Science.gov

Sample records for supercritical fluids reactions

  1. Supercritical Fluid Reactions for Coal Processing

    SciTech Connect

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  2. Supercritical fluid reactions for coal processing

    SciTech Connect

    Eckert, C.A.

    1997-04-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was chosen as the model system and was investigated in supercritical carbon dioxide. Kinetic data has been previously collected for pure CO{sub 2} at pressures between the critical pressure of CO{sub 2} (73.8 bar) and 216 bar. This data is now being used to construct mathematical forms which can model these pressure induced kinetic changes. One promising avenue of investigation involves treating the supercritical medium as a dense gas, which allows a kinetic model based on high reference pressure fugacity coefficients to be derived.

  3. Supercritical Fluid Reactions for Coal Processing

    SciTech Connect

    Eckert, Charles A

    1997-07-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was chosen as the model system and was investigated in supercritical carbon dioxide. Kinetic data have been previously collected for pure CO2 at 40C and pressures between the critical pressure of CO2 (73.8 bar) and 216 bar. These data support the theory of local density enhancements suggested in the literature. Data taken at 50C and pressures ranging from 70 bar to 195 bar are currently reported; they do not exhibit the molecular clustering evident closer to the critical temperature. The data taken at 40C are now being used to construct mathematical forms which can model these pressure-induced kinetic changes. One promising avenue of investigation involves treating the supercritical medium as a dense gas, which allows a kinetic model based on high reference pressure fugacity coefficients to be derived.

  4. Supercritical fluids: Reactions, materials and applications

    SciTech Connect

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.

    1999-04-09

    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  5. Asphaltene reaction via supercritical fluid extraction

    SciTech Connect

    Deo, M.D.; Hanson, F.V.

    1993-01-01

    Supercritical fluid extraction (SFE) of bitumen was carried out in a continuous extractor using propane as the solvent at several temperatures and pressures. The asphaltene contents of the residual fractions in the extractor were compared to the asphaltene content of the original bitumen. Asphaltenes were defined as pentane insolubles in this study. It was found that the absolute asphaltene content of the residual fractions exceeded the asphaltene content of the original bitumen. Even when the asphaltene content was prorated by the weight percent of the residual material, it was found to be higher than the original asphaltene content. The data established that the types of compounds separating as asphaltenes changed as the nature of the mixture was altered by SFE. The data also indicated that it may be inappropriate to perform asphaltene material balances to assess the amount of precipitate. The original asphaltene content of a bitumen that is undergoing compositional changes in a sequence of operations may not be an accurate measure of the precipitating tendency of the bitumen in production and processing operations. The asphaltene content of the residual material varied depending on the extraction conditions and was as much as 3--5 times the original asphaltene content. The asphaltene content of the residual material was a maximum at the most efficient extraction condition which was in the vicinity of the critical temperature of propane. The H/C atomic ratio of the residual fractions was lower compared to the original bitumen, indicating that the ratio of polar to nonpolar compounds may also be important from precipitation considerations. Saturate and aromatic compounds were preferentially extracted and the ratio of asphaltenes to resins increased in the residual fractions relative to the original bitumen.

  6. Asphaltene reaction via supercritical fluid extraction

    SciTech Connect

    Deo, M.D.; Hanson, F.V.

    1993-03-01

    Supercritical fluid extraction (SFE) of bitumen was carried out in a continuous extractor using propane as the solvent at several temperatures and pressures. The asphaltene contents of the residual fractions in the extractor were compared to the asphaltene content of the original bitumen. Asphaltenes were defined as pentane insolubles in this study. It was found that the absolute asphaltene content of the residual fractions exceeded the asphaltene content of the original bitumen. Even when the asphaltene content was prorated by the weight percent of the residual material, it was found to be higher than the original asphaltene content. The data established that the types of compounds separating as asphaltenes changed as the nature of the mixture was altered by SFE. The data also indicated that it may be inappropriate to perform asphaltene material balances to assess the amount of precipitate. The original asphaltene content of a bitumen that is undergoing compositional changes in a sequence of operations may not be an accurate measure of the precipitating tendency of the bitumen in production and processing operations. The asphaltene content of the residual material varied depending on the extraction conditions and was as much as 3--5 times the original asphaltene content. The asphaltene content of the residual material was a maximum at the most efficient extraction condition which was in the vicinity of the critical temperature of propane. The H/C atomic ratio of the residual fractions was lower compared to the original bitumen, indicating that the ratio of polar to nonpolar compounds may also be important from precipitation considerations. Saturate and aromatic compounds were preferentially extracted and the ratio of asphaltenes to resins increased in the residual fractions relative to the original bitumen.

  7. Fatty and resin acid analysis in tall oil products via supercritical fluid extraction-supercritical fluid reaction using enzymatic catalysis.

    PubMed

    Taylor, S L; King, J W

    2001-07-01

    Supercritical fluid extraction (SFE) is combined with supercritical fluid reaction (SFR) in an analytical mode to assess tall oil products for their fatty or resin acid content or both. The SFR consists of an inline enzymatically catalyzed reaction in which a lipase transesterifies specific lipids with methanol. The SFE-SFR sequence is conducted employing commercially available extractors using supported lipases in the extraction cell to form methyl esters. In this study, six different commercially available lipases are screened for activity. The SFE-SFR extracts are analyzed by capillary gas chromatography and supercritical fluid chromatography and then compared with tall oil products derivatized by conventional chemical derivatization techniques.

  8. Supercritical fluid reactions for coal processing. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    Eckert, C.A.

    1996-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  9. Supercritical fluid reactions for coal processing. Quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Eckert, C.A.

    1996-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as the model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane.

  10. Supercritical fluid reactions for coal processing. Quarterly report, July 1--September 30, 1996

    SciTech Connect

    Eckert, C.A.

    1996-12-31

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was chosen as the model system and was investigated in supercritical carbon dioxide.

  11. Supercritical fluid reactions for coal processing. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Eckert, C.A.

    1995-10-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which closely resemble the organic sulfur and nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal desulfurization and denitrogenation. Diels-Alder reactions involving such compounds have been extensively studied and characterized in liquids. However, there is very little understanding of such reactions in SCF`s. We are developing an approach which will allow optimum design of coal desulfurization and denitrogenation processes.

  12. Interfacing supercritical fluid reaction apparatus with on-line liquid chromatography: monitoring the progress of a synthetic organic reaction performed in supercritical fluid solution.

    PubMed

    Ramsey, Edward D; Li, Ben; Guo, Wei; Liu, Jing Y

    2015-04-03

    An interface has been developed that connects a supercritical fluid reaction (SFR) vessel directly on-line to a liquid chromatograph. The combined SFR-LC system has enabled the progress of the esterification reaction between phenol and benzoyl chloride to synthesize phenyl benzoate in supercritical fluid carbon dioxide solution to be dynamically monitored. This was achieved by the periodic SFR-LC analysis of samples directly withdrawn from the esterification reaction mixture. Using the series of SFR-LC analysis results obtained for individual esterification reactions, the reaction progress profile for each esterification reaction was obtained by expressing the measured yield of phenyl benzoate as a function of reaction time. With reaction temperature fixed at 75°C, four sets (n=3) of SFR-LC reaction progress profiles were obtained at four different SFR pressures ranging from 13.79 to 27.58 MPa. The maximum SFR yield obtained for phenyl benzoate using a standard set of reactant concentrations was 85.2% (R.S.D. 4.2%) when the reaction was performed at 13.79 MPa for 90 min. In comparison, a phenyl benzoate yield of less than 0.3% was obtained using the same standard reactant concentrations after 90 min reaction time at 75°C using either: heptane, ethyl acetate or acetonitrile as conventional organic reaction solvents.

  13. Supercritical fluid reactions for coal processing. Quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Eckert, C.A.

    1994-09-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we propose to develop a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The Diels - Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was chosen as the model system and was investigated in supercritical carbon dioxide. During this quarter, measurement of the density dependence of the kinetic rate constant for PTAD and anthracene in supercritical solvents was continued. Having completed studies of rates versus density in pure CO{sub 2} at 40C, attention was focused on CO{sub 2}/Cosolvent mixtures. Experiments were performed using binary mixtures of CO{sub 2} and either chloroform or acetone as cosolvent. Cosolvent concentrations were varied between 0.00826 mol/L and 0.0826 mol/L. The cosolvents produced no significant change in the rate constant over that of pure CO{sub 2} at these concentrations.

  14. Applications of supercritical fluids.

    PubMed

    Brunner, Gerd

    2010-01-01

    This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available.

  15. Supercritical fluid reactions for coal processing. Quarterly progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Eckert, C.A.

    1995-12-31

    The goal of this work is to design benign solvent/cosolvent systems for reactions which will achieve optimum desulfurization and/or denitrogenation in the pre-treatment of coal or coal liquids. Supercritical fluids present excellent opportunities for the pre- treatment of coal, hence we shall utilize supercritical fluids (SCF) as a reaction medium. The specific objectives of this work are three fold. The first objective is the quantification of the intermolecular interactions affecting reaction transition states in SCF`s via kinetic measurements using well characterized Diels-Alder reactions. The second objective is the characterization of the thermodynamics of the reacting systems. From the thermodynamics of the reacting species detailed information about the transition state may be determined. The third objective is the development of molecular level mathematical models using the results from the first two objectives. The models shall be developed using both an equation of state approach and linear solvation energy relationships with solvatochromic parameters. During this quarter, the solubility of the nitrogen bearing dienophile 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) has been measured as a function of pressure at 40 C, with the exception of points at 2500 psig and 3000 psig. When collection of these last points has been accomplished, the collection of all preliminary data needed to begin kinetic studies of the Diels-Alder reaction between PTAD and anthracene at 40 C in supercritical CO{sub 2} will be complete.

  16. Supercritical fluid reactions for coal processing. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Eckert, C.A

    1995-12-31

    The goal of this work is to design benign solvent/cosolvent systems for reactions which will achieve optimum desulfurization and/or denitrogenation in the pre-treatment of coal or coal liquids. Supercritical fluids present excellent opportunities for the pretreatment of coal, hence we shall utilize supercritical fluids as a reaction medium. A number of possible Diels-Alder reactive systems involving anthracene (diene) in supercritical solvent were proposed at the outset of research. Scouting experiments designed to select out the optimum reactive system from among the candidate dienophiles and solvents have been completed. The nitrogen bearing compound 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) has demonstrated superior reactivity and sensitivity to cosolvent additions and has been selected as dienophile. A convenient half-life of reaction between PTAD and anthracene is obtained at temperatures in the neighborhood of 50{degree}C. Carbon dioxide has been selected as the solvent because of its convenient critical properties, and also to optimize the safety of the experiments. In the process of completing these scouting experiments, the experimental apparatus that will be used to obtain kinetic data for calculation of partial molar volumes of the reaction transition state has also been optimized.

  17. Supercritical fluid phase separations induced by chemical reactions

    SciTech Connect

    Ree, F.H.; Viecelli, J.A.; van Thiel, M.

    1997-11-01

    Our statistical mechanical studies predict that a chemically reactive system containing species composed of C, H, N, O atoms can exhibit a phase separation into a N{sub 2}-rich and a N{sub 2}-poor phase. The preset work is concerned with the effect of the fluid phase separation upon addition of F atoms in the system. Our study shows that F atoms mainly appear as a constituent of HF in a N{sub 2}-poor fluid phase up to a certain pressure beyond which they occur as CF{sub 4} in a N{sub 2}-rich phase and that the phase separation may be abrupt in thermodynamic sense. The pressure at the phase boundary can occur at about 30 GPa at 3000 K and about 10 GPa to 20 GPa at 1000 K.Some of these ranges maybe accessible by present-day experimental high-pressure techniques. We discuss implications of this study to detonation physics.

  18. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  19. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  20. Electrochemistry in supercritical fluids.

    PubMed

    Branch, Jack A; Bartlett, Philip N

    2015-12-28

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  1. Water-gas shift reaction on alumina-supported Pt-CeOx catalysts prepared by supercritical fluid deposition

    DOE PAGES

    Deal, Jacob W.; Le, Phong; Corey, C. Blake; ...

    2016-08-25

    Alumina-supported platinum catalysts, both with and without ceria, were prepared by supercritical fluid deposition and evaluated for activity for water-gas shift reaction. The organometallic precursor, platinum(II) acetylacetonate, was deposited from solution in supercritical carbon dioxide. Analysis of the catalysts by high resolution scanning transmission electron microscopy indicated that platinum was present in the form of highly dispersed metal nanoparticles. Pretreatment of the alumina-supported ceria in hydrogen prior to the deposition of the platinum precursor resulted in more platinum nucleated on ceria than non-pretreated alumina-supported ceria but varied in both particle size and structure. The ceria-containing catalyst that was not pretreatedmore » exhibited a more uniform particle size, and the Pt particles were encapsulated in crystalline ceria. Reaction rate measurements showed that the catalyst was more active for water-gas shift, with reaction rates per mass of platinum that exceeded most literature values for water-gas shift reaction on Pt-CeOx catalysts. The high activity was attributed to the significant fraction of platinum/ceria interfacial contact. We found that these results show the promise of supercritical fluid deposition as a scalable means of synthesizing highly active supported metal catalysts that offer efficient utilization of precious metals.« less

  2. Supercritical fluids cleaning

    SciTech Connect

    Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.

    1991-01-01

    This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.

  3. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  4. How does the critical point change during a chemical reaction in supercritical fluids? A study of the hydroformylation of propene in supercritical CO(2).

    PubMed

    Ke, J; Han, B; George, M W; Yan, H; Poliakoff, M

    2001-04-25

    An understanding of homogeneous catalysis in supercritical fluids requires a knowledge of the phase behavior and the variation in critical point as the reaction proceeds. In this paper, the critical temperatures, T(c) and pressures, P(c), have been measured for a considerable number of mixtures representing the various stages of the hydroformylation reaction of propene in supercritical CO(2) and different reactant concentrations. Critical point data have also been measured for all of the binary mixtures of the components (CO(2), H(2), CO, propene, n- and isobutyraldehyde) which are not available from the literature or can be deduced from published data. We use the stoichiometry of the reacting system to simplify greatly the phase behavior problem by defining a path through the otherwise multidimensional "phase space". Satisfactory modeling of the data (0.3% in T(c) and 3.0% in P(c)) has been achieved using the Peng-Robinson equation of state and ignoring all binary interactions which do not involve CO(2). The model is used to explore the strategies needed to avoid phase separation in continuous and batch reactions. At a given temperature, a batch reactor may need to be run under much higher pressures than a flow reactor if single-phase conditions are to be preserved throughout the course of the reaction. Most of the critical point data were measured acoustically, but a selection of points were validated using more traditional view-cell procedures.

  5. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  6. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  7. Optimization of a supercritical fluid extraction/reaction methodology for the analysis of castor oil using experimental design.

    PubMed

    Turner, Charlotta; Whitehand, Linda C; Nguyen, Tasha; McKeon, Thomas

    2004-01-14

    The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.

  8. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  9. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  10. Water-gas shift reaction on alumina-supported Pt-CeOx catalysts prepared by supercritical fluid deposition

    SciTech Connect

    Deal, Jacob W.; Le, Phong; Corey, C. Blake; More, Karren; West, Christy Wheeler

    2016-08-25

    Alumina-supported platinum catalysts, both with and without ceria, were prepared by supercritical fluid deposition and evaluated for activity for water-gas shift reaction. The organometallic precursor, platinum(II) acetylacetonate, was deposited from solution in supercritical carbon dioxide. Analysis of the catalysts by high resolution scanning transmission electron microscopy indicated that platinum was present in the form of highly dispersed metal nanoparticles. Pretreatment of the alumina-supported ceria in hydrogen prior to the deposition of the platinum precursor resulted in more platinum nucleated on ceria than non-pretreated alumina-supported ceria but varied in both particle size and structure. The ceria-containing catalyst that was not pretreated exhibited a more uniform particle size, and the Pt particles were encapsulated in crystalline ceria. Reaction rate measurements showed that the catalyst was more active for water-gas shift, with reaction rates per mass of platinum that exceeded most literature values for water-gas shift reaction on Pt-CeOx catalysts. The high activity was attributed to the significant fraction of platinum/ceria interfacial contact. We found that these results show the promise of supercritical fluid deposition as a scalable means of synthesizing highly active supported metal catalysts that offer efficient utilization of precious metals.

  11. Chemical deposition methods using supercritical fluid solutions

    DOEpatents

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  12. Mass spectrometry with direct supercritical fluid injection

    SciTech Connect

    Smith, R.D.; Udseth, H.R.

    1983-12-01

    Direct fluid injection mass spectrometry utilizes supercritical fluids for solvation and transfer of materials to a mass spectrometer chemical ionization (CI) source. Available data suggest that any material soluble in a supercritical fluid is transferred efficiently to the ionization region. Mass spectra are presented for mycotoxins of the trichothecene group obtained by use of supercritical carbon dioxide with isobutane as the CI reagent gas. Direct fluid injection MS/MS is also illustrated for major ions in the isobutane chemical ionization of T-2 toxin. The effect of pressure and temperature upon solubility in supercritical fluids is described and illustrated for diacetoxycirpenol. A potential method is also demonstrated for on-line fraction during MS analysis using pressure to control supercritical fluid solubility. Mass spectra are also presented for polar compounds, using supercritical ammonia, and the extension to complex mixtures is described. The fundamental basis and experimental requirements of the direct fluid injection process are discussed. 34 references, 11 figures, 1 table.

  13. Mass spectrometry with direct supercritical fluid injection

    SciTech Connect

    Smith, R.D.; Udseth, H.R.

    1983-12-01

    Direct fluid injection mass spectrometry utilizes supercritical fluids for solvation and transfer of materials to a mass spectrometer chemical ionization (CI) source. Available data suggest that any material soluble in a supercritical fluid is transferred efficiently to the ionization region. Mass spectra are presented for mycotoxins of the trichothecene group obtained by use of supercritical carbon dioxide with isobutane as the CI reagent gas. Direct fluid injection MS/MS is also illustrated for major ions in the isobutane chemical ionization of T-2 toxin. The effect of pressure and temperature upon solubility in supercritical fluids is described and illustrated for diacetoxyscirpenol. A potential method is also demonstrated for ''on-line fractionation'' during MS analysis using pressure to control supercritical fluid solubility. Mass spectra are also presented for polar compounds, using supercritical ammonia, and the extension to complex mixtures is described. The fundamental basis and experimental requirements of the direct fluid injection process are discussed. 1 figure, 11 tables.

  14. Lipidomics by Supercritical Fluid Chromatography

    PubMed Central

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  15. High-temperature and high-pressure cell for kinetic measurements of supercritical fluids reactions with the use of ultraviolet-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbaty, Yuri E.; Venardou, Eleni; Garcia-Verdugo, Eduardo; Poliakoff, Martyn

    2003-06-01

    A high-temperature high-pressure ultraviolet-visible (UV-Vis) cell is described. The cell has been designed specifically for use with the UV spectrophotometer Hewlett-Packard 8453 but it could work up to 780 K at 100 MPa with any other UV-Vis spectrophotometer, as well as for near infrared (NIR) experiments. Three features of the cell make it convenient for experiments with supercritical fluids: the possibility to choose an optimal path length, the presence of three interchangeable ports into the cell, and a movable thermocouple in the working zone of the cell. The cell has been used to study a range of chemical reactions in water under near-critical and supercritical conditions, as well as for measuring the kinetics of such reactions. Some examples illustrating the performance of the cell are given.

  16. Using supercritical fluids to refine hydrocarbons

    SciTech Connect

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  17. Biocatalytic Processing Polymers in Supercritical Fluids

    DTIC Science & Technology

    1994-01-01

    Russell, A.J and Beckman, E.J. (1991) Appl. Bioch . Biotech., 31, 197-211. Enzyme activity in supercritical fluids. 22. *Russell, A.J and Beckman, E.J...S., Jacob , J., Beckman, E.J. and Russell, A.J. (1991) Enz. Microb. Technol., 13, 519. Biocatalytic synthesis of acrylates in supercritical fluids. 24

  18. Electrodeposition of metals from supercritical fluids

    PubMed Central

    Ke, Jie; Su, Wenta; Howdle, Steven M.; George, Michael W.; Cook, David; Perdjon-Abel, Magda; Bartlett, Philip N.; Zhang, Wenjian; Cheng, Fei; Levason, William; Reid, Gillian; Hyde, Jason; Wilson, James; Smith, David C.; Mallik, Kanad; Sazio, Pier

    2009-01-01

    Electrodeposition is a widely used materials-deposition technology with a number of unique features, in particular, the efficient use of starting materials, conformal, and directed coating. The properties of the solvent medium for electrodeposition are critical to the technique's applicability. Supercritical fluids are unique solvents which give a wide range of advantages for chemistry in general, and materials processing in particular. However, a widely applicable approach to electrodeposition from supercritical fluids has not yet been developed. We present here a method that allows electrodeposition of a range of metals from supercritical carbon dioxide, using acetonitrile as a co-solvent and supercritical difluoromethane. This method is based on a careful selection of reagent and supporting electrolyte. There are no obvious barriers preventing this method being applied to deposit a range of materials from many different supercritical fluids. We present the deposition of 3-nm diameter nanowires in mesoporous silica templates using this methodology. PMID:19706479

  19. Geothermal energy production with supercritical fluids

    DOEpatents

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  20. Nanostructured Materials: Symthesis in Supercritical Fluids

    SciTech Connect

    Lin, Yuehe; Ye, Xiangrong; Wai, Chien M.

    2009-03-24

    This chapter summarizes the recent developent of synthesis and characterization of nanostructured materials synthesized in supercritical fluids. Nanocomposite catalysts such as Pt and Pd on carbon nanotube support have been synthesized and used for fuel cell applications.

  1. Supercritical fluid thermodynamics for coal processing

    SciTech Connect

    van Swol, F. . Dept. of Chemical Engineering); Eckert, C.A. . School of Chemical Engineering)

    1988-09-15

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  2. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  3. Supercritical hydrogenation and acid-catalysed reactions "without gases".

    PubMed

    Hyde, Jason R; Poliakoff, Martyn

    2004-07-07

    The high temperature catalytic decomposition of HCO2H and HCO2Et are used to generate the high pressure H2 and the supercritical fluids needed for micro-scale hydrogenation of organic compounds; our approach overcomes the problems and limitations of handling high pressure gases on a small-scale and opens the way to the widespread use of continuous supercritical reactions in the laboratory.

  4. Thermochromic shifts in supercritical fluids

    SciTech Connect

    Yonker, C.R.; Smith, R.D. )

    1989-02-23

    Thermochromic shifts of organic solute molecules in supercritical CO{sub 2} under conditions of both constant pressure and density are compared to previous studies of solvatochromic shifts at isothermal conditions. Similar solvatochromic and thermochromic shifts are seen as a function of density for supercritical CO{sub 2}. At constant density a small thermochromic shift ({approx}400 cm{sup {minus}1}) for supercritical CO{sub 2} was seen for both 2-nitroanisole and 4-ethylnitrobenzene. The excited-state dipole moments for 2-nitroanisole, as calculated from the thermochromic and solvatochromic data, were in agreement.

  5. Fischer-Tropsch synthesis in supercritical fluids. Final report

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1998-12-31

    The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.

  6. Supercritical Fluid Facilitated Growth of Copper and Aluminum Oxide Nanoparticles

    ERIC Educational Resources Information Center

    Williams, Geoffrey L.; Vohs, Jason K.; Brege, Jonathan J.; Fahlman, Bradley D.

    2005-01-01

    Supercritical fluids (SCFs) possess properties that are intermediate between liquids and gases. The combination of supercritical fluid technology with advanced characterization techniques such as electron microscopy provided a practical and rewarding undergraduate laboratory experiment.

  7. Supercritical fluid mixing in Diesel Engine Applications

    NASA Astrophysics Data System (ADS)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  8. The Effect of Supercritical Fluids on Solid Acid Catalyst Alkylation

    SciTech Connect

    Ginosar, Daniel Michael; Thompson, David Neil; Burch, Kyle Coates; Zalewski, D. J.

    2002-05-01

    The alkylation of isobutane with trans-2-butene was explored over six solid acid catalysts in the liquid, near-critical liquid, and supercritical regions through the addition of an inert cosolvent to the reaction feed mixture. The addition of supercritical cosolvents did not result in sustained catalytic alkylation activity. A modest improvement in product yield was obtained with the addition of methane in the modified-liquid region; however, catalyst longevity and product selectivity were decreased compared to cosolvent-free liquid conditions. This paper describes the catalyst screening and selection process, an exploration of catalyst performance with varying concentrations of methane, and an examination of the effects of seven supercritical fluids on catalyst performance. The catalysts included two zeolites, two sulfated metal oxides, and two Nafion catalysts. Three hydrocarbons, two fluorocarbons, carbon dioxide, and sulfur hexafluoride were explored as inert cosolvents added to the reaction mixture.

  9. Determination of solvation kinetics in supercritical fluids. Project summary, August 15, 1993--May 3, 1994

    SciTech Connect

    Bright, F.V.

    1994-08-01

    This project is directed on determining effects of supercritical fluids on salvation and chemical reactions. Sub-projects are: understanding the effects of neat and entrainer-modified supercritical fluids on solute-fluid interactions; determining the influence of supercritical fluids on energetics and dynamics of solute conformation; and probing effects of continuous phase density on internal dynamics of reverse micelles formed in supercritical fluids. In order to follow these fast molecular-level processes, modern picosecond in-situ optical spectroscopy is being used. To date this work has: helped define how ``diffusion controlled`` reactions proceed in supercritical fluids; determined how and on what time scale entrainers preferentially solvate solutes in the near-critical region; shown that the conformation (i.e., reactivity) of flexible solutes can be altered easily with fluid density; shown how lateral diffusion within reverse micelles (formed in supercritical alkanes) is affected by the continuous phase density; and begun to probe how the conformation of polymers can be controlled with supercritical fluids. This is leading to a better molecular-level understanding of the chemistry of supercritical fluids.

  10. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  11. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  12. Supercritical fluid carbon dioxide cleaning of plutonium parts

    SciTech Connect

    Hale, S.J.; Haschke, J.M.; Cox, L.E.

    1993-09-01

    Supercritical fluid (SCF) carbon dioxide (CO{sub 2}) is being evaluated for use as a cleaning solvent to replace 1,1,1-trichloroethane for the final cleaning of plutonium (Pu) parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Thermodynamic and kinetic data for selected reactions of Pu metal are evaluated as a basis for assessing the risk of a violent exothermic reaction during the use of SCF CO{sub 2} on Pu. The need for considering kinetic behavior of a reaction in assessing its thermal risk is demonstrated. Weight difference data and results of xray photoelectron spectroscopy to evaluate the surface after exposure to the supercritical fluid show that SCF CO{sub 2} is an effective and compatible cleaning solvent.

  13. Supercritical fluid extraction and processing of foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumers are aware of the processing techniques used to manufacture food and health supplements and are concerned about the impact of those processes on their health and the environment. Processes that use supercritical fluids as an alternative to solvents that are used to extract nutrients and bio...

  14. Analytical supercritical fluid extraction of adsorbent materials

    SciTech Connect

    Wright, B.W.; Wright, C.W.; Gale, R.W.; Smith, R.D.

    1987-01-01

    The use of supercritical fluids for the analytical extraction of semivolatile and higher molecular weight materials from various adsorbent and particulate matrices was investigated. Instrumentation was designed to allow gram quantities of the matrix to be extracted at pressures up to 400 bar and temperatures to 235 /sup 0/C with collection of the effluent in a sealed liquid-nitrogen-cooled flask. Carbon dioxide, isobutane, and methanol modified (20 mol %) carbon dioxide fluid systems were evaluated and compared to liquid Soxhlet extraction. Supercritical fluid extraction (SFE) provided very rapid (approx. =30 min) extraction with comparable efficiency to the Soxhlet methods, and both more rapid and more efficient extractions appear feasible. The more polar carbon dioxide-methanol fluid system gave higher extraction efficiencies for the more polar adsorbates and the isobutane system was more efficient for the higher molecular weight and less polar compounds.

  15. Methods for producing films using supercritical fluid

    DOEpatents

    Yonker, Clement R.; Fulton, John L.

    2004-06-15

    A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The T.sub.g of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.

  16. Low temperature extraction and upgrading of oil sands and bitumen in supercritical fluid mixtures.

    PubMed

    Brough, Sarah A; Riley, Sandra H; McGrady, G Sean; Tanhawiriyakul, Supaporn; Romero-Zerón, Laura; Willson, Christopher D

    2010-07-21

    Preliminary results are reported for the extraction and catalytic hydrocracking of Alberta bitumen and oil sands using supercritical fluid mixtures; high levels of extraction and upgrading were attained using reaction conditions significantly milder than those previously reported.

  17. Synthesis of an excellent electrocatalyst for oxygen reduction reaction with supercritical fluid: Graphene cellular monolith with ultrafine and highly dispersive multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Yazhou; Cheng, Xiaonong; Yen, Clive H.; Wai, Chien M.; Wang, Chongmin; Yang, Juan; Lin, Yuehe

    2017-04-01

    Graphene cellular monolith (GCM) can be used as an excellent support for nanoparticles in widespread applications. However, it's still a great challenge to deposit the desirable nanoparticles in GCM that have small size, controllable structure, composition, and high dispersion using the current methods. Here we demonstrate a green, efficient and large-scale method to address this challenge using supercritical fluid (SCF). By this superior method, graphene hydrogel can be transferred into GCM while being deposited with ultrafine and highly dispersive nanoparticles. Specifically, the bimetallic PtFe/GCM and the trimetallic PtFeCo/GCM catalysts are successfully synthesized, and their electrocatalytic performances toward oxygen reduction reaction (ORR) are also studied. The resultant PtFe/GCM shows the significant enhancement in ORR activity, including a factor of 8.47 enhancement in mass activity (0.72 A mgPt-1), and a factor of 7.67 enhancement in specific activity (0.92 mA cm-2), comparing with those of the commercial Pt/C catalyst (0.085 A mgPt-1, 0.12 mA cm-2). Importantly, by introducing the Co, the trimetallic PtFeCo/GCM exhibits the further improved ORR activities (1.28 A mgPt-1, 1.80 mA cm-2). The high ORR activity is probably attributed to the alloying structure, ultrafine size, highly dispersive, well-defined, and a better interface with 3D porous graphene support.

  18. Supercritical fluid thermodynamics for coal processing

    SciTech Connect

    van Swol, F. . Dept. of Chemical Engineering); Eckert, C.A. . School of Chemical Engineering)

    1990-01-01

    Because of their unusual solvating and mass transfer properties, supercritical fluids show potential for a variety of coal processing applications. We have established a database of coal model compound equilibria; to add to this database, we have developed and are testing methods of rapidly measuring cosolvent effects on solubility. In addition, we have used fluorescence spectroscopy to study the nature of cosolvent effects on molecular level. The solubility and spectroscopic measurements are being used to guide the development of an equation of state that includes both physical and chemical interactions. The equation of state will be used to predict solubility behavior to systems can be designed for the processing of coal with supercritical fluids. 8 figs.

  19. Supercritical fluid extraction of N-nitrosamines

    SciTech Connect

    Tewani, S.

    1993-01-01

    The detailed chemistry of N-nitrosamines including the mechanism of carcinogenicity, modes of formation, inhibition and destruction are discussed in detail. The occurrence and risk assessment of human exposure of these suspect cancer agents is described. The methods of isolation and analysis of N-nitrosamines are critically discussed with emphasis on Gas Chromatography (GC)-Electrochemical Detectors, GC-High Resolution Mass Spectrometry (GC-HRMS), GC-Thermal Energy Analyser (GC-TEA). The theoretical concepts of supercritical fluid extraction (SFE) are discussed. A comparison of physical and chemical properties of supercritical fluids (SF) with other phases is given. A comparison of static, dynamic, recirculating SFEs shows the versatility of this technique. The advantages over conventional methods such as Soxhlet extraction are discussed. The instrumentation and operational technique of a laboratory built supercritical fluid extractor is explained. A brief review of applications (industrial and analytical) of SFE is given. The evaluation of SFE for analytical sample preparation and analyses of volatile N-nitrosamines (VNAs), tobacco specific N-nitrosamines (TSNAs), and N-nitrosodiethanolamine (NDELA) from spiked matrices, tobacco and cutting fluids is presented. Experimental parameters such as pressure, temperature, equilibration time, collector materials, modifier are evaluated to optimize the recoveries. The extracts are analysed by GC-TEA which is already proven to be highly selective and sensitive to quantitation of N-nitrosamines. The extraction of VNAs in pure SF-CO[sub 2] is quantitative at moderate pressures and low temperatures. For the extraction of TSNAs and NDELA, it is imperative to have high pressures and presence of an additive ([approximately]10% methanol) to achieve satisfactory results. This study offers a simple, rapid, accurate and environmentally advantageous sample preparation technique for the estimation of N-nitrosamines at nanogram levels.

  20. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method.

    PubMed

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook

    2009-05-01

    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  1. Supercritical Fluid Infusion of Iron Additives in Polymeric Matrices

    NASA Technical Reports Server (NTRS)

    Nazem, Negin; Taylor, Larry T.

    1999-01-01

    The objective of this project was the experimentation to measure preparation of iron nanophases within polymeric matrices via supercritical fluid infusion of iron precursors followed by thermal reduction. Another objective was to determine if supercritical CO2 could infuse into the polymer. The experiment is described along with the materials, and the supercritical fluid infusion and cure procedures. X-ray photoelectron spectra and transmission electron micrographs were obtained. The results are summarized in charts, and tables.

  2. Modern supercritical fluid technology for food applications.

    PubMed

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  3. Facile reaction/extraction of coal with supercritical fluids. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    Venier, C. G.; Squires, T. G.

    1984-04-20

    Arylmethyl phenyl ethers undergo competing reactions when treated with Lewis acids in benzene solvent. Apparently, benzene is insufficiently reactive to compete with intramolecular (intrapolymer) nucleophiles and, consequently, no increase in solubility accompanies the cleavages of ether links upon addition of benzene. When better nucleophiles, naphthalene and phenanthene, are provided, carbonium ions generated from ether cleavages are capped and the product is lower in molecular weight and more soluble. It is worth noting that the naphthalene (k/sub rel/ = 300) is nearly as good a trap as the phenol (k/sub rel/ = 450). Since hydroxylic solvents will level the acid strength of BF/sub 3/ to that of ROBF/sub 3//sup -/H/sup +/ and hydrocarbons would not, the acid-catalyzed bond cleavages necessary for unlinking coal may in fact be faster in BF/sub 3/-arene than in BF/sub 3/-phenol. While we have not yet extended these results to coals, we believe that the combination of a relatively mild Lewis acid catalyst, BF/sub 3/, with a good carbonium ion trap, naphthalene, will allow selective cleavage and capping of aryl alkyl ether bonds. 3 references, 2 figures, 3 tables.

  4. Supercritical fluid thermodynamics from equations of state

    NASA Astrophysics Data System (ADS)

    Giovangigli, Vincent; Matuszewski, Lionel

    2012-03-01

    Supercritical multicomponent fluid thermodynamics are often built from equations of state. We investigate mathematically such a construction of a Gibbsian thermodynamics compatible at low density with that of ideal gas mixtures starting from a pressure law. We further study the structure of chemical production rates obtained from nonequilibrium statistical thermodynamics. As a typical application, we consider the Soave-Redlich-Kwong cubic equation of state and investigate mathematically the corresponding thermodynamics. This thermodynamics is then used to study the stability of H2-O2-N2 mixtures at high pressure and low temperature as well as to illustrate the role of nonidealities in a transcritical H2-O2-N2 flame.

  5. Supercritical fluid extraction: Recent advances and applications.

    PubMed

    Herrero, Miguel; Mendiola, Jose A; Cifuentes, Alejandro; Ibáñez, Elena

    2010-04-16

    Among the different extraction techniques used at analytical and preparative scale, supercritical fluid extraction (SFE) is one of the most used. This review covers the most recent developments of SFE in different fields, such as food science, natural products, by-product recovery, pharmaceutical and environmental sciences, during the period 2007-2009. The revision is focused on the most recent advances and applications in the different areas; among them, it is remarkable the strong impact of SFE to extract high value compounds from food and natural products but also its increasing importance in areas such as heavy metals recovery, enantiomeric resolution or drug delivery systems.

  6. Bio-oil production from biomass via supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Durak, Halil

    2016-04-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  7. Welding immiscible polymers with a supercritical fluid.

    PubMed

    Wang, Xiaochu; Sanchez, Isaac C

    2007-11-20

    Polymer adhesion between two immiscible polymers is usually poor because there is little interpenetration of one polymer into the other at the interface. Increasing the width of the interfacial zone can enhance adhesion and mechanical properties. In principle, this can be accomplished by exposing heterogeneous polymer materials to a high-pressure fluid. The fluid can act as a common solvent and promote interpenetration. It also increases chain mobility at the interface, which helps to promote "welding" of the two polymers. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state was used to investigate this phenomenon, especially the effect of the high compressibility of supercritical (SC) fluid on the compatibilization of two incompatible polymers. We calculate the interfacial density profile, interfacial thickness, and interfacial tension between the two polymers with and without the SC fluid. We find that the interfacial tension is decreased and the interfacial thickness is increased with high-pressure SC fluid for the ternary systems we have investigated. As the critical point is approached and the SC compressibility becomes large, no enhancement or deleterious effects on compatibilization were observed.

  8. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  9. Use of supercritical fluid solution expansion processes for drug delivery, particle synthesis, and thin film deposition

    SciTech Connect

    Hybertson, B.M.

    1992-01-01

    Properties of the gases and aerosols resulting from the expansion of supercritical fluid solutions were studied. Film deposition, particle formation, and drug delivery processes using supercritical fluids were developed. Thin films of palladium, copper, aluminum, silver, and silicon dioxide were deposited by a method called supercritical fluid transport-chemical deposition (SFT-CD). In each case, a precursor compound was dissolved in a supercritical fluid and the solution was allowed to expand through a restrictor nozzle into a reaction chamber at subcritical pressure, resulting in the formation of aerosol particles of the precursor. A chemical reaction was induced to occur at the surface of a substrate, resulting in deposition of a thin film. Micron-sized particles of aluminum fluoride and copper oxide were synthesized by a method called supercritical fluid transport-chemical formation of particles (SFT-CFP). The process was similar to that in SFT-CD, but the chemical reactions were induced to occur in the gas phase instead of at a substrate surface, resulting in the formation of fine particles. A new method of pulmonary drug delivery called supercritical fluid drug delivery (SFDD) was conceived and demonstrated. In SFDD a drug compound is dissolved in a supercritical fluid, and the solution is allowed to expand through a restrictor nozzle. The resultant aerosol is directly inhaled by a human or animal subject and the fine drug particles are deposited in the lungs. Menthol, vanillin, camphor, cholesterol, Sudan III, and Oil Blue N were used as model drug compounds for SFDD. Delivery of [alpha]-tocopherol to rat lung tissue was demonstrated, with observed increases of 80-290% above background levels.

  10. Fluid dynamic effects on precision cleaning with supercritical fluids

    SciTech Connect

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  11. Recovery of Alkylation Activity in Deactivated USY Catalyst Using Supercritical Fluids: A Comparison of Light Hydrocarbons

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2004-05-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical fluids (SCF). A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical fluids over the catalyst bed. A comparison of reactivation fluids on catalyst activity recovery is reported. Fluids examined included helium, propane, n-butane, isobutane, n-pentane, and isopentane. Phases studied included gas, liquid, and supercritical. As much as 82% of the fresh catalyst activity was recovered when employing supercritical isobutane. The ability of the fluid to facilitate a hydride reaction with the adsorbed deactivating high-molecular weight carbocations was indicated as an important property necessary to attain high levels of catalyst activity recovery. Activity recovery utilizing supercritical fluids that enhance reactivation by both reacting with and desorbing fouling compounds appears to be a promising technique to advance solid catalyst alkylation.

  12. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    EPA Science Inventory

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  13. Mini-review: green sustainable processes using supercritical fluid carbon dioxide.

    PubMed

    Ramsey, Edward; Sun, Qiubai; Zhang, Zhiqiang; Zhang, Chongmin; Gou, Wei

    2009-01-01

    Environmentally benign carbon dioxide offers significant potential in its supercritical fluid phase to replace current reliance on a range of hazardous, relatively expensive and environmentally damaging organic solvents that are used on an extensive global basis. The unique combination of the physical properties of supercritical fluids are being exploited and further researched to continue the development and establishment of high efficiency, compact plant to provide energy and water efficient manufacturing processes. This mini-review is focused on the use and potential applications of supercritical fluid carbon dioxide for a selected range of key and emerging industrial processes as a sustainable alternative to totally eliminate or greatly reduce the requirement of numerous conventional organic solvents. Examples of the industries include: chemical extraction and purification, synthetic chemical reactions including polymerization and inorganic catalytic processes. Biochemical reactions involving enzymes, particle size engineering, textile dyeing and advanced material manufacture provide further illustrations of vital industrial activities where supercritical fluid technology processes are being implemented or developed. Some aspects relating to the economics of sustainable supercritical fluid carbon dioxide processes are also considered.

  14. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  15. Derivatization reactions of carbamate pesticides in supercritical carbon dioxide.

    PubMed

    King, Jerry W; Zhang, Zhouyao

    2002-09-01

    Supercritical fluid carbon dioxide (SC-CO(2)) has been used to dissolve derivatizing agents (e.g. heptafluorobutyric anhydride, HFBA, and pyridine), which also act as a modifier in the fluid phase, for simultaneous extraction and derivatization of carbamates from the sample matrix. The derivatized carbamate pesticides (carbaryl, 3-hydroxycarbofuran, carbofuran, aldicarb, methiocarb) were then analyzed by GC-ECD or GC-MS with excellent sensitivity. Extraction and conversion of the carbamates was complete, as indicated by HPLC with post-column hydrolysis and o-phthalaldehyde derivatization then fluorescence detection. GC-MS (ion trap) was also used to confirm the formation of the carbamate derivatives. Compared with the same HFBA reaction in an organic solvent the derivatization reaction time was considerably shorter in SC-CO(2.) The described approach, combining both extraction and derivatization, simplifies the analysis of carbamate pesticides and eliminates the use of organic solvents associated with the derivatization step.

  16. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    PubMed Central

    Zhou, Junbo; Li, Haiting; Quan, Can

    2013-01-01

    Supercritical fluid extraction and expansion (SFEE) patented technology combines the advantages of both supercritical fluid extraction (SFE) and rapid expansion of supercritical solution (RESS) with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid. PMID:24223031

  17. A man-portable supercritical fluid extractor

    SciTech Connect

    Wright, B.W.; Zemanian, T.S.; Lee, R.N.; Wright, C.W.

    1995-02-01

    A new prototype supercritical fluid extraction (SFE) apparatus has been developed for the on-site preparation of solid matrix samples for subsequent organic analysis. The apparatus consists of two parts, each of which satisfy weight and size requirements for portability. They are a generator module that supplies high-pressure carbon dioxide (the source of which is dry ice) and a briefcase containing a pressure regulator, extraction cells, valves for flow control, flow restriction hardware, equipment for sample collection, temperature control devices, and ancillary supplies. The generator module provides carbon dioxide at pressures to 1 kbar ({approximately}14,500 psi), incorporates no moving parts, and allows rapid loading without tools due to novel fingertight closures. Samples are contained in sintered inserts that fit inside three extraction cells that also have rapid, fingertight closures. Analyte collection can be accomplished using liquid solvent or restrictorless rapid depressurization techniques. Control schemes allow operation at a wide variety of pressures and temperatures and the use of static, dynamic, or hybrid static/dynamic extraction strategies. The technical performance of the prototype apparatus was evaluated by comparison of results from the SFE of a soil sample spiked with six to nine organic compounds of environmental interest to Soxhlet extraction.

