content, surface processes (physisorption), or other molecular interactions appear to affect the partitioning of hydrocarbons within the coal–supercritical CO2 system. Resolving the extent to which these factors might affect hydrocarbon behavior under different geological settings is important to efforts seeking to model petroleum generation, fractionation and expulsion from coal beds and to delineate potential hydrocarbon fate and transport in geologic CO2 sequestration settings.

  19. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel

    2010-01-01

    Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.

  20. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  1. Theoretical models for supercritical fluid extraction.

    PubMed

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  3. [Optimization of supercritical fluid extraction of bioactive components in Ligusticum chuanxiong by orthogonal array design].

    PubMed

    Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong

    2013-10-01

    With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.

  4. Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide.

    PubMed

    Seegers, Christel L C; Tepper, Pieter G; Setroikromo, Rita; Quax, Wim J

    2018-05-01

    Deoxypodophyllotoxin is present in the roots of Anthriscus sylvestris . This compound is cytotoxic on its own, but it can also be converted into podophyllotoxin, which is in high demand as a precursor for the important anticancer drugs etoposide and teniposide. In this study, deoxypodophyllotoxin is extracted from A. sylvestris roots by supercritical carbon dioxide extraction. The process is simple and scalable. The supercritical carbon dioxide method extracts 75 - 80% of the total deoxypodophyllotoxin content, which is comparable to a single extraction by traditional Soxhlet. However, less polar components are extracted. The activity of the supercritical carbon dioxide extract containing deoxypodophyllotoxin was assessed by demonstrating that the extract arrests A549 and HeLa cells in the G 2 /M phase of the cell cycle. We conclude that biologically active deoxypodophyllotoxin can be extracted from A. sylvestris by supercritical carbon dioxide extraction. The method is solvent free and more sustainable compared to traditional methods. Georg Thieme Verlag KG Stuttgart · New York.

  5. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    NASA Astrophysics Data System (ADS)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  6. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  7. Hydrocarbon recovery from diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scinta, J.

    1984-05-15

    Supercritical extraction of diatomaceous earth results in a much more significant improvement in hydrocarbon recovery over Fischer retorting than achievable with tar sands. Process and apparatus for supercritical extraction of diatomaceous earth are disclosed.

  8. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  9. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  10. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  11. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.

    PubMed

    Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna

    2015-11-01

    Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2. They reported complete miscibility of TiCl4 with supercritical CO2 (infinite solubility). At 1500 psig, TiCl4 and CO2 form a single liquid phase below 50 C. Tolley et al. also reported on the solubility and thermodynamics of tin tetrachloride in supercritical CO2. Some of their data for TiC14 are shown. Three criteria have been suggested to predict which materials are suitable for supercritical extraction: 1) Hydrocarbons or lipophilic compounds of low molecular weight and polarity are easily extracted with supercritical CO2. 2) Compounds with polar groups are not easily extracted with supercritical CO2. 3) Separation of mixtures is facilitated if components differing mass, vapor pressure, or polarity.

  13. [Extraction of 10-Deacetyl Baccatin by Supercritical CO2 from Taxus yunnanensis Branches and Leaves].

    PubMed

    Tang, Yang-qin; Li, Hai-chi; Huang, Wen-jie; Xiong, Yan; Ge, Fa-huan

    2015-04-01

    To study the supercritical CO2 fluids extraction (SFE) method to extract the components from Taxus yunnanensis. Medicinal meterials were extracted by supercritical CO2, and then purified by industrial chromatography. Using the extraction yield of 10-DAB as the index,single factor test was carried out to investigate the effect of co-solvent, extraction time, extraction pressure, extraction temperature, pressure and temperature of separation kettle I. Then orthogonal experiment was used to optimize the best extraction condition. The suitable extraction condition was as follows: the ratio of co-solvent (80% ethanol) amount and the madicinal materials was 3: 1, Separation kettle I pressure was 14 MPa, separation kettle I temperature was 40 °C, extraction pressure was 25 MPa, extraction temperature was 60 T and extraction time was 90 min. The extract was separated by industrial chromatographic and then crystallized. The supercritical CO2 extraction and purification process of 10-DAB were simple and feasible.

  14. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  15. Supercritical CO2 Extraction of Rice Bran Oil -the Technology, Manufacture, and Applications.

    PubMed

    Sookwong, Phumon; Mahatheeranont, Sugunya

    2017-06-01

    Rice bran is a good source of nutrients that have large amounts of phytochemicals and antioxidants. Conventional rice bran oil production requires many processes that may deteriorate and degrade these valuable substances. Supercritical CO 2 extraction is a green alternative method for producing rice bran oil. This work reviews production of rice bran oil by supercritical carbon dioxide (SC-CO 2 ) extraction. In addition, the usefulness and advantages of SC-CO 2 extracted rice bran oil for edible oil and health purpose is also described.

  16. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  17. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  18. Study of process variables in supercritical carbon dioxide extraction of soybeans.

    PubMed

    Wilkinson, Nikolas; Hilton, Ramsey; Hendry, Doug; Venkitasamy, Chandrasekar; Jacoby, William

    2014-01-01

    Soybean flakes were extracted using supercritical carbon dioxide at 48.3 MPa and 80 °C, which is a higher temperature than previously reported. Several operational parameters were explored to determine their effect on extractions. Flakes, as typically used in this industry, provided the best extraction performance. Particle size distributions were created through grinding. Reducing average particle diameters smaller than 0.069 mm had no appreciable effect on increasing extraction efficiencies. Exploration of flow rate indicated that a residence time of less than 60 s for the supercritical carbon dioxide would be sufficient for complete extractions. A solvent mass to load mass ratio of 10:1 was found to be sufficient for extraction of oils from soybean flakes. Increasing moisture in the soybeans led to decreasing extraction efficiency of oils. Finally, soybean hulls had no effect on extraction efficiency. Thus, the de-hulling procedure can be removed from the extraction process without decreasing extraction efficiency.

  19. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  20. Biological Activities of Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) Plant Extracts.

    PubMed

    García-Risco, Mónica R; Mouhid, Lamia; Salas-Pérez, Lilia; López-Padilla, Alexis; Santoyo, Susana; Jaime, Laura; Ramírez de Molina, Ana; Reglero, Guillermo; Fornari, Tiziana

    2017-03-01

    Asteraceae (Achillea millefolium and Calendula officinalis) and Lamiaceae (Melissa officinalis and Origanum majorana) extracts were obtained by applying two sequential extraction processes: supercritical fluid extraction with carbon dioxide, followed by ultrasonic assisted extraction using green solvents (ethanol and ethanol:water 50:50). The extracts were analyzed in terms of the total content of phenolic compounds and the content of flavonoids; the volatile oil composition of supercritical extracts was analyzed by gas chromatography and the antioxidant capacity and cell toxicity was determined. Lamiaceae plant extracts presented higher content of phenolics (and flavonoids) than Asteraceae extracts. Regardless of the species studied, the supercritical extracts presented the lowest antioxidant activity and the ethanol:water extracts offered the largest, following the order Origanum majorana > Melissa officinalis ≈ Achillea millefolium > Calendula officinalis. However, concerning the effect on cell toxicity, Asteraceae (especially Achillea millefolium) supercritical extracts were significantly more efficient despite being the less active as an antioxidant agent. These results indicate that the effect on cell viability is not related to the antioxidant activity of the extracts.

  1. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.

    PubMed

    Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan

    2018-04-01

    Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.

  2. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  3. Comparison of the Anti-Inflammatory Activities of Supercritical Carbon Dioxide versus Ethanol Extracts from Leaves of Perilla frutescens Britt. Radiation Mutant.

    PubMed

    Jin, Chang Hyun; Park, Han Chul; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek

    2017-02-17

    In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 μg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.

  4. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  5. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  6. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  7. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  8. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  9. Supercritical Fluid Processing of Propellant Polymers

    DTIC Science & Technology

    1991-01-01

    coffee decaffeination , spice extraction, and lipids purification. The processing principles have also long been well known and practiced in the...rn PL-TR-91 -3003 AD: AD-A234 285 Final Report Supercritical Fluid Processing for the period of Propellant Polymers September 1989 to September 1990...PROJECT TASK I’Ac K UNIT ELEMENT NO. NO. P:~53Co O 62302F 5730 0055 3𔃻U-- 11. TITLE (Include Security Classification) Supercritical Fluid Processing

  10. [Optimization of extraction process for tannins from Geranium orientali-tibeticum by supercritical CO2 method].

    PubMed

    Xie, Song; Tong, Zhi-Ping; Tan, Rui; Liu, Xiao-Zhen

    2014-08-01

    In order to optimize extraction process conditions of tannins from Geranium orientali-tibeticum by supercritical CO2, the content of tannins was determined by phosphomolybdium tungsten acid-casein reaction, with extraction pressure, extraction temper- ature and extraction time as factors, the content of tannins from extract of G. orientali-tibeticum as index, technology conditions were optimized by orthogonal test. Optimum technology conditions were as follows: extraction pressure was 25 MPa, extraction temperature was 50 °C, extracted 1.5 h. The content of tannins in extract was 12.91 mg x g(-1), extract rate was 3.67%. The method established could be used for assay the contents of tannin in G. orientali-tibeticum. The circulated extraction was an effective extraction process that was stable and feasible, and that provides a way of the extraction process conditions of tannin from G. orientali-tibeticum.

  11. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.

    PubMed

    Uddin, Md Salim; Sarker, Md Zaidul Islam; Ferdosh, Sahena; Akanda, Md Jahurul Haque; Easmin, Mst Sabina; Bt Shamsudin, Siti Hadijah; Bin Yunus, Kamaruzzaman

    2015-05-01

    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2. © 2014 Society of Chemical Industry.

  12. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    PubMed

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  13. Parameters optimization of supercritical fluid-CO2 extracts of frankincense using response surface methodology and its pharmacodynamics effects.

    PubMed

    Zhou, Jing; Ma, Xing-miao; Qiu, Bi-Han; Chen, Jun-xia; Bian, Lin; Pan, Lin-mei

    2013-01-01

    The volatile oil parts of frankincense (Boswellia carterii Birdw.) were extracted with supercritical carbon dioxide under constant pressure (15, 20, or 25 MPa) and fixed temperature (40, 50, or 60°C), given time (60, 90, or 120 min) aiming at the acquisition of enriched fractions containing octyl acetate, compounds of pharmaceutical interest. A mathematical model was created by Box-Behnken design, a popular template for response surface methodology, for the extraction process. The response value was characterized by synthetical score, which comprised yields accounting for 20% and content of octyl acetate for 80%. The content of octyl acetate was determined by GC. The supercritical fluid extraction showed higher selectivity than conventional steam distillation. Supercritical fluid-CO(2) for extracting frankincense under optimum condition was of great validity, which was also successfully verified by the pharmacological experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOEpatents

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  15. Improved Oxidation Resistance of 3-D Carbon/Carbon Composites

    DTIC Science & Technology

    1994-01-14

    extraction process (which might be the extraction of the flavoring agents from hops or decaffeination of coffee beans) to point out how the pressure dependent...SiC) were made by a process termed Supercritical Fluid Infiltration. A preceramic polymer, e.g., a polycarbosilane which can pyrolyze to form SiC, is...using supercritical propane (in a process termed increasing pressure profiling), and it was found that some of the low molecular weight fractions gave

  16. Supercritical Extraction of Scopoletin from Helichrysum italicum (Roth) G. Don Flowers.

    PubMed

    Jokić, Stela; Rajić, Marina; Bilić, Blanka; Molnar, Maja

    2016-09-01

    The increasing popularity of immortelle (Helichrysum italicum (Roth) G. Don) and its products, particularly in the cosmetic industry, is evident nowadays. This plant is a source of coumarins, especially scopoletin, which are highly soluble in supercritical CO2 . The objective of this study was to perform the supercritical CO2 extraction process of Helichrysum italicum flowers at different values of pressure and temperature and to optimise the extraction process using response surface methodology in terms of obtaining the highest extraction yield and yield of extracted scopoletin. Extraction was performed in a supercritical extraction system under different extraction conditions of pressure and temperature determined by central composite rotatable design. The mass of flowers in the extractor of 40 g, extraction time of 90 min and CO2 mass flow rate of 1.94 kg/h were kept constant during experiments. Antioxidant activity was determined using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay method. Scopoletin concentration was determined by HPLC. Changes in extraction conditions affect the extracting results remarkably. The greatest extraction yield (6.31%) and the highest yield of scopoletin (1.933 mg/100 g) were obtained under extraction conditions of 20 MPa and 40°C. Extracts have also proven to possess antioxidant activity (44.0-58.1% DPPH scavenging activity) influenced by both temperature and pressure applied within the investigated parameters. The extraction conditions, especially pressure, exhibited significant influence on the extraction yield as well as the yield of extracted scopoletin and antioxidant activity of extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent.

    PubMed

    Macías-Sánchez, Maria Dolores; Mantell Serrano, Casimiro; Rodríguez Rodríguez, Miguel; Martínez de la Ossa, Enrique; Lubián, Luís M; Montero, Olimpio

    2008-05-01

    The extraction of carotenoids and chlorophylls using carbon dioxide modified with ethanol as a cosolvent is an alternative to solvent extraction because it provides a high-speed extraction process. In the study described here, carotenoid and chlorophyll extraction with supercritical CO(2 )+ ethanol was explored using freeze-dried powders of three microalgae (Nannochloropsis gaditana, Synechococcus sp. and Dunaliella salina) as the raw materials. The operation conditions were as follows: pressures of 200, 300, 400 and 500 bar, temperatures of 40, 50 and 60 degrees C. Analysis of the extracts was performed by measuring the absorbance and by using empirical correlations. The results demonstrate that it is necessary to work at a temperature of 50-60 degrees C and a pressure range of 300-500 bar, depending on the type of microalgae, in order to obtain the highest yield of pigments. The best carotenoid/chlorophyll ratios were obtained by using supercritical fluid extraction + cosolvent instead of using conventional extraction. The higher selectivity of the former process should facilitate the separation and purification of the two extracted pigments.

  18. Determination of Parameters for the Supercritical Extraction of Antioxidant Compounds from Green Propolis Using Carbon Dioxide and Ethanol as Co-Solvent.

    PubMed

    Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Aline Silva; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira

    2015-01-01

    The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.

  19. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less

  20. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  1. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  2. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  3. [Study on supercritical CO2 extraction of xiaoyaosan and its GC-MS fingerprint].

    PubMed

    Zuo, Ya-Mei; Tian, Jun-Sheng; Guo, Xiao-Qing; Zhou, Yu-Zhi; Gao, Xiao-Xia; Qin, Xue-Mei

    2014-02-01

    To determine the optimum conditions of supercritical CO2 extraction of Xiaoyaosan, and establish its fingerprint by gas chromatography-mass spectrometry (GC-MS), the yield of extract were investigated, an orthogonal test was used to quantify the effects of extraction temperature, pressure, CO2 flow rate and time, and fingerprint analysis of different batches of extracts were by GC-MS. The optimal extraction conditions were determined as follows: extraction pressure 20 MPa, extraction temperature 50 degrees C, CO2 flow rate 25 kg x h(-1), extraction time 3 h, and average yield 2.2%. The GC-MS fingerprint was established and 27 common peaks were found, whose contents add up to 81.89% of the total peak area. Among them, 21 compounds were identified, accounting for 53.20% of the total extract. The extraction process is reasonable and favorable for industrial production. The GC-MS method is accurate, reliable, reproducible, and can be used for quality control of supercritical CO2 extract from Xiaoyaosan.

  4. Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells

    PubMed Central

    Sánchez-Camargo, Andrea del Pilar; García-Cañas, Virginia; Herrero, Miguel; Cifuentes, Alejandro; Ibáñez, Elena

    2016-01-01

    In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116). The processes, carried out under optimal conditions, were: (1) pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent) at lab-scale; (2) Single-step supercritical fluid extraction (SFE) at pilot scale; (3) Intensified two-step sequential SFE at pilot scale; (4) Integrated PLE plus supercritical antisolvent fractionation (SAF) at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight), this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA) and carnosol (CS) at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide), suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts. PMID:27941607

  5. Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; García-Cañas, Virginia; Herrero, Miguel; Cifuentes, Alejandro; Ibáñez, Elena

    2016-12-07

    In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116). The processes, carried out under optimal conditions, were: (1) pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent) at lab-scale; (2) Single-step supercritical fluid extraction (SFE) at pilot scale; (3) Intensified two-step sequential SFE at pilot scale; (4) Integrated PLE plus supercritical antisolvent fractionation (SAF) at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight), this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC 50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA) and carnosol (CS) at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide), suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts.

  6. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  7. Determination of Parameters for the Supercritical Extraction of Antioxidant Compounds from Green Propolis Using Carbon Dioxide and Ethanol as Co-Solvent

    PubMed Central

    Barreto, Gabriele de Abreu; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres

    2015-01-01

    The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition. PMID:26252491

  8. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  9. [The tissue reaction to acrylic plastics modified by supercritical extraction with carbon dioxide].

    PubMed

    Volozhin, A I; Shekhter, A B; Karakov, K G; Sukhanov, Iu P; Gavril'chak, A V; Popov, V K; Antonov, E N; Karrot, M

    1998-01-01

    The process of extraction of admixtures from acryl plastic widely used in dentistry by means of supercritical carbon dioxide (sc-CO2) was studied and effects of extraction conditions on biocompatibility and toxicity of resultant materials assessed, sc-CO2 effectively purified the specimens from toxic compounds (monomers and low-molecular oligomers, methylmethacrylate, dichloroethane) and notably improved the biocompatability of polymer implants. Tissue reaction to ethacryl and protacryl depends on the degree of implant polymerization and duration of extraction of toxic substances from polymer.

  10. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, N.G.; Wai, C.M.; Lin, Y.; Kwang, Y.H.

    1998-11-24

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO{sub 2}, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO{sub 2} and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process. 1 fig.

  11. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    DOEpatents

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  12. Green separation and characterization of fatty acids from solid wastes of leather industry in supercritical fluid CO2.

    PubMed

    Onem, Ersin; Renner, Manfred; Prokein, Michael

    2018-05-26

    Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO 2 was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO 2 at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO 2 extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO 2 extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.

  13. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  14. Antioxidant and Antilipid Peroxidation Potential of Supercritical Fluid Extract and Ethanol Extract of Leaves of Vitex Negundo Linn.

    PubMed Central

    Nagarsekar, K. S.; Nagarsenker, M. S.; Kulkarni, S. R.

    2011-01-01

    Supercritical fluid extract and ethanol extract of Vitex negundo Linn. were subjected to the chromatographic evaluation for identification of their constituents. Free radical scavenging activity of both extracts was studied by subjecting them to DPPH assay. IC50 values of ethanol and supercritical fluid extract of Vitex negundo indicate that ethanol extract has stronger reducing potential and ability to scavenge free radicals as compared to the supercritical fluid extract. The in vivo effect of extracts on lipid peroxidation was studied using ethanol induced oxidative stress model in rat. Ingestion of extracts for 14 days exhibited significant reduction in plasma MDA level of stressed animals. Ethanol extract exhibited higher in vivo antilipid peroxidation potential as compared to supercritical fluid extract which correlated well with radical scavenging potential of extract. PMID:22707827

  15. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    PubMed Central

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  16. Optimization of the Supercritical Carbon Dioxide Separation of Bergapten from Bergamot Essential Oil.

    PubMed

    Sicari, Vincenzo

    2018-01-01

    The possibility of following traditional cold-press extraction with the post process continuous separation of bergapten from bergamot essential oil was investigated. A fractionation tower was used in an experiment in which cold-pressed bergamot oil was extracted in a continuous countercurrent process by supercritical carbon dioxide under different conditions. Bergapten is fairly soluble in CO2 in its supercritical phase, in particular at a density of 277.90 kg⋅m-3, corresponding to a pressure of 8 MPa and temperature of 40°C. Under these conditions, an extract with 0.198% bergapten was obtained, a figure slightly below the percentage of bergapten contained in cold-pressed oil (0.21%). However, at densities below 200 kg⋅m-3, the amount of bergapten in the extracted oil was negligible. Of all tested conditions for separation, the best was found to be at a pressure of 8 MPa and temperature of 70°C, conditions under which bergapten was not detected. The results of the experiment showed that bergapten, and the non-volatile fraction in general, was extracted only in small quantities and was not extracted at all with at a CO2 pressure of 8 MPa.

  17. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    PubMed

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  18. Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid

    NASA Astrophysics Data System (ADS)

    Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.

    2018-05-01

    Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.

  19. Impacts of Extraction Methods in the Rapid Determination of Atrazine Residues in Foods using Supercritical Fluid Chromatography and Enzyme-Linked Immunosorbent Assay: Microwave Solvent vs. Supercritical Fluid Extractions

    PubMed Central

    El-Saeid, Mohamed H.; Kanu, Ijeoma; Anyanwu, Ebere C.; Saleh, Mahmoud A.

    2005-01-01

    It is an accepted fact that many food products that we eat today have the possibility of being contaminated by various chemicals used from planting to processing. These chemicals have been shown to cause illnesses for which some concerned government agencies have instituted regulatory mechanisms to minimize the risks and the effects on humans. It is for these concerns that reliable and accurate rapid determination techniques are needed to effect proper regulatory standards for the protection of people's nutritional health. This paper, therefore, reports the comparative evaluation of the extraction methods in the determination of atrazine (commonly used in agricultural as a herbicide) residues in foods using supercritical fluid chromatography (SFC) and enzyme-linked immunosorbent assay (ELISA) techniques. Supercritical fluid extraction (SFE) and microwave solvent extraction (MSE) methods were used to test samples of frozen vegetables, fruit juice, and jam from local food markets in Houston. Results showed a high recovery percentage of atrazine residues using supercritical fluid coupled with ELISA and SFC than with MSE. Comparatively, however, atrazine was detected 90.9 and 54.5% using SFC and ELISA techniques, respectively. ELISA technique was, however, less time consuming, lower in cost, and more sensitive with low detection limit of atrazine residues than SFC technique. PMID:15674445

  20. Supercritical CO2 assisted process for the production of high-purity and sterile nano-hydroxyapatite/chitosan hybrid scaffolds.

    PubMed

    Ruphuy, G; Souto-Lopes, M; Paiva, D; Costa, P; Rodrigues, A E; Monteiro, F J; Salgado, C L; Fernandes, M H; Lopes, J C; Dias, M M; Barreiro, M F

    2018-04-01

    Hybrid scaffolds composed of hydroxyapatite (HAp), in particular in its nanometric form (n-HAp), and chitosan (CS) are promising materials for non-load-bearing bone graft applications. The main constraints of their production concern the successful implementation of the final purification/neutralization and sterilization steps. Often, the used purification strategies can compromise scaffold structural features, and conventional sterilization techniques can result in material's thermal degradation and/or contamination with toxic residues. In this context, this work presents a process to produce n-HAp/CS scaffolds mimicking bone composition and structure, where an innovative single step based on supercritical CO 2 extraction was used for both purification and sterilization. A removal of 80% of the residual acetic acid was obtained (T = 75°C, p = 8.0 MPa, 2 extraction cycles of 2 h) giving rise to scaffolds exhibiting adequate interconnected porous structure, fast swelling and storage modulus compatible with non-load-bearing applications. Moreover, the obtained scaffolds showed cytocompatibility and osteoconductivity without further need of disinfection/sterilization procedures. Among the main advantages, the proposed process comprises only three steps (n-HAp/CS dispersion preparation; freeze-drying; and supercritical CO 2 extraction), and the supercritical CO 2 extraction show clear advantages over currently used procedures based on neutralization steps. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 965-975, 2018. © 2017 Wiley Periodicals, Inc.

  1. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging.

    PubMed

    Milovanovic, Stoja; Hollermann, Gesa; Errenst, Cornelia; Pajnik, Jelena; Frerich, Sulamith; Kroll, Stephen; Rezwan, Kurosch; Ivanovic, Jasna

    2018-05-01

    Biodegradable polymers with antibacterial properties are highly desirable materials for active food packaging applications. Thymol, a dietary monoterpene phenol with a strong antibacterial activity is abundant in plants belonging to the genus Thymus. This study presents two approaches for supercritical CO 2 impregnation of poly(lactic acid)(PLA)/poly(ε-caprolactone)(PCL) blended films to induce antibacterial properties of the material: (i) a batch impregnation process for loading pure thymol, and (ii) an integrated supercritical extraction-impregnation process for isolation of thyme extract and its incorporation into the films, operated in both batch or semi-continuous modes with supercritical solution circulation. The PCL content in films, impregnation time and CO 2 flow regime were varied to maximize loading of the films with thymol or thyme extract with preserving films' structure and thermal stability. Representative film samples impregnated with thymol and thyme extract were tested against Gram (-) (Escherichia coli) and Gram(+) (Bacillus subtilis) model strains, by measuring their metabolic activity and re-cultivation after exposure to the films. The film containing thymol (35.8 wt%) showed a strong antibacterial activity leading to a total reduction of bacterial cell viability. Proposed processes enable fast, controlled and organic solvent-free fabrication of the PLA/PCL films containing natural antibacterial substances at moderately low temperature, with a compact structure and a good thermal stability, for potential use as active food packaging materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    PubMed

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  3. Metal speciation of environmental samples using SPE and SFC-AED analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.C.; Burford, M.D.; Robson, M.

    1995-12-31

    Due to growing public concern over heavy metals in the environment, soil, water and air particulate samples azre now routinely screened for their metal content. Conventional metal analysis typically involves acid digestion extraction and results in the generation of large aqueous and organic solvent waste. This harsh extraction process is usually used to obtain the total metal content of the sample, the extract being analysed by atomic emission or absorption spectroscoply techniques. A more selective method of metal extraction has been investigated which uses a supercritical fluid modified with a complexing agent. The relatively mild extraction method enables both organometallicmore » and inorganic metal species to be recovered intact. The various components from the supercritical fluid extract can be chromatographically separated using supercritical fluid chromatography (SFC) and positive identification of the metals achieved using atomic emission detection (AED). The aim of the study is to develop an analytical extraction procedure which enables a rapid, sensitive and quantitative analysis of metals in environmental samples, using just one extraction (eg SFE) and one analysis (eg SFC-AED) procedure.« less

  4. Near Critical/Supercritical Carbon Dioxide Extraction for Treating Contaminated Bilgewater

    DTIC Science & Technology

    2000-02-24

    SUMMARY i TABLE OF CONTENTS ii LIST OF FIGURES iii LIST OF TABLES iii 1. INTRODUCTION 1 1.1 Current Treatment Processes 1 2. SUPERCRITICAL...Treatment Processes Historically, the Navy has relied on gravimetric separation to remove oily contaminants from bilgewater. Most ships contain one...continuously changes the orientation of the separator with respect to gravity, lowering the effectiveness of a separation process that relies on subtle

  5. Extraction of azadirachtin A from neem seed kernels by supercritical fluid and its evaluation by HPLC and LC/MS.

    PubMed

    Ambrosino, P; Fresa, R; Fogliano, V; Monti, S M; Ritieni, A

    1999-12-01

    A new supercritical extraction methodology was applied to extract azadirachtin A (AZA-A) from neem seed kernels. Supercritical and liquid carbon dioxide (CO(2)) were used as extractive agents in a three-separation-stage supercritical pilot plant. Subcritical conditions were tested too. Comparisons were carried out by calculating the efficiency of the pilot plant with respect to the milligrams per kilogram of seeds (ms/mo) of AZA-A extracted. The most convenient extraction was gained using an ms/mo ratio of 119 rather than 64. For supercritical extraction, a separation of cuticular waxes from oil was set up in the pilot plant. HPLC and electrospray mass spectroscopy were used to monitor the yield of AZA-A extraction.

  6. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.

    PubMed

    Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-10-01

    Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.

  7. Optimization of process parameters for supercritical fluid extraction of cholesterol from whole milk powder using ethanol as co-solvent.

    PubMed

    Dey Paul, Indira; Jayakumar, Chitra; Niwas Mishra, Hari

    2016-12-01

    In spite of being highly nutritious, the consumption of milk is hindered because of its high cholesterol content, which is responsible for numerous cardiac diseases. Supercritical carbon dioxide using ethanol as co-solvent was employed to extract cholesterol from whole milk powder (WMP). This study was undertaken to optimize the process parameters of supercritical fluid extraction (SCFE), viz. extraction temperature, pressure and volume of ethanol. The cholesterol content of WMP was quantified using high-performance liquid chromatography. The impact of the extraction conditions on the fat content (FC), solubility index (SI) and lightness (L*) of the SCFE-treated WMP were also investigated. The process parameters were optimized using response surface methodology. About 46% reduction in cholesterol was achieved at the optimized conditions of 48 °C, 17 MPa and 31 mL co-solvent; flow rate of expanded CO 2 , static time and dynamic time of extraction were 6 L min -1 , 10 min and 80 min respectively. The treated WMP retained its FC, SI, and L* at moderate limits of 183.67 g kg -1 , 96.3% and 96.90, respectively. This study demonstrated the feasibility of ethanol-modified SCFE of cholesterol from WMP with negligible changes in its physicochemical properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    PubMed

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Supercritical fluid technology: a promising approach in pharmaceutical research.

    PubMed

    Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana

    2013-02-01

    Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.

  10. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  11. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip.

    PubMed

    Cheng, Xiang; Qi, ZhenBang; Burdyny, Thomas; Kong, Tian; Sinton, David

    2018-02-01

    This study demonstrates the efficacy of low pressure supercritical CO 2 extraction of astaxanthin from disrupted Haematococcus pluvialis. A microfluidic reactor was employed that enabled excellent control and allowed direct monitoring of the whole process at the single cell level, in real time. Astaxanthin extraction using ScCO 2 achieved 92% recovery at 55 °C and 8 MPa applied over 15 h. With the addition of co-solvents, ethanol and olive oil, the extraction rates in both experiments were significantly improved reaching full recovery within a few minutes. Notably, for the ethanol case, the timescales of extraction process are reduced 1800-fold from 15 h to 30 s at 55 °C and 8 MPa, representing the fastest complete astaxanthin extraction at such low pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.

    DTIC Science & Technology

    1987-06-01

    The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat

  13. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    USGS Publications Warehouse

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  14. CLEANING UP PESTICIDE CONTAMINATED SOILS: COMPARING EFFECTIVENESS OF SUPERCRITICAL FLUID EXTRACTION WITH SOLVENT EXTRACTION AND LOW TEMPERATURE THERMAL DESORPTION

    EPA Science Inventory

    Bench-scale supercritical fluid extraction (SFE) studies were performed on soil samples obtained from a Superfund site that is contaminated with high levels of p,p,-DDT, p,p,-DDD, p,p,-DDE, toxaphene and hexachlorocyclohexane. The effectiveness of supercritical fluid extraction ...

  15. METHOD FOR THE SUPERCRITICAL FLUID EXTRACTION OF SOILS/SEDIMENTS

    EPA Science Inventory

    Supercritical fluid extraction has been publicized as an extraction method which has several advantages over conventional methods, and it is expected to result in substantial cost and labor savings. This study was designed to evaluate the feasibility of using supercritical fluid ...

  16. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  17. A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland.

    PubMed

    Wajs-Bonikowska, Anna; Stobiecka, Agnieszka; Bonikowski, Radosław; Krajewska, Agnieszka; Sikora, Magdalena; Kula, Józef

    2017-08-01

    Large quantities of blackberry seeds are produced as a pomace during the processing of juice and jam production; this by-product is a very interesting raw material both for oil manufacturing and as a source of bioactive compounds. In this work the composition, yield and antioxidant activity of three types of Rubus fructicosus pomace extracts isolated by liquid extraction using solvents of different polarity, as well with supercritical CO 2 fluid extraction have been compared. The highest extract yield was reported for Soxhlet extraction using ethanol as a solvent (14.2%). Supercritical carbon dioxide and hexane extracts were characterised by the highest content of phytosterols (1445 and 1583 mg 100 g -1 of extract, respectively) among which β-sitosterol was the main one, while the concentration of tocopherols, with predominant γ-isomer, was the highest for both hexane and ethanol extracts, being 2364 and 2334 mg 100 g -1 , respectively. Using a GC-MS method 95 volatiles, in which non-saturated aldehydes were predominant, were identified in the essential oil of seed pomace and in the volatile oil isolated from supercritical extract. The ethanolic extract which is characterised by the highest phenolic content (9443 mg GAE 100 g -1 ) exhibited the highest antioxidant activity (according to the ABTS •+ and DPPH • assays). All pomace extracts examined were of high quality, rich in essential omega fatty acids and with a very high content of bioactive compounds, such as phytosterols and tocopherols. The high nutritional value of extracts from berry seed pomace could justify the commercialisation of specific extracts not only as food additives but also as cosmetic components. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    EPA Science Inventory

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  19. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography.

    PubMed

    Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong

    2018-01-01

    In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.

  20. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    PubMed

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.

    PubMed

    Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C

    2017-08-21

    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.

  2. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    PubMed

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    PubMed

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent candidate as a low-fat goat cheese, lower in triglycerides and cholesterol but still with all the health benefits inherent in goat milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Supercritical CO₂assisted extraction and LC-MS identification of picroside I and picroside II from Picrorhiza kurroa.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Shinde, Devanand B; Wakte, Pravin S

    2013-02-01

    Picroside I and picroside II have been studied intensively because of their pharmacological actions and clinical applications. Numerous methods have been reported for extracting picroside I and picroside II from Picrorrhiza. kurroa rhizomes. This is the first report of picroside I and picroside II extraction using the supercritical carbon dioxide assisted extraction technique. To develop supercritical carbon dioxide assisted extraction and LC-MS identification of picroside I and picroside II from the Picrorrhiza kurroa Royle rhizomes. Surface response methodology based on 3³ fractional factorial design was used to extract picroside I and picroside II from P. kurroa rhizomes. The effects of various process factors, namely temperature (40-80°C), pressure (25-35 MPa) and co-solvent (methanol) concentration (0-10% v/v) on extraction yield of the two compounds were evaluated. The picroside I and picroside II contents were determined using validated LC-MS methodology. The maximum yield of picroside I (32.502 ± 1.131 mg/g) and picroside II (9.717 ± 0.382 mg/g) was obtained at the 10% v/v co-solvent concentration, 40°C temperature and 30 MPa pressure. The conventional Soxhlet assisted methanol extract of P. kurroa powder resulted in 36.743 ± 1.75 and 11.251 ± 0.54 mg/g yield of picroside I and picroside II, respectively. Variation of concentration and extraction time showed a significant effect on the picroside I and picroside II yield. Supercritical carbon dioxide assisted extraction using methanol as a co-solvent is an efficient and environmentally sustainable method for extracting picroside I and picroside II from P. kurroa rhizomes. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Supercritical fluid extraction of plant flavors and fragrances.

    PubMed

    Capuzzo, Andrea; Maffei, Massimo E; Occhipinti, Andrea

    2013-06-19

    Supercritical fluid extraction (SFE) of plant material with solvents like CO₂, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  6. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    PubMed

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  7. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  8. A three step supercritical process to improve the dissolution rate of eflucimibe.

    PubMed

    Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques

    2005-10-01

    The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.

  9. Supercritical Fluid Extraction of Pyrrolidine Alkaloid from Leaves of Piper amalago L.

    PubMed Central

    Filho, L. C.; Faiões, V. S.; Cunha-Júnior, E. F.; Torres-Santos, E. C.; Cortez, D. A. G.

