Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Miyazaki, Shuichi
2017-12-01
The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.
Preparation and Characterization of Nitinol Bone Staples for Cranio-Maxillofacial Surgery
NASA Astrophysics Data System (ADS)
Lekston, Z.; Stróż, D.; Jędrusik-Pawłowska, M.
2012-12-01
The aim of this work was to form NiTi and TiNiCo body temperature activated and superelastic staples for clinical joining of mandible and face bone fractures. The alloys were obtained by VIM technique. Hot and cold processing was applied to obtain wires of required diameters. The martensitic transformation was studied by DSC, XRD, and TEM. The shape memory effects were measured by a bend and free recovery ASTM F2082-06 test. The superelasticity was recorded in the tension stress-strain and by the three-point bending cycles in an instrument equipped with a Hottinger force transducer and LVDT. Excellent superelastic behavior of TiNiCo wires was obtained after cold working and annealing at 400-500 °C. The body temperature activated shape memory staples were applied for fixation of mandibular condyle fractures. In experiments on the skull models, fixation of the facial fractures by using shape memory and superelastic staples were compared. The superelastic staples were used in osteosynthesis of zygomatico-maxillo-orbital fractures.
NASA Astrophysics Data System (ADS)
Babacan, N.; Ma, J.; Turkbas, O. S.; Karaman, I.; Kockar, B.
2018-01-01
In the present study, the effect of thermo-mechanical treatments on the shape memory and the superelastic characteristics of Cu73Al16Mn11 (at%) shape memory alloy were investigated. 10%, 50% and 70% cold rolling and subsequent heat treatment processes were conducted to achieve strengthening via grain size refinement. 70% grain size reduction compared to the homogenized condition was obtained using 70% cold rolling and subsequent recrystallization heat treatment technique. Moreover, 10% cold rolling was applied to homogenized specimen to reveal the influence of the low percentage cold rolling reduction with no heat treatment on shape memory properties of Cu73Al16Mn11 (at%) alloy. Stress free transformation temperatures, monotonic tension and superelasticity behaviors of these samples were compared with those of the as-aged sample. Isobaric heating-cooling experiments were also conducted to see the dimensional stability of the samples as a function of applied stress. The 70% grain-refined sample exhibited better dimensional stability showing reduced residual strain levels upon thermal cycling under constant stress compared with the as-aged material. However, no improvement was achieved with grain size reduction in the superelasticity experiments. This distinctive observation was attributed to the difference in the magnitude of the stress levels achieved during two different types of experiments which were the isobaric heating-cooling and superelasticity tests. Intergranular fracture due to the stress concentration overcame the strengthening effect via grain refinement in the superelasticity tests at higher stress values. On the other hand, the strength of the material and resistance of material against plastic deformation upon phase transformation were increased as a result of the grain refinement at lower stress values in the isobaric heating-cooling experiments.
Numerical model for an epoxy beam reinforced with superelastic shape memory alloy wires
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We present a numerical solution for a smart composite beam consisting of an epoxy matrix reinforced with unidirectional superelastic shape memory alloy (SMA) fibers with uniform circular cross section. The beam is loaded by a tip load, which is then removed resulting in shape recovery due to superelasticity of the SMA wires. The analysis is carried out considering a representative volume element (RVE) of the beam consisting of one SMA wire embedded in epoxy. The analytical model is developed for a superelastic SMA/epoxy composite beam subjected to a complete loading cycle in bending. Using the proposed model, the moment-curvature profile, martensite volume fraction variation, and axial stress are determined. The results are validated against three-dimensional finite element analysis (3D FEA) for the same conditions. The proposed work is a contribution toward better understanding of the bending behavior of superelastic SMA-reinforced composites.
Understanding the shape-memory alloys used in orthodontics.
Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N
2011-01-01
Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.
Han, Wei-Zhong; Zhang, Jian; Ding, Ming-Shuai; Lv, Lan; Wang, Wen-Hong; Wu, Guang-Heng; Shan, Zhi-Wei; Li, Ju
2017-06-14
The intriguing phenomenon of metal superelasticity relies on stress-induced martensitic transformation (SIMT), which is well-known to be governed by developing cooperative strain accommodation at multiple length scales. It is therefore scientifically interesting to see what happens when this natural length scale hierarchy is disrupted. One method is producing pillars that confine the sample volume to micrometer length scale. Here we apply yet another intervention, helium nanobubbles injection, which produces porosity on the order of several nanometers. While the pillar confinement suppresses superelasticity, we found the dispersion of 5-10 nm helium nanobubbles do the opposite of promoting superelasticity in a Ni 53.5 Fe 19.5 Ga 27 shape memory alloy. The role of helium nanobubbles in modulating the competition between ordinary dislocation slip plasticity and SIMT is discussed.
Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.
Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y
2009-05-01
SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.
Superelasticity and cryogenic linear shape memory effects of CaFe 2As 2
Sypek, John T.; Yu, Hang; Dusoe, Keith J.; ...
2017-10-20
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.
Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M
2017-08-01
Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L2 1 single crystals from a Cu-Al-Ni shape-memory alloy from 2 μm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.
Shabalovskaya, S A
1996-01-01
Nitinol based shape memory alloys were introduced to Medicine in the late seventies. They possess a unique combination of properties including shape memory, superelasticity, great workability in the martensitic state, resistance to fatigue and corrosion. Despite these exceptional physical, chemical and mechanical properties the worldwide medical application has been hindered for a long time because of the lack of knowledge on the nature of the biocompatibility of these enriched by nickel alloys. A review of biocompatibility with an emphasis on the most recent studies, combined with the results of X-ray surface investigations, allows us to draw conclusions on the origin of the good biological response observed in vivo. The tendency of Nitinol surfaces to be covered with TiO2 oxides with only a minor amount of nickel under normal conditions is considered to be responsible for these positive results. A certain toxicity, usually observed in in vitro studies, may result from the much higher in vitro Ni concentrations which are probably not possible to achieve in vivo. The essentiality of Ni as a trace element may also contribute to the Nitinol biocompatibility with the human body tissues. Examples of successful medical applications of Nitinol utilizing shape memory and superelasticity are presented.
NASA Astrophysics Data System (ADS)
Saghaian, Sayed M.
NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via thermal cycling under stress and isothermal stress cycling experiments in tension. Recoverable strain of ˜5% was observed for the as-extruded samples while it was decreased to ˜4% after aging due to the formation of precipitates. The aged alloys demonstrated near perfect shape memory effect under high tensile stress level of 700 MPa and perfect superelasticity at high temperatures up to 230 °C. Finally, the tension-compression asymmetry observed in NiTiHf where recoverable tensile strain was higher than compressive strain. The shape memory properties of solutionized and aged Ni-rich Ni50.3Ti29.7Hf20 single crystals were investigated along the [001], [011], and [111] orientations in compression. [001]-oriented single crystals showed high dimensional stability under stress levels as high as 1500 MPa in both the solutionized and aged conditions, but with transformation strains of less than 2%. Perfect superelasticity with recoverable strain of more than 4% was observed for solutionized and 550 °C-3h aged single crystals along the [011] and [111] orientations, and general superelastic behavior was observed over a wide temperature range. The calculated transformation strains were higher than the experimentally observed strains since the calculated strains could not capture the formation of martensite plates with (001) compound twins. KEYWORDS: NiTiHf, High Temperature Shape memory alloys, Mechanical Characterization, High Strength Shape Memory Alloy, Orientation Dependence of NiTiHf Sayed.
Shape Memory Behavior of Dense and Porous NiTi Alloys Fabricated by Selective Laser Melting
NASA Astrophysics Data System (ADS)
Saedi, Soheil
Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications. The SLM process parameters such as laser power, scanning speed, spacing, and strategy used during the fabrication are determinant factors in composition, microstructural features and functional properties of the SLM NiTi alloy. Therefore, a comprehensive and systematic study has been conducted over Ni 50.8 Ti49.2 (at%) alloy to understand the influence of each parameter individually. It was found that a sharp [001] texture is formed as a result of SLM fabrication which leads to improvements in the superelastic response of the alloy. It was perceived that transformation temperatures, microstructure, hardness, the intensity of formed texture and the correlated thermo-mechanical response are changed substantially with alteration of each parameter. The provided knowledge will allow choosing optimized parameters for tailoring the functional features of SLM fabricated NiTi alloys. Without going through any heat treatments, 5.77% superelasticity with more than 95% recovery ratio was obtained in as-fabricated condition only with the selection of right process parameters. Additionally, thermal treatments can be utilized to form precipitates in Ni-rich SLM NiTi alloys fabricated by low energy density. Precipitation could significantly alter the matrix composition, transformation temperatures and strain, critical stress for transformation, and shape memory response of the alloy. Therefore, a systematic aging study has been performed to reveal the effects of aging time and temperature. It was found that although SLM fabricated samples show lower strength than the initial ingot, heat treatments can be employed to make significant improvements in shape memory response of SLM NiTi. Up to 5.5% superelastic response and perfect shape memory effect at stress levels up to 500 MPa was observed in solutionized Ni-rich SLM NiTi after 18h aging at 350°C. For practical application, transformation temperatures were even adjusted without solution annealing and superelastic response of 5.5% was achieved at room temperature for 600C-1.5hr aged Ni-rich SLM NiTi. The effect of porosity on strength and cyclic response of porous SLM Ni50.1 Ti49.9 (at%) were investigated for potential bone implant applications. It is shown that mechanical properties of samples such as elastic modulus, yield strength, and ductility of samples are highly porosity level and pore structure dependent. It is shown that it is feasible to decrease Young's modulus of SLM NiTi up to 86% by adding porosity to reduce the mismatch with that of a bone and still retain the shape memory response of SLM fabricated NiTi. The shape memory effect, as well as superelastic response of porous SLM Ni50.8Ti49.2, were also investigated at body temperature. 32 and 45% porous samples with similar behaviors, recovered 3.5% of 4% deformation at first cycle. The stabilized superelastic response was obtained after clicking experiments.
Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.
Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang
2016-02-17
New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat
NASA Astrophysics Data System (ADS)
Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro
2017-10-01
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong
2017-12-01
A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.
Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials
NASA Technical Reports Server (NTRS)
Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)
2015-01-01
A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.
Laser shape setting of superelastic nitinol wires: Functional properties and microstructure
NASA Astrophysics Data System (ADS)
Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto
Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.
NASA Technical Reports Server (NTRS)
1997-01-01
Memory Corporation's investigation of shape memory effect, stemming from Marshall Space Flight Center contracts to study materials for the space station, has aided in the development of Zeemet, a proprietary, high-damping shape memory alloy for the golf industry. The Nicklaus Golf Company has created a new line of golf clubs using Zeemet inserts. Its superelastic and high damping attributes translate into more spin on the ball, greater control, and a solid feel.
Prediction of Indentation Behavior of Superelastic TiNi
NASA Astrophysics Data System (ADS)
Neupane, Rabin; Farhat, Zoheir
2014-09-01
Superelastic TiNi shape memory alloys have been extensively used in various applications. The great interest in TiNi alloys is due to its unique shape memory and superelastic effects, along with its superior wear and dent resistance. Assessment of mechanical properties and dent resistance of superelastic TiNi is commonly performed using indentation techniques. However, the coupling of deformation and reversible martensitic transformation of TiNi under indentation conditions makes the interpretation of results challenging. An attempt is made to enhance current interpretation of indentation data. A load-depth curve is predicted that takes into consideration the reversible martensitic transformation. The predicted curve is in good agreement with experimental results. It is found in this study that the elastic modulus is a function of indentation depth. At shallow depths, the elastic modulus is high due to austenite dominance, while at high depths, the elastic modulus drops as the depth increases due to austenite to martensite transition, i.e., martensite dominance. It is also found that TiNi exhibits superior dent resistance compared to AISI 304 steel. There is two orders of magnitude improvement in dent resistance of TiNi in comparison to AISI 304 steel.
Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E
2014-12-01
The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.
Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat
Hou, Huilong; Simsek, Emrah; Stasak, Drew; ...
2017-08-11
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less
NASA Astrophysics Data System (ADS)
Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao
2016-04-01
The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.
NASA Astrophysics Data System (ADS)
Liu, Ji-li; Huang, Hai-you; Xie, Jian-xin
2016-10-01
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu71Al18Mn11 shape memory alloy (SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu71Al18Mn11 SMA with aging temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ·mol-1. Finally, a columnar-grained Cu71Al18Mn11 SMA with both excellent superelasticity (5%-9%) and high martensitic transformation critical stress (443-677 MPa) is obtained through the application of the appropriate aging treatments.
Tailoring superelasticity of soft magnetic materials
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
2015-10-01
Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials using numerical simulations. This behavior results from a combination of two stress-induced mechanisms: a detachment mechanism of embedded particle aggregates and a reorientation mechanism of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-07-01
In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.
NASA Astrophysics Data System (ADS)
Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng
2015-08-01
Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Paranjape, Harshad M.; Paul, Partha P.; Sharma, Hemant; ...
2017-02-16
Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forcesmore » for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response "shakes down". Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. As a result, this intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Sharma, Hemant
Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forcesmore » for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response "shakes down". Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. As a result, this intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.« less
Du, Zehui; Ye, Pengcheng; Zeng, Xiao Mei; ...
2017-05-09
Nano- and microscale CeO 2–ZrO 2 (CZ) shape memory ceramics are promising materials for smart micro-electro-mechanical systems (MEMS), sensing, actuation and energy damping applications, but the processing science for scalable production of such small volume ceramics has not yet been established. Herein, we report a modified sol-gel method to synthesize highly monodisperse spherical CZ particles with diameters in the range of ~0.8-3.0 μm. Synchrotron X-ray micro-diffraction (μSXRD) confirmed that most of the particles are single crystal after annealing at 1450°C. Having a monocrystalline structure and a small specimen length scale, the particles exhibit significantly enhanced shape memory and superelasticity propertiesmore » with up to ~4.7% compression being completely recoverable. Highly reproducible superelasticity through over five hundred strain cycles, with dissipated energy up to ~40 MJ/m 3 per cycle, is achieved in the CZ particles containing 16 mol% ceria. This cycling capability is enhanced by ten times compared with our first demonstration using micropillars (only 50 cycles in Lai et al, Science, 2013, 341, 1505). Furthermore, the effects of cycling and testing temperature (in 25°C-400°C) on superelasticity have been investigated.« less
An innovative seismic bracing system based on a superelastic shape memory alloy ring
NASA Astrophysics Data System (ADS)
Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald
2016-05-01
Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.
Recent Progress on Modeling Slip Deformation in Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Sehitoglu, H.; Alkan, S.
2018-03-01
This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.
Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems
NASA Astrophysics Data System (ADS)
Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul
2014-07-01
Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.
Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun
2014-02-21
Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.
NASA Astrophysics Data System (ADS)
Dubinskiy, S.; Brailovski, Vladimir; Prokoshkin, S.; Pushin, V.; Inaekyan, K.; Sheremetyev, V.; Petrzhik, M.; Filonov, M.
2013-09-01
In this work, the ternary Ti-19.7Nb-5.8Ta (at.%) alloy for biomedical applications was studied. The ingot was manufactured by vacuum arc melting with a consumable electrode and then subjected to hot forging. Specimens were cut from the ingot and processed by cold rolling with e = 0.37 of logarithmic thickness reduction and post-deformation annealing (PDA) between 400 and 750 °C (1 h). Selected samples were subjected to aging at 300 °C (10 min to 3 h). The influence of the thermomechanical processing on the alloy's structure, phase composition, and mechanical and functional properties was studied. It was shown that thermomechanical processing leads to the formation of a nanosubgrained structure (polygonized with subgrains below 100 nm) in the 500-600 °C PDA range, which transforms to a recrystallized structure of β-phase when PDA temperature increases. Simultaneously, the phase composition and the β → α″ transformation kinetics vary. It was found that after conventional cold rolling and PDA, Ti-Nb-Ta alloy manifests superelastic and shape memory behaviors. During aging at 300 °C (1 h), an important quantity of randomly scattered equiaxed ω-precipitates forms, which results in improved superelastic cyclic properties. On the other hand, aging at 300 °C (3 h) changes the ω-precipitates' particle morphology from equiaxed to elongated and leads to their coarsening, which negatively affects the superelastic and shape memory functional properties of Ti-Nb-Ta alloy.
NASA Astrophysics Data System (ADS)
Yu, Chao; Kang, Guozheng; Kan, Qianhua
2015-09-01
Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.
NASA Astrophysics Data System (ADS)
Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.
2015-03-01
Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.
Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film
NASA Astrophysics Data System (ADS)
Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.
2017-09-01
Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.
Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1)
2012-08-01
High -‐ temperature SMAs 24 Braze Joint between two wrought pieces of a Ni24.5Pd25Ti50.5 HTSMA (HTSMA from...process can be used to join other metal alloys and high -‐ temperature SMAs 25 Cellular Shape Memory...20 30 40 50 60 910 3 4 8 5 2 T (°C) Shape memory & superelasticity 1 0 e (%) (GPa) 6 7 A NiTi wire
Superelastic tension and bending characteristics of shape memory alloys
NASA Astrophysics Data System (ADS)
Bundara, B.; Tokuda, M.; Kuselj, B.; Ule, B.; Tuma, J. V.
2000-08-01
The objective of this study was to develop a numerical model of the superelastic behavior of shape memory alloys (SMA) on a macro-scale level. Results from a study on this behavior under tension and pure bending tests are presented and discussed. Two SMA samples were used in the experimental work and subjected to various loading paths in tension and pure bending: a single crystalline CuZnAl alloy and polycrystalline NiTi wire. Bending tests were performed under a pure bending loading condition on a new testing apparatus designed for the specific needs of this study. The experimental part of this study focused mainly on the response of the SMA to the loading paths in a quasi-plastic domain where the deformation mechanism is dominantly governed by the stress-induced martensitic transformation. Experimental results obtained from the NiTi polycrystals by tensile tests indicate that the superelastic SMA exhibits sufficient repeatability useful enough for a modeling task, while similar results obtained from the single crystalline CuZnAl indicate that the same modeling approach is not easily feasible. The facts have been qualitatively verified by the experimental data from pure bending tests, and a further area as study is suggested.
NASA Astrophysics Data System (ADS)
Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.
2013-12-01
Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.
Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping
2016-09-01
In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.
Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys
NASA Astrophysics Data System (ADS)
Kaya, Irfan
NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the [111] direction. Formation of a single family of Ni4Ti3 precipitates were exhibited significant TWSME without any training or deformation. When the homogenized and aged specimens were loaded in martensite, positive TWSME was observed. After loading at high temperature in austenite, the homogenized specimen did not show TWSME while the aged specimen revealed negative TWSME.
Formability of Annealed Ni-Ti Shape Memory Alloy Sheet
NASA Astrophysics Data System (ADS)
Fann, K. J.; Su, J. Y.; Chang, C. H.
2018-03-01
Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.