  18. A man-portable supercritical fluid extractor

    SciTech Connect

    Wright, B.W.; Zemanian, T.S.; Lee, R.N.; Wright, C.W.

    1995-12-31

    A new prototype supercritical fluid extraction (SFE) apparatus has been developed for the on-site preparation of solid matrix samples for subsequent organic analysis. The apparatus consists of two parts, each of which satisfy weight and size requirements for portability. They are a generator module that supplies high-pressure carbon dioxide (the source of which is dry ice) and a briefcase containing a pressure regulator, extraction cells, valves for flow control, flow restriction hardware, equipment for sample collection, temperature control devices, and ancillary supplies. The generator module provides carbon dioxide at pressures to 1 kbar ({approximately}14,500 psi), incorporates no moving parts, and allows rapid loading without tools due to novel fingertight closures. Samples are contained in sintered inserts that fit inside three extraction cells that also have rapid, fingertight closures. Analyte collection may be accomplished using liquid solvent or restrictorless rapid depressurization techniques. Control schemes allow operation at a wide variety of pressures and temperatures and the use of static, dynamic, or hybrid static/dynamic extraction strategies. The technical performance of the prototype apparatus was evaluated by comparison of results from the SFE of a soil sample spiked with six to nine organic compounds of environmental interest to Soxhlet extraction.

  19. Plasmas in High-Density Medium - Supercritical fluid plasma and Cryogenic plasma

    NASA Astrophysics Data System (ADS)

    Terashima, Kazuo

    2011-10-01

    Recently, there has been a lot of attention to plasmas in high-density medium as novel plasmas from the views points of not only pure sciences but also various technologies. In this talk, two topics, supercritical fluid plasma and cryogenic plasma, will be discussed. First, plasmas generated in supercritical fluids (supercritical fluid plasma) provide a new reaction field that combines the high reactivity of plasmas with the unique characteristics of supercritical fluids, i.e. molecular clustering and density fluctuations near the critical point. An overview of the earliest studies on plasmas generated in supercritical fluids to recent advances in the field, including synthesis of novel nanomaterials such as highly-order diamondoid (diamond molecules), will be given. Second, continuing to thermal plasma (gas temperature Tg higher than a few thousands to millions of K) and low temperature plasma (Tg ranging from a few hundreds to thousands of K), plasma in a third range of gas temperatures (Tg lower than 300 K) is called cryogenic plasma (or cryoplasma) to distinguish it from thermal and low-temperature plasmas. In our group, the gas temperature of the plasma can be continuously controlled below room temperature (RT) down to a cryogenic temperature such as the boiling point of helium (4 K). In addition to the diagnostics, the application of cryogenic plasma to nanoporous material processing (low damage ashing of low-k materials) will be discussed. This work was supported financially in part by Grants-in-Aid.

  20. Application of Supercritical Fluids to Solid Acid Catalyst Alkylation and Regeneration

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2007-05-01

    Supercritical fluid (SCF) regeneration is a promising alternative method for regenerating solid catalysts deactivated by carbonaceous deposits. The unique solvent and transport properties of SCFs such as solvent strength similar to liquids and transport properties similar to gases make them highly suitable for extraction of fouling materials from porous heterogeneous catalysts. A brief review of the research work performed at the Idaho National Laboratory (INL) on the application of supercritical fluids to both isobutane/butene alkylation reaction and solid acid catalyst regeneration is presented in this contribution.

  1. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.

    PubMed

    Kim, Seok Ki; Lee, Hong-Shik; Hong, Moon Hyun; Lim, Jong Sung; Kim, Jaehoon

    2014-02-01

    The effects of supercritical fluids on the production of renewable diesel-range hydrocarbons from natural triglycerides were investigated. Various supercritical fluids, which included CO2 (scCO2 ), propane (scC3 H8 ) and n-hexane (scC6 H14 ), were introduced with H2 and soybean oil into a fixed-bed reactor that contained pre-activated CoMo/γ-Al2 O3 . Among these supercritical fluids, scC3 H8 and scC6 H14 efficiently allowed the reduction of the reaction temperature by as much as 50 °C as a result of facilitated heat and mass transfer and afforded similar yields to reactions in the absence of supercritical fluids. The compositional analyses of the gas and liquid products indicated that the addition of scC3 H8 during the hydrotreatment of soybean oil promoted specific deoxygenation pathways, decarbonylation and decarboxylation, which consumed less H2 than the hydrodeoxygenation pathway. As a result, the quantity of H2 required to obtain a high yield of diesel-range hydrocarbons could be reduced to 57 % if scC3 H8 was used. As decarboxylation and decarbonylation are mildly endothermic reactions, the reduced heat transfer resistance in scC3 H8 may drive the deoxygenation reaction to thermodynamically favourable pathways.

  2. Thermal analysis of turbulent flow of a supercritical fluid

    NASA Technical Reports Server (NTRS)

    Yamane, E.

    1979-01-01

    The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.

  3. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  4. Geological controls on supercritical fluid resources in volcanic geothermal systems

    NASA Astrophysics Data System (ADS)

    Scott, S. W.; Driesner, T.; Weis, P.

    2014-12-01

    Large-scale fluid convection in conventional volcanic geothermal systems is driven by the hydrothermal cooling of shallow intrusions. Recently, there has been increased interest in tapping supercritical fluid resources in volcanic geothermal systems, since such fluid reservoirs could provide a roughly order-of-magnitude greater potential for electricity production than conventional geothermal wells drilled to temperatures of 250-300 °C. The potential of supercritical geothermal reservoirs was demonstrated in 2010, when the Iceland Deep Drilling Project (IDDP) drilled into liquid magma at 2 km depth and encountered an overlying permeable, high-temperature (~450 °C) fluid reservoir capable of more than ~30 MWe of electricity production. However, a conceptual model describing the main factors governing the extent and structure of target reservoirs has remained elusive. Here, we present the first systematic investigation of the role of rock permeability, the brittle-ductile transition temperature, and the depth of magma chamber emplacement on the development of supercritical fluid reservoirs. We use the numerical modeling code CSMP++ to model two-phase flow of compressible water around an initially elliptical, 900 °C intrusion. Our models indicate that potentially exploitable supercritical fluid resources are an integral part of many magma-driven geothermal systems. Hotter and more extensive reservoirs are promoted by a brittle-ductile transition temperature higher than ~400 °C, an intrusion depth less than 3 km, and a host rock permeability of 10-14 to 10-15 m2. The systematic dependence of the size, location and hydrologic behavior of supercritical reservoirs on these factors aids the development of exploration models for different volcanic settings. In addition, by serving as the main agents of heat transfer at the interface of an intrusion and the overlying hydrothermal system, supercritical fluid reservoirs play a decisive role in determining the overall

  5. Research and development opportunities in supercritical fluid technology: Final report

    SciTech Connect

    Not Available

    1989-08-01

    On December 2, 1988, the US Department of Energy (DOE) held a workshop on supercritical fluid technology. The purpose of this workshop was to elicit research ideas from participants representing government, industry, and academia. A special concern was to determine the appropriate level of involvement for DOE and other organizations in order to develop commercial supercritical fluid technology. Group presentations and a general discussion were held to summarize the results. Comments on the general roles of DOE and industry in supercritical fluid R D included: some industries (e.g., food processing) are already researching this technology; DOE should cooperate with industry in attempting to demonstrate this technology; and direct support of private-sector projects by DOE should be encouraged. It was also noted that productivity benefits may outweigh energy conservation benefits in some application areas. 1 fig., 5 tabs.

  6. Preparation of drug delivery systems using supercritical fluid technology.

    PubMed

    Kompella, U B; Koushik, K

    2001-01-01

    Small changes in temperature and pressure near the critical region induce dramatic changes in the density and solubility of supercritical fluids, thereby facilitating the use of environmentally benign agents such as CO2 for their solvent and antisolvent properties in processing a wide variety of materials. While supercritical fluid technologies have been in commercial use in the food and chromatography industries for several years, only recently has this technology made inroads in the formulation of drug delivery systems. This review summarizes some of the recent applications of supercritical fluid technology in the preparation of drug delivery systems. Drugs containing polymeric particles, plain drug particles, solute-containing liposomes, and inclusion complexes of drug and carrier have been formulated using this technology. Also, polymer separation using this technology is enabling the selection of a pure fraction of a polymer, thereby allowing a more precise control of drug release from polymeric delivery systems.

  7. Biocatalytic synthesis of acrylates in supercritical fluids: tuning enzyme activity by changing pressure.

    PubMed Central

    Kamat, S V; Iwaskewycz, B; Beckman, E J; Russell, A J

    1993-01-01

    Supercritical fluids are a unique class of nonaqueous media in which biocatalytic reactions can occur. The physical properties of supercritical fluids, which include gas-like diffusivities and liquid-like densities, can be predictably controlled with changing pressure. This paper describes how adjustment of pressure, with the subsequent predictable changes of the dielectric constant and Hildebrand solubility parameter for fluoroform, ethane, sulfur hexafluoride, and propane, can be used to manipulate the activity of lipase in the transesterification of methylmethacrylate with 2-ethyl-1-hexanol. Of particular interest is that the dielectric constant of supercritical fluoroform can be tuned from approximately 1 to 8, merely by increasing pressure from 850 to 4000 psi (from 5.9 to 28 MPa). The possibility now exists to predictably alter both the selectivity and the activity of a biocatalyst merely by changing pressure. Images Fig. 6 PMID:8464910

  8. Is there a third order phase transition for supercritical fluids?

    SciTech Connect

    Zhu, Jinglong; Zhang, Pingwen; Wang, Han Site, Luigi Delle

    2014-01-07

    We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.

  9. Topics in Chemical Instrumentation--An Introduction to Supercritical Fluid Chromatography: Part 1: Principles and Instrumentation.

    ERIC Educational Resources Information Center

    Palmieri, Margo D.

    1988-01-01

    Identifies the properties and characteristics of supercritical fluids. Discusses the methodology for supercritical fluid chromatography including flow rate, plate height, column efficiency, viscosity, and other factors. Reviews instruments, column types, and elution conditions. Lists supercritical fluid data for 22 compounds, mostly organic. (MVL)

  10. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  11. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  12. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  13. Method for nucleic acid isolation using supercritical fluids

    SciTech Connect

    Nivens, David E.; Applegate, Bruce M.

    1999-01-01

    A method for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification.

  14. Method for nucleic acid isolation using supercritical fluids

    DOEpatents

    Nivens, D.E.; Applegate, B.M.

    1999-07-13

    A method is disclosed for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification. 4 figs.

  15. Stationary phases for packed-column supercritical fluid chromatography.

    PubMed

    Poole, Colin F

    2012-08-10

    The properties of silica-based, chemically bonded, packed column stationary phases used in supercritical fluid chromatography are described with a focus on column design and retention mechanisms. Supercritical fluid chromatography has benefited substantially from innovations in column design for liquid chromatography even if the separation conditions employed are generally quite different. The mobile phase composition and column operating conditions play an interactive role in modifying selectivity in supercritical fluid chromatography by altering analyte solubility in the mobile phase and through selective solvation of the stationary phase resulting in a wider range and intensity of intermolecular interactions with the analyte. The solvation parameter model is used to identify the main parameters that affect retention in supercritical fluid chromatography using carbon dioxide-methanol as a mobile phase and as a basis for column characterization to facilitate the identification of stationary phases with different separation characteristics for method development. As a caution it is pointed out that these column characterization methods are possibly a product of both the stationary phase chemistry and the column operating conditions and are suitable for use only when columns of similar design and with similar operating conditions are used.

  16. Determination of thermodynamic properties by supercritical fluid chromatography.

    PubMed

    Roth, Michal

    2004-05-28

    This survey attempts to summarise thermodynamic applications of supercritical fluid chromatography (SFC) with an emphasis on the results published during the last 10 years. In addition to a review of thermodynamic measurements by SFC, it contains brief sections on instrumental considerations and on the sources of auxiliary information needed when processing the retention data.

  17. Supercritical fluid chromatography for lipid analysis in foodstuffs.

    PubMed

    Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi

    2017-01-01

    The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids.

  18. Disintegration of fluids under supercritical conditions from mixing layer studies

    NASA Technical Reports Server (NTRS)

    Okong'o, N.; Bellan, J.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.

  19. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1993-12-31

    Objectives for the first quarter for Task A, Diffusion Coefficients of F-T Products in Supercritical Fluids, were to measure diffusion coefficients of 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical and supercritical ethane. We planned to use ethane as a solvent because its lower critical temperature enabled measurements without modification of the existing unit. Our objective was to investigate the behavior of the diffusion coefficients in crossing from subcritical to supercritical conditions. Objectives for Task B, Fischer Tropsch reaction related studies, were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly. Accomplishments and problems, are presented.

  20. Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer

    The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and

  1. Statistical mechanical description of supercritical fluid extraction and retrograde condensation

    NASA Astrophysics Data System (ADS)

    Park, S. J.; Kwak, T. Y.; Mansoori, G. A.

    1987-07-01

    The phenomena of supercritical fluid extraction (SFE) and its reverse effect, which is known as retrograde condensation (RC), have found new and important applications in industrial separation of chemical compounds and recovery and processing of natural products and fossil fuels. Full-scale industrial utilization of SFE/RC processes requires knowledge about thermodynamic and transport characteristics of the asymmetric mixtures involved and the development of predictive modeling and correlation techniques for performance of the SFE/RC system under consideration. In this report, through the application of statistical mechanical techniques, the reasons for the lack of accuracy of existing predictive approaches are described and they are improved. It is demonstrated that these techniques also allow us to study the effect of mixed supercritical solvents on the solubility of heavy solutes (solids) at different compositions of the solvents, pressures, and temperatures. Fluid phase equilibrium algorithms based on the conformal solution van der Waals mixing rules and different equations of state are presented for the prediction of solubilities of heavy liquid in supercritical gases. It is shown that the Peng-Robinson equation of state based on conformal solution theory can predict solubilites of heavy liquid in supercritical gases more accurately than the van der Waals and Redlich-Kwong equations of state.

  2. Supercritical fluid processing of drug nanoparticles in stable suspension.

    PubMed

    Pathak, Pankaj; Meziani, Mohammed J; Desai, Tarang; Foster, Charles; Diaz, Julian A; Sun, Ya-Ping

    2007-07-01

    Significant effort has been directed toward the development of drug formulation and delivery techniques, especially for the drug of no or poor aqueous solubility. Among various strategies to address the solubility issue, the reduction of drug particle sizes to the nanoscale has been identified as a potentially effective and broadly applicable approach. Complementary to traditional methods, supercritical fluid techniques have found unique applications in the production and processing of drug particles. Here we report the application of a newly developed supercritical fluid processing technique, Rapid Expansion of a Supercritical Solution into a Liquid Solvent, to the nanosizing of potent antiparasitic drug Amphotericin B particles. A supercritical carbon dioxide-cosolvent system was used for the solubilization and processing of the drug. The process produced well-dispersed nanoscale Amphotericin B particles suspended in an aqueous solution, and the suspension was intrinsically stable or could be further stabilized in the presence of water-soluble polymers. The properties of the drug nanoparticles were found to be dependent on the type of cosolvent used. The results on the use of dimethyl sulfoxide and methanol as cosolvents and their effects on the properties of nanosized Amphotericin B particles are presented and discussed.

  3. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  4. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  5. Intermolecular interactions and the thermodynamic properties of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Yigzawe, Tesfaye M.; Sadus, Richard J.

    2013-05-01

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  6. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  7. Solubilities in supercritical fluids: the application of chromatographic measurement methods

    SciTech Connect

    Smith, R.D.; Udseth, H.R.; Wright, B.W.; Yonker, C.R.

    1987-01-01

    New methods are described for the measurement of the solubilities of solids in supercritical fluids. These methods utilize instrumentation developed for capillary supercritical fluid chromatography consisting of deactivated, small diameter, fused silica tubing, coupled with detection methods based upon on flame ionization and mass spectrometric detectors. The methods involve (a) direct solubility determination where the fused silica capillary is used as an equilibrium cell, and (b) a pressure of threshold solubility technique which resembles chromatography and uses a programmed pressure increase and sensitive detection to determine the onset of solute migration. Results are also presented which suggest that solubilities can be determined, within certain limitations, from actual chromatographic experiments. The methods are illustrated using aromatic hydrocarbons and complex mycotoxins of the trichothecene group.

  8. Supercritical fluid fractionation of petroleum- and coal-derived mixtures

    SciTech Connect

    Campbell, R.M.

    1987-01-01

    A supercritical fluid chromatography system was constructed to provide separations and fraction collection on a semi-preparative scale. A variety of complex mixtures were fractionated according to the number of aromatic rings using columns packed with NH/sub 2/-modified silica particles. Effluents were monitored with an ultraviolet spectrophotometer and a flame ionization detector while fractions were collected in pressurized vessels for subsequent analysis by capillary gas chromatography. A supercritical fluid chromatographic method to determine the percentage of saturates, olefins and aromatics in gasolines and middle distillate fuels was developed. A microbore silica column was used to isolate the aromatics, while a silver-loaded strong cation exchange microbore column was used to isolate the saturates Olefins were determined by difference. A flame ionization detector provided uniform, linear response for quantitation without calibration. The method was found to be accurate, rapid and reproducible.

  9. Micronization processes with supercritical fluids: fundamentals and mechanisms.

    PubMed

    Martín, A; Cocero, M J

    2008-02-14

    Supercritical fluid techniques for materials precipitation have been proposed as an alternative to conventional precipitation processes as they allow to improve the performance of these processes in terms of reduction of particle size and control of morphology and particle size distribution, without degradation or contamination of the product. These techniques have received much attention during the last years, and their feasibility and performance have been experimentally demonstrated for many substances. One of the main pending tasks is the development of a systematic procedure for the design and scale-up of these processes. This requires not only empirical knowledge, but also information about the fundamentals of the process. This work aims to review the published literature dealing with a fundamental investigation or modeling of supercritical fluid precipitation processes.

  10. Supercritical fluid extraction of all-trans-lycopene from tomato.

    PubMed

    Gómez-Prieto, M Salud; Caja, M Mar; Herraiz, Marta; Santa-María, Guillermo

    2003-01-01

    A procedure is proposed for the supercritical fluid extraction of all-trans-lycopene from tomato using carbon dioxide at 40 degrees C without modifier. The present method minimizes the risk of degradation via isomerization and oxidation of health-promoting ingredients, such as lycopene. The effect of different experimental variables on the solvating power of the supercritical fluid was evaluated in terms of both the selectivity achievable in the process and the yield of the extraction of all-trans-lycopene. Satisfactory separations of the all-trans-lycopene isomers from the cis counterparts were achieved using a C(30) column. The obtained extract contained 88% all-trans-lycopene and 12% cis-lycopene.

  11. Application of Fokker-Planck-Kramers equation treatment for short-time dynamics of diffusion-controlled reaction in supercritical Lennard-Jones fluids over a wide density range.

    PubMed

    Ibuki, Kazuyasu; Ueno, Masakatsu

    2006-04-07

    The validity of a Fokker-Planck-Kramers equation (FPKE) treatment of the rate of diffusion-controlled reaction at short times [K. Ibuki and M. Ueno, J. Chem. Phys. 119, 7054 (2003)] is tested in a supercritical Lennard-Jones fluid over a wide density range by comparing it with the Langevin dynamics and molecular dynamics simulations and other theories. The density n range studied is 0.323n(c)< or =n< or =2.58n(c) and the temperature 1.52T(c), where n(c) and T(c) are the critical density and temperature, respectively. For the rate of bimolecular reactions, the transition between the collision-limited and diffusion-limited regimes is expected to take place in this density range. The simulations show that the rate constant decays with time extensively at high densities, and that the magnitude of decay decreases gradually with decreasing density. The decay profiles of the rate constants obtained by the simulations are reproduced reasonably well by the FPKE treatment in the whole density range studied if a continuous velocity distribution is used in solving the FPKE approximately. If a discontinuous velocity distribution is used instead of the continuous one, the FPKE treatment leads to a rate constant much larger than the simulation results at medium and low densities. The rate constants calculated from the Smoluchowski-Collins-Kimball (SCK) theory based on the diffusion equation are somewhat smaller than the simulation results in medium and low densities when the intrinsic rate constant is chosen to adjust the steady state rate constant in the low density limit to that derived by the kinetic collision theory. The discrepancy is relatively small, so that the SCK theory provides a useful guideline for a qualitative discussion of the density effect on the rate constant.

  12. Supercritical Fluid Extraction of Metal Chelate: A Review.

    PubMed

    Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao

    2017-03-04

    Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO3) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.

  13. Supercritical fluid technology. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning applications of supercritical fluid technology. Topics include supercritical fluid technology use in chromatographic analysis, removal of cholesterol and caffeine from food products, extraction of essential oils, extraction of pesticide and other toxic contaminants from soil and food, and food analysis. Supercritical fluid technology patents and uses in the pharmaceutical industry are also described.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Microbial Inactivation by Ultrasound Assisted Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Benedito, Jose; Ortuño, Carmen; Castillo-Zamudio, Rosa Isela; Mulet, Antonio

    A method combining supercritical carbon dioxide (SC-CO2) and high power ultrasound (HPU) has been developed and tested for microbial/enzyme inactivation purposes, at different process conditions for both liquid and solid matrices. In culture media, using only SC-CO2, the inactivation rate of E. coli and S. cerevisiae increased with pressure and temperature; and the total inactivation (7-8 log-cycles) was attained after 25 and 140 min of SC-CO2 (350 bar, 36 °C) treatment, respectively. Using SC-CO2+HPU, the time for the total inactivation of both microorganisms was reduced to only 1-2 min, at any condition selected. The SC-CO2+HPU inactivation of both microorganisms was slower in juices (avg. 4.9 min) than in culture media (avg. 1.5 min). In solid samples (chicken, turkey ham and dry-cured pork cured ham) treated with SC-CO2 and SC-CO2+HPU, the inactivation rate of E. coli increased with temperature. The application of HPU to the SC-CO2 treatments accelerated the inactivation rate of E. coli and that effect was more pronounced in treatments with isotonic solution surrounding the solid food samples. The application of HPU enhanced the SC-CO2 inactivation mechanisms of microorganisms, generating a vigorous agitation that facilitated the CO2 solubilization and the mass transfer process. The cavitation generated by HPU could damage the cell walls accelerating the extraction of vital constituents and the microbial death. Thus, using the combined technique, reasonable industrial processing times and mild process conditions could be used which could result into a cost reduction and lead to the minimization in the food nutritional and organoleptic changes.

  15. Development of supercritical fluid extraction and supercritical fluid chromatography purification methods using rapid solubility screening with multiple solubility chambers.

    PubMed

    Gahm, Kyung H; Huang, Ke; Barnhart, Wesley W; Goetzinger, Wolfgang

    2011-01-01

    Rapid solubility screening in diverse supercritical fluids (SCFs) was carried out via multiple solubility chambers with a trapping device and online ultraviolet (UV) detection. With this device, it was possible to rapidly study the solubility variations of multiple components in a mixture. Results from solubility studies have been used to develop efficient supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) methods. After the investigation of solubilities of theophylline and caffeine in several neat organic solvents and SCFs, advantages of SFE over conventional organic solvent extraction were demonstrated with a model mixture of theophylline and caffeine. The highest solubility ratio of 1:40 (theophylline:caffeine) was observed in the SCF with 20% acetonitrile (MeCN), where a ratio of 1:11 was the highest in the neat organic solvents. A model mixture of theophylline:caffeine (85:15 w/w, caffeine as an impurity) was successfully purified by SFE by leveraging the highest solubility difference. The SCF with 20% MeCN selectively removed caffeine and left theophylline largely intact. Rapid SCF solubility screening was applied to development of SFE and SFC methods in a drug discovery environment. Two successful applications were demonstrated with proprietary Amgen compounds to either remove an achiral impurity before chiral purification or enhance chiral chromatographic throughput.

  16. Use and practice of achiral and chiral supercritical fluid chromatography in pharmaceutical analysis and purification.

    PubMed

    Lemasson, Elise; Bertin, Sophie; West, Caroline

    2016-01-01

    The interest of pharmaceutical companies for complementary high-performance chromatographic tools to assess a product's purity or enhance this purity is on the rise. The high-throughput capability and economic benefits of supercritical fluid chromatography, but also the "green" aspect of CO2 as the principal solvent, render supercritical fluid chromatography very attractive for a wide range of pharmaceutical applications. The recent reintroduction of new robust instruments dedicated to supercritical fluid chromatography and the progress in stationary phase technology have also greatly benefited supercritical fluid chromatography. Additionally, it was shown several times that supercritical fluid chromatography could be orthogonal to reversed-phase high-performance liquid chromatography and could efficiently compete with it. Supercritical fluid chromatography is an adequate tool for small molecules of pharmaceutical interest: synthetic intermediates, active pharmaceutical ingredients, impurities, or degradation products. In this review, we first discuss about general chromatographic conditions for supercritical fluid chromatography analysis to better suit compounds of pharmaceutical interest. We also discuss about the use of achiral and chiral supercritical fluid chromatography for analytical purposes and the recent applications in these areas. The use of preparative supercritical fluid chromatography by pharmaceutical companies is also covered.

  17. Viral inactivation of human bone tissue using supercritical fluid extraction.

    PubMed

    Fages, J; Poirier, B; Barbier, Y; Frayssinet, P; Joffret, M L; Majewski, W; Bonel, G; Larzul, D

    1998-01-01

    A new bone tissue process using supercritical carbon dioxide fluid extraction (SFE) has been evaluated for its ability to inactivate or eliminate viruses. Four viruses, human immunodeficiency virus type 1 (HIV-1), Sindbis virus, polio Sabin type I virus, and pseudorabies virus (PRV), were exposed to four different processing steps. In addition to supercritical CO2, hydrogen peroxide, sodium hydroxide, and ethanol treatments were evaluated. The mean cumulated reduction factors (log10) for the four viruses exposed to these four steps were > 14.2 for HIV-1, > 18.2 for Sindbis virus, > 24.4 for poliovirus, and > 17.6 for PRV. The mean reduction factors obtained by the supercritical fluid extraction alone were > 4.0, > 4.3, > 6.6, and > 4.0, respectively. These results demonstrate that the SFE process is effective in inactivating viruses on human femoral heads, and provides a level of inactivation similar to that obtained by traditional cleaning methods. It is proposed that CO2 SFE be incorporated as a routine step in the processing of bone allografts for transplantation either to replace or supplement existing procedures.

  18. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids.

    PubMed

    Lee, Jae Won; Fukusaki, Eiichiro; Bamba, Takeshi

    2012-10-01

    Supercritical carbon dioxide (SCCO(2)) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO(2) has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO(2) is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO(2) in various laboratories and industries. SCCO(2) is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO(2) in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.

  19. 2DCOR-GC: an application of the generalized two-dimensional correlation analysis as a route to optimization of continuous flow supercritical fluid reactions.

    PubMed

    Hyde, Jason R; Bourne, Richard A; Noda, Isao; Stephenson, Phil; Poliakoff, Martyn

    2004-11-01

    A new approach for optimization and monitoring of continuous reactions has been developed using 2D correlation methods for the analysis of GC data (2DCOR-GC). 2DCOR-GC maps are obtained following perturbation of the system that allow the effect of changing reaction parameters such as time, temperature, pressure, or concentration to be both monitored and sequenced with regard to changes in the raw GC data. In this paper, we describe the application of the 2DCOR-GC technique to monitoring the reverse water-gas shift reaction in scCO(2). 2DCOR-GC is combined with FT-IR data to validate the methodology. We also report the application of 2DCOR-GC to probe the mechanism of the alkylation of m-cresol with isopropyl alcohol in scCO(2) using Nafion SAC-13 as the catalyst. These results identify coeluting peaks that could easily be missed without exhaustive method development.

  20. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  1. Modeling of supercritical fluid extraction from herbaceous matrices

    SciTech Connect

    Reverchon, E.; Donsi, G.; Osseo, L.S. . Dipt. di Ingegneria Chimica e Alimentare)

    1993-11-01

    Experimental results of supercritical fluid extraction from various herbaceous matrices are presented. In optimal extraction conditions, the use of a fractional separation technique allows a nearly complete separation of the extract in cuticular waxes and essential oil. The modeling of these results is proposed starting from the description of the mass transfer from a single spherical particle. The simultaneous extraction of two pseudocompounds is assumed to simulate the two compound families obtained by fractionation. The model is then extended to simulate the whole extractor. The yields of essential oil and cuticular waxes obtained from rosemary, basil, and marjoram leaves are fairly simulated by the model. Intraparticle mass transfer resulted as the controlling stage in supercritical extraction of essential oils.

  2. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    SciTech Connect

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  3. Carbon dioxide-based supercritical fluids as IC manufacturing solvents

    SciTech Connect

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Sivils, L.D.; Pierce, T.; Tiefert, K.

    1999-05-11

    The production of integrated circuits (IC's) involves a number of discrete steps which utilize hazardous or regulated solvents and generate large waste streams. ES&H considerations associated with these chemicals have prompted a search for alternative, more environmentally benign solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Research work, conducted at Los Alamos in conjunction with the Hewlett-Packard Company, has lead to the development of a CO{sub 2}-based supercritical fluid treatment system for the stripping of hard-baked photoresists. This treatment system, known as Supercritical CO{sub 2} Resist Remover, or CORR, uses a two-component solvent composed of a nonhazardous, non-regulated compound, dissolved in supercritical CO{sub 2}. The solvent/treatment system has been successfully tested on metallized Si wafers coated with negative and positive photoresist, the latter both before and after ion-implantation. A description of the experimental data will be presented. Based on the initial laboratory results, the project has progressed to the design and construction of prototype, single-wafer photoresist-stripping equipment. The integrated system involves a closed-loop, recirculating cycle which continuously cleans and regenerates the CO{sub 2}, recycles the dissolved solvent, and separates and concentrates the spent resist. The status of the current design and implementation strategy of a treatment system to existing IC fabrication facilities will be discussed. Additional remarks will be made on the use of a SCORR-type system for the cleaning of wafers prior to processing.

  4. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.

    1992-10-01

    The goal of this research is to thoroughly investigate the feasibility of using supercritical fluid (SCF) solvent medium for carrying out Fischer-Tropsch (FT) synthesis. Research will address the systematic experimental investigations of FT synthesis over supported Fe and Co catalysts in a CSTR and in a fixed-bed reactor at typical synthesis temperatures (240-260[degrees]C). The SCF medium to be employed is n-Hexane (P[sub c] = 29.7 bar; [Tc] = 233.7[degrees]C), while n-Hexadecane will be employed as the liquid reaction medium. Overall conversion, product distribution and catalyst deactivation will be measured in each case for various feed H[sub 2]/CO ratios ranging from 0.5 to 2. Product analyses will be carried out using GC/TCD, GC/FID and GC/MS systems. The fresh and used catalysts will be characterized with respect to active metal dispersion, surface area and pore size distribution.

  5. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    SciTech Connect

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.; Smith, R.D.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appear feasible.

  6. Facile reaction/extraction of coal with supercritical fluids. Quarterly technical progress report, April 1, 1983-June 30, 1983. [In Benzene

    SciTech Connect

    Venier, C.G.; Squires, T.G.

    1983-09-01

    In summary, model studies have provided the following information. An aprotic solvent will be required for both transalkylation and ionic hydrogenation; a non-nucleophilic solvent will be required for ionic hydrogenation; intromolecular reaction will occur in the reactions of phenyl ethers; and in an aromatic solvent, arylation (transalkylation) occurs in preference to ionic hydrogenation. Model studies of the ionic hydrogenation were continued using a copolymer of 1,4-bis(bromomethyl)naphthalene and hydroquinone to mimic the solid, insoluble nature of coal. The results are shown. Infrared spectra of products in experiments 1 and 4 are virtually indistinguishable and indicate that none of the original polymer remains. This establishes that the reaction takes essentially the same course in the presence and absence of triethylsilane. However, the solubilities of the products in the presence and absence of triethylsilane is dramatically different. Since solubility is a sensitive function of molecular weight for oligomeric systems, the solubility of the attempted ionic hydrogenation product signals its lower molecular weight. This indicates that hydride has indeed captured enough of the benzylic cations to change the physical properties of the product. Changes in acid strength indicate that stronger acids lead to more solubility (lower molecular weight) in the presence of the same molar ratio of hydride source. Experiments show that increasing hydride concentration beyond six equivalents only slightly increases the solubility of the product. Using these results as a basis, we will next perform both the transalkylation and ionic hydrogenation of coal.

  7. Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)

    NASA Astrophysics Data System (ADS)

    Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin

    2015-11-01

    A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.

  8. Reactions of inorganic nitrogen species in supercritical water

    SciTech Connect

    Dell`Orco, P.C.

    1994-12-31

    Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

  9. Hydroetching of high surface area ceramics using moist supercritical fluids

    DOEpatents

    Fryxell, Glen; Zemanian, Thomas S.

    2004-11-02

    Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.

  10. Ideality contours and thermodynamic regularities in supercritical molecular fluids

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Margo, Abigail; Delhommelle, Jerome

    2016-08-01

    Using Expanded Wang-Landau simulations, we calculate the ideality contours for 3 molecular fluids (SF6, CO2 and H2O). We analyze how the increase in polarity, and thus, in the strength of the intermolecular interactions, impacts the contours and thermodynamic regularities. This effect results in the increase in the Boyle and H parameters, that underlie the Zeno line and the curve of ideal enthalpy. Furthermore, a detailed analysis reveals that dipole-dipole interactions lead to much larger enthalpic contributions to the Gibbs free energy. This accounts for the much higher temperatures and pressures that are necessary for supercritical H2O to achieve ideal-like thermodynamic properties.

  11. Separations of petroleum products involving supercritical fluid chromatography.

    PubMed

    Thiébaut, Didier

    2012-08-24

    This paper gives a survey of the most attractive trends and applications of supercritical fluid chromatography in the petroleum industry: simulated distillation, group-type analysis and related applications including the implementation of multidetection in a so-called "hypernated" system, as well as the hyphenation to GC×GC for improved group-type separation, SFC×GC and first promising SFC×SFC results. Some specific technical information related to the use of capillary columns or conventional packed columns in combination with FID (or detectors that require decompression and in some instances splitting of the mobile phase prior detection) is also provided.

  12. Supercritical fluid removal of hydrocarbons adsorbed on wide pore zeolite catalysts

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch

    2005-06-01

    The effect of zeolite pore structure on coke removal by supercritical fluid regeneration (SFR) was studied on a series of wide pore zeolite catalysts, which included acidic Y, beta, L, and mordenite zeolites. Catalyst samples were deactivated under liquid phase isobutane/butene alkylation reaction conditions and treated under flowing supercritical isobutane for 60 min. The chemical nature of the species remaining on the catalyst surface before and after SFR was analyzed by temperature-programmed oxidation (TPO), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and ultraviolet-visible (UV-Vis) spectroscopy. Zeolite pore structure played an important role not only in hydrocarbon deposition during alkylation but also in hydrocarbon transformation and removal during SFR. During SFR, the formation of unsaturated cyclic or polycyclic compounds, which likely affects catalyst long-term activity after cyclic alkylation/SFR treatments, was hindered on beta zeolites and favored on catalysts containing periodic expansions or cages, such as Y and L zeolites.

  13. Supercritical fluid extraction of particulate and adsorbent materials. Part 2. Final report, February 1985-January 1986

    SciTech Connect

    Wright, B.W.; Smith, R.D.

    1987-12-01

    The physical properties of supercritical fluids allow similar solvent strengths as liquids, but with higher diffusion coefficients, lower viscosities, and an extended temperature range that provides the potential for more-rapid and efficient extraction rates than possible with liquids. The report describes expanded studies conducted to evaluate the applicability and efficiency of analytical supercritical fluid extraction and related methodologies. These studies included the development of quantitative off-line supercritical fluid extraction methodology and a comparison to traditional Soxhlet extraction, the development and evaluation of on-line supercritical fluid extraction-gas chromatography for combined sample preparation and analysis, and direct supercritical fluid extraction-mass spectrometry for the monitoring of specific extraction profiles as a function of time. The sample matrices included an air particulate sample and XAD-2 resin, polyurethane foam, and Spherocarb adsorbents that were spiked with various model compounds. Carbon dioxide, isobutane, and methanol modified (20 mole %) carbon dioxide were utilized as supercritical fluid systems. Related studies on the evaluation of the quantitative analysis capability of a fluorescence detection supercritical fluid chromatography method and the development of viable solute focusing methods for capillary supercritical fluid chromatography were also conducted.

  14. On-line coupling of supercritical fluid extraction and chromatographic techniques.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Parada-Alfonso, Fabián; Ibáñez, Elena; Cifuentes, Alejandro

    2017-01-01

    This review summarizes and discusses recent advances and applications of on-line supercritical fluid extraction coupled to liquid chromatography, gas chromatography, and supercritical fluid chromatographic techniques. Supercritical fluids, due to their exceptional physical properties, provide unique opportunities not only during the extraction step but also in the separation process. Although supercritical fluid extraction is especially suitable for recovery of non-polar organic compounds, this technique can also be successfully applied to the extraction of polar analytes by the aid of modifiers. Supercritical fluid extraction process can be performed following "off-line" or "on-line" approaches and their main features are contrasted herein. Besides, the parameters affecting the supercritical fluid extraction process are explained and a "decision tree" is for the first time presented in this review work as a guide tool for method development. The general principles (instrumental and methodological) of the different on-line couplings of supercritical fluid extraction with chromatographic techniques are described. Advantages and shortcomings of supercritical fluid extraction as hyphenated technique are discussed. Besides, an update of the most recent applications (from 2005 up to now) of the mentioned couplings is also presented in this review.

  15. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  16. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  17. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.

    PubMed

    Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril

    2016-04-13

    Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials.

  18. Supercritical fluid and Soxhlet extractions of organics from sediments

    SciTech Connect

    Riley, R.G.; Sklarew, D.S.; Ozanich, R.M.; Lee, R.N.; Amonette, J.E.; Wright, B.W.

    1995-10-01

    The authors evaluated solvent consumption, atmospheric emissions, and waste generation as factors contributing to environmental, safety, and health issues associated with the extraction of organic materials from sediments when commercially available supercritical fluid extraction (SFE) and Soxhlet extraction systems are used. They found that the Soxhlet system used 10 times as much solvent as the SFE system and released about 6 times the volume of solvent into the atmosphere. Although the total volume of solvent released was much greater for Soxhlet than for SFE extractions, the mean concentration of solvent in the exhaust air from operation of SFE was about 10 times higher because the SFE extraction was much quicker (40 min vs. 18--24 h). As a consequence, operation of Soxhlet or SFE systems under conditions that do not control vapor releases could lead to air concentrations that exceed threshold limit values (TLVs) provided as guidelines for industrial exposure. The releases at facility stacks could also exceed the ambient air concentration limits for hazardous chemicals. Soxhlet systems produced significant liquid waste and some solid hazardous waste. Although components of the SFE process did not produce any liquid waster, they did produce solid waste that may be hazardous unless the solvent modifiers are carefully selected and their concentrations controlled in the supercritical fluid.

  19. Pushing the speed limit in enantioselective supercritical fluid chromatography.

    PubMed

    Regalado, Erik L; Welch, Christopher J

    2015-08-01

    Chromatographic enantioseparations on the order of a few seconds can be achieved by supercritical fluid chromatography using short columns packed with chiral stationary phases. The evolution of 'world record' speeds for the chromatographic separation of enantiomers has steadily dropped from an industry standard of 20-40 min just two decades ago, to a current ability to perform many enantioseparations in well under a minute. Improvements in instrument and column technologies enabled this revolution, but the ability to predict optimal separation time from an initial method development screening assay using the t(min cc) predictor greatly simplifies the development and optimization of high-speed chiral chromatographic separations. In this study, we illustrate how the use of this simple tool in combination with the workhorse technique of supercritical fluid chromatography on customized short chiral columns (1-2 cm length) allows us to achieve ultrafast enantioseparations of pharmaceutically relevant compounds on the 5-20 s scale, bringing the technique of high-throughput enantiopurity analysis out of the specialist realm and into the laboratories of most researchers.

  20. Frenkel line and solubility maximum in supercritical fluids.

    PubMed

    Yang, C; Brazhkin, V V; Dove, M T; Trachenko, K

    2015-01-01

    A new dynamic line, the Frenkel line, has recently been proposed to separate the supercritical state into rigid-liquid and nonrigid gaslike fluid. The location of the Frenkel line on the phase diagram is unknown for real fluids. Here we map the Frenkel line for three important systems: CO(2), H(2)O, and CH(4). This provides an important demarcation on the phase diagram of these systems, the demarcation that separates two distinct physical states with liquidlike and gaslike properties. We find that the Frenkel line can have a similar trend as the melting line above the critical pressure. Moreover, we discuss the relationship between unexplained solubility maxima and Frenkel line, and we propose that the Frenkel line corresponds to the optimal conditions for solubility.

  1. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  2. Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins

    SciTech Connect

    Smith, R.D.; Udseth, H.R.

    1982-07-01

    The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed. 4 figures.

  3. Supercritical fluid (SCF) technologies: Assessment of applicability to installation restoration processes

    NASA Astrophysics Data System (ADS)

    1994-03-01

    USAEC has conducted an evaluation of supercritical fluid (SCF) technologies for their applicability to treatment of explosives, chlorinated hydrocarbons, and metals in soils, water, and/or waste sludge media. Off-specification explosives and propellants that have traditionally been open burned or openly detonated were also examined. Supercritical fluids are substances which have been heated and compressed to above their critical temperatures and pressures and which possess unique transport and mass transfer properties. Supercritical fluid extraction (SFE) uses the solvating properties of supercritical fluids to extract one or more organic components from a mixture into a supercritical solvent (commonly CO2). The concentrated extract stream may then be recycled, reclaimed, or destroyed by other methods.

  4. New topic of supercritical fluids: Local activity coefficients of supercritical solvent and cosolvent around solute

    NASA Astrophysics Data System (ADS)

    Hou, Minqiang; Zhang, Xiaogang; Han, Buxing; Song, Jiyuan; Liu, Gang; Zhang, Zhaofu; Zhang, Jianling

    2008-03-01

    The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO2+acetonitrile+phenol blue and CO2+aceticacid+phenol blue systems are investigated at 308.15K in critical region and outside critical region. To do this, the local compositions of CO2+acetonitrile and CO2+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO2 and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO2 and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.

  5. New topic of supercritical fluids: local activity coefficients of supercritical solvent and cosolvent around solute.

    PubMed

    Hou, Minqiang; Zhang, Xiaogang; Han, Buxing; Song, Jiyuan; Liu, Gang; Zhang, Zhaofu; Zhang, Jianling

    2008-03-14

    The study of inhomogeneity in supercritical fluids (SCFs) is of great importance. In this work, we propose the concept of local activity coefficients in supercritical (SC) solutions, which link thermodynamics and inhomogeneity in SC systems. The local activity coefficients of CO(2)+acetonitrile+phenol blue and CO(2)+acetic acid+phenol blue systems are investigated at 308.15 K in critical region and outside critical region. To do this, the local compositions of CO(2)+acetonitrile and CO(2)+acetic acid mixed solvents around phenol blue are first estimated using UV-visible spectroscopy. Then it is considered that there exist bulk phase and local phase around phenol blue in the systems. The activity coefficients of CO(2) and the cosolvents (acetonitrile or acetic acid) in bulk phase are calculated using Peng-Robinson equation of state. The local activity coefficients of CO(2) and the cosolvents are then calculated on the basis of thermodynamic principles. It is demonstrated that in the critical region the local activity coefficients differ from bulk activity coefficients significantly and are sensitive to pressure. This can explain many unusual phenomena in SC systems in critical region thermodynamically.