    2017-01-01

    Supercritical fluid extraction was used to extract the alkaloid N-[7-(3′,4′-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl]pyrrolidine from leaves of Piper amalago L. A three-level orthogonal array design matrix, OAD OA9(34), was used for optimization of the parameters of supercritical extraction of the alkaloid, employing supercritical carbon dioxide: extraction time (20, 40, and 60 min), temperature (40, 50, and 60°C), pressure (150, 200, and 250 bar), and the use of cosolvents (ethanol, methanol, and propyleneglycol). All parameters had significant effect on the alkaloid yield. The alkaloid yield after 60 min of extraction without cosolvents at 9 different conditions (32) in terms of temperature (40, 50, and 60°C) and pressure (150, 200, and 250 bar) was also evaluated. The optimal yield (≈3.8 mg g−1) was obtained with supercritical CO2 + methanol (5% v : v) at 40°C and 200 bar for 60 min of extraction. PMID:28539966

  10. Extraction of Peace River bitumen using supercritical ethane

    NASA Astrophysics Data System (ADS)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  11. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    PubMed

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Extraction of nobiletin from Citrus Unshiu peels by supercritical fluid and its CRE-mediated transcriptional activity.

    PubMed

    Oba, Chisato; Ota, Masaki; Nomura, Koichiro; Fujiwara, Hironori; Takito, Jiro; Sato, Yoshiyuki; Ohizumi, Yasushi; Inomata, Hiroshi

    2017-04-15

    Polymethoxyflavone (PMF) is one of bioactive compounds in Citrus Unshiu and included mainly in the peels rather than the fruits, seeds and leaves. Supercritical CO 2 extraction is one candidate for selective extraction of polymethoxyflavone and in this study, supercritical CO 2 extraction with/without ethanol entrainer from Citrus Unshiu peels was examined at a temperature of 333K and a pressure of 30MPa. CRE (cyclic AMP response element)-mediated transcriptional assay was examined by using the extracts from supercritical fluid extraction. The results showed that extracts including nobiletin increased with increasing ethanol concentration in supercritical CO 2 and the elapsed extraction time. Extracts at ethanol concentration of 5 mol% showed high CRE-mediated transcription activity. This can be caused by activity of the extract including nobiletin in addition to the other methoxylated flavonoid species such as tangeretin. Extracts at ethanol concentration of 50% showed the highest CRE-mediated transcription activity, which can be attributed to flavonoid glycoside such as hesperidin. From our investigations, flavonoid glycoside can be one of promoters of CRE-mediated transcription activity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Supercritical carbon dioxide extraction of 2,4-dichlorophenol from food crop tissues.

    PubMed

    Thomson, C A; Chesney, D J

    1992-04-15

    Supercritical fluid extraction with carbon dioxide has been found to be effective for the isolation of residue levels (0.1-1 ppm) of 2,4-dichlorophenol from selected plant tissues. The 2,4-dichlorophenol residues were incompletely extracted with supercritical CO2 alone, since a substantial fraction of the 2,4-dichlorophenol was covalently attached to the plant matrix. An acid pretreatment procedure was developed to partially hydrolyze the plant tissue prior to extraction, releasing the bound 2,4-dichlorophenol residues. Steam distillation showed higher residue levels for field-treated straw samples. This is attributed to the greater degree of hydrolysis inherent in the steam distillation procedure. Supercritical CO2 extraction of field-treated seed samples showed higher levels of 2,4-dichlorophenol residues than did steam distillation. The supercritical fluid extractant was able to solvate 2,4-dichlorophenol residues in the interior of the seed and transport them to the surface for collection. The aqueous medium used in steam distillation was unable to penetrate the hydrophobic seed matrix to the same degree. While the actual extraction time experienced in supercritical fluid extraction was far less than that of steam distillation (45 min vs 6 h, respectively), the total sample preparation time was similar in both methods.

  14. Multivessel supercritical fluid extraction of food items in Total Diet Study.

    PubMed

    Hopper, M L; King, J W; Johnson, J H; Serino, A A; Butler, R J

    1995-01-01

    An off-line, large capacity, multivessel supercritical fluid extractor (SFE) was designed and constructed for extraction of large samples. The extractor can simultaneously process 1-6 samples (15-25 g) by using supercritical carbon dioxide (SC-CO2), which is relatively nontoxic and nonflammable, as the solvent extraction medium. Lipid recoveries for the SFE system were comparable to those obtained by blending or Soxhlet extraction procedures. Extractions at 10,000 psi, 80 degrees C, expanded gaseous CO2 flow rates of 4-5 L/min (35 degrees C), and 1-3 h extraction times gave reproducible lipid recoveries for pork sausage (relative standard deviation [RSD], 1.32%), corn chips (RSD, 0.46%), cheddar cheese (RSD, 1.14%), and peanut butter (RSD, 0.44%). In addition, this SFE system gave reproducible recoveries (> 93%) for butter fortified with cis-chlordane and malathion at the 100 ppm and 0.1 ppm levels. Six portions each of cheddar cheese, saltine crackers, sandwich cookies, and ground hamburger also were simultaneously extracted with SC-CO2 and analyzed for incurred pesticide residues. Results obtained with this SFE system were reproducible and comparable with results from organic-solvent extraction procedures currently used in the Total Diet Study; therefore, use and disposal of large quantities of organic solvents can be eliminated.

  15. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOEpatents

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  16. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    PubMed

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  18. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    NASA Astrophysics Data System (ADS)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid at a temperature of 40 °C is Hexanal (6.04%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (27.95%), [6]-Paradol (0.73%), Gingerol (8.22%), Bis (2-ethylhexyl) phthalate (1.62%), α-Citral (12.14%) and α-zingiberene (2.90%). The main component extracts of Zingiber officinale Roscoe by maceration is Hexanal (10.71%), Decanal (3.74%), Butan-2-one, 4-(3-hydroxy-2-methoxyphenyl) (38.33%), Gingerol (4.56%) and Zingiberene (0.99).

  19. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  20. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    PubMed

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    PubMed Central

    Sovová, Helena; Nobre, Beatriz P.; Palavra, António

    2016-01-01

    Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546

  2. Free-radical scavenging activity and antibacterial impact of Greek oregano isolates obtained by SFE.

    PubMed

    Stamenic, Marko; Vulic, Jelena; Djilas, Sonja; Misic, Dusan; Tadic, Vanja; Petrovic, Slobodan; Zizovic, Irena

    2014-12-15

    The antioxidant and antibacterial properties of Greek oregano extracts obtained by fractional supercritical fluid extraction (SFE) with carbon dioxide were investigated and compared with the properties of essential oil obtained by hydrodistillation. According to DPPH, hydroxyl radical and superoxide anion radical scavenging activity assays, the supercritical extracts expressed stronger antioxidant activity comparing to the essential oil. The most effective was the supercritical extract obtained by fractional extraction at 30 MPa and 100°C after the volatile fraction had been extracted at lower pressure. At the same time this extract showed strong antibacterial activity against staphylococci, including MRSA strain, but did not affect Escherichia coli of normal intestinal flora. The essential oil obtained by hydrodistillation showed stronger antibacterial activity against E. coli, Salmonella and Klebsiella pneumoniae, comparing to the supercritical extracts but at the same affected the normal gut flora. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The Molecular Design of High-Performance Carbon Materials

    DTIC Science & Technology

    2008-06-30

    Thies MC. Control of mesophase pitch properties by supercritical fluid extraction. Carbon 1998; 36(7-8):953-61. 7] Zhuang M, Gast K, Thies MC...pitch with supercritical toluene. J Supercrit Fluids 1991; 4(1):7-14. 16] Herod AA, Bartle KD, Kandiyoti R. Characterization of heavy...MALDI, mass spectrometry, mesophase, extraction, supercritical , fractionation. 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS

  4. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    PubMed

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  5. Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation.

    PubMed

    Moribe, Kunikazu; Tozuka, Yuichi; Yamamoto, Keiji

    2008-02-14

    Supercritical fluid technique have been exploited in extraction, separation and crystallization processes. In the field of pharmaceutics, supercritical carbon dioxide (scCO(2)) has been used for the purpose of micronization, polymorphic control, and preparation of solid dispersion and complexes. Particle design of active pharmaceutical ingredients is important to make the solid dosage forms with suitable physicochemical properties. Control of the characteristic properties of particles, such as size, shape, crystal structure and morphology is required to optimize the formulation. For solubility enhancement of poorly water-soluble drugs, preparation of the solid dispersion or the complexation with proper drugs or excipients should be a promising approach. This review focuses on aspects of polymorphic control and complexation behavior of active pharmaceutical ingredients by scCO(2) processing.

  6. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    NASA Astrophysics Data System (ADS)

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  7. Driving Forces Controlling Host-Guest Recognition in Supercritical Carbon Dioxide Solvent.

    PubMed

    Ingrosso, Francesca; Altarsha, Muhannad; Dumarçay, Florence; Kevern, Gwendal; Barth, Danielle; Marsura, Alain; Ruiz-López, Manuel F

    2016-02-24

    The formation of supramolecular host-guest complexes is a very useful and widely employed tool in chemistry. However, supramolecular chemistry in non-conventional solvents such as supercritical carbon dioxide (scCO2 ), one of the most promising sustainable solvents, is still in its infancy. In this work, we explored a successful route to the development of green processes in supercritical CO2 by combining a theoretical approach with experiments. We were able to synthesize and characterize an inclusion complex between a polar aromatic molecule (benzoic acid) and peracetylated-β-cyclodextrin, which is soluble in the supercritical medium. This finding opens the way to wide, environmental friendly, applications of scCO2 in many areas of chemistry, including supramolecular synthesis, reactivity and catalysis, micro and nano-particle formation, molecular recognition, as well as enhanced extraction processes with increased selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Design and process aspects of laboratory scale SCF particle formation systems.

    PubMed

    Vemavarapu, Chandra; Mollan, Matthew J; Lodaya, Mayur; Needham, Thomas E

    2005-03-23

    Consistent production of solid drug materials of desired particle and crystallographic morphologies under cGMP conditions is a frequent challenge to pharmaceutical researchers. Supercritical fluid (SCF) technology gained significant attention in pharmaceutical research by not only showing a promise in this regard but also accommodating the principles of green chemistry. Given that this technology attained commercialization in coffee decaffeination and in the extraction of hops and other essential oils, a majority of the off-the-shelf SCF instrumentation is designed for extraction purposes. Only a selective few vendors appear to be in the early stages of manufacturing equipment designed for particle formation. The scarcity of information on the design and process engineering of laboratory scale equipment is recognized as a significant shortcoming to the technological progress. The purpose of this article is therefore to provide the information and resources necessary for startup research involving particle formation using supercritical fluids. The various stages of particle formation by supercritical fluid processing can be broadly classified into delivery, reaction, pre-expansion, expansion and collection. The importance of each of these processes in tailoring the particle morphology is discussed in this article along with presenting various alternatives to perform these operations.

  9. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-06-01

    A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique.

    PubMed

    Ilgaz, Saziye; Sat, Ihsan Gungor; Polat, Atilla

    2018-04-01

    In this pilot-scale study supercritical carbon dioxide (SCCO 2 ) extraction technique was used for decaffeination of black tea. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO 2 flow rate (1, 2, 3 L/min) and modifier quantity (0, 2.5, 5 mol%) were selected as extraction parameters. Three-level and five-factor response surface methodology experimental design with a Box-Behnken type was employed to generate 46 different processing conditions. 100% of caffeine from black tea was removed under two different extraction conditions; one of which was consist of 375 bar pressure, 62.5 °C temperature, 300 min extraction time, 2 L/min CO 2 flow rate and 5 mol% modifier concentration and the other was composed of same temperature, pressure and extraction time conditions with 3 L/min CO 2 flow rate and 2.5 mol% modifier concentration. Results showed that extraction time, pressure, CO 2 flow rate and modifier quantity had great impact on decaffeination yield.

  11. Nitrous Oxide Explosive Hazards

    DTIC Science & Technology

    2008-05-01

    Supercritical Fluid Extraction- Capillary Gas Chromatography (SFE-GC) With a Conventional Split/Splitless Injection Port”, Journal of Chromatographic...Aromatic Hydrocarbons from Environmental Solids Using Supercritical Fluids ”, Steven B. Hawthorne and David J. Miller, Anal. Chem. 59, pp 1705-1708, 1987...Katayama, T., J. Supercrit . Fluids , 1990, 3, 78-84. 30. “ Supercritical Fluid Extraction of Fungal Oil Using CO2, N2O, CHF3, and SF6”, Keiji Sakaki

  12. Functional Ginger Extracts from Supercritical Fluid Carbon Dioxide Extraction via In Vitro and In Vivo Assays: Antioxidation, Antimicroorganism, and Mice Xenografts Models

    PubMed Central

    Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan

    2013-01-01

    Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624

  13. [Colorectal cancer preventive effect of combined administration of phenolic acids and supercritical extracts from Angelica sinensis].

    PubMed

    Peng, Yu; Zhao, Bo-Chen; Kang, Qian; Liu, Jia; Chen, Cheng; Li, Bing-Shao; Xie, Yuan-Ping; Wu, Qing

    2018-03-01

    This study aimed to investigate the colorectal cancer preventive effect of the combined administration of phenolic acids and supercritical extracts from Angelica sinensis. The AOM/DSS model in mice was adopted. Phenolic acids were administrated orally in the initial stage of the model at a dose of 1 g·kg⁻¹ BW, which was combined withtherectal administration with three doses of supercritical extracts (15, 30, 60 g·kg⁻¹ BW). PCNA, 8-oxoguaine, γ-H2AX, iNOS and COX-2 were tested by immunohistochemistry and Western blot assays. The results showed that the combined administration of phenolic acids and supercritical extracts from A. sinensis suppressed the tumor growth and cell proliferation, and DNA damages and inflammatory responses were reduced in a dose-dependent manner. These results indicate that the combined administration of phenolic acids and supercritical extracts from A. sinensis have a certain effect in preventing carcinogenesis. Copyright© by the Chinese Pharmaceutical Association.

  14. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less

  15. Phytochemical profile and anticholinesterase and antimicrobial activities of supercritical versus conventional extracts of Satureja montana.

    PubMed

    Silva, Filipa V M; Martins, Alice; Salta, Joana; Neng, Nuno R; Nogueira, José M F; Mira, Delfina; Gaspar, Natália; Justino, Jorge; Grosso, Clara; Urieta, José S; Palavra, António M S; Rauter, Amélia P

    2009-12-23

    Winter savory Satureja montana is a medicinal herb used in traditional gastronomy for seasoning meats and salads. This study reports a comparison between conventional (hydrodistillation, HD, and Soxhlet extraction, SE) and alternative (supercritical fluid extraction, SFE) extraction methods to assess the best option to obtain bioactive compounds. Two different types of extracts were tested, the volatile (SFE-90 bar, second separator vs HD) and the nonvolatile fractions (SFE-250 bar, first and second separator vs SE). The inhibitory activity over acetyl- and butyrylcholinesterase by S. montana extracts was assessed as a potential indicator for the control of Alzheimer's disease. The supercritical nonvolatile fractions, which showed the highest content of (+)-catechin, chlorogenic, vanillic, and protocatechuic acids, also inhibited selectively and significantly butyrylcholinesterase, whereas the nonvolatile conventional extract did not affect this enzyme. Microbial susceptibility tests revealed the great potential of S. montana volatile supercritical fluid extract for the growth control and inactivation of Bacillus subtilis and Bacillus cereus, showing some activity against Botrytis spp. and Pyricularia oryzae. Although some studies were carried out on S. montana, the phytochemical analysis together with the biological properties, namely, the anticholinesterase and antimicrobial activities of the plant nonvolatile and volatile supercritical fluid extracts, are described herein for the first time.

  16. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-15

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.

  17. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  18. Supercritical Fluid Extraction of Toxic Heavy Metals and Uranium from Acidic Solutions with Sulfur-Containing Organophosphorus Reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuehe; Liu, Chongxuan; Wu, Hong

    2003-03-02

    The feasibility of using sulfur-containing organophosphorus reagents for the chelation-supercritical fluid extraction (SFE) of toxic heavy metals and uranium from acidic media was investigated. The SFE experiments were conducted in a specially-designed flow-through liquid extractor. Effective extraction of the metal ions from various acidic media was demonstrated. The effect of ligand concentration in supercritical CO{sub 2} on the kinetics of metal extraction was studied. A simplified model is used to describe the extraction kinetics and the good agreement of experimental data with the equilibrium-based model is achieved.

  19. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  20. Supercritical Carbon Dioxide Extraction of the Oak Silkworm (Antheraea pernyi) Pupal Oil: Process Optimization and Composition Determination

    PubMed Central

    Pan, Wen-Juan; Liao, Ai-Mei; Zhang, Jian-Guo; Dong, Zeng; Wei, Zhao-Jun

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO2 extraction, including extraction pressure, temperature, time and CO2 flow rate on the yield of oak silkworm pupal oil (OSPO). The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO2. Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA), accounting for 77.29% and 34.27% in the total oil respectively. PMID:22408458

  1. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  2. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  3. Characterization of Neem (Azadirachta indica A. Juss) seed volatile compounds obtained by supercritical carbon dioxide process.

    PubMed

    Swapna Sonale, R; Ramalakshmi, K; Udaya Sankar, K

    2018-04-01

    Extraction process employing Supercritical fluid carbon dioxide (SCF) yields bioactive compounds near natural forms without any artifact formation. Neem seed was subjected to SCF at different temperatures and pressure conditions. These extracts were partitioned to separate volatile fraction and were analyzed by Gas Chromatography-Mass spectroscopy along with the volatiles extracted by the hydro-distillation method. Experimental results show that there is a significant effect of pressure and temperature on isolation of a number of volatile compounds as well as retention of biologically active compounds. Twenty-five volatile compounds were isolated in the Hydro-distillate compare to the SCF extract of 100 bar, 40 °C which showed forty volatile compounds corresponds to 76.38 and 92.39% of total volatiles respectively. The majority of bioactive compounds such as Terpinen-4-ol, 1,2,4-Trithiolane, 3,5-diethyl, allyl isopropyl sulphide, Cycloisolongifolene, á-Bisabolene, (-)-α-Panasinsen, Isocaryophyllene, trans-Sesquisabinene hydrate, 1-Naphthalenol, were identified in the extract when isolated at 100 bar and 40 °C.

  4. Oil shale extraction using super-critical extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1983-01-01

    Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.

  5. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    USGS Publications Warehouse

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit accessibility of supercritical CO2 to coal matrix porosity, limiting the extent to which hydrocarbons are mobilized. Conversely, the enhanced recovery of some surrogates from core plugs relative to dry, ground coal samples might indicate that, once mobilized, supercritical CO2 is capable of transporting these constituents through coal beds. These results underscore the need for using intact coal samples, and for better characterization of forms of water in coal, to understand fate and transport of organic compounds during supercritical CO2 injection into coal beds.

  6. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques.

    PubMed

    Braga, Mara E M; Leal, Patrícia F; Carvalho, João E; Meireles, M Angela A

    2003-10-22

    Turmeric extracts were obtained from two lots of raw material (M and S) using various techniques: hydrodistillation, low pressure solvent extraction, Soxhlet, and supercritical extraction using carbon dioxide and cosolvents. The solvents and cosolvents tested were ethanol, isopropyl alcohol, and their mixture in equal proportions. The composition of the extracts was determined by gas chromatography-flame ionization detection (GC-FID) and UV. The largest yield (27%, weight) was obtained in the Soxhlet extraction (turmeric (S), ethanol = 1:100); the lowest yield was detected in the hydrodistillation process (2.1%). For the supercritical extraction, the best cosolvent was a mixture of ethanol and isopropyl alcohol. Sixty percent of the light fraction of the extracts consisted of ar-turmerone, (Z)-gamma-atlantone, and (E)-gamma-atlantone, except for the Soxhlet extracts (1:100, ethanol), for which only ar-turmeronol and (Z)-alpha-atlantone were detected. The maximum amount of curcuminoids (8.43%) was obtained using Soxhlet extraction (ethanol/isopropyl alcohol). The Soxhlet and low pressure extract exhibited the strongest antioxidant activities.

  7. Ultrasound-assisted extraction and quantitation of oils from Syzygium aromaticum flower bud (clove) with supercritical carbon dioxide.

    PubMed

    Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen

    2014-01-03

    This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    EPA Science Inventory

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  9. Blended polymer materials extractable with supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical, physical, thermal, and phase behavior of the blended polymers studied in this dissertation includes solubility in SCF CO2, the melt viscosity, the melting temperature depression, and phase equilibrium under SCF conditions. Several hypotheses are investigated to determine which mechanism plays the major role in the extraction. Finally a novel metal casting process is discussed with the materials developed in this study. This new method utilizes an adhesive or binder film composition for the purpose of building up a casting pattern of resin-bonded aggregate particles. The pattern is then encased in a conventional rigid shell mold that is not susceptible to degradation by SCF CO2. The pattern is then disintegrated within an unaffected mold by exposure to SCF CO 2. This is an efficient and low cost method of making patterns and molds, especially for the casting of a relatively low number of parts such as in prototype evaluations.

  10. Effect of ultrasound transducer design on the acoustically-assisted supercritical fluid extraction of antioxidants from oregano.

    PubMed

    Santos-Zea, Liliana; Antunes-Ricardo, Marilena; Gutierrez-Uribe, Janet A; García-Pérez, Jose V; Benedito, Jose

    2018-10-01

    Power ultrasound is applied in food technology to intensify extraction processes, due to the phenomena ultrasonic energy induces in the medium, enhancing mass transfer. The purpose of this work was the acoustic characterization of four transducers of different geometries and the evaluation of their performance in the ultrasonically assisted supercritical fluid extraction of antioxidants from oregano. The transducers differed in the amount of energy transmitted into the medium. Designs varied from the base model (T1), a larger cylindrical headmass (T2), a stepped circular section sonotrode (T3) and a multiplate configuration (T4). The highest nominal power density provided according to the calorimetric method was for T4 (151.6 ± 7.1 W/L). The T2 produced a more uniform acoustic field and a higher acoustic pressure (150.6 ± 20.5 kPa). Both parameters had an impact on total phenolics and antioxidants extraction with CO 2 under supercritical conditions (35 MPa, 35 °C, 2.3% ethanol as co-solvent). T4 and T2 were equally efficient (4.0 ± 0.2 and 4.2 ± 0.2 mg GA/g) for phenolic extraction, and with respect to antioxidant capacity, the best performance was that of T4 (26.4 ± 1.1 μmol TE/g). Of the antioxidant compounds extracted, flavones and flavanones were identified. Therefore, transducer geometry influenced the amount and distribution of energy transmitted into the medium, thus determining the efficiency of the extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.).

    PubMed

    Zoccali, Mariosimone; Giuffrida, Daniele; Dugo, Paola; Mondello, Luigi

    2017-10-01

    Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run-to-run precision, enables the setting of batch-type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4-65.4%, with a %CV range of 2-12. Twenty-one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β-carotene was carried out by using the optimized conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Field-portable supercritical CO{sub 2} extractor

    DOEpatents

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

    1997-06-10

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

  14. Field-portable supercritical CO.sub.2 extractor

    DOEpatents

    Wright, Bob W.; Zemanian, Thomas S.; Robins, William H.; Woodcock, Leslie J.

    1997-01-01

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

  15. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    PubMed

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Essential oil composition of Valeriana officinalis L. roots cultivated in Iran. Comparative analysis between supercritical CO2 extraction and hydrodistillation.

    PubMed

    Safaralie, Asghar; Fatemi, Shohreh; Sefidkon, Fatemeh

    2008-02-08

    The composition of essential oil extracted from Valeriana officinalis L. roots growing wild in Iran was studied by hydrodistillation and supercritical CO2 extraction. Forty-seven components representing 89.3% and 35 constituents varying from 86.1% to 95.1% of the oil obtained by hydrodistillation and supercritical CO2 were identified, respectively. The major components in the extracted oil from supercritical CO2 were isovaleric acid (18.7-41.8%), valerenic acid (8.2-11.8%), acetoxyvaleranone (5.6-9.6%), (Z)-valernyl acetate (4.5-6.5%), bornyl acetate (2.3-7.7%) and valerenol (3.7-5.2%), whereas by hydrodistillation were bornyl acetate (11.6%), valerenic acid (8.0%), (Z)-valernyl acetate (7.9%) and acetoxyvaleranone (7.6%). The analysis of the extracts was performed by capillary GC and GC/MS.

  17. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    PubMed

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  18. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    PubMed

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  19. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  20. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.

    PubMed

    Son, Jeesung; Kim, Bora; Park, Jeongseok; Yang, Jeongwoo; Lee, Jae W

    2018-07-01

    This work introduces biodiesel production from wet spent coffee grounds (SCGs) with supercritical methanol without any pre-drying process. Supercritical methanol and subcritical water effectively produced biodiesel via in situ transesterification by inducing more porous SCG and enhancing the efficiency of lipid extraction and conversion. It was also found that space loading was one of the critical factors for biodiesel production. An optimal biodiesel yield of 10.17 wt% of dry SCG mass (86.33 w/w% of esterifiable lipids in SCG) was obtained at reaction conditions of 270 °C, 90 bars, methanol to wet SCG ratio 5:1, space loading 58.4 ml/g and reaction time 20 min. Direct use of wet SCG waste as feedstock for supercritical biodiesel production eliminates the conventional dying process and the need of catalyst and also reduces environmental problems caused by landfill accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.

    PubMed

    Lee, S; Park, M K; Kim, K H; Kim, Y-S

    2007-09-01

    Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.

  2. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    PubMed

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  3. Supercritical Carbon Dioxide Extraction of Selected Herbal Leaves: An Overview

    NASA Astrophysics Data System (ADS)

    Hamid, I. A. Abd; Ismail, N.; Rahman, N. Abd

    2018-05-01

    Supercritical fluid extraction of carbon dioxide (SC-CO2) is one of new alternative extraction method that has been widely used to isolate bioactive components from variety of plant materials. The method was proved to be clean and safe, compatible for the extraction of edible products such as spices, food additives, medicines and nutritional supplement products compared to traditional extraction techniques such as solvent extraction, hydro distillation and steam distillation. The SC-CO2 extraction was known as highly influenced by its process parameter such as temperature and pressure for obtaining maximum yield. Therefore, a clear review on the optimum range of temperature and pressure for herbal leaves extraction using SC-CO2 is necessary for future reference. The aim of this work is to analyze the effect of temperature and pressure of SC-CO2 process without modifier on extraction yield of some selected herbal leaves i.e clubmoss, drumstick leaves, kratom leaves, mallee and myrtle leaves. The values of investigated parameters were; pressure from 8.9 to 50 MPa and temperature from 35 to 80°C. The results showed that the highest extraction yields were obtained when the pressure and temperature were above 30 MPa and 40°C. The interaction between pressure and temperature for SC-CO2 extraction of plant leaves are crucial since the values cannot be very high or very low in order to preserve the quality of the extracts.

  4. Discovery of Newer Therapeutic Leads for Prostate Cancer

    DTIC Science & Technology

    2009-06-01

    promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of

  5. Off-flavors removal and storage improvement of mackerel viscera by supercritical carbon dioxide extraction.

    PubMed

    Lee, Min Kyung; Uddin, M Salim; Chun, Byung Soo

    2008-07-01

    The oil in mackerel viscera was extracted by supercritical carbon dioxide (SCO2) at a semi-batch flow extraction process and the fatty acids composition in the oil was identified. Also the off-flavors removal in mackerel viscera and the storage improvement of the oils were carried out. As results obtained, by increasing pressure and temperature, quantity was increased. The maximum yield of oils obtained from mackerel viscera by SCO, extraction was 118 mgg(-1) (base on dry weight of freeze-dried raw anchovy) at 50 degrees C, 350 bar And the extracted oil contained high concentration of EPA and DHA. Also it was found that the autoxidation of the oils using SCO2 extraction occurred very slowly compared to the oils by organic solvent extraction. The off-flavors in the powder after SCO2 extraction were significantly removed. Especially complete removal of the trimethylamine which influences a negative compound to the products showed. Also other significant off-flavors such as aldehydes, sulfur-containing compounds, ketones, acids or alcohols were removed by the extraction.

  6. Vaccinium meridionale Swartz Supercritical CO₂ Extraction: Effect of Process Conditions and Scaling Up.

    PubMed

    López-Padilla, Alexis; Ruiz-Rodriguez, Alejandro; Restrepo Flórez, Claudia Estela; Rivero Barrios, Diana Marsela; Reglero, Guillermo; Fornari, Tiziana

    2016-06-25

    Vaccinium meridionale Swartz (Mortiño or Colombian blueberry) is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids). The supercritical fluid extraction (SFE) of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry). In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm³) and different extraction pressures (20 and 30 MPa) and temperatures (313 and 343 K) were investigated. Then, process scaling-up to a larger extraction cell (1350 cm³) was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC) model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%-3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO₂ residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments.

  7. Vaccinium meridionale Swartz Supercritical CO2 Extraction: Effect of Process Conditions and Scaling Up

    PubMed Central

    López-Padilla, Alexis; Ruiz-Rodriguez, Alejandro; Restrepo Flórez, Claudia Estela; Rivero Barrios, Diana Marsela; Reglero, Guillermo; Fornari, Tiziana

    2016-01-01

    Vaccinium meridionale Swartz (Mortiño or Colombian blueberry) is one of the Vaccinium species abundantly found across the Colombian mountains, which are characterized by high contents of polyphenolic compounds (anthocyanins and flavonoids). The supercritical fluid extraction (SFE) of Vaccinium species has mainly focused on the study of V. myrtillus L. (blueberry). In this work, the SFE of Mortiño fruit from Colombia was studied in a small-scale extraction cell (273 cm3) and different extraction pressures (20 and 30 MPa) and temperatures (313 and 343 K) were investigated. Then, process scaling-up to a larger extraction cell (1350 cm3) was analyzed using well-known semi-empirical engineering approaches. The Broken and Intact Cell (BIC) model was adjusted to represent the kinetic behavior of the low-scale extraction and to simulate the large-scale conditions. Extraction yields obtained were in the range 0.1%–3.2%. Most of the Mortiño solutes are readily accessible and, thus, 92% of the extractable material was recovered in around 30 min. The constant CO2 residence time criterion produced excellent results regarding the small-scale kinetic curve according to the BIC model, and this conclusion was experimentally validated in large-scale kinetic experiments. PMID:28773640

  8. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction

    PubMed Central

    Periaswamy Sivagnanam, Saravana; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-01-01

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone–methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process. PMID:26035021

  9. Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction.

    PubMed

    Sivagnanam, Saravana Periaswamy; Yin, Shipeng; Choi, Jae Hyung; Park, Yong Beom; Woo, Hee Chul; Chun, Byung Soo

    2015-05-29

    The bioactive materials in brown seaweeds hold great interest for developing new drugs and healthy foods. The oil content in brown seaweeds (Saccharina japonica and Sargassum horneri) was extracted by using environmentally friendly supercritical CO2 (SC-CO2) with ethanol as a co-solvent in a semi-batch flow extraction process and compared the results with a conventional extraction process using hexane, ethanol, and acetone mixed with methanol (1:1, v/v). The SC-CO2 method was used at a temperature of 45 °C and pressure of 250 bar. The flow rate of CO2 (27 g/min) was constant for the entire extraction period of 2 h. The obtained oil from the brown seaweeds was analyzed to determine their valuable compounds such as fatty acids, phenolic compounds, fucoxanthin and biological properties including antioxidant, antimicrobial, and antihypertension effects. The amounts of fucoxanthin extracted from the SC-CO2 oils of S. japonica and S. horneri were 0.41 ± 0.05 and 0.77 ± 0.07 mg/g, respectively. High antihypertensive activity was detected when using mixed acetone and methanol, whereas the phenolic content and antioxidant property were higher in the oil extracted by SC-CO2. The acetone-methanol mix extracts exhibited better antimicrobial activities than those obtained by other means. Thus, the SC-CO2 extraction process appears to be a good method for obtaining valuable compounds from both brown seaweeds, and showed stronger biological activity than that obtained by the conventional extraction process.

  10. Thickening compositions, and related materials and processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael

    A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modifiedmore » silicone polymer.« less

  11. Economic Analysis of an Integrated Annatto Seeds-Sugarcane Biorefinery Using Supercritical CO2 Extraction as a First Step

    PubMed Central

    Albarelli, Juliana Q.; Santos, Diego T.; Cocero, María José; Meireles, M. Angela A.

    2016-01-01

    Recently, supercritical fluid extraction (SFE) has been indicated to be utilized as part of a biorefinery, rather than as a stand-alone technology, since besides extracting added value compounds selectively it has been shown to have a positive effect on the downstream processing of biomass. To this extent, this work evaluates economically the encouraging experimental results regarding the use of SFE during annatto seeds valorization. Additionally, other features were discussed such as the benefits of enhancing the bioactive compounds concentration through physical processes and of integrating the proposed annatto seeds biorefinery to a hypothetical sugarcane biorefinery, which produces its essential inputs, e.g., CO2, ethanol, heat and electricity. For this, first, different configurations were modeled and simulated using the commercial simulator Aspen Plus® to determine the mass and energy balances. Next, each configuration was economically assessed using MATLAB. SFE proved to be decisive to the economic feasibility of the proposed annatto seeds-sugarcane biorefinery concept. SFE pretreatment associated with sequential fine particles separation process enabled higher bixin-rich extract production using low-pressure solvent extraction method employing ethanol, meanwhile tocotrienols-rich extract is obtained as a first product. Nevertheless, the economic evaluation showed that increasing tocotrienols-rich extract production has a more pronounced positive impact on the economic viability of the concept. PMID:28773616

  12. Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Ampelopsis grossedentata Stems: Process Optimization and Antioxidant Activity

    PubMed Central

    Wang, Yuefei; Ying, Le; Sun, Da; Zhang, Shikang; Zhu, Yuejin; Xu, Ping

    2011-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of bioactive compounds including flavonoids and phenolics from Ampelopsis grossedentata stems was carried out. Extraction parameters such as pressure, temperature, dynamic time and modifier, were optimized using an orthogonal array design of L9 (34), and antioxidant activities of the extracts were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and ferrous ion chelating (FIC) assay. The best conditions obtained for SC-CO2 extraction of flavonoids was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:3, v/v), and that for phenolics extraction was 250 bar, 40 °C, 50 min, and with a modifier of methanol/ethanol (1:1, v/v). Meantime, flavonoids and phenolics were found to be mainly responsible for the DPPH scavenging activity of the extracts, but not for the chelating activity on ferrous ion according to Pearson correlation analysis. Furthermore, several unreported flavonoids such as apigenin, vitexin, luteolin, etc., have been detected in the extracts from A. grossedentata stems. PMID:22072923

  13. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    NASA Astrophysics Data System (ADS)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  14. Effect of drying and co-matrix addition on the yield and quality of supercritical CO₂ extracted pumpkin (Cucurbita moschata Duch.) oil.

    PubMed

    Durante, Miriana; Lenucci, Marcello S; D'Amico, Leone; Piro, Gabriella; Mita, Giovanni

    2014-04-01

    In this work a process for obtaining high vitamin E and carotenoid yields by supercritical carbon dioxide (SC-CO₂) extraction from pumpkin (Cucurbita moschata Duch.) is described. The results show that the use of a vacuum oven-dried [residual moisture (∼8%)] and milled (70 mesh sieve) pumpkin flesh matrix increased SC-CO₂ extraction yields of total vitamin E and carotenoids of ∼12.0- and ∼8.5-fold, respectively, with respect to the use of a freeze-dried and milled flesh matrix. The addition of milled (35 mesh) pumpkin seeds as co-matrix (1:1, w/w) allowed a further ∼1.6-fold increase in carotenoid yield, besides to a valuable enrichment of the extracted oil in vitamin E (274 mg/100 g oil) and polyunsaturated fatty acids. These findings encourage further studies in order to scale up the process for possible industrial production of high quality bioactive ingredients from pumpkin useful in functional food or cosmeceutical formulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Chemical composition and antioxidant activity of Lippia alba essential oil obtained by supercritical CO2 and hydrodistillation

    USDA-ARS?s Scientific Manuscript database

    Lippia alba extracts from Mexico were obtained by hydrodistillation (HD) and supercritical fluid (SFE) extraction methods. The extracts were analyzed by gas chromatography using flame ionization and mass spectrometric detections. Antioxidant activity was tested by two methods (DPPH and ABTS) and tot...