Superelastic SMA U-shaped dampers with self-centering functions
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhu, Songye
2018-05-01
As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
NASA Astrophysics Data System (ADS)
Jung, Youngjean
This dissertation concerns the constitutive description of superelasticity in NiTi alloys and the finite element analysis of a corresponding material model at large strains. Constitutive laws for shape-memory alloys subject to biaxial loading, which are based on direct experimental observations, are generally not available. A reliable constitutive model for shape-memory alloys is important for various applications because Nitinol is now widely used in biotechnology devices such as endovascular stents, vena cava filters, dental files, archwires and guidewires, etc. As part of a broader project, tension-torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic Nitinol using various loading/unloading paths under isothermal conditions. This biaxial loading/unloading test was carefully designed to avoid torsional buckling and strain non-uniformities. A micromechanical constitutive model, algorithmic implementation and numerical simulation of polycrystalline superelastic alloys under biaxial loading are developed. The constitutive model is based on the micromechanical structure of Ni-Ti crystals and accounts for the physical observation of solid-solid phase transformations through the minimization of the Helmholtz energy with dissipation. The model is formulated in finite deformations and incorporates the effect of texture which is of profound significance in the mechanical response of polycrystalline Nitinol tubes. The numerical implementation is based on the constrained minimization of a functional corresponding to the Helmholtz energy with dissipation. Special treatment of loading/unloading conditions is also developed to distinguish between forward/reverse transformation state. Simulations are conducted for thin tubes of Nitinol under tension-torsion, as well as for a simplified model of a biomedical stent.
Suzuki, Akihiro; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Tomizuka, Ryo; Hosoda, Hideki; Miyazaki, Shuichi; Okuno, Osamu; Igarashi, Kaoru; Mitani, Hideo
2006-11-01
To examine the mechanical properties and the usefulness of titanium-niobium-aluminum (Ti-Nb-Al) wire in orthodontic tooth movement as compared with nickel-titanium (Ni-Ti) wire. The load deflection of expansion springs was gauged with an original jig. The gradient of the superelastic region was measured during the unloading process. Expansion springs comprising the two types of alloy wires were applied to upper first molars of rats. The distance between the first molars was measured with micrometer calipers. The force magnitude of the Ti-Nb-Al expansion spring was lower than that of the Ni-Ti expansion spring over the entire deflection range. The initial force magnitude and the gradient in the superelastic region of the Ti-Nb-Al expansion springs were half those of the Ni-Ti expansion springs. Thus, Ti-Nb-Al expansion springs generated lighter and more continuous force. Tooth movement in the Ni-Ti group proceeded in a stepwise fashion. On the other hand, tooth movement in the Ti-Nb-Al group showed relatively smooth and continuous progression. At 17 days after insertion of expansion springs, there were no significant differences between the Ti-Nb-Al and Ni-Ti groups in the amount of tooth movement. These results indicate that Ti-Nb-Al wire has excellent mechanical properties for smooth, continuous tooth movement and suggest that Ti-Nb-Al wire may be used as a practical nickel-free shape memory and superelastic alloy wire for orthodontic treatment as a substitute for Ni-Ti wire.
Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior
NASA Astrophysics Data System (ADS)
Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.
2016-03-01
It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.
Smart and hybrid materials: perspectives for their use in textile structures for better health care.
Carosio, Stefano; Monero, Alessandra
2004-01-01
High tech materials such as Shape Memory Alloys can be effectively integrated in textiles, thus providing multifunctional garments with potential application to the health care industry or for simply improving the quality of life. The objective of the present paper is to describe the development of a novel hybrid fabric with embedded shape memory (Nitinol) wires, and the related clothing application with the capability of recovering any shape depending upon the environment and becoming superelastic. The use of these smart garments for biomedical applications will be illustrated, thus opening new perspectives for enhanced health care provision.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
A review of shape memory material’s applications in the offshore oil and gas industry
NASA Astrophysics Data System (ADS)
Patil, Devendra; Song, Gangbing
2017-09-01
The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.
Local Mechanical Response of Superelastic NiTi Shape-Memory Alloy Under Uniaxial Loading
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping; Du, Hongfei
2015-11-01
In this paper, we focus on the local mechanical response of superelastic NiTi SMA at different temperatures under uniaxial loading. In situ DIC is applied to measure the local strain of the specimen. Based on the experimental results, two types of mechanical response, which are characterized with localized phase transformation and homogenous phase transformation, are identified, respectively. Motivated by residual strain accumulation phenomenon of the superelastic mechanical response, we conduct controlled experiments, and infer that for a given material point, all (or most) of the irreversibility is accumulated when the transformation front is traversing the material point. A robust constitutive model is established to explain the experimental phenomena and we successfully simulate the evolution of local strain that agrees closely with the experimental results.
A two-way architectural actuator using NiTi SE wire and SME spring
NASA Astrophysics Data System (ADS)
Nematollahi, Mohammadreza; Mehrabi, Reza; Callejas, Miguel A.; Elahinia, Hedyeh; Elahinia, Mohammad
2018-03-01
This paper presents a bio-inspired continuously adapting architectural element, to enable a smart canopy that provides shade to buildings that need protection from sunlight. The smart actuator consists of two elements: one NiTi shape memory (SME) spring and one NiTi superelastic (SE) wire. The SE wire is deformed to a `U' shape and then the SME spring is attached to it. Due to the force of SE wire exerted on SME spring, the smart canopy is in its open position. When the environment's temperature increases, the actuator activates and shrinks the SME spring and hence it closes the canopy. In continues, when the temperature decreases at evening, the actuator inactive and SE wire will open the smart fabric. This unique activation provides different advantages like silent actuation, maintenance free, eco-friendly, and no or low energy consumption. Here, the conceptual design of the smart canopy actuator will be discussed. Then, a simulation study, using finite element method, is used to investigate components' behavior. The extracted material parameters are implemented in the subroutine, to simulate the behavior of the shape memory alloy elements. Simulation's results predict superelastic behavior for the SE wire and shape memory effect for the NiTi spring. For further studies, a prototype will be fabricated to confirm simulation's results, as well as performing some experimental tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sypek, John T.; Yu, Hang; Dusoe, Keith J.
Shape memory materials have the ability to recover their original shape after a significant amount of deformation when they are subjected to certain stimuli, for instance, heat or magnetic fields. But, their performance is often limited by the energetics and geometry of the martensitic-austenitic phase transformation. We report a unique shape memory behavior in CaFe 2As 2, which exhibits superelasticity with over 13% recoverable strain, over 3 GPa yield strength, repeatable stress–strain response even at the micrometer scale, and cryogenic linear shape memory effects near 50 K. These properties are acheived through a reversible uni-axial phase transformation mechanism, the tetragonal/orthorhombic-to-collapsed-tetragonalmore » phase transformation. These results offer the possibility of developing cryogenic linear actuation technologies with a high precision and high actuation power per unit volume for deep space exploration, and more broadly, suggest a mechanistic path to a class of shape memory materials, ThCr 2Si 2-structured intermetallic compounds.« less
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2016-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.
Large tensile superelasticity from intermartensitic transformations in Ni49Mn28Ga23 single crystal
NASA Astrophysics Data System (ADS)
Chernenko, V. A.; Villa, E.; Salazar, D.; Barandiaran, J. M.
2016-02-01
A multistep superelastic behavior, with up to a 12% strain, is reported in a <001>P-oriented Ni49Mn28Ga23 single crystal. The observed behavior is produced by intermartensitic transformations during the tensile stress-strain measurements at temperatures between -140 °C and +60 °C. The tensile stress-temperature phase diagram and the stress dependence of the intermartensitic transformation entropies have been obtained. These results provide important input for theoretical modeling of the phase transformations in these alloys and show promising mechanical properties of the classical Ni-Mn-Ga ferromagnetic shape memory alloys.
Modeling of NiTiHf using finite difference method
NASA Astrophysics Data System (ADS)
Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad
2018-03-01
NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huilong; Simsek, Emrah; Stasak, Drew
The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less
Design of diaphragm actuator based on ferromagnetic shape memory alloy composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2003-08-01
A new diaphragm actuator based on the ferromagnetic shape memory alloy (FSMA) composite is designed where the FSMA composite is composed of ferromagnetic soft iron and superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite plate of the actuator is the hybrid mechanism that we proposed previously. This diaphragm actuator is the first design toward designing a new synthetic jet actuator that will be used for active flow control technology on airplane wings. The design of the FSMA composite diaphragm actuator was established first by using both mechanical and ferromagnetic finite element analyses with an aim of optimization of the actuator components. Based on the FEM results, the first generation diaphragm actuator system was assembled and its static and dynamic performance was experimentally evaluated.
The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernenko, V.A.; Kokorin, V.V.; Vitenko, I.N.
1995-10-15
The Ferromagnetic Heusler alloy Ni{sub 2}MnGa is known to undergo a structural phase transformation of martensitic type. Thermoelastic nature, shape memory effect (SME) and superelasticity were sound to be intrinsic to this transformation. In this work the authors present the results of the investigation of the following problems: how M{sub s}, the thermal hysteresis, Curie temperature, transformation heat are affected by the composition variation in the Ni-Mn-Ga alloy system in a concentration interval for each component of about 10 at. %. This work was performed to make sure that the new family of Ni-Mn-Ga based shape memory alloys (SMA) withmore » a wide variety of structural and magnetic properties is actually elaborated.« less
A review on shape memory alloys with applications to morphing aircraft
NASA Astrophysics Data System (ADS)
Barbarino, S.; Saavedra Flores, E. I.; Ajaj, R. M.; Dayyani, I.; Friswell, M. I.