  6. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    SciTech Connect

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest.

  7. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  8. Operation and performance of the Supercritical Fluids Reactor (SFR)

    SciTech Connect

    Hanush, R.G.; Rice, S.F.; Hunter, T.B.; Aiken, J.D.

    1995-11-01

    The Supercritical Fluids Reactor (SFR) at Sandia National Laboratories, CA has been developed to examine and solve engineering, process, and fundamental chemistry issues regarding the development of supercritical water oxidation (SCWO). This report details the experimental apparatus, procedures, analytical methods used in these experiments, and performance characteristics of the reactor. The apparatus consists of pressurization, feed, preheat, reactor, cool down, and separation subsystems with ancillary control and data acquisition hardware and software. Its operating range is from 375 - 650{degrees} at 3250 - 6300 psi with resident times from 0.09 to 250 seconds. Procedures required for experimental operations are described. They include maintenance procedures conducted between experiments, optical alignment for acquisition of spectroscopic data, setup of the experiment, reactor start up, experimental operations, and shutdown of apparatus. Analytical methods used are Total Organic Carbon analysis, Gas Chromatography, ion probes, pH probes, turbidity measurements and in situ Raman spectroscopy. Experiments conducted that verify the accuracy of measurement and sampling methods are described.

  9. Supercritical fluid chromatography for the separation of isoflavones.

    PubMed

    Ganzera, Markus

    2015-03-25

    The first protocol for the analysis of isoflavones by supercritical fluid chromatography is reported. Optimum results were obtained on an Acquity UPC(2) BEH 1.7 μm column, using a solvent gradient of supercritical carbon dioxide and methanol (with phosphoric acid as additive) for elution. The method enables the baseline separation of nine isoflavones (aglyca and glycosides) in 8 min, and is suitable for their quantitative determination in dietary supplements containing soy (Glycine max), red glover (Trifolium pratense) and kudzu (Pueraria lobata). Method validation confirmed that the assay is selective, linear (R(2)≥0.9994), accurate (recovery rates from 97.6 to 102.4%), as well as precise on the short- and long-term level (intra-day precision ≤2.1%), and shows an on-column detection limit of 0.2 ng and below. This, together with an excellent performance shown in the analysis of real samples, indicates that SFC is well suited for the fast and accurate determination of isoflavones in complex matrices. Disadvantages compared to the established approaches were not observed, so that SFC has to be considered in this case as an (at least) equivalent analytical alternative.

  10. Enantioselective supercritical fluid chromatography using ristocetin A chiral stationary phases.

    PubMed

    Svensson, L A; Owens, P K

    2000-06-01

    Racemic mixtures of five acidic drugs have been successfully separated by supercritical fluid chromatography (SFC) using macrocyclic antibiotic chiral stationary phases (CSPs). A ristocetin A CSP has been prepared 'in-house' and effectively applied in packed capillary SFC to separate the enantiomers of dichlorprop (R(s) = 1.4), ketoprofen (R(s) = 0.9) and warfarin (R(s) = 0.9). The commercial ristocetin A CSP (Chirobiotic R) was subsequently studied in packed column SFC with similar results where the enantiomers of warfarin (R(s) = 2.2), coumachlor (R(s) = 2.5) and thalidomide (R(s) = 0.6) were separated. Interestingly, differences were observed between the two differently immobilised CSPs where the enantiomers of dichlorprop and ketoprofen, which were separated on the 'in-house' CSP, could not be separated on the commercial phase.

  11. Structural changes in supercritical fluids at high pressures

    NASA Astrophysics Data System (ADS)

    Santoro, Mario; Gorelli, Federico A.

    2008-06-01

    The structure of an archetypal model simple fluid system as argon has been investigated by x-ray diffraction at high pressures and room and high temperatures. Despite the markedly supercritical conditions (T=2 4Tc,P>102Pc) , the structure factor S(Q) is very similar, close to the melting line, to that observed in the liquid phase, thereby assessing a liquidlike structure with high atomic correlation, as proposed in a recent inelastic experiment. On the other hand, the S(Q) continuously changes upon approaching the extrapolation of the liquid-gas coexistence line in the (P/Pc,T/Tc) plane, ultimately exhibiting low atomic correlation, which reasonably indicates intermediate character between liquid and gas. The analysis of the S(Q) s based on the hard-sphere model shows that the changes are driven by the decrease in the packing fraction and the increase in the nearest-neighbor distance with decreasing pressure.

  12. Enantiomeric composition studies in Lavandula species using supercritical fluids.

    PubMed

    Flores, Gema; Blanch, Gracia Patricia; Ruiz del Castillo, Maria Luisa; Herraiz, Marta

    2005-11-01

    Characteristic aroma compounds in plants and essential oils of Lavandula from different varieties were examined. The study of the qualitative and quantitative composition of the major volatile components was faced by developing a method based on the use of supercritical fluid extraction-GC-MS (SFE-GC-MS). The optimization of a variety of parameters affecting SFE extraction enabled RSDs from three replicates lower than 2% to be achieved. Equally, recoveries of up to 59% were obtained by applying the proposed method. The use of multidimensional GC was necessary to enantiomerically resolve the target compounds. The obtained results showed enantiomeric purities >90% for all studied compounds in all varieties considered, proving the natural invariability of the enantiomeric composition of the compounds of interest. This information can be useful in authenticity studies as well as in selecting natural sources of enantiomerically pure compounds.

  13. Comprehensive Review of Applicable Supercritical Fluid Extraction Research

    SciTech Connect

    Harvey, Scott; Wright, Cherylyn W.; Wright, Bob W.

    2001-09-10

    This comprehensive supercritical fluid extraction (SFE) literature review is divided into three major sections. The first section describes the electronic literature search details including the abstract service used and the different topics searched. This section also contains an overview of the seven search topics that yielded relevant references along with a brief synopsis of the most significant literature citations. These seven groupings are (1) chemical warfare agents; (2) explosives; (3) hazardous chemicals; (4) poisons, toxins and mycotoxins; (5) toxic (lethal) chemical and toxicants; (6) pesticides in soil; and (7) pesticides from plant and animal tissues. The second section contains tables of each of these groupings. Each of the seven tables contains entries for individual literature citations listed along with the specific compounds or compound classes that are addressed. The third section refers to the abstracts used in the literature search.

  14. Supercritical Fluid Extraction and Chromatography Using a Lee Scientific Series 600 SFE/SFC System

    DTIC Science & Technology

    1992-05-01

    Dioxide and Ethylene. Journal of Chemical Engineering Data , 26:47. Lee, M.L. and K.E. Markides 1987 Chromatography with Supercritical Fluids. Science...Publishers, Stoneham, MA. McHugh, M.A., and M.E. Paulaitis 1980 Solid Solubilities of Naphthalene and Biphenyle in Supercritical Carbon Dioxide. Journal of Chemical Engineering Data , 25

  15. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    EPA Science Inventory

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  16. Practical development of continuous supercritical fluid process using high pressure and high temperature micromixer

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2015-12-01

    In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.

  17. Supercritical fluid extraction of sulphamethazine and its metabolites from meat tissues.

    PubMed

    Din, N; Bartle, K D; Clifford, A A; McCormack, A; Castle, L

    1997-01-01

    An investigation is reported of factors affecting the supercritical fluid extraction of sulphamethazine and five of its metabolites from spiked meat (swine liver and kidney). The addition of the polar modifier methanol to the carbon dioxide extracting fluid was found to generally enhance recoveries under subcritical and supercritical conditions. Recoveries of the ionic metabolites were increased by up to 72% when employing tetramethylammonium hydroxide for ion pairing in situ with the supercritical fluid extraction. Extraction efficiency is demonstrated to be dependent on the matrix. Extractions of the less polar compounds from the kidney are more successful than from the liver, which corresponds to their partitioning into the supercritical fluid and/or the greater fraction of highly extractable fatty materials. The kidney was more retentive than liver for the relatively more polar compounds, which suggests that the liver offers a less polar environment under the same extraction conditions.

  18. [Optimization of supercritical fluid extraction of bioactive components in Ligusticum chuanxiong by orthogonal array design].

    PubMed

    Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong

    2013-10-01

    With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.

  19. Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions.

    PubMed

    Nesta, D P; Elliott, J S; Warr, J P

    2000-02-20

    Supercritical carbon dioxide was used as an antisolvent for producing recombinant human immunoglobulin G (rIgG) particulate powders. Liquid carbon dioxide (CO(2)) was premixed with ethanol to create a single-phase, modified supercritical fluid (SCF). The modified SCF was then vigorously mixed with a pharmaceutically acceptable, aqueous formulation of rIgG, and the mixture was immediately atomized into a pressurized vessel where rapid expansion of the modified SCF extracted the aqueous phase, resulting in precipitation of the protein powder. The process was reproducible, and resulting powder products were characterized by their aqueous solubilities, and the spectroscopic profile, molecular integrity, and antigen binding activity of the individual soluble fractions. Molecular integrity was assessed via size-exclusion high-performance liquid chromatography (SEC), whereas antigen binding activity was determined using an enzyme-linked immunosorbent assay (ELISA). Attempts to characterize particle size and morphology were confounded due to the extremely deliquescent nature of the powders, causing them to absorb moisture rapidly and become gummy. Operational conditions were optimized to a point which yielded powders that were completely soluble, and had ultraviolet (UV) spectroscopic and SEC profiles indistinguishable from those of the reference standard starting solution from which the powders were derived. Antigen binding activities of the powders, however, were

  20. Integral equations for the microstructures of supercritical fluids

    SciTech Connect

    Lee, L.L.; Cochran, H.D.

    1993-11-01

    Molecular interactions and molecular distributions are at the heart of the supercritical behavior of fluid mixtures. The distributions, i.e. structure, can be obtained through any of the three routes: (1) scattering experiments, (2) Monte Carlo or molecular dynamics simulation, and (3) integral equations that govern the relation between the molecular interactions u(r) and the probability distributions g{sub ij}(r). Most integral equations are based on the Ornstein-Zernike relation connecting the total correlation to the direct correlation. The OZ relation requires a {open_quotes}closure{close_quotes} equation to be solvable. Thus the Percus-Yevick, hypernetted chain, and mean spherical approximations have been proposed. The authors outline the numerical methods of solution for these integral equations, including the Picard, Labik-Gillan, and Baxter methods. Solution of these equations yields the solvent-solute, solvent-solvent, and solute-solute pair correlation functions (pcf`s). Interestingly, these pcf`s exhibit characteristical signatures for supercritical mixtures that are classified as {open_quotes}attractive{close_quotes} or {open_quotes}repulsive{close_quotes} in nature. Close to the critical locus, the pcf shows enhanced first neighbor peaks with concomitant long-range build-ups (sic attractive behavior) or reduced first peaks plus long-range depletion (sic repulsive behavior) of neighbors. For ternary mixtures with entrainers, there are synergistic effects between solvent and cosolvent, or solute and cosolute. These are also detectable on the distribution function level. The thermodynamic consequences are deciphered through the Kirkwood-Buff fluctuation integrals (G{sub ij}) and their matrix inverses: the direct correlation function integrals (DCFI`s). These quantities connect the correlation functions to the chemical potential derivatives (macroscopic variables) thus acting as {open_quotes}bridges{close_quotes} between the two Weltanschauungen.

  1. Supercritical fluid extraction of particulate and adsorbent materials. Report for February 1984-January 1985

    SciTech Connect

    Wright, B.W.; Smith, R.D.

    1986-03-01

    The report is a summary of work performed by PNL on the extraction of semivolatile organic materials (SVOCs), for example, polynuclear aromatic compounds, from various adsorbents and environmental matrices, using supercritical fluids (SCFs) as extractants. The results of the work show that supercritical fluids are effective extractants for many SVOCs, and are often competitive with conventional Soxhlet extraction. Advantages of SCFs over conventional methods include higher extraction efficiency, more rapid extraction, and reduced decomposition of thermally labile compounds.

  2. Analysis of semi-volatile organic compounds using supercritical fluid methodologies

    SciTech Connect

    Wright, B.W.; Chess, E.K.; Yonker, C.R.; Smith, R.D.

    1985-06-01

    This study demonstrates the applicability of supercritical fluid chromatography (SFC) and analytical supercritical fluid extraction (SFE) for the analysis of semi-volatile compounds. Mixtures of nitro-polycyclic aromatic hydrocarbons that are not ammenable to gas chromatography were separated using SFC with tentative compound identifications made by SFC-MS. Comparisons of analytical SFE of XAD-2 resin and NBS Urban Dust (SRM 1649) to conventional Soxhlet extraction are also discussed.

  3. Precipitation of microsize organic particles from supercritical fluids

    SciTech Connect

    Chang, C.J.; Randolph, A.D. )

    1989-11-01

    The precipitation of organic particles from supercritical fluids (SF) by expansion (SFX) has become an interesting alternative to milling without thermal decomposition. The authors report how through the rapid expansion process, a dramatic change of the solute supersaturation ratio was created causing subsequent precipitation with a narrow particle-size distribution. It was found that {beta}-carotene precipitates from SF ethylene and ethane have the feed material crystallinity. However, SF CO{sub 2} reacted with {beta}-carotene and did not give characteristic {beta}-carotene X-ray spectra. The mean particle sizes of these precipitates were in the submicron range (ca 0.3 {mu}m). Increased solubility was obtained by addition of toluene as cosolvent in SF ethylene. It was found that the mean size of {beta}-carotene particles, generally remained unchanged if the toluene concentration was less than 1 1/2 mol %. The SFX process appears to be in a single fluid phase when up to 1 1/2 mol % toluene cosolvent is used.

  4. Supercritical fluid thermodynamics for coal processing. Final report, September 15, 1988--September 14, 1991

    SciTech Connect

    van Swol, F.; Eckert, C.A.

    1988-09-15

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  5. Large-eddy simulation of supercritical fluid flow and combustion

    NASA Astrophysics Data System (ADS)

    Huo, Hongfa

    The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The

  6. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  7. Micro-scale methods for characterization of supercritical fluid extraction and fractionation processes. [Trichothecene mycotoxins

    SciTech Connect

    Smith, R.D.; Wright, B.W.; Udseth, H.R.

    1984-11-01

    The development of new supercritical fluid extraction and fractionation processes requires exploration of wide ranges of fluid temperature and pressure. As the fluid phase becomes more complex, conventional methods become inadequate unless augmented by increasingly sophisticated analytical instrumentation. In addition to chemical complexity, analysis is often hindered by characteristics of the analyte which makes supercritical fluid extraction desirable (e.g., thermal lability). Micro-scale methods are described which address these problems while providing the additional benefits of speed, reduced cost, greatly reduced sample and solvent consumption, and safety. Techniques are described in which the fluid phase from micro-scale (0.005 to 5 ml) high pressure cells is sampled and analyzed in either continuous or periodic modes. The methods developed in our laboratory utilize capillary supercritical fluid chromatography and direct fluid injection-mass spectrometry (or their combination), in addition to conventional analytical techniques, for the characterization of complex supercritical fluid mixtures. The application of these methods to various extraction and fractionation processes involving CO/sub 2/ and NH/sub 3/, solubility studies of simple and complex mixtures, and the study of rapid chemical processes in supercritical water is described. New methods for the automated examination of extraction processes using capillary chromatography are also described and their initial application illustrated.

  8. Dehydroxyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ming; Chang, Kuan-Chang; Chang, Ting-Chang; Syu, Yong-En; Liao, Kuo-Hsiao; Tseng, Bae-Heng; Sze, Simon M.

    2012-09-01

    The tin-doped can supply conduction path to induce resistance switching behavior. However, the defect of tin-doped silicon oxide (Sn:SiOx) increased the extra leakage path lead to power consumption and joule heating degradation. In the study, supercritical CO2 fluids treatment was used to improve resistive switching property. The current conduction of high resistant state in post-treated Sn:SiOx film was transferred to Schottky emission from Frenkel-Poole due to the passivation effect. The molecular reaction model is proposed that the defect was passivated through dehydroxyl effect of supercritical fluid technology, verified by material analyses of x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy.

  9. BEHAVIOR OF EXCESS ELECTRONS IN SUPERCRITICAL FLUIDS - ELECTRON ATTACHMENT

    SciTech Connect

    NISHIKAWA,M.; HOLROYD,R.A.; ITOH,K.

    1999-07-01

    The behavior of excess electrons in supercritical ethane was investigated by measuring mobility and reaction rates. Mobilities were measured by means of a time-of-flight method at 306--320K as a function of pressure. Mobility values decreased at all temperatures with increasing pressure, but showed a small minimum or a shoulder at the pressure where the compressibility {chi}{sub T} has a peak. Electron attachment to CO{sub 2}, NO, pyrimidine and C{sub 2}F{sub 4} over the same temperature range was studied as a function of pressure. Both attachment rate constants k{sub a} for NO and C{sub 2}F{sub 4}, and equilibrium constants K({double_bond}k{sub a}/k{sub d}) for CO{sub 2} and pyrimidine increased sharply at pressures of {chi}{sub T} peaks. Activation volumes V{sub a}* and reaction volumes {Delta}V{sub r} are very large and negative in the critical region. The volume change is mainly due to electrostriction around ions formed. The results are compared to volume changes predicted by, a compressible continuum model.

  10. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  11. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  12. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  13. Supercritical fluid extraction of lycopene from tomato processing byproducts.

    PubMed

    Rozzi, N L; Singh, R K; Vierling, R A; Watkins, B A

    2002-04-24

    Tomato seeds and skins acquired from the byproduct of a local tomato processing facility were studied for supercritical fluid extraction (SFE) of phytochemicals. The extracts were analyzed for lycopene, beta-carotene, alpha-carotene, alpha-tocopherol, gamma-tocopherol, and delta-tocopherol content using high-performance liquid chromatography-electrochemical detection and compared to a chemically extracted control. SFEs were carried out using CO(2) at seven temperatures (32-86 degrees C) and six pressures (13.78-48.26 MPa). The effect of CO(2) flow rate and volume also was investigated. The results indicated that the percentage of lycopene extracted increased with elevated temperature and pressure until a maximum recovery of 38.8% was reached at 86 degrees C and 34.47 MPa, after which the amount of lycopene extracted decreased. Conditions for the optimum extraction of lycopene from 3 g of raw material were determined to be 86 degrees C, 34.47 MPa, and 500 mL of CO(2) at a flow rate of 2.5 mL/min. These conditions resulted in the extraction of 61.0% of the lycopene (7.19 microg lycopene/g).

  14. Design of experiments for enantiomeric separation in supercritical fluid chromatography.

    PubMed

    Landagaray, Elodie; Vaccher, Claude; Yous, Saïd; Lipka, Emmanuelle

    2016-02-20

    A new chiral melatoninergic ligand, potentially successor of Valdoxan(®), presenting an improved pharmacological profile with regard to agomelatine, was chosen as a probe for a supercritical fluid chromatographic separation carried-out on an amylose tris[(S)-1-α-methylbenzylcarbamate] based stationary phase. The goal of this work was to optimize simultaneously three factors identified to have a significant influence to obtain the best resolution in the shortest analysis time (i.e., retention time of the second eluting enantiomer) for this chiral compound. For this purpose a central circumscribed composite (CCC) design was developed with three factors: the flow-rate, the pressure outlet and the percentage of ethanol to optimize of two responses: shortest analysis time and best resolution. The optimal conditions obtained via the optimizer mode of the software (using the Nelder-Mead method) i.e., CO2/EtOH 86:14 (v:v), 104bar, 3.2mLmin(-1) at 35°C lead to a resolution of 3.27 in less than 6min. These conditions were transposed to a preparative scale where a concentrated methanolic solution of 40mM was injected with a sample loop of 100μL. This step allowed to separate an amount of around 65mg of racemic melatonin ligand in only 3h with impressive yields (97%) and enantiomeric excess (99.5%).

  15. Determination of adsorption isotherms in supercritical fluid chromatography.

    PubMed

    Enmark, Martin; Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny

    2013-10-18

    In this study we will demonstrate the potential of modern integrated commercial analytical SFC-systems for rapid and reliable acquisition of thermodynamic data. This will be done by transferring the following adsorption isotherm determination methods from liquid chromatography (LC) to supercritical fluid chromatography (SFC): Elution by Characteristic Points (ECP), the Retention Time Method (RTM), the Inverse Method (IM) and the Perturbation Peak (PP) method. In order to transfer these methods to SFC in a reliable, reproducible way we will demonstrate that careful system verification using external sensors of mass flow, temperature and pressure are needed first. The adsorption isotherm data generated by the different methods were analyzed and compared and the adsorption isotherms ability to predict new experimental elution profiles was verified by comparing experiments with simulations. It was found that adsorption isotherm data determined based on elution profiles, i.e., ECP, IM and RTM, were able to accurately predict overloaded experimental elution profiles while the more tedious and time-consuming PP method, based on small injections on concentration plateaus, failed in doing so.

  16. Supercritical fluid extraction of free amino acids from broccoli leaves.

    PubMed

    Arnáiz, E; Bernal, J; Martín, M T; Nozal, M J; Bernal, J L; Toribio, L

    2012-08-10

    The extraction of free amino acids (AAs) from broccoli leaves using supercritical fluid extraction (SFE) with CO(2) modified with methanol, is presented in this work. The effect of the different variables was studied, showing the percentage of methanol a strong influence on the extraction. The best results in terms of extraction yield were obtained at 250 bar, 70°C, 35% methanol as organic modifier, a flow rate of 2 mL/min, and 5 min and 30 min as static and dynamic extraction times, respectively. The extraction yield obtained with the SFE method was comparable to that obtained employing conventional solvent extraction with methanol-water (70:30) and minor than using water, but the relative proportion of the AAs in the extracts was very different. For example, the use of SFE allowed the enrichment in proline and glutamine of the extracts. The selected conditions were applied to obtain SFE extracts of broccoli leaves from different varieties (Naxos, Nubia, Marathon, Parthenon and Viola). The highest levels of AAs were found in the SFE extracts from the Nubia variety.

  17. Supercritical fluid extraction and separation of uranium from other actinides.

    PubMed

    Quach, Donna L; Mincher, Bruce J; Wai, Chien M

    2014-06-15

    The feasibility of separating U from nitric acid solutions of mixed actinides using tri-n-butylphosphate (TBP)-modified supercritical fluid carbon dioxide (sc-CO2) was investigated. The actinides U, Np, Pu, and Am were extracted into sc-CO2 modified with TBP from a range of nitric acid concentrations, in the absence of, or in the presence of, a number of traditional reducing and/or complexing agents to demonstrate the separation of these metals from U under sc-CO2 conditions. The separation of U from Pu using sc-CO2 was successful at nitric acid concentrations of less than 3M in the presence of acetohydroxamic acid (AHA) or oxalic acid (OA) to mitigate Pu extraction, and the separation of U from Np was successful at nitric acid concentrations of less than 1M in the presence of AHA, OA, or sodium nitrite to mitigate Np extraction. Americium was not well extracted under any condition studied.

  18. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  19. Update on Area Production in Mixing of Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2003-01-01

    The focus of this research is on supercritical C7H16/N2 and O2/H2 mixing layers undergoing transitions to turbulence. The C7H16/N2 system serves as a simplified model of hydrocarbon/air systems in gas-turbine and diesel engines; the O2/H2 system is representative of liquid rocket engines. One goal of this research is to identify ways of controlling area production to increase disintegration of fluids and enhance combustion in such engines. As used in this research, "area production" signifies the fractional rate of change of surface area oriented perpendicular to the mass-fraction gradient of a mixing layer. In the study, a database of transitional states obtained from direct numerical simulations of the aforementioned mixing layers was analyzed to investigate global layer characteristics, phenomena in regions of high density-gradient magnitude (HDGM), irreversible entropy production and its relationship to the HDGM regions, and mechanisms leading to area production.

  20. Supercritical fluid thermodynamics for coal processing: Quarterly progress report, September 15, 1988--December 31, 1988

    SciTech Connect

    Eckert, C.A.

    1988-01-01

    Because of their unusual solvating and mass transfer properties, supercritical fluids show potential for a variety of coal processing applications. To establish a database of coal model compound equilibria, this quarter we have measured the solubility of 5,6-dimethyl-benzimidazole and anthraquinone in supercritical butane. In addition, we have used fluorescence spectroscopy to study the nature of the intermolecular interactions in the systems of pyrene and naphthalene in supercritical CO/sub 2/, C/sub 2/H/sub 4/, and CF/sub 3/H. The spectroscopy measurements are being used to guide the development of an equation of state that can be used to predict the solubility behavior so systems can be designed for the processing of coal with supercritical fluids. 4 figs.

  1. Purification method development for chiral separation in supercritical fluid chromatography with the solubilities in supercritical fluid chromatographic mobile phases.

    PubMed

    Gahm, Kyung H; Tan, Helming; Liu, Jodi; Barnhart, Wesley; Eschelbach, John; Notari, Steve; Thomas, Samuel; Semin, David; Cheetham, Janet

    2008-04-14

    A comprehensive approach was applied to develop a chiral purification method for an analyte that was found to be unusually difficult to scale-up in supercritical fluid chromatography (SFC). This was performed by studying major factors such as the solubility of an analyte in SFC mobile phases, impurity profiles, and cycle time. For this case study, the solubility in SFC mobile phase was measured by a packed column technique, coupled with a novel trapping mechanism to enhance measurement precision in SFC conditions. The solubility studies in SFC mobile phases suggested a couple of possible SFC mobile phases, in which the analyte would potentially be most soluble. The SFC methods were developed to purify a sample containing 15% of an impurity, after considering impurity profiles and cycle times of several potential methods in addition to SFC mobile phase solubility. An equal volume mixture of acetonitrile and ethanol was chosen for the final purification method, since this mixture demonstrated the relatively high SFC solubility among all solvent combinations with enhanced resolution between the analyte and the impurity as well as the shortest run time. The solubility of the compound was also determined in various organic solvents using a high throughput solubility screening system to better understand relative change of solubility from neat solution to SFC mobile phases.

  2. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    SciTech Connect

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

    2013-07-01

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 μm) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite

  3. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  4. A Supercritical Fluid Chromatography/Tandem Mass Spectrometry Method for the Simultaneous Quantification of Metformin and Gliclazide in Human Plasma

    PubMed Central

    Agrawal, Y. K.; Gogoi, P. J.; Manna, K.; Bhatt, H. G.; Jain, V. K.

    2010-01-01

    Present study reports the development and validation of a simultaneous estimation of metformin and gliclazide in human plasma using supercritical fluid chromatography followed by tandem mass spectrometry. Acetonitrile:water (80:20) mixture was used as a mobile phase along with liquid CO2 in supercritical fluid chromatography and phenformin as an internal standard. The modified plasma samples were analyzed by electro-spray ionization method in selective reaction monitoring mode in tandem mass spectrometry. Supercritical fluid chromatographic separation was performed using nucleosil C18 containing column as a stationary phase. The separated products were identified by characteristic peaks and specific fragments peaks in tandem mass spectrometry as m/z 130 to 86 for metformin, m/z 324 to 110 for gliclazide and m/z 206 to 105 for phenformin. The present method was found linear in the concentration ranges of 6.0-3550 ng/ml and 7.5-7500 ng/ml for metformin and gliclazide, respectively. Pharmacokinetic study was performed after an oral administration of dispersible tablets containing 500 mg of metformin and 80 mg of gliclazide using same techniques. PMID:20582190

  5. Extraction and recovery of polycyclic aromatic hydrocarbons from environmental solids using supercritical fluids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1987-07-01

    The use of supercritical fluids for the extraction and recovery of polycyclic aromatic hydrocarbons (PAH) from environmental solids has been developed and tested by using urban dust, fly ash, and river sediment. Supercritical N/sub 2/O and 5% methanol modifier gave the best recoveries of PAH from all three samples when compared to supercritical CO/sub 2/ with 5% methanol, N/sub 2/O, CO/sub 2/, and ethane. Quantitative recovery of PAH from National Bureau of Standards SRM 1649 (urban dust) and of deuteriated PAH spikes (phenanthrene-d/sub 10/, pyrene-d/sub 10/, and perylene-d/sub 12/) from the river sediment was obtained with supercritical fluid extractions in as little as 30 min. In most cases, 30-60 min extractions of the river sediment and fly ash with supercritical N/sub 2/O/5% methanol gave better recovery of the deuteriated PAH spikes than the recoveries obtained by using 4 h of sonication or 8 h of Soxhlet extraction with either benzene or methylene chloride. Supercritical fluid extractions yield good PAH recoveries, require only small amounts of sample, minimize analyte concentration steps, and are simple and rapid to perform.

  6. Development of Theoretical Methods for Predicting Solvent Effects on Reaction Rates in Supercritical Water Oxidation Processes

    DTIC Science & Technology

    2007-11-02

    Tucker, manuscript in preparation. “Examination of Nonequilibrium Solvent Effects on an SN2 Reaction in Supercritical Water,” R. Behera, B...DATES COVERED Final: 7/1/99 - 12/31/02 4. TITLE AND SUBTITLE Development of theoretical methods for predicting solvent effects on reactions ...computational methods for predicting how reaction rate constants will vary with thermodynamic condition in supercritical water (SCW). Towards this

  7. Impact of injection solvents on supercritical fluid chromatography.

    PubMed

    Abrahamsson, Victor; Sandahl, Margareta

    2013-09-06

    Even though there has been a rapid development in instrumentation and applications of supercritical fluid chromatography (SFC), relatively little is known about retention mechanisms compared to high-performance liquid chromatography (HPLC). Much effort has been made to characterize the influence of injection solvents on chromatographic efficiency in HPLC, however has been left rather uninvestigated in the domain of SFC. In this study properties of different injection solvents have been studied and correlated with properties of seven various analytes on three different columns, a C18, a 2-ethylpyridine and a bare-silica column. Aided by calculations of correlation coefficients and principal component analysis (PCA), the physical properties of injection solvents and the interactions between injection solvent, solute and stationary phase were investigated. The findings of this work shows that interactions capable of masking accessible silanol groups on a C18 column are of importance in order to maximize the plate number. While solvents with dipolar and hydrogen bond interaction properties are associated negatively with chromatographic efficiency using polar columns. Properties such as molar density, vapor pressure and boiling point were related to sharper peaks, mostly likely because of solubility issues of the injection solvent into the methanol-modified carbon dioxide. However, no additional solubility due to hydrogen interactions between the injection solvent and the carbon dioxide in SFC was observed. Surface tension and viscosity was not particularly associated with a decrease in plate numbers. By increasing the injection volume a stronger correlation between solubility related properties and plate numbers were obtained. Additional experiments showed that the resistance in solubility became an issue when performing partial-loop injection where additional washing solvent entered the system, thus providing broadened peaks.

  8. Supercritical Fluid Particle Design of DPI Formulations (Review).

    PubMed

    Sun, Yongda

    2015-01-01

    Pulmonary drug delivery (PDD) with dry powder inhaler (DPI) has rapidly developed for the treatment of local and systemic diseases, which targets the delivery of fine drug particles into the deep lung surface by combining technologies of fine drug particle formulation, small dose packaging and suitable inhaler, where by each contributes to the overall aerodynamic performance. The basic requirements of DPI formulation are an excellent aerodynamic performance, including particle size distribution within 1-5 μm, suitable morphology and electrostatic charge, low surface energy, high deposition rate and long shelf life stability. The strategy of DPI formulation is shifting from carrier-based to carrier free, from single drug to drug combination, from microparticles to nanoparticles and from small molecules to biomacromolecules. Making such DPI formulation is a big challenge for conventional pharmaceutical techniques. Fortunately, an emerging technology of supercritical fluid particle design (SCF PD) provides a powerful platform for DPI formulation since it runs single step operation at near ambient temperature to minimize the potential damage of delicate active ingredients and to ensure the consistency of the DPI formulation. Combining with our research experiences in DPI formulation of budesonide and recombinant human insulin, this review focus on the most recent development of DPI formulation using SCF PD technology, which can well control and tune the particle size, morphology and surface properties through different design routes (nanoparticles or microparticles, polymorphic particles, composite particles and bio-drug particles), and hence enable prominent enhancement aerodynamic performance and pulmonary deposition of such inhaled dry powders. Also considered within this review is the progress of the industrialization of SCF PD processes for DPI formulation.

  9. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study.

    PubMed

    Asiaee, Alireza; Benjamin, Kenneth M

    2016-08-28

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  10. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    NASA Astrophysics Data System (ADS)

    Asiaee, Alireza; Benjamin, Kenneth M.

    2016-08-01

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  11. Nanoscale engineering materials by supercritical fluid and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Peng, Qing

    With the development of material science and technology, modification of substrates, which have random geometry and high aspect ratio three dimensional (3D) complex structures, with desired functional, reactive and stable coatings becomes important and challenging. The ability to fabricate mono- or multi-layers of functional materials with precisely controlled dimensions, finely tuned composition and molecular structures, attracts significant interests in materials science and is the key to construct such devices and structures at nano- and micro-scale with desired properties. In this study, supercritical carbon dioxide (scCO2) has been studied as an alternative route for modifying substrates due to the unique gas-like (low viscosity, high diffusivity and zero surface tension) and liquid-like properties (high density). (1) The reaction kinetics of metal oxides thin film deposition from pyrolysis of metal organics in scCO2 was studied in detail. This method was demonstrated as a powerful technique to coat oxides, including Al2O3, Ga2O3 and others, into 3D high aspect ratio complex structure of carbon nanotubes (CNTs) forest. (2) The low temperature scCO 2 based hydrogenolysis process was developed as a useful way to functionalize aligned CNTs forest with dense Nickel nanoparticles. On the second part of this work, atomic layer deposition (ALD)/molecular layer deposition (MLD), as a vapor phase, stepwise and self-limiting vacuum based deposition process, was demonstrated as a powerful way to form highly conformal and uniform film onto substrates, even into highly complex 3D complex structures. In this study, (4) Metal oxide ALD is applied onto 3D electrospun polymer microfiber mats template to illustrate an effective and robust strategy to fabricate long and uniform metal oxide microtubes with precisely controllable wall thickness. Designer tubes of various sizes and different materials were demonstrated by using this method. (5) By further extending this technique

  12. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  13. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  14. CLEANING UP PESTICIDE CONTAMINATED SOILS: COMPARING EFFECTIVENESS OF SUPERCRITICAL FLUID EXTRACTION WITH SOLVENT EXTRACTION AND LOW TEMPERATURE THERMAL DESORPTION

    EPA Science Inventory

    Bench-scale supercritical fluid extraction (SFE) studies were performed on soil samples obtained from a Superfund site that is contaminated with high levels of p,p,-DDT, p,p,-DDD, p,p,-DDE, toxaphene and hexachlorocyclohexane. The effectiveness of supercritical fluid extraction ...

  15. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    SciTech Connect

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T.; Tiefert, K.

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  16. Pt and Pt-Ru/Carbon Nanotube Nanocomposites Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Wang, Jun; Yen, Clive; Wai, Chien M.

    2006-06-01

    In recent years, the use of supercritical fluids (SCFs) for the synthesis and processing of nanomaterials has proven to be a rapid, direct, and clean approach to develop nanomaterials and nanocomposites. The application of supercritical fluid technology can result in products (and processes) that are cleaner, less expensive, and of higher quality than those that are produced using conventional technologies and solvents. In this work, carbon nanotube (CNT)-supported Pt and Pt-Ru nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2). The experimental results demonstrate that Pt, Pt-Ru/CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  17. Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO2 Fluids

    SciTech Connect

    Miller, Quin R.; Kaszuba, John; Schaef, Herbert T.; Bowden, Mark E.; McGrail, B. Peter

    2015-04-07

    Subsurface injection of CO2 for enhanced hydrocarbon recovery, hydraulic fracturing of unconventional reservoirs, and geologic carbon sequestration produces a complex geochemical setting in which CO2-dominated fluids containing dissolved water and organic compounds interact with rocks and minerals. The details of these reactions are relatively unknown and benefit from additional experimentally derived data. In this study, we utilized an in situ X-ray diffraction technique to examine the carbonation reactions of forsterite (Mg2SiO4) during exposure to supercritical CO2 (scCO2) that had been equilibrated with aqueous solutions of acetate, oxalate, malonate, or citrate at 50 °C and 90 bar. The organics affected the relative abundances of the crystalline reaction products, nesquehonite (MgCO3·3H2O) and magnesite (MgCO3), likely due to enhanced dehydration of the Mg2+ cations by the organic ligands. These results also indicate that the scCO2 solvated and transported the organic ligands to the forsterite surface. This phenomenon has profound implications for mineral transformations and mass transfer in the upper crust.

  18. Supercritical fluid extraction and bioactivity of cedarwood oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supercritical carbon dioxide (70°C, 4,000 psi) was used to extract cedarwood oil from Eastern redcedar, Juniperus virginiana L. The CO2-derived oil was tested for biological activity against several species of arthropods, including mosquitoes, ticks, houseflies, and ants. The cedarwood oil was found...

  19. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOEpatents

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  20. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    USGS Publications Warehouse

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  1. Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed.

    PubMed

    Hu, Ai-jun; Zhao, Shuna; Liang, Hanhua; Qiu, Tai-qiu; Chen, Guohua

    2007-02-01

    Oil and coixenolide are important components of adlay seed (Coix lachrymal-jobi L. var. Adlay) with many beneficial functions to human health. In this work, a novel extraction technique--ultrasound assisted supercritical fluid extraction (USFE)--was studied. Effects of operating conditions on the extraction, including extraction temperature (T), pressure (P), time (t), CO(2) flow rate (F) and ultrasonic power (I) were investigated. There are optimum temperatures which gives the maximum extraction yields (EYs) for the supercritical fluid extractions with and without ultrasound. The effect of pressure on EYs for is similar to that of pressure on CO(2) density. Based on the yield of extraction, the favorable conditions for supercritical fluid extraction (SFE) were: T at 45 degrees C, P at 25 MPa, t at 4.0 h and F at 3.5L/h. While ultrasound was applied as in USFE, the following parameters were preferred: T at 40 degrees C, P at 20 MPa, t at 3.5h and F at 3.0 L/h, respectively. The results show that supercritical fluid extraction with the assistance of ultrasound could reduce the temperature, pressure, CO(2) flow rate, as well as time used in the process. Compared with SFE, USFE could give a 14% increase in the yield for extracting oil and coixenolide from adlay seed with less severe operating conditions.

  2. DIRECT-DEPOSITION INFRARED SPECTROMETRY WITH GAS AND SUPERCRITICAL FLUID CHROMATOGRAPHY

    EPA Science Inventory

    A direct-deposition Fourier transform infrared (FT-IR) system has been evaluated for applicability to gas chromatography (GC) and supercritical fluid chromatography (SFC) of environmental analytes. A 100-um i.d. fused-silica transfer line was used for GC, and a 50-um transfer lin...

  3. Assessment of Supercritical Fluid Extraction Use in Whole Sediment Toxicity Identification Evaluations

    EPA Science Inventory

    In this investigation, supercritical fluid extraction (SFE) with pure CO2 was assessed as a confirmatory tool in Phase III of whole sediment toxicity identification evaluations (TIEs). The SFE procedure was assessed on two reference sediments and three contaminated sediments usi...

  4. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    EPA Science Inventory

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  5. Concurrent and supercritical fluid chromatographic analysis of Terpene Lactones and ginkolic acids in Ginko biloba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1 and C17:1) was carried out by ESI (-) mass detection. The ESI (-) spectra of...

  6. Synthesis of biodiesel fuel additives from glycerol using green chemistry and supercritical fluids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For every 3 moles of fatty acid esters produced, 1 mole of glycerol remains, ~11% of the biodiesel volume. One new method of glycerol use could be as a biodiesel fuel additive/extender using eco-friendly heterogeneous catalysts and supercritical fluids (SFs). SFs have advantages such as greater diff...

  7. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions.

    PubMed

    He, Jianfeng; Fan, Jun; Yan, Yilun; Chen, Xiaodong; Wang, Tai; Zhang, Yaomou; Zhang, Weiguang

    2016-11-01

    Enantiomeric pairs of triticonazole have been successfully separated by supercritical fluid chromatography coupled with a tris(3,5-dimethylphenylcarbamoyl) cellulose-coated chiral stationary phase in this work. The effects of co-solvent, dissolution solvent, flow rate, backpressure, and column temperature have been studied in detail with respect to retention, selectivity, and resolution of triticonazole. As indicated, the co-solvents mostly affected the retention factors and resolution, due to the different molecular structure and polarity. In addition, the dissolution solvents, namely, chloromethanes and alcohols, have been also important for enantioseparation because of the different interaction with stationary phase. Higher flow rate and backpressure led to faster elution of the triticonazole molecules, and the change of column temperature showed slight effect on the resolution of triticonazole racemate. Moreover, a comparative separation experiment between supercritical fluid chromatography and high performance liquid chromatography revealed that chiral supercritical fluid chromatography gave the 3.5 times value of Rs /tR2 than high performance liquid chromatography, which demonstrated that supercritical fluid chromatography had much higher separation efficiency.

  8. Micronutrient and protein-fortified whole grain puffed rice made by supercritical fluid extrusion.

    PubMed

    Paraman, Ilankovan; Wagner, Michael E; Rizvi, Syed S H

    2012-11-07

    Supercritical fluid extrusion (SCFX) was used to produce shelf-stable puffed rice fortified with protein, dietary fiber, and micronutrients. Product ingredients and process parameters were evaluated for end-product nutritional and textural qualities. Supercritical carbon dioxide (SC-CO(2)) served as a viscosity-lowering plasticizer and blowing agent during the process, which has been shown to produce expanded products with good textural qualities at lower temperatures (~100 °C) than conventional steam-based extrusion (130-180 °C). The fortified puffed rice contained 8% dietary fiber, 21.5% protein, and iron, zinc, and vitamins A and C at their recommended daily values in 100 g of product. The SCFX process allowed for the complete retention of all added minerals, 55-58% retention of vitamin A, and 64-76% retention of vitamin C. All essential amino acids including lysine were retained at exceptionally high levels (98.6%), and no losses were observed due to Maillard reaction or oxidation. All of the essential amino acid contents were equal to the reference protein recommended by FAO/WHO. Soy protein fortification improved the total amount of protein in the final rice products and provided a complementary amino acid profile to that of rice; the lysine content improved from 35 to 60 mg/protein, making the end product an excellent source of complete protein. Thus, SC-CO(2)-assisted extrusion is an effective process-based approach to produce cereal grain-based, low-moisture (5-8%) expanded products fortified with protein and any cocktail of micronutrients, without compromising the end-product sensory or nutritional qualities. These products are ideally suited for consumption as breakfast cereals, snack foods, and as part of nutrition bars for school lunch programs. The balanced nutritional profile and use of staple crop byproducts such as broken rice makes these expanded crisps unique to the marketplace.

  9. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOEpatents

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  10. The Development of Improved Capillary Supercritical Fluid Chromatography and Mass Spectrometry

    DTIC Science & Technology

    1990-01-01

    composition about the solute molecule. Investigation of thermochromic shifts in the electronic spectra of 2,4-nitroanisole at constant density and...constant pressure was undertaken. One of the advantages of thermochromic studies in supercritical fluids is the ability to hold the fluid density...local solvent environment about the solute molecule. The thermochromic shifts seen were not as large as previously studied solvatochromic shifts, but

  11. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  12. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    NASA Astrophysics Data System (ADS)

    Battista, F.; Picano, F.; Casciola, C. M.