  16. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the superficial velocity of the supercritical carbon dioxide; therefore, the mass transfer resistance can be reduced increasing such velocity. In this work, higher values of superficial velocity were investigated. The experimental apparatus includes a pump, an extraction vessel, an adjustable restrictor and a trap to collect the extracted substance. Liquid carbon dioxide coming from a cylinder with a dip-tube is cooled by a cryostatic bath and then it is compressed by a pneumatic drive pump (the max- imum available pressure is 69 MPa). Subsequently, the pressurised current flows into 1 a heating coil and then into the extraction vessel, which is contained in a stove; the outlet flow is depressurised in an adjustable restrictor and the extracted substance is collected in a trap by dissolution into a solvent. The extracted naphthalene quantity was obtained by weighting the solvent and measuring the naphthalene concentration with a gas chromatograph. The soil sample is a sandy soil geologically representative of the North of Italy that was sampled and physically and chemically characterized: particle-size distribution analysis, diffractometric analysis, Cation Exchange Capac- ity, Total Organic Carbon, iron content and manganese content in order to evaluate the potential sorption degree. The soil was artificially polluted by means of a naphta- lene and methylene chloride solution. The experimental work consists in a number of naphthalene extractions from the spiked soil, that were carried out at different operat- ing conditions, temperature, pressure and flow rate by means of supercritical carbon dioxide evaluating the corresponding recovery efficiencies. The results obtained were analysed and compared in order to determine which parameters influence the system. [1] G. A. Montero, T.D. Giorgio, and K. B. Schnelle, Jr..Removal of Hazardous ,1994, Contaminants form Soils by Supercritical Fluid Extraction. Innovations in Supercriti- cal Fluids. ACS Symposium Series, 608, 280-197. 2

  17. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  18. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  19. Modern supercritical fluid technology for food applications.

    PubMed

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  20. Development of new critical fluid-based processing methods for nutraceuticals and natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. W.

    2004-01-01

    The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products,more » and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes, which will be noted. Sub-critical water is finding increase use as an extraction/fractionation or reaction medium. The literature reports applications for the extraction spices, natural antioxidants (rosemary, anthocyanins, etc.), and herbal components (tea and coffee ingredients), Our studies and the literature provide adequate correlations of solute solubility in sub-critical water as well as models for the kinetics of extraction in this medium. Finally, the current state of critical fluid technology as applied to natural products and nutraceuticals will be assessed; noting specific processes, organizations, and products that exist.« less

  1. Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    1996-01-01

    Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.

  2. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.

    PubMed

    Tang, Wei-Qiang; Li, Di-Cai; Lv, Yang-Xiao; Jiang, Jian-Guo

    2010-05-01

    Low-caffeine or caffeine-removed tea and its products are widely welcomed on market in recent years. In the present study, we adopt ultrasonic-enhanced supercritical fluid extraction process to remove caffeine from green tea. An orthogonal experiment (L16 (4(5))) was applied to optimize the best removal conditions. Extraction pressure, extraction time, power of ultrasound, moisture content, and temperature were the main factors to influence the removal rate of caffeine from green tea. The 5 factors chosen for the present investigation were based on the results of a single-factor test. The optimum removal conditions were determined as follows: extraction pressure of 30 MPa, temperature at 55 degrees C, time of 4 h, 30% moisture content, and ultrasound power of 100 W. Chromatogram and ultraviolet analysis of raw material and decaffeinates suggests that under optimized conditions, the caffeine of green tea was effectively removed and minished without damaging the structure of active ingredients in green tea.

  3. The optimization of essential oils supercritical CO2 extraction from Lavandula hybrida through static-dynamic steps procedure and semi-continuous technique using response surface method

    PubMed Central

    Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza

    2015-01-01

    Aim: The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Materials and Methods: Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Results: Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). Conclusion: The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method. PMID:25598636

  4. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier.

    PubMed

    Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali

    2017-03-01

    The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

  5. Supercritical fluid extraction. Principles and practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.A.; Krukonis, V.J.

    This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less

  6. Preparation of highly pure zeaxanthin particles from sea water-cultivated microalgae using supercritical anti-solvent recrystallization.

    PubMed

    Chen, Chao-Rui; Hong, Siang-En; Wang, Yuan-Chuen; Hsu, Shih-Lan; Hsiang, Daina; Chang, Chieh-Ming J

    2012-01-01

    Xanthophylls, including zeaxanthin, are considered dietary supplements with a potentially positive impact on age-related macular degeneration. Using pilot-scale column fractionation coupled with supercritical anti-solvent (SAS) recrystallization, highly pure zeaxanthin particulates were prepared from ultrasonic extracts of the microalgae, Nannochloropsis oculata, grown in sea water. Column partition chromatography increased the concentration of zeaxanthin from 36.2 mg/g of the ultrasonic extracts to 425.6 mg/g of the collected column fractions. A response surface methodology was systematically designed for the SAS process by changing feed concentration, CO(2) flow rate and anti-solvent pressure. Zeaxanthin-rich particles with a purity of 84.2% and a recovery of 85.3% were produced using supercritical anti-solvent recrystallization from the column eluate at a feed concentration of 1.5 mg/mL, CO(2) flow rate of 48.6 g/min and pressure of 135 bar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Simultaneous quantification of vitamin E, γ-oryzanols and xanthophylls from rice bran essences extracted by supercritical CO2.

    PubMed

    Sookwong, Phumon; Suttiarporn, Panawan; Boontakham, Pittayaporn; Seekhow, Pattawat; Wangtueai, Sutee; Mahatheeranont, Sugunya

    2016-11-15

    Since the nutrition value of rice is diminished during rice processing, technology that can preserve and sustain functional compounds is necessary. In this study, supercritical carbon dioxide (SC-CO2) extraction was optimized for operational conditions (time, temperature, pressure and modifier) to extract vitamin E, γ-oryzanols and xanthophylls from rice bran. The simultaneous quantification of the compounds was developed using high-performance liquid chromatography with diode array and fluorescence detectors. Central composite design and respond surface methodology were applied to achieve optimum extraction conditions. The optimized conditions were 60min, 43°C, 5420psi with 10% ethanol as a modifier. Pigmented rice bran extracts contained greater amounts of functional phytochemicals than non-pigmented rice bran extracts (0.68, 1410, and non-detectable μg/g compared with 16.65, 2480, and 0.10μg/g of vitamin E, γ-oryzanols and xanthophylls in pigmented and non-pigmented ones, respectively). SC-CO2 extraction with modifier would be promising for preparation of phytochemical essences for therapeutic purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage

    NASA Astrophysics Data System (ADS)

    Prakash, Sai S.; Brinker, C. Jeffrey; Hurd, Alan J.; Rao, Sudeep M.

    1995-03-01

    HIGHLY porous inorganic films have potential applications as dielectric materials, reflective and anti-reflective coatings, flat-panel displays, sensors, catalyst supports and super-insulating architectural glazings1-3. Aerogels4 are the most highly porous solids known, and can now be prepared from inorganic5 and organic6,7 precursors with volume-fraction porosities of up to 99.9% (ref. 8). Aerogels are normally prepared by supercritical extraction of the pore fluid from a wet gel1, which prevents the network collapse that is otherwise induced by capillary forces. But supercritical processing is expensive, hazardous and incompatible with the processing requirements of many potential applications,thus severely restricting the commercial exploitation of aerogels. Here we describe a means of preparing aerogels by a simple dip-coating method at ambient pressure without the need for supercriti-cal extraction. We add surface groups to the inorganic gel which make drying shrinkage reversible9: as the solvent is withdrawn, the gel springs back to a porous state. We can generate aerogel films with 98.5% porosity using this approach. We anticipate that it will greatly expand the commercial applications of these materials.

  9. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  10. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (p<0.05) compared to the leaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  11. An Organic Geochemical Assessment of CO2-Coal Interactions During Sequestration

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2003-01-01

    Three well-characterized coal samples of varying rank were extracted with supercritical CO2 to determine the amount of polycyclic aromatic hydrocarbons (PAHs) that could be mobilized during simulated CO2 injection/sequestration in deep coal beds. The supercritical CO2 extractions were conducted at 40?C and 100 bars, roughly corresponding to a depth of 1 km. The greatest amount of PAHs was extracted from the high-volatile C bituminous coal sample. Extracts from the subbituminous C and anthracite coal samples contained lower concentrations of these compounds. The effectiveness of supercritical CO2 in liberating PAHs from the coal sample was evaluated in a comparison with a parallel series of Soxhlet extractions using 100% dichloromethane. More PAHs were extracted from the lower rank coal samples with dichloromethane than with supercritical CO2. The results from this investigation indicate that, regardless of coal rank, CO2 injection into deep coal beds may mobilize PAHs from the coal matrix. However, more PAHs could be mobilized during CO2 sequestration in a high-volatile C bituminous coal bed than in either of the other two coal ranks studied.

  12. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  13. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    PubMed

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  15. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    PubMed

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  17. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  18. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates.

    PubMed

    Shortle, E; O'Grady, M N; Gilroy, D; Furey, A; Quinn, N; Kerry, J P

    2014-12-01

    Six extracts were prepared from hawthorn (Crataegus monogyna) leaves and flowers (HLF) and berries (HB) using solid-liquid [traditional (T) (HLFT, HBT), sonicated (S) (HLFS, HBS)] and supercritical fluid (C) extraction (HLFC, HBC) techniques. The antioxidant activities of HLF and HB extracts were characterised using in vitro antioxidant assays (TPC, DPPH, FRAP) and in 25% bovine muscle (longissimus lumborum) homogenates (lipid oxidation (TBARS), oxymyoglobin (% of total myoglobin)) after 24h storage at 4°C. Hawthorn extracts exhibited varying degrees of antioxidant potency. In vitro and muscle homogenate (TBARS) antioxidant activity followed the order: HLFS>HLFT and HBT>HBS. In supercritical fluid extracts, HLFC>HBC (in vitro antioxidant activity) and HLFC≈HBC (TBARS). All extracts (except HBS) reduced oxymyoglobin oxidation. The HLFS extract had the highest antioxidant activity in all test systems. Supercritical fluid extraction (SFE) exhibited potential as a technique for the manufacture of functional ingredients (antioxidants) from hawthorn for use in muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry.

    PubMed

    Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru

    2017-05-30

    The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Production of all trans-beta-carotene by using impinging flow of supercritical carbon dioxide anti-solvent pulverization.

    PubMed

    Shen, Yi-Chen; Chng, Lee-Muei; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Kuo-Li; Hsu, Shih-Lan; Chou, Hong-Nong; Chang, Chieh-Ming J

    2012-12-28

    This work investigated column elution chromatography coupled with supercritical anti-solvent precipitation to produce carotenoid rich microsized particulates from microalgal Dunaliella salina species. The extract contained carotenoids ranging from 61.3 mg/g(salina) to 72.5 mg/g(salina) using ultrasonic stirred ethyl ether or tetrahydrofuran (THF) extraction. When 10 L of ethyl alcohol was employed to elute the THF extract, purity of trans-β-carotene is 823.6 mg/g with a recovery of 86.2%. It was found that the supercritical anti-solvent of THF solution at 160 bar and 318 K produced powdered particulates with a purity of carotenoids above 90%. Subsequently, a central composite response surface design method was used to design supercritical anti-solvent precipitation of carotenoid-rich THF solution. This was accomplished by increasing the pressure from 140 bar to 180 bar and the time from 40 min to 60 min at a feed flow rate of 0.2 mL/min. A CO(2) flow rate of 15 L/min and a temperature of 318 K were also used to determine the effects on purity and recovery of trans-β-carotene. The combined process produced micronized precipitates with a mean particle size ranging from 3.5 μm to 19 μm and the purity of trans-β-carotene attained was 926.8 mg/g with a recovery of 54%. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Investigation on the supercritical CO(2) extraction of the volatile constituents from Juniperus communis obtained under different treatments of the "berries" (cones).

    PubMed

    Chatzopoulou, Paschalina; de Haan, Andre; Katsiotis, Stavros T

    2002-09-01

    The present investigation reports the experimental data a) from the recovery and the composition of the extract under super critical fluid extraction from Juniperus communis L. "berries" (cones), and b) their comparison with those of the essential oil obtained by hydrodistillation. For the extraction of the juniper oil different values of temperature and pressure were applied; furthermore, the degree of comminution of the plant material was also considered - a) integral "berries" and b) comminuted "berries". The quality of the oil recovered from the "berries" by supercritical carbon dioxide extraction was found to be highly dependent on the applied conditions. The comminution affected greatly the oil recovery and consequently the final composition of the extracts. Significant differences were recorded between the supercritical CO(2) extract and the distilled oil, the latter being more enriched in monoterpenoid hydrocarbons.

  2. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis

    PubMed Central

    Esquivel-Hernández, Diego A.; López, Víctor H.; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S.; Cuéllar-Bermúdez, Sara P.; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-01-01

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO2 produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis. PMID:27164081

  3. Supercritical Carbon Dioxide and Microwave-Assisted Extraction of Functional Lipophilic Compounds from Arthrospira platensis.

    PubMed

    Esquivel-Hernández, Diego A; López, Víctor H; Rodríguez-Rodríguez, José; Alemán-Nava, Gibrán S; Cuéllar-Bermúdez, Sara P; Rostro-Alanis, Magdalena; Parra-Saldívar, Roberto

    2016-05-05

    Arthrospira platensis biomass was used in order to obtain functional lipophilic compounds through green extraction technologies such as supercritical carbon dioxide fluid extraction (SFE) and microwave-assisted extraction (MAE). The temperature (T) factor was evaluated for MAE, while for SFE, pressure (P), temperature (T), and co-solvent (ethanol) (CS) were evaluated. The maximum extraction yield of the obtained oleoresin was (4.07% ± 0.14%) and (4.27% ± 0.10%) for SFE and MAE, respectively. Extracts were characterized by gas chromatography mass spectrometry (GC-MS) and gas chromatography flame ionization detector (GC-FID). The maximum contents of functional lipophilic compounds in the SFE and MAE extracts were: for carotenoids 283 ± 0.10 μg/g and 629 ± 0.13 μg/g, respectively; for tocopherols 5.01 ± 0.05 μg/g and 2.46 ± 0.09 μg/g, respectively; and for fatty acids 34.76 ± 0.08 mg/g and 15.88 ± 0.06 mg/g, respectively. In conclusion, the SFE process at P 450 bar, T 60 °C and CS 53.33% of CO₂ produced the highest yield of tocopherols, carotenoids and fatty acids. The MAE process at 400 W and 50 °C gives the best extracts in terms of tocopherols and carotenoids. For yield and fatty acids, the MAE process at 400 W and 70 °C produced the highest values. Both SFE and MAE showed to be suitable green extraction technologies for obtaining functional lipophilic compounds from Arthrospira platensis.

  4. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  5. Supercritical fluid extraction of 11C-labeled metabolites in tissue using supercritical ammonia.

    PubMed

    Jacobson, G B; Moulder, R; Lu, L; Bergström, M; Markides, K E; Långström, B

    1997-02-01

    Supercritical fluid extraction (SFE) of 11C-labeled tracer compounds and their metabolites from biological tissue was performed using supercritical ammonia in an attempt to develop a rapid extraction procedure that allowed subsequent analysis of the labeled metabolites. Metabolites were extracted from kidneys and brain in rats given in vivo injections of the radiotracers O-[2-11C]acetyl-L-carnitine and N-[11C]methylpiperidyl benzilate, respectively. Only a minimal sample pretreatment of the tissue was necessary, i.e., cutting into 10-20 pieces and mixing with the drying agent Hydromatrix, before it was loaded into the extraction vessel. Extraction efficiency was measured for SFE at temperatures over the range of 70-150 degrees C and a pressure of 400 bar. For O-[2-11C]acetyl-L-carnitine, 66% of the radioactivity was trapped in the collected fractions and 12% remained in the extraction vessel. For the more lipophilic N-[11C]methylpiperidyl benzilate, 93% of the activity was collected and less than 1% remained in the extraction vessel. Labeled metabolites were analyzed by LC and also, in the case, of O-[2-11C]acetyl-L-carnitine by LC/MS. The complete extraction procedure, from removal of the biological tissue until an extract was ready for analysis, was 25 min, corresponding to about one half-life of the radionuclide 11C.

  6. Evaluation of the essential oil of Foeniculum vulgare Mill (fennel) fruits extracted by three different extraction methods by GC/MS.

    PubMed

    Hammouda, Faiza M; Saleh, Mahmoud A; Abdel-Azim, Nahla S; Shams, Khaled A; Ismail, Shams I; Shahat, Abdelaaty A; Saleh, Ibrahim A

    2014-01-01

    Hydrodistillation (HD) and steam-distillation, or solvent extraction methods of essential oils have some disadvantages like thermal decomposition of extracts, its contamination with solvent or solvent residues and the pollution of residual vegetal material with solvent which can be also an environmental problem. Thus, new green techniques, such as supercritical fluid extraction and microwave assisted techniques, are potential solutions to overcome these disadvantages. The aim of this study was to evaluate the essential oil of Foeniculum vulgare subsp. Piperitum fruits extracted by three different extraction methods viz. Supercritical fluid extraction (SFE) using CO2, microwave-assisted extraction (MAE) and hydro-distillation (HD) using gas chromatography-mass spectrometry (GC/MS). The results revealed that both MAE and SFE enhanced the extraction efficiency of the interested components. MAE gave the highest yield of oil as well as higher percentage of Fenchone (28%), whereas SFE gave the highest percentage of anethol (72%). Microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) not only enhanced the essential oil extraction but also saved time, reduced the solvents use and produced, ecologically, green technologies.

  7. Determination of Oleanolic and Ursolic Acids in Hedyotis diffusa Using Hyphenated Ultrasound-Assisted Supercritical Carbon Dioxide Extraction and Chromatography

    PubMed Central

    Hong, Show-Jen

    2015-01-01

    Oleanolic acid (OA) and ursolic acid (UA) were extracted from Hedyotis diffusa using a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2 flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2 flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed that H. diffusa is a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA from H. diffusa at high concentrations. PMID:26089939

  8. Antifungal activities of three supercritical fluid extracted cedar oils

    Treesearch

    Tianchuan Du; Todd F. Shupe; Chung Y. Hse

    2009-01-01

    The antifungal activities of three supercritical CO2 (SCC) extracted cedar oils, Port-Orford-cedar (POC) (Chamaecyparis lawsoniana), Alaska yellow cedar (AYC) (Chamaecyparis nootkatensis), and Eastern red cedar (ERC) (Juniperus virginiana L), were evaluated against two common wood decay fungi, brown-rot fungi (...

  9. Assessment of Supercritical Fluid Extraction Use in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In this investigation, supercritical fluid extraction (SFE) with pure CO2 was assessed as a confirmatory tool in Phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments usi...

  10. Mass balance of metal species in supercritical fluid extraction using sodium diethyldithiocarbamate and dibutylammonium dibutyldithiocarbamate.

    PubMed

    Wang, Joanna Shaofen; Chiu, Kong-Hwa

    2006-03-01

    The objective of this work is to track the amount of metal complexes distributed in the extraction cell, collection vial, and tubing used in supercritical fluid extraction (SFE) systems after progressive removal of metal ions in supercritical carbon dioxide (SC-CO2). Sodium diethyldithiocarbamate (NaDDC) and dibutylammonium dibutyldithiocarbamate (DBDC) ligands were used to form complexes with Cd, Cu, Pb, and Zn and CO(2)/5% methanol as a supercritical fluid. The mass balance of metal complexes were obtained before and after extraction, and metals in different locations in the system were flushed out using an organic solvent and nitric acid (HNO3). These results infer that the stability constant (beta) of the metal-ligand complex has a strong correlation with SFE. Because of the composition of the stainless-steel cell, Fe, Cr, and Ni or other trace elements in the cell might interfere with the mass balance of metal complexes in SFE due to an exchange mechanism taking place between the cell and the sample.

  11. Combining supercritical fluid extraction of soil herbicides with enzyme immunoassay analysis.

    PubMed

    Stearman, G K

    2001-10-01

    Supercritical fluid extraction (SFE) of soil herbicides followed by enzyme immunoassay analysis (EIA) is explained in a step-by-step process. Extracted herbicides, include 2,4-D, simazine, atrazine, and alachlor. The herbicide, trifluralin was not successfully analyzed by EIA because of crossreacting metabolites. Problems with SFE, including uneven packing of cells, leaks, uneven flow and clogging, can largely be eliminated as the method parameters are optimized. It was necessary to add modifiers including methanol or acetone to the SF CO2 to increase the solubility of the analytes. Detection limits of 2.5 ng/g soil for atrazine and alachlor and 15 ng/g soil for simazine and 2,4-D without concentration of the sample were achieved. Recoveries above 80% and relative standard deviations (RSDs) less than 15% for 2,4-D simazine, atrazine and alachlor were achieved. Atrazine and alachlor recoveries were above 90% with RSDs below 10%. Forty soil samples could be extracted and analyzed in an 8-h day.

  12. Antioxidant effects of supercritical fluid garlic extracts in sunflower oil.

    PubMed

    Bravi, Elisabetta; Perretti, Giuseppe; Falconi, Caterina; Marconi, Ombretta; Fantozzi, Paolo

    2017-01-01

    Lipid oxidation causes changes in quality attributes of vegetable oils. Synthetic antioxidants have been used to preserve oils; however, there is interest in replacing them with natural ones. Garlic and its thiosulfinate compound allicin are known for their antioxidant activities. This study assesses a novel formulation, the supercritical fluid extract of garlic, on sunflower oil oxidation during an accelerated shelf-life test. Three quality parameters (free acidity, peroxide values, and p-anisidine values) were evaluated in each of the six oil samples. The samples included sunflower oil alone, sunflower oil supplemented with BHT, the undiluted supercritical fluid extract of garlic, and sunflower oils supplemented with three levels of garlic extract. The oils were also investigated for their antioxidant properties using the DPPH and the FRAP assays. The results were compared with the effect of the synthetic BHT. Our results underlined that the highest level of garlic extract may be superior, or at least comparable, with BHT in preserving sunflower oil. The oxidative degradation of oily samples can be limited by using supercritical fluid extract of garlic as it is a safe and an effective natural antioxidant formulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    PubMed

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  14. Studies on the use of supercritical ammonia for ceramic nitride synthesis and fabrication

    NASA Technical Reports Server (NTRS)

    Cornell, Linda; Lin, Y. C.; Philipp, Warren H.

    1990-01-01

    The extractability of ammonia halides (including ammonium thiocyanate) formed as byproducts from the synthesis of Si(NH)2 via ammonolysis of the corresponding silicon tetrahalides using supercritical NH3 as the extraction medium was investigated. It was found that the NH4SCN byproduct of ammonolysis of Si(SCN)4 can be almost completely extracted from the insoluble Si(NH)2 forming a promising system for the synthesis of pure Si(NH)2, one of the best precursors for Si3N4. In addition it was found that Si3N4, AlN, BN, and Si(NH)2 are insoluble in SC ammonia. Also discussed are design considerations for a supercritical ammonia extraction unit.

  15. Supercritical CO2 extraction, chemical characterisation and antioxidant potential of Brassica oleracea var capitata against HO·, O2(·-) and ROO·.

    PubMed

    Dal Prá, Valéria; Dolwitsch, Carolina Bolssoni; da Silveira, Géssica Domingos; Porte, Liliane; Frizzo, Clarissa; Tres, Marcus Vinicius; Mossi, Vinicius; Mazutti, Marcio Antonio; do Nascimento, Paulo Cícero; Bohrer, Denise; de Carvalho, Leandro Machado; Viana, Carine; da Rosa, Marcelo Barcellos

    2013-12-15

    In this work were extracted bioactive compounds from Brassica oleracea var capitata using supercritical CO2 and evaluated the antioxidant potential of the extracts. Five extractions were accomplished to investigate the influence of pressure (10-25 MPa) and temperature (20-60 °C) in the extraction yield, chemical composition and antioxidant potential towards peroxyl, superoxide and hydroxyl radicals. The highest extraction yield was obtained at 60 °C and 25 MPa, which was 0.47 wt% (run 2). In the characterisation of the extracts obtained was possible the identification of sulforaphane and iberin nitrile that present known biological properties. The extracts of all runs presented antioxidant activities towards the three radicals, but the highest activities for all radicals were using the extracts obtained in the run 2. The use of supercritical CO2 extraction to obtain bioactive compounds of B. oleracea var capitata showed to be a promising alternative to conventional extraction methods, since allowed the extraction of compounds with scientific and industrial interest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Development and characterization of a green procedure for apigenin extraction from Scutellaria barbata D. Don.

    PubMed

    Yang, Yu-Chiao; Wei, Ming-Chi

    2018-06-30

    This study compared the use of ultrasound-assisted supercritical CO 2 (USC-CO 2 ) extraction to obtain apigenin-rich extracts from Scutellaria barbata D. Don with that of conventional supercritical CO 2 (SC-CO 2 ) extraction and heat-reflux extraction (HRE), conducted in parallel. This green procedure yielded 20.1% and 31.6% more apigenin than conventional SC-CO 2 extraction and HRE, respectively. Moreover, the extraction time required by the USC-CO 2 procedure, which used milder conditions, was approximately 1.9 times and 2.4 times shorter than that required by conventional SC-CO 2 extraction and HRE, respectively. Furthermore, the theoretical solubility of apigenin in the supercritical fluid system was obtained from the USC-CO 2 dynamic extraction curves and was in good agreement with the calculated values for the three empirical density-based models. The second-order kinetics model was further applied to evaluate the kinetics of USC-CO 2 extraction. The results demonstrated that the selected model allowed the evaluation of the extraction rate and extent of USC-CO 2 extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Chemical constituents from supercritical CO2 extraction of Schisandra chinensis].

    PubMed

    Zhu, Hong-yan; Lin, Hai-cheng; Wang, Guo-li; Zhang, Lian-xue

    2014-11-01

    To study the chemical constituents from the supercritical CO2 extraction of Schisandra chinensis. The compounds were separated and purified by conventional column chromatography and their structures were identified by spectroscopic methods. Nine compounds were isolated from the supercritical CO2 extraction of Schisandra chinensis, and their structures were identified as chrysophanol(1),schisandrin B(2), β-sitosterol(3), schisandrin C(4),schisandrol A(5), angeloylgomisin H(6), daucosterol(7) 1, 5-dimethyl citrate (8), and shikimic acid (9). Compounds 1, 8 and 9 are isolated from Schisandra chinensis for the first time,and compound 1 as an anthraquinone is isolated from this genus for the first time.

  18. SigmaPlot 2000, Version 6.00, SPSS Inc. Computer Software Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HURLBUT, S.T.

    2000-10-24

    SigmaPlot is a vendor software product used in conjunction with the supercritical fluid extraction Fourier transform infrared spectrometer (SFE-FTIR) system. This product converts the raw spectral data to useful area numbers. SigmaPlot will be used in conjunction with procedure ZA-565-301, ''Determination of Moisture by Supercritical Fluid Extraction and Infrared Detection.'' This test plan will be performed in conjunction with or prior to HNF-6936, ''HA-53 Supercritical Fluid Extraction System Acceptance Test Plan'', to perform analyses for water. The test will ensure that the software can be installed properly and will manipulate the analytical data correctly.

  19. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  20. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  1. Supercritical fluid extraction and bioactivity of cedarwood oil

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (70°C, 4,000 psi) was used to extract cedarwood oil from Eastern redcedar, Juniperus virginiana L. The CO2-derived oil was tested for biological activity against several species of arthropods, including mosquitoes, ticks, houseflies, and ants. The cedarwood oil was found...

  2. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  3. Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Tuveri, Enrica; Sanjust, Enrico; Meli, Massimo; Sollai, Francesca; Zucca, Paolo; Rescigno, Antonio

    2007-11-28

    The volatile oil of the bark of Cinnamomum zeylanicum was extracted by means of supercritical CO2 fluid extraction in different conditions of pressure and temperature. Its chemical composition was characterized by GC-MS analysis. Nineteen compounds, which in the supercritical extract represented >95% of the oil, were identified. (E)-Cinnamaldehyde (77.1%), (E)-beta-caryophyllene (6.0%), alpha-terpineol (4.4%), and eugenol (3.0%) were found to be the major constituents. The SFE oil of cinnamon was screened for its biological activity about the formation of melanin in vitro. The extract showed antityrosinase activity and was able to reduce the formation of insoluble flakes of melanin from tyrosine. The oil also delayed the browning effect in apple homogenate. (E)-Cinnamaldehyde and eugenol were found to be mainly responsible of this inhibition effect.

  4. Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.D.; Udseth, H.R.

    1982-07-01

    The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less

  5. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide.

    PubMed

    Lenucci, Marcello Salvatore; De Caroli, Monica; Marrese, Pier Paolo; Iurlaro, Andrea; Rescio, Leonardo; Böhm, Volker; Dalessandro, Giuseppe; Piro, Gabriella

    2015-03-01

    This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins

    PubMed Central

    Longo, Cristiano; Leo, Lucia; Leone, Antonella

    2012-01-01

    The risk of chronic diseases has been shown to be inversely related to tomato intake and the lycopene levels in serum and tissue. Cis-isomers represent approximately 50%–80% of serum lycopene, while dietary lycopene maintains the isomeric ratio present in the plant sources with about 95% of all-trans-lycopene. Supercritical CO2 extraction (S-CO2) has been extensively developed to extract lycopene from tomato and tomato processing wastes, for food or pharmaceutical industries, also by using additional plant sources as co-matrices. We compared two S-CO2-extracted oleoresins (from tomato and tomato/hazelnut matrices), which showed an oil-solid bi-phasic appearance, a higher cis-lycopene content, and enhanced antioxidant ability compared with the traditional solvent extracts. Heat-treating, in the range of 60–100 °C, led to changes in the lycopene isomeric composition and to enhanced antioxidant activity in both types of oleoresins. The greater stability has been related to peculiar lycopene isomer composition and to the lipid environment. The results indicate these oleoresins are a good source of potentially healthful lycopene. PMID:22605975

  7. Supercritical Fluid Extraction versus Traditional Solvent Extraction of Caffeine from Tea Leaves: A Laboratory-Based Case Study for an Organic Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Larkin, Judith E.; Pines, Harvey A.; Berchou, Kelly; Wierchowski, Elizabeth; Marconi, Andrew; Suriani, Allison

    2012-01-01

    In this case-based laboratory, an instrument sales person attempts to convince an analysis laboratory of the virtues of supercritical fluid extraction (SFE). The sales person deals directly with the laboratory technicians who will make the decision. Arrangements are made to have SFE instrumentation brought into the laboratory for a comparative…

  8. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids.

    PubMed

    Oliveira, Daniela A; Salvador, Ana Augusta; Smânia, Artur; Smânia, Elza F A; Maraschin, Marcelo; Ferreira, Sandra R S

    2013-04-10

    The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Method for producing metal oxide aerogels having densities less than 0.02 g/cc

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1994-01-01

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm.sup.3 to those with a density of more than 0.8 g/cm.sup.3, by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm.sup.3. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm.sup.3, with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described.

  10. Supercritical Fluid Extraction of Biogenic SOA in Northern Michigan

    NASA Astrophysics Data System (ADS)

    Flores, R. M.; Doskey, P. V.; Perlinger, J. A.

    2010-12-01

    Secondary organic aerosols (SOA) are formed by photooxidation of volatile organic compounds (VOCs) and nucleation and condensation of the oxygenated products. On a global scale, monoaromatic hydrocarbons of anthropogenic origin are estimated to be the source of 12% of the SOA while biogenic emissions of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24) are estimated to be the source of 46, 29 and 7% of SOA, respectively. The functional groups of organic substances comprising SOA (i.e., hydroxyl, carbonyl, carboxylic acid, sulfate, and nitrate) complicate sample processing, analysis, and identification of the characteristic aerosol products of VOC oxidation pathways. Only a very small fraction of the organic molecular species in SOA have been identified due to the complexity of precursor oxidation reactions and the need for (1) methodologies that are less labor intensive and suitable for thermally labile compounds and (2) analytic instrumentation that provides more complete resolution of complex mixtures for sensitive detection of molecular species. Extraction techniques commonly used include solvent extraction, which requires large amounts of solvent and is labor intensive and thermal desorption, which evolves organic substances from aerosol at temperatures not suitable for thermally labile compounds. A promising technique that does not involve sample processing with solvents or high temperatures is supercritical fluid extraction (SFE). In this work, the composition of biogenic SOA was studied in Northern Michigan. Aerosol samples were collected on quartz fiber filters with a high-volume air sampler and extracted with supercritical CO2. Carboxylic and hydroxyl compounds were derivatized during static extraction conditions and identified by comprehensive two dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC-TOFMS). The overall goal of the research is to couple the post-collection analytic scheme developed here with a rapid sampling technique to evaluate SOA produced from a variety of biogenic and anthropogenic sources of precursors in the Midwestern United States.

  11. Red pigment from Lithospermum erythrorhizon by supercritical CO2 extraction.

    PubMed

    Lee, Hwa-Young; Kim, Yoon-Jung; Kim, Eun-Jung; Song, Young-Keun; Byun, Sang Yo

    2008-01-01

    In this study, a stable red pigment was prepared from Lithospermum erythrorhizon via supercritical carbon dioxide extraction. The optimal extraction conditions were 400 bar and 60 degrees C. The patch tests indicated that up to 10% of the red pigment was acceptable from a skin irritation standpoint. According to the results of the CIE LAB chromaticity test, the color difference was acceptable when compared to commercial synthetic red pigments. The light-illuminated color stability test indicated that the pigment was more stable than the red pigment extracted with ethanol. The higher stability was also demonstrated in the DPPH antioxidant activity test. The supercritical red pigment harbored elevated amounts of shikonin and derivatives, and appears to be usable as a stable red pigment for cosmetic color products.

  12. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    PubMed

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (<7 %) as modifier, for the maximum predicted values of extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  13. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil.

    PubMed

    Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A

    2018-06-01

    On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2  ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparison of composition and antifungal activity of Artemisia argyi Lévl. et Vant inflorescence essential oil extracted by hydrodistillation and supercritical carbon dioxide.

    PubMed

    Wenqiang, Guan; Shufen, Li; Ruixiang, Yan; Yanfeng, Huang

    2006-09-01

    Essential oil of Artemisia argyi Lévl. et Vant inflorescence was obtained by supercritical CO(2) extraction and hydrodistillation. The oil was analyzed by gas chromatography/mass spectrometry to characterize its components and was also tested for antifungal activity. A total of 61 compounds were identified in the hydrodistilled oil. The major components were 1,8-cineole (4.46%), borneol (3.58%), terpinol (10.18%), spathulenol (10.03%), caryophyllene oxide (6.51%), juniper camphor (8.74%), Camazulene (2.05%), and camphor (3.49%). By using supercritical CO(2) at 50 degrees C and 10 MPa, the concentrations of previous main components were lower than oil obtained by hydrodistillation, while miscellaneous compounds were higher. The essential oil extracted by these two methods exhibited antifungal activity against Botrytis cinerea and Alternaria alternate, two common storage pathogens of fruits and vegetables. The inhibition of B. cinerea and A. alternate were 93.3 and 84.7% for oil extracted by hydrodistillation when exposed to a concentration of 1,000 mg L(-1), while values of 70.8 and 60.5% were observed from oil extracted by supercritical CO(2).