2014-06-01
Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods adopted to remove or reduce its undesirable effects. SMAs have been used in a wide variety of applications in different fields. In this review, we focus on the use of shape memory alloys in the context of morphing aircraft, with particular emphasis on variable twist and camber, and also on actuation bandwidth and reduction of power consumption. These applications prove particularly challenging because novel configurations are adopted to maximize integration and effectiveness of SMAs, which play the role of an actuator (using the shape memory effect), often combined with structural, load-carrying capabilities. Iterative and multi-disciplinary modeling is therefore necessary due to the fluid-structure interaction combined with the nonlinear behavior of SMAs.
NASA Astrophysics Data System (ADS)
Shayesteh Moghaddam, Narges; Saedi, Soheil; Amerinatanzi, Amirhesam; Saghaian, Ehsan; Jahadakbar, Ahmadreza; Karaca, Haluk; Elahinia, Mohammad
2018-03-01
Material and mechanical properties of NiTi shape memory alloys strongly depend on the fabrication process parameters and the resulting microstructure. In selective laser melting, the combination of parameters such as laser power, scanning speed, and hatch spacing determine the microstructural defects, grain size and texture. Therefore, processing parameters can be adjusted to tailor the microstructure and mechanical response of the alloy. In this work, NiTi samples were fabricated using Ni50.8Ti (at.%) powder via SLM PXM by Phenix/3D Systems and the effects of processing parameters were systematically studied. The relationship between the processing parameters and superelastic properties were investigated thoroughly. It will be shown that energy density is not the only parameter that governs the material response. It will be shown that hatch spacing is the dominant factor to tailor the superelastic response. It will be revealed that with the selection of right process parameters, perfect superelasticity with recoverable strains of up to 5.6% can be observed in the as-fabricated condition.
Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands
NASA Astrophysics Data System (ADS)
Daghash, Sherif M.; Ozbulut, Osman E.
2018-06-01
This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.
Shape memory alloy-based moment connections with superior self-centering properties
NASA Astrophysics Data System (ADS)
Farmani, Mohammad Amin; Ghassemieh, Mehdi
2016-07-01
Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam-column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.
Stochastic seismic response of building with super-elastic damper
NASA Astrophysics Data System (ADS)
Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik
2016-05-01
Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.
NASA Astrophysics Data System (ADS)
Sun, Qingping; Yu, Chao; Kang, Guozheng
2018-03-01
We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19' lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19' lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.
NASA Astrophysics Data System (ADS)
Hamid, Nubailah Abd; Ibrahim, Azmi; Adnan, Azlan; Ismail, Muhammad Hussain
2018-05-01
This paper discusses the superelastic behavior of shape memory alloy, NiTi when used as reinforcement in concrete beams. The ability of NiTi to recover and reduce permanent deformations of concrete beams was investigated. Small-scale concrete beams, with NiTi reinforcement were experimentally investigated under monotonic loads. The behaviour of simply supported reinforced concrete (RC) beams hybrid with NiTi rebars and the control beam subject to monotonic loads were experimentally investigated. This paper is to highlight the ability of the SMA bars to recover and reduce permanent deformations of concrete flexural members. The size of the control beam is 125 mm × 270 mm × 1000 mm with 3 numbers of 12 mm diameter bars as main reinforcement for compression and 3 numbers of 12 mm bars as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars for control beam respectively. While, the minimal provision of 200mm using the 12.7mm of superelastic Shape Memory Alloys were employed to replace the steel rebar at the critical region of the beam. In conclusion, the contribution of the SMA bar in combination with high-strength steel to the conventional reinforcement showed that the SMA beam has exhibited an improve performance in term of better crack recovery and deformation. Therefore the usage of hybrid NiTi with the steel can substantially diminish the risk of the earthquake and also can reduce the associated cost aftermath.
Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties
NASA Astrophysics Data System (ADS)
Pappadà, Silvio; Rametta, Rocco; Toia, Luca; Coda, Alberto; Fumagalli, Luca; Maffezzoli, Alfonso
2009-08-01
Shape memory alloy (SMA) represents the most versatile way to realize smart materials with sensing, controlling, and actuating functions. Due to their unique mechanical and thermodynamic properties and to the possibility to obtain SMA wires with very small diameters, they are used as smart components embedded into the conventional resins or composites, obtaining active abilities, tunable properties, self-healing properties, and damping capacity. Moreover, superelastic SMAs are used to increase the impact resistance properties of composite materials. In this study, the influence of the integration of thin superelastic wires to suppress propagating damage of composite structures has been investigated. Superelastic SMAs have very high strain to failure and recoverable elastic strain, due to a stress-induced martensitic phase transition creating a plateau region in the stress-strain curve. NiTi superelastic wires ( A f = -15 °C fully annealed) of 0.10 mm in diameter have been produced and characterized by SAES Getters. The straight annealed wire shows the typical flag stress-strain behavior. The measured loading plateau is about 450 MPa at ambient temperature with a recoverable elastic strain of more than 6%. For these reasons superelastic SMA fibers can absorb much more strain energy than other fibers before their failure, partly with a constant stress level. In this paper, the improvement of composite laminates impact properties by embedding SMA wires is evaluated and indications for design and manufacturing of SMA composites with high-impact properties are also given.
NASA Astrophysics Data System (ADS)
Elkhal Letaief, Wissem; Hassine, Tarek; Gamaoun, Fehmi
2017-02-01
On account of its good biocompatibility, superelastic Ni-Ti arc wire alloys have been successfully used in orthodontic clinics. Nevertheless, delayed fracture in the oral cavity caused by hydrogen diffusion can be observed. The in situ stress relaxation susceptibility of a Ni-Ti shape memory alloy towards hydrogen embrittlement has been examined with respect to the current densities and imposed deformations. Orthodontic wires have been relaxed at different martensite volume fractions using current densities of 5, 10 and 20 A/m2 at 20 °C. The in situ relaxation stress shows that, for an imposed strain at the middle of the austenite-martensite transformation, the specimen fractures at the martensite-austenite reverse transformation. However, for an imposed strain at the beginning of the austenite-martensite plateau, the stress decreases in a similar way to the full austenite structure. Moreover, the stress plateau has been recorded at the reverse transformation for a short period. For the fully martensite structure, embrittlement occurs at a higher stress value. This behaviour is attributed to the interaction between the in situ austenite phase expansion and the diffusion of hydrogen in the different volume fractions of the martensite phase, produced at an imposed strain.
Yang, Hui; Yu, Dunji; Chen, Yan; ...
2016-10-24
Real-time in-situ neutron diffraction was conducted during uniaxial cycling compression of a Ni 49.3Fe 18Ga 27Co 5.7 shape memory alloy to explore the mechanism on its superelasticity at room temperature, which was manifested by the almost recoverable large strains and the apparent cyclic softening. Based on the Rietveld refinements, the real-time evolution of volume fraction of martensite was in-situ monitored, indicating the incremental amount of residual martensite with increasing load cycles. Real-time changes in intensities and lattice strains of { hkl} reflections for individual phase were obtained through fitting individual peaks, which reveal the quantitative information on phase transformation kineticsmore » as a function of grain orientation and stress/strain partitioning. Moreover, a large compressive residual stress was evidenced in the parent phase, which should be balanced by the residual martensite after the second unloading cycle. As a result, the large compressive residual stress found in the parent austenite phase may account for the cyclic effect on critical stress required for triggering the martensitic transformation in the subsequent loading.« less
Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire
NASA Astrophysics Data System (ADS)
Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.
2018-05-01
Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.
Choi, Jongsik; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Müller, Dietmar; Muhr, Gert; Epple, Matthias
2003-09-01
Nickel-titanium shape-memory alloys (NiTi-SMA) were coated with calcium phosphate by dipping in oversaturated calcium phosphate solution. The layer thickness (typically 5-20 micrometer) can be varied by choice of the immersion time. The porous nature of the layer of microcrystals makes it mechanically stable enough to withstand both the shape-memory transition upon cooling and heating and also strong bending of the material (superelastic effect). This layer may improve the biocompatibility of NiTi-SMA, particulary for osteosynthetic devices by creating a more physiological surface and by restricting a potential nickel release. The adherence of human leukocytes (peripheral blood mononuclear cells and polymorphonuclear neutrophil granulocytes) and platelets to the calcium phosphate layer was analyzed in vitro. In comparison to non-coated NiTi-SMA, leukocytes and platelets showed a significantly increased adhesion to the coated NiTi-SMA.
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
NASA Astrophysics Data System (ADS)
Bisaria, Himanshu; Shandilya, Pragya
2018-03-01
Nowadays NiTi SMAs are gaining more prominence due to their unique properties such as superelasticity, shape memory effect, high fatigue strength and many other enriched physical and mechanical properties. The current studies explore the effect of machining parameters namely, peak current (Ip), pulse off time (TOFF), and pulse on time (TON) on wire wear ratio (WWR), and dimensional deviation (DD) in WEDM. It was found that high discharge energy was mainly ascribed to high WWR and DD. The WWR and DD increased with the increase in pulse on time and peak current whereas high pulse off time was favourable for low WWR and DD.