    2014-05-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures - the so-called ligaments - in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  13. Fischer-Tropsch synthesis in supercritical reaction media

    SciTech Connect

    Subramaniam, B.

    1995-05-01

    The goal of the proposed research is to develop novel reactor operating strategies for the catalytic conversion of syngas to transportation grade fuels and oxygenates using near-critical (nc) fluids as reaction media. This will be achieved through systematic investigations aimed at a better fundamental understanding of the physical and chemical rate processes underlying catalytic syngas conversion in nc reaction media. Syngas conversion to fuels and fuel additives on Fe catalysts (Fischer-Tropsch synthesis) was investigated. Specific objectives are to investigate the effects of various nc media, their flow rates and operating pressure on syngas conversion, reactor temperature profiles, product selectivity and catalyst activity in trickle-bed reactors. Solvents that exhibit gas to liquid-like densities with relatively moderate pressure changes (from 25 to 60 bars) at typical syngas conversion temperatures (in the 220-280{degree}C range) will be chosen as reaction media.

  14. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid

  15. International contributions to IAEA-NEA heat transfer databases for supercritical fluids

    SciTech Connect

    Leung, L. K. H.; Yamada, K.

    2012-07-01

    An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed using the complied databases. The assessment results are presented. (authors)

  16. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    PubMed

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC.

  17. Fluid-loop reaction system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor); Iskenderian, Theodore C. (Inventor)

    1991-01-01

    An improved fluid actuating system for imparting motion to a body such as a spacecraft is disclosed. The fluid actuating system consists of a fluid mass that may be controllably accelerated through at least one fluid path whereby an opposite acceleration is experienced by the spacecraft. For full control of the spacecraft's orientation, the system would include a plurality of fluid paths. The fluid paths may be circular or irregular, and the fluid paths may be located on the interior or exterior of the spacecraft.

  18. Determination of the column hold-up volume in supercritical fluid chromatography using nitrous-oxide.

    PubMed

    Vajda, Péter; Guiochon, Georges

    2013-09-27

    This study introduces a new tracer that is useful for the determination of the hold-up time or volume of packed columns, particularly of those used in supercritical fluid chromatography. The thermodynamic void volume of three columns packed with different adsorbents were determined using the weight difference method. These void volumes were used as the reference point in the further discussion. The hold-up volumes of these columns were determined under dynamic conditions, using nitrous oxide dissolved in methanol as the hold-up time marker. Changes in the hold-up volumes of these columns were monitored during changes of the volumetric flow rate of pure supercritical carbon dioxide and of dilute mixtures of organic modifier and supercritical carbon dioxide. The results suggest significant methanol enrichment on the adsorbent surface.

  19. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  20. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    SciTech Connect

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A; Bagratashvili, V N

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)

  1. A colorimetric reaction to quantify fluid mixing

    NASA Astrophysics Data System (ADS)

    Oates, Peter M.; Harvey, Charles F.

    2006-11-01

    We found the colorimetric reaction of Tiron (1,2-dihydroxybenzene-3,5-disulfonic acid) and molybdate suitable for optical quantification of chemical reaction during fluid-fluid mixing in laboratory chambers. This reaction consists of two colorless reagents that mix to rapidly form colored, stable, soluble products. These products can be digitally imaged and quantified using light absorbance to study fluid-fluid mixing. Here we provide a model and equilibrium constants for the relevant complexation reactions. We also provide methods for relating light absorbance to product concentrations. Practical implementation issues of this reaction are discussed and an example of imaged absorbances for fluid-fluid mixing in heterogeneous porous media is given.

  2. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    PubMed

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p-anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  3. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the

  4. Growth of rectangular hollow tube single crystals with rutile-type structure in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Niwa, Ken; Tokunaga, Tomoharu; Hasegawa, Masashi

    2013-06-01

    Super critical fluid is known as a suitable solvent in the dissolution and extraction process, due to its extreme high solubility and reactivity. On the other hand, further experimental approaches using supercritical fluid would offer new insights, especially in the field of novel material synthesis and crystal growth. We here report on the successful growth of single crystals with the rutile-type structure (MO2; M = Ti, Si, Ge and Sn) in the supercritical fluids (water or oxygen) by using laser heated diamond-anvil cell at above 5 GPa. The resultant product showed the rectangular hollow tube with several tens of microns in length and the wall thickness of less than 500 nm. TEM analyses demonstrated that this rectangular hollow tube single crystal is surrounded by the (110) face and grown along the [001] direction. The preferential growth of (110) face is consistent with the lowest surface energy of (110) in the rutile-type structure. In addition, the rapid cooling rate of LHDAC and the high-solubility of oxides into the supercritical fluids also play an important role for the formation of the rectangular hollow tube. The details of the experiments will be discussed in the presentation.

  5. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1994-06-01

    We have successfully completed our first Fischer-Tropsch synthesis test with propane as the supercritical fluid. The catalyst activity and hydrocarbon product distribution under the SFT conditions were similar to those obtained during the normal Fischer-Tropsch synthesis, however, the use of supercritical fluid resulted in higher selectivity of the primary products. The use of a new trap with larger inside surface area, improved the collection of liquid products and thus enabling us to achieve better atomic and overall mass balance closures. This has also improved results from on-line GC analysis. However, further improvement are needed to achieve more stable and reproducible gas phase analysis, including the capability of the on-line analysis of the feed gas (mixture of hydrogen, carbon monoxide and propane).

  6. Membrane Separations Using Reverse Micelles in Nearcritical and Supercritical Fluid Solvents

    SciTech Connect

    Yonker, Clement R.; Fulton, John L.; Phelps, Max R.; Bowman, Lawrence E.

    2003-04-01

    The use of reverse micelles coupled with ultrafiltration membranes for the separation of macromolecules dissolved in the cores of the reverse micelles using nearcritical and supercritical fluid solvents is described. This methodology allows one to address the separation of a wide range of polar molecules greatly extending the type of molecules that can be separated using only pure supercritical fluids. The solutes to be separated are initially dissolved in the reverse micellar solution and introduce into the pressure vessel containing the membrane. The surfactant and water core are passed through the membrane while the macromolecule selectivity is based on size and molecular weight. The ability for continuous recycle in an extraction system is discussed.

  7. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    PubMed

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps.

  8. Supercritical fluid extraction of pesticides from a table-ready food composite of plant origin (gazpacho).

    PubMed

    Aguilera, Ana; Brotons, María; Rodríguez, Mariano; Valverde, Antonio

    2003-09-10

    Supercritical fluid carbon dioxide extraction (SFE) has been evaluated for the extraction of 17 organohalogen and organophosphate pesticides in gazpacho (a table-ready food composite containing crude vegetables, white bread, vegetable oil, water, and other minor components) using anhydrous magnesium sulfate as drying agent. The effects of different parameters, such as fat content in gazpacho composites, magnesium sulfate/gazpacho ratio, supercritical fluid volume, pressure, temperature, and static modifier additions, on SFE recoveries from spiked gazpacho samples have been studied. Analyses were performed by gas chromatography (GC) with flame photometric (FPD), electron capture (ECD), and mass spectrometry (MSD) detectors. In most experiments, recoveries obtained for the nonpolar organohalogen pesticides were lower than those obtained for the most polar organophosphate pesticides, but overall pesticide recoveries determined by using the optimal SFE conditions indicate that SFE could be used to determine pesticide residue levels in gazpacho.

  9. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.

    2012-12-01

    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of

  10. Rapid analysis of polyolefin antioxidants and light stabilisers by supercritical fluid chromatography.

    PubMed

    Kithinji, J P; Bartle, K D; Raynor, M W; Clifford, A A

    1990-02-01

    Nineteen commercial antioxidants and light stabilisers, with a wide range of relative molecular masses and boiling-points, present in polyolefins were analysed by packed column supercritical fluid chromatography on four different phases with CO2 or 10% MeOH-CO2 as the mobile phase and with UV detection. The technique is shown to yield short analysis times and sufficient resolution for a number of additives present in a given polyolefin.

  11. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  12. Extending the range of supercritical fluid chromatography by use of water-rich modifiers.

    PubMed

    Liu, Jinchu; Regalado, Erik L; Mergelsberg, Ingrid; Welch, Christopher J

    2013-08-14

    In this study we investigate the recently reported use of water-containing modifiers for separation and purification of hydrophilic compounds by supercritical fluid chromatography. Improved peak shape is obtained for a variety of glycosides and otherwise hydrophilic compounds when 5% water is added to the methanol co-solvent used in SFC separations, and examples of the use of this approach in preparative SFC purifications are presented.

  13. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  14. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    PubMed

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed.

  15. Effects of Hexane in Supercritical Fluid Chromatography for the Separation of Enantiomers.

    PubMed

    Wu, Haihong; Yu, Stanley; Zeng, Lu

    2016-03-01

    Supercritical fluid chromatography (SFC), operated in conventional mode, is normally recognized as normal phase chromatography, and uses a solvent combination of supercritical CO2 and alcohols to separate compounds. Hexane, a commonly used solvent in normal phase liquid chromatography (NP-LC), is rarely used in SFC and, in some cases, is added to the organic modifiers to increase liquid content in order to achieve better efficiency in preparative SFC for poorly retained compounds. Although hexane is believed to have similar solvent strength to that of supercritical CO2, its effects on the enantioseparation in SFC is largely unknown. To understand the chromatographic effects of an apolar solvent, such as hexane in SFC, we compared the chromatographic behaviors of 35 chiral compounds using a parallel SFC method under traditional SFC mode of only “pure” alcohol-CO2 to that of hexane-assisted SFC (HA-SFC), which uses mixtures of alcohol and hexane (as cosolvents) and CO2. We observed that, in some cases, hexane behaves just like supercritical CO2, where replacement of a portion of CO2 with hexane does not significantly change retention times or resolution of the peaks. In many cases, however, addition of hexane in mobile phases does affect chromatographic behavior of one or both enantiomers. Such effects might provide opportunities for separation of some enantiomers.

  16. Leavened dough processing by supercritical fluid extrusion (SCFX).

    PubMed

    Hicsasmaz, Zeynep; Dogan, Esref; Chu, Cindy; Rizvi, Syed S H

    2003-10-08

    Yeast-leavened dough processing is semicontinuous due to the requirement for fermentation at constant temperature and humidity. Also, new regulations on the emission of alcohols are becoming burdensome on the baking industry. Extrusion processing of dough with supercritical carbon dioxide (SC-CO(2)) is envisioned to alleviate emission problems and to decrease production time by eliminating fermentation. A bread dough formulation with 50% (w/w) moisture was leavened by injecting 1.5% (w/w) SC-CO(2) in a twin-screw extruder at 37 degrees C. Specific mechanical energy input was 260 kJ/kg. The operating apparent shear rate range was 60-260 s(-1). SCFX-leavened dough density (420-430 kg/m(3)) was in good agreement with values reported for similar doughs. The flow behavior index, obtained by an on-line slit rheometer, was 0.49 for the nonleavened control and 0.63 for the SCFX-leavened dough. Apparent viscosity of the SCFX-leavened dough varied from 37 to 23 Pa-s. This new continuous process offers attractive possibilities for industrial applications if further developed.

  17. Spectroscopic Measurements of Radio Frequency Plasmas in Supercritical Fluids

    SciTech Connect

    Maehara, Tsunehiro; Iwamae, Atsushi; Kawashima, Ayato

    2010-10-29

    Spectroscopic measurements of radio frequency (rf) plasma were performed under high pressure CO{sub 2} conditions (5 and 7 MPa) and supercritical (sc)CO{sub 2} conditions (8-20 MPa). The temperatures evaluated from C{sub 2} Swan bands increased from 3600 K to 4600 K with increasing pressure. The broadening and shifting of the O I line profile ({approx}777 nm) of rf plasma was observed under scCO{sub 2} conditions. The width of the line profile increased with increasing pressure. The reason for the broadening and shifting is still unclear because the present theory used to explain them is not valid for such high pressure conditions. Further, the broadening of the Ar I line profile ({approx}811.5 nm) in rf plasmas was observed under atmospheric Ar (0.1 MPa), high pressure Ar conditions (1-4 MPa), and scAr condition (5 MPa); the observation of the O I line profile in CO{sub 2} plasmas is difficult in this pressure range owing to its weak intensity therein. Similar to the case of the O I line in CO{sub 2} plasmas, the reason for the broadening of the Ar I line profile at 5 MPa is unclear.

  18. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.

    PubMed

    Zhao, Yan; Lu, Wen-Jing; Wu, Hua-Yong; Liu, Jin-Wen; Wang, Hong-Tao

    2012-12-01

    A flow reaction system was utilized to investigate lignocellulose conversion using combined supercritical/subcritical conditions for hexose production. Initially, investigation of cellulose hydrolysis in supercritical water and optimization of reaction parameters were done. Oligosaccharide yields reached over 30% at cellulose concentrations of 3-5 gL(-1) and reaction times of 6-10s at 375 °C, and 2.5-4 gL(-1) and 8-10s at 380 °C. Temperatures above 380 °C were not appropriate for the supercritical phase in the combined process. Subsequently, conversion of lignocellulosic materials under combined supercritical/subcritical conditions was studied. Around 30% hexose was produced from corn stalks under the optimal parameters for supercritical (380 °C, 23-24 MPa, 9-10s) and subcritical (240 °C, 8-9 MPa, 45-50s) phases. Flow systems utilizing the combined supercritical/subcritical technology present a promising method for lignocellulosic conversion. The results of this study provide an important guide for the operational optimization and practical application of the proposed system.

  19. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  20. The continuous acid-catalyzed dehydration of alcohols in supercritical fluids: A new approach to the cleaner synthesis of acetals, ketals, and ethers with high selectivity

    SciTech Connect

    Gray, W.K.; Smail, F.R.; Hitzler, M.G.; Ross, S.K.; Poliakoff, M.

    1999-11-24

    This report describes a new a continuous method for forming ethers, acetals and ketals using solid acid catalysts, DELOXAN ASP or AMBERLYST 15, and supercritical fluid solvents. In the case of ether formation, the authors observe a high selectivity for linear alkyl ethers with little rearrangement to give branches ethers. Such rearrangement is common in conventional synthesis. The approach is effective for a range of n-alcohols up to n-octanol and also for the secondary alcohol 2-propanol. In the reaction of phenol with an alkylating agent, the continuous reaction can be tuned to give preferential O- or C-alkylation with up to 49% O-alkylation with supercritical propene. The authors also investigate the synthesis of a range of cyclic ethers and show an improved method for the synthesis of THF from 1,4-butandiol under very mild conditions.

  1. Fischer-Tropsch synthesis in supercritical reaction media. Progress report, July 10, 1992--September 30, 1992

    SciTech Connect

    Subramaniam, B.

    1992-10-01

    The goal of this research is to thoroughly investigate the feasibility of using supercritical fluid (SCF) solvent medium for carrying out Fischer-Tropsch (FT) synthesis. Research will address the systematic experimental investigations of FT synthesis over supported Fe and Co catalysts in a CSTR and in a fixed-bed reactor at typical synthesis temperatures (240-260{degrees}C). The SCF medium to be employed is n-Hexane (P{sub c} = 29.7 bar; {Tc} = 233.7{degrees}C), while n-Hexadecane will be employed as the liquid reaction medium. Overall conversion, product distribution and catalyst deactivation will be measured in each case for various feed H{sub 2}/CO ratios ranging from 0.5 to 2. Product analyses will be carried out using GC/TCD, GC/FID and GC/MS systems. The fresh and used catalysts will be characterized with respect to active metal dispersion, surface area and pore size distribution.

  2. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids.

    PubMed

    Oliveira, Daniela A; Salvador, Ana Augusta; Smânia, Artur; Smânia, Elza F A; Maraschin, Marcelo; Ferreira, Sandra R S

    2013-04-10

    The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria.

  3. Fluid flow, mineral reactions, and metasomatism

    SciTech Connect

    Ferry, J.M.; Dipple, G.M. )

    1991-03-01

    A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.

  4. Initial results for supercritical cycle experiments using pure and mixed-hydrocarbon working fluids

    SciTech Connect

    Bliem, C.J.; Mines, G.L.

    1984-01-01

    The Heat Cycle Research Program, which is being conducted for the Department of Energy, has as its objective the development of the technology for effecting improved utilization of moderate temperature geothermal resources. Testing at the Heat Cycle Research Facility (HCRF) located at the DOE Geothermal Test Facility (GTF), East Mesa, California, is presently being conducted to meet this objective. Current testing involves a supercritical vaporization and countercurrent in-tube condensing system. The paper presents a brief description of the test facility and a discussion of the test program. Preliminary results on the performance of the supercritical heaters, countercurrent in-tube condenser, and turbine are given for both pure and mixed-hydrocarbon working fluids.

  5. Processing High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water

    SciTech Connect

    Arrington, Jr., Charles A.

    2000-06-01

    We are engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow and Jeanne Robinson, staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. Our own work has been focused on a careful kinetic study of oxidation reactions of hydrogen peroxide with chromium hydroxide. This reaction occurs readily at ambient temperatures.

  6. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    SciTech Connect

    Jackson, J. D.; Jiang, P. X.; Liu, B.

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experiments using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)

  7. The Iceland Deep Drilling Project (IDDP): (4) A Quartz Fluid Inclusion Tool for Sampling Supercritical Geothermal Fluids Downhole

    NASA Astrophysics Data System (ADS)

    Reed, M. H.; Grist, H.; Fridriksson, T.; Danielsen, P.; Senkovich, D.; Johnston, A.; Elders, W. A.; Fridleifsson, G. O.

    2009-12-01

    Chemical analyses of in situ samples of supercritical geothermal fluids would provide a uniquely good measure of fluid composition at depth relative to compositions reconstructed from analyses of gas and liquid sampled at wellheads. Fluids sampled at the wellhead are commonly a mixture from multiple aquifers and, in many circumstances, they lack components such as sulfate, sulfide, Ca, Cu, Zn, and Fe that precipitated in scale minerals where the fluids boiled or cooled during their ascent. To circumvent the above problems and the failings of downhole mechanical samplers at temperatures exceeding 300°C and to obtain total fluid samples at supercritical conditions in the IDDP wells, we plan to trap fluids in fluid inclusions formed in fractured quartz that we suspend in a geothermal well on a wireline. In a series of hydrothermal laboratory experiments at 450°C and 600 bar and spanning 6 hr to 5 days in length, thermal shock fractures in natural and synthetic quartz crystals heal, forming ragged fluid inclusions in one day and many well formed inclusions in three days. Amorphous silica is added to the experimental charge, without which, fractures heal little and only 1-2 micron inclusions form. Microthermometry measurements on the inclusions produced in experiments return the run temperature within 20°C at the experimental pressure, indicating that inclusions formed and sealed at the run conditions. The fluid inclusion tool (FIT) consists of a perforated stainless steel pipe containing multiple stainless steel mesh canisters with non-mesh ends to minimize vertical fluid flow. The canisters contain 10mm-scale chunks of fractured quartz surrounded by ground quartz glass. The perforated pipe will be fixed within a one-meter outer perforated stainless steel housing that is suspended on a stainless steel slick line. The FIT is weighed by one or more 10kg lead sinker bars. The entire assembly is lowered into the well from a lubricator fitted on the wellhead, thus

  8. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    SciTech Connect

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-08-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations.

  9. Efficient separation of curcumin, demethoxycurcumin, and bisdemethoxycurcumin from turmeric using supercritical fluid chromatography: From analytical to preparative scale.

    PubMed

    Song, Wei; Qiao, Xue; Liang, Wen-fei; Ji, Shuai; Yang, Lu; Wang, Yuan; Xu, Yong-wei; Yang, Ying; Guo, De-an; Ye, Min

    2015-10-01

    Curcumin is the major constituent of turmeric (Curcuma longa L.). It has attracted widespread attention for its anticancer and anti-inflammatory activities. The separation of curcumin and its two close analogs, demethoxycurcumin and bisdemethoxycurcumin, has been challenging by conventional techniques. In this study, an environmentally friendly method based on supercritical fluid chromatography was established for the rapid and facile separation of the three curcuminoids directly from the methanol extract of turmeric. The method was first developed and optimized by ultra performance convergence chromatography, and was then scaled up to preparative supercritical fluid chromatography. Eluted with supercritical fluid CO2 containing 8-15% methanol (containing 10 mM oxalic acid) at a flow rate of 80 mL/min, curcumin, demethoxycurcumin and bisdemethoxycurcumin could be well separated on a Viridis BEH OBD column (Waters, 250 mm × 19 mm, 5 μm) within 6.5 min. As a result, 20.8 mg of curcumin (97.9% purity), 7.0 mg of demethoxycurcumin (91.1%), and 4.6 mg of bisdemethoxycurcumin (94.8%) were obtained after a single step of supercritical fluid chromatography separation with a mean recovery of 76.6%. Showing obvious advantages in low solvent consumption, large sample loading, and easy solvent removal, supercritical fluid chromatography was proved to be a superior technique for the efficient separation of natural products.

  10. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  11. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    PubMed

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  12. Supercritical fluid-mediated methods to encapsulate drugs: recent advances and new opportunities.

    PubMed

    Naylor, Andrew; Lewis, Andrew L; Ilium, Lisbeth

    2011-12-01

    With the advent of the development of novel pharmaceutical products and therapies, there is a need for effective delivery of these products to patients. Dependent on whether they are small-molecular weight drugs or biologics, many new compounds may suffer from poor solubility, poor stability or require frequent administration and therefore require optimized delivery. For example, the utilization of polymorphism and the enhanced solubility in the amorphous state is being exploited to improve the dissolution of small-molecular weight poorly soluble drugs. This can be achieved by the formation of solid dispersions in water-soluble matrices. In addition, encapsulation in biodegradable polymeric materials is one potential route to reduce the frequency of administration through the formation of sustained-release formulations. This is desirable for biologics, for example, which generally require administration once or twice daily. Supercritical fluid processing can achieve both of these outcomes, and this review focuses on the use of supercritical CO2 to encapsulate active pharmaceutical ingredients to enhance solubility or achieve sustained release. Using supercritical CO2-mediated processes provides a clean and potentially solvent-free route to prepare novel drug products and is therefore an attractive alternative to conventional manufacturing technologies.

  13. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  14. Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid

    SciTech Connect

    Miller III, Thomas F.

    2008-08-04

    Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to {beta}{h_bar}.

  15. An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Howard, W. Michael

    1998-11-01

    The exponential-6 potential model is widely used in fluid equation of state studies. We have developed an accurate and efficient complete equation of state for the exponential-6 fluid based on HMSA integral equation theory and Monte Carlo calculations. Our equation of state has average fractional error of 0.2% in pV/NkBT and 0.3% in the excess energy Uex/NkBT. This is a substantial improvement in accuracy over perturbation methods, which are typically used in treatments of dense fluid equations of state. We have applied our equation of state to the problem of dense supercritical N2. We find that we are able to accurately reproduce a wide range of material properties with our model, over a range 0.01⩽P⩽100 GPa and 298⩽T⩽15 000 K.

  16. pardInvestigation of the Direct Hydrogenation of Aluminum to Alane in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Jensen, Craig; McGrady, Sean; Ayabe, Reyna; Reddy, Ben

    2007-03-01

    Alane, AlH3 has many of the properties that are requisite for materials to be considered viable for onboard hydrogen storage applications. Most notibly, it contains 10.1 wt% hydrogen and undergoes dehydrogenation at appreciable rates at temperatures below 100^oC. However, the very low, >= 6 kJ/mol, enthalpy of dehydrogenation of AlH3 prohibits subsequent re-hydrogenation through standard gas-solid techniques except at very high pressures or very low temperatures. The extremely low solubility of gaseous H2 in conventional organic solvents also vitiates a solution-based approach. Re-hydrogenation of Al using a supercritical fluid potentially offers a workable approach since the fluid can act as a solvent, at the same time remaining completely miscible with permanent gases like hydrogen. Recently, it has been found that mixtures of NaH and Al can be hydrogenated to sodium alanate, NaAlH4 under modest pressures and temperatures in supercritical fluids. We have now extended these studies to the hydrogenation of Al to AlH3. The results of these studies and experimental details will be reported.

  17. The separation of lanthanides and actinides in supercritical fluid carbon dioxide

    SciTech Connect

    Mincher, Bruce J.; Wai, Chien M.; Fox, Robert V.; Baek, Donna L.; Yen, Clive; Case, Mary E.

    2015-10-28

    Supercritical fluid carbon dioxide presents an attractive alternative to conventional solvents for recovery of the actinides and lanthanides. Carbon dioxide is a good solvent for fluorine and phosphate-containing ligands, including the traditional tributylphosphate ligand used in process-scale uranium separations. Actinide and lanthanide oxides may even be directly dissolved in carbon dioxide containing the complexes formed between these ligands and mineral acids, obviating the need for large volumes of acids for leaching and dissolution, and the corresponding organic liquid–liquid solvent extraction solutions. As a result, examples of the application of this novel technology for actinide and lanthanide separations are presented.

  18. Enantioseparation of methamphetamine by supercritical fluid chromatography with cellulose-based packed column.

    PubMed

    Segawa, Hiroki; Iwata, Yuko T; Yamamuro, Tadashi; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2017-02-04

    The enantiomers of methamphetamine were differentiated by supercritical fluid chromatography (SFC) with an enantioselective cellulose-based packed column. The optimization of the chromatographic conditions was achieved by changing column temperature, co-solvent proportion, additive concentration, flow rate and back pressure. In particular, the additive concentration crucially changed the resolution between the enantiomers. After determining the optimized conditions, the enantiomers of methamphetamine were successfully separated. The analytical precision, accuracy and limit of detection were checked by using the authentic standard and seized real samples. We believe that chiral SFC is a promising method for enantioseparation of forensic samples.

  19. Advances in supercritical fluid spray application of low-pollution coatings

    SciTech Connect

    Nielsen, K.A.; Dickson, D.J.; Derderian, E.J.; Glancy, C.W.; Goad, J.D.

    1991-12-31

    The volatile organic compound (VOC) content of coating formulations, which causes ozone formation in the environment, has now been reduced up to 80% by using supercritical carbon dioxide to replace volatile organic solvents in conventional coating formulations. Toxic solvents classified as hazardous air pollutants by the Clean Air Act can be totally eliminated. The concept can also be applied to high-solids coatings (1) to further reduce VOC emissions and (2) to improve coating performance by using higher molecular weight polymers. Commercial fluid delivery equipment and spray guns are now available. The technology is being demonstrated on industrial spray lines.

  20. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-12-31

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. This paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  1. Cleanliness of common air sampling sorbents for application to phenolic compounds measurement using supercritical fluid extraction

    SciTech Connect

    Bowyer, J.R.; Pleil, J.D.

    1994-01-01

    The trace-level measurement of phenolic compounds in the ambient air is complicated by the acidic and polar nature of the compounds especially during recovery from the sampling medium. Recently, supercritical fluid extraction (SFE) has been proposed as an alternative extraction method to Soxhlet extraction or thermal desorption to achieve more efficient recoveries. For such methodology to become practical, the candidate sorbents must first be tested for stability and cleanliness under SFE conditions. The paper describes exploratory research results of background contamination tests and cleanup properties of some common air sampling sorbent media with respect to future application to phenolic compounds monitoring.

  2. [Separation of enantiomers by supercritical fluid chromatography on polysaccharide derivative-based chiral stationary phases].

    PubMed

    Li, Dongyan; Wu, Xi; Hao, Fangli; Yang, Yang; Chen, Xiaoming

    2016-01-01

    Eleven kinds of chiral compounds have been well separated within 10 min on polysaccharide derivative-based chiral stationary phases named Chiralpak IA, IB, IC, ID, IE and IF by supercritical fluid chromatography (SFC). The chiral recognition of these chiral compounds has demonstrated good complementary enantioselectivities of the six chiral columns, which were proved to be useful for chiral SFC. Both the elution time and enantioselectivies could be significantly affected by the modifier types and their concentrations, such as methanol, ethanol and isopropanol, which should be optimized during the experiments. In addition, the solvent versatility of the immobilized chiral stationary phase on the optimization of the chiral separation was helpful.

  3. Molecular-Scale Remnants of the Liquid-Gas Transition in Supercritical Polar Fluids

    NASA Astrophysics Data System (ADS)

    Sokhan, V. P.; Jones, A.; Cipcigan, F. S.; Crain, J.; Martyna, G. J.

    2015-09-01

    An electronically coarse-grained model for water reveals a persistent vestige of the liquid-gas transition deep into the supercritical region. A crossover in the density dependence of the molecular dipole arises from the onset of nonpercolating hydrogen bonds. The crossover points coincide with the Widom line in the scaling region but extend farther, tracking the heat capacity maxima, offering evidence for liquidlike and gaslike state points in a "one-phase" fluid. The effect is present even in dipole-limit models, suggesting that it is common for all molecular liquids exhibiting dipole enhancement in the liquid phase.

  4. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.

    PubMed

    Sheth, Pratik; Sandhu, Harpreet; Singhal, Dharmendra; Malick, Waseem; Shah, Navnit; Kislalioglu, M Serpil

    2012-05-01

    Poor aqueous solubility of drug candidates is a major challenge for the pharmaceutical scientists involved in drug development. Particle size reduction appears as an effective and versatile option for solubility improvement. Nanonization is an attractive solution to improve the bioavailability of the poorly soluble drugs, improved therapies, in vivo imaging, in vitro diagnostics and for the production of biomaterials and active implants. In drug delivery, application of nanotechnology is commonly referred to as Nano Drug Delivery Systems (NDDS). In this article, commercially available nanosized drugs, their dosage forms and proprietors, as well as the methods used for preparation like milling, high pressure homogenization, vacuum deposition, and high temperature evaporation were listed. Unlike the traditional methods used for the particle size reduction, supercritical fluid-processing techniques offer advantages ranging from superior particle size control to clean processing. The primary focus of this review article is the use of supercritical CO2 based technologies for small particle generation. Particles that have the smooth surfaces, small particle size and distribution and free flowing can be obtained with particular SCF techniques. In almost all techniques, the dominating process variables may be thermodynamic and aerodynamic in nature, and the design of the particle collection environment. Rapid Expansion of Supercritical Solutions (RESS), Supercritical Anti Solvent (SAS) and Particles from Gas Saturated Solutions (PGSS) are three groups of processes which lead to the production of fine and monodisperse powders. Few of them may also control crystal polymorphism. Among the aforementioned processes, RESS involves dissolving a drug in a supercritical fluid (SCF) and passing it through an appropriate nozzle. Rapid depressurization of this solution causes an extremely rapid nucleation of the product. This process has been known for a long time but its application

  5. MR measurement of critical phase transition dynamics and supercritical fluid dynamics in capillary and porous media flow.

    PubMed

    Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D

    2012-01-01

    Supercritical fluids (SCF) are useful solvents in green chemistry and oil recovery and are of great current interest in the context of carbon sequestration. Magnetic resonance techniques were applied to study near critical and supercritical dynamics for pump driven flow through a capillary and a packed bed porous media. Velocity maps and displacement propagators measure the dynamics of C(2)F(6) at pressures below, at, and above the critical pressure and at temperatures below and above the critical temperature. Displacement propagators were measured at various displacement observation times to quantify the time evolution of dynamics. In capillary flow, the critical phase transition fluid C(2)F(6) showed increased compressibility compared to the near critical gas and supercritical fluid. These flows exhibit large variations in buoyancy arising from large changes in density due to very small changes in temperature.

  6. Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process.

    PubMed

    Lyons, John G; Hallinan, Mark; Kennedy, James E; Devine, Declan M; Geever, Luke M; Blackie, Paul; Higginbotham, Clement L

    2007-02-01

    The use of supercritical fluids as plasticisers in polymer processing has been well documented. The body of work described in this research paper outlines the use of a supercritical CO(2) assisted extrusion process in the preparation of a hot melt extruded monolithic polymer matrix for oral drug delivery. Several batches of matrix material were prepared with Carvedilol used as the active pharmaceutical ingredient (API). These batches were subsequently extruded both with and without supercritical CO(2) incorporation. The resultant matrices were characterised using steady-state parallel plate rheometry, differential scanning calorimetry (DSC), atomic force microscopy (AFM), micro-thermal analysis (microTA) and dissolution testing. Dissolution analysis showed that the use of supercritical CO(2) during the extrusion process resulted in a faster dissolution of API when compared with unassisted extrusion. The supercritical CO(2) incorporation also resulted in reduced viscosity during processing, therefore allowing for quicker throughput and productivity. The results detailed within this paper indicate that supercritical fluid assisted hot melt extrusion is a viable enhancement to conventional hot melt extrusion for the production of monolithic dosage forms.

  7. Electron attachment to oxygen in supercritical hydrocarbon fluids

    NASA Astrophysics Data System (ADS)

    Nishikawa, Masaru; Holroyd, R. A.

    1983-10-01

    The rate of attachment of electrons to oxygen was studied in methane, ethane, and propane gas above the critical temperatures up to pressures of ˜200 atm. For all three gases, the rate increases with density and levels off above N=3×1021 molecules/cm3. For ethane, there is little or no effect of temperature on the rate between 25 and 75 °C and the rate is independent of electric field (E) up to E/N=1.2×10-18 V cm2, but increases at higher values of E/N. To explain the results, it is suggested that the energetics of the attachment reaction change with density; i.e., the energy level of the electron in the media (V0) and the polarization energy (P-) of O2- change with N. The rate of attachment increases with the energy term ET=V0-P-+Ek, where Ek is the electron kinetic energy, similar to the way the attachment rate increases with electron kinetic energy in the dilute gas.

  8. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography.

    PubMed

    Khater, S; West, C; Lesellier, E

    2013-12-06

    Sub-2-microns particles employed as supporting phases are known to favor column efficiency. Recently a set of columns based on sub-2-microns particles for use with supercritical fluid mobile phases have been introduced by Waters. Five different stationary phase chemistries are available: BEH silica, BEHEthyl-pyridine, X Select CSH Fluorophenyl, HSS C18 SB and BEH Shield RP18. This paper describes the characterization of 15 stationary phases, the five different chemistries, and three particle sizes, 1.7 (or 1.8), 3.5 and 5 microns, with the same carbon dioxide–methanol mobile phase and a set of more than a hundred compounds. The interactions established in the 15 different chromatographic systems used in supercritical fluid chromatography (SFC) are assessed with linear solvation energy relationships (LSERs).The results show the good complementarity of the five column chemistries, and their comparative location inside a classification map containing today around 70 different commercial phases. Among the five different chemistries, the HSS C18 SB phase displays a rather unusual behavior in regards of classical C18 phases, as it displays significant hydrogen–bonding interactions. Besides, it appears, as expected, that the BEH Ethyl–pyridine phase has weak interactions with basic compounds. The effect of particle size was studied because smaller particles induce increased inlet and internal pressure. For compressible fluids,this pressure change modifies the fluid density, i.e. the apparent void volume and the eluting strength.These changes could modify the retention and the selectivity of compounds in the case of method trans-fer, by using different particle sizes, from 5 down to 1.7 m. A hierarchical cluster analysis shows that stationary phase clusters were based on the phase chemistry rather than on the particle size, meaning that method transfer from 5 to 1.7 microns can be achieved in the subcritical domain i.e. by using a weakly compressible fluid.

  9. Innovative instrument design and applications in supercritical fluid chromatography and extraction

    SciTech Connect

    Oudsema, J.W.

    1992-01-01

    A novel sample introduction system was developed for supercritical fluid chromatography. The solventless injector utilizes a gas purge for solvent elimination and is capable of handling large sample volumes. Successful operation depends on the difference in volatility between the solvent and the analyte along with effective refocusing mechanisms at the head of the column. Reduced analysis times are achieved by in-line derivatization to permit the separation of polar analytes and elimination of volatile reagents and by products. The construction of a SFC restrictor from a 2 mm metal disc was described. The design is compact, robust and will readily interface with existing detectors. Preliminary results indicate that variable flow control can be achieved by temperature programming. The Knox equation was useful in illustrating the limitations of the solventless injector during isochloric conditions and proved that small particle (<10[mu]m) columns packed by the supercritical fluid displacement method are identical to those packed by the high pressure slurry packing method developed for HPLC. Supercritical CO[sub 2] and microbore columns are compatible with GC style detectors (FID). The use of formamide as a modifier improves the chromatographic properties for compounds containing nitrogen atoms and is compatible with the FID. SFE/SFC with formic acid modified CO[sub 2], polymer encapsulated stationary phases and the FID represent a considerable advance in the analysis of organotin compounds. The method is capable of extracting and separating a diverse group of industrially important organotin compounds. Triorganotins were determined in marine paint, potatoes, almonds and cation exchange resin. Diorganotin compounds were determined in PVC and cation exchange resin. The solventless injector allowed on line collection from the SFE cell and direct introduction to the analytical column.

  10. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    SciTech Connect

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  11. Supercritical fluid process for removal of polychlorodibenzodioxin and dibenzofuran from fly ash

    SciTech Connect

    Gabarra, P.; Cogollo, A.; Recasens, F.; Fernandez-Escobar, I.; Abad, E.; Bayona, J.M.

    1999-05-01

    A process is proposed for the decontamination of fly ash from an urban solid-waste incineration facility (USWI), where the target contaminants are polychlorodibenzodioxins (PCDDs) and dibenzofurans (PCDFs), a class of highly toxic tricyclopolychlorinated organics. In general, the ash waste requires inertization and disposal into a controlled landfill. Here, the authors propose an inertization process based on the reduction of the PCDDs and PCDFs content before dumping. Inertization is brought about by extraction with a solvent consisting of supercritical carbon dioxide modified with a co-solvent (10% toluene). The plant would run in semibatch mode, with continuous flow of fluid through a packed bed of fly ash. Then, carbon dioxide and the co-solvent would be separated and recycled. Favorable extraction conditions were found in the laboratory at 300 bar and 60 C. Under these conditions, the removal efficiency of native PCDDs and PCDFs is around 50% referred to the extraction of the same sample using the EPA method 1613 (Soxhlet extraction with toluene). A technoeconomic appraisal of a treatment facility is presented for a medium sized incineration plant (50,000 ton urban waste yearly) producing 1,500 ton of fly ash/y. The ash production would be inertized in a specially designed supercritical fluid (SCF) extraction unit, located on-site at the incineration facility.

  12. Supercritical fluid-mediated alumination of mesoporous silica and its beneficial effect on hydrothermal stability.

    PubMed

    O'Neil, Adam S; Mokaya, Robert; Poliakoff, Martyn

    2002-09-11

    We have investigated the use of supercritical fluids (SCFs) as carriers/solvents during the postsynthesis alumination of mesoporous silica. SCFs were found to be ideally suited for transport of Al into mesoporous silica and to lead to Al-grafted aluminosilicate materials that exhibit exceptional hydrothermal (steam) stability even for highly aluminated materials. The improvements in steam stability arising from the use of SCFs as grafting media (as compared to aqueous or organic solvents) are remarkable, especially for Al-grafted MCM-41 materials with high (Si/Al < or = 10) Al contents. It is proposed that under supercritical fluid conditions Al is sorbed on the surface of the pore walls of the host Si-MCM-41 with little penetration into the pore wall region, that is, the low solvating power of SCFs ensures the deposition of Al onto rather than into the silica framework. This is because the host silica framework cannot undergo any significant hydrolysis (to allow penetration of Al into the pore wall region) during the SCF-mediated alumination. Removal of the Al (i.e., dealumination) which occurs during steaming is therefore less detrimental to the structural integrity of SCF-grafted Al-MCM-41 materials since any dealumination that occurs will not involve removal of Al from deep within the pore walls.

  13. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity.

  14. Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography.

    PubMed

    Murakami, Jillian N; Thurbide, Kevin B

    2015-05-01

    The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless-steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless-steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm(2) regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless-steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless-steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless-steel columns were more resistant to etching than 304 stainless-steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless-steel columns used with this supercritical fluid chromatography technique.

  15. Determination of N-nitrosamines in latex by sequential supercritical fluid extraction and derivatization.

    PubMed

    Reche, F; Garrigós, M C; Marín, M L; Jiménez, A

    2002-11-08

    A new method to determine N-nitrosamines in latex products has been developed by combination of supercritical fluids and chemical derivatization. A new design for a liquid trap has been introduced. A factorial fractional design was used in order to evaluate the influence of the different factors affecting the process. Factors such as pressure, temperature, static and dynamic time, restrictor temperature and volume of an hydrobromic acid-acetic anhydride mixture (1:10, v/v) were included in the design. CO2 was used as the extraction fluid. Gas chromatography with nitrogen and phosphorus sensitive detection was employed to achieve good sensitivity attending to the molecular structure of these compounds (N-nitrosamines and their corresponding secondary amines). The obtained results have shown to be useful to increase selectivity and reduce sample handling.

  16. ORGANIC REACTIONS IN SUPERCRITICAL POLAR FLUIDS. (R825513C004)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Pybox monolithic miniflow reactors for continuous asymmetric cyclopropanation reaction under conventional and supercritical conditions.

    PubMed

    Burguete, M I; Cornejo, A; García-Verdugo, E; Gil, María J; Luis, S V; Mayoral, J A; Martínez-Merino, V; Sokolova, M

    2007-06-08

    Supported catalysts having pybox chiral moieties were prepared as macroporous monolithic miniflow systems. These catalysts are based on styrene-divinylbenzene polymeric backbones having different compositions and pybox chiral moieties. Their corresponding ruthenium complexes were tested for the continuous flow cyclopropanation reaction between styrene and ethyldiazoacetate (EDA) under conventional conditions and in supercritical carbon dioxide (scCO2). Ru-Pybox monolithic miniflow reactors not only provided a highly efficient and robust heterogeneous chiral catalyst but also allowed us to develop more environmental reaction conditions without sacrificing the global efficiency of the process.

  18. Processing of High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water - Final Report

    SciTech Connect

    Arrington Jr., C. A.

    2000-11-15

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of oxidation reactions at subcritical and supercritical temperatures are being followed by Raman spectroscopy using a high temperature stainless steel cell with diamond windows. In these reactions both hydrogen peroxide and nitrate anions are used as the oxidizing species with Cr(III) compounds and organic compounds as reducing agents.

  19. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  20. Supercritical fluid extraction of the pesticides carbosulfan and imidacloprid from process dust waste.

    PubMed

    Eskilsson, C S; Mathiasson, L

    2000-11-01

    Large amounts of contaminated process dust remain from the procedure of pesticide treatments applied to seed pellets. A pilot study in analytical-scale supercritical fluid extraction (SFE) was performed to determine the possibility of using supercritical carbon dioxide for the extraction of the nonpolar insecticide carbosulfan and the more polar insecticide imidacloprid present in contaminated dust waste, at concentrations of up to 20% (w/w). The effects of various experimental conditions, such as temperature, flow rate, and addition of modifier, on the recovery of the analytes were evaluated by extracting the pesticides both from spiked support material and from real dust samples. It was found that carbosulfan could easily be extracted from the dust waste within 30 min at 138 bar and 40 degrees C with a recovery of 98.9% (RSD = 2.3%, n = 10), compared to values obtained with a validated liquid extraction method. A sufficient removal of the more polar substance imidacloprid required the addition of a modifier, and the results showed a strong dependence of the extraction efficiency on the choice of modifier. Extractions at 276 bar and 80 degrees C with a solvent consisting of supercritical carbon dioxide modified with methanol (5%) gave a recovery of 97.0% (RSD = 3.6%, n = 10) using a 40 min extraction time. The results indicate that it seems to be possible to use process-scale SFE for the decontamination of pesticides from dust waste. The conditions outlined also permit analytical determinations of the two insecticides based on a combination of SFE and liquid chromatography.