  15. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.

    PubMed

    Salmaso, Stefano; Elvassore, Nicola; Bertucco, Alberto; Caliceti, Paolo

    2009-02-01

    A supercritical carbon dioxide micronization technique based on gas-assisted melting atomization has been designed to prepare protein-loaded solid lipid submicron particles. The supercritical process was applied to homogeneous dispersions of insulin in lipid mixtures: (1) tristearin, Tween-80, phosphatidylcholine and 5 kDa PEG (1:0.1:0.9:1 and 1:0.1:0.9:2 weight ratio); and (2) tristearin, dioctyl sulfosuccinate and phosphatidylcholine (1:1:0.5 weight ratio). Optimized process conditions yielded dry nonagglomerated powders with high product recovery (70%, w/w). Dynamic light scattering and transmission electron microscopy showed that two size fractions of particles, with 80-120 and 200-400 nm diameters, were produced. In all final products, dimethylsulfoxide used to prepare the insulin/lipid mixture was below 20 ppm. Protein encapsulation efficiency increased up to 80% as the DMSO content in the insulin/lipid mixture increased. Compared to the particles without PEG, the polymer-containing particles dispersed rapidly in water, and the dispersions were more stable under centrifugation as less than 20% of suspended particles precipitated after extensive centrifugation. In vitro, the protein was slowly released from the formulation without PEG, while a burst and faster release were obtained from the formulations containing PEG. Subcutaneous injection to diabetic mice of insulin extracted from the particles showed that the supercritical process did not impair the protein hypoglycemic activity.

  16. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel samplemore » produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.« less

  17. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  18. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    PubMed Central

    Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.

    2013-01-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584

  19. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    PubMed

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants.

    PubMed

    Stashenko, Elena E; Martínez, Jairo R; Cala, Mónica P; Durán, Diego C; Caballero, Deyanira

    2013-01-01

    Analytical methodologies based on GC and HPLC were developed for the separation and quantification of carnosic acid, ursolic acid, caffeic acid, p-coumaric acid, rosmarinic acid, apigenin, luteolin, quercetin, kaempferol, naringenin, and pinocembrin. These methods were used to characterize essential oils and extracts obtained by solvent (methanol) and by supercritical fluid (CO(2)) extraction from stems and leaves of Lippia (Verbenaceae family) aromatic plants (Lippia alba, Lippia origanoides, Lippia micromera, Lippia americana, Lippia graveolens, and Lippia citriodora). Supercritical CO(2) extraction isolated solely pinocembrin and narigenin from three L. origanoides chemotypes. Solvent extracts possessed a more varied composition that additionally included apigenin, quercetin, and luteolin. Solvent extraction afforded higher overall flavonoid yields from all species in comparison with supercritical CO(2) extraction. Pinocembrin was determined in L. origanoides extract at a concentration of 30 mg/g of plant material, which is more than ten times higher than the amount at which polyphenols are regularly found in aromatic plant extracts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dehydrating and Sterilizing Wastes Using Supercritical CO2

    NASA Technical Reports Server (NTRS)

    Brown, Ian J.

    2006-01-01

    A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C

  2. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    NASA Astrophysics Data System (ADS)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  3. Optimization of Supercritical Fluid Extraction of Total Alkaloids, Peimisine, Peimine and Peiminine from the Bulb of Fritillaria thunbergii Miq, and Evaluation of Antioxidant Activities of the Extracts

    PubMed Central

    Ruan, Xiao; Yang, Li; Cui, Wen-Xia; Zhang, Men-Xing; Li, Zhao-Hui; Liu, Ben; Wang, Qiang

    2016-01-01

    Supercritical fluid extraction (SFE) was used to extract total alkaloids, peimisine, peimine and peiminine from the bulb of Fritillaria thunbergii Miq. The antioxidant capacity of the extracts was evaluated by DPPH radical scavenging activity (DPPH-RSA), ABTS radical scavenging activity (ABTS-RSA) and ferric reducing capacity (FRAP) assay. A central composite design (CCD) with four variables and five levels was employed for optimization of process parameters, and response surface plots were constructed in accordance with a second order polynomial model. Under optimal conditions of 3.0 h, 60.4 °C, 26.5 MPa and 89.3% ethanol, the highest yields were predicted to be 3.8 mg/g for total alkaloids, 0.5 mg/g for peimisine, 1.3 mg/g for peimine and 1.3 mg/g for peiminine, and the antioxidant capacity of extracts displayed EC50, DPPH value of 5.5 mg/mL, EC50, ABTS value of 0.3 mg/mL and FRAP value of 118.2 mg ascorbic acid equivalent (AAE)/100 g. PMID:28773648

  4. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    USGS Publications Warehouse

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing TOC content (r2 = 0.97 and 0.86, respectively). Given that supercritical CO2 is able to mobilize residual organic matter present in overmature shales, this study contributes to a better understanding of the extent and potential factors affecting the extraction process.

  5. Synthetic scaffolds with full pore interconnectivity for bone regeneration prepared by supercritical foaming using advanced biofunctional plasticizers.

    PubMed

    Salerno, Aurelio; Diéguez, Sara; Diaz-Gomez, Luis; Gómez-Amoza, José L; Magariños, Beatriz; Concheiro, Angel; Domingo, Concepción; Alvarez-Lorenzo, Carmen; García-González, Carlos A

    2017-06-30

    Supercritical foaming allows for the solvent-free processing of synthetic scaffolds for bone regeneration. However, the control on the pore interconnectivity and throat pore size with this technique still needs to be improved. The use of plasticizers may help overcome these limitations. Eugenol, a GRAS natural compound extracted from plants, is proposed in this work as an advanced plasticizer with bioactive properties. Eugenol-containing poly(ε-caprolactone) (PCL) scaffolds were obtained by supercritical foaming (20.0 MPa, 45 °C, 17 h) followed by a one or a two-step depressurization profile. The effects of the eugenol content and the depressurization profile on the porous structure of the material and the physicochemical properties of the scaffold were evaluated. The combination of both processing parameters was successful to simultaneously tune the pore interconnectivity and throat sizes to allow mesenchymal stem cells infiltration. Scaffolds with eugenol were cytocompatible, presented antimicrobial activity preventing the attachment of Gram positive (S. aureus, S. epidermidis) bacteria and showed good tissue integration.

  6. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition.

    PubMed

    Mohamadzadeh Shirazi, Hamed; Karimi-Sabet, Javad; Ghotbi, Cyrus

    2017-09-01

    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was obtained. According to fatty acid methyl ester yields, a quadratic experimental model was adjusted and the significance of parameters was evaluated using analysis of variance (ANOVA). Effects of single and interaction parameters were also interpreted. In addition, the effect of supercritical process on the ultrastructure of microalgae cell wall using scanning electron spectrometry (SEM) was surveyed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water.

    PubMed

    Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen

    2012-01-17

    The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.

  8. Supercritical CO₂ extraction of volatile oils from Sardinian Foeniculum vulgare ssp. vulgare (Apiaceae): chemical composition and biological activity.

    PubMed

    Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Marongiu, Bruno; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2014-01-01

    This article reports the results on the composition and antifungal effect of volatile extracts obtained from the aerial parts of Sardinian wild fennel (Foeniculum vulgare Mill.), by supercritical fluid extraction (SFE) and by hydrodistillation (HD). The extracts were analysed by gas chromatography-mass spectrometry for qualitative composition and gas chromatography-flame ionisation detector to establish the percentage of constituents. The main components were fenchone (7.1% vs. 8.8%), estragole (34.9% vs. 42.6%) and (E)-anethole (24.6% vs. 43.4%) in the SFE and HD extract, respectively. Minimum inhibitory concentrations (MICs) were measured according to the reference Clinical and Laboratory Standards Institute (CLSI) broth macrodilution protocols. Minimum lethal concentrations were determined by subsequent subculturing of the same cell suspensions in solid medium. The essential oil was more active against Candida albicans, whereas the supercritical fluid extract possesses higher activity against Candida guillermondii and Cryptococcus neoformans, with MIC values of 0.32 μL/mL.

  9. Supercritical fluids as alternative, safe, food-processing media: an overview.

    PubMed

    Da Cruz Francisco, José; Szwajcer Dey, Estera

    2003-01-01

    The continuous growth of world population and its concentration in the urban areas require food supplies that are continuous, sufficient and of good quality. To resolve this problem techniques have been developed for increasing food quantity and quality. The techniques are applied throughout the food chain from production, conservation and during distribution to the consumers (from "the field to the fork"). During handling of food, chemicals are often deliberately added to achieve improved processing and better quality. This is one of the main reasons food undergoes different kinds of contamination. This overview focuses on the application of supercritical fluids as media for handling food materials during processing with the perspective of reducing chemical contamination of food. Examples of developmental applications of this technique and on research work in process are presented. Emphasis is given to extraction and biotransformation techniques.

  10. Auraptene, a Major Compound of Supercritical Fluid Extract of Phalsak (Citrus Hassaku Hort ex Tanaka), Induces Apoptosis through the Suppression of mTOR Pathways in Human Gastric Cancer SNU-1 Cells

    PubMed Central

    Moon, Jeong Yong; Kim, Hyeonji; Cho, Somi Kim

    2015-01-01

    The supercritical extraction method is a widely used process to obtain volatile and nonvolatile compounds by avoiding thermal degradation and solvent residue in the extracts. In search of phytochemicals with potential therapeutic application in gastric cancer, the supercritical fluid extract (SFE) of phalsak (Citrus hassaku Hort ex Tanaka) fruits was analyzed by gas chromatography-mass spectrometry (GC-MS). Compositional analysis in comparison with the antiproliferative activities of peel and flesh suggested auraptene as the most prominent anticancer compound against gastric cancer cells. SNU-1 cells were the most susceptible to auraptene-induced toxicity among the tested gastric cancer cell lines. Auraptene induced the death of SNU-1 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, the proteolytic cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP) protein, and depolarization of the mitochondrial membrane. Interestingly, auraptene induces an increase in the phosphorylation of Akt, which is reminiscent of the effect of rapamycin, the mTOR inhibitor that triggers a negative feedback loop on Akt/mTOR pathway. Taken together, these findings provide valuable insights into the anticancer effects of the SFE of the phalsak peel by revealing that auraptene, the major compound of it, induced apoptosis in accompanied with the inhibition of mTOR in SNU-1 cells. PMID:26351512

  11. [Gas chromatography for analysis of essential oils. Characteristics of essential oil of Dracocephalum species and the influence of extraction method on its composition].

    PubMed

    Lemberkovics, Eva; Kakasy, András Zoltán; Héthelyi, B Eva; Simándi, Béla; Böszörményi, Andrea; Balázs, Andrea; Szoke, Eva

    2007-01-01

    In this work the essential oil composition of some less known Dracocephalum species was studied and compared the effectiveness, selectivity and influence of different extraction methods (hydrodistillation, Soxhlet extraction with organic solvents and supercritical fluid extraction) on essential oils. For investigations in Hungary and Transylvania cultivated plant material was used. The analysis of essential oils was carried out by GC and GC-MS methods. The components were identified by standard addition, retention factors and mass spectra. The percentile evaluation of each volatile constituents was made on basis of GC-FID chromatograms. The accuracy of measurements was characterized by relative standard deviation. In the essential oil of D. renati Emb. (studied firstly by us) 18.3% of limonene was measured and carvone, citrals and linalyl acetate monoterpenes, methyl chavicol and some sesquiterpene (e.g. bicyclovetivenol) determined in lower quantities. We established that more than 50% of essential oil of D. grandiflorum L. was formed by sesquiterpenes (beta-caryophyllene and- oxide, beta-bourbonene, beta-cubebene, aromadendrene) and the essential oil of D. ruyschiana L. contained pinocamphone isomers in more than 60%. The oxygenated acyclic monoterpenes, the characteristic constituents of Moldavian dragonhead were present in some tenth percent only in D. renati oil. We found significant differences in the composition of the SFE extract and traditional essential oil of D. moldavica L. The supercritical fractions collected at the beginning of the extraction process were richer in valuable ester component (geranyl acetate) than the essential oil obtained by hydrodistillation. The fractions collected at the end of supercritical were poor in oxygenated monoterpenes but rich in minor compounds of traditional oil, e.g. palmitic acid.

  12. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  13. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    PubMed

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Supercritical CO(2) fluid extraction of crystal water from trehalose dihydrate. Efficient production of form II (T(alpha)) phase.

    PubMed

    Akao, Ken-ichi; Okubo, Yusei; Inoue, Yoshio; Sakurai, Minoru

    2002-10-11

    Form II is a kind of metastable crystalline form of trehalose anhydrate, and it is easily converted to the dihydrate crystal by absorbing water in moist atmosphere at room temperature (Akao et al., Carbohydr. Res. 2001, 334, 233-241). It can be utilized as an edible and nontoxic desiccant, and thus its efficient production from the dihydrate is significant from a viewpoint of industrial applications. In this study, we attempt to extract crystal water from the dihydrate using supercritical CO(2). We examine the dependence of extraction efficiency on the extraction time, the temperature and pressure of the fluid. Then, FTIR measurements are carried out to detect the extracted water and to identify the polymorphic phase of the sugar sample after the extraction treatment. In particular, the so-called first derivative euclidean distance analysis for IR spectra is shown to be quite useful for the structural identification. Consequently, we demonstrate that form II is produced from the dihydrate through supercritical CO(2) fluid extraction if appropriate temperature and pressure conditions (around 80 degrees C and 20 MPa) are maintained.

  15. Antimicrobial Cream Formulated with Supercritical Carbon Dioxide Extract of Tuberose Flowers Arrests Growth of Staphylococcus aureus.

    PubMed

    Ghosh, Probir Kumar; Bhattacharjee, Paramita; Das, Satadal

    2016-01-01

    Antimicrobial potency of herbal extracts is well known. The review of patents and research articles revealed that several herbal extracts have been employed in the formulation of topical products such as creams, exclusive of the cream reported in the present study. 0ur previous study has established antimicrobial potency of supercritical carbon dioxide extracts of tuberose flowers, better known for its sweet fragrance. The present work focuses on formulating a topical antimicrobial herbal cream with methyl eugenol (principal antimicrobial compound) rich - supercritical carbon dioxide extract of tuberose flowers, having good combination of phytochemical and antimicrobial potencies. Supercritical carbon dioxide parameters such as temperature, pressure and time were optimized using full factorial experimental design to obtain methyl eugenol-rich extracts. A cream was formulated using the extract having the best combination of phytochemical and antimicrobial potencies and was assayed further for in vitro antimicrobial potency; physiochemical and sensory properties. Two commercial antimicrobial cream samples were used as reference samples in the study. The extract obtained at 40°C, 10 MPa, 135 min at 1 L min-1 flow rate of gaseous C02 showed the best combination of phytochemical and antimicrobial potencies and was used for formulation of herbal creams. The cream formulated with 5% w/w of extract arrested growth of the common human skin pathogen Staphylococcus aureus and showed stable physiochemical properties and high sensory appeal for a year. The cream could be considered as a 'finished herbal product&' in compliance with the World Health 0rganization guidelines.

  16. A study of an aroma extraction method and evaluation of the aroma extract contribution to the palatability and reinforcement effect of dried bonito using mice.

    PubMed

    Amitsuka, Takahiko; Okamura, Maya; Shiibashi, Hiroko; Yamamoto, Naoto; Saito, Tsukasa; Nammoku, Takashi; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2014-01-01

    Japanese cuisine has provided satisfying meals by fully utilizing the characteristic aroma and taste of katsuodashi (dried bonito broth), though it is not rich in sugars or fats. Katsuodashi is a very basic and indispensable element in Japanese cuisine, and is a hot water extract of katsuobushi (dried bonito). It has been reported that a dextrin solution containing natural dried bonito broth has a significant reinforcement effect, and has been suggested that the olfactory stimulation is important for the reinforcement effect. We examined various source materials for broth and identified an optimal method of aroma extraction by two-bottle choice and conditioned place preference tests in mice. By two-bottle choice tests, a solution containing arabushi (a type of katsuobushi) aroma extract obtained by a supercritical CO2 extraction method showed a significantly high preference. The conditioned place preference test showed the dashi-taste solution with arabushi supercritical CO2 extract had a reinforcement effect. Our results suggest that the arabushi extract obtained by supercritical CO2 extraction contains components responsible for preference and reinforcement effects in mice; it could become conducive to making Japanese cuisine more satisfying and palatable.

  17. A Review of Enzymatic Transesterification of Microalgal Oil-Based Biodiesel Using Supercritical Technology

    PubMed Central

    Taher, Hanifa; Al-Zuhair, Sulaiman; Al-Marzouqi, Ali H.; Haik, Yousef; Farid, Mohammed M.

    2011-01-01

    Biodiesel is considered a promising replacement to petroleum-derived diesel. Using oils extracted from agricultural crops competes with their use as food and cannot realistically satisfy the global demand of diesel-fuel requirements. On the other hand, microalgae, which have a much higher oil yield per hectare, compared to oil crops, appear to be a source that has the potential to completely replace fossil diesel. Microalgae oil extraction is a major step in the overall biodiesel production process. Recently, supercritical carbon dioxide (SC-CO2) has been proposed to replace conventional solvent extraction techniques because it is nontoxic, nonhazardous, chemically stable, and inexpensive. It uses environmentally acceptable solvent, which can easily be separated from the products. In addition, the use of SC-CO2 as a reaction media has also been proposed to eliminate the inhibition limitations that encounter biodiesel production reaction using immobilized enzyme as a catalyst. Furthermore, using SC-CO2 allows easy separation of the product. In this paper, conventional biodiesel production with first generation feedstock, using chemical catalysts and solvent-extraction, is compared to new technologies with an emphasis on using microalgae, immobilized lipase, and SC-CO2 as an extraction solvent and reaction media. PMID:21915372

  18. Preparation and Characterization of Micronized Artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method

    PubMed Central

    Yu, Huimin; Zhao, Xiuhua; Zu, Yuangang; Zhang, Xinjuan; Zu, Baishi; Zhang, Xiaonan

    2012-01-01

    The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm−3 after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems. PMID:22606030

  19. Combined analysis by GC (RI), GC-MS and 13C NMR of the supercritical fluid extract of Abies alba twigs.

    PubMed

    Duquesnoy, Emilie; Marongiu, Bruno; Castola, Vincent; Piras, Alessandra; Porcedda, Silvia; Casanova, Joseph

    2010-12-01

    Two samples (leaves and twigs) of Abies alba Miller from Corsica were extracted using supercritical CO2 and their chemical compositions were compared with those of the essential oils obtained from the same batch of plant material. In total 45 components were identified using combined analysis by GC (RI), GC-MS and 13C NMR. It was observed that the contents of monoterpenes (mainly represented by limonene, alpha-pinene and camphene) were significantly lower in the supercritical fluid extract (SFE) than in the essential oil (EO). Conversely, the proportions of sesquiterpenes were much higher in CO2 extracts than in essential oils (around 30% vs 4%). Cis-abienol, a diterpene alcohol, was identified only in SFE, and the proportions of this constituent (7.5% and 17.3%) were determined using quantitative 13C NMR since it was under estimated using the standard conditions of GC.

  20. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.

    2012-07-31

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less

  1. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.

    PubMed

    Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J

    2012-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Bioethanol production from raffinate phase of supercritical CO2 extracted Stevia rebaudiana leaves.

    PubMed

    Coban, Isik; Sargin, Sayit; Celiktas, Melih Soner; Yesil-Celiktas, Ozlem

    2012-09-01

    The extracts of Stevia rebaudiana are marketed as dietary supplements and utilized as natural sweetening agent in food products. Subsequent to extraction on industrial scale, large quantities of solid wastes are produced. The aim of this study was to investigate the bioconversion efficiency of supercritical CO(2) extracted S. rebaudiana residues. Therefore, leaves were extracted with supercritical CO(2) and ethanol mixture in order to obtain glycosides, then the raffinate phase was hydrolyzed by both dilute acid and various concentrations of cellulase and β-glucosidase cocktail. The maximum yield of reducing sugars reached 25.67 g/L under the optimal conditions of enzyme pretreatment, whereas 32.00 g/L was reached by consecutive enzymatic and acid hydrolyses. Bioethanol yield (20 g/L, 2.0% inoculum, 2 days) based on the sugar consumed was 45.55% corresponding to a productivity of 0.19 kg/m(3)h which demonstrates challenges to be utilized as a potential feedstock for the production of bioethanol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.

    PubMed

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO(2)) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20-90 min), temperature (35-45 °C) and pressure (50-90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO(2) extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO(2) contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO(2) is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO(2) is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  4. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  5. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    DOE PAGES

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; ...

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  6. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    PubMed

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  7. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    PubMed Central

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-01-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing. PMID:23342386

  8. Compositional changes of reservoir rocks through the injection of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Scherf, Ann-Kathrin; Schulz, Hans-Martin; Zetzl, Carsten; Smirnova, Irina; Andersen, Jenica; Vieth, Andrea

    2010-05-01

    The European project CO2SINK is the first project on the on-shore underground storage of carbon dioxide in Europe. CO2SINK is part of the ongoing efforts to understand the impact, problems, and likelihood of using deep saline aquifers for long term storage of CO2. In Ketzin (north-east Germany, 40 km west of Berlin) a saline sandstone aquifer of the younger Triassic (Stuttgart Formation) has been chosen as a reservoir for the long-term storage of carbon dioxide. Our monitoring focuses on the composition and mobility of the organic carbon pools within the saline aquifer and their changes due to the storage of carbon dioxide. Supercritical carbon dioxide is known as an excellent solvent of non- to moderately polar organic compounds, depending on temperature and pressure (Hawthorne, 1990). The extraction of organic matter (OM) from reservoir rock, using multiple extraction methods, allows insight into the composition of the OM and the biomarker inventory of the deep biosphere. The extraction of reservoir rock using supercritical CO2 may additionally simulate the impact of CO2 storage on the deep biosphere by the possible mobilisation of OM. We will present compound specific results from laboratory CO2 extraction experiments on reservoir rocks from the CO2 storage site in Ketzin, Germany. A total of five rock samples (silt and sandstones) from the injection well and two observation wells were applied to supercritical CO2 extraction. In the experimental setup, a supercritical fluid extractor is used to simulate the conditions within the saline aquifer. The results show distinct quantitative and qualitative differences in extraction yields between the rock samples. This may be due to differences in mineralogy and porosity (12 - 27%; Norden et al., 2007a, b, c), which seem to be extraction-controlling key factors. Furthermore, the results illustrate that the amount of extracted materials depends on the length of the time interval in which CO2 flows through the rock, rather than saturation of extracted compounds in the solvent when CO2 is stationary. Total extraction yields seem to be low compared to the OM present in the reservoir rock, but yields still have to be extrapolated to the large volumes of reservoir rock that are in contact with supercritical CO2 at the test site. In the future, our lab results may be combined with models to determine how much of the mobilised organic acids and non organic material will occupy the entire reservoir (pore space) or could be used by organisms and induce growth. Additionally, the rock samples were analysed after the extraction with supercritical CO2, using a variety of organic and inorganic geochemical techniques. Thus, changes in the composition of the rocks were also observed. Here, amongst others, scanning electron microscopy was done and indicated corrosion effects on mineral surfaces due to exposure to supercritical CO2. References Hawthorne, S.B. (1990) Analytical Chemistry 62, 633-642. Norden, B. (2007a) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 200/2007. Norden, B. (2007b) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 201/2007. Norden, B. (2007c) Geologischer Abschlussbericht der Bohrung CO2 Ktzi 202/2007.

  9. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    PubMed Central

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  10. Supercritical CO2 decaffeination of unroasted coffee beans produces melanoidins with distinct NF-κB inhibitory activity.

    PubMed

    Chen, Yumin; Brown, Peter H; Hu, Kang; Black, Richard M; Prior, Ronald L; Ou, Boxin; Chu, Yi-Fang

    2011-09-01

    The supercritical CO(2)-decaffeination process causes unroasted coffee beans to turn brown. Therefore, we suspected that the decaffeinated beans contained melanoidins. Decaffeinated unroasted coffee extract absorbed light at 405 nm with a specific extinction coefficient, K(mix 405 nm), of 0.02. Membrane dialysis (molecular weight cut-off, 12 to 14 kDa) increased the K(mix 405 nm) value 15 fold. Gel filtration chromatography showed that the high-MW fraction (MW > 12 kDa) had an elution profile closer to that of melanoidins of medium-roast coffee than to the corresponding fraction of unroasted coffee, indicating the presence of melanoidins in decaffeinated unroasted beans. Using murine myoblast C2C12 cells with a stably transfected nuclear factor-κB (NF-κB) luciferase reporter gene, we found that the high-MW fraction of decaffeinated unroasted beans had an NF-κB inhibitory activity of IC(50) = 499 μg/mL, more potent than that of regular-roast coffee (IC(50) = 766 μg/mL). Our results indicate that melanoidins form during the supercritical CO(2)-decaffeination process and possess biological properties distinct from those formed during the regular roasting process. We discovered the roasting effect of decaffeination process, reporting the discovery of melanoidins in green (unroasted) decaf coffee beans. Our results indicated that melanoidins form during the supercritical CO2-decaffeination process and possess biological properties distinct from those formed during the regular roasting process. Our results offer new insights into the formation of bioactive coffee components during coffee decaffeination process. © 2011 Institute of Food Technologists®

  11. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered.

  12. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests.

    PubMed

    Jackowski, J; Hurej, M; Rój, E; Popłoński, J; Kośny, L; Huszcza, E

    2015-08-01

    Xanthohumol, a prenylated flavonoid from hops, and a supercritical carbon dioxide extract of spent hops were studied for their antifeedant activity against stored product insect pests: Sitophilus granarius L., Tribolium confusum Duv. and Trogoderma granarium Everts. Xanthohumol exhibited medium deterrent activity against the adults of S. granarius L. and larvae of T. confusum Duv. The spent hops extract was more active than xanthohumol towards the adults of T. confusum Duv. The potential application of the crude spent hops extract as a feeding deterrent against the stored product pests is proposed.

  13. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure.

    PubMed

    Zhang, Shouqin; Chen, Ruizhan; Wu, Hua; Wang, Changzheng

    2006-04-11

    A new method of ultrahigh pressure extraction (UPE) was used to extract the ginsenosides from Panax quinquefolium L. (American ginseng) root at room temperature. Several solvents, including water, ethanol, methanol, and n-butanol were used in the UPE. The ginsenosides were quantified by a HPLC equipped with UV-vis detector. The results showed that ethanol is the most efficient solvent among the used ones. Compared with other methods, i.e., Soxhlet extraction, heat reflux extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical CO2 extraction, the UPE has the highest extraction yield in the shortest time. The extraction yield of 0.861% ginsenoside-Rc in 2 min was achieved by the UPE, while the yields of 0.284% and 0.661% were obtained in several hours by supercritical CO2 extraction and the heat reflux extraction, respectively.

  14. Caryocar brasiliense supercritical CO2 extract possesses antimicrobial and antioxidant properties useful for personal care products

    PubMed Central

    2014-01-01

    Background The cosmetic and pharmaceutical industries have an increasing interest in replacing synthetic antimicrobials in dermatological products due to increased microbial resistance to conventional antimicrobial agents. Pequi (Caryocar brasiliense) is a native fruit tree of the Brazilian Cerrado, specifically used in cosmetics, in the food industry, and for medicinal purposes. Leishmanicidal and antifungal activities have been reported previously. This study was designed to evaluate the antimicrobial and antioxidant activities of a C. brasiliense extract obtained by supercritical CO2 extraction. Methods The minimum inhibitory concentrations (MICs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were determined by the classical microdilution method. Antiseptic activity against these organisms was evaluated by the plate diffusion method. The antioxidant potential of the extract was evaluated using a method based on the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The extract’s chemical profile was analyzed for the presence of alkaloids, saponins, anthraquinones, steroids, tannins, flavonoids, and phenolic compounds according to standard colorimetric methods. Results The C. brasiliense supercritical CO2 extract exhibits antimicrobial activity against all bacteria tested. It also possesses antioxidant activity, when compared to a vitamin E standard. Conclusions The C. brasiliense supercritical CO2 extract may be useful for the development of personal care products, primarily for antiseptic skin products that inactivate, reduce, prevent, or arrest the growth of microorganisms with the inherent intent to mitigate or prevent disease as well as products that minimize damage caused by free radicals. PMID:24565304

  15. High throughput screening and antioxidant assay of dibenzo[a,c]cyclooctadiene lignans in modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill by liquid chromatography--mass spectrometry and a free radical-scavenging method.

    PubMed

    Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin

    2008-05-01

    Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.

  16. Antifungal response of oral-associated candidal reference strains (American Type Culture Collection) by supercritical fluid extract of nutmeg seeds for geriatric denture wearers: An in vitro screening study.

    PubMed

    Iyer, Meenakshi; Gujjari, Anil Kumar; Gowda, Vishakante; Angadi, Shridhar

    2017-01-01

    Since time immemorial, plants have continued to play a predominant role in the maintenance of human health as sources of medicinal compounds. Several effective antifungal agents are available for oral Candida infections; the failure is not uncommon because isolates of Candida albicans may exhibit resistance to the drug during therapy. The present study aimed to identify an alternative, inexpensive, simple, and effective method of preventing and controlling the candidal infection. All the procured and authenticated nutmeg seeds were dried in shade and cleaned by hand sorting. The crushed seeds were passed through mesh no. 40 individually. About 50 g of powdered nutmeg seeds was loaded in the supercritical fluid extractor unit using supercritical CO 2 as extracting solvent in accordance with the methods of Nguyen et al . Supercritical fluid (SFE) extraction was done using CO 2 gas without any cosolvents. The nutmeg extract displayed antifungal activity with the effective zone of inhibition ranging from 18.0 to 12.0 mm when compared with nystatin as positive control. This paper described the in vitro antibacterial activity, and phytochemical analysis of SFE extract of nutmeg ( Myristica fragrans ) evaluated against C. albicans (American Type Culture Collection 10231) through agar well diffusion method. SFE of nutmeg seeds can be used as an adjunct to conventional therapy for oral candidiasis.

  17. Preparative isolation and purification of capsaicin and dihydrocapsaicin from Capsici Fructus using supercritical fluid extraction combined with high speed countercurrent chromatography.

    PubMed

    Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun

    2018-05-01

    Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    PubMed

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. High-Temperature Lubricant Analyses Using the System for Thermal Diagnostic Studies (STDS). A Feasibility Study

    DTIC Science & Technology

    1990-07-01

    permeation chromatography (GPC) have been applied to lubricant type samples. 8 Most recently the newly introduced supercritical fluid chromatography (SFC... fluids , such as lubricants and hydraulic fluids can also be examined using various inverse chromatography procedures. Another mode, known as reaction...introduction of new gaseous extraction techniques, e.g., supercritical fluid extraction, procedures such as IGC will probably be developed for vastly

  20. Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials.

    PubMed

    Michalak, Izabela; Chojnacka, Katarzyna; Dmytryk, Agnieszka; Wilk, Radosław; Gramza, Mateusz; Rój, Edward

    2016-01-01

    The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur ). As a raw material for the supercritical fluid extraction, the biomass of microalga Spirulina plantensis , brown seaweed - Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear, and shank length. The ear number per m 2 was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences). Number of grains in ear (statistically significant differences) and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences). Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha). The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences). Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture.

  1. Evaluation of Supercritical Extracts of Algae as Biostimulants of Plant Growth in Field Trials

    PubMed Central

    Michalak, Izabela; Chojnacka, Katarzyna; Dmytryk, Agnieszka; Wilk, Radosław; Gramza, Mateusz; Rój, Edward

    2016-01-01

    The aim of the field trials was to determine the influence of supercritical algal extracts on the growth and development of winter wheat (variety Akteur). As a raw material for the supercritical fluid extraction, the biomass of microalga Spirulina plantensis, brown seaweed – Ascophyllum nodosum and Baltic green macroalgae was used. Forthial and Asahi SL constituted the reference products. It was found that the tested biostimulants did not influence statistically significantly the plant height, length of ear, and shank length. The ear number per m2 was the highest in the group where the Baltic macroalgae extract was applied in the dose 1.0 L/ha (statistically significant differences). Number of grains in ear (statistically significant differences) and shank length was the highest in the group treated with Spirulina at the dose 1.5 L/ha. In the group with Ascophyllum at the dose 1.0 L/ha, the highest length of ear was observed. The yield was comparable in all the experimental groups (lack of statistically significant differences). Among the tested supercritical extracts, the best results were obtained for Spirulina (1.5 L/ha). The mass of 1000 grains was the highest for extract from Baltic macroalgae and was 3.5% higher than for Asahi, 4.0% higher than for Forthial and 18.5% higher than for the control group (statistically significant differences). Future work is needed to fully characterize the chemical composition of the applied algal extracts. A special attention should be paid to the extracts obtained from Baltic algae because they are inexpensive source of naturally occurring bioactive compounds, which can be used in sustainable agriculture and horticulture. PMID:27826310

  2. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kimthet, Chhouk; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Curcumin is one of phenolic compounds, which has been recently shown to have useful pharmacological properties such as anti-inflammatory, anti-bacterial, anti-carcinogenic, antifungal, and antimicrobial activities. The objective of this research is to extract the curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide extraction (USC-CO2). The extraction was performed at 50°C, 25 MPa, CO2 flow rate of 3 mL/min with 10% cosolvent. The result of extraction, thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) showed that ultrasound power could disrupt cell wall and release the target compounds from Curcuma longa L. USC-CO2 could provide higher curcumin content in the extracts and faster extraction compared to SC-CO2 extraction without ultrasound.

  3. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC-MS and UHPLC-DAD-QqTOF-MS.

    PubMed

    Kuś, Piotr M; Okińczyc, Piotr; Jakovljević, Martina; Jokić, Stela; Jerković, Igor

    2018-05-25

    The supercritical CO 2 (SC-CO 2 ) extraction process of black poplar (Populus nigra L.) buds was optimized (pressure, temperature) based on the yields of major phytochemicals (volatiles and non-volatiles). The optimal settings were 30 MPa/60 °C. Major volatiles determined by GC-MS in the optimized SC-CO 2 extract (mg of benzyl salicylate equivalent (BSE) per 100 g of buds) were: pinostrobin chalcone (1574.2), β-eudesmol (640.8), α-eudesmol (581.9), 2-methyl-2-butenyl-p-coumarate (289.9), pentyl-p-coumarate (457.0), γ-eudesmol (294.4), and benzyl salicylate (289.2). Partial qualitative similarity was observed between SC-CO 2 extracts and corresponding hydrodistilled essential oil dominated by sesquiterpenes, but with lower yields. Major compounds (mg per 100 g of buds) identified by UHPLC-DAD-QqTOF-MS in the optimized SC-CO 2 extract were: pinostrobin (751.7), pinocembrin (485.6), 3-O-pinobanksin acetate and methyl-butenyl-p-coumarate (290.2; 144.9 of pinobanksin and p-coumaric acid equivalents, respectively). SC-CO 2 extraction was found useful for green, efficient and simultaneous extraction of both volatile/non-volatile, bioactive phytochemicals of poplar buds - precursors of poplar-type propolis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Analysis of drugs in human tissues by supercritical fluid extraction/immunoassay

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Sabucedo, Alberta; Rein, Joseph; Hearn, W. L.