Influence of SLM on compressive response of NiTi scaffolds
NASA Astrophysics Data System (ADS)
Shayesteh Moghaddam, Narges; Saedi, Soheil; Amerinatanzi, Amirhesam; Jahadakbar, Ahmadreza; Saghaian, Ehsan; Karaca, Haluk; Elahinia, Mohammad
2018-03-01
Porous Nickel-Titanium shape memory alloys (NiTi-SMAs) have attracted much attention in biomedical applications due to their high range of pure elastic deformability (i.e., superelasticity) as well as their bone-level modulus of elasticity (E≈12-20 GPa). In recent years, Selective Laser Melting (SLM) has been used to produce complex NiTi components. The focus of this study is to investigate the superelasticity and compressive properties of SLM NiTi-SMAs. To this aim, several NiTi components with different level of porosities (32- 58%) were fabricated from Ni50.8Ti (at. %) powder via SLM PXM by Phenix/3D Systems, using optimum processing parameter (Laser power-P=250 W, scanning speed-v=1250mm/s, hatch spacing-h=120μm, layer thickness-t=30μm). To tailor the superelasticity behavior at body temperature, the samples were solution annealed and aged for 15 min at 350°C. Then, transformation temperatures (TTs), superelastic response, and cyclic behavior of NiTi samples were studied. As the porosity was increased, the irrecoverable strain was observed to be higher in the samples. At the first superelastic cycle, 3.5%, 3.5%, and 2.7% strain recovery were observed for the porosity levels of 32%, 45%, and 58%, respectively. However, after 10 cycles, the superelastic response of the samples was stabilized and full strain recovery was observed. Finally, the modulus of elasticity of dense SLM NiTi was decreased from 47 GPa to 9 GPa in the first cycle by adding 58% porosity.
Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys
NASA Astrophysics Data System (ADS)
Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.
2016-05-01
Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.
Seyyed Aghamiri, S M; Ahmadabadi, M Nili; Raygan, Sh
2011-04-01
The shape memory nickel-titanium alloy has been applied in many fields due to its unique thermal and mechanical performance. One of the successful applications of NiTi wires is in orthodontics because of its good characteristics such as low stiffness, high spring back, high stored energy, biocompatibility, superelasticity and shape memory effect. The mechanical properties of wires are paid special attention which results in achieving continuous optimal forces and eventually causing rapid tooth movement without any damage. The behavior of the alloy can be controlled by chemical composition and thermo-mechanical treatment during the manufacturing process. In this study two kinds of commercial superelastic NiTi archwires of 0.41 mm diameter were investigated: Copper NiTi and Highland Metal. The chemical analysis of both wires was estimated by energy dispersive spectroscopy (EDS). It was showed that Copper NiTi wire contained copper and chromium. The two types of wires were exposed to different heat treatment conditions at 400 and 500 °C for 10 and 60 min to compare the behavior of the wires at aged and as-received conditions. Phase transformation temperatures clarified by differential scanning calorimetry (DSC) showed B2 <--> R <--> B19 transformation in Highland Metal wire and B2 <--> B19(') transformation in Copper NiTi wire. Three point bending (TPB) tests in the certain designed fixture were performed at 37 °C to evaluate the mechanical behavior of the wires. The experimental results revealed the superelastic behavior of the Highland Metal wire after 60 min ageing at 400 and 500 °C and the plastic deformation of the Copper NiTi wire after annealing due to the effect of copper in the alloy composition. Copyright © 2010 Elsevier Ltd. All rights reserved.
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.
2005-05-01
Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances andmore » surface mechanical properties and possible mechanisms are suggested.« less
Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.
Ninan, Elizabeth; Berzins, David W
2013-01-01
Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
2009-03-01
closed (right) positions. The upper jaw is constructed out of a super-elastic shape- memory nickel titanium alloy ( Nitinol ) ribbon (Memry Corporation...tissue. The Nitinol ribbon is glued to a fixed nylon rod insert that fits inside the bottom jaw. The nylon rod is also glued to the bottom jaw, and...configurations (bottom). The two collar pieces are connected to one another by two 0.12 mm thick Nitinol ribbons that are anchored to the collar walls. A
The tribocorrosion behaviour of NiTi alloy
NASA Astrophysics Data System (ADS)
Kosec, Tadeja; Močnik, Petra; Legat, Andraž
2014-01-01
In biomedical applications, NiTi alloys are used mainly because of their favourable shape memory and superelastic properties. However, in many applications the tribocorrosion properties of these alloys can be of critical concern. For this reason the electrochemical and tribocorrosion properties of superelastic NiTi sheet and orthodontic archwire were studied, taking into account their microstructures and the effect of different surface finishes. In the case of the electrochemical tests, samples were tested in artificial saliva, whereas in the tribocorrosion tests the experiments were performed in ambient air, distilled water, and artificial saliva, the latter as a corrosive medium. In these tests, the total wear rate of the alloy samples was determined, together with the corresponding chemical and tribological contributions. It was confirmed that the microstructure of the investigated alloys had a significant effect on the measured electrochemical and tribocorrosion properties.
NASA Astrophysics Data System (ADS)
Burlacu, L.; Cimpoeşu, N.; Bujoreanu, L. G.; Lohan, N. M.
2017-08-01
Ni-Ti shape memory alloys (SMAs) are intelligent alloys which demonstrate unique properties, such as shape memory effect, two-way shape memory effect, super-elasticity and vibration damping which, accompanied by good processability, excellent corrosion resistance and biocompatibility as well as fair wear resistance and cyclic stability, enabled the development of important industrial applications (such as sensors, actuators, fasteners, couplings and valves), medical applications (such as stents, bone implants, orthodontic archwires, minimal invasive surgical equipment) as well as environmental health and safety devices (anti-seismic dampers, fire safety devices). The phase transitions in Ni-Ti SMAs are strongly influenced by processing methods, chemical compositions and thermomechanical history. This paper presents a study of the effects of heat treatment on the mechanical and thermal properties of commercial Ni-Ti shape memory alloy (SMA). The experimental work involved subjecting a SMA rod to heat-treatment consisting in heating up to 500°C, 10 minutes-maintaining and water quenching. Mechanical properties were highlighted by microhardness tests while thermal characteristics were emphasized by differential scanning calorimetry (DSC). The presence of chemical composition fluctuations was checked by X-ray energy dispersive spectroscopy performed with an EDAX Bruker analyzer.
NASA Astrophysics Data System (ADS)
Cardone, Donatello; Sofia, Salvatore
2012-12-01
Metallic tie-rods are currently used in many historical buildings for absorbing the out-of-plane horizontal forces of arches, vaults and roof trusses, despite they exhibit several limitations under service and seismic conditions. In this paper, a post-tensioned system based on the superelastic properties of Ni-Ti shape memory alloys is proposed for improving the structural performances of traditional metallic tie-rods. First, the thermal behavior under service conditions is investigated based on the results of numerical and experimental studies. Subsequently, the seismic performances under strong earthquakes are verified trough a number of shaking table tests on a 1:4-scale timber roof truss model. The outcomes of these studies fully confirm the achievement of the design objectives of the proposed prototype device.
Laser Welding of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Oliveira, Joao Pedro de Sousa
Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally, the first weldability study of superelastic CuAlMn alloy was performed. Superelasticity was preserved after welding. Post-weld laser processing improved the damping capability of the welded joint when compared to both as-welded and base materials, aiming for seismic construction. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
Superelasticity of NiTi Ring-Shaped Springs Induced by Aging for Cranioplasty Applications
NASA Astrophysics Data System (ADS)
Morawiec, Henryk Z.; Lekston, Zdzisław H.; Kobus, Kazimierz F.; Węgrzyn, Marek C.; Drugacz, Jan T.
2009-08-01
This paper concerns the application of titanium-nickel rings in modeling the cranium. After being fixed to the osseous margins, the ring’s expansion at the same time broadens and shortens the cranium vault. The rings formed from a straight superelastic wire, flattened to an ellipse, do not show the presence of a typical force plateau but rather a pseudoelastic loop during loading-unloading in the relationship between the force and the deflection. Based on the idea that superelasticity in more complex shape-springs may be induced by the precipitation hardening process, the further studies were carried out on alloys with higher nickel contents (51.06 at.% Ni). The rings that had been formed were welded and aged at an optimal temperature and time. The improved superelastic behavior during compression and unloading the rings was obtained by introducing small deformation by drawing the quenched wires before forming the rings and aging. Very positive clinical reshaping by long-term distraction with the superelastic ring-shaped springs was achieved in young children under one year and a less spectacular effect was observed in the group of older children.
Fatigue of Nitinol: The state-of-the-art and ongoing challenges.
Mahtabi, M J; Shamsaei, Nima; Mitchell, M R
2015-10-01
Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strain Engineering to Modify the Electrochemistry of Energy Storage Electrodes
Muralidharan, Nitin; Carter, Rachel; Oakes, Landon; Cohn, Adam P.; Pint, Cary L.
2016-01-01
Strain engineering has been a critical aspect of device design in semiconductor manufacturing for the past decade, but remains relatively unexplored for other applications, such as energy storage. Using mechanical strain as an input parameter to modulate electrochemical potentials of metal oxides opens new opportunities intersecting fields of electrochemistry and mechanics. Here we demonstrate that less than 0.1% strain on a Ni-Ti-O based metal-oxide formed on superelastic shape memory NiTi alloys leads to anodic and cathodic peak potential shifts by up to ~30 mV in an electrochemical cell. Moreover, using the superelastic properties of NiTi to enable strain recovery also recovers the electrochemical potential of the metal oxide, providing mechanistic evidence of strain-modified electrochemistry. These results indicate that mechanical energy can be coupled with electrochemical systems to efficiently design and optimize a new class of strain-modulated energy storage materials. PMID:27283872
Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots
Gilbert, Hunter B.; Webster, Robert J.
2016-01-01
Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C. PMID:27648473
Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.