  1. Modeling of mass transfer of Phospholipids in separation process with supercritical CO2 fluid by RBF artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...

  2. Topics in Chemical Instrumentation: An Introduction to Supercritical Fluid Chromatography--Part 2. Applications and Future Trends.

    ERIC Educational Resources Information Center

    Palmieri, Margo D.

    1989-01-01

    Discussed are selected application and future trends in supercritical fluid chromatography (SFC). The greatest application for SFC involves those analytes that are difficult to separate using GC or LC methods. Optimum conditions for SFC are examined. Provided are several example chromatograms. (MVL)

  3. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    NASA Astrophysics Data System (ADS)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-04-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. The combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement. A cure to this problem is developed in the present paper for the van der Waals EOS based on previous ideas. A special extra field and its corresponding evolution equation is added to the flow model. This new field separates the evolution of the nonlinear part of the density in the EOS and produce oscillation free solutions. The extra equation being nonconservative the behavior of two established numerical schemes on shocks computation is studied and compared to exact reference solutions that are available in the present context. The analysis shows that shock conditions of the nonconservative equation have important consequence on the results. Last, multidimensional computations of a supercritical gas jet is performed to illustrate the benefits of the present method, compared to conventional flow solvers.

  4. Hydrothermal synthesis of BaTiO 3 nanoparticles using a supercritical continuous flow reaction system

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiromichi; Noguchi, Takio; Islam, Nazrul M.; Hakuta, Yukiya; Imai, Yusuke; Ueno, Nobuhiko

    2010-06-01

    Highly crystalline BaTiO 3 nanoparticle was synthesized rapidly by hydrothermal reaction in supercritical water using a continuous flow reactor. The reactants of TiO 2 sol (or TiCl 4)/Ba(NO 3) 2 mixed solution and KOH solution were used as starting materials and that was heated quickly up to 400 °C under the pressure of 30 MPa for 8 ms as reaction time. The XRD results revealed that the crystal phase of the obtained particles was cubic BaTiO 3, indicating that the hydrothermal reaction in supercritical water was successfully proceeded under present reaction conditions. Primarily particle size of the BaTiO 3 nanoparticle was determined by means of BET surface area, as small as less than 10 nm with decreasing the reaction pH. In contrast, dispersed particle size in solution measured by DLS (dynamic light scattering) technique decreased from 260 to 90 nm with increasing the reactants concentration. Aggregation of BaTiO 3 nanoparticles might be depressed in the presence of coexisting nitrate anions.

  5. Fundamental study of CO2-H2O-mineral interactions for carbon sequestration, with emphasis on the nature of the supercritical fluid-mineral interface.

    SciTech Connect

    Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.; Wang, Yifeng; Matteo, Edward N.; Meserole, Stephen P.; Tallant, David Robert

    2013-09-01

    In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopy methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for

  6. Determination of Crude Fat in Food Products by Supercritical Fluid Extraction and Gravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Snow, Nicholas H.; Dunn, Maureen; Patel, Sohita

    1997-09-01

    The use of supercritical fluid extraction (SFE), a recently developed analytical extraction method, in the undergraduate instrumental analysis laboratory is demonstrated. Specifically, the extraction and gravimetric analysis of the fats from a common commercial confection was performed by several groups of undergraduates, and the extraction recoveries were evaluated. The percentage of fat by weight in the candy bar sample was determined to be 21 +/- 2 %, a value found to be in agreement with the product labeling. Under the extraction conditions used, complete extraction required 400-700 mL of supercritical carbon dioxide, applied to a 1.0 g sample of candy in several extraction steps. Data relating extraction recovery to the volume of carbon dioxide used for extraction is shown. SFE is shown to be a versatile addition to the undergraduate instrumental analysis laboratory, requiring a minimum of training and supervision. Finally, SFE can be extended to myriad physical and analytical measurements in the undergraduate laboratories. Examples derived from the current analytical literature are proposed.

  7. Supercritical fluid extraction: Preparing a superior mesophase precursor for carbon fibers. Final report

    SciTech Connect

    Thies, M.C.

    1994-08-01

    Supercritical fluid (SCF) extraction is being investigated for the production of mesophase pitch, the liquid-crystalline precursor for the manufacture of high-performance carbon fibers. The mesophase pitch is produced by fractionation of an isotropic petroleum pitch with supercritical toluene in a region of liquid-liquid equilibrium that exists at pressures above 40 bar. Dramatic improvements in the reliability of the apparatus have recently been made, and mesophase pitch can now be produced on a routine basis. An experimental program was conducted to explore the effects of temperature, solvent-to-pitch (S/P) ratio, and solvent solubility parameter on the properties of the mesophase pitch produced. Temperatures of 320 and 360 deg C, solubility parameters of 3.7 and 5.0 (cal/cc)(1/2), and S/P ratios of 2.5 and 3.5 were chosen to conform to a two-level, augmented factorial experiment. A linear model correlated the data to a high degree of certainty. Results indicate that the authors can adjust SCF operating conditions and tailor-make a mesophase pitch for a given end use. They have discovered a semitheoretical method for predicting a priori the softening point and yield of mesophase pitch for a given set of SCF operating conditions. The SCF extraction process can be represented on a pseudoternary phase diagram, and good estimates of product yields and softening points can be made from a limited experimental data measured at other conditions.

  8. Supercritical Hadley circulation within a layer of fluid saturated porous medium: Bifurcation to traveling wave

    SciTech Connect

    Manole, D.M.; Lage, J.L.; Antohe, B.V.

    1995-12-31

    Hadley circulation induced by horizontal and vertical temperature gradients imposed on a fluid saturated porous medium layer is simulated numerically. The flow is assumed to be longitudinal, that is the secondary flow is composed of cells with axes transverse to the direction of the Hadley circulation. Critical (bifurcation) states predicted theoretically via linear stability analysis are verified by the numerical results giving confidence on the accuracy of the method. Several values of horizontal Rayleigh number, Ra{sub h}, and vertical Rayleigh number, Ra{sub v}, are studied. Results indicate that beyond a threshold horizontal Rayleigh number value the flow and temperature fields evolve from subcritical Hadley circulation to a supercritical time periodic flow. The secondary flow emerges in the form of a traveling wave aligned with the main (Hadley) flow direction. This traveling wave is characterized, at supercritical low vertical Rayleigh numbers, by the continuous drifting of two horizontal layers of flow cells that move in opposite directions. As the vertical Rayleigh number increases, the traveling wave becomes characterized by a unique layer of cells drifting in the direction opposite to the applied horizontal temperature gradient. Numerical animation unravels the main features of the transport process. This simplified model is of fundamental and practical importance, for instance, to the study of geothermal activities, underground transport of pollutants, paper processing, crystal growth, building insulation, and gas reservoirs.

  9. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction.

    PubMed

    Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J

    2012-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings.

  10. Assay of tolnaftate and related impurities by isocratic supercritical fluid chromatography.

    PubMed

    Patil, S T; Bhoir, I C; Bhagwat, A M; Sundaresan, M

    2000-05-01

    Tolnaftate, an antifungal drug (TF) and related impurities arising from synthesis, viz., N-methyl-m-toluidine (NMmT) and beta-naphthol-1-chlorothio carbamate (beta-NCTC) can be determined by supercritical fluid chromatography. Even though it was possible to elute TF completely with neat SCF CO2, the peaks of the impurities were found to merge. The chromatographic figures of merit of the three analytes such as retention time (tR), capacity factor (k), selectivity factor (alpha), no. of theoretical plates (N), were optimized. The three compounds can be resolved in 5 min on a Hypersil (250 x 4.0 mm) 5 mu, C18 column with supercritical carbon dioxide, modified with 1.96% methanol as the mobile phase at 9.81 MPa and at 40 degrees C. Detection was carried out at 220 nm. The data as evaluated by the linear regression least squares fit method gave linearity ranges from 0.2 to 10.0 microg/mL for TF and NMmT and 0.3 to 10.0 microg/mL for beta-NCTC with correlation coefficients > 0.99. The method was successfully employed to estimate levels of 0.01% for NMmT and 0.02% for beta-NCTC with respect to TF.

  11. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.

    PubMed

    Gosselink, Richard J A; Teunissen, Wouter; van Dam, Jan E G; de Jong, Ed; Gellerstedt, Göran; Scott, Elinor L; Sanders, Johan P M

    2012-02-01

    Valorisation of lignin plays a key role in further development of lignocellulosic biorefinery processes the production of biofuels and bio-based materials. In the present study, organosolv hardwood and wheat straw lignins were converted in a supercritical fluid consisting of carbon dioxide/acetone/water (300-370°C, 100bar) to a phenolic oil consisting of oligomeric fragments and monomeric aromatic compounds with a total yield of 10-12% based on lignin. These yields are similar to the state-of-the-art technologies such as base-catalysed thermal processes applied for lignin depolymerisation. Addition of formic acid increases the yield of monomeric aromatic species by stabilizing aromatic radicals. Supercritical depolymerisation of wheat straw and hardwood lignin yielded monomeric compounds in different compositions with a maximum yield of 2.0% for syringic acid and 3.6% for syringol, respectively. The results of the present study showed that under the applied conditions competition occurred between lignin depolymerisation and recondensation of fragments.

  12. Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    PubMed

    Huang, Yang; Zhang, Tingting; Zhou, Haibo; Feng, Ying; Fan, Chunlin; Chen, Weijia; Crommen, Jacques; Jiang, Zhengjin

    2016-03-20

    Triterpenoid saponins (TSs) are the most important components of some traditional Chinese medicines (TCMs) and have exhibited valuable pharmacological properties. In this study, a rapid and efficient method was developed for the separation of kudinosides, stauntosides and ginsenosides using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The separation conditions for the selected TSs were carefully optimized after the initial screening of eight stationary phases. The best compromise for all compounds in terms of chromatographic performance and MS sensitivity was obtained when water (5-10%) and formic acid (0.05%) were added to the supercritical carbon dioxide/MeOH mobile phase. Beside the composition of the mobile phase, the nature of the make-up solvent for interfacing SFC with MS was also evaluated. Compared to reversed phase liquid chromatography, the SFC approach showed higher resolution and shorter running time. The developed SFC-MS methods were successfully applied to the separation and identification of TSs present in Ilex latifolia Thunb., Panax quinquefolius L. and Panax ginseng C.A. Meyer. These results suggest that this SFC-MS approach could be employed as a useful tool for the quality assessment of natural products containing TSs as active components.

  13. Analysis of anthraquinones in rhubarb (Rheum palmatum and Rheum officinale) by supercritical fluid chromatography.

    PubMed

    Aichner, Dorothea; Ganzera, Markus

    2015-11-01

    The first report on the separation of five anthraquinones (chrysophanol, physcion, emodin, aloeemodin, and rhein) from rhubarb by supercritical fluid chromatography indicates that this technique is an interesting analytical alternative not just for non-polar substances. Within less than five minutes the compounds could be baseline resolved, using a mobile phase comprising supercritical carbon dioxide and methanol with 0.05% diethylamine. The optimum stationary phase showed to be an Acquity UPC(2) HSS C18 SB 1.8 µm column, operated at a flow rate of 2 ml/min and a temperature of 30 °C. Method validation confirmed that the developed procedure is selective, linear (R(2)≥0.999), accurate (recovery rates: 95.4% to 103.1%), and precise (intra-day≤6.9%, inter-day≤4.7%); the limit of detection was below 0.5 ng on-column. The analysis of plant extracts was feasible with acceptable repeatability (σrel≤3.8%), and it determined 0.3 to 0.7% of free aglyca in the native samples. After hydrolysis according to the European Pharmacopoeia, a rise in the total content up to 2.1% was observed, with rhein being the most dominant derivative in nearly all specimens.

  14. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂

    DOE PAGES

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; ...

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reductionmore » of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less

  15. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO₂

    SciTech Connect

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO₂ as a working fluid for shale gas production. We theorize and outline potential advantages of CO₂ including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO₂. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO₂ proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.

  16. [Study on chemical constituents of the essential oil from Myristica fragrans Houtt. by supercritical fluid extraction and steam distillation].

    PubMed

    Qiu, Qin; Zhang, Guoying; Sun, Xiaomin; Liu, Xinxin

    2004-11-01

    Essential oils were extracted from Myristica fragrans Houtt. by supercritical fluid extraction (SFE) and steam distillation (SD). Their components were analyzed by gas chromatography-mass spectrometry and compared. 48 compounds were identified for the essential oil extracted by supercritical carbon dioxide, and its main components have been found to be myristic acid, myristicin, terpinen-4-ol, alpha-pinene and safrole. 38 compounds were identified for the essential oil obtained by SD, and its main components have been found to be beta-pinene, terpinen-4-ol, alpha-pinene, gamma-terpinene and beta-phellandrene.

  17. Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan

    2016-09-01

    The supercritical water oxidation reaction of quinazoline and a set of related reaction products were investigated in batch reactors by varying the temperature (T, 400-600 °C), time (t, 0-400 s), water density (ρ, 70.79-166.28  kg m(-3)) and oxidation coefficient (OC, 0-4.0). The TOC removal efficiency (CRE) increased significantly as the OC increased, whereas this effect was very limited at high OC (>2.0). Lack of oxygen resulted in low CRE and TN removal efficiency (NRE), also cause coke-formation, and giving high yield of NH3 and nitrogenous organic intermediates. Prolonging reaction time did not provide an appreciable improvement on CRE but remarkably increased NRE at temperature higher than 500 °C. Pyrimidines and pyridines as the nitrogenous intermediates were largely found in GC-MS spectrum. Polymerization among benzene, phenyl radical and benzyl radical played important roles in the formation of PAHs, such as naphthalene, biphenyl, phenanthrene. These collective results showed how the yield of intermediate products responded to changes in the process variables, which permitted the development of a potential reaction network for supercritical water oxidation of quinazoline.

  18. Supercritical fluid extraction of N-nitrosamines in hams processed in elastic rubber nettings.

    PubMed

    Pensabene, J W; Fiddler, W; Maxwell, R J; Lightfield, A R; Hampson, J W

    1995-01-01

    A method for analysing N-nitrosamines in hams processed in elastic rubber nettings by supercritical fluid extraction (SFE) is described. The study was carried out with the prototype of a commercial extractor with a silica gel adsorption cartridge integrally attached to the variable restrictor. The SFE method was compared with a solid-phase extraction procedure currently used for ham analysis. Both methods used the same gas chromatographic-chemiluminescence detection conditions. No significant difference (p < 0.05) was found between results obtained with the 2 methods. Repeatability standard deviation of the SFE method was 1.7 ppb, with a coefficient of variation (CV) of 2.7%, compared with 2.2 ppb, with a CV of 3.5%, for solid-phase extraction. SFE permits minimal use of solvent and more rapid analysis of nitrosamines.

  19. Cost-Effective Solar Thermal Energy Storage: Thermal Energy Storage With Supercritical Fluids

    SciTech Connect

    2011-02-01

    Broad Funding Opportunity Announcement Project: UCLA and JPL are creating cost-effective storage systems for solar thermal energy using new materials and designs. A major drawback to the widespread use of solar thermal energy is its inability to cost-effectively supply electric power at night. State-of-the-art energy storage for solar thermal power plants uses molten salt to help store thermal energy. Molten salt systems can be expensive and complex, which is not attractive from a long-term investment standpoint. UCLA and JPL are developing a supercritical fluid-based thermal energy storage system, which would be much less expensive than molten-salt-based systems. The team’s design also uses a smaller, modular, single-tank design that is more reliable and scalable for large-scale storage applications.

  20. Comparison of supercritical fluid and Soxhlet extractions for the isolation of nitro compounds from soils.

    PubMed

    Bajerová, Petra; Eisner, Ales; Jezová, Vera; Adam, Martin; Ventura, Karel

    2008-05-01

    Supercritical fluid extraction (SFE) with CO(2), a clean and rapid alternative to conventional Soxhlet extraction, was investigated for the extraction of nitro compounds from soil samples. Quantitative extraction by SFE was accomplished at a pressure of 25 MPa and an extraction temperature of 60 degrees C, for 30 min in dynamic mode and using acetonitrile as modifier, and the results were comparable with those obtained by acetonitrile Soxhlet extraction (3 h) for all soil samples. Extracts from these two procedures were analyzed by gas chromatography coupled with mass spectrometry. Quantitative reproducibility for SFE extracts was acceptable (RSD 2-10%), and the quantity of solvent was reduced from 160 mL for Soxhlet extraction to 5 mL in the case of SFE.

  1. Evaluation of flash supercritical fluid chromatography and alternate sample loading techniques for pharmaceutical medicinal chemistry purifications.

    PubMed

    Miller, Larry; Mahoney, Max

    2012-08-10

    Flash chromatography is the preferred approach for small molecule purification in pharmaceutical discovery. This paper will discuss the potential for flash supercritical fluid chromatography (SFC) as an alternative technology for these purifications. It was shown that the high sample loadings seen with flash LC could also be achieved using flash SFC. The dry load injection technique greatly increases the amount of sample that can be applied to a flash SFC column while still achieving separation. Flash SFC has much lower solvent usage and higher purification productivities relative to flash LC. Product concentrations post purification were higher for flash SFC vs. flash LC, reducing the time required to isolate dry product. There still exist a number of technical details to be worked out with flash SFC, mainly around the equipment and column/cartridge technology.

  2. Improving sensitivity in chiral supercritical fluid chromatography for analysis of active pharmaceutical ingredients.

    PubMed

    Helmy, Roy; Biba, Mirlinda; Zang, Jia; Mao, Bing; Fogelman, Kimber; Vlachos, Vaso; Hosek, Paul; Welch, Christopher J

    2007-11-01

    Despite its status as the preferred method for routine enantiopurity analysis in pharmaceutical research, supercritical fluid chromatography (SFC) has historically been unsuited for the accurate and precise measurements required for release testing of active pharmaceutical ingredients (APIs) under current good manufacturing processes (cGMPs). Insufficient signal to noise, as compared to HPLC, has heretofore been the major limitation of the chiral SFC approach. We herein describe an investigation into the fundamental limitations and sources of noise in the SFC approach, identifying thermal, electronic, and mechanical sources of noise within the flow cell as key parameters contributing to reduced sensitivity. A variety of instrument modifications are explored, ultimately leading to the development of a new and improved flow cell and other instrument modifications that allow suitable sensitivity and accuracy to carry out GMP release testing for enantiopurity analysis using SFC.

  3. Supercritical fluid chromatography in the routine stability control of antipruritic preparations.

    PubMed

    Anton, K; Bach, M; Geiser, A

    1991-08-16

    A recently developed system for supercritical fluid chromatography (SFC), based on independent flow and pressure control and suitable for packed and capillary columns, was tested on a routine level for the reliable, accurate and precise determination of active pharmaceutical substances in stability control. Only packed columns were used for this analysis. The chromatographic figures of merit and the validation data of the active substance alone and in two different dosage forms (accuracy, 98.8-99.2%; precision, 0.6%; linearity of response, 0.998-0.999) are comparable with the former liquid chromatographic methods. Economical (reduction of analysis time, fewer experimental steps and less sample pre-separation) and ecological (carbon dioxide of organic solvents) advantages make SFC an attractive alternative to liquid chromatography in the determination of crotamiton.

  4. Free-standing arrays of isolated TiO2 nanotubes through supercritical fluid drying.

    PubMed

    Deneault, James R; Xiao, Xiaoyin; Kang, Tae-Sik; Wang, Joanna S; Wai, Chien M; Brown, Gail J; Durstock, Michael F

    2012-01-16

    A common complication in fabricating arrays of TiO(2) nanotubes is that they agglomerate into tightly packed bundles during the inevitable solvent evaporation step. This problem is particularly acute for template-fabricated TiO(2) nanotubes, as the geometric tunability of this technique enables relatively large inter-pore spacings or, from another perspective, more space for lateral displacement. Our work showed that agglomeration results from the surface tension forces that are present as the ambient solvent is evaporated from the nanotube film. Herein, we report a processing and fabrication approach that utilizes supercritical fluid drying (CO(2)) to prepare arrays of template-fabricated TiO(2) nanotubes that are free-standing and spatially isolated. This approach could be beneficial to many emerging technologies, such as solid-state dye-sensitized solar cells and vertically-oriented carbon nanotube electrodes.

  5. Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities.

    PubMed

    Hicks, Michael B; Regalado, Erik L; Tan, Feng; Gong, Xiaoyi; Welch, Christopher J

    2016-01-05

    Supercritical fluid chromatography (SFC) has long been a preferred method for enantiopurity analysis in support of pharmaceutical discovery and development, but implementation of the technique in regulated GMP laboratories has been somewhat slow, owing to limitations in instrument sensitivity, reproducibility, accuracy and robustness. In recent years, commercialization of next generation analytical SFC instrumentation has addressed previous shortcomings, making the technique better suited for GMP analysis. In this study we investigate the use of modern SFC for enantiopurity analysis of several pharmaceutical intermediates and compare the results with the conventional HPLC approaches historically used for analysis in a GMP setting. The findings clearly illustrate that modern SFC now exhibits improved precision, reproducibility, accuracy and robustness; also providing superior resolution and peak capacity compared to HPLC. Based on these findings, the use of modern chiral SFC is recommended for GMP studies of stereochemistry in pharmaceutical development and manufacturing.

  6. Supercritical fluid extraction of polyhalogenated pollutants from aquaculture and marine environmental samples: a review.

    PubMed

    García-Rodríguez, Diego; Carro-Díaz, Antonia María; Lorenzo-Ferreira, Rosa Antonia

    2008-05-01

    This article focuses on the state-of-the-art in sample preparation using supercritical fluid extraction (SFE), to monitor the content of polyhalogenated pollutants in aquaculture and marine environmental samples. Marine sediments and biological applications, including several types of samples matrices (fish, shellfish, seaweed and fish feed) and analyte groups (polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), polybrominated diphenylethers (PBDEs), polychlorinated dibenzo-p-dioxin (PCDD)/Fs and organochlorinated pesticide (OCPs)) are discussed with respect to SFE use and optimisation of conditions. We also discuss the great analytical potential of SFE, the integration of the extraction and clean-up steps for rapid sample processing justifying its use for routine work. The most recent SFE applications to the determination of these pollutants in marine environmental (biota and sediment) samples, published in the last 15 years, are reviewed.

  7. Supercritical fluid extraction of lipids from linseed with on-line evaporative light scattering detection.

    PubMed

    Abrahamsson, Victor; Rodriguez-Meizoso, Irene; Turner, Charlotta

    2015-01-01

    Supercritical fluid extraction (SFE) is a green alternative method of extraction for neutral lipids in seeds compared to conventional methods utilizing organic solvents. In this work, a novel method where SFE is hyphenated with an evaporative light scattering detector is presented. The method was subsequently applied to determine lipid content in crushed linseed. The new method enables rapid quantification of extracted lipids as well as be ability to continuously monitor the extraction rate in real-time, thus being able to determine the time point of completed extraction. Both the detector and the method was validated. The results show that any of several tested oils can be used to calibrate the detection method for the determination of lipids extraction from linseed. The overall method repeatability and intermediate precision was 2.6% relative standard deviations. The extracted amount was significantly less than that obtained using the standard method of Soxhlet with petroleum ether, 26.0±0.4% (95% CI, n=9) compared to 32.3±1.3% (95% CI, n=3) of extracted amounts. It was found that channeling effects were present, and by either performing sequential repeated extractions with decompression in-between or by using a relatively large vessel a more complete extraction could be obtained. Interestingly, a substantially higher extracted amount (approximately 50%) was obtained compared to both a single extraction by SFE and the Soxhlet method. Therefore, it is recommended that an additional extraction including a rapid decompression in-between should be included in the validation of a method using supercritical fluid extraction, in order to either rule out channeling effects or to acquire a full recovery.

  8. Drying Using Supercritical Fluid Technology as a Potential Method for Preparation of Chitosan Aerogel Microparticles.

    PubMed

    Obaidat, Rana M; Tashtoush, Bassam M; Bayan, Mohammad F; Al Bustami, Rana T; Alnaief, Mohammad

    2015-12-01

    Supercritical fluid technology offers several advantages in preparation of microparticles. These include uniformity in particle size, morphology, and drug distribution without degradation of the product. One of the recent advantages is preparation of porous aerogel carrier with proper aerodynamic properties. In this study, we aimed to prepare chitosan aerogel microparticles using supercritical fluid (SCF) technology and compare that with microparticles produced by freeze drying (FD). Loading the prepared carriers with a model drug (salbutamol) was also performed. Comparisons of the particle properties and physicochemical characterizations were undertaken by evaluating particle size, density, specific surface area, and porosity. In vitro drug release studies were also investigated. The effect of many variables, such as molecular weight of chitosan oligomers, concentrations of chitosan, and concentrations of tripolyphosphate on the release, were also investigated. Chitosan aerogels were efficiently produced by SCF technology with an average particle size of 10 μm with a tapped density values around 0.12 g/mL, specific surface area (73-103) m(2)/g, and porosity (0.20-0.29) cc/g. Whereas, microparticles produced by FD method were characterized as cryogels with larger particle size (64 microns) with clear cracking at the surface. Sustained release profile was achieved for all prepared microparticles of salbutamol produced by the aforementioned methods as compared with pure drug. The results also demonstrates that chitosan molecular weight, polymer concentration, and tripolyphosphate concentration affected the release profile of salbutamol from the prepared microparticles. In conclusion, SCF technology was able to produce chitosan aerogel microparticles loaded with salbutamol that could be suitable for pulmonary drug delivery system.

  9. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    DOE PAGES

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-02-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-knownmore » pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.« less

  10. Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids.

    PubMed

    Thantsha, Mapitsi S; Cloete, Thomas E; Moolman, Francis S; Labuschagne, Philip W

    2009-01-31

    Gastric acidity is the main factor affecting viability of probiotics in the gastrointestinal tract (GIT). This study investigated the survival in simulated gastrointestinal fluids of Bifidobacterium longum Bb-46 encapsulated in interpolymer complexes formed in supercritical carbon dioxide (scCO(2)). Bacteria were exposed sequentially to simulated gastric fluid (SGF, pH 2) for 2 h and simulated intestinal fluid (SIF, pH 6.8) for 6 or 24 h. Total encapsulated bacteria were determined by suspending 1 g of product in SIF for 6 h at 37 degrees C prior to plating out. Plates were incubated anaerobically at 37 degrees C for 72 h. The interpolymer complex displayed pH-responsive release properties, with little to no release in SGF and substantial release in SIF. There was a limited reduction in viable counts at the end of exposure period due to encapsulation. Protection efficiency of the interpolymer complex was improved by addition of glyceryl monostearate (GMS). Gelatine capsules delayed release of bacteria from the interpolymer complex thus minimizing time of exposure to the detrimental conditions. Use of poly(caprolactone) (PCL), ethylene oxide-propylene oxide triblock copolymer (PEO-PPO-PEO) decreased the protection efficiency of the matrix. Interpolymer complex encapsulation showed potential for protection of probiotics and therefore for application in food and pharmaceuticals.

  11. Gas dynamics of heat-release-induced waves in supercritical fluids: revisiting the Piston Effect

    NASA Astrophysics Data System (ADS)

    Migliorino, Mario Tindaro; Scalo, Carlo

    2016-11-01

    We investigate a gasdynamic approach to the modeling of heat-release-induced compression waves in supercritical fluids. We rely on highly resolved one-dimensional fully compressible Navier-Stokes simulations of CO2 at pseudo-boiling conditions in a closed duct inspired by the experiments of Miura et al.. Near-critical fluids exhibit anomalous variations of thermodynamic variables taken into account by adopting the Peng-Robinson equation of state and Chung's Method. An idealized heat source is applied, away from the boundaries, resulting in the generation of compression waves followed by contact discontinuities bounding a region of hot expanding fluid. For higher heat-release rates such compressions are coalescent with distinct shock-like features (i.e. non-isentropicity and propagation Mach numbers measurably greater than unity) and a non-uniform post-shock state, not present in ideal gas simulations, caused by the highly nonlinear equation of state. Thermoacoustic effects are limited to: (1) a one-way/one-time thermal-to-acoustic energy conversion, and (2) cumulative non-isentropic bulk heating due to the resonating compression waves, resulting in what is commonly referred to as the Piston Effect.

  12. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  13. Continuous reactions in supercritical carbon dioxide: problems, solutions and possible ways forward.

    PubMed

    Han, Xue; Poliakoff, Martyn

    2012-02-21

    This Tutorial Review focuses on supercritical carbon dioxide (scCO(2)), and discusses some of the problems that have frustrated its wide use on an industrial scale. It gives some recent examples where strategies have been developed to reduce the energy requirements, including sequential reactions and gas-expanded liquids. It then describes a number of cases where scCO(2) offers real chemical advantages over more conventional solvents, for example by controlled phase separation, tunable selectivity, oxidation and on-line analysis and self-optimisation. Overall, this review indicates where scCO(2) could deliver value in the future.

  14. Shale Micromodel Experiments: Fluid Flow and Mobilization using Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Carey, J. W.; Viswanathan, H.

    2014-12-01

    In recent years, use of engineered micromodels to investigate pore-scale fluid flow and transport phenomena to better understand and model field-scale observables has steadily increased. Micromodels are thin porous structures in which flow is restricted to two-dimensions and have become common since they are effective, relatively inexpensive tools for visualizing and quantifying complex flow phenomena. We describe a unique micromodel experimental system recently developed at Los Alamos National Laboratory (LANL). The system consists of a pressure chamber, which allows us to conduct experiments at geologic conditions. The maximum working pressure and temperature is 1500 psig and 80° C, respectively, allowing for supercritical carbon dioxide (scCO2) to be used as a working fluid. Additionally, we have developed micromodels fabricated in geomaterials (e.g., shale and Portland cement), whereas typical micromodels are fabricated in engineered materials such as glass or silicon. The use of geomaterial micromodels allows us to better represent the fluid-rock interactions including wetting angles and chemical reactivity at conditions representative of natural subsurface environments. In this work, we present experimental results in simple fracture systems (e.g., straight channels, pore doublets) with applications to hydrocarbon mobility in hydraulically fractured shale. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in different materials. In the straight channel micromodels, we investigate interfacial velocities and compare the results with theoretical models. In the pore doublet micromodels, we investigate mobilization of oil blobs and contrast the effectiveness of water and scCO2 in the extraction of hydrocarbon from fracture networks. Next, we present experimental results in complex fracture network patterns derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We discuss

  15. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  16. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  17. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions.

  18. Probing the vapor-liquid phase behaviors of near-critical and supercritical fluids using a shear mode piezoelectric sensor.

    PubMed

    Oag, Robert M; King, Peter J; Mellor, Christopher J; George, Michael W; Ke, Jie; Poliakoff, Martyn

    2003-02-01

    With the rapidly expanding industrial and research applications of near-critical and supercritical technology there is a pressing need for a simple and inexpensive sensor that may be used to determine the phase coexistence regions of fluid mixtures and to establish whether a fluid system is below, at, or above, a critical point. Mechanically vibrating AT-cut quartz plates may be used to determine the product of the fluid density and viscosity of a fluid in which it is immersed, through measurement of the impedance minimum of the electrical equivalent circuit or of the corresponding frequency. The density-viscosity product changes abruptly between fluid phases and rapidly along the isotherm corresponding to the critical temperature, enabling such a plate to act as a sensor of these fluid features. We consider the limitations and linearity of such a sensor and its behavior when a liquid-gas meniscus crosses its surface. We demonstrate for the first time the effective use of an AT-cut quartz sensor in mapping the phase behavior of fluids, using measurements made on carbon dioxide and ethane for calibration and then investigating an ethane-carbon dioxide mixture. The advantages of this experimental approach are that (i) piezoelectric sensors are available for operation up to 1,000 degrees C and at extremely high pressures and (ii) the measurement of the density-viscosity product of supercritical fluids is inherently simpler than traditional techniques for determining phase behavior.

  19. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  20. High performance carbon fibers from mesophases produced by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Dauche, Franck Michel

    The purpose of this research is to investigate the potential of supercritical fluid extraction for the production of an improved precursor for the manufacture of high thermal conductivity carbon fibers. Mesophase pitch fractions were produced by the continuous fractionation of an isotropic petroleum-based pitch with supercritical toluene in a region of liquid-liquid equilibrium. A statistical experimental design was used to investigate a region of extraction operating conditions from which the fractions were expected to exhibit superior spinnability. Chemical and physical characterizations were performed on the fractions, and the results were used to explore the effect of the extraction conditions on the mesophase properties. DRIFT data were shown to be particularly useful for characterizing the chemical composition of the mesophase fractions produced, and GPC was successfully used to determine their molecular weight distribution. Two thermodynamic models based on the SAFT equation together with (1) the concepts of continuous thermodynamics (2) molecular weight information on the oligomeric nature of the feed pitch were used to correlate the measured results. By using three adjustable parameters, solvent compositions and molecular weight distributions in each phase were calculated. Although the oligomeric model is able to qualitatively represent trends observed in the data, it cannot as yet be used to quantitatively predict phase compositions. Based on the characterizations of the supercritically extracted mesophases produced, selected fractions were melt-spun into round- and ribbon-shaped fibers using a laboratory-scale melt-spinning apparatus. It was found that a relatively narrow window of mesophase properties and compositions allowed fiber making without off-gassing. For a given spinnable mesophase, wide angle X-ray diffraction was used on as-spun fibers produced over a wide range of spinning temperatures to evaluate their potential to yield, after proper heat

  1. Fractionation of petroleum pitch by supercritical fluid extraction: Experimental phase behavior and thermodynamic modeling

    SciTech Connect

    Hutchenson, K.W.

    1990-01-01

    Petroleum pitch is being considered as a raw material for the economical production of high-performance carbon fibers and composites. This dissertation presents part of ongoing research that is investigating a supercritical fluid extraction process for producing a mesophase precursor pitch for carbon fibers. The process can be used to separate the parent pitch into several fractions having narrow molecular weight distributions. A continuous-flow apparatus for measuring vapor-liquid and liquid-liquid phase equilibria is described that is capable of operation at pressures to 350 bar and temperatures to 675 K. A key feature of the apparatus is a nonvisual interface detection technique for operation with opaque phases. Phase equilibrium measurements are presented for mixtures of toluene with phenanthrene and with two petroleum pitches: Ashland A-240 pitch and a proprietary heat-soaked pitch obtained from Conoco. These measurements and analytical results for extracted fractions demonstrate that supercritical extraction can be used to separate pitch into fractions by molecular weight. High extraction yields and significant mesophase formation are observed in a region of liquid-liquid phase equilibrium, indicating this region is likely to be of practical interest for fractionating petroleum pitch. Initial efforts toward the development of a thermodynamic model of the phase equilibria for these systems are also presented. The model uses generalized correlations for equation-of-state constants in terms of average molecular structure parameters and does reasonably well in fitting VLE data for the pitch/toluene system. The model should be useful for guiding future phase equilibrium measurements.

  2. Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.

  3. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H.

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  4. Optimization of parameters for the supercritical fluid extraction in the determination of N-nitrosamines in rubbers.

    PubMed

    Rech, F; Garrigós, M C; Marín, M L; Cantó, A; Jiménez, A

    2002-07-19

    The study of the possibilities of supercritical fluid extraction (SFE) with N-nitrosamines in rubbers has been carried out. Home-made materials fortified with several N-nitrosamines were prepared in order to optimize the SFE parameters. A Plackett-Burman design was employed to evaluate the influence of those parameters to be controlled in SFE, such as pressure, temperature, static and dynamic time, restrictor temperature and volume of modifier while CO2 was used as the extraction fluid. An extra central composite design for the main factors (according to the previously obtained results) was also developed in order to refine the best supercritical conditions for the extraction of N-nitrosamines from rubbers. Gas chromatography with a nitrogen and phosphorus sensitive detector was used to achieve sensitivity and limits of detection for the concentrations expected in plastic materials. The proposed analytical method has shown to be useful in the determination of N-nitrosamines even for complex matrices.

  5. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    SciTech Connect

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru; Goto, Motonobu

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.

  6. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II - Dissipative fluid electrodynamics

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Aggson, T. L.; Mangeney, A.; Lacombe, C.; Harvey, C. C.

    1986-01-01

    Using the results of Scudder et al. (1986) on the bow shock wave observed by ISEE satellites, a quantitative description is presented of the electrodynamics of ion and electron fluids, and phase-standing wave interaction which manifests itself as a supercritical MHD shock. The cross-shock electrical profile was determined in both the normal incidence frame and in the deHoffman-Teller frame by two different methods, and the results were compared with dc electric field measurements.

  7. Supercritical fluid of particles with a Yukawa potential: A new approximation for the direct correlation function and the Widom line

    NASA Astrophysics Data System (ADS)

    Tareyeva, E. E.; Ryzhov, V. N.

    2016-12-01

    We propose an approximation of a direct correlation function corresponding to the linearization with respect to - βϕ( r) of a generalized mean spherical approximation for a hard-core multi-Yukawa system of particles. We use the results to study the behavior of maximums of thermodynamic response functions in the supercritical region of a fluid with a two-term Yukawa potential imitating the Lennard-Jones potential.

  8. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    PubMed

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent

  9. Development and evaluation of supercritical fluid chromatography/mass spectrometry for polar and high-molecular-weight coal components: Technical progress report for the period October 1, 1985 - September 30, 1986

    SciTech Connect

    Chess, E.K.; Kalinoski, H.T.; Wright, B.W.; Smith, R.D.

    1987-02-01

    Technical progress toward the programmatic goals of developing and evaluating SFC/MS for the analysis of higher-molecular-weight compounds was made in the following areas: Studies have been conducted to characterize the requirements for and to facilitate the transfer of thermal energy to the capillary flow restrictor region. Such studies have resulted in a new interface probe design which allows better transport of higher molecular weight, less volatile compounds decreasing the mass discrimination at the supercritical fluid chromatograph mass spectrometer interface region. Calibration of the magnetic sector mass spectrometer to 1400 daltons has been developed. A digital syringe pump controller, interfaced to an Apple IIe computer allows much finer and more reproducible control of the pressure (density) of the supercritical fluid mobile phase. Nonpolar supercritical fluid mobile phases have been modified by the addition of small amounts of polar fluids to create fluids with higher solvating powers than, but with similar operating parameters. An in-depth knowledge of the fluid behavior is required for successful utilization of these modified fluids. Polar-modified fluids have been used with three types of supercritical fluid introduction to the mass spectrometer: direct fluid injection, supercritical fluid chromatography, and supercritical fluid extraction. Capillary columns evaluated for stability indicated that our present methods for preparing columns are sufficient, for many of the stationary phase and supercritical fluid combinations tested, to create columns that can be used successfully with supercritical fluid chromatography. 9 refs., 11 figs.

  10. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    PubMed Central

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  11. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples.

  12. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry.

    PubMed

    Camacho-Muñoz, Dolores; Kasprzyk-Hordern, Barbara; Thomas, Kevin V

    2016-08-31

    In order to assess the true impact of each single enantiomer of pharmacologically active compounds (PACs) in the environment, highly efficient, fast and sensitive analytical methods are needed. For the first time this paper focuses on the use of ultrahigh performance supercritical fluid based chromatography coupled to a triple quadrupole mass spectrometer to develop multi-residue enantioselective methods for chiral PACs in environmental matrices. This technique exploits the advantages of supercritical fluid chromatography, ultrahigh performance liquid chromatography and mass spectrometry. Two coated modified 2.5 μm-polysaccharide-based chiral stationary phases were investigated: an amylose tris-3,5-dimethylphenylcarbamate column and a cellulose tris-3-chloro-4-methylphenylcarbamate column. The effect of different chromatographic variables on chiral recognition is highlighted. This novel approach resulted in the baseline resolution of 13 enantiomers PACs (aminorex, carprofen, chloramphenicol, 3-N-dechloroethylifosfamide, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, imazalil, naproxen, ofloxacin, omeprazole, praziquantel and tetramisole) and partial resolution of 2 enantiomers PACs (ibuprofen and indoprofen) under fast-gradient conditions (<10 min analysis time). The overall performance of the methods was satisfactory. The applicability of the methods was tested on influent and effluent wastewater samples. To the best of our knowledge, this is the first feasibility study on the simultaneous separation of chemically diverse chiral PACs in environmental matrices using ultrahigh performance supercritical fluid based chromatography coupled with tandem mass spectrometry.

  13. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli; Ye, Xiangrong

    2005-02-02

    The electrocatalytic reactivity of palladium-modified carbon nanotubes (Pd-CNTs) for the oxygen reduction reaction (ORR) was investigated at the glassy carbon electrode surface in 1 M H2SO4 saturated by oxygen. Carbon nanotubes modified by palladium nanoparticles were synthesized in supercritical carbon dioxide and characterized by transmission electron micrograph. The electrocatalytic activity of the CNTs film and Pd–CNTs film toward oxygen reduction was studied using cyclic voltammetry and linear sweep voltammetry methods. The molecular oxygen reduction at the Pd-CNTs electrode started at a more positive potential than that at the CNTs electrode. A possible reaction mechanism was proposed in which the ORR may proceed through two-step two-electron processes for the Pd-CNTs modified electrode. Experimental results revealed that Pd-CNTs possess a remarkable activity and high stability for oxygen reduction in acid medium, which implies the potential applications of the Pd–CNTs for constructing electrodes of fuel cells.

  14. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH3, etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO2 formation. Low sensitivity of NH3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process.

  15. Supercritical fluid particle design for poorly water-soluble drugs (review).

    PubMed

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  16. Method of making supercritical fluid molecular spray films, powder and fibers

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  17. Bioactive insulin microparticles produced by supercritical fluid assisted atomization with an enhanced mixer.

    PubMed

    Du, Zhe; Tang, Chuan; Guan, Yi-Xin; Yao, Shan-Jing; Zhu, Zi-Qiang

    2013-09-15

    Supercritical fluid assisted atomization introduced by a hydrodynamic cavitation mixer (SAA-HCM) was used to micronize insulin from aqueous solution without use of any organic solvents. Insulin microparticles produced under different operating conditions including solution type, solution concentration and precipitator temperature presented distinct morphologies such as highly folded, partly deflated, corrugated or smooth hollow spherical shape. Solution concentration had a striking influence on particle size, and insulin microparticles produced from acidic solution had mean diameters increasing from 1.4 μm to 2.7 μm when protein concentration increased from 3g/L to 50 g/L. HPLC chromatograms showed no degradation of insulin after SAA-HCM processing and FTIR, CD and fluorescence data further confirmed the structural stability. TGA analysis revealed that insulin microparticles remained moderate moisture content compared with raw material. In vivo study showed that insulin processed by SAA-HCM from acidic solution retained identical bioactivity. SAA-HCM is demonstrated to be a very promising process for insulin inhaled formulation development.

  18. Optimisation of supercritical fluid extraction of essential oil components of Diplotaenia cachrydifolia: Box-Behnken design.

    PubMed

    Khajeh, Mostafa

    2012-01-01

    Essential oil of Diplotaenia cachrydifolia cultivated in Iran was obtained by supercritical fluid extraction (SFE) method. The oils were analysed by capillary gas chromatography using flame ionisation and mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70 eV). The effects of different parameters, such as pressure, temperature, modifier volume and extraction times (dynamic and static), on the SFE were inspected by a fractional factorial design (2(5-2)) to identify the significant parameters and their interaction. It showed that static and dynamic times had no effect on the extraction. Finally, a Box-Behnken design was applied to obtain the optimum condition of the significant parameters. The optimal condition was obtained as 30.2 MPa for pressure, 65.6°C for temperature and 258.4 µL for modifier volume. The main components that were extracted with SFE were dillapiole (35.1%), limonene (33.5%) and α-calacorene (25.5%).