    1997-02-01

    A rapid, readily automated method has been developed for the quantitative analysis of phenobarbital from human liver tissues based on supercritical carbon dioxide extraction followed by fluorescence enzyme immunoassay. The method developed significantly reduces sample handling and utilizes the entire liver homogenate. The current method yields comparable recoveries and precision and does not require the use of an internal standard, although traditional GC/MS confirmation can still be performed on sample extracts. Additionally, the proposed method uses non-toxic, inexpensive carbon dioxide, thus eliminating the use of halogenated organic solvents.

  5. Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabauy, P.; Darici, Y.; Furton, K.G.

    1995-12-01

    In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less

  6. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  7. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri- n-butyl phosphate–nitric acid adducts

    DOE PAGES

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; ...

    2016-06-14

    A new tri- n-butylphosphate–nitric acid (TBP–HNO 3) adduct was prepared by combining TBP and fuming (90%) HNO 3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO 2) was modified with this new adduct [TBP(HNO 3) 5.2(H 2O) 1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO 3 and TBP [TBP(HNO 3) 1.7(H 2O) 0.6]. All rare earth oxides tested with both adduct species couldmore » be extracted with the exception of cerium oxide. Furthermore, the water and acid concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  8. Enhancing Phenolic Contents and Antioxidant Potentials of Antidesma thwaitesianum by Supercritical Carbon Dioxide Extraction

    PubMed Central

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2015-01-01

    Supercritical fluid extraction (SFE) has increasingly gained attention as an alternative technique for extraction of natural products without leaving toxic residues in extracts. Antidesma thwaitesianum Muell. Arg. (Phyllanthaceae), or ma mao, has been reported to exhibit antioxidant health benefits due to its phenolic constituents. To determine whether SFE technique could impact on phenolic contents and associated antioxidant potentials, ripe fruits of Antidesma thwaitesianum (Phyllanthaceae) were extracted using supercritical carbon dioxide (SC-CO2) and conventional solvents (ethanol, water). The results showed that the SC-CO2 extract contained significantly higher yield, total phenolic, flavonoid, and proanthocyanidin contents than those obtained from ethanol and water. It also demonstrated the greatest antioxidant activities as assessed by ABTS radical cation decolorization, DPPH radical scavenging, and ferric reducing antioxidant power (FRAP) assays. Further analysis using high-performance liquid chromatography with diode array and mass spectrometry detectors (HPLC-DAD/MSD) revealed the presence of catechin as a major phenolic compound of Antidesma thwaitesianum (Phyllanthaceae), with the maximum amount detected in the SC-CO2 extract. These data indicate that SFE technology improves both quantity and quality of Antidesma thwaitesianum fruit extract. The findings added more reliability of using this technique to produce high added value products from this medicinal plant. PMID:25977832

  9. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity

    PubMed Central

    Kobori, Kinji; Maruta, Yuto; Mineo, Shigeru; Shigematsu, Toru; Hirayama, Masao

    2013-01-01

    Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO2) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO2 extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO2 extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO2 extraction method is expected to be applicable high-cocoa products, such as dark chocolate. PMID:28239130

  10. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity.

    PubMed

    Kobori, Kinji; Maruta, Yuto; Mineo, Shigeru; Shigematsu, Toru; Hirayama, Masao

    2013-10-14

    Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO₂) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO₂ extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO₂ extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO₂ extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  11. Method and apparatus for back-extracting metal chelates

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-08-11

    A method is described for extracting metal and metalloid species from a solid or liquid substrate using a supercritical fluid solvent containing one or more chelating agents followed by back-extracting the metal and metalloid species from the metal and metalloid chelates formed thereby. The back-extraction acidic solution is performed utilizing an acidic solution. Upon sufficient exposure of the metal and metalloid chelates to the acidic solution, the metal and metalloid species are released from the chelates into the acid solution, while the chelating agent remains in the supercritical fluid solvent. The chelating agent is thereby regenerated and the metal and metalloid species recovered. 3 figs.

  12. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.

    PubMed

    Thote, Amol J; Gupta, Ram B

    2005-03-01

    Our purpose was to produce nanoparticles of a hydrophilic drug with use of supercritical carbon dioxide (CO2), encapsulate the obtained nanoparticles into polymer microparticles with use of an anhydrous method and study their sustained in vitro drug release. The hydrophilic drug, dexamethasone phosphate, is dissolved in methanol and injected in supercritical CO2 with an ultrasonic field for enhanced molecular mixing (supercritical antisolvent technique with enhanced mass transfer [SAS-EM]). Supercritical CO2 rapidly extracts methanol leading to instantaneous precipitation of drug nanoparticles. The nanoparticles are then encapsulated in poly(lactide-co-glycolide) (PLGA) polymer by use of the anhydrous solid-oil-oil-oil technique. This results in a well-dispersed encapsulation of drug nanoparticles in polymer microspheres. In vitro drug release from these microparticles is studied. With supercritical CO2 used as an antisolvent, nanoparticles of dexamethasone phosphate were obtained in the range of 150 to 200 nm. On encapsulation in polylactide coglycolide, composite microspheres of approximately 70 microm were obtained. The in vitro drug release of these nanoparticles/microparticles composites shows sustained release of dexamethasone phosphate over a period of 700 hours with almost no initial burst release. Nanoparticles of dexamethasone phosphate can be produced with the SAS-EM technique. When microencapsulated, these particles can provide sustained drug release without initial burst release. Because the complete process is anhydrous, it can be easily extended to produce sustained release formulations of other hydrophilic drugs.

  13. Supercritical CO2 extraction of beta-carotene from a marine strain of the cyanobacterium Synechococcus species.

    PubMed

    Montero, Olimpio; Macías-Sánchez, Maria Dolores; Lama, Carmen M; Lubián, Luis M; Mantell, Casimiro; Rodríguez, Miguel; de la Ossa, Enrique M

    2005-12-14

    Dynamic extraction of carotenoids from a marine strain of Synechococcus sp. (Cyanophyceae) with supercritical CO2 (SC-CO2) was investigated with regard to operation pressure and temperature effects on extraction efficiency. Extraction yield (milligrams of pigment per gram of dry weight) for SC-CO2) was compared with the extraction yield for dimethylformamide (DMF). Carotenoids extracted with SC-CO2 were beta-carotene (Ct), zeaxanthin (Z), beta-cryptoxanthin (Cr), and equinenone; chlorophyll a was poorly extracted, whereas myxoxanthophyll, another major carotenoid, was not extracted under any experimental condition. The highest relative yield, which is defined here as y(r) = [(mg of pigment(SC-CO2)/mg of pigment(DMF))] x 100, was 76.1 +/- 8.6% for Ct, but it rose to 87.0 +/- 3.4% when 15% ethanol was used as cosolvent. The pressure effect on y(r) was found to be significant (p < 0.05) for both Cr and Z, along with total carotenoids, whereas the effect of square T (TT) was significant for only Ct. From empirical correlations, pairwise pressure (bar) and temperature (degrees C), respectively, for optimal extraction were determined to be (358, 50) for Ct, (454, 59) for Cr, and (500, 60) for Z. Cell disruption by sonication or detergent treatment of the biomass did not improve the extraction efficiency. Matrix structure together with material state could explain the low carotenoid extraction yield obtained with SC-CO2 as compared to DMF in Synechococcus sp. However, the process can be applied to selective extraction of different carotenoids.

  14. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  15. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  16. Helikaurolides A-D with a Diterpene-Sesquiterpene Skeleton from Supercritical Fluid Extracts of Helianthus annuus L. var. Arianna.

    PubMed

    Torres, Ascensión; Molinillo, José M G; Varela, Rosa M; Casas, Lourdes; Mantell, Casimiro; Martínez de la Ossa, Enrique J; Macías, Francisco A

    2015-10-02

    Four novel compounds (1-4) with an unprecedented skeleton that combines a sesquiterpene lactone and a kaurane diterpene acid were isolated from Helianthus annuus L. var. Arianna extract, which was obtained under supercritical conditions. The structures of 1-4 were elucidated by NMR and MS analyses. The biosynthetic routes involve sesquiterpene lactones and kauranic acid, both of which were previously isolated from this species.

  17. Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO2.

    PubMed

    Casali, Dominic M; Yost, Michael J; Matthews, Michael A

    2018-01-01

    Collagen has received considerable attention as a biomaterial for tissue engineering because of its low immunogenicity, controllable biodegradation, and ability to influence cell growth and proliferation. Frequently, collagen scaffolds require crosslinking to improve mechanical strength, requiring agents like glutaraldehyde that have high residual cytotoxicity. A novel method for extracting residual glutaraldehyde from crosslinked collagen films with supercritical carbon dioxide (CO 2 ) is presented. CO 2 is a nontoxic, nonflammable substance that is relatively inert and can be used to process biomaterials at mild pressures and physiologic temperatures. In this work, it was first determined that type I collagen is chemically compatible with both liquid and supercritical CO 2 . Treated collagen showed minimal changes in physicochemical properties as determined by differential scanning calorimetry, gel electrophoresis, and circular dichroism. CO 2 was subsequently used to extract residual glutaraldehyde from crosslinked collagen films. Glutaraldehyde concentration was reduced by over 95%, from over 20 ppm before treatment to about 1 ppm, in only 1 h. CO 2 treatment caused negligible alteration of thermal stability but did significantly increase film stiffness and tensile strength. However, these changes were minor compared to heat-based removal of glutaraldehyde. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 86-94, 2018. © 2017 Wiley Periodicals, Inc.

  18. Production of oridonin-rich extracts from Rabdosia rubescens using hyphenated ultrasound-assisted supercritical carbon dioxide extraction.

    PubMed

    Yang, Yu-Chiao; Lin, Pei-Hui; Wei, Ming-Chi

    2017-08-01

    Among active components in Rabdosia rubescens, oridonin has been considered a key component and the most valuable compound because it has a wide range of activities beneficial to human health. To produce a high-quality oridonin extract, an alternative hyphenated procedure involving an ultrasound-assisted and supercritical carbon dioxide (HSC-CO 2 ) extraction method to extract oridonin from R. rubescens was developed in this study. Fictitious solubilities of oridonin in supercritical CO 2 (SC-CO 2 ) with ultrasound assistance were measured by using the dynamic method at temperatures ranging from 305.15 K to 342.15 K over a pressure range of 11.5 to 33.5 MPa. Fictitious solubilities of oridonin at different temperatures and pressures were over the range of 2.13 × 10 -6 to 10.09 × 10 -6 (mole fraction) and correlated well with the density-based models, including the Bartle model, the Chrastil model, the Kumar and Johnston model and the Mendez-Santiago and Teja model, with overall average absolute relative deviations (AARDs) of 6.29%, 4.39%, 3.12% and 5.07%, respectively. Oridonin exhibits retrograde solubility behaviour in the supercritical state. Fictitious solubility data were further determined and obtained a good fit with four semi-empirical models. Simultaneously, the values of the total heat of solution, vaporisation and solvation of oridonin were estimated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis.

    PubMed

    Esquivel-Hernández, Diego A; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P; García-Pérez, J Saúl; Mancera-Andrade, Elena I; Núñez-Echevarría, Jade E; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M; Torres, J Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto

    2017-06-12

    Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO₂). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects ( p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.

  20. Effect of Supercritical Carbon Dioxide Extraction Parameters on the Biological Activities and Metabolites Present in Extracts from Arthrospira platensis

    PubMed Central

    Esquivel-Hernández, Diego A.; Rodríguez-Rodríguez, José; Cuéllar-Bermúdez, Sara P.; García-Pérez, J. Saúl; Mancera-Andrade, Elena I.; Núñez-Echevarría, Jade E.; Ontiveros-Valencia, Aura; Rostro-Alanis, Magdalena; García-García, Rebeca M.; Torres, J. Antonio; Chen, Wei Ning; Parra-Saldívar, Roberto

    2017-01-01

    Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO2). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett–Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of β-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin–Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g. PMID:28604646

  1. Designed polar cosolvent-modified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology.

    PubMed

    Huang, Kuo-Jong; Wu, Jia-Jiuan; Chiu, Yung-Ho; Lai, Cheng-Yung; Chang, Chieh-Ming J

    2007-10-31

    This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K.

  2. Instrument for Analysis of Organic Compounds on Other Planets

    NASA Technical Reports Server (NTRS)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  3. EVALUATION OF ANALYTICAL METHODS FOR DETERMINING PESTICIDES IN BABY FOOD

    EPA Science Inventory

    Three extraction methods and two detection techniques for determining pesticides in baby food were evaluated. The extraction techniques examined were supercritical fluid extraction (SFE), enhanced solvent extraction (ESE), and solid phase extraction (SPE). The detection techni...

  4. Supercritical fluid extraction and analysis of compounds from Clivia miniata for uterotonic activity.

    PubMed

    Sewram, V; Raynor, M W; Mulholland, D A; Raidoo, D M

    2001-07-01

    In this descriptive study, the superciritical fluid extract of the roots of Clivia miniata L. was tested for uterotonic activity using guinea pig uterine smooth muscle in vitro. Extraction was performed with water modified supercritical carbon dioxide at 400 atm and 80 degrees C. The uterine contractions induced by this extract were compared to those induced by the aqueous extract and found to be active at lower doses. The active compounds were isolated and the structures elucidated by spectroscopic and chromatographic techniques. Both linoleic acid and 5-hydroxymethyl-2-furancarboxaldehyde isolated from the extract were found to induce muscle contractions individually. The pharmacological mode of action of 5-hydroxymethyl-2-furancarboxaldehyde was assessed using two receptor agonists and antagonists. This compound was found to mediate its effect through cholinergic receptors.

  5. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    PubMed

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  6. Simultaneous destraction and desulfurization of Illinois coals with supercritical ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, B.C.

    1983-01-01

    Various Illinois coals (with Illinois number6 being the main one) are liquefied with various supercritical solvents (ethanol being the main solvent) at 543-598 K, system pressures of 6.99-24.23 MPa, flow rates of 3.0-7.5 ml/min, reaction time of 0-180 minutes, and coal particle sizes of 0.36-0.85 mm to 1.00-2.36 mm to systematically investigate the effects of flow rates, reaction time, coal particle size, temperature, pressure, coal characteristics (by using different Illinois coals), supercritical medium (by using different solvents), and the addition of potassium hydroxide. The % weight loss of coal and the % sulfur removal during destraction and desulfurization of coalmore » are functions of the flow rate, the reaction time, the coal particle size, temperature, pressure and the supercritical solvent. Temperature, pressure and the supercritical medium are the most important parameters in controlling the % weight loss of coal and the % sulfur removal. The % weight loss of coal can be related to a power law and fits quite nicely into a second order kinetic model. The % sulfur removal also follows a second order kinetic model. A secondary reaction is observed during the destraction process, which implies that destraction, and possibly desulfurization, of coal is a multistep reaction including a physical extraction step where the major portion of the coal and sulfur was removed and then followed by a chemical reaction. Supercritical ethanol definitely enhances the removal of sulfur compounds from coal. The enhanced selectivity by supercritical ethanol is greatest at a pressure just above the critical pressure of ethanol. Finally, addition of a base such as potassium hydroxide enhances both % weight loss of coal and the % sulfur removal.« less

  7. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    PubMed

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO 2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO 2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  8. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    PubMed

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  9. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base.

    PubMed

    Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter

    2012-08-20

    Dual role for CO(2): Pure formic acid can be obtained continuously by hydrogenation of CO(2) in a single processing unit. An immobilized ruthenium organometallic catalyst and a nonvolatile base in an ionic liquid (IL) are combined with supercritical CO(2) as both reactant and extractive phase. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    PubMed

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    PubMed

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents.

    PubMed

    Vági, E; Rapavi, E; Hadolin, M; Vásárhelyiné Perédi, K; Balázs, A; Blázovics, A; Simándi, B

    2005-01-12

    Antioxidant properties of marjoram (Origanum majorana L.) herb and extracts obtained with ethanol, n-hexane, and supercritical CO2 extraction are presented. Individual antioxidants, ursolic acid, carnosic acid, and carnosol, were quantified with high-performance liquid chromatography. The effects of different parameters (temperature and pressure) of high-pressure extraction on the yield of carnosol were studied. Furthermore, two marjoram herbs from Hungary and Egypt were compared measuring hydrogen-donating abilities with 1,1-diphenyl-2-picrylhydrazyl by spectrophotometric and the total scavenger capacities by chemiluminometric methods from the aqueous extracts of the herbs. The antioxidant activities of the solvent extracts were performed using the Rancimat method. The Egyptian herb and its extracts possessed better antioxidant activities than Hungarian ones. Applying supercritical CO2 extraction, the highest value of carnosol was obtained at 400 bar and 60 degrees C.

  13. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  14. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process.

    PubMed

    Velaga, Sitaram P; Ghaderi, Raouf; Carlfors, Johan

    2002-01-14

    Crystallisation and subsequent milling of pharmaceutical powders by traditional methods often cause variations in physicochemical properties thereby influencing bioavailability of the formulation. Crystallisation of drug substances using supercritical fluids (SFs) offers some advantages over existing traditional methods in controlling particle characteristics. The novel particle formation method, solution enhanced dispersion by supercritical (SEDS) fluids was used for the preparation of hydrocortisone (HC) particles. The influence of processing conditions on the solid-state properties of the particles was studied. HC, an anti-inflammatory corticosteroid, particles were prepared from acetone and methanol solutions using the SEDS process. The solutions were dispersed with supercritical CO(2), acting as an anti-solvent, through a specially designed co-axial nozzle into a pressured vessel maintained at a specific constant temperature and pressure. The temperatures and pressures studied were 40-90 degrees C and 90-180 bar, respectively. The relative flow rates of drug solution to CO(2) were varied between 0.002 and 0.03. Solid-state characterisation of particles included differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), solubility studies and scanning electron microscopy (SEM) examination. The aerodynamic properties of SEDS prepared particles were determined by a multistage liquid impinger (MLI). Particles produced from acetone solutions were crystalline needles, melting at 221+/-2 degrees C. Their morphology was independent of processing conditions. With methanol solutions, particles were flakes or needles depending on the processing temperature and pressure. This material melted at 216+/-1 degrees C, indicating a different crystal structure from the original material, in agreement with observed differences in the position and intensity of the XRPD peaks. The simulated lung deposition, using the MLI, for HC powder was improved after SEDS processing. It was possible to produce and control the crystallinity, morphology, and aerodynamic properties of HC particles with the SEDS technique. This method may be useful for the processing of inhalation powders.

  15. Extraction of ewe's milk cream with supercritical carbon dioxide.

    PubMed

    González Hierro, M T; Ruiz-Sala, P; Alonso, L; Santa-María, G

    1995-04-01

    The extraction of ewe's milk cream by supercritical carbon dioxide in the pressure range 9-30 MPa (90-300 bar) and at temperatures of 40 degrees C and 50 degrees C was studied. The solubility of total fat increased with pressure at both temperatures until a plateau was reached. The extraction of cholesterol also increased with pressure until a plateau was reached and it was higher at 50 degrees C than at 40 degrees C when the pressure was > or = 15 MPa (150 bar). The triglyceride composition of each extract, determined by GC, showed that extracts obtained at lower pressures were enriched in short-chain triglycerides and their concentration decreased as the pressure increased. In the other hand, long-chain triglycerides were enriched in the extracts obtained at higher pressures and their concentration rose with increasing pressure.

  16. Solvent removal and spore inactivation directly in dispensing vials with supercritical carbon dioxide and sterilant.

    PubMed

    Howell, Jahna; Niu, Fengui; McCabe, Shannon E; Zhou, Wei; Decedue, Charles J

    2012-06-01

    A process is described using supercritical carbon dioxide to extract organic solvents from drug solutions contained in 30-mL serum vials. We report drying times of less than 1 h with quantitative recovery of sterile drug. A six-log reduction of three spore types used as biological indicators is achieved with direct addition of peracetic acid to a final concentration of approximately 5 mM (~0.04 %) to the drug solution in the vial. Analysis of two drugs, acetaminophen and paclitaxel, indicated no drug degradation as a result of the treatment. Furthermore, analysis of the processed drug substance showed that no residual peracetic acid could be detected in the final product. We have demonstrated an effective means to simultaneously dry and sterilize active pharmaceutical ingredients from organic solvents directly in a dispensing container.

  17. Supercritical fluid extraction of the non-polar organic compounds in meteorites

    NASA Astrophysics Data System (ADS)

    Sephton, M. A.; Pillinger, C. T.; Gilmour, I.

    2001-01-01

    The carbonaceous chondrite meteorites contain a variety of extraterrestrial organic molecules. These organic components provide a valuable insight into the formation and evolution of the solar system. Attempts at obtaining and interpreting this information source are hampered by the small sample sizes available for study and the interferences from terrestrial contamination. Supercritical fluid extraction represents an efficient and contamination-free means of isolating extraterrestrial molecules. Gas chromatography-mass spectrometry analyses of extracts from Orgueil and Cold Bokkeveld reveal a complex mixture of free non-polar organic molecules which include normal alkanes, isoprenoid alkanes, tetrahydronaphthalenes and aromatic hydrocarbons. These organic assemblages imply contributions from both terrestrial and extraterrestrial sources.

  18. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  19. Extraction of three-dimensional silver nanostructures with supercritical fluid

    NASA Astrophysics Data System (ADS)

    Taguchi, Natsuo; Takeyasu, Nobuyuki; Kawata, Satoshi

    2018-02-01

    In a previous report, a self-growing approach was proposed for fabricating complex silver nanostructures, where silver dendrites were grown at silver nanoseeds in silver ion solution owing to plasmonic heating with ultraviolet light. Structures were deformed or destroyed when they were extracted with acetone and dried in air. In this Letter, we discuss the use of supercritical carbon dioxide fluid for the nondestructive extraction of nanostructures. We show the experimental results and discuss the laser power dependence of resultant structures. Another experiment was performed for nanostructure growth inside an agarose gel as a matrix. Silver nanostructures were immobilized without damage in an agarose skeleton network.

  20. Recovery of butanol from Clostridium beijerinckii P260 fermentation broth by supercritical CO

    USDA-ARS?s Scientific Manuscript database

    Butanol is a superior biofuel to ethanol because of its blend properties and higher energy density. However, its recovery by distillation from the fermentation broth is energy intensive. For this reason, we studied butanol recovery by supercritical CO2 extraction from simulated and actual fermentati...

  1. Supercritical CO(2) and subcritical propane extraction of pungent paprika and quantification of carotenoids, tocopherols, and capsaicinoids.

    PubMed

    Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A

    2001-06-01

    Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.

  2. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical

  3. SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)

    EPA Science Inventory

    The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...

  4. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  5. Antioxidant activity and sensory evaluation of a rosmarinic acid-enriched extract of Salvia officinalis

    USDA-ARS?s Scientific Manuscript database

    An extract of S. officinalis (garden sage) was developed using supercritical fluid extraction, followed by hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The extract contained RA at a conc...

  6. Characterization of lecithin isolated from anchovy (Engraulis japonica) residues deoiled by supercritical carbon dioxide and organic solvent extraction.

    PubMed

    Lee, Seung-Mi; Asaduzzaman, A K M; Chun, Byung-Soo

    2012-07-01

    Lecithin was isolated and characterized from anchovy (Engraulis japonica) deoiled residues using supercritical carbon dioxide (SC-CO(2)) at a semibatch flow extraction process and an organic solvent (hexane) extraction. SC-CO(2) extraction was carried out to extract oil from anchovy at different temperatures (35 to 45 °C) and pressures (15 to 25 MPa). Extraction yield of oil was influenced by physical properties of SC-CO(2) with temperature and pressure changes. The major phospholipids of anchovy lecithin were quantitatively analyzed by high-performance liquid chromatography. Phosphatidylcholine (PC) (68%± 1.00%) and phosphatidylethanolamine (PE) (29%± 0.50%) were the main phospholipids. Thin layer chromatography was performed to purify the individual phospholipids. The fatty acid compositions of lecithin, PC, and PE were analyzed by gas chromatography. A significant amount of eicosapentaenoic acid and docosahexaenoic acid were present in both phospholipids of PC and PE. Emulsions of lecithin in water were prepared through the use of a homogenizer. Oxidative stability of anchovy lecithin was high in spite of its high concentration of long-chain polyunsaturated fatty acids. Lecithin can be totally metabolized by humans, so is well tolerated by humans and nontoxic when ingested. Lecithin from anchovy contain higher amounts of ω-3 fatty acids especially EPA and DHA, it may have positive outcome to use in food and pharmaceutical industries. © 2012 Institute of Food Technologists®

  7. Concentrations of tocols and γ-oryzanol compounds in rice bran oil obtained by fractional extraction with supercritical carbon dioxide.

    PubMed

    Yoon, Sung Won; Pyo, Young-Gil; Lee, Junsoo; Lee, Jeom-Sig; Kim, Byung Hee; Kim, In-Hwan

    2014-01-01

    Rice bran oil (RBO) is a good source of several commercially important bioactive phytochemicals, such as tocols (i.e. tocopherols and tocotrienols) and ferulic esters of sterols (i.e. γ-oryzanol). The aims of the present study were to examine the effects of different pressure and temperature combinations on the fractional extraction of RBO using supercritical carbon dioxide (SC-CO2) and to assess the levels of tocols homologues and γ-oryzanol components in the resulting oil fractions. Fractional extraction of rice bran oil was performed using SC-CO2 at either 27.6 or 41.4 MPa and either 40 or 60°C. The effects of the four different pressure and temperature combinations on the levels of seven tocols homologues (α-, β-, γ- and δ-tocopherol and α-, γ- and δ-tocotrienol) and the four major components of γ-oryzanol in the resulting oil fractions were investigated. Superior extraction efficiency was obtained using the higher pressure of 41.4 MPa. The tocols (particularly α-tocopherol and α-tocotrienol) were recovered early in the extraction process, while the γ-oryzanol compounds were obtained in the later stages. With regard to SC-CO2 extraction, tocols are more soluble than γ-oryzanol components, α-tocopherol is the most soluble of the tocols and the four γ-oryzanol components all have similar solubilities. Valuable data on solubilities of tocols homologues in SC-CO2 were provided from present study.

  8. Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel

    PubMed Central

    2014-01-01

    Background Hylocereus polyrhizus and Hylocereus undatus are two varieties of the commonly called pitaya fruits, and pitaya fruits have gained popularity in many countries all over the world. However, studies on chemical composition and the nutritional quality of pitaya flesh peel are limited. Results Extracts of pitaya (H. polyrhizus and H. undatus) peel were extracted by supercritical carbon dioxide extraction, and analyzed by gas chromatography–mass spectrometry analysis. Their cytotoxic and antioxidant activities were investigated. The main components of H. polyrhizus extract were β-amyrin (15.87%), α-amyrin (13.90%), octacosane (12.2%), γ-sitosterol (9.35%), octadecane (6.27%), 1-tetracosanol (5.19%), stigmast-4-en-3-one (4.65%), and campesterol (4.16%), whereas H. undatus were β-amyrin (23.39%), γ-sitosterol (19.32%), and octadecane (9.25%), heptacosane (5.52%), campesterol (5.27%), nonacosane (5.02%), and trichloroacetic acid, hexadecyl ester (5.21%). Both of the two extracts possessed good cytotoxic activities against PC3, Bcap-37, and MGC-803 cells (IC50 values ranging from 0.61 to 0.73 mg/mL), and the activities of their main components were also studied. Furthermore, these extracts also presented some radical scavenging activities, with IC50 values of 0.83 and 0.91 mg/mL, respectively. Conclusion This paper provides evidence for studying the chemical composition of supercritical carbon dioxide extracts of pitaya peel and their biological activity. PMID:24386928

  9. Determination of vitamin K1 in powdered infant formulas, using supercritical fluid extraction and liquid chromatography with electrochemical detection.

    PubMed

    Schneiderman, M A; Sharma, A K; Mahanama, K R; Locke, D C

    1988-01-01

    Vitamin K1 (phylloquinone) is extracted from commercial soy protein-based and milk-based powdered infant formulas by using supercritical fluid extraction with CO2 at 8000 psi and 60 degrees C. Quantitative extraction requires only 15 min, and does not suffer from the problems associated with conventional solvent extraction of lipophilic materials from media such as formulas. Vitamin K1 is determined in the extracts by using reverse-phase liquid chromatography (LC) with reductive mode electrochemical detection at a silver electrode polarized at -1.1 V vs SCE. LC run time is 9 min. The minimum detectable quantity is 80 pg, and response is linear over at least 5 orders of magnitude. Recovery of vitamin K1 from a milk-based powdered formula was 95.6% with RSD of 7.4%, and from a soy protein-based product, 94.4% recovery with RSD of 6.5%.

  10. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.

    PubMed

    Quitain, Armando T; Oro, Kazuyuki; Katoh, Shunsaku; Moriyoshi, Takashi

    2006-09-01

    Recovery of the oil components of okara by ethanol-modified supercritical carbon dioxide extraction was investigated at 40-80 degrees C temperature and 12-30 MPa pressure. In a typical run (holding period of 2 h, continuous flow extraction of 5 h), results indicated that the oil component could be best obtained with a recovery of 63.5% at relatively low temperature of 40 degrees C and mild pressure of 20 MPa in the presence of 10 mol% EtOH as entrainer. Based on gas chromatography-mass spectrometry (GC-MS) analysis, the extracts consisted mainly of fatty acids and phytosterols, and traces of decadienal. Folin-Ciocalteau estimates of total phenols showed that addition of EtOH as entrainer increased the yield and the amount of phenolic compounds in the extracts. The amounts of two primary soy isoflavones, genistein and daidzein, in the extracts also increased with increasing amount of EtOH.

  11. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yan, Zijun

    2012-05-01

    Supercritical fluid extraction with carbon dioxide (SC-CO2 extraction) was performed to isolate essential oils from the rhizomes of Cyperus rotundus Linn. Effects of temperature, pressure, extraction time, and CO2 flow rate on the yield of essential oils were investigated by response surface methodology (RSM). The oil yield was represented by a second-order polynomial model using central composite rotatable design (CCRD). The oil yield increased significantly with pressure (p<0.0001) and CO2 flow rate (p<0.01). The maximum oil yield from the response surface equation was predicted to be 1.82% using an extraction temperature of 37.6°C, pressure of 294.4bar, extraction time of 119.8 min, and CO2 flow rate of 20.9L/h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction.

    PubMed

    Chen, Min-Hung; Huang, Tzou-Chi

    2016-12-17

    As local varieties of citrus fruit in Taiwan, Ponkan ( Citrus reticulata Blanco), Tankan ( C. tankan Hayata), and Murcott ( C. reticulate × C. sinensis ) face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g), limonoids (111.7~406.2 mg/g), and phytosterols (686.1~1316.4 μg/g). The DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  13. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  14. Recent patents on the extraction of carotenoids.

    PubMed

    Riggi, Ezio

    2010-01-01

    This article reviews the patents that have been presented during the last decade related to the extraction of carotenoids from various forms of organic matter (fruit, vegetables, animals), with an emphasis on the methods and mechanisms exploited by these technologies, and on technical solutions for the practical problems related to these technologies. I present and classify 29 methods related to the extraction processes (physical, mechanical, chemical, and enzymatic). The large number of processes for extraction by means of supercritical fluids and the growing number of large-scale industrial plants suggest a positive trend towards using this technique that is currently slowed by its cost. This trend should be reinforced by growing restrictions imposed on the use of most organic solvents for extraction of food products and by increasingly strict waste management regulations that are indirectly promoting the use of extraction processes that leave the residual (post-extraction) matrix substantially free from solvents and compounds that must subsequently be removed or treated. None of the reviewed approaches is the best answer for every extractable compound and source, so each should be considered as one of several alternatives, including the use of a combination of extraction approaches.

  15. Identification of nonvolatile coal derived products via chromatography coupled with on-line FTIR detection. Quarterly progress report, March 1-May 31, 1985. [C/sub 2/H/sub 2/ extracts of ground coal, coffee and paprika

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.T.

    Because it has been our goal to interface the supercritical fluid chromatograph with a Fourier transform infrared spectrometer we have initially chosen packed columns due to their increased sample capacities, and supercritical CO/sub 2/ because of its infrared transparency. This paper compares two sampling techniques that can be utilized in packed column supercritical fluid Chromatography (SFC). Traditional sample introduction is accomplished using an injector with a sample loop. The loop is filled with the appropriate amount of material, and subsequently inserted into the mobile phase path. In most cases the sample must be either dissolved or extracted into an appropriatemore » solvent for such sample introduction. Note that unlike HPLC, where the solvent can be the same as the mobile phase, traditional sampling with SFC must use a solvent that is very different from the mobile phase. As a result, solvent peaks are almost always present, especially with universal detectors like FTIR. An alternative method is described here whereby both extraction of the sample and introduction of the extract onto the column is accomplished on-line using only the supercritical fluid mobile phase. This sampling technique is made possible by a simple valving scheme which ties directly the extraction vessel, the injector, the packed column and the detector. This technique has several advantages over the traditional methods, not the least of which is the absence of a large amount of foreign solvent introduced on the column. 11 refs., 7 figs.« less

  16. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comparative analysis of the oil and supercritical CO(2) extract of Schinus molle L. growing in Yemen.

    PubMed

    Ali, Nasser A Awadh; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Al-Othman, Al-Husein M R

    2011-08-01

    In this study, we report the preliminary data on the chemical composition of Yemeni Schinus molle L. volatile oil obtained by supercritical extraction with carbon dioxide (40°C and 90 bar), SFE, and by hydrodistillation (HD). The composition of the volatile oil has been analysed by GC and GC-MS. The content of the major constituents in the oils from leaves varied in the following ranges: germacrene D 3.7% in SFE and 16.7% in HD; β-caryophyllene 19.1% in SFE and 13.5% in HD. The amount of monoterpenes constituted 4%, in all the analysed samples, while the number of sesquiterpenes was 44% in supercritical and 67% in HD oil. Some compounds were not identified by GC-MS and it will require further analysis using other analytical techniques.

  18. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    PubMed Central

    Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.

    2013-01-01

    The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093

  19. Antioxidant activity and sensory assessment of a rosmarinic acid-enriched extract of Salvia officinalis

    USDA-ARS?s Scientific Manuscript database

    An extract of S. officinalis (garden sage) was prepared using supercritical carbon dioxide (SC-CO2) extraction, followed by a Soxhlet hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The ext...

  20. Development of supercritical carbon dioxide extraction with a solid phase trap for dioxins in soils and sediments.

    PubMed

    Miyawaki, Takashi; Kawashima, Ayato; Honda, Katsuhisa

    2008-01-01

    A method involving supercritical fluid extraction (SFE) with a solid phase trap containing activated alumina was investigated for the rapid analysis of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin like polychlorinated biphenyls (DL-PCBs) in soils and sediments. The samples were extracted by using supercritical carbon dioxide with water (2% versus CO(2) flow velocity) being used as an entrainer at a pressure of 30 MPa and a temperature of 130 degrees C for 50 min. The extracts were adsorbed on an activated alumina trap that was maintained at a temperature of 150 degrees C, and then, PCDD/DFs and DL-PCBs were eluted with 20 ml of hexane at 60 degrees C. After concentration, they were measured with a high-resolution gas chromatograph interfaced to a high-resolution mass spectrometric detector. The average concentrations of PCDD/DFs and DL-PCBs corresponded to the results obtained by the conventional method, and the reproducibility of this SFE method was below 21% of the relative standard deviations for all samples. The total time required for the analysis of the pretreatment of this method was only 2 h.

  1. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    USGS Publications Warehouse

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.

  2. Effect of ultrasound on the supercritical CO2 extraction of bioactive compounds from dedo de moça pepper (Capsicum baccatum L. var. pendulum).