Gilbert, Hunter B; Webster, Robert J
Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.
2010-02-15
should be equal to the energy dissipation in the equivalent viscous damper . The former energy in a single wire can be evaluated from ( ) w ω π w Vdtt...can be obtained from experiments (e.g., Gandhi and Wolons, 1999). The energy dissipated in an equivalent continuous viscous damper oriented in the x...equivalent viscous damping of a system of wires could be determined from the requirement that the energy dissipation in the wire during a cycle of motion
Strain-induced dimensionality crossover of precursor modulations in Ni2MnGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Zhihua; Wang, Yandong; Shang, Shunli
2015-01-01
Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni2MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA2 phonon anomaly is sensitive to stress induced lattice strain, and the entire TA2 branch is stabilized along the directions where precursor modulations are eliminated bymore » external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less
Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xiao, Yao; Zeng, Pan; Lei, Liping
2016-01-01
In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation.
Vlasov, A A; Vazhenin, A V; Plotnikov, V V; Spirev, V V; Chinarev, Iu B
2010-01-01
The study is concerned with development of equipment for forming circular compression intestinal anastomosis using the "form memory" effect and super-elasticity of titanium nickelide. A sequence of technological operations is suggested, experimental tests and clinical trials carried out and immediate and end-results for anterior resection in rectal cancer are evaluated. Compression equipment for forming colorectal anastomosis proved reliable in long-term operation.
NASA Astrophysics Data System (ADS)
Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine
2018-04-01
Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.
Micro pulling down growth of very thin shape memory alloys single crystals
NASA Astrophysics Data System (ADS)
López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.
Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.
Strain-induced dimensionality crossover of precursor modulations in Ni{sub 2}MnGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Zhihua, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Wang, Yandong, E-mail: zhihua-nie@yahoo.com, E-mail: ydwang@neu.edu.cn; Shang, Shunli
2015-01-12
Precursor modulations often occur in functional materials like magnetic shape memory alloys, ferroelectrics, and superconductors. In this letter, we have revealed the underlying mechanism of the precursor modulations in ferromagnetic shape memory alloys Ni{sub 2}MnGa by combining synchrotron-based x-ray diffraction experiments and first-principles phonon calculations. We discovered the precursor modulations along [011] direction can be eliminated with [001] uniaxial loading, while the precursor modulations or premartensite can be totally suppressed by hydrostatic pressure condition. The TA{sub 2} phonon anomaly is sensitive to stress induced lattice strain, and the entire TA{sub 2} branch is stabilized along the directions where precursor modulationsmore » are eliminated by external stress. Our discovery bridges precursor modulations and phonon anomalies, and sheds light on the microscopic mechanism of the two-step superelasticity in precursor martensite.« less
Analytical model for a laminated shape memory alloy beam with piezoelectric layers
NASA Astrophysics Data System (ADS)
Viet, N. V.; Zaki, W.; Umer, R.
2018-03-01
We propose an analytical model for a laminated beam consisting of a superelastic shape memory alloy (SMA) core layer bonded to two piezoelectric layers on its top and bottom surfaces. The model accounts for forward and reverse phase transformation between austenite and martensite during a full isothermal loading-unloading cycle starting a full austenite in the SMA layer. In particular, the laminated composite beam has a rectangular cross section and is fixed at one end while the other end is subjected to a concentrated transverse force acting at the tip. The moment-curvature relation is analytically derived. The generated electric displacement output from the piezoelectric layers is then determined using the linear piezoelectric theory. The results are compared to 3D simulations using finite element analysis (FEA). The comparison shows good agreement in terms of electric displacement, in general, throughout the loading cycle.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Seyyed Aghamiri, S M; Nili Ahmadabadi, M; Shahmir, H; Naghdi, F; Raygan, Sh
2013-05-01
The nickel-titanium shape memory alloys have been used in orthodontic application due to their unique properties like superelasticity and biocompatibility. The phase transformation behavior of these alloys can be changed by alloying elements and thermomechanical processing conditions. In this study, two types of NiTi and TiNiCu wires of 0.4mm diameter were produced via thermomechanical treatments with final step of 20% cold drawing followed by annealing at different temperatures of 300 and 400 °C for varying times of 10, 30 and 60 min. The processed wires were characterized by oral cavity configuration three point bending (OCTPB) test at 37 °C to specify the mechanical transformation features. Also, differential scanning calorimetry (DSC) was used to analyze the thermal transformation temperatures of selected wires. The results showed the thermomechanical treatment at 300 °C for 30 min was the suitable process in terms of superelasticity and transformation temperatures for orthodontic application. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Borowski, Tomasz; Wierzchoń, Tadeusz
2017-11-01
Surface layers currently produced on NiTi alloys do not meet all the requirements for materials intended for use in cardiology. Plasma surface treatments of titanium and its alloys under glow discharge conditions make it possible to produce surface layers, such as TiN or TiO2, which increases corrosion resistance and biocompatibility. The production of layers on NiTi alloys with the same properties, and maintaining their shape memory and superelasticity features, requires the use of low-temperature processes. At the same time, since it is known that the carbon-based layers could prevent excessive adhesion and aggregation of platelets, we examined the composite a-CNH + TiO2 type surface layer produced by means of a hybrid method combining oxidation in low-temperature plasma and Radio Frequency Chemical Vapor Deposition (RFCVD) processes. Investigations have shown that this composite layer increases the corrosion resistance of the material, and both the low degree of roughness and the chemical composition of the surface produced lead to decreased platelet adhesion and aggregation and proper endothelialization, which could extend the range of applications of NiTi shape memory alloys.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
NASA Astrophysics Data System (ADS)
Jeong, Soon-Jong
2000-08-01
Shape memory alloys (SMAs) have excellent mechanical properties showing large stroke and high power density when used as actuators. In terms of response speed, however, conventional SMAs have a drawback due to the isothermal nature of the associated phase transformation. A new type of SMA, called ferromagnetic SMA, is considered to replace conventional SMAs and is hoped to overcome such a slow response drawback by changing driving mode of shape memory behaviors from thermal to magnetic. The new type of ferromagnetic SMAs is expected to exhibit not only a large displacement but also rapid response when magnetic field is applied and removed. There are three kinds of ferromagnetic SMAs and among them, Ni2MnGa-based compounds exhibit prominent shape memory effects and superelasticity. In this study, Ni2MnGa-based alloys were chosen and studied to characterize shape memory behavior upon the application and removal of magnetic field. The relevance of the magnetic field-induced shape memory behavior to the magnetization process was investigated by using transformation and/or the movement of martensite variant interfaces. Two mechanisms have been proposed for controlling magnetic field-induced shape memory behaviors. One mechanism is related to shape memory behavior associated with magnetic field-induced martensitic transformation. The other is related to the rearrangement of martensite variants by magnetic field application. Magnetic field-induced martensitic transformation and shape memory effects for single- and poly-crystalline Ni2MnGa alloys were investigated under various conditions. In single crystalline specimens, it was observed that considerable strain changes are a function of magnetic field at temperatures below Mf (martensite finish temperature). Such strain changes, by application and subsequent removal of magnetic field, may be attributed to the martensite variant motion at lower temperatures than Mf. Magnetic field application made a significant contribution to the martensite transformation and related strain changes (0.3%--0.82%) at temperatures above Af (austenite finish temperature) in some polycrystalline Ni2MnGa alloys, where austenite and martensite phases possess paramagnetic and ferromagnetic properties, respectively.
Deformation and Failure Mechanisms of Shape Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Samantha Hayes
2015-04-15
The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior resultsmore » on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...
2017-11-20
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Corrosion of NiTi Wires with Cracked Oxide Layer
NASA Astrophysics Data System (ADS)
Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr
2014-07-01
Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.
Optimum design of bridges with superelastic-friction base isolators against near-field earthquakes
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2010-04-01
The seismic response of a multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI) is investigated under near-field earthquakes. The isolation system consists of a flat steel-Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearings limit the maximum seismic forces transmitted to the superstructure to a certain value that is a function of friction coefficient of sliding interface. Superelastic SMA device provides restoring capability to the isolation system together with additional damping characteristics. The key design parameters of an S-FBI system are the natural period of the isolated, yielding displacement of SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analyses of the isolated bridge. First, a three-span continuous bridge is modeled as a two-degrees-of-freedom with S-FBI system. A neuro-fuzzy model is used to capture rate-dependent nonlinear behavior of SMA device. A time-dependent method which employs wavelets to adjust accelerograms to match a target response spectrum with minimum changes on the other characteristics of ground motions is used to generate ground motions used in the simulations. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of the isolated bridge is shown as a function of design parameters. Also, the influence of temperature variations on the effectiveness of S-FBI system is evaluated. The results show that the optimum design of the isolated bridge with S-FBI system can be achieved by a judicious specification of design parameters.
Martensitic Transformation in a β-Type Mg-Sc Alloy
NASA Astrophysics Data System (ADS)
Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Somekawa, Hidetoshi; Koike, Junichi
2018-03-01
Recently, we found that a Mg-Sc alloy with a bcc (β) phase exhibits superelasticity and a shape memory effect at low temperature. In this work, we examined the stress-induced and thermally induced martensitic transformation of the β-type Mg-Sc alloy and investigated the crystal structure of the thermally induced martensite phase based on in situ X-ray diffraction (XRD) measurements. The lattice constants of the martensite phase were calculated to be a = 0.3285 nm, b = 0.5544 nm, and c = 0.5223 nm when we assumed that the martensite phase has an orthorhombic structure (Cmcm). Based on the lattice correspondence between a bcc and an orthorhombic structures such as that in the case of β-Ti shape memory alloys, we estimated the transformation strain of the β Mg-Sc alloy. As a result, the transformation strains along the 001, 011, and 111 directions in the β phase were calculated to be + 5.7, + 8.8, and + 3.3%, respectively.