  19. Direct coupling of packed column supercritical fluid chromatography to continuous corona discharge ion mobility spectrometry.

    PubMed

    Rahmanian, A; Ghaziaskar, H S; Khayamian, T

    2013-01-11

    In this study, packed column supercritical fluid chromatography (SFC) was directly coupled to a continuous corona discharge (CD) ion mobility spectrometer (IMS) with several modifications. The main advantage of the developed detector is its capability to introduce full column effluent up to 2000 mL min(-1) CO(2) gas directly into the IMS cell relative to 40 mL min(-1) CO(2) gas as a maximum tolerance, reported for the previous IMS detectors. This achievement was made possible because of using corona discharge instead of (63)Ni as an ionization source and locating the inlet and outlet of the CO(2) gas in the counter electrode of the CD in opposite direction. In addition, a heated interface was placed between back pressure regulator (BPR) and the IMS cell to heat the output of the BPR for introducing sample as the gas phase into the IMS cell. Furthermore, a make-up methanol flow was introduced between the column outlet and BPR to provide a more uniform flow through the BPR and also to prevent freezing and deposition of the analytes in the BPR. The performance of the SFC-CD-IMS was evaluated by analysis of testosterone, medroxyprogesterone, caffeine, and theophylline as test compounds and figures of merit for these compounds have been calculated.

  20. Chiral Separation of G-type Chemical Warfare Nerve Agents via Analytical Supercritical Fluid Chromatography

    PubMed Central

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-01-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(–) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(–) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. Chirality 26:817–824, 2014. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc. PMID:25298066

  1. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (< or =3.9%) was slightly better than for SFE (< or =9.2%). Although both methods yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

  2. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids.

    PubMed

    Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V

    2011-01-01

    This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  3. Composition and antioxidant activity of Thymus vulgaris volatiles: comparison between supercritical fluid extraction and hydrodistillation.

    PubMed

    Grosso, Clara; Figueiredo, Ana Cristina; Burillo, Jesus; Mainar, Ana M; Urieta, José S; Barroso, José G; Coelho, José A; Palavra, António M F

    2010-07-01

    Supercritical fluid extraction (SFE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO(2) flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.

  4. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography.

    PubMed

    West, Caroline; Khalikova, Maria A; Lesellier, Eric; Héberger, Károly

    2015-08-28

    The identification of a suitable stationary phase in supercritical fluid chromatography (SFC) is a major source of difficulty for those with little experience in this technique. Several protocols have been suggested for column classification in high-performance liquid chromatography (HPLC), gas chromatography (GC), and SFC. However, none of the proposed classification schemes received general acceptance. A fair way to compare columns was proposed with the sum of ranking differences (SRD). In this project, we used the retention data obtained for 86 test compounds with varied polarity and structure, analyzed on 71 different stationary phases encompassing the full range in polarity of commercial packed columns currently available to the SFC chromatographer, with a single set of mobile phase and operating conditions (carbon dioxide-methanol mobile phase, 25°C, 150bar outlet pressure, 3ml/min). First, a reference column was selected and the 70 remaining columns were ranked based on this reference column and the retention data obtained on the 86 analytes. As these analytes previously served for the calculation of linear solvation energy relationships (LSER) on the 71 columns, SRD ranks were compared to LSER methodology. Finally, an external comparison based on the analysis of 10 other analytes (UV filters) related the observed selectivity to SRD ranking. Comparison of elution orders of the UV filters to the SRD rankings is highly supportive of the adequacy of SRD methodology to select similar and dissimilar columns.

  5. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken

    2013-08-30

    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added).

  6. From analytical methods to large scale chiral supercritical fluid chromatography using chlorinated chiral stationary phases.

    PubMed

    Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Mathur, Arvind

    2016-02-05

    While traditional non-chlorinated Cellulose- and Amylose-derivatized phases have been used successfully in supercritical fluid chromatography (SFC) to resolve a broad variety of chiral compounds, some chiral pharmaceutical compounds are not well resolved on these traditional chiral stationary phases (CSP) due to the lack of chiral selectivity. Since there are no universal CSP to resolve all chiral compounds, chlorinated CSP can be complementary to the non-chlorinated CSP. Chlorinated CSP such as 4-Chloro-3-methylphenyl-carbamatecellulose (Lux-Cellulose-4), 3-Chloro-4-methylphenyl-carbamatecellulose (Lux-Cellulose-2), 5-Chloro-2-methylphenyl-carbamateamylose (Lux-Amylose-2) and immobilized 3,5-dichlorophenyl-carbamatecellulose (Chiralpak IC) have provided a range of chiral recognition mechanisms which have allowed the authors to successfully achieve chiral SFC resolution on several structurally diverse compounds, which are not well resolved in the non-chlorinated CSP. In addition, chlorinated Lux-Cellulose-4, Chiralpak IC and Lux-Amylose-2 have enabled us to utilize non-alcohol solvents as sample diluents and as co-solvents to significantly improve compound solubility and selectivity. This article will discuss the challenges associated with several SFC applications on both coated and immobilized chlorinated CSP to deliver high-quality drug candidates in large quantity. The use of dichloromethane in both sample preparation and as co-solvent in CO2 to increase sample solubility will be presented in preparative example #2 and #3.

  7. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography.

    PubMed

    Glenne, Emelie; Öhlén, Kristina; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2016-04-15

    Surface excess adsorption isotherms of methanol on a diol silica adsorbent were measured in supercritical fluid chromatography (SFC) using a mixture of methanol and carbon dioxide as mobile phase. The tracer pulse method was used with deuterium labeled methanol as solute and the tracer peaks were detected using APCI-MS over the whole composition range from neat carbon dioxide to neat methanol. The results indicate that a monolayer (4Å) of methanol is formed on the stationary phase. Moreover, the importance of using the set or the actual methanol fractions and volumetric flows in SFC was investigated by measuring the mass flow respective pressure and by calculations of the actual volume fraction of methanol. The result revealed a significant difference between the value set and the actually delivered volumetric methanol flow rate, especially at low modifier fractions. If relying only on the set methanol fraction in the calculations, the methanol layer thickness should in this system be highly overestimated. Finally, retention times for a set of solutes were measured and related to the findings summarized above concerning methanol adsorption. A strongly non-linear relationship between the logarithms of the retention factors and the modifier fraction in the mobile phase was revealed, prior to the established monolayer. At modifier fractions above that required for establishment of the methanol monolayer, this relationship turns linear which explains why the solute retention factors are less sensitive to changes in modifier content in this region.

  8. Analysis of fifteen estrogen metabolites using packed column supercritical fluid chromatography-mass spectrometry.

    PubMed

    Xu, Xia; Roman, John M; Veenstra, Timothy D; Van Anda, Jennifer; Ziegler, Regina G; Issaq, Haleem J

    2006-03-01

    Packed column supercritical fluid chromatography with tandem mass spectrometry was used for the separation of estrone, estradiol, estriol, 16-epiestriol, 17-epiestriol, 16-ketoestradiol, 16alpha-hydroxyestrone, 2-methoxyestrone, 4-methoxyestrone, 2-hydroxyestrone-3-methyl ether, 2-methoxyestradiol, 4-methoxyestradiol, 2-hydroxyestrone, 4-hydroxyestrone, and 2-hydroxyestradiol. A gradient of methanol in carbon dioxide (0-30% methanol in 15 min, 2% change/min) at a flow rate of 2 mL/min and cyanopropyl silica column connected in series with a diol column, both 2.1 mm i.d. x 150 mm long, packed with 5-mum spherical silica-based particles, resulted in the separation and quantification of all 15 estrogens in less than 10 min. The limit of detection (LOD) and limit of quantitation (LOQ) of this pSFC MS/MS method was determined to be 0.5 (S/N = 3), and 5 pg, respectively. Compared with RP-HPLC MS analysis of the same mixture in terms of speed of analysis and sensitivity, pSFC MS is much faster, 10 versus 70 min, with comparable LOD and LOQ.

  9. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    SciTech Connect

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily for the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.

  10. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    PubMed

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (<7 %) as modifier, for the maximum predicted values of extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  11. Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction.

    PubMed

    Spence, A J; Jimenez-Flores, R; Qian, M; Goddik, L

    2009-06-01

    Milk fat globule membrane contains many complex lipids implicated in an assortment of biological processes. Microfiltration coupled with supercritical fluid extraction (SFE) has been shown to provide a method of concentrating these nutritionally valuable lipids into a novel ingredient. In the dairy industry there are several by-products that are rich in phospholipids (PL) such as buttermilk, whey, and whey cream. However, PL are present at low concentrations. To enrich PL in buttermilk powders, regular buttermilk and whey buttermilk (by-product of whey cream after making butter) were microfiltered and then treated with SFE after drying. The total fat, namely nonpolar lipids, in the powders was reduced by 38 to 55%, and phospholipids were concentrated by a factor of 5-fold. Characterization of the PL demonstrated specific molecular fatty amide combinations on the sphingosine (18:1) backbone of sphingomyelin with the greatest proportion being saturated; the most common were 16:0, 20:0, 21:0, 22:0, 23:0, and 24:0. Two unsaturated fatty amide chains, 23:1 and 24:1, were shown to be elevated in a whey cream buttermilk sample compared with the others. However, most unsaturated species were not as abundant.

  12. Peak distortions arising from large-volume injections in supercritical fluid chromatography.

    PubMed

    Dai, Yun; Li, Geng; Rajendran, Arvind

    2015-05-01

    Preparative separations in supercritical fluid chromatography (SFC) involve the injection of large volumes of the solute. In SFC, the mobile phase is typically high pressure CO2+modifier and the solute to be injected is usually dissolved in the modifier. Two-types of injection methods, modifier-stream and mixed-stream, are common in commercial preparative SFC systems. In modifier-stream injection, the injection is made in the modifier stream which is later mixed with the CO2 stream, while in the mixed-stream injection, the injection is made in a mixed CO2+modifier stream. In this work a systematic experimental and modelling study of the two techniques is reported using single-enantiomers of flurbiprofen on Chiralpak AD-H with CO2+methanol as the mobile phase. While modifier-stream injection shows non-distorted peaks, mixed-stream injection results in severe peak-distortion. By comparing the modelling and experimental results, it is shown that the modifier "plug" introduced in the mixed-stream injection is the primary cause of the peak distortions. The experimental results also point to the possible existence of viscous fingering which contributes to further peak distortion.

  13. Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector.

    PubMed

    Lesellier, E; Destandau, E; Grigoras, C; Fougère, L; Elfakir, C

    2012-12-14

    The screening of plant material, the chemical composition, the abundance and the biological activity of triterpenoids are of a major economical importance. The classical analytical methods, such as TLC, GC, and HPLC are either little resolutive, or require derivatization steps, or fail in sensitivity. The supercritical fluid chromatography/evaporative light scattering detector (SFC/ELSD) coupling provides high resolution, fast analysis and higher responses for the analysis of triterpenoids. After the initial screening of seven stationary phases to select the well suited one, analytical conditions (modifier percentage, from 10 to 3%; backpressure (from 12 to 18 MPa) and temperature (from 15 to 25 °C) were studied to improve the separation, and ELSD detection of a standard mixture composed of 8 triterpenoids (oleanolic acid, erythrodiol, β-amyrin, ursolic acid, uvaol, betulinic acid, betulin, lupeol). Applied to apple pomace extracts, this method allows the separation of about 15 triterpenoid compounds, in less than 20 min, with isocratic conditions. Moreover, the ELSD response is dramatically higher than the one provided by UV detection, and avoids derivatization steps. An attempt to identify some compounds was done by collecting chromatographic peaks and further analyzing them with mass spectrometry. Complete identification or molecular formula could be proposed for 11 compounds. However, due to the presence of position and orientation isomers the absolute identification remains difficult, despite some retention rules deduced from the standard analysis.

  14. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    PubMed

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents.

  15. Decontamination of organochlorine pesticides in Radix codonopsis by supercritical fluid extractions and determination by gas chromatography.

    PubMed

    Zhao, Chunjie; Hao, Guiming; Li, Huanxin; Luo, Xu; Chen, Yingjie

    2006-09-01

    A method involving depuration of 12 organochlorine pesticides (OCPs) from Radix codonopsis was developed using supercritical fluid extraction (SFE). The pesticides investigated in the study included alpha-, beta-, gamma- and delta-benzene hexachloride, PCNB (pentachloro-nitrobenzene), PCA (pentachloroaniline), HEPT (heptachlor), MPCPS (methyl-pentachlorophenyl sulfide), pp'-DDE [1,1-dichloro-2, 2-bis(p-chlorophenyl) ethylene], op'-DDT [1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane], pp'-DDD [1,1-dichloro-2-2-bis(p-chlorophenyl)ethane] and pp'-DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane]. A series of experiments was conducted to optimize the final extraction conditions as follows: pure CO2, extraction pressure 15 MPa, extraction temperature 60 degrees C, extraction time 20 min and flow rate 55 mL/h. A GC method with electron capture detection was employed for the determination of the OCPs in Radix codonopsis. An HPLC method was developed for the quantitative determination of active constituents. SFE was used to remove the organochlorine pesticide from Radix codonopsis. The results showed that at least 93.5% of the organochlorine pesticide residues in the herb sample were removed by SPE, while 95.0% of the active constituent marker (atractylenoide III) remained.

  16. Determination of PCBs and total lipids in edible fish and crab tissue using supercritical fluid extraction

    SciTech Connect

    Gavlor, M.; Hale, R.; Smith, C.; Thames, J.; Mothershead, R.

    1995-12-31

    An offline supercritical fluid extraction (SFE) method has been developed to determine PCB congeners and total tissue lipid content in edible fish and crab tissues collected from several river systems in Virginia. The method is rapid and safe, requiring only 40 minutes per sample and uses nonorganic solvents for total lipid extraction and only 1.5 mL isooctane for PCB extraction. The SFE approach compares favorably with soxhlet extraction, ASE and column elution. Over 800 fish and crab tissue samples were analyzed successfully, thus demonstrating the robustness of the method. Total lipid values obtained using SFE showed considerable spatial and interspecies variability ranging from 1.8% in blue crab (Callinectes sapidus) to 36.4% in striped bass (Morone saxatilis). Total PCB concentrations also varied greatly by site and species. These ranged from below the quantitation limit (1.0 {micro}1 g/kg) to 9,910 {micro}g/kg on a dry weight basis using GCELCD. Dominant PCB congeners detected were in good agreement with those reported by other researchers. Mean total PCB concentrations did not correlate well with total tissue lipid content.

  17. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids

    PubMed Central

    Burguete, M Isabel; García-Verdugo, Eduardo

    2011-01-01

    Summary This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones. PMID:22043246

  18. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    PubMed Central

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  19. Widom line and noise-power spectral analysis of a supercritical fluid.

    PubMed

    Han, Sungho; Yu, Clare C

    2012-05-01

    We have performed extensive molecular dynamics simulations to study noise-power spectra of density and potential energy fluctuations of a Lennard-Jones model of a fluid in the supercritical region. Emanating from the liquid-vapor critical point, there is a locus of isobaric specific heat maxima, called the Widom line, which is often regarded as an extension of the liquid-vapor coexistence line. Our simulation results show that the noise-power spectrum of the density fluctuations on the Widom line of the liquid-vapor transition exhibits three distinct 1/f^{γ} behaviors with exponents γ=0, 1.2, and 2, depending on the frequency f. We find that the intermediate frequency region with an exponent γ∼ 1 appears as the temperature approaches the Widom temperature from above or below. On the other hand, we do not find three distinct regions of 1/f^{γ} in the power spectrum of the potential energy fluctuations on the Widom line. Furthermore, we find that the power spectra of both the density and potential energy fluctuations at low frequency have a maximum on the Widom line, suggesting that the noise power can provide an alternative signature of the Widom line.

  20. Enantioselective high performance liquid chromatography and supercritical fluid chromatography separation of spirocyclic terpenoid flavor compounds.

    PubMed

    Schaffrath, Mathias; Weidmann, Verena; Maison, Wolfgang

    2014-10-10

    Chiral spirocyclic terpenoids are abundant natural flavors with significant impact particularly on the food industry. Chromatographic methods for analytical and preparative separation of these compounds are therefore of high interest to natural product chemists in academia and industry. Gas chromatography on chiral stationary phases is currently the standard method for the separation of volatile terpenoids, limiting the scale to analytical quantities. We report herein high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) protocols for the chiral separation of several racemic spirocyclic terpenoids such as the important flavors theaspirane and vitispirane. A screening of mobile phases and 16 commercially available chiral stationary phases (CSPs) largely based on polysaccharides led to identification of protocols for the separation of all terpenoids tested. SFC methods were found to be particularly useful for the separation of these spirocyclic flavors due to the volatility and low polarity of the compounds. The reported chiral HPLC and SFC protocols are scalable alternatives to gas chromatographic separations of volatile terpenoid flavors.

  1. Evaluation of Co-solvents with supercritical fluid extraction of atrazine from soil.

    PubMed

    Senseman, S A; Ketchersid, M L

    2000-04-01

    Supercritical fluid extraction (SFE) with CO(2) has been successfully applied to herbicide extractions from soil. The objectives of this work were to compare extraction efficiency of atrazine from soil using different types and quantities of co-solvent modifiers under a specified set of SFE instrument conditions and to determine the ruggedness of an optimized extraction program and co-solvent on several soils with varying characteristics. The effect of 18 co-solvents on atrazine extraction from Lufkin fine sandy loam was determined using a completely randomized design with six replications. Extractions of Lufkin soil using the more nonpolar co-solvents had recovery similar to extractions where no co-solvent was added. The co-solvents that showed high extraction efficiency, low incidences of restrictor plugging, and ease of cleaning extraction cells were acetone, acetone:water mixtures (with and without 1% triethylamine), and acetonitrile. The addition of 1% triethylamine (TEA) did not increase recovery significantly. The 9:1 acetone:water mixture with 1% TEA was used for the soil comparison because of the high atrazine recovery and low water content. No differences in atrazine recovery were detected between extractions of the four representative soils when the same extraction conditions were employed. No cleanup steps were included in the procedure, yet adequate chromatography results were obtained suggesting some selectivity for this procedure. These data indicate that SFE with optimized conditions and appropriate co-solvents is a relatively robust method that can effectively be used in soil extractions of atrazine.

  2. Characterization of carrot root oil arising from supercritical fluid carbon dioxide extraction.

    PubMed

    Ranalli, Alfonso; Contento, Stefania; Lucera, Lucia; Pavone, Giulio; Di Giacomo, Gabriele; Aloisio, Loretta; Di Gregorio, Claudio; Mucci, Adriano; Kourtikakis, Ioannis

    2004-07-28

    Carrot root oil (SCO), obtained by supercritical fluid carbon dioxide (SC-CO2) extraction, was characterized and compared to a commercial carrot oil (MCO) and a virgin olive oil (VOO) (cv. Coratina). SCO showed much higher contents of carotenes, phenolics, waxes, phytosterols, and sesquiterpene and monoterpene volatiles. In SCO, the most prominent components present in the fully investigated analytical fractions (fatty acids, triglycerides, waxes, phytosterols, long-chain aliphatic alcohols, superior triterpene alcohols, and volatiles) were, respectively, linolenic acid, trilinolein, waxes C38, beta-sitosterol, campesterol and stigmasterol, 1-hexacosanol, 24-methylencycloartanol and cycloartenol, beta-caryophyllene, alpha-humulene, alpha-pinene, and sabinene. In VOO, the major constituents of the above analytical classes were, respectively, oleic acid, trilinolein, waxes C36, unsaturated volatile C6 aldehydes (trans-2-hexenal most markedly), and the same prominent sterols and superior alcohols found in SCO. In MCO, which also contained a proportion of unknown plant oil, several components showed magnitudes that were lower compared to SCO but higher with respect to VOO. The last had the aliphatic and triterpene alcohol concentration higher compared to that of both SCO and MCO. Several chemometric methods, applied to different analytical data sets, proved to be effective in grouping the three oil kinds.

  3. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure.

  4. Stereoselective Determination of Tebuconazole in Water and Zebrafish by Supercritical Fluid Chromatography Tandem Mass Spectrometry.

    PubMed

    Liu, Na; Dong, Fengshou; Xu, Jun; Liu, Xingang; Chen, Zenglong; Tao, Yan; Pan, Xinglu; Chen, XiXi; Zheng, Yongquan

    2015-07-22

    A simple and sensitive method for the enantioselective determination of tebuconazole enantiomers in water and zebrafish has been established using supercritical fluid chromatography (SFC)-MS/MS. The effects of the chiral stationary phases, mobile phase, auto back pressure regulator (ABPR) pressure, column temperature, flow rate of the mobile phase, and compensation pump solvent were evaluated. Finally, the optimal SFC-MS/MS working conditions were determined to include a CO2/MeOH mobile phase (87:13, v/v), 2.0 mL/min flow rate, 2200 psi ABPR, and 30 °C column temperature using a Chiralpak IA-3 chiral column under electrospray ionization positive mode. The modified QuEChERS method was applied to water and zebrafish samples. The mean recoveries for the tebuconazole enantiomers were 79.8-108.4% with RSDs ≤ 7.0% in both matrices. The LOQs ranged from 0.24 to 1.20 μg/kg. The developed analytical method was further validated by application to the analysis of authentic samples.

  5. Packed column supercritical fluid chromatography of hydrophilic analytes via water-rich modifiers.

    PubMed

    Taylor, Larry T

    2012-08-10

    The use of additives to dramatically extend the range of solute polarity amenable to CO(2) based supercritical fluid chromatography (pcSFC) was predicted over 20 years ago. At that time additives were predicted to have multiple functions such as enhancement of mobile phase solvating power, ion suppression, and ion pairing. The adsorption of mobile phase components on the stationary phase causing a modification of its surface was predicted, but the implications for separations were not defined. Reports published in the late 1980s showed that while water could not function as a primary modifier due to it poor solubility in carbon dioxide, its use as an additive was more promising. The past decade has seen very little published work concerning water and pcSFC. Now reports are beginning to appear that demonstrate enhanced selectivity with water, and application of the technology to polypeptide salts, drug molecules, and nucleobases. This review attempts to bridge the past with the present. As evidenced by the studies described in this review, water may offer much potential as an additive in that it could (a) enhance the solvating power of the mobile phase, (b) introduce HILIC-like analyte partitioning, (c) simplify preparative purifications, and (d) offer a more mass spectrometrically compatible interface.

  6. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  7. First Principles Simulations fo the Supercritical Behavior of Ore Forming Fluids

    SciTech Connect

    Weare, John H

    2013-04-19

    measured directly. However, the number of 2nd shell water molecules predicted by the simulation is consistent with experimental estimates. Tetrahedral bulk water coordination reappears just after the 2nd shell. Simulations with 128 waters are close to the maximum size that can effectively be performed with present day methods. While the time scale of our simulation are not long enough to observe transfers of waters from the 1st to the 2nd shell, we do see transfers occurring on a picosecond time scale between the 2nd shell and 3rd shell via an associative mechanism. This is faster than, but consistent with, the results of measurements on the more tightly bound Cr3+ system. For high temperature simulations, proton transfers occur in the solvation shells leading to transient hydrolysis species. The reaction coordinate for proton transfer involves the coordinates of neighboring solvent waters as in the Grotis mechanism for proton transfer in bulk water. Directly removing a proton from the hexaqua Al3+ ion leads to a much more labile solvation shell and to a five coordinated Al3+ ion. This is consistent with very recent rate measurements of ligand exchange and the conjugate base labilization effect. For the Al3+-H2O system results for high but subcritical temperatures are qualitatively similar to room temperature simulations. However, preliminary simulations for supercritical temperatures (750K) suggest that there may be a dramatic change in behavior in the hydration structure of ions for these temperatures. For transition metal ions the presence of d valence electrons plays a significant role in the behavior of the system. Our preliminary results for the Fe3+ ion suggest that this ion which is larger radius than the Al3+ ion has somewhat less rigid 1st and 2nd solvation shell. II. Gibbs Ensemble Monte Carlo Simulation of Vapor/Liquid and Metastable Liquid/Liquid Phase Equilibria in the CO2-CH4-N2 System Many fluid inclusions have compositions in the system CO2-CH4-N2

  8. Correlation of Zeno (Z = 1) line for supercritical fluids with vapor-liquid rectilinear diameters

    SciTech Connect

    Ben-Amotz, D.; Herschbach, D.R.

    1996-08-01

    For a wide range of substances, extending well beyond the regime of corresponding states behavior, the contour in the temperature-density plane along which the compressibility factor Z = P/{rho}kT is the same as for an ideal gas is nearly linear. This Z = 1 contour, termed the Zeno line, begins deep in the liquid region and ascends as the density decreases to the Boyle point of the supercritical fluid, specified by the temperature T{sub B} for which (dZ/d{rho}){sub T} = 0 as {rho} {r_arrow} 0; equivalent, at T{sub B} the second virial coefficient vanishes. The slope of the Z = 1 line is {minus}B{sub 3}/(dB{sub 2}/dT), in terms of the third virial coefficient and the derivative of the second, evaluated at T{sub B}. Previous work has examined the Zeno line as a means to extend corresponding states and to enhance other practical approximations. Here the authors call attention to another striking aspect, a strong correlation with the line of rectilinear diameters defined by the average of the subcritical vapor and liquid densities. This correlation is obeyed well by empirical data for many substances and computer simulations for a Lennard-jones potential; the ratios of the intercepts and slopes for the Zeno and rectilinear diameter liens are remarkably close to those predicted by the van der Waals equation, 8/9 and 16/9, respectively. Properties of the slightly imperfect fluid far above the critical point thus implicitly determine the diameter of the vapor-liquid coexistence curve below the critical point.

  9. The Iceland Deep Drilling Project (IDDP): (I) Drilling for Supercritical Hydrothermal Fluids is Underway

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2008-12-01

    The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power

  10. Direct numerical simulations of supercritical fluid mixing layers applied to heptane nitrogen

    NASA Astrophysics Data System (ADS)

    Miller, Richard S.; Harstad, Kenneth G.; Bellan, Josette

    2001-06-01

    Direct numerical simulations (DNS) are conducted of a model hydrocarbon nitrogen mixing layer under supercritical conditions. The temporally developing mixing layer configuration is studied using heptane and nitrogen supercritical fluid streams at a pressure of 60 atm as a model system related to practical hydrocarbon-fuel/air systems. An entirely self-consistent cubic Peng Robinson equation of state is used to describe all thermodynamic mixture variables, including the pressure, internal energy, enthalpy, heat capacity, and speed of sound along with additional terms associated with the generalized heat and mass transport vectors. The Peng Robinson formulation is based on pure-species reference states accurate to better than 1% relative error through comparisons with highly accurate state equations over the range of variables used in this study (600 [less-than-or-eq, slant] T [less-than-or-eq, slant] 1100 K, 40 [less-than-or-eq, slant] p [less-than-or-eq, slant] 80 atm) and is augmented by an accurate curve fit to the internal energy so as not to require iterative solutions. The DNS results of two-dimensional and three-dimensional layers elucidate the unique thermodynamic and mixing features associated with supercritical conditions. Departures from the perfect gas and ideal mixture conditions are quantified by the compression factor and by the mass diffusion factor, both of which show reductions from the unity value. It is found that the qualitative aspects of the mixing layer may be different according to the specification of the thermal diffusion factors whose value is generally unknown, and the reason for this difference is identified by examining the second-order statistics: the constant Bearman Kirkwood (BK) thermal diffusion factor excites fluctuations that the constant Irwing Kirkwood (IK) one does not, and thus enhances overall mixing. Combined with the effect of the mass diffusion factor, constant positive large BK thermal diffusion factors retard

  11. Comparison of models for supercritical fluid extraction of seed and essential oils in relation to the mass-transfer rate

    SciTech Connect

    Poletto, M.; Reverchon, E.

    1996-10-01

    A general dimensionless model was developed for a sensitivity analysis of the supercritical extraction process of vegetable oils and essential oils. Two dimensionless parameters, {Gamma}, a dimensionless partition coefficient, and {Theta}, a dimensionless characteristic time, appeared as the most important parameters to monitor the evolution of the extraction process. Some limiting values of these two parameters within the general model yielded simpler models which are often used in the literature. The numerical solutions of both the complete model and the simpler cases were compared to assess the range of relevance of the simpler models in terms of {Gamma} and {Theta} values. These results were compared with the experimental data found in the literature to assess the correctness of the assumption used to model supercritical fluid extraction in single cases. The implications of this analysis on the development of scale-up procedures were also discussed.

  12. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    PubMed Central

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-01-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing. PMID:23342386

  13. Functionalization of silicon oxide using supercritical fluid deposition of 3,4-epoxybutyltrimethoxysilane for the immobilization of amino-modified oligonucleotide

    NASA Astrophysics Data System (ADS)

    Rull, Jordi; Nonglaton, Guillaume; Costa, Guillaume; Fontelaye, Caroline; Marchi-Delapierre, Caroline; Ménage, Stéphane; Marchand, Gilles

    2015-11-01

    The functionalization of silicon oxide based substrates using silanes is generally performed through liquid phase methodologies. These processes involve a huge quantity of potentially toxic solvents and present some important disadvantages for the functionalization of microdevices or porous materials, for example the low diffusion. To overcome this drawback, solvent-free methodologies like molecular vapor deposition (MVD) or supercritical fluid deposition (SFD) have been developed. In this paper, the deposition process of 3,4-epoxybutyltrimethoxysilane (EBTMOS) on silicon oxide using supercritical carbon dioxide (scCO2) as a solvent is studied for the first time. The oxirane ring of epoxy silanes readily reacts with amine group and is of particular interest for the grafting of amino-modified oligonucleotides or antibodies for diagnostic application. Then the ability of this specific EBTMOS layer to react with amine functions has been evaluated using the immobilization of amino-modified oligonucleotide probes. The presence of the probes is revealed by fluorescence using hybridization with a fluorescent target oligonucleotide. The performances of SFD of EBTMOS have been optimized and then compared with the dip coating and molecular vapor deposition methods, evidencing a better grafting efficiency and homogeneity, a lower reaction time in addition to the eco-friendly properties of the supercritical carbon dioxide. The epoxysilane layers have been characterized by surface enhanced ellipsometric contrast optical technique, atomic force microscopy, multiple internal reflection infrared spectroscopy and X-ray photoelectron spectroscopy. The shelf life of the 3,4-epoxybutyltrimethoxysilane coating layer has also been studied. Finally, two different strategies of NH2-oligonucleotide grafting on EBTMOS coating layer have been compared, i.e. reductive amination and nucleophilic substitution, SN2. This EBTMOS based coating layer can be used for a wide range of applications

  14. Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla.

    PubMed

    Yang, Wenzhi; Zhang, Yibei; Pan, Huiqin; Yao, Changliang; Hou, Jinjun; Yao, Shuai; Cai, Luying; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2017-02-05

    Increasing challenge arising from configurational interconversion in aqueous solvent renders it rather difficult to isolate high-purity tautomeric reference standards and thus largely hinders the holistic quality control of traditional Chinese medicine (TCM). Spiro oxindole alkaloids (SOAs), as the markers for the medicinal Uncaria herbs, can easily isomerize in polar or aqueous solvent via a retro-Mannich reaction. In the present study, supercritical fluid chromatography (SFC) is utilized to separate and isolate two pairs of 7-epimeric SOAs, including rhynchophylline (R) and isorhynchophylline (IR), corynoxine (C) and corynoxine B (CB), from Uncaria macrophylla. Initially, the solvent that can stabilize SOA epimers was systematically screened, and acetonitrile was used to dissolve and as the modifier in SFC. Then, key parameters of ultra-high performance SFC (ultra-performance convergence chromatography, UPC(2)), comprising stationary phase, additive in modifier, column temperature, ABPR pressure, and flow rate, were optimized in sequence. Two isocratic UPC(2) methods were developed on the achiral Torus 1-AA and Torus Diol columns, suitable for UV and MS detection, respectively. MCI gel column chromatography fractionated the U. macrophylla extract into two mixtures (R/IR and C/CB). Preparative SFC, using a Viridis Prep Silica 2-EP OBD column and acetonitrile-0.2% diethylamine in CO2 as the mobile phase, was finally employed for compound purification. As a result, the purity of four SOA compounds was all higher than 95%. Different from reversed-phase HPLC, SFC, by use of water-free mobile phase (inert CO2 and aprotic modifier), provides a solution to rapid analysis and isolation of tautomeric reference standards for quality control of TCM.

  15. Electrochemistry in Near-Critical and Supercritical Fluids. 4. Nitrogen Heterocycles, Nitrobenzene, and Solvated Electrons in Ammonia at Temperatures to 150C.

    DTIC Science & Technology

    1986-09-01

    of pyraz ne quinoxaline, phenazine and solvated electrons in near-critical and supercritical ammonia was investigated by cycU-i Voltanimetry and...Crooks and Allen J. Bard Department of Chemistry, University of Texas Austin, Texas 78712 ABSTRACT The electrochemistry of pyrazine, quinoxaline, phenazine ...in liquid ammonia at -40° C. The reductions of pyrazine, quinoxaline and phenazine at room temperature, and in the supercritical fluid (SCF), occur

  16. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to compare performance of the Ruhrchemie catalyst in different modes of operation: fixed bed reactor (conventional and supercritical mode of operation), and stirred tank slurry reactor. Diffusion coefficients are discussed.

  17. Supercritical fluid extraction of sinomenine from Sinomenium acutum (Thumb) Rehd et Wils.

    PubMed

    Liu, Ben; Jiang, Hailiang; Shen, Bo; Chang, Yiling

    2005-05-20

    Supercritical carbon dioxide, with and without a methanol modifier, was used to extract sinomenine from Sinomenium acutum (Thumb) Rehd et Wils. Sinomenine determinations were carried out using high-performance liquid chromatography (HPLC). The results show that the yield obtained after 2.5 h extraction with methanol-modified supercritical carbon dioxide was the highest (7.47 mg/g), while that obtained with only supercritical carbon dioxide was the lowest (0.17 mg/g). The recovery obtained with supercritical carbon dioxide, with and without a methanol modifier, could not be increased greatly by the method of the alkalinization of sample. Higher recoveries were obtained than extraction using methanol in Soxhlet extractor.

  18. Analysis of mass-limited mixtures using supercritical-fluid chromatography and microcoil NMR.

    PubMed

    Tayler, Michael C D; van Meerten, S Bas G J; Kentgens, Arno P M; van Bentum, P Jan M

    2015-09-21

    A protocol is presented for offline microfluidic NMR analysis hyphenated with supercritical chromatographic separation. The method demonstrates quantitative detection with good sensitivity. Typical sample amounts of 10 nanomoles can be detected in a fast and cost-effective manner.

  19. Efficient stripping of photoresist on metallized wafers by a pause flow of supercritical fluid.

    PubMed

    Chao, Mu-Rong; Chen, Jian-Lian

    2009-09-30

    Utilization of supercritical fluids (SCFs) is studied here on the premises of a saving of hazardous organic solvents and of the specification for stripping the photoresist (PR) on metallization layers, which is one of the integrated circuit processing modules. By using factorial experimental designs with five factors and four level ranges, this research focuses on determining an optimized recipe with high stripping efficiency and to determine the stripping mechanism. In the case of PR on an aluminum layer, the initial use of the pulse flow mode could increase the extraction ratio remarkably when compared to the conventional continuous flow mode. Based on the limitation of a total volume of 30 mL purging SCF-CO(2) for economical considerations, the optimum conditions can be summarized as follows: 120 degrees C, oven temperature; 350 atm, CO(2) pressure; 0.2 mL of ethylacetate spiking to SCF-CO(2); 2.0 min, static equilibrium time; and five cycles of dynamic flow pausing. A recovery of 94.6% (n=3, RSD=6.5%) was obtained, while the diffusion of stripped PR from substrate matrix prevailed over the dissolution of binding PR into the SCF medium. In the case of copper, the optimum parameters in a pause flow mode were 140 degrees C, oven temperature; 500 atm, CO(2) pressure; 0.75 mL, ethylacetate spiking volume; 5.0 min, static time; and six cycles of flow pausing. These extreme parameters still did not produce an SCF environment suitable for diffusion or dissolution mass transfer, and thus a recovery of 76.2% (n=3, RSD=7.5%) was only obtained. Removing PR coated on a Cu layer was harder than that on an Al layer.

  20. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    PubMed

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples.

  1. Evaluation of mobile phase gradient supercritical fluid chromatography for impurity profiling of pharmaceutical compounds.

    PubMed

    Alexander, A J; Hooker, T F; Tomasella, F P

    2012-11-01

    The use of gradient supercritical fluid chromatography (SFC) for the impurity profiling of pharmaceutical products is not widely practiced. Historically, the limited advancement in SFC instrumentation and the lag in column development have resulted in marginal sensitivity, selectivity and reproducibility when compared with high performance liquid chromatography (HPLC). Using a recently developed commercial module, which allows an ordinary HPLC to be converted to a SFC system, a significant improvement in sensitivity (up to ~12-fold) has been obtained over previous studies. This has allowed for the first time a "real-world" head-to-head comparison of SFC to HPLC for impurity profiling of pharmaceutical products in a regulated environment. Retention time reproducibility and low level impurity detection were found to be comparable to reversed phase liquid chromatography (RPLC), that is, single digit %relative standard deviations (RSDs) were obtained for impurities present at less than 0.1 area%. Furthermore, these results were obtained with drug loading levels (≤2 mg/mL) that are not only comparable to those employed with HPLC, but are dictated by the limited solubility of many drug candidates. The elution of impurities was generally found to be orthogonal to that obtained with RPLC, but it was still challenging to find SFC conditions that would separate all of the components in the mixtures studied. In terms of enhancing selectivity, small amounts of mobile phase additives (0.1-1%) and temperature optimization were found to have a greater impact in SFC method development versus RPLC. However, unlike gradient RPLC, the relative changes in baseline noise and slope were found to be a complex function of the experimental conditions, with the largest differences in noise levels being generally observed for the widest and steepest gradients. It is likely that this gradient related noise is more apparent now because other sources of noise in SFC have been reduced

  2. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry.

    PubMed

    Sen, Arundhuti; Knappy, Christopher; Lewis, Matthew R; Plumb, Robert S; Wilson, Ian D; Nicholson, Jeremy K; Smith, Norman W

    2016-06-03

    Supercritical fluid chromatography (SFC) is frequently used for the analysis and separation of non-polar metabolites, but remains relatively underutilised for the study of polar molecules, even those which pose difficulties with established reversed-phase (RP) or hydrophilic interaction liquid chromatographic (HILIC) methodologies. Here, we present a fast SFC-MS method for the analysis of medium and high-polarity (-7≤cLogP≤2) compounds, designed for implementation in a high-throughput metabonomics setting. Sixty polar analytes were first screened to identify those most suitable for inclusion in chromatographic test mixtures; then, a multi-dimensional method development study was conducted to determine the optimal choice of stationary phase, modifier additive and temperature for the separation of such analytes using SFC. The test mixtures were separated on a total of twelve different column chemistries at three different temperatures, using CO2-methanol-based mobile phases containing a variety of polar additives. Chromatographic performance was evaluated with a particular emphasis on peak capacity, overall resolution, peak distribution and repeatability. The results suggest that a new generation of stationary phases, specifically designed for improved robustness in mixed CO2-methanol mobile phases, can improve peak shape, peak capacity and resolution for all classes of polar analytes. A significant enhancement in chromatographic performance was observed for these urinary metabolites on the majority of the stationary phases when polar additives such as ammonium salts (formate, acetate and hydroxide) were included in the organic modifier, and the use of water or alkylamine additives was found to be beneficial for specific subsets of polar analytes. The utility of these findings was confirmed by the separation of a mixture of polar metabolites in human urine using an optimised 7min gradient SFC method, where the use of the recommended column and co

  3. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    PubMed Central

    García-Pérez, J. Saúl; Cuéllar-Bermúdez, Sara P.; Arévalo-Gallegos, Alejandra; Rodríguez-Rodríguez, José; Iqbal, Hafiz M. N.; Parra-Saldivar, Roberto

    2016-01-01

    Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica. PMID:27626416

  4. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica.

    PubMed

    García-Pérez, J Saúl; Cuéllar-Bermúdez, Sara P; Arévalo-Gallegos, Alejandra; Rodríguez-Rodríguez, José; Iqbal, Hafiz M N; Parra-Saldivar, Roberto

    2016-09-12

    Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  5. Metal Nanoparticles Preparation In Supercritical Carbon Dioxide Solutions

    SciTech Connect

    Harry W. Rollins

    2004-04-01

    The novel optical, electronic, and/or magnetic properties of metal and semiconductor nanoparticles have resulted in extensive research on new methods for their preparation. An ideal preparation method would allow the particle size, size distribution, crystallinity, and particle shape to be easily controlled, and would be applicable to a wide variety of material systems. Numerous preparation methods have been reported, each with its inherent advantages and disadvantages; however, an ideal method has yet to emerge. The most widely applied methods for nanoparticle preparation include the sonochemical reduction of organometallic reagents,(1&2) the solvothermal method of Alivisatos,(3) reactions in microemulsions,(4-6) the polyol method (reduction by alcohols),(7-9) and the use of polymer and solgel materials as hosts.(10-13) In addition to these methods, there are a variety of methods that take advantage of the unique properties of a supercritical fluid.(14&15) Through simple variations of temperature and pressure, the properties of a supercritical fluid can be continuously tuned from gas-like to liquid-like without undergoing a phase change. Nanoparticle preparation methods that utilize supercritical fluids are briefly reviewed below using the following categories: Rapid Expansion of Supercritical Solutions (RESS), Reactive Supercritical Fluid Processing, and Supercritical Fluid Microemulsions. Because of its easily accessible critical temperature and pressure and environmentally benign nature, carbon dioxide is the most widely used supercritical solvent. Supercritical CO2 is unfortunately a poor solvent for many polar or ionic species, which has impeded its use in the preparation of metal and semiconductor nanoparticles. We have developed a reactive supercritical fluid processing method using supercritical carbon dioxide for the preparation of metal and metal sulfide particles and used it to prepare narrowly distributed nanoparticles of silver (Ag) and silver sulfide

  6. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE PAGES

    Zhang, Le; Luo, Feng; Xu, Ruina; ...

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  7. Rutile Solubility in Supercritical Albite-H2O fluids: Implications for Element Mobility in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Antignano, A.; Manning, C. E.

    2006-12-01

    Supercritical fluids with compositions intermediate between H2O and silicate are widely invoked as important transport agents in subduction zones. This proposal is in part motivated by the expectation that such fluids might have greater ability to dissolve and transport key trace elements at high P and T. As a test of this hypothesis, we measured the solubility of rutile (TiO2) in supercritical albite (ab, NaAlSi3O8)-H2O at 900°C, 1.5 GPa, from Xab = 0 to 0.3. At this P and T, rutile has very low solubility in H2O and there is full miscibility between H2O and ab melt. Experiments were conducted in a piston-cylinder apparatus with NaCl-graphite furnaces. In each, a 1.6 mm OD Pt inner capsule with a synthetic rutile crystal was lightly crimped and placed in a 3.5 OD Pt capsule with ultra pure H2O and powdered Amelia albite. Equilibrium was achieved after 4 hrs. Solubility was determined by the weight loss of the rutile grain. Quench textures consistent with supercritical behavior were observed in all runs. Residual corundum is present in the H2O-rich runs, but it decreases with increasing ab concentration. Results show that rutile solubility initially rises sharply with increasing ab concentration from 38 ppm in pure H2O to 739 ppm at Xab =0.05 (44 wt%). With further increase in ab, rutile solubility increases only slightly, to 922 ppm at Xab =0.25 (83 wt%). No significant solubility increase was noted near the critical compositon (~50 wt% ab). Our results show that intermediate fluids do not significantly enhance Ti solubility above dilute silicate-bearing solutions. The presence of residual Al2O3 and the sharp initial rise in rutile solubility at low Xab imply that, by analogy with silicate melts, Ti is present in solution as Na-Ti-O complexes (e.g., Dickenson and Hess, 1985, GCA, 49, 2289). However, the lack of residual corundum at high Xab suggests a transiton to different Ti species, perhaps aqueous NaAlSi3O8-like complexes. Our results give insight into rutile

  8. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases.