    PubMed

    Dias, Arthur Luiz Baião; Arroio Sergio, Camilla Scarelli; Santos, Philipe; Barbero, Gerardo Fernandéz; Rezende, Camila Alves; Martínez, Julian

    2016-07-01

    Extracts with bioactive compounds were obtained from the red pepper variety "dedo de moça" (Capsicum baccatum L. var. pendulum) through supercritical fluid extraction with carbon dioxide assisted by ultrasound (SFE-US). The process was tested at pressures of 15, 20 and 25 MPa; temperatures of 40, 50 and 60 °C, and ultrasonic powers of 200, 400 and 600 W applied during 40, 60 and 80 min of extraction. The CO2 mass flow rate was fixed at 1.7569 × 10(-4) kg/s. Global yield, phenolic content, antioxidant capacity and capsaicinoid concentration were evaluated in the extracts. The application of ultrasound raised the global extraction yield of SFE up to 45%. The phenolic content of the extract increased with the application of higher ultrasound power and radiation time. The capsaicinoid yield was also enhanced with ultrasound up to 12%. However, the antioxidant capacity did not increase with the ultrasound application. The BET-based model and the broken and intact cell model fitted well to the kinetic SFE curves. The BET-based model with three adjustable parameters resulted in the best fits to the experimental data. Field emission scanning electron microscopy (FESEM) images showed that SFE disturbed the vegetable matrix, releasing particles from the inner region of the plant cells to their surface. When the ultrasound was applied this effect was more pronounced. On the other hand, cracks, fissures or any sign of rupture were not identified on the sample surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Comparative analysis of the oil and supercritical CO(2) extract of Artemisia arborescens L. and Helichrysum splendidum (Thunb.) Less.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia

    2006-05-10

    Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%). The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given. The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).

  4. Influence of stabilizers on the physicochemical characteristics of inhaled insulin powders produced by supercritical antisolvent process.

    PubMed

    Kim, Yong Ho; Sioutas, Constantinos; Shing, Katherine S

    2009-01-01

    To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology. Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure. Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 mum which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 +/- 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 +/- 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here. When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.

  5. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters.

    PubMed

    Santoyo, S; Cavero, S; Jaime, L; Ibañez, E; Señoráns, F J; Reglero, G

    2006-02-01

    Oregano leaves were extracted using a pilot-scale supercritical fluid extraction plant under a wide range of extraction conditions, with the goal of determining the extraction and fractionation conditions to obtain extracts with optimal antimicrobial activity. In this investigation, the essential oil-rich fractions were selectively precipitated in the second separator, and their chemical composition and antimicrobial activity were investigated. Gas chromatography-mass spectrometry analysis of the various fractions resulted in the identification of 27 compounds of the essential oil. The main components of these fractions were carvacrol, trans-sabinene hydrate, cis-piperitol, borneol, terpinen-4-ol, and linalool. Antimicrobial activity was investigated by the disk diffusion and broth dilution methods against six different microbial species, including two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the supercritical fluid extraction fractions obtained showed antimicrobial activity against all of the microorganisms tested, although the most active fraction was the one obtained in experiment 5 (fraction was obtained with 7% ethanol at 150 bar and 40 degrees C). C. albicans was the most sensitive microorganism to the oregano extracts, whereas the least susceptible was A. niger. Carvacrol, sabinene hydrate, borneol, and linalool standards also showed antimicrobial activity against all of the microorganisms tested, with carvacrol being the most effective. Consequently, it was confirmed that essential oil from experiment 5, with the best antimicrobial activity, also presented the highest quantity of carvacrol.

  6. Selective recovery of tagatose from mixtures with galactose by direct extraction with supercritical CO2 and different cosolvents.

    PubMed

    Montañés, Fernando; Fornari, Tiziana; Martín-Alvarez, Pedro J; Corzo, Nieves; Olano, Agustin; Ibañez, Elena

    2006-10-18

    A selective fractionation method of carbohydrate mixtures of galactose/tagatose, using supercritical CO(2) and isopropanol as cosolvent, has been evaluated. Optimization was carried out using a central composite face design and considering as factors the extraction pressure (from 100 to 300 bar), the extraction temperature (from 60 to 100 degrees C), and the modifier flow rate (from 0.2 to 0.4 mL/min, which corresponded to a total cosolvent percentage ranging from 4 to 18% vol). The responses evaluated were the amount (milligrams) of tagatose and galactose extracted and their recoveries (percent). The statistical analysis of the results provided mathematical models for each response variable. The corresponding parameters were estimated by multiple linear regression, and high determination coefficients (>0.96) were obtained. The optimum conditions of the extraction process to get the maximum recovery of tagatose (37%) were 300 bar, 60 degrees C, and 0.4 mL/min of cosolvent. The predicted value was 24.37 mg of tagatose, whereas the experimental value was 26.34 mg, which is a 7% error from the predicted value. Cosolvent polarity effects on tagatose extraction from mixtures of galactose/tagatose were also studied using different alcohols and their mixtures with water. Although a remarkable increase of the amount of total carbohydrate extracted with polarity was found, selective extraction of tagatose decreased with increase of polarity of assayed cosolvents. To improve the recovery of extracted tagatose, additional experiments outside the experimental domain were carried out (300 bar, 80 degrees C, and 0.6 mL/min of isopropanol); recoveries >75% of tagatose with purity >90% were obtained.

  7. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.

    PubMed

    Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril

    2016-04-13

    Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1995-01-01

    A process whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4-1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO.sub.2 extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  9. Supercritical Fluid (SCF) Technologies: Assessment of Applicability to Installation Restoration Processes

    DTIC Science & Technology

    1994-03-10

    SCW is almost gas-like (more than 20 times below room- temperature viscosity), which creates an increase in the diffusion coefficients such that the...pounds per year of green coffee [51]. Additionally, dry CO 2 is routinely used to extract the I aroma and flavor oils from roasted coffee beans. The bitter...refrigeration and processes such as U the decaffeination of coffee beans [56]. Also, during the cleaning of the residues from metal parts, the evaporation of post

  10. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  11. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  12. Optimization of sample preparation variables for wedelolactone from Eclipta alba using Box-Behnken experimental design followed by HPLC identification.

    PubMed

    Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S

    2013-07-01

    Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Removal of carbonaceous contaminants from silica aerogel

    NASA Technical Reports Server (NTRS)

    Huang, Hui-Ping; Gilmour, I.; Pillinger, C. T.; Zolensky, M. E.

    1993-01-01

    Capture of micrometeorite material from low Earth orbit or dust grains around active comets for return to terrestrial laboratories, capable of practicing the most up to date techniques of chemical isotopic and mineralogical analysis, will greatly enhance our knowledge of primitive material in the solar system. The next generation of space launched cosmic dust collectors will undoubtedly include extremely low density target materials such as silica aerogel as the decelerating and arresting medium. This material has been found to be clean from the point of view of inorganic elements and is thus acceptable for the purpose of harvesting grains to be studied by, for example PIXE, INAA, or SXRF. However, the process used in making aerogel leaves substantial carbon and hydrogen containing residues which would negate their suitability for collection and subsequent investigation of the very important CHON particles. Attempts to precondition aerogel by solvent extraction or heating at 500 C and 750 C in air for 24 hours or under a vacuum of 2(7)(exp -7) torr at 260 C were largely ineffective except that pyrolysis did reduce volatile species. In this investigation we have examined the use of supercritical fluids for the purpose of extracting organic residues. The logic of the new approach is that beyond the supercritical point a substance has the solvating properties of a liquid but the viscosity characteristics of a gas. For example carbon dioxide becomes supercritical at a pressure of 73 atmospheres and a temperature of 31 C; in consequence it can transform to a very powerful and ultraclean solvent. It can dissolve organic matter from low molecular weight up to molecules containing 90 carbon atoms. On release of pressure the fluid reverts to a gas which can easily be pumped away and removed from the substrate being extracted.

  14. Recovery of biomolecules from food wastes--a review.

    PubMed

    Baiano, Antonietta

    2014-09-17

    Food wastes are produced by a variety of sources, ranging from agricultural operations to household consumption. About 38% occurs during food processing. At present, the European Union legislation encourages the exploitation of co-products. This valorisation can be achieved through the extraction of high-value components such as proteins, polysaccharides, fibres, flavour compounds, and phytochemicals, which can be re-used as nutritionally and pharmacologically functional ingredients. Extraction can proceed according to solid-liquid extraction, Soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pulsed electric field extraction, and enzyme-assisted extraction. Nevertheless, these techniques cannot be used indiscriminately and their choice depends on the type of biomolecules and matrix, the scale processing (laboratory or industrial), the ratio between production costs and economic values of the compounds to be extracted. The vegetable wastes include trimmings, peelings, stems, seeds, shells, bran, residues remaining after extraction of oil, starch, sugar, and juice. The animal-derived wastes include wastes from bred animals, wastes from seafood, wastes from dairy processing. The recovered biomolecules and by-products can be used to produce functional foods or as adjuvants in food processing or in medicinal and pharmaceutical preparations. This work is an overview of the type and amounts of food wastes; food waste legislation; conventional and novel techniques suitable for extracting biomolecules; food, medicinal and pharmaceutical uses of the recovered biomolecules and by-products, and future trends in these areas.

  15. Extraction of α-humulene-enriched oil from clove using ultrasound-assisted supercritical carbon dioxide extraction and studies of its fictitious solubility.

    PubMed

    Wei, Ming-Chi; Xiao, Jianbo; Yang, Yu-Chiao

    2016-11-01

    Clove buds are used as a spice and food flavoring. In this study, clove oil and α-humulene was extracted from cloves using supercritical carbon dioxide extraction with and without ultrasound assistance (USC-CO2 and SC-CO2, respectively) at different temperatures (32-50°C) and pressures (9.0-25.0MPa). The results of these extractions were compared with those of heat reflux extraction and steam distillation methods conducted in parallel. The extracts obtained using these four techniques were analyzed using gas chromatography and gas chromatography/mass spectrometry (GC/MS). The results demonstrated that the USC-CO2 extraction procedure may extract clove oil and α-humulene from clove buds with better yields and shorter extraction times than conventional extraction techniques while utilizing less severe operating parameters. Furthermore, the experimental fictitious solubility data obtained using the dynamic method were well correlated with density-based models, including the Chrastil model, the Bartle model and the Kumar and Johnston model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes.

    PubMed

    Giuffrida, Daniele; Donato, Paola; Dugo, Paola; Mondello, Luigi

    2018-04-04

    In the present perspective, different approaches to the carotenoids analysis will be discussed providing a brief overview of the most advanced both monodimensional and bidimensional liquid chromatographic methodologies applied to the carotenoids analysis, followed by a discussion on the recents advanced supercritical fluid chromatography × liquid chromatography bidimensional approach with photodiode-array and mass spectrometry detection. Moreover a discussion on the online supercritical fluid extraction-supercritical fluid chromatography with tandem mass spectrometry detection applied to the determination of carotenoids and apocarotenoids will also be provided.

  17. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions.

    PubMed

    Molnar, Maja; Mendešević, Nikolina; Šubarić, Drago; Banjari, Ines; Jokić, Stela

    2017-08-05

    Chamomile, a well-known medicinal plant, is a rich source of bioactive compounds, among which two coumarin derivatives, umbelliferone and herniarin, are often found in its extracts. Chamomile extracts have found a different uses in cosmetic industry, as well as umbelliferone itself, which is, due to its strong absorption of UV light, usually added to sunscreens, while herniarin (7-methoxycoumarin) is also known for its biological activity. Therefore, chamomile extracts with certain herniarin and umbelliferone content could be of interest for application in pharmaceutical and cosmetic products. The aim of this study was to compare the extracts of different chamomile fractions (unprocessed chamomile flowers first class, processed chamomile flowers first class, pulvis and processing waste) and to identify the best material and method of extraction to obtain herniarin and umbelliferone. Various extraction techniques such as soxhlet, hydrodistillation, maceration and supercritical CO 2 extraction were used in this study. Umbelliferone and herniarin content was determined by high performance liquid chromatography (HPLC). The highest yield of umbelliferone (11.80 mg/100 g) and herniarin (82.79 mg/100 g) were obtained from chamomile processing waste using maceration technique with 50% aqueous ethanol solution and this extract has also proven to possess antioxidant activity (61.5% DPPH scavenging activity). This study shows a possibility of potential utilization of waste from chamomile processing applying different extraction techniques.

  18. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts

    PubMed Central

    Barreto, Gabriele de Abreu; Costa, Samantha Serra; Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Carvalho, Adriana Andrade; Padilha, Francine Ferreira; Barbosa, Josiane Dantas Viana

    2017-01-01

    Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations. PMID:28358806

  19. Antioxidant, antimicrobial, antiparasitic, and cytotoxic properties of various Brazilian propolis extracts.

    PubMed

    Dantas Silva, Rejane Pina; Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Samantha Serra; Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Carvalho, Adriana Andrade; Padilha, Francine Ferreira; Barbosa, Josiane Dantas Viana; Umsza-Guez, Marcelo Andres

    2017-01-01

    Propolis is known for its biological properties and its preparations have been continuously investigated in an attempt to solve the problem of their standardization, an issue that limits the use of propolis in food and pharmaceutical industries. The aim of this study was to evaluate in vitro antioxidant, antimicrobial, antiparasitic, and cytotoxic effects of extracts of red, green, and brown propolis from different regions of Brazil, obtained by ethanolic and supercritical extraction methods. We found that propolis extracts obtained by both these methods showed concentration-dependent antioxidant activity. The extracts obtained by ethanolic extraction showed higher antioxidant activity than that shown by the extracts obtained by supercritical extraction. Ethanolic extracts of red propolis exhibited up to 98% of the maximum antioxidant activity at the highest extract concentration. Red propolis extracts obtained by ethanolic and supercritical methods showed the highest levels of antimicrobial activity against several bacteria. Most extracts demonstrated antimicrobial activity against Staphylococcus aureus. None of the extracts analyzed showed activity against Escherichia coli or Candida albicans. An inhibitory effect of all tested ethanolic extracts on the growth of Trypanosoma cruzi Y strain epimastigotes was observed in the first 24 h. However, after 96 h, a persistent inhibitory effect was detected only for red propolis samples. Only ethanolic extracts of red propolis samples R01Et.B2 and R02Et.B2 showed a cytotoxic effect against all four cancer cell lines tested (HL-60, HCT-116, OVCAR-8, and SF-295), indicating that red propolis extracts have great cytotoxic potential. The biological effects of ethanolic extracts of red propolis revealed in the present study suggest that red propolis can be a potential alternative therapeutic treatment against Chagas disease and some types of cancer, although high activity of red propolis in vitro needs to be confirmed by future in vivo investigations.

  20. Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.

    PubMed

    Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid

    2011-06-01

    Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.

  1. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga.

    PubMed

    Mendiola, Jose A; Marín, Francisco R; Hernández, S Francisco; Arredondo, Bertha O; Señoráns, F Javier; Ibañez, Elena; Reglero, Guillermo

    2005-06-01

    Spirulina platensis microalga has been extracted on a pilot scale plant using supercritical fluid extraction (SFE) under various extraction conditions. The extraction yield and the antioxidant activity of the extracts were evaluated in order to select those extracts with both the highest antioxidant capacity and a good extraction yield. These extracts were characterized using LC coupled to diode array detection (DAD) and LC coupled to mass spectrometry (MS) with two different interfaces, atmospheric pressure chemical ionization (APCI) and electrospray (ESI) which allowed us to perform tandem MS by using an ion trap analyzer. The best extraction conditions were as follows: CO2 with 10% of modifier (ethanol) as extraction solvent, 55 degrees C (extraction temperature) and 220 bar (extraction pressure). Fractionation was achieved by cascade depressurization providing two extracts with different activity and chemical composition. Several compounds have been identified in the extracts, corresponding to different carotenoids previously identified in Spirulina platensis microalga along with chlorophyll a and some degradation products. Also, the structure of some phenolic compounds could be tentatively identified. The antioxidant activity of the extracts could be attributed to some of the above mentioned compounds.

  2. Extraction and purification of high added value compounds from by-products of the winemaking chain using alternative/nonconventional processes/technologies.

    PubMed

    Yammine, Sami; Brianceau, Sylène; Manteau, Sébastien; Turk, Mohammad; Ghidossi, Rémy; Vorobiev, Eugène; Mietton-Peuchot, Martine

    2018-05-24

    Grape byproducts are today considered as a cheap source of valuable compounds since existent technologies allow the recovery of target compounds and their recycling. The goal of the current article is to explore the different recovery stages used by both conventional and alternative techniques and processes. Alternative pre-treatments techniques reviewed are: ultrasounds, pulsed electric fields and high voltage discharges. In addition, nonconventional solvent extraction under high pressure, specifically, supercritical fluid extraction and subcritical water extraction are discussed. Finally alternative purification technologies, for example membrane processing were also examined. The intent is to describe the mechanisms involved by these alternative technologies and to summarize the work done on the improvement of the extraction process of phenolic compounds from winery by-products. With a focus on the developmental stage of each technology, highlighting the research need and challenges to be overcome for an industrial implementation of these unitary operations in the overall extraction process. A critical comparison of conventional and alternative techniques will be reviewed for ethe pre-treatment of raw material, the diffusion of polyphenols and the purification of these high added value compounds. This review intends to give the reader some key answers (costs, advantages, drawbacks) to help in the choice of alternative technologies for extraction purposes.

  3. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  4. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    PubMed

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  5. Antioxidant activity and sensory analysis of a rosmarinic acid-enriched extract of garden sage (Salvia officinalis)

    USDA-ARS?s Scientific Manuscript database

    A novel extract of S. officinalis (garden sage) was prepared using supercritical carbon dioxide (SC-CO2) extraction, followed by a Soxhlet hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. Th...

  6. Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide.

    PubMed

    Jarén-Galán, M; Nienaber, U; Schwartz, S J

    1999-09-01

    Paprika oleoresin was fractionated by extraction with supercritical carbon dioxide (SCF-CO(2)). Higher extraction volumes, increasing extraction pressures, and similarly, the use of cosolvents such as 1% ethanol or acetone resulted in higher pigment yields. Within the 2000-7000 psi range, total oleoresin yield always approached 100%. Pigments isolated at lower pressures consisted almost exclusively of beta-carotene, while pigments obtained at higher pressures contained a greater proportion of red carotenoids (capsorubin, capsanthin, zeaxanthin, beta-cryptoxanthin) and small amounts of beta-carotene. The varying solubility of oil and pigments in SCF-CO(2) was optimized to obtain enriched and concentrated oleoresins through a two-stage extraction at 2000 and 6000 psi. This technique removes the paprika oil and beta-carotene during the first extraction step, allowing for second-stage oleoresin extracts with a high pigment concentration (200% relative to the reference) and a red:yellow pigment ratio of 1.8 (as compared to 1.3 in the reference).

  7. Supercritical carbon dioxide extraction of ethyl p-methoxycinnamate from Kaempferia galanga L. rhizome and its apoptotic induction in human HepG2 cells.

    PubMed

    Liu, Benguo; Liu, Feng; Chen, Chungang; Gao, Han

    2010-12-01

    In this study, supercritical carbon dioxide extraction of ethyl p-methoxycinnamate from Kaempferia galanga L. rhizome and its apoptotic induction in human HepG2 cells are reported for the first time. By using supercritical carbon dioxide extraction, the yield of ethyl p-methoxycinnamate identified by gas chromatography mass spectrometry (GC-MS) was as high as 2.5% with respect to the raw materials. In the anticancer assay, it was found that ethyl p-methoxycinnamate could inhibit the proliferation of the human hepatocellular liver carcinoma HepG2 cell line in a dose-dependent manner and induce the significant increase of the subG0 cell population. After treatment with ethyl p-methoxycinnamate, phosphatidylserine of HepG2 cells could significantly translocate to the surface of the membrane. The increase of an early apoptotic population was observed by both annexin-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining. It was concluded that ethyl p-methoxycinnamate not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle.

  8. Improved neuroprotective effects by combining Bacopa monnieri and Rosmarinus officinalis supercritical CO2 extracts.

    PubMed

    Ramachandran, Cheppail; Quirin, Karl-Werner; Escalon, Enrique; Melnick, Steven J

    2014-04-01

    Ethnobotanical evidence suggests that herbs such as brahmi (Bacopa monnieri) and rosemary (Rosmarinus officinalis) may possess antioxidant and neuroprotective properties. We compared the antioxidant and neuroprotective effects of supercritical extract of Bacopa monnieri and rosemary antioxidant extract obtained from Rosmarinus officinalis as well as their combination to examine the effects on human glial (U-87 MG) and embryonic mouse hypothalamus cells. Bacopa monnieri extract, rosemary antioxidant extract, and their combination (1:1) are not cytotoxic in both glial and embryonic mouse hypothalamus cell lines up to 200 μg/mL concentration. The combination of extracts of Bacopa monnieri + rosemary antioxidant has better antioxidant potential and antilipid peroxidation activity than either agent alone. Although the extract of Bacopa monnieri + rosemary antioxidant showed almost similar inhibition of phospho tau expression as Bacopa monnieri or rosemary antioxidant extract alone, the combination has better inhibitory effect on amyloid precursor protein synthesis and higher brain-derived neurotrophic factor production in hypothalamus cells than single agents. These results suggest that the extract of Bacopa monnieri + rosemary antioxidant is more neuroprotective than Bacopa monnieri or rosemary antioxidant extract.

  9. Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.

    1994-03-15

    Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less

  10. [Comparison of Chemical Components of Essential Oil from Ocimum basilicum var. pilosum Extracted by Supercritical CO2 Fluid and Steam Distillation].

    PubMed

    Wang, Zhao-yu; Zheng, Jia-huan; Shi, Sheng-ying; Luo, Zhi-xiong; Ni, Shun-yu; Lin, Jing-ming

    2015-11-01

    To compare the chemical components of essential oil prepared by steam distillation extraction (SD) and supercritical CO2 fluid extraction (SFE-CO2) from Ocimum basilicum var. pilosum whole plant. The essential oil of Ocimum basilicum var. pilosum were extracted by SD and SFE-CO2. The chemical components of essential oil were separated and analyzed by gas chromatography-mass spectrometry( GC-MS). Their relative contents were determined by normalization of peak area. 40 and 42 compounds were detected in the essential oil prepared by SD and SFE-CO2 respectively. 25 compounds were common. Thereare significant differences of the chemical components between the Ocimum basilicum var. pilosum essential oil prepared by SD and thatby SFE-CO2. Different methods showed different extraction efficiency with a special compound. It might be a good idea to unite several methods in the modern traditional Chinese medicine industry.

  11. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    PubMed Central

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830

  12. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    PubMed

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  13. Development of new natural extracts.

    PubMed

    Lavoine-Hanneguelle, Sophie; Périchet, Christine; Schnaebele, Nicolas; Humbert, Marina

    2014-11-01

    For over the past 20 years, a remarkable development in the study and search of natural products has been observed. This is linked to a new market trend towards ecology and also due to new regulations. This could be a rupture, but also a real booster for creativity. Usually, in the flavor and fragrance field, creativity was boosted by the arrival of new synthetic molecules. Naturals remained the traditional, century-old products, protected by secrecy and specific know-how from each company. Regulatory restrictions or eco-friendly certification constraints like hexane-free processes triggered an important brainstorming in the industry. As a result, we developed new eco-friendly processes including supercritical CO2 extraction, allowing fresh plants to be used to obtain industrial flower extracts (Jasmine Grandiflorum, Jasmine Sambac, Orange blossom). These extracts are analyzed by GC, GC/MS, GCO, and HPTLC techniques. New or unusual raw materials can also be explored, but the resulting extracts have to be tested for safety reasons. Some examples are described. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  14. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    PubMed Central

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  15. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    PubMed

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  16. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    EPA Science Inventory

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  17. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  18. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  19. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    PubMed Central

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  20. Extraction of essential oil from Cupressus sempervirens: comparison of global yields, chemical composition and antioxidant activity obtained by hydrodistillation and supercritical extraction.

    PubMed

    Nejia, Herzi; Séverine, Camy; Jalloul, Bouajila; Mehrez, Romdhane; Stéphane, Condoret Jean

    2013-01-01

    In this study, supercritical fluid extraction (SFE) with CO2 and hydrodistillation (HD) were compared as methods to isolate the essential oil from Cupressus sempervirens. The odour of the oil obtained by SFE at 90 bar and 40°C was very close to the odour of the leaves of C. sempervirens before the extraction. Compounds extracted by both SFE and HD were identified by GC-FID and GC-MS. Moreover, the difference in the chemical composition obtained by SFE and HD was quite noticeable qualitatively and quantitatively. Phenolic composition and antioxidant activity were also determined. Compared to HD, the SFE method presents some advantages: the extraction was completed after 1 h in SFE, although 4 h is necessary for HD, and the yield was improved by 34%. Finally, it has also been shown that SFE is very selective towards some specific components such as manoyl oxide, trans-totarol and α-acoradiene.

  1. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Pillinger, Colin

    1993-01-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  2. Extraction and isotopic analysis of medium molecular weight hydrocarbons from Murchison using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Pillinger, Colin

    1993-03-01

    The large variety of organic compounds present in carbonaceous chondrites poses particular problems in their analysis not the least of which is terrestrial contamination. Conventional analytical approaches employ simple chromatographic techniques to fractionate the extractable compounds into broad classes of similar chemical structure. However, the use of organic solvents and their subsequent removal by evaporation results in the depletion or loss of semi-volatile compounds as well as requiring considerable preparative work to assure solvent purity. Supercritical fluids have been shown to provide a powerful alternative to conventional liquid organic solvents used for analytical extractions. A sample of Murchison from the Field Museum was analyzed. Two interior fragments were used; the first (2.85 g) was crushed in an agate pestel and mortar to a grain size of ca. 50-100 micron, the second (1.80 g) was broken into chips 3-8 mm in size. Each sample was loaded into a stainless steel bomb and placed in the extraction chamber of an Isco supercritical fluid extractor maintained at 35 C. High purity (99.9995 percent) carbon dioxide was used and was pressurized using an Isco syringe pump. The samples were extracted dynamically by flowing CO2 under pressure through the bomb and venting via a 50 micron fused filica capillary into 5 mls of hexane used as a collection solvent. The hexane was maintained at a temperature of 0.5 C. A series of extractions were done on each sample using CO2 of increasing density. The principal components extracted in each fraction are summarized.

  3. [Supercritical and near-critical fluid solvents assisted reaction and separation processes].

    PubMed

    Song, R; Zeng, J; Zhong, B

    2001-11-01

    The tunability of supercritical and near-critical fluid (S/NCF) solvents offers environmental improvements and economic advantages from improved performances and flexibility for separation and reaction processes through density changes or cosolvents. The paper reviews the sustainable reaction and separation processes in S/NCF solvents such as supercritical carbon dioxide and near-critical water.

  4. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...PROCESSING COSTS TO GAC WORKING CAPACITY ................................. 27 IV-5 ESTIMATED PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY THERMAL...34 VI-2 COMPARISON OF THREE GRANULAR ACTIVATED CARBONS - SUPERCRITICAL CO2 REACTIVATION - GRANULAR CARBON ISOTHERMS - PHASE I RAW DATA

  5. Extraction of astaxanthin from microalgae: process design and economic feasibility study

    NASA Astrophysics Data System (ADS)

    Zgheib, Nancy; Saade, Roxana; Khallouf, Rindala; Takache, Hosni

    2018-03-01

    In this work, the process design and the economic feasibility of natural astaxanthin extraction fromHaematococcus pluvialisspecies have been reported. Complete process drawing of the process was first performed, and then the process was designed including five main steps being the harvesting process, the cell disruption, the spray drying, the supercritical CO2extraction and the anaerobic digestion. The major components of the facility would include sedimentation tanks, a disk stack centrifuge, a bed miller, a spray dryer, a multistage compressor, an extractor, a pasteurizer and a digester. All units have been sized assuming a 10 kg/h of dried biomass as a feedstock to produce nearly 2592 kg of astaxanthin per year. The investment payback time and the return on investment were all estimated for different market prices of astaxanthin. Based on the results the production process was found to become economically feasible for a market price higher than 1500/Kg. Also, a payback period of 1 year and an ROI equal to 113% was estimated for an astaxanthin market price equal to 6000/Kg.

  6. Developing an effective means to reduce 5-hydroxymethyl-2-furfural from caramel colour.

    PubMed

    Guan, Yongguang; Chen, Mingshun; Yu, Shujuan; Tang, Qiang; Yan, He

    2014-01-15

    Supercritical carbon dioxide fluid extraction was used to extract 5-hydroxymethyl-2-furfural from caramel colour (solid content was about 75%). The procedure was carried out by response surface methodology using a quadratic polynomial model. Extraction pressure, time, temperature and ethanol content were selected as the independent variables. Conditions to obtain the highest extraction ratio of 5-hydroxymethyl-2-furfural were determined to be an extraction pressure of 21.65MPa, time of 46.7min, temperature of 35°C and 70% ethanol content of caramel colour. The predicted 5-hydroxymethyl-2-furfural extraction ratio was 87.42%. Under the conditions stated above, the experimental value of 5-hydroxymethyl-2-furfural extraction ratio was 86.98%, which was similar to the predicted value by the model. This study indicated that supercritical carbon dioxide fluid extraction can effectively reduce 5-hydroxymethyl-2-furfural from caramel colour, which can help food industry to improve the safety of the food material, as well as provide more healthy caramel colour for human beings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of Cannabinoid and Terpenoid Content: Cannabis Flower Compared to Supercritical CO2 Concentrate.

    PubMed

    Sexton, Michelle; Shelton, Kyle; Haley, Pam; West, Mike

    2018-03-01

    A recent cannabis use survey revealed that 60% of cannabis users rely on smelling the flower to select their cannabis. Olfactory indicators in plants include volatile compounds, principally represented by the terpenoid fraction. Currently, medicinal- and adult-use cannabis is marketed in the United States with relatively little differentiation between products other than by a common name, association with a species type, and Δ-9 tetrahydrocannabinol/cannabidiol potency. Because of this practice, how terpenoid compositions may change during an extraction process is widely overlooked. Here we report on a comparative study of terpenoid and cannabinoid potencies of flower and supercritical fluid CO 2 (SC-CO 2 ) extract from six cannabis chemovars grown in Washington State. To enable this comparison, we employed a validated high-performance liquid chromatography/diode array detector methodology for quantification of seven cannabinoids and developed an internal gas chromatography-mass spectrometry method for quantification of 42 terpenes. The relative potencies of terpenoids and cannabinoids in flower versus concentrate were significantly different. Cannabinoid potency increased by factors of 3.2 for Δ-9 tetrahydrocannabinol and 4.0 for cannabidiol in concentrates compared to flower. Monoterpenes were lost in the extraction process; a ketone increased by 2.2; an ether by 2.7; monoterpene alcohols by 5.3, 7 and 9.4; and sesquiterpenes by 5.1, 4.2, 7.7, and 8.9. Our results demonstrate that the product of SC-CO 2 extraction may have a significantly different chemotypic fingerprint from that of cannabis flower. These results highlight the need for more complete characterization of cannabis and associated products, beyond cannabinoid content, in order to further understand health-related consequences of inhaling or ingesting concentrated forms. Georg Thieme Verlag KG Stuttgart · New York.

  8. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia.

    PubMed

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    In today's consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefinery cascade processing. The process integrated supercritical CO 2 extraction of carotenoids within the oil fractions from tomato seeds (TS) and tomato peels (TP), followed by a batch isolation of protein from the residues. The remaining lignocellulosic matter from both fractions was then submitted to a liquid hot water (LHW) hydrolysis. Supercritical CO 2 experiments extracted 5.79% oleoresin, 410.53 mg lycopene/kg, and 31.38 mg β-carotene/kg from TP and 26.29% oil, 27.84 mg lycopene/kg, and 5.25 mg β-carotene/kg from TS, on dry weights. Protein extraction yields, nearing 30% of the initial protein contents equal to 13.28% in TP and 39.26% in TS, revealed that TP and TS are a rich source of essential amino acids. LHW treatment run at 120-200 °C, 50 bar for 30 min showed that a temperature of 160 °C was the most convenient for cellulose and hemicellulose hydrolysis from TP and TS, while keeping the degradation products low. Results indicated that tomato by-products are not only a green source of lycopene-rich oleoresin and tomato seed oil (TSO) and of protein with good nutritional quality but also a source of lignocellulosic matter with potential for bioethanol production. This study would provide an important reference for the concept and the feasibility of the cascade fractionation of valuable compounds from tomato industrial by-products.Graphical abstractSchema of biorefinery cascade processing of tomato industrial by-products toward isolation of valuable fractions.

  9. Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

    PubMed Central

    Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei

    2012-01-01

    The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916

  10. Supercritical carbon dioxide for textile applications and recent developments

    NASA Astrophysics Data System (ADS)

    Eren, H. A.; Avinc, O.; Eren, S.

    2017-10-01

    In textile industry, supercritical carbon dioxide (scCO2), possessing liquid-like densities, mostly find an application on textile dyeing processes such as providing hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can result in shorter dyeing periods in comparison with the conventional water dyeing process. Supercritical carbon dioxide dyeing is an anhydrous dyeing and this process comprises the usage of less energy and chemicals when compared to conventional water dyeing processes leading to a potential of up to 50% lower operation costs. The advantages of supercritical carbon dioxide dyeing method especially on synthetic fiber fabrics hearten leading textile companies to alter their dyeing method to this privileged waterless dyeing technology. Supercritical carbon dioxide (scCO2) waterless dyeing is widely known and applied green method for sustainable and eco-friendly textile industry. However, not only the dyeing but also scouring, desizing and different finishing applications take the advantage of supercritical carbon dioxide (scCO2). In this review, not only the principle, advantages and disadvantages of dyeing in supercritical carbon dioxide but also recent developments of scCO2 usage in different textile processing steps such as scouring, desizing and finishing are explained and commercial developments are stated and summed up.

  11. Selective enrichment in bioactive compound from Kniphofia uvaria by super/subcritical fluid extraction and centrifugal partition chromatography.

    PubMed

    Duval, Johanna; Destandau, Emilie; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric

    2016-05-20

    Nowadays, a large portion of synthetic products (active cosmetic and therapeutic ingredients) have their origin in natural products. Kniphofia uvaria is a plant from Africa which has proved in the past by in-vivo tests an antioxidant activity due to compounds present in roots. Recently, we have observed anthraquinones in K. uvaria seeds extracts. These derivatives are natural colorants which could have interesting bioactive potential. The aim of this study was to obtain an extract enriched in anthraquinones from K. uvaria seeds which mainly contains glycerides. First, the separation of the seed compounds was studied by using supercritical fluid chromatography (SFC) in the goal to provide a rapid quantification method of these bioactive compounds. A screening of numerous polar stationary phases was achieved for selecting the most suited phase to the separation of the four anthraquinones founded in the seeds. A gradient elution was optimized for improving the separation of the bioactive compounds from the numerous other families of major compounds of the extracts (fatty acids, di- and triglycerides). Besides, a non-selective and green Supercritical Fluid Extraction (SFE) with pure CO2 was applied to seeds followed by a Centrifugal Partition Chromatography (CPC). The CPC system was optimized by using the Arizona phase system, to enrich the extract in anthraquinones. Two systems were selected to isolate the bioactive compounds from the oily extract with varied purity target. The effect of the injection mode for these very viscous samples was also studied. Finally, in order to directly apply a selective process of extraction to the seeds, the super/subcritical fluid extraction was optimized to increase the anthraquinone yield in the final extract, by studying varied modifier compositions and nature, as well as different temperatures and backpressures. Conditions suited to favour an enrichment factor bases on the ratio of anthraquinone and trilycerides extracted are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Method of low pressure and/or evaporative drying of aerogel

    DOEpatents

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1995-05-30

    A process is described whereby Resorcinol/Formaldehyde (RF) aerogel having a density of about 0.4--1.2 g/cc can be manufactured using a simple air drying procedure. This process is inherently simpler, quicker, and less expensive than the more conventional supercritical or subcritical CO{sub 2} extraction procedures. RF aerogels can be used as produced, such as in insulation applications, or pyrolyzed to form carbon aerogels with a density of about 0.9 g/cc for use in applications such as batteries, supercapacitors, etc.