NASA Astrophysics Data System (ADS)
Angioni, S. L.; Meo, M.; Foreman, A.
2011-01-01
Composite materials are known to have a poor resistance to through-the-thickness impact loading. There are various methods for improving their impact damage tolerance, such as fiber toughening, matrix toughening, interface toughening, through-the-thickness reinforcements, and selective interlayers and hybrids. Hybrid composites with improved impact resistance are particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMA) is one solution since SMA materials can absorb the energy of the impact through superelastic deformation or recovery stress, reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fiber reinforcements may vary, such as SMA wires in woven laminates or SMA foils in unidirectional laminates, only to cite two examples. We will review the state of the art of SMAHC for the purpose of damage suppression. Both the active and passive damage suppression mechanisms will be considered.
Kim, Eui-Hyun; Lee, Hyunbae; Kim, Jae-Hwan; Bae, Seung-Muk; Hwang, Heesu; Yang, Heesun; Choi, Eunsoo; Hwang, Jin-Ha
2018-02-22
Self-healing is an essential property of smart concrete structures. In contrast to other structural metals, shape memory alloys (SMAs) offer two unique effects: shape memory effects, and superelastic effects. Composites composed of SMA wires and conventional cements can overcome the mechanical weaknesses associated with tensile fractures in conventional concretes. Under specialized environments, the material interface between the cementitious component and the SMA materials plays an important role in achieving the enhanced mechanical performance and robustness of the SMA/cement interface. This material interface is traditionally evaluated in terms of mechanical aspects, i.e., strain-stress characteristics. However, the current work attempts to simultaneously characterize the mechanical load-displacement relationships synchronized with impedance spectroscopy as a function of displacement. Frequency-dependent impedance spectroscopy is tested as an in situ monitoring tool for structural variations in smart composites composed of non-conducting cementitious materials and conducting metals. The artificial geometry change in the SMA wires is associated with an improved anchoring action that is compatible with the smallest variation in resistance compared with prismatic SMA wires embedded into a cement matrix. The significant increase in resistance is interpreted to be associated with the slip of the SMA fibers following the elastic deformation and the debonding of the SMA fiber/matrix.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Mir, C.; Moroni, M. O.; Sarrazin, M.; Roschke, P. N.
2007-06-01
Two experimental test programs are conducted to collect data and simulate the dynamic behavior of CuAlBe shape memory alloy (SMA) wires. First, in order to evaluate the effect of temperature changes on superelastic SMA wires, a large number of cyclic, sinusoidal, tensile tests are performed at 1 Hz. These tests are conducted in a controlled environment at 0, 25 and 50 °C with three different strain amplitudes. Second, in order to assess the dynamic effects of the material, a series of laboratory experiments is conducted on a shake table with a scale model of a three-story structure that is stiffened with SMA wires. Data from these experiments are used to create fuzzy inference systems (FISs) that can predict hysteretic behavior of CuAlBe wire. Both fuzzy models employ a total of three input variables (strain, strain-rate, and temperature or pre-stress) and an output variable (predicted stress). Gaussian membership functions are used to fuzzify data for each of the input and output variables. Values of the initially assigned membership functions are adjusted using a neural-fuzzy procedure to more accurately predict the correct stress level in the wires. Results of the trained FISs are validated using test results from experimental records that had not been previously used in the training procedure. Finally, a set of numerical simulations is conducted to illustrate practical use of these wires in a civil engineering application. The results reveal the applicability for structural vibration control of pseudoelastic CuAlBe wire whose highly nonlinear behavior is modeled by a simple, accurate, and computationally efficient FIS.
Thermomechanical Characterization and Modeling of Superelastic Shape Memory Alloy Beams and Frames
NASA Astrophysics Data System (ADS)
Watkins, Ryan
Of existing applications, the majority of shape memory alloy (SMA) devices consist of beam (orthodontic wire, eye glasses frames, catheter guide wires) and framed structures (cardiovascular stents, vena cava filters). Although uniaxial tension data is often sufficient to model basic beam behavior (which has been the main focus of the research community), the tension-compression asymmetry and complex phase transformation behavior of SMAs suggests more information is necessary to properly model higher complexity states of loading. In this work, SMA beams are experimentally characterized under general loading conditions (including tension, compression, pure bending, and buckling); furthermore, a model is developed with respect to general beam deformation based on the relevant phenomena observed in the experimental characterization. Stress induced phase transformation within superelastic SMA beams is shown to depend on not only the loading mode, but also kinematic constraints imposed by beam geometry (such as beam cross-section and length). In the cases of tension and pure bending, the structural behavior is unstable and corresponds to phase transformation localization and propagation. This unstable behavior is the result of a local level up--down--up stress/strain response in tension, which is measured here using a novel composite-based experimental technique. In addition to unstable phase transformation, intriguing post-buckling straightening is observed in short SMA columns during monotonic loading (termed unbuckling here). Based on this phenomenological understanding of SMA beam behavior, a trilinear based material law is developed in the context of a Shanley column model and is found to capture many of the relevant features of column buckling, including the experimentally observed unbuckling behavior. Due to the success of this model, it is generalized within the context of beam theory and, in conjunction with Bloch wave stability analysis, is used to model and design SMA honeycombs.
NASA Astrophysics Data System (ADS)
Alessi, Roberto; Pham, Kim
2016-02-01
This paper presents a variational framework for the three-dimensional macroscopic modelling of superelastic shape memory alloys in an isothermal setting. Phase transformation is accounted through a unique second order tensorial internal variable, acting as the transformation strain. Postulating the total strain energy density as the sum of a free energy and a dissipated energy, the model depends on two material scalar functions of the norm of the transformation strain and a material scalar constant. Appropriate calibration of these material functions allows to render a wide range of constitutive behaviours including stress-softening and stress-hardening. The quasi-static evolution problem of a domain is formulated in terms of two physical principles based on the total energy of the system: a stability criterion, which selects the local minima of the total energy, and an energy balance condition, which ensures the consistency of the evolution of the total energy with respect to the external loadings. The local phase transformation laws in terms of Kuhn-Tucker relations are deduced from the first-order stability condition and the energy balance condition. The response of the model is illustrated with a numerical traction-torsion test performed on a thin-walled cylinder. Evolutions of homogeneous states are given for proportional and non-proportional loadings. Influence of the stress-hardening/softening properties on the evolution of the transformation domain is emphasized. Finally, in view of an identification process, the issue of stability of homogeneous states in a multi-dimensional setting is answered based on the study of second-order derivative of the total energy. Explicit necessary and sufficient conditions of stability are provided.
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Silwal, B.
2014-04-01
This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm and performance-based evaluation approach. The S-FBI system consists of a flat steel- PTFE sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA device provides restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm (GA) in order to optimize S-FBI system. Nonlinear time history analyses of the building with S-FBI system are performed. A set of 20 near-field ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.
Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.
Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F
2010-01-01
The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.
Powder metallurgy technology of NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.
2008-05-01
Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.
Effect of cutting parameters on strain hardening of nickel–titanium shape memory alloy
NASA Astrophysics Data System (ADS)
Wang, Guijie; Liu, Zhanqiang; Ai, Xing; Huang, Weimin; Niu, Jintao
2018-07-01
Nickel–titanium shape memory alloy (SMA) has been widely used as implant materials due to its good biocompatibility, shape memory property and super-elasticity. However, the severe strain hardening is a main challenge due to cutting force and temperature caused by machining. An orthogonal experiment of nickel–titanium SMA with different milling parameters conditions was conducted in this paper. On the one hand, the effect of cutting parameters on work hardening is obtained. It is found that the cutting speed has the most important effect on work hardening. The depth of machining induced layer and the degree of hardening become smaller with the increase of cutting speed when the cutting speed is less than 200 m min‑1 and then get larger with further increase of cutting speed. The relative intensity of diffraction peak increases as the cutting speed increase. In addition, all of the depth of machining induced layer, the degree of hardening and the relative intensity of diffraction peak increase when the feed rate increases. On the other hand, it is found that the depth of machining induced layer is closely related with the degree of hardening and phase transition. The higher the content of austenite in the machined surface is, the higher the degree of hardening will be. The depth of the machining induced layer increases with the degree of hardening increasing.
NASA Astrophysics Data System (ADS)
Figueroa, C. G.; Garcia-Castillo, F. N.; Jacobo, V. H.; Cortés-Pérez, J.; Schouwenaars, R.
2017-05-01
Stress induced martensitic transformation in copper-based shape memory alloys has been studied mainly in monocrystals. This limits the use of such results for practical applications as most engineering applications use polycristals. In the present work, a coaxial tribometer developed by the authors was used to characterise the tribological behaviour of polycrystalline Cu-11.5%Al-0.5%Be shape memory alloy in contact with AISI 9840 steel under sliding wear conditions. The surface and microstructure characterization of the worn material was conducted by conventional scanning electron microscopy and atomic force microscopy, while the mechanical properties along the transversal section were measured by means of micro-hardness testing. The tribological behaviour of Cu-Al-Be showed to be optimal under sliding wear conditions since the surface only presented a slight damage consisting in some elongated flakes produced by strong plastic deformation. The combination of the plastically modified surface and the effects of mechanically induced martensitic transformation is well-suited for sliding wear conditions since the modified surface provides the necessary strength to avoid superficial damage while superelasticity associated to martensitic transformation is an additional mechanism which allows absorbing mechanical energy associated to wear phenomena as opposed to conventional ductile alloys where severe plastic deformation affects several tens of micrometres below the surface.