    PubMed

    Novell, Arnau; Méndez, Alberto; Minguillón, Cristina

    2015-07-17

    The chromatographic behaviour and performance of four polyproline-derived chiral stationary phases (CSPs) were tested using supercritical fluid chromatography (SFC). A series of structurally related racemic compounds, whose enantioseparation was proved to be sensitive to the type of mobile phase used in NP-HPLC, were chosen to be tested in the SFC conditions. Good enantioselection ability was shown by the CSPs for the analytes tested in the new conditions. Resolution, efficiency and analysis time, were considerably improved with respect to NP-HPLC when CO2/alcohol mobile phases were used. Monolithic columns clearly show enhanced chromatographic parameters and improved performance respect to their bead-based counterparts.

  9. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging.

    PubMed

    Thangasamy, Pitchai; Santhanam, Manikandan; Sathish, Marappan

    2016-07-27

    Preparation of quantum dots (QDs) and exfoliation of two-dimensional layered materials have gathered significant attention in recent days. Though, there are number of attempts have been reported, facile and efficient methodology is yet to be explored. Here, we demonstrate supercritical fluid processing approach for rapid and facile synthesis of blue luminescent BN QDs from layered bulk material via in situ exfoliation followed by disintegration. The microscopic and AFM analysis confirmed the few layer BN QDs formation. The strong luminescent behavior of BN QDs is utilized to stain Gram-negative bacterial cells specifically in the presence of Gram-positive bacterial cells.

  10. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized.

  11. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    SciTech Connect

    Agblevor, Foster; Petkovic, Lucia; Bennion, Edward; Quinn, Jason; Moses, John; Newby, Deborah; Ginosar, Daniel

    2014-03-01

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by

  12. A high pressure cell for supercritical CO{sub 2} on-line chemical reactions studied with x-ray techniques

    SciTech Connect

    Hermida-Merino, Daniel; Portale, Giuseppe; Bras, Wim E-mail: Steve.Howdle@nottingham.ac.uk; Fields, Peter; Wilson, Richard; Bassett, Simon P.; Jennings, James; Dellar, Martin; Howdle, Steven M. E-mail: Steve.Howdle@nottingham.ac.uk; Gommes, Cedric; Vrolijk, Benno C. M.

    2014-09-15

    A versatile high pressure X-ray sample cell has been developed for conducting in situ time-resolved X-ray scattering experiments in the pressure and temperature regime required (pressures up to 210 bars and temperatures up to 120 °C) for chemical reactions in supercritical fluids. The large exit opening angle of the cell allows simultaneous performance of SAXS-WAXS experiments. Diamond windows are used in order to benefit from the combination of maximum strength, minimal X-ray absorption and chemical inertia. The sample cell can also be utilised for X-ray spectroscopy experiments over a wide range of photon energies. Results of the online synthesis of a block copolymer, poly(methyl methacrylate-block-poly(benzyl methacrylate), by Reversible Addition-Fragmentation Chain Transfer (RAFT) in a supercritical CO{sub 2} dispersion polymerisation will be discussed. The contribution of the density fluctuations, as function of temperature, to the X-ray scattering signal has been quantified in order to allow appropriate background subtractions.

  13. High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids.

    PubMed

    Sasikala, Suchithra Padmajan; Henry, Lucile; Yesilbag Tonga, Gulen; Huang, Kai; Das, Riddha; Giroire, Baptiste; Marre, Samuel; Rotello, Vincent M; Penicaud, Alain; Poulin, Philippe; Aymonier, Cyril

    2016-05-24

    This paper rationalizes the green and scalable synthesis of graphenic materials of different aspect ratios using anthracite coal as a single source material under different supercritical environments. Single layer, monodisperse graphene oxide quantum dots (GQDs) are obtained at high yield (55 wt %) from anthracite coal in supercritical water. The obtained GQDs are ∼3 nm in lateral size and display a high fluorescence quantum yield of 28%. They show high cell viability and are readily used for imaging cancer cells. In an analogous experiment, high aspect ratio graphenic materials with ribbon-like morphology (GRs) are synthesized from the same source material in supercritical ethanol at a yield of 6.4 wt %. A thin film of GRs with 68% transparency shows a surface resistance of 9.3 kΩ/sq. This is apparently the demonstration of anthracite coal as a source for electrically conductive graphenic materials.

  14. IMMUNOLOGICAL REACTIONS OF PNEUMONIC PLEURAL FLUIDS

    PubMed Central

    Finland, Maxwell

    1932-01-01

    Pleuritic exudates from patients with lobar pneumonia may be sterile or infected. Sterile fluids, at or about the time of crisis, contain actively acquired antibodies similar to those in the blood serum. Infected fluids do not contain such antibodies, presumably because of the presence in them of large amounts of soluble specific substance. Sterile fluids from patients treated with immune sera have both horse serum and antibodies similar to those injected. Infected fluids from serum-treated cases contain horse serum and such heterologous antibodies as were contained in the therapeutic sera together with homologous soluble specific substance. The concentration of horse serum and antibodies in pneumonic fluids is usually the same or somewhat less than that of the corresponding blood sera. PMID:19869983

  15. Supercritical aqueous fluids in subduction zones carrying carbon and sulfur: oxidants for the mantle wedge?

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri; Manning, Craig

    2014-05-01

    magnesite, the C/S ratio can vary from 0.2 to 3.5 when temperature varies from 650 to 750 °C at 4 GPa. Fe concentrations remain negligible. These results strongly suggest that aqueous subarc eclogitic fluids that evolve to QFM +3 to +4, perhaps by reaction with metamorphosed Fe-oxide-bearing sediments, could transport significant amounts of C and/or S into the mantle wedge environment depending on the temperature. Hotter subduction should favor high C/S fluids, whereas colder subduction should favor low C/S fluids. Aqueous Fe transport is unlikely to be playing a significant role in oxidizing the mantle wedge. Sverjensky, D. A., Harrison, B., and Azzolini, D., 2014. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1,200°C. Geochim. et Cosmochim. Acta (in press).

  16. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    PubMed

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10(-5)Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape.

  17. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton

  18. Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments.

    PubMed

    Grand-Guillaume Perrenoud, Alexandre; Hamman, Chris; Goel, Meenakshi; Veuthey, Jean-Luc; Guillarme, Davy; Fekete, Szabolcs

    2013-11-01

    Recently, there has been a renewed interest in supercritical fluid chromatography (SFC), due to the introduction of state-of-the-art instruments and dedicated columns packed with small particles. However, the achievable kinetic performance and practical possibilities of such modern SFC instruments and columns has not been described in details until now. The goal of the present contribution was to provide some information about the optimal column dimensions (i.e. length, diameter and particle size) suitable for such state-of the-art systems, with respect to extra-column band broadening and system upper pressure limit. In addition, the reliability of the kinetic plot methodology, successfully applied in RPLC, was also evaluated under SFC conditions. Taking into account the system variance, measured at ∼85μL(2), on modern SFC instruments, a column of 3mm I.D. was ideally suited for the current technology, as the loss in efficiency remained reasonable (i.e. less than 10% decrease for k>6). Conversely, these systems struggle with 2.1mm I.D. columns (55% loss in N for k=5). Regarding particle size, columns packed with 5μm particles provided unexpectedly high minimum reduced plate height values (hmin=3.0-3.4), while the 3.5 and 1.7μm packing provided lower reduced plate heights hmin=2.2-2.4 and hmin=2.7-3.2, respectively. Considering the system upper pressure limit, it appears that columns packed with 1.7μm particles give the lowest analysis time for efficiencies up to 40,000-60,000 plates, if the mobile phase composition is in the range of 2-19% MeOH. The 3.5μm particles were attractive for higher efficiencies, particularly when the modifier percentage was above 20%, while 5μm was never kinetically relevant with modern SFC instruments, due to an obvious limitation in terms of upper flow rate value. The present work also confirms that the kinetic plot methodology could be successfully applied to SFC, without the need for isopycnic measurements, as the difference

  19. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-10-24

    The study of radial and axial temperature profiles always has been an area interest both in liquid chromatography (LC) and supercritical fluid chromatography (SFC). Whereas in LC always an increase in temperature is observed due to the dominance of viscous heating, in SFC, especially for low modifier content, a decrease in temperature is found due to the much larger decompression cooling. However, for higher modifier content and higher operating pressure, the temperature effects become a trade-off between viscous heating and decompression cooling, since in SFC the latter is a strong function of operating pressure and mobile phase composition. At a temperature of 40°C and for neat CO2, the effect of decompression cooling and viscous heating cancel each other out at a pressure 450bar. This pressure decreases almost linearly with volume fraction of methanol to 150bar at 25vol%. As a result, both cooling and heating effects can be observed when operating at high back pressure, large column pressure drops or high modifier content. For example at a back pressure of 150bar and a column pressure drop of 270bar decompression cooling is observed throughout the column. However at 300bar back pressure and the same pressure drop, the mobile phase heats up in the first part of the column due to viscous heating and then cools in the second part due to decompression cooling. When coupling columns (2.1mm×150mm, 1.8μm fully porous particles) at very high operating pressure (e.g. 750bar for 8vol%), the situation is even more complex. E.g. at a back pressure of 150bar and using 8vol% methanol, viscous heating is only observed in the first column whereas only decompression cooling in the second. Further increasing the inlet pressure up to 1050bar resulted in no excessive temperature differences along the column. This implies that the inlet pressure of SFC instrumentation could be expanded above 600bar without additional band broadening caused by excessive radial temperature

  20. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics.

    PubMed

    Lesellier, E; Mith, D; Dubrulle, I

    2015-12-04

    Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when

  1. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima.

    PubMed

    Mairhofer, Jonas; Sadus, Richard J

    2013-10-21

    Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid densities. The thermodynamic criteria for maxima∕minima in the isochoric and isobaric heat capacities are identified and the simulation results are also compared with calculations from Lennard-Jones equations of state. The Johnson et al. [Mol. Phys. 78, 591 (1993)] equation of state can be used to reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential. Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones potentials support the existence of Cp minima at supercritical conditions. The values of n and m also have a significant influence on many other thermodynamic properties.

  2. Simple water analysis of golf link pesticides by means of batch-wise adsorption and supercritical fluid extraction.

    PubMed

    Chikushi, Hiroaki; Hirota, Kazutoshi; Yoshida, Natsuko; Edamura, Takuya; Toda, Kei

    2009-12-15

    Here, a simple new method is proposed to evaluate water for the presence of pesticides. Specifically, pesticides for golf link maintenance were used as the targets for this investigation. Water samples containing the pesticides were mixed with particulate adsorbent, after which the pesticides were extracted from the adsorbents using supercritical fluid carbon dioxide and then analyzed by gas chromatography-mass spectrometry. The recoveries of pesticides were examined with several types of adsorbents and found to be related to their octanol/water partition coefficients (K(ow)) for most of the adsorbents. Good recoveries were obtained when the water samples were mixed with octadecylsilane (ODS) and stylene-divinylbenzene copolymer (XAD) resins for 15 and 30 min, respectively. In the supercritical fluid extraction, extraction pressure affected the efficiency of extraction from XAD while a little effect on extraction from ODS, probably due to the internal structure of the adsorbents. The limit of detection ranged from 0.002 to 2.3 microg L(-1) and the method is suitable for the measurement of golf link pesticides in microg L(-1) order to 100 microg L(-1). The procedure of the proposed method was simpler than the conventional solid-phase extraction method. Finally, the method presented here was used to identify pesticides present in actual wastewater from golf links.

  3. Fischer-Tropsch synthesis in supercritical fluids. Quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-12-31

    For the task on diffusion coefficients of F-T products in supercritical fluids, we attempted to find a model for the {beta} parameter to predict the molecular diffusion coefficients to a high degree of accuracy so we may be able to predict both the molecular diffusion coefficient and thus the effective diffusivity a priori. The dependency of solvent/solute interactions on the {beta} parameter was analyzed and a correlation developed to predict the functionality. This allowed us to develop an empirical formula to correlate the molecular diffusion coefficient to ratios of mass, size, and density. Thus finally allowing for supercritical fluid diffusion predictions a priori. Figure 6 shows our predictions of the data available on the self diffusion coefficient of carbon dioxide (Chen, 1983; Takahashi and Iwasaki, 1966) ethylene (Arends et al., 1981; Baker et al., 1984), toluene (Baker et al., 1985) and chlorotrifuoromethane (Harris, 1978). The predictions, with no parameters adjusted from the data, are excellent with an average absolute error of 3.64%.

  4. Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    PubMed Central

    Villa, Joseph A.; Huang, Edward T. S.; Yang, Tzung-Horng; Carpenter, John F.; Sievers, Robert E.

    2008-01-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions. PMID:18581212

  5. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima

    NASA Astrophysics Data System (ADS)

    Mairhofer, Jonas; Sadus, Richard J.

    2013-10-01

    Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid densities. The thermodynamic criteria for maxima/minima in the isochoric and isobaric heat capacities are identified and the simulation results are also compared with calculations from Lennard-Jones equations of state. The Johnson et al. [Mol. Phys. 78, 591 (1993)] equation of state can be used to reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential. Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones potentials support the existence of Cp minima at supercritical conditions. The values of n and m also have a significant influence on many other thermodynamic properties.

  6. Supercritical fluid carbon dioxide extraction and liquid chromatographic separation with electrochemical detection of methylmercury from biological samples

    USGS Publications Warehouse

    Simon, N.S.

    1997-01-01

    Using the coupled methods presented in this paper, methylmercury can be accurately and rapidly extracted from biological samples by modified supercritical fluid carbon dioxide and quantitated using liquid chromatography with reductive electrochemical detection. Supercritical fluid carbon dioxide modified with methanol effectively extracts underivatized methylmercury from certified reference materials Dorm-1 (dogfish muscle) and Dolt-2 (dogfish liver). Calcium chloride and water, with a ratio of 5:2 (by weight), provide the acid environment required for extracting methylmercury from sample matrices. Methylmercury chloride is separated from other organomercury chloride compounds using HPLC. The acidic eluent, containing 0.06 mol L-1 NaCl, insures the presence of methylmercury chloride and facilitates the reduction of mercury on a glassy carbon electrode. If dual glassy carbon electrodes are used, a positive peak is observed at -0.65 to -0.70 V and a negative peak is observed at -0.90V with the organomercury compounds that were tested. The practical detection limit for methylmercury is 5 X 10-8 mol L-1 (1 X 10-12 tool injected) when a 20 ??L injection loop is used.

  7. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  8. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of

  9. Imprinted polymers for chiral resolution of (±)-ephedrine, 4: packed column supercritical fluid chromatography using molecularly imprinted chiral stationary phases.

    PubMed

    Ansell, Richard J; Kuah, Janice K L; Wang, Dongyao; Jackson, Clare E; Bartle, Keith D; Clifford, Anthony A

    2012-11-16

    (-)-Ephedrine-molecularly imprinted polymers (MIPs) have been successfully used as stationary phases in supercritical fluid chromatography for the separation of (±)-ephedrine enantiomers. This approach combines the simple preparation and predictable elution order of MIP stationary phases with the superior mobile phase diffusivity and low viscosity of supercritical fluid mobile phases. The optimised mobile phase comprised supercritical carbon dioxide with a modifier consisting of MeOH/isopropylamine/H(2)O 93:5:2 (v/v/v). In many cases, better resolution separations were observed compared to when liquid mobile phases were used, and better separations achieved at high sample loads, although interestingly the MIPs which work best in SFC are different from the MIPs that work best in HPLC with an amine modifier. The MIP stationary phases were stable under the conditions employed and the chromatography was reproducible. This work opens the door to exploiting MIP stationary phases in preparative SFC.

  10. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  11. Supercritical Fluid Extraction versus Traditional Solvent Extraction of Caffeine from Tea Leaves: A Laboratory-Based Case Study for an Organic Chemistry Course

    ERIC Educational Resources Information Center

    Schaber, Peter M.; Larkin, Judith E.; Pines, Harvey A.; Berchou, Kelly; Wierchowski, Elizabeth; Marconi, Andrew; Suriani, Allison

    2012-01-01

    In this case-based laboratory, an instrument sales person attempts to convince an analysis laboratory of the virtues of supercritical fluid extraction (SFE). The sales person deals directly with the laboratory technicians who will make the decision. Arrangements are made to have SFE instrumentation brought into the laboratory for a comparative…

  12. Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass.

    PubMed

    Daza Serna, L V; Orrego Alzate, C E; Cardona Alzate, C A

    2016-01-01

    One of the main drawbacks for using lignocellulosic biomass is related to its recalcitrance. The pretreatment of lignocellulosic biomass plays an important role for delignification and crystallinity reduction purposes. In this work rice husk (RH) was submitted to supercritical pretreatment at 80°C and 270 bar with the aim to determine the effect on lignin content, crystallinity as well as enzymatic digestibility. The yields obtained were compared with dilute sulfuric acid pretreatment as base case. Additionally a techno-economic and environmental comparison of the both pretreatment technologies was performed. The results show a lignin content reduction up to 90.6% for the sample with 75% moisture content using a water-ethanol mixture. The results for crystallinity and enzymatic digestibility demonstrated that no reductions were reached. Supercritical pretreatment presents the best economical and environmental performance considering the solvents and carbon dioxide recycling.

  13. Method and apparatus for waste destruction using supercritical water oxidation

    DOEpatents

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  14. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2015-07-17

    Supercritical fluid chromatography, where a low-viscosity mobile phase such as carbon dioxide is used, proves to be an excellent technique for fast and efficient separations, especially when sub-2μm particles are used. However, to achieve high velocities when using these small particles, and in order to stay within the flow rate range of current SFC-instruments, narrow columns (e.g. 2.1mm ID) must be used. Unfortunately, state-of-the-art instrumentation is limiting the full separation power of these narrower columns due to significant extra-column band broadening effects. The present work identifies and quantifies the different contributions to extra-column band broadening in SFC such as the influence of the sample solvent, injection volume, extra-column volumes and detector cell volume/design. When matching the sample solvent to the mobile phase in terms of elution strength and polarity (e.g. using hexane/ethanol/isopropanol 85/10/5vol%) and lowering the injection volume to 0.4μL, the plate count can be increased from 7600 to 21,300 for a low-retaining compound (k'=2.3) on a 2.1mm×150mm column (packed with 1.8μm particles). The application of a water/acetonitrile mixture as sample solvent was also investigated. It was found that when the volumetric ratio of water/acetonitrile was optimized, only a slightly lower plate count was measured compared to the hexane-based solvent when minimizing injection and extra-column volume. This confirms earlier results that water/acetonitrile can be used if water-soluble samples are considered or when a less volatile solvent is preferred. Minimizing the ID of the connection capillaries from 250 to 65μm, however, gives no further improvement in obtained efficiency for early-eluting compounds when a standard system configuration with optimized sample solvent was used. When switching to a state-of-the-art detector design with reduced (dispersion) volume (1.7-0.6μL), an increase in plate count is observed (from 11,000 to 14

  15. Project Themis Supercritical Cold Flow Facility, Experiment Design and Modeling for the Study of Fluid Mixing

    DTIC Science & Technology

    2012-06-01

    both below and above ambient, were included. The resultant density ratios are presented in Table 2. Water was excluded from initial examination...because of the difficulty in achieving supercritical conditions of the water and freestream gas mixture. Table 2. Density Ratios for Sample Combinations...controlled with a cavitating venturi. The helium and argon mass flows were controlled by sonic venturis. The test chamber pressure was controlled by

  16. Supercritical Fluid (SCF) Technologies: Assessment of Applicability to Installation Restoration Processes

    DTIC Science & Technology

    1994-03-10

    gallons per year of electroplating waste sludge. The average stream is largely inorganic and contains cadmium, chromium , copper , nickel, lead, zinc, and...indicated that corrosion using an oxidant (nitrate or hydrogen peroxide) selectively dissolved chromium from the matrix, whereas corrosion was non... catalyst in the supercritical phase [45]. As was shown in Figure 3-2, near the critical point, small changes in temperature result in large property changes

  17. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    PubMed

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents.

  18. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method.

  19. New dimension of slow food movement using supercritical fluid technology and methods to influence society by effective marketing strategies.

    PubMed

    Uzel, Ruhan Aşkın

    2016-07-01

    Although slow food movement is a well-known movement nowadays, in order to make it more widespread to the society, necessity to develop and to adapt new techniques has become inevitable for healthier consumption age. For this purpose, possibility of increased usage of healthy foods with addition of natural extracts using new techniques came out from relevant questionaries applied to people of different age groups. In this study, specific properties of supercritical carbon dioxide at distinct temperatures and water in subcritical conditions were used to obtain extracts rich in water-soluble organic compounds. Experiments were carried out at pressures of 10, 20, 30, and 40 MPa and temperatures ranging from 40 to 200 ℃ with and without modifier for 2 h of extraction time. The flow rate was kept at 4 and 1 ml/min for CO2 and water, respectively. The highest water-soluble organic compound recovery yield was 78.10%. Results were supported by marketing strategies to announce this new application and products to the society. Group of sample questions was prepared to investigate (a) frequency of staple food usage, (b) the brand names and relevant reasons that bring up consumers to buy specifically same branded products, (c) knowledge about the ingredients and how advertising effects purchasing decision, etc. Finally, efficiency increase in slow food consumption was proved with supercritical fluid technology to draw attention to the health of consumers with newer and functional healthy foods.

  20. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    PubMed

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  1. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  2. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    SciTech Connect

    Arrington, C.A. Jr.

    1998-06-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  3. Comparison of supercritical fluid extraction (SFE), Soxhlet and shaking methods for pendimethalin extraction from soils: effect of soil properties and water content

    NASA Astrophysics Data System (ADS)

    Spack, Lionel; Alvarez, Cristina; Martins, Jean M. F.; Tarradellas, Joseph

    1998-09-01

    Supercritical fluid extraction with CO 2 was applied to the analysis of traces of pendimethalin, a herbicide of the dinitroanilines group, in four different natural soils. The Supercritical Fluid Extraction (SFE) method was compared with the classical Soxhlet and shaking methods in terms of ease to run, extraction efficiency, selectivity and reproducibility. The influence of the physico-chemical properties of the soil matrix on herbicide extraction was then evaluated with the SFE method. The supercritical fluid extraction system used in the present study was found to be much easier to run than the other two methods, less time consuming and requires fewer operations as it was optimized for on-line sample clean up. SFE is the most selective of the three tested methods as fewer co-extracts are obtained in the final samples. SFE with CO 2 is particularly powerful because pendimethalin is highly hydrophobic. However, this makes pendimethalin a poor choice for a selectivity study of SFE as it is very rapidly extracted at any CO 2 density. Pendimethalin extraction with supercritical CO 2 was found to be almost complete with average recoveries of 96-99%, similarly to Soxhlet but with a much lower standard deviation (8-10%). The performance of SFE was shown to be unaffected by soil parameters except soil water content. It is demonstrated indeed that extraction efficiency is not linearly related to soil water content, and optimal recovery was found for water contents ranging from 2 to 15% depending on the type of soil. Soil water increases extraction efficiency because water acts as a modifier of the supercritical fluid and increases the penetration of the fluid inside the soil particles (clay swelling). In contrast to SFE and Soxhlet, the efficiency of the shaking method appeared to be partial and strongly dependent on soil properties. Although initial developments should be needed, the various benefits of SFE-CO 2 make this method attractive compared to traditional methods.

  4. Fluid pressure and reaction zone formation at a lithological interface

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Podladchikov, Yuri

    2014-05-01

    Chemical composition variations in reaction zones between two distinct lithologies are generally interpreted in terms of chemical potential gradients and diffusion process. Concentration profiles can then be used to quantify the species diffusion coefficients or the time scale of geological events. However, chemical potential gradients are also functions of temperature and pressure and local variations of these parameters can thus potentially modify the diffusion process. In northern Corsica, a centimeter scale reaction zone formed under blueschist conditions at a serpentinite - marble contact of sedimentary origin. Three sub-zones having chemical compositions evolving from one rock end-member to another divide the reaction zone along sharp interfaces. At the reaction zone - marble interface, marble decarbonation occurs to form wollastonite and carbonaceous matter. Thermodynamic calculations for this reaction and the respective increase in density of 25 % and 7 % in the bulk rock and in the garnet minerals are interpreted as records of a pressure gradient during reaction zone formation. Moreover, the formation of a volatile-free sub-zone in the reaction zone from reaction between the H2O-bearing serpentinite and the CO2-bearing marble released fluids at the contact. The impact of such a release on the fluid pressure was modelled by considering the effects of both the rock compaction and the transport of fluid by hydraulic diffusion. Modelling results indicates that > 0.5 GPa fluid overpressure can be generated at the contact if devolatilization rates are of the order of the one experimentally measured (> 10-5 kg of fluid/m3 of rock/s). The resulting pressure gradient is of the order of magnitude of the one necessary to counter-balance the effect on chemical potential of the chemical composition variations across the contact. Finally, after the reaction has run to completion, the model predicts that fluid rapidly diffuses away from the interface which thus stops

  5. Herbicidal activity of volatiles from coriander, winter savory, cotton lavender, and thyme isolated by hydrodistillation and supercritical fluid extraction.

    PubMed

    Grosso, Clara; Coelho, José A; Urieta, José S; Palavra, António M F; Barroso, José G

    2010-10-27

    The volatiles from Coriandrum sativum L., Satureja montana L., Santolina chamaecyparissus L., and Thymus vulgaris L. were isolated by hydrodistillation (essential oil) and supercritical fluid extraction (volatile oil). Their effect on seed germination and root and shoot growth of the surviving seedlings of four crops ( Zea mays L., Triticum durum L., Pisum sativum L., and Lactuca sativa L.) and two weeds ( Portulaca oleracea L. and Vicia sativa L.) was investigated and compared with those of two synthetic herbicides, Agrocide and Prowl. The volatile oils of thyme and cotton lavender seemed to be promising alternatives to the synthetic herbicides because they were the least injurious to the crop species. The essential oil of winter savory, on the other hand, affected both crop and weeds and can be appropriate for uncultivated fields.

  6. High-Throughput Analysis of Sucrose Fatty Acid Esters by Supercritical Fluid Chromatography/Tandem Mass Spectrometry

    PubMed Central

    Hori, Katsuhito; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-01-01

    Supercritical fluid chromatography (SFC) coupled with triple quadrupole mass spectrometry was applied to the profiling of sucrose fatty acid esters (SEs). The SFC conditions (column and modifier gradient) were optimized for the effective separation of SEs. In the column test, a silica gel reversed-phase column was selected. Then, the method was used for the detailed characterization of commercial SEs and the successful analysis of SEs containing different fatty acids. The present method allowed for fast and high-resolution separation of monoesters to tetra-esters within a shorter time (15 min) as compared to the conventional high-performance liquid chromatography. The applicability of our method for the analysis of SEs was thus demonstrated. PMID:26819875

  7. Supercritical fluid extraction of polycyclic aromatic hydrocarbons from seaweed samples before and after the prestige oil spill.

    PubMed

    Lage-Yusty, M A; Alvarez-Pérez, S; Punín-Crespo, M O

    2009-02-01

    Samples of seaweed which are used for human consumption were collected along the Galician coast (NW Spain), in order to determine the level of contamination from polycyclic aromatic hydrocarbons, by supercritical fluid extraction and liquid chromatographic analysis. No detection was made of benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[ghi]perylene and dibenzo[ah]anthracene. PAHs were found and quantified in only two samples. The PAHs found were the following: anthracene, chrysene, fluoranthene, fluorene and pyrene. The levels found were below maximum limits established by the Spanish Food Safety authority (<200 mg/kg dry weight). Here we show that no relevant effects were detected in terms of PAHs contamination in seaweed.

  8. Supercritical fluid extraction of 2,4,6-trinitrotoluene and 1,3,5-trinitrobenzene from soil

    SciTech Connect

    Wujcik, C.E.; Seiber, J.N.

    1996-07-01

    Optimization of a methanol-modified supercritical fluid extraction (SFE) technique using carbon dioxide has resulted in the effective recovery of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitrobenzene (TNB) from spiked and native soils. Several parameters, including modifier concentration, temperature, density, and static and dynamic extraction time were varied independently to determine the effect of each on analyte recovery. The optimal SFE conditions are: 5% methanol, 150{degree}C, 7500 PSI, 5 minutes static extraction and 15 minutes dynamic extraction. Samples were analyzed by gas chromatography using electron-capture detection (ECD). SFE quantitatively recovered both TNT and TNB from the soil matrix in considerably less time than conventional Soxhlet extraction with ethyl acetate and sonication with acetonitrile. 12 refs., 4 figs., 5 tabs.

  9. Separation of asphaltenes using high-resolution supercritical-fluid chromatography. Progress report, March 1, 1982-May 31, 1982. [Methylpolysiloxane

    SciTech Connect

    Jackson, W P; Richter, B E; Fjeldsted, J C; Peaden, P A; Lee, M L

    1982-01-01

    During this quarter more polar stationary phases were developed and tested for application to supercritical fluid chromatography. The studies initiated during the previous quarter into the dependence of the chromatography on pressure, viz., density, were continued in-depth. The on-column fluorimetric detector was modified for greater sensitivity. In addition, some brief studies were done using propane as a carrier as well as isopropanol-doped n-pentane. Synthesis of 50% and 70% phenyl methylphenylpolysiloxane polymers and their in-situ free radical crosslinking with peroxides was accomplished. Chromatographic evidence of coal tar is presented that illustrates the high efficiency and thermal stability of these phases when coated on fused silica capillary columns. 20 figures.

  10. Analysis of volatile flavour compounds and acrylamide in roasted Malaysian tropical almond (Terminalia catappa) nuts using supercritical fluid extraction.

    PubMed

    Lasekan, Ola; Abbas, Kassim

    2010-01-01

    Considering the importance of tropical almond nuts as a snack item, a study was conducted to identify the flavour volatiles and acrylamide generated during the roasting of the nuts. The supercritical fluid extracted flavour components revealed 74 aroma active compounds made up of 27 hydrocarbons, 12 aldehydes, 11 ketones, 7 acids, 4 esters, 3 alcohols, 5 furan derivatives a pyrazine, and 2 unknown compounds. While low levels of acrylamide (8-86 microg/kg) were obtained in the roasted nuts, significant (P<0.05) increases occurred in concentration with increased roasting temperature and time. Carboxylic acids were the most abundant volatiles in the roasted almond nuts and less significant (P>0.05) concentration of acrylamide was generated with mild roasting and shorter roasting period.

  11. Modelling couplings between reaction, fluid flow and deformation: Kinetics

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.

    2016-04-01

    Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.

  12. Bioprocessing of High-sulfur Crudes Via Appliaction of Critical Fluid Biocatalysis

    SciTech Connect

    Ginosar, Daniel Michael; Bala, Greg Alan; Anderson, Raymond Paul; Fox, Sandra Lynn; Stanescue, Marina A.

    2002-05-01

    This experimental research project investigated protein-based biocatalysis in supercritical fluid solvents as an integrated process approach to catalyze the removal of sulfur atoms from crude oils and fuels. The work focused on the oxidation of model sulfur-containing compounds in supercritical reaction media and included three major tasks: microbiological induction experiments, proteincatalyzed biooxidation in supercritical solvents, and a work-in-kind cooperative research and development agreement (CRADA). This work demonstrated that the biooxidation reaction could be improved by an order-of-magnitude by carrying out the reaction in emulsions in supercritical fluids.

  13. Analysis of non-phthalates plasticizers on porous graphitic carbon by supercritical fluid chromatography using evaporative light scattering detection.

    PubMed

    Vaccher, Claude; Decaudin, Bertrand; Sautou, Valérie; Lecoeur, Marie

    2014-09-12

    The analysis of several plasticizers, widely used in the production of medical devices, was investigated on porous graphitic carbon (PGC) stationary phase in supercritical fluid chromatography (SFC) with an evaporative light scattering detector (ELSD). Due to strong interaction of compounds with the PGC support, solvents of strong eluotropic strength were added to the CO2 supercritical fluid. The effect of alkyl chain (pentane, hexane, heptane) and chlorinated (CH2Cl2, CHCl3, CCl4) solvents was studied on the retention and on the ELSD detection of plasticizers. A co-solvent mixture composed of CHCl3/heptane, eluted under gradient mode, allowed a significant improvement of the ELSD response compared to the use of each solvent individually. Then, a central composite design (CCD) was implemented to optimize both the separation and the detection of plasticizers. The parameters involved were the outlet pressure, the gradient slope, the co-solvent composition and the drift tube temperature of the ELSD. After optimization, baseline separation of plasticizers was achieved in 7min and best signal-to-noise ratios were obtained with outlet pressure and drift tube temperature of ELSD set at 200bar and 31°C, respectively. The co-solvent mixture was also composed of CHCl3/heptane (35/65 v/v) and a gradient from 15 to 60% of co-solvent in 2.2min was employed. The results demonstrated that CCD is a powerful tool for the optimization of SFC/ELSD method and the response surface model analysis can provide statistical understandings of the significant factors required to achieve optimal separation and ELSD sensitivity.

  14. Petrophysical core characterization at supercritical geothermal conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2015-04-01

    There is a growing scientific interest in the exploitation of supercritical geothermal reservoirs to increase the efficiency of geothermal power plants. The utilisation of geothermal energy requires in any case the detailed knowledge of the reservoir. In reservoir engineering, the characterisation of the geothermal system by electrical resistivity tomography (ERT) is a common geophysical exploration and monitoring strategy. For a realistic interpretation of the field measurements it is necessary to know both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. While there have been made great effort in determine the physical and chemical properties of water above its critical point (Tcritical = 374.21° C and pcritical = 221.2 bar), the influence of fluid-rock interactions on petrophysical properties in supercritical aqueous systems is nearly unknown. At supercritical conditions the viscosity of the fluid is low, which enhances the mass transfer and diffusion-controlled chemical reactions. This may have considerable effects on the porosity and hydraulic properties of a rock. To investigate high-enthalpy fluid-rock systems, in the framework of the EU-funded project IMAGE we have built a new percolation set-up, which allows for the measurement of electrical resistivity and permeability of rock samples at controlled supercritical conditions of aqueous fluids (pore pressure = 400 bar and a temperature = 400° C). First results will be presented.

  15. Numerical Analysis of Heat Transfer Test of Supercritical Water in a Tube Using the Three-Dimensional Two-Fluid Model Code

    NASA Astrophysics Data System (ADS)

    Misawa, Takeharu; Yoshida, Hiroyuki; Tamai, Hidesada; Takase, Kazuyuki

    The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall temperature.

  16. Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid.

    PubMed

    May, Helge-Otmar; Mausbach, Peter

    2012-03-01

    The behavior of thermodynamic response functions and the thermodynamic scalar curvature in the supercritical region have been studied for a Lennard-Jones fluid based on a revised modified Benedict-Webb-Rubin equation of state. Response function extrema are sometimes used to estimate the Widom line, which is characterized by the maxima of the correlation lengths. We calculated the Widom line for the Lennard-Jones fluid without using any response function extrema. Since the volume of the correlation length is proportional to the Riemannian thermodynamic scalar curvature, the locus of the Widom line follows the slope of maximum curvature. We show that the slope of the Widom line follows the slope of the isobaric heat capacity maximum only in the close vicinity of the critical point and that, therefore, the use of response function extrema in this context is problematic. Furthermore, we constructed the vapor-liquid coexistence line for the Lennard-Jones fluid using the fact that the correlation length, and therefore the thermodynamic scalar curvature, must be equal in the two coexisting phases. We compared the resulting phase envelope with those from simulation data where multiple histogram reweighting was used and found striking agreement between the two methods.

  17. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth.

    PubMed

    Kessel, Ronit; Schmidt, Max W; Ulmer, Peter; Pettke, Thomas

    2005-09-29

    Fluids and melts liberated from subducting oceanic crust recycle lithophile elements back into the mantle wedge, facilitate melting and ultimately lead to prolific subduction-zone arc volcanism. The nature and composition of the mobile phases generated in the subducting slab at high pressures have, however, remained largely unknown. Here we report direct LA-ICPMS measurements of the composition of fluids and melts equilibrated with a basaltic eclogite at pressures equivalent to depths in the Earth of 120-180 km and temperatures of 700-1,200 degrees C. The resultant liquid/mineral partition coefficients constrain the recycling rates of key elements. The dichotomy of dehydration versus melting at 120 km depth is expressed through contrasting behaviour of many trace elements (U/Th, Sr, Ba, Be and the light rare-earth elements). At pressures equivalent to 180 km depth, however, a supercritical liquid with melt-like solubilities for the investigated trace elements is observed, even at low temperatures. This mobilizes most of the key trace elements (except the heavy rare-earth elements, Y and Sc) and thus limits fluid-phase transfer of geochemical signatures in subduction zones to pressures less than 6 GPa.

  18. Viability and adaptation potential of indigenous microorganisms from natural gas field fluids in high pressure incubations with supercritical CO2.

    PubMed

    Frerichs, Janin; Rakoczy, Jana; Ostertag-Henning, Christian; Krüger, Martin

    2014-01-21

    Carbon Capture and Storage (CCS) is currently under debate as large-scale solution to globally reduce emissions of the greenhouse gas CO2. Depleted gas or oil reservoirs and saline aquifers are considered as suitable reservoirs providing sufficient storage capacity. We investigated the influence of high CO2 concentrations on the indigenous bacterial population in the saline formation fluids of a natural gas field. Bacterial community changes were closely examined at elevated CO2 concentrations under near in situ pressures and temperatures. Conditions in the high pressure reactor systems simulated reservoir fluids i) close to the CO2 injection point, i.e. saturated with CO2, and ii) at the outer boundaries of the CO2 dissolution gradient. During the incubations with CO2, total cell numbers remained relatively stable, but no microbial sulfate reduction activity was detected. After CO2 release and subsequent transfer of the fluids, an actively sulfate-respiring community was re-established. The predominance of spore-forming Clostridiales provided evidence for the resilience of this taxon against the bactericidal effects of supercritical (sc)CO2. To ensure the long-term safety and injectivity, the viability of fermentative and sulfate-reducing bacteria has to be considered in the selection, design, and operation of CCS sites.

  19. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  20. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  1. Analysis of drugs in human tissues by supercritical fluid extraction/immunoassay

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Sabucedo, Alberta; Rein, Joseph; Hearn, W. L.

    1997-02-01

    A rapid, readily automated method has been developed for the quantitative analysis of phenobarbital from human liver tissues based on supercritical carbon dioxide extraction followed by fluorescence enzyme immunoassay. The method developed significantly reduces sample handling and utilizes the entire liver homogenate. The current method yields comparable recoveries and precision and does not require the use of an internal standard, although traditional GC/MS confirmation can still be performed on sample extracts. Additionally, the proposed method uses non-toxic, inexpensive carbon dioxide, thus eliminating the use of halogenated organic solvents.

  2. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment

    PubMed Central

    Budisa, Nediljko; Schulze-Makuch, Dirk

    2014-01-01

    Supercritical fluids have different properties compared to regular fluids and could play a role as life-sustaining solvents on other worlds. Even on Earth, some bacterial species have been shown to be tolerant to supercritical fluids. The special properties of supercritical fluids, which include various types of selectivities (e.g., stereo-, regio-, and chemo-selectivity) have recently been recognized in biotechnology and used to catalyze reactions that do not occur in water. One suitable example is enzymes when they are exposed to supercritical fluids such as supercritical carbon dioxide: enzymes become even more stable, because they are conformationally rigid in the dehydrated state. Furthermore, enzymes in anhydrous organic solvents exhibit a “molecular memory”, i.e., the capacity to “remember” a conformational or pH state from being exposed to a previous solvent. Planetary environments with supercritical fluids, particularly supercritical carbon dioxide, exist, even on Earth (below the ocean floor), on Venus, and likely on Super-Earth type exoplanets. These planetary environments may present a possible habitat for exotic life. PMID:25370376

  3. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment.

    PubMed

    Budisa, Nediljko; Schulze-Makuch, Dirk

    2014-08-08

    Supercritical fluids have different properties compared to regular fluids and could play a role as life-sustaining solvents on other worlds. Even on Earth, some bacterial species have been shown to be tolerant to supercritical fluids. The special properties of supercritical fluids, which include various types of selectivities (e.g., stereo-, regio-, and chemo-selectivity) have recently been recognized in biotechnology and used to catalyze reactions that do not occur in water. One suitable example is enzymes when they are exposed to supercritical fluids such as supercritical carbon dioxide: enzymes become even more stable, because they are conformationally rigid in the dehydrated state. Furthermore, enzymes in anhydrous organic solvents exhibit a "molecular memory", i.e., the capacity to "remember" a conformational or pH state from being exposed to a previous solvent. Planetary environments with supercritical fluids, particularly supercritical carbon dioxide, exist, even on Earth (below the ocean floor), on Venus, and likely on Super-Earth type exoplanets. These planetary environments may present a possible habitat for exotic life.

  4. Optimal stretching of fluid for enhancing reaction growth

    NASA Astrophysics Data System (ADS)

    Nevins, Thomas; Kelley, Douglas

    2016-11-01

    When a biological or chemical scalar grows in flowing fluid, the resulting reacted region is dependent on both the details of the flow, and the reaction kinetics. We simultaneously film reaction state and flow in a laboratory model of reactive mixing in order to examine reactive mixing in physical, time-dependent flows. Using the excitable Belousov-Zhabotinsky (BZ) reaction, we find an optimal stretching range in which the flow enhances reaction, but larger stretching causes reaction blowout. We observe the transition from flow mostly helping to mostly blowout is not associated with the transition to turbulence, and that stretching fields (closely related to finite-time Lyapunov exponents) inside the optimal range appear to have a large effect on reaction growth rate locally. We also present estimates of the optimal stretching for BZ, and hypothesize that it is a feature exclusive to excitable reactions.

  5. Rapid chiral separation of atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid using supercritical fluid chromatography-tandem mass spectrometry - Application to wetland microcosms.

    PubMed

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Jasper, Justin T; Sedlak, David L; Pettersson, Curt E

    2015-08-28

    A method for enantiomeric separation of the three β-blocking agents atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid, a major metabolite of both metoprolol and in environmental matrices also atenolol, has been developed. By use of supercritical fluid chromatography and the polysaccharide-based Chiralpak(®) IB-3, all four compounds were simultaneously enantiomerically separated (Rs>1.5) within 8min. Detection was performed using tandem mass spectrometry, and to avoid isobaric interference between the co-eluting metoprolol and metoprolol acid, the achiral column Acquity(®) UPC(2) BEH 2-EP was attached ahead of to the chiral column. Carbon dioxide with 18% methanol containing 0.5% (v/v) of the additives trifluoroacetic acid and ammonia in a 2:1 molar ratio were used as mobile phase. A post column make-up flow (0.3mL/min) of methanol containing 0.1% (v/v) formic acid was used to enhance the positive electrospray ionization. Detection was carried out using a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode, using one transition per analyte and internal standard. The method was successfully applied for monitoring the enantiomeric fraction change over time in a laboratory scale wetland degradation study. It showed good precision, recovery, sensitivity and low effect of the sample matrix.