  13. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightlymore » supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.« less

  14. Supercritical water oxidation of products of human metabolism

    NASA Technical Reports Server (NTRS)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  15. Extraction of purine alkaloids from maté (Ilex paraguariensis) using supercritical CO(2).

    PubMed

    Saldaña, M D; Mohamed, R S; Baer, M G; Mazzafera, P

    1999-09-01

    Experimental data for the supercritical CO(2) extraction of purine alkaloids (caffeine, theobromine, and theophylline) from ground herbal maté tea (Ilex paraguaryensis) using a high-pressure apparatus are presented. Caffeine, theophylline, and theobromine were identified in the extracted fractions using HPLC. Results indicated a much higher CO(2) selectivity for caffeine in comparison with those for theophylline and theobromine. Solubilities of pure compounds in carbon dioxide were also determined at 313.2, 323.2, 338.2, and 343.2 K, and pressures ranging from 14 to 24 MPa. Caffeine solubility exhibited a retrograde behavior with temperature while theophylline and theobromine manifested a normal behavior at conditions explored in this study. Solubilities in binary CO(2)/purine alkaloid model systems were much higher than those obtained during extraction of maté tea, demonstrating the difficulty of using binary data in predicting complex multicomponent behavior.

  16. Unstable simple volatiles and gas chromatography-tandem mass spectrometry analysis of essential oil from the roots bark of Oplopanax horridus extracted by supercritical fluid extraction.

    PubMed

    Shao, Li; Bao, Mei-Hua; Ouyang, Dong-Sheng; Wang, Chong-Zhi; Yuan, Chun-Su; Zhou, Hong-Hao; Huang, Wei-Hua

    2014-11-27

    Volatile oil from the root bark of Oplopanax horridus is regarded to be responsible for the clinical uses of the title plant as a respiratory stimulant and expectorant. Therefore, a supercritical fluid extraction method was first employed to extract the volatile oil from the roots bark of O. horridus, which was subsequently analyzed by GC/MS. Forty-eight volatile compounds were identified by GC/MS analysis, including (S,E)-nerolidol (52.5%), τ-cadinol (21.6%) and S-falcarinol (3.6%). Accordingly, the volatile oil (100 g) was subjected to chromatographic separation and purification. As a result, the three compounds, (E)-nerolidol (2 g), τ-cadinol (62 mg) and S-falcarinol (21 mg), were isolated and purified from the volatile oil, the structures of which were unambiguously elucidated by detailed spectroscopic analysis including 1D- and 2D-NMR techniques.

  17. Analysis of carbendazim, benomyl, thiophanate methyl and 2,4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction.

    PubMed

    Anastassiades, M; Schwack, W

    1998-10-30

    Simple methods for the analysis of carbendazim, benomyl and thiophanate methyl in fruits and vegetables and of 2,4-D in citrus fruits are presented. Sample preparation involves supercritical fluid extraction with carbon dioxide and further analysis is performed without any additional clean-up by GC-MS after derivatisation or directly by HPLC-diode array detection. The SFE methods presented are clearly faster and more cost effective than traditional solvent based approaches. The recoveries, detection limits and repeatabilities achieved, meet the needs of tolerance level monitoring of these compounds in fruits and vegetables.

  18. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice.

    PubMed

    Zhu, Hongyan; Zhang, Lina; Wang, Guoli; He, Zhongmei; Zhao, Yan; Xu, Yonghua; Gao, Yugang; Zhang, Lianxue

    2016-10-01

    Schisandra chinensis is a traditional Chinese medicine that has been used for treating insomnia and neurasthenia for centuries. Lignans, which are considered to be the bioactive components, are apt to be extracted by supercritical carbon dioxide. This study was conducted to investigate the sedative and hypnotic activities of the supercritical carbon dioxide fluid extraction of S. chinensis (SFES) in mice and the possible mechanisms. SFES exhibited an obvious sedative effect on shortening the locomotor activity in mice in a dose-dependent (10-200 mg/kg) manner. SFES (50 mg/kg, 100 mg/kg, and 200 mg/kg, intragstrically) showed a strong hypnotic effect in synergy with pentobarbital in mouse sleep, and reversal of insomnia induced by caffeine, p-chlorophenylalanine and flumazenil by decreasing sleep latency, sleep recovery, and increasing sleeping time. In addition, it produced a synergistic effect with 5-hydroxytryptophan (2.5 mg/kg, intraperitoneally). The behavioral pharmacological results suggest that SFES has significant sedative and hypnotic activities, and the mechanisms might be relevant to the serotonergic and γ-aminobutyric acid (GABA)ergic system. Copyright © 2016. Published by Elsevier B.V.

  19. Chemical composition and bioactivity of Citrus medica L. cv. Diamante essential oil obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction.

    PubMed

    Menichini, Federica; Tundis, Rosa; Bonesi, Marco; de Cindio, Bruno; Loizzo, Monica R; Conforti, Filomena; Statti, Giancarlo A; Menabeni, Roberta; Bettini, Ruggero; Menichini, Francesco

    2011-04-01

    The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC₅₀ value of 154.6 µg mL⁻¹) and AChE (IC₅₀ value of 171.3 µg mL⁻¹. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC₅₀ value of 17 µg mL⁻¹ (IC₅₀ of positive control 53 µg mL⁻¹).

  20. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant.

    PubMed

    Lorenzen, Jan; Igl, Nadine; Tippelt, Marlene; Stege, Andrea; Qoura, Farah; Sohling, Ulrich; Brück, Thomas

    2017-06-01

    Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO 2 , they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO 2 ) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7-80 MPa), temperature (20-200 °C) and CO 2 to biomass ratio (20-200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO 2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO 2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO 2 extraction plant.

  1. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    PubMed

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uraniummore » from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.« less

  4. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  5. Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent.

    PubMed

    Kang, Sung-Won; Rahman, M Shafiur; Kim, Ah-Na; Lee, Kyo-Yeon; Park, Chan-Yang; Kerr, William L; Choi, Sung-Gil

    2017-07-01

    Defatted soy flour is a potential source of food protein, amino acids, ash and isoflavones. The supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent extraction methods were used to remove fat from soy flour, and the quality characteristics of a control soy flour (CSF), defatted soy flour by SC-CO 2 (DSFSC-CO 2 ) and defatted soy flour by an organic solvent (DSF-OS) were compared. The SC-CO 2 process was carried out at a constant temperature of 45 °C, and a pressure of 40 MPa for 3 h with a CO 2 flow rate of 30 g/min. The DSFSC-CO 2 had significantly higher protein, ash, and amino acids content than CSF and DSF-OS. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that CSF and DSFSC-CO 2 had protein bands of similar intensity and area that indicated no denaturation of protein, whereas DSF-OS showed diffuse bands or no bands due to protein denaturation. In addition to higher nutritional value and protein contents, DSFSC-CO 2 showed superior functional properties in terms of total soluble solids content, water and oil absorption, emulsifying and foaming capacity. The SC-CO 2 method offers a nutritionally and environmentally friendly alternative extraction processing approach for the removal of oil from high-protein food sources. It has a great potential for producing high-protein fat-free, and low-calorie content diet than the traditional organic solvent extraction method.

  6. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    PubMed Central

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  7. Supercritical Carbon Dioxide Extraction of Flavonoids from Pomelo (Citrus grandis (L.) Osbeck) Peel and Their Antioxidant Activity

    PubMed Central

    He, Jin-Zhe; Shao, Ping; Liu, Jian-Hua; Ru, Qiao-Mei

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of flavonoids from pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity were investigated. Box-Behnken design combined with response surface methodology was employed to maximize the extraction yield of flavonoids. Correlation analysis of the mathematical-regression model indicated that a quadratic polynomial model could be used to optimize the SC-CO2 extraction of flavonoids. The optimal conditions for obtaining the highest extraction yield of flavonoids from pomelo peel were a temperature of 80 °C, a pressure of 39 MPa and a static extraction time of 49 min in the presence of 85% ethanol as modifier. Under these conditions, the experimental yield was 2.37%, which matched positively with the value predicted by the model. Furthermore, flavonoids obtained by SC-CO2 extraction showed a higher scavenging activity on hydroxyl, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals than those obtained by conventional solvent extraction (CSE). Therefore, SC-CO2 extraction can be considered as a suitable technique for the obtainment of flavonoids from pomelo peel. PMID:23202938

  8. Effects of supercritical carbon dioxide (SC-CO(2)) oil extraction on the cell wall composition of almond fruits.

    PubMed

    Femenia, A; García-Marín, M; Simal, S; Rosselló, C; Blasco, M

    2001-12-01

    Extraction of oil from almond fruits using supercritical carbon dioxide (SC-CO(2)) was carried out at 50 degrees C and 330 bar on three sets of almonds: raw almond seeds, raw almond kernels, and toasted almond seeds. Three different oil extraction percentages were applied on each set ranging from approximately 15 to 16%, from approximately 27 to 33%, and from approximately 49 to 64%. Although no major changes were detected in the fatty acid composition between fresh and partially defatted samples, carbohydrate analysis of partially defatted materials revealed important changes in cell wall polysaccharides from almond tissues. Thus, at low extraction percentages (up to approximately 33%), pectic polysaccharides and hemicellulosic xyloglucans were the main type of polymers affected, suggesting the modification of the cell wall matrix, although without breakage of the walls. Then, as supercritical fluid extraction (SCFE) continues and higher extraction rates are achieved (up to approximately 64%), a major disruption of the cell wall occurred as indicated by the losses of all major types of cell wall polysaccharides, including cellulose. These results suggest that, under the conditions used for oil extraction using SC-CO(2), fatty acid chains are able to exit the cells through nonbroken walls; the modification of the pectin-hemicellulose network might have increased the porosity of the wall. However, as high pressure is being applied, there is a progressive breakage of the cell walls allowing the free transfer of the fatty acid chains from inside the cells. These findings might contribute to providing the basis for the optimization of SCFE procedures based on plant food sources.

  9. Exploratory Development on a New Process to Produce Improved RDX crystals: Supercritical Fluid Anti-Solvent Recrystallization

    DTIC Science & Technology

    1988-05-02

    G. and J. Chiovini. Decaffeination Process . U.S. Patent 4,251.559; 17 February 1981. 43. Friedrich, J.P.. G.R. List, and A.J. Leakin. Petroleum...0 CONTRACT REPORT BRL-CR-606 EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL FLUID ANTI-SOLVENT...CCESSION NO. 11. TITLE (icnude Sun• y Uasuihcanon) I . • EXPLORATORY DEVELOPMENT ON A NEW PROCESS TO PRODUCE IMPROVED RDX CRYSTALS: SUPERCRITICAL

  10. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962

  11. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  12. Artemisia dracunculus Extracts Obtained by Organic Solvents and Supercritical CO2 Produce Cytotoxic and Antitumor Effects in Mice with L5178Y Lymphoma.

    PubMed

    Navarro-Salcedo, Martha Hilda; Delgado-Saucedo, Jorge Ivan; Siordia-Sánchez, Victor Hugo; González-Ortiz, Luis J; Castillo-Herrera, Gustavo Adolfo; Puebla-Pérez, Ana M

    2017-11-01

    We investigated the cytotoxic and antitumor effects of nine leaf extracts from Artemisia dracunculus (Tarragon). Five extracts were obtained using different organic solvents and four by supercritical CO 2 . The cytotoxic effects were expressed as IC 50 in 100, 80, 80, 100, and 80 μg/mL by respective solvents: hexane, ethyl acetate, acetone, ethanol, and acetonitrile in L5178Y lymphoma cells. For supercritical CO 2 extract A, IC 50 was 100 μg/mL; for extracts C and D, IC 50 was 150 μg/mL. The antitumor activity was assessed through a tumor growth inhibition test that measured ascites fluid volume and tumor cell counts of BALB/c mice (2 × 10 4 cells L5178Y i.p.). Twenty-four hours after inoculation, mice were treated with 100 mg/kg of acetonitrile extract or extract SF-A daily for 15 days in independent groups of five mice, using two administration routes. We observed tumor evolution with and without treatment. Without treatment, tumor evolution was 17,969 × 10 6  ± 5485 L5178Y cells in 2.6 mL ascites volume, whereas the orally treated acetonitrile extract group showed 0.1 × 10 6  ± 0.07 L5178Y cells (P < .05). The oral SF-A group showed 12.9 × 10 6  ± 243 L5178Y cells, and intraperitoneal (i.p.)-treated SF-A group showed 0.1 × 10 6  ± 0.05 L5178Y cells (P < .05) without any ascites volume development. The acetonitrile extract contains abundant polyphenols and possibly a flavone with antioxidant activity. The SF-A contains abundant alkamides. Both extracts are complexes and the identity of the compounds responsible for observed antitumor activity remains unknown.

  13. Extraction of methylxanthines from guaraná seeds, maté leaves, and cocoa beans using supercritical carbon dioxide and ethanol.

    PubMed

    Saldaña, Marleny D A; Zetzl, Carsten; Mohamed, Rahoma S; Brunner, G

    2002-08-14

    New experimental data on the extraction of caffeine from guaraná seeds and maté tea leaves, and theobromine from cocoa beans, with supercritical CO2 were obtained using a high-pressure extraction apparatus. The effect of the addition of ethanol to carbon dioxide on the extraction efficiency was also investigated. Caffeine extraction yields of 98% of the initial caffeine content in both wet ground guaraná seeds and maté tea leaves were obtained. Extractions of caffeine from guaraná seeds and maté tea leaves also exhibited a retrograde behavior for the two temperatures considered in this work. In the removal of theobromine from cocoa beans, a much smaller extraction yield was obtained with longer extraction periods and consequently larger solvent requirements. The results of this study confirm the higher selectivity of CO2 for caffeine in comparison with that for theobromine, and also the influence of other components in each particular natural product on the extraction of methylxanthines. The effect of the addition of ethanol to carbon dioxide on the extraction of methylxanthines was significant, particularly in the extraction of theobromine from cocoa beans. In general, the use of ethanol results in lower solvent and energy requirements and thereby improved extraction efficiency.

  14. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  15. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  16. Microcellular foaming of arabinoxylan and PEGylated arabinoxylan with supercritical CO2.

    PubMed

    Härdelin, Linda; Ström, Anna; Di Maio, Ernesto; Iannace, Salvatore; Larsson, Anette

    2018-02-01

    In this study, arabinoxylan extracted from barley husks was reacted with polyethylene glycol (PEG) of various molecular weights to introduce an internal plasticizer into the polymer matrix. A successful PEGylation reaction was identified using FTIR and elemental analysis. Thermal and mechanical properties were studied using dynamic mechanical analysis, which revealed that the attachment of PEG chains reduced the glass transition temperature by up to 25°C. Foaming experiments were conducted under different test conditions in a batch foaming process with supercritical CO 2 in a thermoregulated and pressurized cylinder. The foams were evaluated using SEM by studying the morphology of the samples foamed at different temperatures. The unmodified arabinoxylan sample was found to produce the best foam morphology, though the PEGylated samples could be produced at lower temperatures than could the unmodified arabinoxylan. This was interpreted as due to the decrease in the glass transition temperature. Copyright © 2017. Published by Elsevier Ltd.

  17. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.

    PubMed

    Hernández, D; Solana, M; Riaño, B; García-González, M C; Bertucco, A

    2014-10-01

    Renewable fuels and energy are of major concern worldwide and new raw materials and processes for its generation are being investigated. Among these raw materials, algae are a promising source of lipids and energy. Thus, in this work four different algae have been used for lipid extraction and biogas generation. Lipids were obtained by supercritical CO2 extraction (SCCO2), while anaerobic digestion of the lipid-exhausted algae biomass was used for biogas production. The extracted oil composition was analyzed (saturated, monounsaturated and polyunsaturated fatty acids) and quantified. The highest lipid yields were obtained from Tetraselmis sp. (11%) and Scenedesmus almeriensis (10%), while the highest methane production from the lipid-exhausted algae biomass corresponded to Tetraselmis sp. (236mLCH4/gVSadded). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata.

    PubMed

    Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David

    2017-10-27

    A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.

  19. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.

    PubMed

    Perrut, M; Jung, J; Leboeuf, F

    2005-01-06

    In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.

  20. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    PubMed Central

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  1. [Research of the essential oil of Plumeria rubra var. actifolia from Laos by supercritical carbon dioxide extraction].

    PubMed

    Xiao, Xin-Yu; Cui, Long-Hai; Zhou, Xin-Xin; Wu, Yan; Ge, Fa-Huan

    2011-05-01

    The orthogonal test and the supercritical carbon dioxide fluid extraction were used for optimizing the extraction of the essential oil from Plumeria rubra var. actifolia for the first time. Compared with the steam distillation, the optimal operation parameter of extraction was as follows: extraction pressure 25 MPa, extraction temperature 45 degrees C; separator I pressure 12 MPa, separator I temperature 55 degrees C; separator II pressure 6 MPa, separator II temperature 30 degrees C. Under this condition the yield of the essential oil was 5.8927%. The components were separated and identified by GC-MS. 53 components of Plumeria rubra var. actifolia measured by SFE method were identified and determined by normalization method. The main components were 1, 6, 10-dodecatrien-3-ol, 3, 7, 11-trimethyl, benzoic acid, 2-hydroxy-, phenylmethyl ester, 1, 2-benzenedicarboxylic acid, bis(2-methylpropyl) ester,etc.. 1, 2-Benzenedicarboxylic acid, bis (2-methylpropyl) este. took up 66.11% of the total amount, and there was much difference of the results from SD method.

  2. Counter-current carbon dioxide extraction of fat from soy skim

    USDA-ARS?s Scientific Manuscript database

    This research aims to investigate the use of counter-current carbon dioxide extraction method as a means to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. Extractions with liquid CO2 at 25°C and 10.34 MPa and supercritical CO2 at 50°C and 25.16 MPa are comp...

  3. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound.

    PubMed

    Santos, Philipe; Aguiar, Ana C; Barbero, Gerardo F; Rezende, Camila A; Martínez, Julian

    2015-01-01

    Extracts from malagueta pepper (Capsicum frutescens L.) were obtained using supercritical fluid extraction (SFE) assisted by ultrasound, with carbon dioxide as solvent at 15MPa and 40°C. The SFE global yield increased up to 77% when ultrasound waves were applied, and the best condition of ultrasound-assisted extraction was ultrasound power of 360W applied during 60min. Four capsaicinoids were identified in the extracts and quantified by high performance liquid chromatography. The use of ultrasonic waves did not influence significantly the capsaicinoid profiles and the phenolic content of the extracts. However, ultrasound has enhanced the SFE rate. A model based on the broken and intact cell concept was adequate to represent the extraction kinetics and estimate the mass transfer coefficients, which were increased with ultrasound. Images obtained by field emission scanning electron microscopy showed that the action of ultrasonic waves did not cause cracks on the cell wall surface. On the other hand, ultrasound promoted disturbances in the vegetable matrix, leading to the release of extractable material on the solid surface. The effects of ultrasound were more significant on SFE from larger solid particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    PubMed Central

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  5. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review

    PubMed Central

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  6. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    PubMed

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  7. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Fast synthesis of transparent and hydrophobic silica aerogels using polyethoxydisiloxane and methyltrimethoxysilane in one-step drying process

    NASA Astrophysics Data System (ADS)

    Zhu, Xingqun; Naz, Hina; Nauman Ali, Rai; Yang, Yongfei; Zheng, Zhou; Xiang, Bin; Cui, Xudong

    2018-04-01

    We have successfully synthesized the transparent and hydrophobic silica aerogels by a one-step drying process using appropriate amount of Polyethoxydisiloxane and methyltrimethoxysilane. With an introduction of modified rapid supercritical extraction technique, the synthesis process time was shortened down to one hour for a 4 L solution reaction. The observed transmittance of as-synthesized product is larger than 80% within the wavelength range of 500–1000 nm, and the contact angle is confirmed to be over 135°. Our results provide a path way to the fast synthesis of hydrophobic and transparent aerogels in near future for window insulator applications.

  9. Optimization of artemisinin extraction from Artemisia annua L. with supercritical carbon dioxide + ethanol using response surface methodology.

    PubMed

    Ciftci, Ozan Nazim; Cahyadi, Jessica; Guigard, Selma E; Saldaña, Marleny D A

    2018-05-13

    Malaria is a high priority life-threatening public health concern in developing countries, and therefore there is a growing interest to obtain artemisinin for the production of artemisinin-based combination therapy products. In this study, artemisinin was extracted from the Artemisia annua L. plant using supercritical carbon dioxide (SC-CO 2 ) modified with ethanol. Response surface methodology based on central composite rotatable design was employed to investigate and optimize the extraction conditions of pressure (9.9-30 MPa), temperature (33-67°C), and co-solvent (ethanol, 0-12.6 wt.%). Optimum SC-CO 2 extraction conditions were found to be 30 MPa and 33°C without ethanol. Under optimized conditions, the predicted artemisinin yield was 1.09% whereas the experimental value was 0.71 ± 0.07%. Soxhlet extraction with hexane resulted in higher artemisinin yields and there was no significant difference in the purity of the extracts obtained with SC-CO 2 and Soxhlet extractions. Results indicated that SC-CO 2 and SC-CO 2 +ethanol extraction is a promising alternative for the extraction of artemisinin to eliminate the use of organic solvents, such as hexane, and produce extracts that can be used for the production of antimalarial products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficialmore » in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.« less

  11. Simultaneous determination of 11 phthalate esters in bottled beverages by graphene oxide coated hollow fiber membrane extraction coupled with supercritical fluid chromatography.

    PubMed

    Lou, Chaoyan; Guo, Dandan; Zhang, Kai; Wu, Can; Zhang, Peimin; Zhu, Yan

    2018-05-12

    Phthalate esters (PAEs) are a group of serious environmental pollutants, which lead to carcinogenicity or tumorigenicity in human body. In this study, a rapid, sensitive and green method by graphene oxide coated hollow fiber membrane extraction (GO-HFME) coupled with supercritical fluid chromatography (SFC) was proposed for the determination of 11 phthalate esters in bottled beverages. Graphene oxide (GO) was prepared and coated onto a porous hollow fiber membrane (HFM) to reinforce the efficiency of membrane extraction. The modified hollow fiber membrane was employed for the extraction of phthalate esters from bottled beverages prior to the determination by the supercritical fluid chromatography with UV detection. To achieve the maximum extraction efficiency, several parameters were investigated including GO concentration, extraction time, desorption solution and desorption time. SFC variables including stationary phase, modifier composition and percentage, column temperature, flow rate and backpressure were studied to improve the separation conditions. Under these optimized conditions, all the studied 11 phthalate esters were well separated and simultaneously determined in 7 min by SFC. The performance of the developed method was evaluated. Good linearity was observed (R ≥ 0.999) in the range of 0.02-10.0 μg/mL with limit of detection (LOD, S/N = 3) ranging from 1.5 to 3.0 ng/mL. Recoveries of all the PAEs for the spiked samples were between 92.1% and 99.3% with satisfactory relative standard deviations (RSD) less than 5.9%. The proposed method is time-saving, green, simple and robust, which will be an alternative way to the analysis of PAEs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace.

    PubMed

    Brazdauskas, T; Montero, L; Venskutonis, P R; Ibañez, E; Herrero, M

    2016-10-14

    In this work, a new alternative for the downstream processing and valorization of black chokeberry pomace (Aronia melanocarpa) which could be potentially coupled to a biorefinery process is proposed. This alternative is based on the application of pressurized liquid extraction (PLE) to the residue obtained after the supercritical fluid extraction of the berry pomace. An experimental design is employed to study and optimize the most relevant extraction conditions in order to attain extracts with high extraction yields, total phenols content and antioxidant activity. Moreover, the PLE extracts were characterized by using a new method based on the application of comprehensive two-dimensional liquid chromatography in order to correlate their activity with their chemical composition. Thanks to the use of this powerful analytical tool, 61 compounds could be separated being possible the tentative identification of different anthocyanins, proanthocyanidins, flavonoids and phenolic acids. By using the optimized PLE approach (using pressurized 46% ethanol in water at 165°C containing 1.8% formic acid), extracts with high total phenols content (236.6mg GAE g -1 extract) and high antioxidant activities (4.35mmol TE g -1 extract and EC 50 5.92μgmL -1 ) could be obtained with high yields (72.5%). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: varietal effects.

    PubMed

    Beveridge, Thomas H J; Girard, Benoit; Kopp, Thomas; Drover, John C G

    2005-03-09

    Grape seed has a well-known potential for production of oil as a byproduct of winemaking and is currently produced as a specialty oil byproduct of wine manufacture. Seed oils from eight varieties of grapes crushed for wine production in British Columbia were extracted by supercritical carbon dioxide (SCE) and petroleum ether (PE). Oil yields by SCE ranged from 5.85 +/- 0.33 to 13.6 +/- 0.46% (w/w), whereas PE yields ranged from 6.64 +/- 0.16 to 11.17 +/- 0.05% (+/- is standard deviation). The oils contained alpha-, beta-, and gamma-tocopherols and alpha- and gamma-tocotrienols, with gamma-tocotrienol being most important quantitatively. In both SCE- and PE-extracted oils, phytosterols were a prominent feature of the unsaponifiable fraction, with beta-sitosterol quantitatively most important with both extractants. Total phytosterol extraction was higher with SCE than with PE in seven of eight variety extractions. Fatty acid composition of oils from all varieties tested, and from both extraction methods, indicated linoleic acid as the major component ranging from 67.56 to 73.23% of the fatty acids present, in agreement with literature reports.

  14. The effect of chamomile extract obtained in supercritical carbon dioxide conditions on physicochemical and usable properties of pharmaceutical ointments.

    PubMed

    Klimaszewska, Emilia; Seweryn, Artur; Małysa, Anna; Zięba, Małgorzata; Lipińska, Joanna

    2017-05-08

    The study investigated the effect of chamomile extract obtained in supercritical carbon dioxide conditions on the basic properties of pharmaceutical ointments. A total of five formulations were designed and prepared, differing in the weight ratio of sunflower oil to chamomile extract (5:0, 3.5:1.5, 2.5:2.5, 1.5:3.5 and 0:5). An increase in the concentration of chamomile extract was found to be accompanied by a decrease in hardness, adhesive power and flow limit. Based on viscosity measurements it was shown that ointments containing the hydrophobic plant extract under study were prone to larger drops in viscosity under the effect of the set shear rate. It was determined that from the viewpoint of ointment spreadability and application to the skin, the optimum concentration of chamomile extract for the studied formulations should be within the range of 1.5-2.5%. Furthermore, the addition of chamomile extract to ointments was found to give samples a yellow-green color. Green was observed to be the dominant color, and its saturation and shade varied for different formulations.

  15. Supercritical fluids in separation science--the dreams, the reality and the future.

    PubMed

    Smith, R M

    1999-09-24

    The last 20 years have seen an intense interest in the use of supercritical fluids in separation science. This started with the introduction of commercial instruments first for packed and then for capillary chromatography and it looked as if this would be a technique to rival gas-liquid chromatography and HPLC. The activity developed quite rapidly into packed column supercritical fluid separations then into supercritical fluid extraction. However, in recent years there has been a decline in publications. These later techniques continue to be used but are now principally applied to a limited group of applications where they offer significant advantages over alternative techniques. This review looks back over this period and analyses how these methods were developed and the fluids, detectors and applications that were examined. It suggests why many of the initial applications have vanished and why the initial apparent promise was not fulfilled. The rise and fall of supercritical fluids represents a lesson in the way analysts approach new techniques and how we might view other new separation developments at the end of this millennium. The review looks forward to the future of supercritical fluids and their role at the end of the first century of separation science. Probably the most important idea that supercritical fluids have brought to separation science is a recognition that there is unity in the separation methods and that a continuum exists from gases to liquids.

  16. Supercritical carbon dioxide extraction of cuphea seed oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea seed oil is being investigated as a potential domestic source of medium chain fatty acids for several industrial uses. Although the oil from cuphea seeds has been obtained using both solvent extraction and screw pressing, both methods suffer from several disadvantages. Petroleum ether extra...

  17. Bioaccessibility and Antioxidant Activity of Calendula officinalis Supercritical Extract as Affected by in Vitro Codigestion with Olive Oil.

    PubMed

    Martin, Diana; Navarro Del Hierro, Joaquín; Villanueva Bermejo, David; Fernández-Ruiz, Ramón; Fornari, Tiziana; Reglero, Guillermo

    2016-11-23

    Supercritical extracts of marigold (ME) were produced and characterized. The bioaccessibility of terpenes, especially that of pentacyclic triterpenes (PT), the particle-size distribution, and antioxidant activity after the in vitro codigestion of ME with olive oil (OO) were determined. ME produced without cosolvent was richer in taraxasterol, lupeol, α-amyrin, and β-amyrin than extracts with cosolvent. All terpenes showed high bioaccessibility without OO (>75%). Significant correlations were found between the molecular properties of compounds (logP and number of rotatable bonds) and their bioaccessibility. Codigestion with OO enhanced the bioaccessibility (around 100% for PT), which could be related to a higher abundance of low-size particles of the digestion medium. The antioxidant activity of the digested ME increased around 50%, regardless of OO. PT-rich extracts from marigold display high bioaccessibility and improved antioxidant activity after in vitro digestion, although complete bioaccessibility of PT can be reached by codigestion with oil, without affecting antioxidant activity.

  18. Isolation of Bioactive Compounds from Sunflower Leaves (Helianthus annuus L.) Extracted with Supercritical Carbon Dioxide.

    PubMed

    El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A

    2015-07-22

    The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.

  19. Antiviral activity of polymethoxylated flavones from "Guangchenpi", the edible and medicinal pericarps of citrus reticulata 'Chachi'.

    PubMed

    Xu, Jiao-Jiao; Wu, Xia; Li, Man-Mei; Li, Guo-Qiang; Yang, Yi-Ting; Luo, Hu-Jie; Huang, Wei-Huang; Chung, Hau Yin; Ye, Wen-Cai; Wang, Guo-Cai; Li, Yao-Lan

    2014-03-12

    The present study found that the supercritical fluid extract of "Guangchenpi" possessed in vitro antiviral activity against respiratory syncytial virus (RSV). Bioassay-guided isolation and identification of this extract led to obtain five active polymethoxylated flavones (1-5). Cytopathic effect (CPE) reduction assay exhibited that tangeretin (2) and nobiletin (3), two major polymethoxylated flavones in the extract, possessed better anti-RSV effect comparable to the positive control ribavirin. Plaque reduction assay revealed that tangeretin dose-dependently inhibited RSV-induced plaque formation on the HEp-2 cells. This polymethoxylated flavone mainly affected the intracellular replication of RSV, and it also could inhibit RSV entry into the HEp-2 cells. Further investigations with quantitative real-time PCR and confocal and Western blot assays indicated that tangeretin downregulated the expression of RSV phosphoprotein (P protein). Results suggest the potential application of the supercritical fluid extract of "Guangchenpi" and tangeretin in the treatment and the prevention of RSV infection.

  20. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    PubMed

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Supercritical CO₂ extract and essential oil of aerial part of Ledum palustre L.--Chemical composition and anti-inflammatory activity.

    PubMed

    Baananou, Sameh; Bagdonaite, Edita; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Boughattas, Naceur A

    2015-01-01

    The anti-inflammatory activity of two extracts from the aerial parts of Ledum palustre has been reported. The volatile oil was obtained by supercritical fluid extraction (SFE) and the essential oil by hydrodistillation (HD). The oils were analysed by gas chromatography-mass spectrometry to monitor their composition. Both extracts shared as main compound (41.0-43.4%) ledol (23.3-26.7%) and ascaridole (15.1-4.5%). The anti-inflammatory activity was evaluated by the subcutaneous carrageenan injection-induced hind paw oedema. The treated animals received essential oil (SFE and HD), the reference group received ketoprofen or piroxicam and the control group received NaCl 0.9%. A statistical analysis was performed by the Student t-test. The results show that L. palustre essential oil enhanced a significant inhibition of oedema (50-73%) for HD oil and (52-80%) for SFE oil. These results were similar to those obtained with piroxicam (70%) and ketoprofen (55%).

  2. A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition.

    PubMed

    Li, Lian; Guo, Hui-Jun; Zhu, Ling-Yan; Zheng, Limin; Liu, Xin

    2016-05-15

    Ganoderma lucidum (G. lucidum) is an oriental medical mushroom that has been widely used in Asian countries for centuries to prevent and treat different diseases, including cancer. The objective of this study was to investigate the effect of A supercritical-CO2 extract of G. lucidum spores on the transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of cholangiocarcinoma cells. This was an in vitro study with human cholangiocarcinoma TFK-1 cells treated with varying concentrations of G. lucidum. A supercritical-CO2 extract of G. lucidum spores (GLE) was obtained from completely sporoderm-broken germinating G. lucidum spores by supercritical fluid carbon dioxide (SCF-CO2) extraction. GLE pre-incubated with human cholangiocarcinoma TFK-1 cells prior to TGF-β1 treatment (2ng/ml) for 48h. Changes in EMT markers were analyzed by western blotting and immunofluorescence. The formation of F-actin stress fibers was assessed via immunostaining with phalloidin and examined using confocal microscopy. Additionally, the effect of the GLE on TGF-β1-induced migration was investigated by a Boyden chamber assay. TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells. Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis. Copyright © 2016. Published by Elsevier GmbH.

  3. Supercritical fluid extraction of 13-cis retinoic acid and its photoisomers from selected pharmaceutical dosage forms.

    PubMed

    Simmons, B R; Chukwumerije, O; Stewart, J T

    1997-11-01

    13-Cis retinoic acid (Accutane) was extracted from a cream, gel, capsule and beadlet dosage from using supercritical carbon dioxide modified with 5% methanol as the mobile phase. The pump pressure and the extraction chamber and restrictor temperature were experimentally optimized at 325 atm and 45 degrees C, respectively. A 2.5-min static and 5-min dynamic extraction time were used. The supercritical fluid extraction (SFE) eluent was trapped in methanol, injected into the high-performance liquid chromatographic (HPLC) system, and quantitated by ultraviolet detection at 360 nm. Application of the SFE method to spiked placebo dosage forms gave 13-cis retinoic acid recoveries of 98.8, 98.9, 98.8 and 100% for the cream, gel, capsule and beadlet, respectively, with R.S.D.s in the range 0.6-0.9% (n = 4). Inter-day percent error and precision of the extraction were 1.1-2.0 and 0.2-2.4% (n = 3), respectively, and intra-day percent error and precision were 1.0-3.0 and 0.3-2.1% (n = 8), respectively. Percent error and precision data for spiked celite samples in the 0.05-1.0 microgram ml-1 range were 0.59-4.75 and 1.8-2.1% (n = 3), respectively. The extraction method was applied to commercial 13-cis retinoic acid dosage forms and the results compared to unextracted samples. Linear regression analysis of concentration versus peak height gave a correlation coefficient of 0.9991 with a slope of 7.468 and a y-intercept of 0.1923. The percent error and precision data were 1.3-5.3 and 0.2-1.5% (n = 4), respectively. The photoisomers of 13-cis retinoic acid were also extracted with the method and recoveries of 90.4-92.4% with R.S.D.s of 1.5-3.4% were obtained (n = 4).

  4. Generalized Likelihood Uncertainty Estimation (GLUE) methodology for optimization of extraction in natural products.

    PubMed

    Maulidiani; Rudiyanto; Abas, Faridah; Ismail, Intan Safinar; Lajis, Nordin H

    2018-06-01

    Optimization process is an important aspect in the natural product extractions. Herein, an alternative approach is proposed for the optimization in extraction, namely, the Generalized Likelihood Uncertainty Estimation (GLUE). The approach combines the Latin hypercube sampling, the feasible range of independent variables, the Monte Carlo simulation, and the threshold criteria of response variables. The GLUE method is tested in three different techniques including the ultrasound, the microwave, and the supercritical CO 2 assisted extractions utilizing the data from previously published reports. The study found that this method can: provide more information on the combined effects of the independent variables on the response variables in the dotty plots; deal with unlimited number of independent and response variables; consider combined multiple threshold criteria, which is subjective depending on the target of the investigation for response variables; and provide a range of values with their distribution for the optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Extraction of oil from microalgae for biodiesel production: A review.

    PubMed

    Halim, Ronald; Danquah, Michael K; Webley, Paul A

    2012-01-01

    The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil

    PubMed Central

    Machado, Bruna Aparecida Souza; Silva, Rejane Pina Dantas; Barreto, Gabriele de Abreu; Costa, Samantha Serra; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Dellagostin, Odir Antônio; Henriques, João Antônio Pegas; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira

    2016-01-01

    The variations in the chemical composition, and consequently, on the biological activity of the propolis, are associated with its type and geographic origin. Considering this fact, this study evaluated propolis extracts obtained by supercritical extraction (SCO2) and ethanolic extraction (EtOH), in eight samples of different types of propolis (red, green and brown), collected from different regions in Brazil. The content of phenolic compounds, flavonoids, in vitro antioxidant activity (DPPH and ABTS), Artepillin C, p-coumaric acid and antimicrobial activity against two bacteria were determined for all extracts. For the EtOH extracts, the anti-proliferative activity regarding the cell lines of B16F10, were also evaluated. Amongst the samples evaluated, the red propolis from the Brazilian Northeast (states of Sergipe and Alagoas) showed the higher biological potential, as well as the larger content of antioxidant compounds. The best results were shown for the extracts obtained through the conventional extraction method (EtOH). However, the highest concentrations of Artepillin C and p-coumaric acid were identified in the extracts from SCO2, indicating a higher selectivity for the extraction of these compounds. It was verified that the composition and biological activity of the Brazilian propolis vary significantly, depending on the type of sample and geographical area of collection. PMID:26745799

  7. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level.

    PubMed

    Bendif, Hamdi; Adouni, Khaoula; Miara, Mohamed Djamel; Baranauskienė, Renata; Kraujalis, Paulius; Venskutonis, Petras Rimantas; Nabavi, Seyed Mohammad; Maggi, Filippo

    2018-09-15

    The aim of this study was to demonstrate the potential of extracts from Algerian Thymus munbyanus as a valuable source of antioxidants for use on an industrial level. To this end, a study was conducted on the composition and antioxidant activities of essential oils (EOs), pressurized liquid extracts (PLE) and supercritical fluid extracts (SFE-CO 2 ) obtained from Thymus munbyanus subsp. coloratus (TMC) and subsp. munbyanus (TMM). EOs and SFE-CO 2 extracts were analysed by GC-FID and GC×GC-TOFMS revealing significant differences. A successive extraction of the solid SFE-CO 2 residue by PLE extraction with solvents of increasing polarity such as acetone, ethanol and water, was carried out. The extracts were evaluated for total phenolic content by Folin-Ciocalteu assay, while the antioxidant power was assessed by DPPH, FRAP, and ORAC assays. SFE-CO 2 extracts were also analysed for their tocopherol content. The antioxidant activity of PLE extracts was found to be higher than that of SFE-CO 2 extracts, and this increased with solvent polarity (water > ethanol > acetone). Overall, these results support the use of T. munbyanus as a valuable source of substances to be used on an industrial level as preservative agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens.

    PubMed

    Yang, Jyh-Ferng; Yang, Cheng-Hong; Chang, Hsueh-Wei; Yang, Cheng-San; Wang, Shao-Ming; Hsieh, Ming-Che; Chuang, Li-Yeh

    2010-10-01

    In recent years, human pathogenic microorganisms have developed multiple drug resistance and caused serious nosocomial infections. In this study, we identified four new antimicrobial compounds from the Chinese herbal medicine Illicium verum and assessed their antibacterial efficacies. The supercritical CO₂ and ethanol extracts of Illicium verum showed substantial antibacterial activity against 67 clinical drug-resistant isolates, including 27 Acinetobacter baumannii, 20 Pseudomonas aeruginosa, and 20 methicillin-resistant Staphylococcus aureus. The diethyl ether (EE) fraction obtained from partition extraction and supercritical CO₂ extracts revealed an antibacterial activity with a minimum inhibitory concentration value of 0.15-0.70 mg/mL and 0.11 mg/mL, respectively. The EE fraction of I. verum showed synergetic effects with some commercial antibiotics. The antimicrobial mechanism was investigated with killing curves and scanning electron microscopy observation. The chemical components of the extracts were analyzed by spectrophotometry; (E)-anethole, anisyl acetone, anisyl alcohol, and anisyl aldehyde exhibited antibacterial activity against different clinical isolates. These extracts from I. verum can be further developed into antibiotic medicines due to their proven antibacterial activity.

  9. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    PubMed Central

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  10. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    PubMed

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways.

    PubMed

    Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min

    2016-01-01

    The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1-10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25-50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid.

  12. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Supercritical fluid chromatography coupled with tandem mass spectrometry: A high-efficiency detection technique to quantify Taxane drugs in whole-blood samples.

    PubMed

    Jin, Chan; Guan, Jibin; Zhang, Dong; Li, Bing; Liu, Hongzhuo; He, Zhonggui

    2017-10-01

    We present a technique to rapid determine taxane in blood samples by supercritical fluid chromatography together with mass spectrometry. The aim of this study was to develop a supercritical fluid chromatography with mass spectrometry method for the analysis of paclitaxel, cabazitaxel, and docetaxel in whole-blood samples of rats. Liquid-dry matrix spot extraction was selected in sample preparation procedure. Supercritical fluid chromatography separation of paclitaxel, cabazitaxel, docetaxel, and glyburide (internal standard) was accomplished within 3 min by using the gradient mobile phase consisted of methanol as the compensation solvent and carbon dioxide at a flow rate of 1.0 mL/min. The method was validated regarding specificity, the lower limit of quantification, repeatability, and reproducibility of quantification, extraction recovery, and matrix effects. The lower limit of quantification was found to be 10 ng/mL since it exhibited acceptable precision and accuracy at the corresponding level. All interday accuracies and precisions were within the accepted criteria of ±15% of the nominal value and within ±20% at the lower limit of quantification, implying that the method was reliable and reproducible. In conclusion, this method is a promising tool to support and improve preclinical or clinical pharmacokinetic studies with the taxanes anticancer drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards the isolation and estimation of elemental carbon in atmospheric aerosols using supercritical fluid extraction and thermo-optical analysis.

    PubMed

    Azeem, Hafiz Abdul; Martinsson, Johan; Stenström, Kristina Eriksson; Swietlicki, Erik; Sandahl, Margareta

    2017-07-01

    Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO 2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO 2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.

  15. Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Abbey, W. A.; Tsapin, A. T.; Dragoi, D.; Kanik, I.

    2004-01-01

    In the robotic search for life on Mars, different proposed missions will analyze the chemical and biological signatures of life using different platforms. The analysis of samples via analytical instrumentation on the surface of Mars has thus far only been attempted by the two Viking missions. Robotic arms scooped relogith material into a pyrolysis oven attached to a GC/MS. No trace of organic material was found on any of the two different samples at either of the two different landing sites. This null result puts an upper limit on the amount of organics that might be present in Martian soil/rocks, although the level of detection for each individual molecular species is still debated. Determining the absolute limit of detection for each analytical instrument is essential so that null results can be understood. This includes investigating the trade off of using pyrolysis versus liquid solvent extraction to release organic materials (in terms of extraction efficiencies and the complexity of the sample extraction process.) Extraction of organics from field samples can be accomplished by a variety of methods such utilizing various solvents including HCl, pure water, supercritical fluid and Soxhelt extraction. Utilizing 6N HCl is one of the most commonly used method and frequently utilized for extraction of organics from meteorites but it is probably infeasible for robotic exploration due to difficulty of storage and transport. Extraction utilizing H2O is promising, but it could be less efficient than 6N HCl. Both supercritical fluid and Soxhelt extraction methods require bulky hardware and require complex steps, inappropriate for inclusion on rover spacecraft. This investigation reports the efficiencies of pyrolysis and solvent extraction methods for amino acids for different terrestrial samples. The samples studied here, initially created in aqueous environments, are sedimentary in nature. These particular samples were chosen because they possibly represent one of the best terrestrial analogs of Mars and they represent one of the absolute best case scenarios for finding organic molecules on the Martian surface.

  16. Application of dense gas techniques for the production of fine particles.

    PubMed

    Foster, Neil R; Dehghani, Fariba; Charoenchaitrakoo, Kiang M; Warwick, Barry

    2003-01-01

    The feasibility of using dense gas techniques such as rapid expansion of supercritical solutions (RESS) and aerosol solvent extraction system (ASES) for micronization of pharmaceutical compounds is demonstrated. The chiral nonsteroidal anti-inflammatory racemic ibuprofen is soluble in carbon dioxide at 35 degrees C and pressures above 90 bar. The particle size decreased to less than 2 microm while the degree of crystallinity was slightly decreased when processed by RESS. The dissolution rate of the ibuprofen (a poorly water-soluble compound) was significantly enhanced after processing by RESS. The nonsteroidal anti-inflammatory drug Cu2(indomethacin)4L2(Cu-Indo); (L = dimethylformamide [DMF]), which possessed very low solubility in supercritical CO2, was successfully micronized by ASES at 25 degrees C and 68.9 bar using DMF as the solvent and CO2 as the antisolvent. The concentration of solute dramatically influenced the precipitate characteristics. The particles obtained from the ASES process were changed from bipyramidal to spherical, with particle size less than 5 microm, as the concentration increased from 5 to 100 mg/g. A further increase in solute concentration to 200 mg/g resulted in large porous spheres, between 20 and 50 micron, when processing Cu-Indo by the ASES method. The dissolution rate of the micronized Cu-Indo was significantly higher than the commercial product.

  17. Particle Formation and Product Formulation Using Supercritical Fluids.

    PubMed

    Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca

    2015-01-01

    Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.

  18. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  19. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    PubMed

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified. Copyright © 2015. Published by Elsevier B.V.

  20. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: An approach to enhance the solubility and dissolution properties.

    PubMed

    Rudrangi, Shashi Ravi Suman; Trivedi, Vivek; Mitchell, John C; Wicks, Stephen Richard; Alexander, Bruce David

    2015-10-15

    The purpose of this study was to evaluate a single-step, organic solvent-free supercritical fluid process for the preparation of olanzapine-methyl-β-cyclodextrin complexes with an express goal to enhance the dissolution properties of olanzapine. The complexes were prepared by supercritical carbon dioxide processing, co-evaporation, freeze drying and physical mixing. The prepared complexes were then analysed by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, solubility and dissolution studies. Computational molecular docking studies were performed to study the formation of molecular inclusion complexation of olanzapine with methyl-β-cyclodextrin. All the binary mixtures of olanzapine with methyl-β-cyclodextrin, except physical mixture, exhibited a faster and greater extent of drug dissolution than the drug alone. Products obtained by the supercritical carbon dioxide processing method exhibited the highest apparent drug dissolution. The characterisation by different analytical techniques suggests complete complexation or amorphisation of olanzapine and methyl-β-cyclodextrin complexes prepared by supercritical carbon dioxide processing method. Therefore, organic solvent-free supercritical carbon dioxide processing method proved to be novel and efficient for the preparation of solid inclusion complexes of olanzapine with methyl-β-cyclodextrin. The preliminary data also suggests that the complexes of olanzapine with methyl-β-cyclodextrin will lead to better therapeutic efficacy due to better solubility and dissolution properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    PubMed

    Huang, Yang; Zhang, Tingting; Zhao, Yumei; Zhou, Haibo; Tang, Guangyun; Fillet, Marianne; Crommen, Jacques; Jiang, Zhengjin

    2017-09-10

    Nucleobases, nucleosides and ginsenosides, which have a significant impact on the physiological activity of organisms, are reported to be the active components of ginseng, while they are less present in ginseng extracts. Few analytical methods have been developed so far to simultaneously analyze these three classes of compounds with different polarities present in ginseng extracts. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation of 17 nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The effect of various experimental factors on the separation performance, such as the column type, temperature and backpressure, the type of modifier and additive, and the concentration of make-up solvent were systematically investigated. Under the selected conditions, the developed method was successfully applied to the quality evaluation of 14 batches of ginseng extracts from different origins. The results obtained for the different batches indicate that this method could be employed for the quality assessment of ginseng extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.

  3. Operational experience with the supercritical helium during the TF coils tests campaign of SST-1

    NASA Astrophysics Data System (ADS)

    Panchal, Rohitkumar Natvarlal; Patel, Rakesh; Tank, Jignesh; Mahesuria, Gaurang; Sonara, Dashrath; Tanna, Vipul; Patel, Jayant; Srikanth, G. L. N.; Singh, Manoj; Patel, Ketan; Christian, Dikens; Garg, Atul; Bairagi, Nitn; Gupta, Manoj Kumar; Nimavat, Hiren; Shah, Pankil; Sharma, Rajiv; Pradhan, Subrata

    2012-06-01

    Under the 'SST-1 mission mandate' recently, all the sixteen Steady State Superconducting Tokamak (SST-1) Toroidal Field (TF) magnets have been successfully tested at their nominal currents of 10000 A in cold under supercritical helium (SHe) flow conditions. The TF magnets test campaign have begun in an experimental cryostat since June 2010 with the SST-1 Helium cryogenics facility, which is a 1.3 kW at 4.5 K helium refrigerator-cum-liquefier (HRL) system. The HRL provides ~300 g-s-1supercritical helium (SHe) with cold circulator (CC) as well as ~ 60 g-s-1 without cold circulator to fulfill the forced flow cooling requirements of SST- 1 magnets. In case of single TF coil tests, we can adjust HRL process parameters such that an adequate amount of required supercritical helium is available without the cold circulator. In this paper, the complete process is describing the Process Flow Diagram (PFD) of 1.3 kW at 4.5 K HRL, techniques to generate supercritical helium without using the cold-circulator and the results of the cooldown, steady state characteristics and experience of supercritical helium operations during the TF coils test campaign have been discussed.

  4. Fatty acid composition of seed oil from Fremontodendron californicum

    USDA-ARS?s Scientific Manuscript database

    The fatty acid composition of the low water-use shrub Fremontodendron californicum was examined by high temperature capillary gas chromatography. The ground seeds were extracted by supercritical fluid extraction (SFE) to obtain the oil (25.6% w/w) and for subsequent determination of the fatty acid c...

  5. QUANTITATIVE ELISA OF POLYCHLORINATED BIPHENYLS IN AN OILY SOIL MATRIX USING SUPERCRITICAL FLUID EXTRACTION

    EPA Science Inventory

    Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...

  6. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  7. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  8. Supercritical fluid processing of drug nanoparticles in stable suspension.

    PubMed

    Pathak, Pankaj; Meziani, Mohammed J; Desai, Tarang; Foster, Charles; Diaz, Julian A; Sun, Ya-Ping

    2007-07-01

    Significant effort has been directed toward the development of drug formulation and delivery techniques, especially for the drug of no or poor aqueous solubility. Among various strategies to address the solubility issue, the reduction of drug particle sizes to the nanoscale has been identified as a potentially effective and broadly applicable approach. Complementary to traditional methods, supercritical fluid techniques have found unique applications in the production and processing of drug particles. Here we report the application of a newly developed supercritical fluid processing technique, Rapid Expansion of a Supercritical Solution into a Liquid Solvent, to the nanosizing of potent antiparasitic drug Amphotericin B particles. A supercritical carbon dioxide-cosolvent system was used for the solubilization and processing of the drug. The process produced well-dispersed nanoscale Amphotericin B particles suspended in an aqueous solution, and the suspension was intrinsically stable or could be further stabilized in the presence of water-soluble polymers. The properties of the drug nanoparticles were found to be dependent on the type of cosolvent used. The results on the use of dimethyl sulfoxide and methanol as cosolvents and their effects on the properties of nanosized Amphotericin B particles are presented and discussed.

  9. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.

    PubMed

    Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming

    2018-03-01

    Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.

  10. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  11. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  12. Crystal doping aided by rapid expansion of supercritical solutions.

    PubMed

    Vemavarapu, Chandra; Mollan, Matthew J; Needham, Thomas E

    2002-01-01

    The purpose of this study was to test the utility of rapid expansion of supercritical solution (RESS) based cocrystallizations in inducing polymorph conversion and crystal disruption of chlorpropamide (CPD). CPD crystals were recrystallized by the RESS process utilizing supercritical carbon dioxide as the solvent. The supercritical region investigated for solute extraction ranged from 45 to 100 degrees C and 2000 to 8000 psi. While pure solute recrystallization formed stage I of these studies, stage II involved recrystallization of CPD in the presence of urea (model impurity). The composition, morphology, and crystallinity of the particles thus produced were characterized utilizing techniques such as microscopy, thermal analysis, x-ray powder diffractometry, and high-performance liquid chromatography. Also, comparative evaluation between RESS and evaporative crystallization from liquid solvents was performed. RESS recrystallizations of commercially available CPD (form A) resulted in polymorph conversion to metastable forms C and V, depending on the temperature and pressure of the recrystallizing solvent. Cocrystallization studies revealed the formation of eutectic mixtures and solid solutions of CPD + urea. Formation of the solid solutions resulted in the crystal disruption of CPD and subsequent amorphous conversion at urea levels higher than 40% wt/wt. Consistent with these results were the reductions in melting point (up to 9 degrees C) and in the DeltaH(f) values of CPD (up to 50%). Scanning electron microscopy revealed a particle size reduction of up to an order of magnitude upon RESS processing. Unlike RESS, recrystallizations from liquid organic solvents lacked the ability to affect polymorphic conversions. Also, the incorporation of urea into the lattice of CPD was found to be inadequate. In providing the ability to control both the particle and crystal morphologies of active pharmaceutical ingredients, RESS proved potentially advantageous to crystal engineering. Rapid crystallization kinetics were found vital in making RESS-based doping superior to conventional solvent-based cocrystallizations.

  13. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  14. Antifungal activity and chemical composition of essential oils from Smyrnium olusatrum L. (Apiaceae) from Italy and Portugal.

    PubMed

    Marongiu, B; Piras, A; Porcedda, S; Falconieri, D; Frau, M A; Maxia, A; Gonçalves, M J; Cavaleiro, C; Salgueiro, L

    2012-01-01

    The essential oils and supercritical CO₂ extracts of wild Smyrnium olusatrum L. growing in Sardinia (Italy) and in Portugal were investigated. For the study, oils were isolated from total plant aerial part (umbels containing seeds). The content of β-phellandrene (67.3% vs. 42.7%) and α-pinene (31.9% vs. 1.2%), respectively, the main components of Portuguese and Italian essential oils, declined during the maturation stage of the umbels. Contrarily, some other important components, particularly curzerene, germacrene B, germacrone, alexandrofuran, 1-β-acetoxyfurano-4(15)-eudesmene and 1-β-acetoxyfurano-3-eudesmene, increased in fruiting umbels. The chemical composition of the Sardinian oil is rather different from those of other origin. The composition of the supercritical extracts and the essential oils is markedly different, particularly due to the high amount of furanosesquiterpenoids in the supercritical fluid extraction. The minimal inhibitory concentration (MIC) and the minimal lethal concentration were used to evaluate the antifungal activity of the oils against Candida albicans, Candida tropicalis, Candida krusei, Candida guillermondii, Candida parapsilosis, Cryptococcus neoformans, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Epidermophyton floccosum, Aspergillus niger, Aspergillus fumigatus and Aspergillus flavus. The oils were particularly active against dermatophyte strains and C. neoformans, with MIC values in the range of 0.32-0.64 µL mL⁻¹.

  15. Isolation and characterization of antimicrobial food components.

    PubMed

    Papetti, Adele

    2012-04-01

    Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery.

    PubMed

    Attard, Thomas M; McElroy, Con Robert; Hunt, Andrew J

    2015-07-31

    To date limited work has focused on assessing the economic viability of scCO2 extraction to obtain waxes as part of a biorefinery. This work estimates the economic costs for wax extraction from maize stover. The cost of manufacture (COM) for maize stover wax extraction was found to be € 88.89 per kg of wax, with the fixed capital investment (FCI) and utility costs (CUT) contributing significantly to the COM. However, this value is based solely on scCO2 extraction of waxes and does not take into account the downstream processing of the biomass following extraction. The cost of extracting wax from maize stover can be reduced by utilizing pelletized leaves and combusting the residual biomass to generate electricity. This would lead to an overall cost of € 10.87 per kg of wax (based on 27% combustion efficiency for electricity generation) and €4.56 per kg of wax (based on 43% combustion efficiency for electricity generation). A sensitivity analysis study showed that utility costs (cost of electricity) had the greatest effect on the COM.

  17. Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery

    PubMed Central

    Attard, Thomas M.; McElroy, Con Robert; Hunt, Andrew J.

    2015-01-01

    To date limited work has focused on assessing the economic viability of scCO2 extraction to obtain waxes as part of a biorefinery. This work estimates the economic costs for wax extraction from maize stover. The cost of manufacture (COM) for maize stover wax extraction was found to be €88.89 per kg of wax, with the fixed capital investment (FCI) and utility costs (CUT) contributing significantly to the COM. However, this value is based solely on scCO2 extraction of waxes and does not take into account the downstream processing of the biomass following extraction. The cost of extracting wax from maize stover can be reduced by utilizing pelletized leaves and combusting the residual biomass to generate electricity. This would lead to an overall cost of €10.87 per kg of wax (based on 27% combustion efficiency for electricity generation) and €4.56 per kg of wax (based on 43% combustion efficiency for electricity generation). A sensitivity analysis study showed that utility costs (cost of electricity) had the greatest effect on the COM. PMID:26263976

  18. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    PubMed

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  19. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  20. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  1. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways

    PubMed Central

    Huang, Huey-Chun; Wei, Chien-Mei; Siao, Jen-Hung; Tsai, Tsang-Chi; Ko, Wang-Ping; Chang, Kuei-Jen; Hii, Choon-Hoon; Chang, Tsong-Min

    2016-01-01

    The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE) in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS). The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1–10 mg/mL) and its major fatty acids such as linoleic acid and oleic acid (6.25–50 μM) effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA), phosphatidylinositol-3-kinase (PI3K/Akt), and mitogen-activated protein kinases (MAPK) signaling pathways, which may be due to linoleic acid and oleic acid. PMID:27375763

  2. Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells.

    PubMed

    Wu, Shu-Jing; Chang, Shun-Pang; Lin, Doung-Liang; Wang, Shyh-Shyan; Hou, Fwu-Feuu; Ng, Lean-Teik

    2009-06-01

    Physalis peruviana L. (PP) is a popular folk medicine used for treating cancer, leukemia, hepatitis, rheumatism and other diseases. In this study, our objectives were to examine the total flavonoid and phenol content of different PP extracts (aqueous: HWEPP; ethanolic: EEPP; supercritical carbon dioxide: SCEPP-0, SCEPP-4 and SCEPP-5) and their antiproliferative effects in human lung cancer H661 cells. Among all the extracts tested, results showed that SCEPP-5 possessed the highest total flavonoid (226.19 +/- 4.15 mg/g) and phenol (100.82 +/- 6.25 mg/g) contents. SCEPP-5 also demonstrated the most potent inhibitory effect on H661 cell proliferation. Using DNA ladder and flow cytometry analysis, SCEPP-5 effectively induced H661 cell apoptosis as demonstrated by the accumulation of Sub-G1 peak and fragmentation of DNA. SCEPP-5 not only induced cell cycle arrest at S phase, it also up-regulated the expression of pro-apoptotic protein (Bax) and down-regulated the inhibitor of apoptosis protein (IAP). Furthermore, the apoptotic induction in H661 cells was found to associate with an elevated p53 protein expression, cytochrome c release, caspase-3 activation and PARP cleavage. Taken together, these results conclude that SCEPP-5 induced cell cycle arrest at S phase, and its apoptotic induction could be mediated through the p53-dependent pathway and modification of Bax and XIAP proteins expression. The results have also provided important pharmacological backgrounds for the potential use of PP supercritical fluid extract as products for cancer prevention.

  3. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2006-03-01

    The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.

  4. Anti-inflammatory effects of a Houttuynia cordata supercritical extract

    PubMed Central

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min-Jung; Kim, Tae-Ook; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Ki-Yon

    2010-01-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-α and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased TNF-α and PGE2. The suppressive activity of HSE on NO and PGE2 production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase II-PGE2 pathways. PMID:20706037

  5. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.

    PubMed

    Padrela, Luis; Rodrigues, Miguel A; Velaga, Sitaram P; Matos, Henrique A; de Azevedo, Edmundo Gomes

    2009-08-12

    The main objective of the present work is to check the feasibility of supercritical fluid (SCF) technologies in the screening and design of cocrystals (novel crystalline solids). The cocrystal formation tendencies in three different SCF techniques, focusing on distinct supercritical fluid properties - solvent, anti-solvent and atomization enhancer - were investigated. The effect of processing parameters on the cocrystal formation behaviour and particle properties in these techniques was also studied. A recently reported indomethacin-saccharin (IND-SAC) cocrystalline system was our model system. A 1:1 molar ratio of indomethacin (gamma-form) and saccharin was used as a starting material. The SCF techniques employed in the study include the CSS technique (cocrystallization with supercritical solvent), the SAS technique (supercritical anti-solvent), and the AAS technique (atomization and anti-solvent). The resulting cocrystalline phase was identified using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform-Raman (FT-Raman). The particle morphologies and size distributions were determined using scanning electron microscopy (SEM) and aerosizer, respectively. The pure IND-SAC cocrystals were obtained from SAS and AAS processes, whilst partial to no cocrystal formation occurred in the CSS process. However, no remarkable differences were observed in terms of cocrystal formation at different processing conditions in SAS and AAS processes. Particles from CSS processes were agglomerated and large, whilst needle-to-block-shaped and spherical particles were obtained from SAS and AAS processes, respectively. The particle size distribution of these particles was 0.2-5microm. Particulate IND-SAC cocrystals with different morphologies and sizes (nano-to-micron) were produced using supercritical fluid techniques. This work demonstrates the potential of SCF technologies as screening methods for cocrystals with possibilities for particle engineering.

  6. Development and stability of semisolid preparations based on a supercritical CO2 Arnica extract.

    PubMed

    Bilia, Anna Rita; Bergonzi, Maria Camilla; Mazzi, Giovanni; Vincieri, Franco Francesco

    2006-05-03

    Conventional herbal drug preparations (HDP) based on Arnica montana L. have a low content of the active principles, sesquiterpene lactones, which show poor stability and low physical compatibility in semisolid formulations. Recently, an innovative supercritical carbon dioxide (CO2) extract with high sesquiterpene content has been marketed. Development of six semisolid preparations (cetomacrogol, polysorbate 60, polawax, anphyphil, natrosol and sepigel) based on this innovative CO2 extract is discussed. Stability of these preparations was investigated according to ICH guidelines. The evaluation of in vitro release of active constituents was performed using the cell method reported in the European Pharmacopoeia. Preliminary data on in vivo permeation of three selected formulations is demonstrated using the "skin stripping" test, according to the FDA, in healthy subjects. Analysis of sesquiterpene lactones within the extract and in vitro and in vivo studies was performed by RP-HPLC-DAD-MS method. The cetomacrogol showed the best release profile in the in vitro test, while in the in vivo test the best preparation resulted polysorbate 60 and polawax.

  7. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology.

    PubMed

    Cruz, Madalena V; Paiva, Alexandre; Lisboa, Pedro; Freitas, Filomena; Alves, Vítor D; Simões, Pedro; Barreiros, Susana; Reis, Maria A M

    2014-04-01

    Spent coffee grounds (SCG) oil was obtained by supercritical carbon dioxide (scCO2) extraction in a pilot plant apparatus, with an oil extraction yield of 90% at a 35kgkg(-1) CO2/SCG ratio. Cupriavidus necator DSM 428 was cultivated in 2L bioreactor using extracted SCG oil as sole carbon source for production of polyhydroxyalkanoates. The culture reached a cell dry weight of 16.7gL(-1) with a polymer content of 78.4% (w/w). The volumetric polymer productivity and oil yield were 4.7gL(-1)day(-1) and 0.77gg(-1), respectively. The polymer produced was a homopolymer of 3-hydroxybutyrate with an average molecular weight of 2.34×10(5) and a polydispersity index of 1.2. The polymer exhibited brittle behaviour, with very low elongation at break (1.3%), tensile strength at break of 16MPa and Young's Modulus of 1.0GPa. Results show that SCG can be a bioresource for polyhydroxyalkanoates production with interesting properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.

    PubMed

    Zhou, Dan; Qiao, Baoquan; Li, Gen; Xue, Song; Yin, Jianzhong

    2017-08-01

    Raw material for biodiesel has been expanded from edible oil to non-edible oil. In this study, biodiesel continuous production for two kinds of microalgae Chrysophyta and Chlorella sp. was conducted. Coupling with the supercritical carbon dioxide extraction, the oil of microalgae was extracted firstly, and then sent to the downstream production of biodiesel. The residue after decompression can be reused as the material for pharmaceuticals and nutraceuticals. Results showed that the particle size of microalgae, temperature, pressure, molar ration of methanol to oil, flow of CO 2 and n-hexane all have effects on the yield of biodiesel. With the optimal operation conditions: 40mesh algae, extraction temperature 60°C, flow of n-hexane 0.4ml/min, reaction temperature: 340°C, pressure: 18-20MPa, CO 2 flow of 0.5L/min, molar ration of methanol to oil 84:1, a yield of 56.31% was obtained for Chrysophyta, and 63.78% for Chlorella sp. due to the higher lipid content. Copyright © 2017. Published by Elsevier Ltd.

  9. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology.

    PubMed

    Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua

    2010-12-01

    This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.

  10. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  11. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  12. Optimisation of the supercritical extraction of toxic elements in fish oil.

    PubMed

    Hajeb, P; Jinap, S; Shakibazadeh, Sh; Afsah-Hejri, L; Mohebbi, G H; Zaidul, I S M

    2014-01-01

    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.

  13. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  14. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas-liquid metal contactor

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of pilot-plant scale, non-thermal supercritical carbon dioxide (SCCO2) processing on the safety and the quality of orange juice (OJ), SCCO2 processed juice was compared with untreated fresh juice and equivalently thermal processed juice in terms of lethality. SCCO2 processing ...

  15. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  16. Extraction of Fucoxanthin from Raw Macroalgae excluding Drying and Cell Wall Disruption by Liquefied Dimethyl Ether

    PubMed Central

    Kanda, Hideki; Kamo, Yuichi; Machmudah, Siti; Wahyudiono; Goto, Motonobu

    2014-01-01

    Macroalgae are one of potential sources for carotenoids, such as fucoxanthin, which are consumed by humans and animals. This carotenoid has been applied in both the pharmaceutical and food industries. In this study, extraction of fucoxanthin from wet brown seaweed Undaria pinnatifida (water content was 93.2%) was carried out with a simple method using liquefied dimethyl ether (DME) as an extractant in semi-continuous flow-type system. The extraction temperature and absolute pressure were 25 °C and 0.59 MPa, respectively. The liquefied DME was passed through the extractor that filled by U. pinnatifida at different time intervals. The time of experiment was only 43 min. The amount of fucoxanthin could approach to 390 μg/g dry of wet U. pinnatifida when the amount of DME used was 286 g. Compared with ethanol Soxhlet and supercritical CO2 extraction, which includes drying and cell disruption, the result was quite high. Thus, DME extraction process appears to be a good method for fucoxanthin recovery from U. pinnatifida with improved yields. PMID:24796299

  17. Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization

    NASA Astrophysics Data System (ADS)

    Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2017-06-01

    The aging products of the electrolyte from a commercially available state-of-the-art 18650-type cell were investigated. During long term cycling a huge difference in their performance and lifetime at different temperatures was observed. By interpretation of a strong capacity fading of cells cycled at 20 °C compared to cells cycled at 45 °C a temperature depending aging mechanism was determined. To investigate the influence of the electrolyte on this fading, the electrolyte was extracted by supercritical fluid extraction (SFE) and then analyzed by gas chromatography (GC) with electron impact (EI) ionization and mass selective detection. To obtain more information with regard to the identification of unknown decomposition products further analysis with positive chemical ionization (PCI) and negative chemical ionization (NCI) was performed. 17 different volatile organic aging products were detected and identified. So far, seven of them were not yet known in literature and several formation pathways were postulated taking previously published literature into account.

  18. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Goncalves, Maria J; Salgueiro, Ligia; Maxia, Andrea; Lai, Roberta

    2010-04-01

    Isolation of volatile concentrates from leaves, flowers and fruits of Vitex agnus-castus L. have been obtained by supercritical extraction with carbon dioxide. The composition of the volatile concentrates has been analysed by GC/MS. In all plant organs, the extracts are composed chiefly of alpha-pinene, sabinene, 1,8-cineole, alpha-terpinyl acetate, (E)-caryophyllene, (E)-beta-farnesene, bicyclogermacrene, spathulenol and manool. The main difference observed was in the content of sclarene, which was not present in the samples from flowers or fruits. To complete the investigation, a comparison with the hydrodistilled oil has been carried out. The minimal inhibitory concentration (MIC) and the minimal lethal concentration were used to evaluate the antifungal activity of the oils against dermatophyte strains (Trichophyton mentagrophytes, Microsporum canis, T. rubrum, M. gypseum and Epidermophyton floccosum). Antifungal activity of the leaf essential oil was the highest, with MIC values of 0.64 microL mL(-1) for most of the strains.

  19. In vitro uptake and immune functionality of digested Rosemary extract delivered through food grade vehicles.

    PubMed

    Arranz, E; Guri, A; Fornari, T; Mendiola, J A; Reglero, G; Corredig, M

    2017-07-01

    The digestion, absorption, uptake and bioavailability of a rosemary supercritical fluid extract encapsulated in oil in water emulsion were studied. Two emulsions with opposite surface charge were prepared, containing 7% canola oil, and either 2% lactoferrin or whey protein isolate. When absorption and uptake of carnosic acid and carnosol were followed on Caco-2 cell monolayers, there were no differences with protein type. However, when co-cultures of HT-29 MTX were employed, the presence of mucus caused a higher retention of carnosic acid in the apical layer for lactoferrin emulsions. The immune activity of the bioavailable fractions collected from cell absorption experiments was tested ex vivo on murine splenocytes. Although transport through the intestinal barrier models was low, the bioavailable fractions showed a significant effect on splenocytes proliferation. These results demonstrated the potential of using rosemary supercritical extract through protein stabilized oil in water emulsions, as a food with immunomodulatory functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (< or =3.9%) was slightly better than for SFE (< or =9.2%). Although both methods yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

Top