  6. Holmium Nitrate Complexation with Tri-n-butyl Phosphate in Supercritical Carbon Dioxide

    SciTech Connect

    Robert V. Fox; R. Duane Ball; Peter de B. Harrington; Harry W. Rollins; Chien M. Wai

    2005-12-01

    Holmium nitrate pentahydrate was reacted with tri-n-butyl phosphate in supercritical carbon dioxide at 308 K. The products of the complexation reaction were measured under supercritical fluid conditions using UV-vis spectroscopy. The solubility of the metal complexes in the supercritical fluid phase was measured. The mole-ratio titration method was used to determine the stoichiometry of the soluble complexes. Conditional extraction coefficients were calculated from spectral data using least-squares regression and hard-equilibria models. Data indicate that the holmium nitrate-tributyl phosphate system forms 1:2 and 1:4 holmium-tributyl phosphate complexes.

  7. Intramolecular and intermolecular vibrational energy relaxation of CH 2I 2 dissolved in supercritical fluid

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2002-04-01

    A pump-probe experiment was performed to examine vibrational population relaxation of diiodomethane (CH 2I 2) molecule dissolved in supercritical CO 2. Using an apparatus with femtosecond time resolution, we observed the contributions of intramolecular vibrational energy redistribution (IVR) and intermolecular vibrational energy transfer (VET) separately. IVR and VET rates were measured with varying solvent densities at a constant temperature. It is shown that the IVR rate is not density dependent while the VET rate increases with increasing density from 0.4 to 0.8 g cm-3. This observation suggests that the rate of the VET process is determined by solute-solvent collisions whereas the IVR rate is not much affected by solute-solvent interaction.

  8. Supercritical fluid extraction on semibatch mode for the removal of terpene in citrus oil

    SciTech Connect

    Sato, Masaki; Goto, Motonobu; Hirose, Tsutomu

    1996-06-01

    Supercritical carbon dioxide extraction of a mixture of limonene and linalool was carried out with a rectification column in the semibatch operation mode. For the simple semibatch extraction where the column was controlled at the uniform temperature without an internal reflux, the Rayleigh equation, developed for the simple batch distillation, was applied to express the dynamic extraction behavior. In this paper the Peng-Robinson equation of state was used to estimate the ternary phase equilibria. The semibatch extraction with internal flux induced by a temperature gradient of the rectification column increased the separation selectivity. The internal reflux ratio was calculated by the measurement of the extraction rates at the top and bottom of the column, and it was 7.6 for the column having a temperature gradient from 313 K at the bottom to 333 K at the top at 8.8 MPa. Behavior in the rectification column was discussed by means of estimated physical properties.

  9. Modelling small angle neutron scattering data from polymers in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Triolo, F.; Triolo, A.; Lo Celso, F.; Johnson, J. S.; Donato, D. I.; Triolo, R.

    2000-04-01

    In this paper we report a SANS investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO2(scCO2) at 313K. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of scCO2 by profiling pressure. At high pressure the copolymer is in a monomeric state with a random coil structure. By lowering the pressure aggregates are formed with the hydrocarbon segments forming the core and the fluorocarbon segments forming the corona of spherical aggregates. This aggregate-unimer transition is driven by the gradual penetration of CO2 molecules toward the core of the aggregate and is critically related to the density of the solvent, thus suggesting the definition of a critical micellization density (CMD).

  10. Extraction of potential pollutants from Ohio coal by synergistic use of supercritical fluids. Final report

    SciTech Connect

    Lee, S.

    1990-08-03

    A synergistic supercritical extraction process was developed and its feasibility demonstrated using a semi-batch extraction process unit. The process was found to be effective in selectively cleaning organic sulfur from Ohio coals. Optimal case involved a mixture of CO{sub 2}, H{sub 2}O, and CH{sub 3}OH, and the removal of organic sulfur ranged from 35 to 55%. Combined with pyrite and mineral matter removal by gravity, the resulting coals would have 20--30% increased heating values and SO{sub 2} emissions would be down to 1.2--1.5 pounds per million Btu, thus meeting compliance requirements. Estimated cleaning cost including pyrite removal is $25 to 45 per ton. The most important cost factor is the operation at high pressures.

  11. Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2008-08-05

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  12. Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid

    PubMed Central

    2013-01-01

    This work reports on the diameter-sensitive biocompatibility of anodic TiO2 nanotubes with different nanotube diameters grown by a self-ordering process and subsequently treated with supercritical CO2 (ScCO2) fluid. We find that highly hydrophilic as-grown TiO2 nanotubes become hydrophobic after the ScCO2 treatment but can effectively recover their surface wettability under UV light irradiation as a result of photo-oxidation of C-H functional groups formed on the nanotube surface. It is demonstrated that human fibroblast cells show more obvious diameter-specific behavior on the ScCO2-treated TiO2 nanotubes than on the as-grown ones in the range of diameters of 15 to 100 nm. This result can be attributed to the removal of disordered Ti(OH)4 precipitates from the nanotube surface by the ScCO2 fluid, thus resulting in purer nanotube topography and stronger diameter dependence of cell activity. Furthermore, for the smallest diameter of 15 nm, ScCO2-treated TiO2 nanotubes reveal higher biocompatibility than the as-grown sample. PMID:23547743

  13. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state.

  14. Fluid Mosaic Membranes and the Light Reactions of Photosynthesis.

    ERIC Educational Resources Information Center

    Hannay, Jack

    1985-01-01

    Discusses: (1) the fluid mosaic membrane structure and light reactions of photosynthesis as exemplified by the Hill and Bendall "Z-scheme"; (2) the arrangement of light-harvesting pigments, electron transport components, and ATP synthesis on chloroplast membranes; and (3) how these topics are treated in A-level textbooks. (JN)

  15. The molecular clusters in a supercritical fluid-solid system should be considered as a phase-thermodynamic principle and evidence.

    PubMed

    Hou, Minqiang; Zhang, Jianling; Han, Buxing; Mei, Qingqing; Ning, Hui; Yang, Dezhong

    2013-07-14

    In this work we propose a new thermodynamic principle in which a supercritical fluid (SCF)-solid system is divided into a solid phase, a cluster phase, and a bulk fluid phase, i.e., the molecular clusters in the system are considered as an individual phase. The phase equilibria of various SCF-solid systems are calculated using this principle in combination with Monte Carlo simulation and the Peng-Robinson equation of state (PR-EOS). It is shown that in the critical region of the supercritical (SC) solvents where the clustering is significant, the results calculated using this thermodynamic principle are much more consistent with the experimental data than those calculated using the conventional thermodynamic principle, confirming the validity of the principle proposed in this work.

  16. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    PubMed

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction.

  17. Fe2O3/TiO2 nanocomposite photocatalyst prepared by supercritical fluid combination technique and its application in degradation of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, J. C.

    2017-01-01

    Fe2O3/TiO2 nanocomposite photocatalysts were synthesized by supercritical fluid combination technique, consisting of sol-gel method and supercritical fluid drying. The photocatalytic activity of the samples was evaluated by the degradation of acrylic acid. The results indicated that the Fe2O3/TiO2 nanocomposite catalysts prepared by this novel technique showed significant improvement in catalytic activity compared with pure TiO2 or Fe2O3/TiO2 catalysts prepared by traditional drying. Both infrared and ultraviolet spectrum of Fe2O3/TiO2 nanocomposite photocatalysts shift a little to lower wavelength indicating that the absorption threshold of Fe doped nanocomposite photocatalysts shift into the visible light region. This phenomenon was also attested by the photocatalytic degradation test under visible light.

  18. Optimisation and characterisation of marihuana extracts obtained by supercritical fluid extraction and focused ultrasound extraction and retention time locking GC-MS.

    PubMed

    Omar, Jone; Olivares, Maitane; Alzaga, Mikel; Etxebarria, Nestor

    2013-04-01

    The optimisation of focused ultrasound extraction and supercritical fluid extraction of volatile oils and cannabinoids from marihuana has been accomplished by experimental design approach. On the one hand, the focused ultrasound extraction method of volatile compounds and cannabinoids was studied based on the optimisation of cyclohexane and isopropanol solvent mixtures, and the instrumental variables. The optimal working conditions were finally fixed at isopropanol/cyclohexane 1:1 mixture, cycles (3 s(-1)), amplitude (80%) and sonication time (5 min). On the other hand, the supercritical fluid extraction method was optimised in order to obtain a deterpenation of the plant and a subsequent cannabinoid extraction. For this purpose, pressure, temperature, flow and co-solvent percentage were optimised and the optimal working conditions were set at 100 bar, 35°C, 1 mL/min, no co-solvent for the terpenes and 20% of ethanol for the cannabinoids. Based on the retention time locking GC-MS analysis of the supercritical fluid extracts the classification of the samples according to the type of plant, the growing area and season was attained. Finally, three monoterpenes and three cannabinoids were quantified in the ranges of 0.006-6.2 μg/g and 0.96-324 mg/g, respectively.

  19. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    PubMed

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis.

  20. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples.

  1. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.

  2. Response surface methodology applied to Supercritical Fluid Extraction (SFE) of carotenoids from Persimmon (Diospyros kaki L.).

    PubMed

    Zaghdoudi, Khalil; Framboisier, Xavier; Frochot, Céline; Vanderesse, Régis; Barth, Danielle; Kalthoum-Cherif, Jamila; Blanchard, Fabrice; Guiavarc'h, Yann

    2016-10-01

    Supercritical carbon dioxide with ethanol as co-solvent was used to extract carotenoids from persimmon fruits (Diospyros kaki L.). Based on a response surface methodology (RSM), a predicting model describing the effects of CO2 temperature, pressure, flow rate, ethanol percentage and extraction time was set up for each of the four carotenoids of interest. The best extraction yields in our experimental domain were found at 300 bars, 60°C, 25% (w/w) ethanol, 3mL/min flow rate and 30min for xanthophylls (all-trans-lutein, all-trans-zeaxanthin and all-trans-β-cryptoxanthin). The yields were 15.46±0.56, 16.81±1.74 and 33.23±2.91μg/g of persimmon powder for all-trans-lutein, all-trans-zeaxanthin and all-trans-β-cryptoxanthin, respectively. As a non-oxygenated carotenoid, all-trans-β-carotene was better extracted using 100 bars, 40°C, 25% (w/w) ethanol, 1mL/min flow rate and 30min extraction time, with an extraction yield of 11.19±0.47μg/g of persimmon powder.

  3. Formulation and characterization of mucoadhesive microparticles of cinnarizine hydrochloride using supercritical fluid technique.

    PubMed

    Patel, Jayvadan K; Patil, Priyanka S; Sutariya, Vijaykumar B

    2013-06-01

    The mucoadhesive microparticles (CHCNZ) composed of chitosan (CH) and cinnarizine (CNZ) hydrochloride were successfully prepared, in a process of solution-enhanced dispersion, by supercritical CO₂ (SEDS) technique. Scanning electron microscopy was used to reveal the morphological characteristics of mucoadhesive microparticles. The average particle size of microparticles was in the range from 1.9 to 12.8 µm. In vitro and in vivo mucoadhesive tests showed that CHCNZ mucoadhesive microparticles adhered more strongly to gastric mucous layer. Thereby retaining in gastrointestinal tract for an extended period of time and exhibiting good mucoadhesive properties. The X-ray powder diffractometry and differential scanning calorimetry analysis demonstrated that the SEDS process was an efficient physical coating process to produce CHCNZ composite microparticles. It also suggests that CNZ did not undergo chemical changes during the production of microparticles. The optimized batch exhibited a high drug entrapment efficiency of 67% with particle size of 3.9 µm. A sustained pattern of drug release was obtained for more than 20 h. In vivo studies were carried out by administering orally cinnarizine HCl (CNZ) suspension and mucoadhesive microparticles to rabbits under fasted (for 12 h) conditions. The results showed that CNZ mucoadhesive microparticles had a better bioavailability than CNZ suspension due to longer retention in the gastric environment of the test animals.

  4. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  5. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  6. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  7. Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry.

    PubMed

    Klejdus, B; Lojková, L; Plaza, M; Snóblová, M; Stěrbová, D

    2010-12-17

    New hyphenated technique for the extraction and determination of isoflavones in sea and freshwater algae and cyanobacteria was developed. The method consists of sonication sample pretreatment, extraction by supercritical CO(2) modified by 3% (v/v) of MeOH/H(2)O mixture (9:1, v/v) at 35 MPa and 40°C for 60 min, fast chromatography analysis by the means of Agilent 1200 Series Rapid Resolution and MS/MS determination. Agilent 1200 Series RRLC was used with Zorbax SB-CN chromatographic column (100 mm × 2.1mm, particle size 3.5 μm), 3μl injection volume, mobile phase consisting of 0.2% (v/v) acetic acid in water (solvent A) and acetonitrile (solvent B) and used with linear gradient (30% B at 0 min, from 0 min to 3 min up to 50% B, from 3 to 6 min up to 80% B and from 6 to 10 min down to 30% B). The flow-rate was 0.4 mL/min, column oven temperature 35°C. MS detector Agilent Technologies 6460 Triple quadrupole LC/MS with Agilent Jet Stream was used in a negative ESI mode under following conditions: gas temperature 350°C, gas flow 13 L/min, nebulizer gas pressure 50 psi, sheath gas temperature 400°C, sheath gas flow 12L/min, capillary voltage was 4 kV. Samples were analysed in the multiple reaction monitoring (MRM) mode. Eight isoflavone compounds were found for the first time in seven real samples of sea algae and in three control samples of freshwater algae and cyanobacteria. Usual optimisation study of extraction parameters was performed. Pressure and temperature optima for algae matrix are different from those obtained sooner for other matrices for most of the analytes, but the results of modifier optimisation study are in good accordance with those obtained sooner for spiked samples and red clover matrix. It seems that matrix has very small or no effect on the modifier selection. Two different approaches of sonication pretreatment were tested: sonication bath and the thorn instrument. In longer extraction time experiments, thorn sonication was more efficient

  8. Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Sung B.; Smith, Richard L.; Inomata, Hiroshi; Arai, Kunio

    2000-11-01

    A probe and apparatus were developed for measuring the dielectric spectra (complex permittivity) of high pressure liquids and supercritical fluid mixtures. The probe consisted a 2.2 mm semirigid coaxial cable that was cut off flat and mounted into a high pressure tube. The apparatus for measuring complex permittivity consisted of the dielectric probe, cell, densimeter, piston for varying the system density at constant composition, and magnetic pump for agitation and recirculation, all of which were housed in a constant temperature air bath. The probe is simple, robust, inexpensive, and further, its design allows for quick connection to high pressure systems. Probe accuracy is estimated to be ±0.5 in ɛ' and ±0.5 in ɛ″ from 200 MHz to 18 GHz based on replicate measurements of calibration and 2σ deviations over the interval. Dielectric spectra were measured over the 200 MHz-20 GHz range for methanol+carbon dioxide mixture at 323.2 K and a pressures up to 18 MPa.

  9. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    PubMed Central

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  10. Supercritical fluid extract of Lycium chinense Miller root inhibition of melanin production and its potential mechanisms of action

    PubMed Central

    2014-01-01

    Background The mode of action of Lycium chinense Miller root extract in skin care has never been explored. In the present study, Lycium chinense Miller root was extracted by the supercritical fluid CO2 extraction method. Methods In the present study, the components of the root extract were analyzed by HPLC. The effects of the extract on tyrosinase activity and melanin content were determined spectrophotometrically; the expression of melanogenesis-related proteins was determined by Western blotting; the possible signaling pathways involved in the root extract-mediated depigmentation were also investigated using specific inhibitors. Results The results revealed that the SFE of Lycium chinense Miller root (2.37-7.11 mg/mL) effectively suppressed intracellular tyrosinase activity and decreased the melanin content in B16F10 cells. The root extract also effectively decreased intracellular reactive oxygen species (ROS) levels. Furthermore, the root extract decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) and then inhibited melanogenesis in B16F10 cells. The root extract also showed antioxidant capacities and depleted cellular ROS. Conclusions Our results indicate that the SFE of Lycium chinense Miller root inhibited melanogenesis in B16F10 cells by down-regulation of both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways or through its antioxidant properties. PMID:24972978

  11. Direct detection of free fatty acids in edible oils using supercritical fluid chromatography coupled with mass spectrometry.

    PubMed

    Qu, Shuping; Du, Zhenxia; Zhang, Yun

    2015-03-01

    Determination of free fatty acids (FFAs) in food products is of enormous interest mainly because they are related to the quality and authenticity of the oils. In this study, supercritical fluid chromatography (SFC), followed by an electrospray ionisation triple-quadrupole mass spectrometry (ESI-MS), is shown to provide a novel method for the separation and detection of FFAs in edible oils without any pretreatment. Eight FFAs were separated on a HSS C18 SB column with gradient elution within 3 min. Effects of different columns, modifiers and column temperature changes were evaluated. The results indicated the feasibility of this method for the high-throughput determination of individual FFAs with satisfactory correlation coefficients (R(2)>0.994) and good reproducibility of RSD<13.5% (intraday) and <15.0% (interday). By combined with principal component analysis (PCA), different types of edible oil were successfully distinguished into several categories, showing a potential application for the determination of oil quality or authenticity.

  12. Numerical scheme for non-linear model of supercritical fluid extraction from polydisperse ground plant material: single transport system

    NASA Astrophysics Data System (ADS)

    Salamatin, A.

    2016-11-01

    Numerical algorithm is developed for modelling non-linear mass transfer process in supercritical fluid extraction (SFE). The ground raw material is considered as polydisperse, characterized by discrete number of effective particle fractions. Two continuous interacting counterparts separated by permeable membrane are distinguished in plant material build-up. The apoplast plays role of transport channels during extraction, and symplast contains extractable oil. The complete SFE model is non-linear as a result of non-linearity of oil dissolution kinetics. The computational scheme is based on the finite-volume approximation method and Thomas elimination procedure. The resulting system of algebraic equations is solved iteratively. Special attention is paid to polydisperse substrates, when particle scale characteristics of all fractions interact with each other through pore phase concentration on the vessel scale. Stability of the developed algorithm is demonstrated in numerical tests. Special iterative procedure guarantees a monotonic decrease of oil content in individual particles of substrate. It is also shown that in the limit of the so-called shrinking core approach the number of mesh nodes on a particle scale should be increased.

  13. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements.

    PubMed

    Li, Bing; Zhao, Haiyan; Liu, Jing; Liu, Wei; Fan, Sai; Wu, Guohua; Zhao, Rong

    2015-12-18

    A quick and simple ultra-high performance supercritical fluid chromatography-photodiode array detector method was developed and validated for the simultaneous determination of 9 carotenoids in dietary supplements. The influences of stationary phase, co-solvent, pressure, temperature and flow rate on the separation of carotenoids were evaluated. The separation of the carotenoids was carried out using an Acquity UPC(2) HSS C18 SB column (150mm×3.0mm, 1.8μm) by gradient elution with carbon dioxide and a 1:2 (v:v) methanol/ethanol mixture. The column temperature was set to 35°C and the backpressure was 15.2MPa. Under these conditions, 9 carotenoids and the internal standard, β-apo-8'-carotenal, were successfully separated within 10min. The correlation coefficients (R(2)) of the calibration curves were all above 0.997, the limits of detection for the 9 carotenoids were in the range of 0.33-1.08μg/mL, and the limits of quantification were in the range of 1.09-3.58μg/mL. The mean recoveries were from 93.4% to 109.5% at different spiking levels, and the relative standard deviations were between 0.8% and 6.0%. This method was successfully applied to the determination of 9 carotenoids in commercial dietary supplements.

  14. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    PubMed Central

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  15. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species.

    PubMed

    Klejdus, B; Kopecký, J; Benesová, L; Vacek, J

    2009-01-30

    In the present paper a new extraction technique based on the combination of solid-phase/supercritical-fluid extraction (SPE/SFE) with subsequent reversed-phase HPLC is described. The SPE/SFE extractor was originally constructed from SPE-cartridge incorporated into the SFE extraction cell. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acid), hydroxybenzaldehydes (4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde) and cinnamic acid derivatives (o-coumaric, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acid) were extracted. Cyclic addition of binary extraction solvent system based on methanol:water (1:1, v/v) and methanol/ammonia aqueous solution was used for extraction at 40MPa and 80 degrees C. The p-hydroxybenzoic, protocatechuic, vanillic, syringic, caffeic and chlorogenic acid; 4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were identified by HPLC-electrospray mass spectrometry in SPE/SFE extracts of acid hydrolyzates of microalga (Spongiochloris spongiosa) and cyanobacterial strains (Spirulina platensis, Anabaena doliolum, Nostoc sp., and Cylindrospermum sp.). For the identification and quantification of the compounds the quasi-molecular ions [M-H](-) and specific fragments were analysed by quadrupole mass spectrometry analyzer. Our analysis showed that the microalgae and cyanobacteria usually contained phenolic acids or aldehydes at microg levels per gram of lyophilized sample. The proposed SPE/SFE extraction method would be useful for the analysis of different plant species containing trace amount of polar fraction of phenols.

  16. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of aliphatic hydrocarbons in seaweed samples.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2006-07-01

    Supercritical fluid extraction (SFE) and Soxhlet extraction methods were compared in a study of the aliphatic hydrocarbon profiles of seaweed samples. Method precision for Soxhlet extraction (< or = 7.58%) was slightly better than that for SFE (< or = 9.28%) except for C28. The SFE method is a good alternative for the routine determination of alkanes in seaweed samples; however, for a complete study of shorter-chain n-alkanes, the Soxhlet extraction is a more suitable method. To evaluate the SFE and Soxhlet methods developed, three diverse Undaria pinnatifida samples collected at different dates and areas of the Galician coast were analyzed. n-Alkanes C18, C20, C22, C24, and C28 were found in all samples, with values lower than 7.9 microg g(-1) d.w. The total hydrocarbon content was within the range of 13.6-21.7 microg g(-1) d.w. C18 was found to be the most abundant.

  17. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    PubMed

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  18. Effects of pressure drop, particle size and thermal conditions on retention and efficiency in supercritical fluid chromatography.

    PubMed

    Poe, Donald P; Schroden, Jonathan J

    2009-11-06

    The effects of particle size and thermal insulation on retention and efficiency in packed-column supercritical fluid chromatography with large pressure drops are described for the separation of a series of model n-alkane solutes. The columns were 2.0mm i.d.x150mm long and were packed with 3, 5, or 10-mum porous octylsilica particles. Separations were performed with pure carbon dioxide at 50 degrees C at average mobile phase densities of 0.47g/mL (107bar) and 0.70g/mL (151bar). The three principal causes of band broadening were the normal dispersion processes described by the van Deemter equation, changes in the retention factor due to the axial density gradient, and radial temperature gradients associated with expansion of the mobile phase. At the lower density the use of thermal insulation resulted in significant improvements in efficiency and decreased retention times at large pressure drops. The effects are attributed to the elimination of radial temperature gradients and the concurrent enhancement of the axial temperature gradient. Thermal insulation had no significant effect on chromatographic performance at the higher density. A simple expression to predict the onset of excess efficiency loss due to the radial temperature gradient is proposed.

  19. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    PubMed

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented.

  20. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats.

    PubMed

    Posadas, S J; Caz, V; Largo, C; De la Gándara, B; Matallanas, B; Reglero, G; De Miguel, E

    2009-01-01

    Rosemary leaves, "Rosmarinus officinalis", possess a variety of antioxidant, anti-tumoral and anti-inflammatory bioactivities. We hypothesized that rosemary extract could enhance antioxidant defenses and improve antioxidant status in aged rats. This work evaluates whether supplementing their diet with supercritical fluid (SFE) rosemary extract containing 20% antioxidant carnosic acid (CA) reduces oxidative stress in aged rats. Aged Wistar rats (20 months old) were included in the study. Rats were fed for 12 weeks with a standard kibble (80%) supplemented with turkey breast (20%) containing none or one of two different SFE rosemary concentrations (0.2% and 0.02%). After sacrifice, tissue samples were collected from heart and brain (cortex and hippocampus). Enzyme activities of catalase (CAT), glutathione peroxidase (GPX), superoxide dismutase (SOD) and nitric oxide synthase (NOS) were quantitatively analyzed. Lipid peroxidation and levels of reactive oxygen species (ROS) were also determined. Rosemary decreased lipid peroxidation in both brain tissues. The levels of catalase activities in heart and cortex were decreased in the rosemary-treated groups. The SFE rosemary-treated rats presented lower NOS levels in heart and lower ROS levels in hippocampus than the control rats. Supplementing the diet of aged rats with SFE rosemary extract produced a decrease in antioxidant enzyme activity, lipid peroxidation and ROS levels that was significant for catalase activity in heart and brain, NOS in heart, and LPO and ROS levels in different brain tissues. These observations suggest that the rosemary supplement improved the oxidative stress status in old rats.

  1. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction.

    PubMed

    Jonker, Michiel T O; Hawthorne, Steven B; Koelmans, Albert A

    2005-10-15

    Combustion-derived PAHs are strongly sorbed to their particulate carrier (i.e., soot, charcoal), and therefore, very slow desorption kinetics of the chemicals might be anticipated. Measurements are however lacking, because conventional methods (Tenax, XAD, gas-purging) fail to accurately determine desorption kinetics due to practical problems. In this study, we used a mild supercritical fluid extraction (SFE) method, which mimics desorption into water and circumvents these problems, to quantify desorption kinetics of 13 native PAHs from pure charcoal, coal, and four types of soot. The results show that generally only very small PAH fractions are released. Desorption behavior was, however, not related to common sorbent/sorbate characteristics. Two-site model-derived "fast desorbing fractions" were <0.01 in the majority of cases, and for the dominant "slow sites", the calculated rate constants for desorption into water measured from 10(-7) to 10(-5) h(-1). These data suggest that desorption of coal and combustion-derived PAHs can be even slower than the "very slow" desorption observed in sediments. Estimated time scales required for removal of pyrogenic PAHs from these extremely slow sites into water amount to several millennia. Our results imply reduced chemical risks for soot and soot-like materials, casting doubts on current risk assessment procedures and environmental quality standards of pyrogenic PAHs.

  2. Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties

    PubMed Central

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Ganbe, Yoshiyuki; Tomai, Takaaki; Honma, Itaru

    2014-01-01

    Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets have been synthesized by a one-pot supercritical fluid (SCF) processing. The effect of different amines and their roles on the morphology-control has been investigated in detail. It was found that amine having long alkyl chain such as hexamethylenediamine played important roles to manipulate the shape of the nanocrystals by selective adsorption on the specific {010} facets. More importantly, the nanorods and nanoplates showed better electrochemical performance than that of nanoparticles which was attributed to their unique crystallographic orientation with short Li ion diffusion path. The present study emphasizes the importance of crystallographic orientation in improving the electrochemical performance of the high voltage LiCoPO4 cathode materials for Li-ion batteries. PMID:24496051

  3. Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction

    SciTech Connect

    Michiel T.O. Jonker; Steven B. Hawthorne; Albert A. Koelmans

    2005-10-15

    Combustion-derived PAHs are strongly sorbed to their particulate carrier (i.e., soot, charcoal), and therefore, very slow desorption kinetics of the chemicals might be anticipated. Measurements are however lacking, because conventional methods (Tenax, XAD, gas-purging) fail to accurately determine desorption kinetics due to practical problems. In this study, we used a mild supercritical fluid extraction (SFE) method, which mimics desorption into water and circumvents these problems, to quantify desorption kinetics of 13 native PAHs from pure charcoal, coal, and four types of soot. The results show that generally only very small PAH fractions are released. Desorption behavior was, however, not related to common sorbent/sorbate characteristics. Two-site model-derived 'fast desorbing fractions' were {lt}0.01 in the majority of cases, and for the dominant 'slow sites', the calculated rate constants for desorption into water measured from 10{sup -7} to 10{sup -5} h{sup -1}. These data suggest that desorption of coal and combustion-derived PAHs can be even slower than the 'very slow' desorption observed in sediments. Estimated time scales required for removal of pyrogenic PAHs from these extremely slow sites into water amount to several millennia. Our results imply reduced chemical risks for soot and soot-like materials, casting doubts on current risk assessment procedures and environmental quality standards of pyrogenic PAHs. 41 refs., 1 fig., 3 tabs.

  4. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs

    PubMed Central

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox®), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox®, the Cmax (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  5. Quantitation of volatile oils in ground cumin by supercritical fluid extraction and gas chromatography with flame ionization detection.

    PubMed

    Heikes, D L; Scott, B; Gorzovalitis, N A

    2001-01-01

    Ground cumin is used as a flavoring agent in a number of ethnic cuisines. The chemical entities, which primarily establish its characteristically pungent flavor, are found in the volatile oil of cumin. Fixed oils and carbohydrates tend to round out the harshness of the volatile oil components. However, the quantity of volatile oil is commonly the measure of the quality of this spice. For several decades, the spice industry has used a classical distillation procedure for the determination of volatile oil in cumin and other spices. However, the method is cumbersome and requires nearly 8 h to complete. Supercritical fluid extraction with capillary gas chromatography-flame ionization detection is utilized in the formulation of a rapid, accurate, and specific method for the determination of volatile oil in ground cumin. Samples are extracted in a static-dynamic mode with CO2 at 550 bar and 100 degrees C. Toluene is used as a static modifier addition. The extracted volatile oil, collected in toluene, is analyzed directly using tetradecane as the internal standard. Integration is performed as grouped peaks to include all chemical entities found in cumin volatile oil recovered from the official distillation procedure. Results from this procedure compare favorably with those obtained by the official procedure (coefficient of correlation = 0.995, 24 samples).

  6. Comparison of the volatile constituents of Elsholtzia fruiticosa extracted by hydrodistillation, supercritical fluid extraction and head space analysis.

    PubMed

    Saini, Rikki; Guleria, Shailja; Kaul, Vijay K; Lal, Brij; Babu, Garikapati D Kiran; Singh, Bikram

    2010-04-01

    Volatile constituents of Elsholtzia fruiticosa (D. Don) Rehder were studied by two different extraction techniques, supercritical fluid extraction (SFE) and hydrodistillation (HD), and the results were compared with head space analysis (HS). Thirty-five constituents were identified in both the SFE and HD oils and fourteen in the HS, accounting for 94.2%, 97.7% and 96.9% of the total identifications, respectively. A distinctive feature of the results was the very high content of non-terpenes (59.8%) in the HS, the high content of oxygenated monoterpenes (41.1%) in the HD oil and the high content of sesquiterpene hydrocarbons (21.8%) in the SFE oil. Monoterpene hydrocarbons were represented in HS (13.6%), HD (19.4%) and SFE (4.3%). In SFE sesquiterpene hydrocarbons formed 21.8% of the total, as compared to 6.6% in the HD and 1.1% in the HS Oxygenated sesquiterpenes represented 3.0% in SFE, 0.8% in HD and were absent in HS. Diterpenes were only present in the SFE oil (3.4%). Non-terpenes were represented by 24.5% in the SFE oil and 29.8% in the HD oil.

  7. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  8. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry.

    PubMed

    Lísa, Miroslav; Holčapek, Michal

    2015-07-21

    New analytical approach for high-throughput and comprehensive lipidomic analysis of biological samples using ultrahigh-performance supercritical fluid chromatography (UHPSFC) with electrospray ionization-mass spectrometry (ESI-MS) is presented in this work as an alternative approach to established shotgun MS or high-performance liquid chromatography-MS. The lipid class separation is performed by UHPSFC method based on 1.7 μm particle-bridged ethylene hybrid silica column with a gradient of methanol-water-ammonium acetate mixture as a modifier. All parameters of UHPSFC conditions are carefully optimized and their influence on the chromatographic behavior of lipids is discussed. The final UHPSFC/ESI-MS method enables a fast separation of 30 nonpolar and polar lipid classes within 6 min analysis covering 6 main lipid categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. Individual lipid species within lipid classes are identified based on positive and negative-ion full-scan and tandem mass spectra measured with high mass accuracy and high resolving power. Developed UHPSFC/ESI-MS method is applied for the analysis of porcine brain extract as a complex lipidomic sample, where 24 lipid classes containing 436 lipid species are identified. The method is validated for the quantitative analysis of lipid species in biological tissues using internal standards for each lipid class. This high-throughput, comprehensive and accurate UHPSFC/ESI-MS method is suitable for the lipidomic analysis of large sample sets in the clinical research.

  9. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO2-ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO2-CH3CN, hexane-iPrOH and CHF3-ROH mobile phases supporting this explanation are presented.

  10. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid.

    PubMed

    Park, Joo Won; Yun, Jeong Min; Lee, Eun Seong; Youn, Yu Seok; Kim, Kab Sig; Oh, Young Taik; Oh, Kyung Teak

    2013-11-01

    While the number and diversity of lead compounds has increased with the development of science technologies, ca. 90 % of new chemical entities under development have shown low aqueous solubility, classified as class II or IV of the biopharmaceutics classification system (BCS). The low aqueous solubility hinders their clinical translations due to low bioavailability and dissolution-limited absorption of orally-administered drugs. Several technologies have been employed to improve the solubility of poorly water-soluble drugs. In this paper, a new method of nanoparticulation using fat and a supercritical fluid (NUFS) for the formulation of hydrophobic drugs was applied to solve the low solubility problem. A typical BCS class II drug, itraconazole, was selected and formulated with hydroxypropyl methylcellulose, emulsification, and anticoagulating agents for NUFS. The non-spherical itraconazole nanoparticles prepared by NUFS were ~300-500 nm in size with a ~15-fold improved dissolution rate compared to non-nanoparticles of itraconazole (i.e., raw itraconazole). In addition, a high drug content of ~46 % by weight and a drug loading efficiency greater than 85 % were achieved. Therefore, the new technology for nano-platforms could be a promising solution for solubilization of poorly water-soluble drugs, resulting in improved bioavailability.

  11. Supercritical fluid extraction of amino acids from birch (Betula pendula Roth) leaves and their liquid chromatographic determination with fluorimetric detection.

    PubMed

    Klejdus, Borivoj; Lojková, Lea; Kula, Emanuel; Buchta, Ivan; Hrdlicka, Petr; Kubán, Vlastimil

    2008-05-01

    A method for supercritical fluid extraction (SFE) of amino acids was adapted and optimal experimental conditions were selected for a matrix consisting of dry leaves. The matrix-dependent SFE method uses a mixture of MeOH-H(2)O-acetonitrile (10:10:1 v/v/v) as a modifier (0.5 mL in situ, 300 muL on-line) at 70 degrees C and 40 MPa and no HCl is needed as an entrainer. The amino acids were quantified using high-performance liquid chromatography with fluorimetric detection (HPLC/FLD) after gradient elution on Zorbax Eclipse AAA columns (4.6x150 mm, 3.5 mum) with aqueous Na(2)HPO(4 )buffer of pH 7.8 and ACN-MeOH-water as a mobile phase. In comparison with Soxhlet extraction, SFE gave higher recovery and selectivity, but it required longer extraction time (90 min) and it was more labor-intensive (clean-up step after the pre-concentration). Both methods should be used separately or in combination according to the matrix, number of samples, and levels of ballast compounds.

  12. Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Zhi; Hu, Mary; Todd Schaef, H.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O-saturated supercritical CO2 (scCO2) at 35 °C and 50 °C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3·3H2O) and magnesite (MgCO3) at short reaction times (˜3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 °C) than previously thought needed to overcome its well-known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 °C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  13. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Z.; Hu, Mary Y.; Schaef, Herbert T.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O saturated supercritical CO2 (scCO2) at 35 C and 50 C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray Spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3.3H2O) and magnesite (MgCO3) at short reaction times ({approx}3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 C) than previously thought needed to overcome its well known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  14. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon.

    PubMed

    Katherine, L S Vaughn; Edgar, C Clausen; Jerry, W King; Luke, R Howard; Julie, Carrier Danielle

    2008-11-01

    Lycopene, a carotenoid linked to protection against certain forms of cancer, is found in produce such as papaya, red-fleshed tomatoes, grapefruit and watermelon. The preparation of a supercritical CO2 (SC-CO2) watermelon-lycopene extract could serve as a food grade source of this carotenoid. This study established preliminary conditions for enhancing SC-CO2 extraction of lycopene from watermelon. Freeze-dried watermelon was extracted with SC-CO2 and ethanol as an organic co-solvent. The lycopene concentration was determined by HPLC, with absorbance measured at 503 nm. In an initial set of experiments, the effects of extraction temperature (70-90 degrees C), pressure (20.7-41.4 MPa) and co-solvent ethanol addition (10-15%) were evaluated. A lycopene yield of 38 microg per gram of wet weight was obtained at 70 degrees C, 20.7 MPa, and 15% by volume ethanol. The extraction of fresh (non-freeze-dried) watermelon yielded 103+/-6 microg lycopene per gram fresh fruit weight. Of the parameters tested, temperature had the most effect on lycopene yield. Thus, in another set of experiments, the temperature was varied from 60-75 degrees C at an extraction pressure of 20.7 MPa in the presence of 15% ethanol. Studies showed that freeze-dried watermelon flesh loses lycopene in storage. In accounting for lycopene storage losses, lycopene yields at 60 degrees C extraction temperature were 14% greater than those obtained at 70 degrees C.

  15. EFFECT OF SODIUM HYDROXIDE AND SUPERCRITICAL FLUID TREATMENTS ON UNRETTED KENAF FIBERS

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Laddha, Sachin; Chen, Feng; Wright, Katherine M.

    2010-05-17

    Kenaf fibers have been gaining great interest for use in the fabrication of both thermoset and thermoplastic composites. However, the inherent fiber surface properties limit their application. In response to the uneconomical, energy inefficient and environmentally unfavorable issues of the standard fiber retting process, we applied chemical modifications of kenaf fibers as alternative retting treatments and investigated the overall performance of the modified fibers. Alkaline solution and super critical alcohol were used as fiber treatments and their effects on the fiber properties were compared. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the thermal properties of fibers. The change of in chemical composition of the fibers with treatment is discussed in the context of the thermal decomposition behavior. The cellulose crystal structure and total crystallinity of the kenaf fibers were characterized by X-ray diffraction (XRD). Field emission scanning electron microscopy (SEM) was employed to examine the morphological changes of fiber surface and fiber cross-section after both alkaline and super critical alcohol treatments. The mechanical behavior of fibers before and after treatment was explored by tenacity testing and the fracture mechanism was evidenced by observing the fracture surfaces. The effect of chemical treatment duration on the fiber performance was also discussed. It was found that the alkaline treated kenaf fibers showed higher thermal stability than untreated fibers, while TGA results indicated that supercritical alcohol was more efficient in removing the non-cellulosic portions. XRD data confirmed the removal of amorphous structural components such as pectin, hemicellulose and lignin as well as amorphous cellulose for the treated kenaf fibers. SEM images showed that both treatments were effective in removing impurities and coating materials on the fiber surface. The rough fracture morphology

  16. HPLC Method for the Simultaneous Determination of Ten Annonaceous Acetogenins after Supercritical Fluid CO2 Extraction

    PubMed Central

    Yang, Haijun; Zhang, Ning; Zeng, Qingqi; Yu, Qiping; Ke, Shihuai; Li, Xiang

    2010-01-01

    Annonaceous acetogenins (ACGs) isolated from Annonaceae plants exhibited a broad range of biological bioactivities such as cytotoxic, antitumoral, antiparasitic, pesticidal and immunosuppresive activities. However, their structures were liable to change at more than 60°C and their extraction yields were low using traditional organic solvent extraction. In the present study, all samples from Annona genus plant seeds were extracted by supercritical carbon dioxide under optimized conditions and a high-performance liquid chromatography (HPLC) method was established for simultaneously determining ten ACGs. All of the ten compounds were simultaneously separated on reversed-phase C18 column (250 mm × 4.6 mm, 5 μm) with the column temperature at 30°C. The mobile phase was composed of (A) methanol and (B) distilled water, the flow rate was 1.0 ml/min and the detection wavelength was set at 220 nm. All calibration curves showed good linear regression (γ>0.9995) within the test range. The established method showed good precision and accuracy with overall intra-day and inter-day variations of 0.99-2.56% and 1.93-3.65%, respectively, and overall recoveries of 95.16-105.01% for the ten compounds analyzed. The established method can be applied to evaluate the intrinsic quality of Annonaceae plant seeds. The determination results recover the content-variation regularities of various ACGs in different species, which are helpful to choose the good-quality Annonaceae plant seeds for anticancer lead compound discovery. PMID:23675194

  17. Enzyme-assisted supercritical fluid extraction: an alternative and green technology for non-extractable polyphenols.

    PubMed

    Mushtaq, Muhammad; Sultana, Bushra; Akram, Sumia; Anwar, Farooq; Adnan, Ahmad; Rizvi, Syed S H

    2017-03-22

    This contribution proposes an enzyme-assisted eco-friendly process for the extraction of non-extractable polyphenols (NEPPs) from black tea leftover (BTLO), an underutilized tea waste. BTLO hydrolyzed with various enzyme formulations was extracted using supercritical carbon dioxide and ethanol as co-solvent (SC-CO2 + EtOH). A conventional solvent extraction (CSE) was performed using EtOH + H2O (80:20, v/v) for comparison purposes. The results revealed that hydrolysis of BTLO with 2.9% (w/w) kemzyme at 45 °C and pH 5.4 for 98 min improved the liberation of NEPPs offering 5-fold higher extract yield (g/100 g) as compared with non-treated BTLO. In vitro antioxidant evaluation and LC-MS characterization of extracts revealed the presence of phenolic acids (mainly caffeic and para-coumaric acid) of high antioxidant value. Scanning electron micrograph of the hydrolyzed BTLO samples indicated noteworthy changes in the ultrastructure of BTLO. Moreover, polyphenol extracts obtained by SC-CO2 + EtOH extraction were found to be cleaner and richer in polyphenols as compared to CSE. The devised enzyme-assisted SC-CO2 + EtOH extraction process in the present work can be explored as an effective biotechnological mean for the optimal recovery of antioxidant polyphenols. Graphical abstract Enzymatic pretreatment can effectively liberate non-extractable polyphenols (NEPPs) while hydrolyzing the cellulosic and hemicellulosic framework of black tea left overs (BTLO).

  18. First identification of sub- and supercritical convection patterns from ‘GeoFlow’, the geophysical flow simulation experiment integrated in Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Futterer, B.; Egbers, C.; Dahley, N.; Koch, S.; Jehring, L.

    2010-01-01

    Physical mechanisms of thermally driven rotating fluids are important for a large number of geophysical problems, e.g. to explain the convection of the Earth's liquid outer core. Objective of the 'GeoFlow' experiment is to study stability, pattern formation, and transition to chaos of thermal convection in fluid-filled concentric, co-axially rotating spheres. This experiment is integrated in the Fluid Science Laboratory of the European COLUMBUS module on International Space Station. Fluid dynamics of the experiment was predicted with numerical simulations by means of a spectral code. In the non-rotating case the onset of convection bifurcated into steady fluid flow. Here patterns of convection showed co-existing states with axisymmetric, cubic and pentagonal modes. Transition to chaos was in the form of sudden onset. For the thermal convection in rotating spheres the onset of first instability showed an increase of modes for higher parameter regime. Transition was from steady via periodic to chaotic behaviour. Convection patterns of the experiment are observed with the Wollaston shearing interferometry. Images are in terms of interferograms with fringe patterns corresponding to special convective flows. A first glance at the images showed the classification of sub- and supercritical flow regimes. Aligned with numerical data a shift between experiment and numerical simulation was identified. Identification of convection patterns in interferograms was demonstrated for the example of a supercritical flow.

  19. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for

  20. Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

    NASA Astrophysics Data System (ADS)

    Vidhi, Rachana

    Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were