Wu, S L; Chu, Paul K; Liu, X M; Chung, C Y; Ho, J P Y; Chu, C L; Tjong, S C; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2006-10-01
Good surface properties and biocompatibility are crucial to porous NiTi shape memory alloys (SMA) used in medical implants, as possible nickel release from porous NiTi may cause deleterious effects in the human body. In this work, oxygen plasma immersion ion implantation (O-PIII) was used to reduce the amount of nickel leached from porous NiTi alloys with a porosity of 42% prepared by capsule-free hot isostatic pressing. The mechanical properties, surface properties, and biocompatibility were studied by compression tests, X-ray photoelectron spectroscopy (XPS), and cell culturing. The O-PIII porous NiTi SMAs have good mechanical properties and excellent superelasticity, and the amount of nickel leached from the O-PIII porous NiTi is much less than that from the untreated samples. XPS results indicate that a nickel-depleted surface layer predominantly composed of TiO(2) is produced by O-PIII and acts as a barrier against out-diffusion of nickel. The cell culturing tests reveal that both the O-PIII and untreated porous NiTi alloys have good biocompatibility. (c) 2006 Wiley Periodicals, Inc
NASA Astrophysics Data System (ADS)
Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.
2005-08-01
Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.
Chan, Wing-Yu; Yip, Joanne; Yick, Kit-Lun; Ng, Sun-Pui; Lu, Lu; Cheung, Kenneth Man-Chee; Kwan, Kenny Yat-Hong; Cheung, Jason Pui-Yin; Yeung, Kelvin Wai-Kwok; Tse, Chi-Yung
2018-04-24
Smart materials have attracted considerable attention in the medical field. In particular, shape memory alloys (SMAs) are most commonly utilized for their superelasticity (SE) in orthopaedic treatment. In this study, the resin struts of a flexible brace for adolescent idiopathic scoliosis (AIS) are replaced with different conventional materials and an SMA. The corrective mechanism mainly depends on the compressive force applied by the brace at the desired location. Therefore, the mechanical properties of the materials used and the interface pressure are both critical factors that influence the treatment effectiveness. The results indicate that titanium is the most rigid among the five types of materials, whereas the brace with SMA struts presents the best recovery properties and the most stable interface pressure. A radiographic examination of two patients with AIS is then conducted to validate the results, which shows that the SMA struts can provide better correction of thoracic curvature. These findings suggest that SMAs can be applied in orthoses because their SE allows for continuous and controllable corrective forces.
The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.
2013-01-01
Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.
Energy-dissipating and self-repairing SMA-ECC composite material system
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Li, Mo; Song, Gangbing
2015-02-01
Structural component ductility and energy dissipation capacity are crucial factors for achieving reinforced concrete structures more resistant to dynamic loading such as earthquakes. Furthermore, limiting post-event residual damage and deformation allows for immediate re-operation or minimal repairs. These desirable characteristics for structural ‘resilience’, however, present significant challenges due to the brittle nature of concrete, its deformation incompatibility with ductile steel, and the plastic yielding of steel reinforcement. Here, we developed a new composite material system that integrates the unique ductile feature of engineered cementitious composites (ECC) with superelastic shape memory alloy (SMA). In contrast to steel reinforced concrete (RC) and SMA reinforced concrete (SMA-RC), the SMA-ECC beams studied in this research exhibited extraordinary energy dissipation capacity, minimal residual deformation, and full self-recovery of damage under cyclic flexural loading. We found that the tensile strain capacity of ECC, tailored up to 5.5% in this study, allows it to work compatibly with superelastic SMA. Furthermore, the distributed microcracking damage mechanism in ECC is critical for sufficient and reliable recovery of damage upon unloading. This research demonstrates the potential of SMA-ECC for improving resilience of concrete structures under extreme hazard events.
Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent
NASA Astrophysics Data System (ADS)
Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi
2007-07-01
NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.
Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.
Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H
2003-10-01
Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.
Treatment of patella fracture by claw-like shape memory alloy.
Hao, Wei; Zhou, Lugang; Sun, Yujie; Shi, Peng; Liu, Hongzhi; Wang, Xin
2015-07-01
Titanium-nickel shape memory alloy (Ti-Ni SMA) is characterized by shape-memory effect, super-elasticity, excellent fatigue behavior, corrosion resistance, acceptable biocompatibility and high damping capacity. Claw-like Ti-Ni SMA fixator (SMA-claw) has been used to treat transverse fracture of patella. 29 patients (19 males, 10 females) aged from 21 to 71 years old (averaged 43.0 years old) have been received open reduction and internal fixation with SMA-claw from January 2011 to December 2011. After operation, patients have been received gradual knee function exercises, followed by radiographic analysis and Lysholm Knee Score at 1, 2, 3, 6, 9 and 12 months postoperation. The mean follow-up time was 11.48 months (25 patients finished, 1 lost after 6 months and 3 lost after 9 months). Radiographic bone union occurred at 2 months (7 patients) or 3 months (22 patients). Satisfied range of motion for the knee joint has been observed with 1.90/141.72° (hyperextension/flexion) at 3 months, 4.83/143.97° at 6 months, 4.82/144.82° at 9 months and 5.2/145° at 12 months postsurgery. The Ti-Ni SMA-claw fixator produced good osteosynthesis effect by continuous recovery stress with relatively simple and minimally invasive handling process, which can be introduced as an alternative to traditional tension band technique for treatment of patellar transverse fracture.
Effects of intraoral aging on surface properties of coated nickel-titanium archwires.
Rongo, Roberto; Ametrano, Gianluca; Gloria, Antonio; Spagnuolo, Gianrico; Galeotti, Angela; Paduano, Sergio; Valletta, Rosa; D'Antò, Vincenzo
2014-07-01
To evaluate the effects of intraoral aging on surface properties of esthetic and conventional nickel-titanium (NiTi) archwires. Five NiTi wires were considered for this study (Sentalloy, Sentalloy High Aesthetic, Superelastic Titanium Memory Wire, Esthetic Superelastic Titanium Memory Wire, and EverWhite). For each type of wire, four samples were analyzed as received and after 1 month of clinical use by an atomic force microscope (AFM) and a scanning electronic microscope (SEM). To evaluate sliding resistance, two stainless steel plates with three metallic or three monocrystalline brackets, bonded in passive configuration, were manufactured; four as-received and retrieved samples for every wire were pulled five times at 5 mm/min for 1 minute by means of an Instron 5566, recording the greatest friction value (N). Data were analyzed by one-way analysis of variance and by Student's t-test. After clinical use, surface roughness increased considerably. The SEM images showed homogeneity for the as-received control wires; however, after clinical use esthetic wires exhibited a heterogeneous surface with craters and bumps. The lowest levels of friction were observed with the as-received Superelastic Titanium Memory Wire on metallic brackets. When tested on ceramic brackets, all the wires exhibited an increase in friction (t-test; P < .05). Furthermore, all the wires, except Sentalloy, showed a statistically significant increase in friction between the as-received and retrieved groups (t-test; P < .05). Clinical use of the orthodontic wires increases their surface roughness and the level of friction.
NASA Astrophysics Data System (ADS)
Abou-Elfath, Hamdy
2017-05-01
Recently, self-centering earthquake resistant systems have attracted attention because of their promising potential in controlling the residual drifts and reducing repair costs after earthquake events. Considerable portion of self-centering research is based on using short-segment superelastic shape memory alloy (SMA) braces as strengthening technique because of the lower modulus of elasticity of SMA in comparison with that of steel. The goal of this study is to investigate the ductility characteristics of these newly proposed short-segment SMA braces to evaluate their safety levels against fracture failures under earthquake loading. This goal has been achieved by selecting an appropriate seismic performance criterion for steel frames equipped with SMA braces, defining the level of strain capacity of SMA and calculating the strain demands in the SMA braces by conducting a series of pushover and earthquake time history analyzes on typical frame structure. The results obtained in this study indicated the inability of short-segment SMA designs to provide adequate ductility to the lateral resistant systems. An alternative approach is introduced by using hybrid steel-SMA braces that are capable of controlling the residual drifts and providing the structure with adequate lateral stiffness.
Transition temperature range of thermally activated nickel-titanium archwires
SPINI, Tatiana Sobottka; VALARELLI, Fabrício Pinelli; CANÇADO, Rodrigo Hermont; de FREITAS, Karina Maria Salvatore; VILLARINHO, Denis Jardim
2014-01-01
Objectives The shape memory resulting from the superelasticity and thermoelastic effect is the main characteristic of thermally activated NiTi archwires and is closely related to the transition temperature range (TTR). The aim of this study was to evaluate the TTR of thermally activated NiTi archwires commercially available. Material and Methods Seven different brands of 0.019"x0.025" thermally activated nickel-titanium archwires were tested as received by differential scanning calorimetry (DSC) over the temperature range from -100°C to 150°C at 10°C/min. Results All thermally activated NiTi archwires analyzed presented stage transformation during thermal scanning with final austenitic temperature (Af) ranging from 20.39°C to 45.42°C. Three brands of NiTi archwires presented Af close to the room temperature and, this way, do not present properties of shape memory and pseudoelasticity that are desirable in clinical applications. Conclusions The thermally activated NiTi archwires present great variability in the TTR and the elastic parameters of each NiTi archwire should be provided by the manufacturers, to allow achievement of the best clinical performance possible. PMID:24676581
Oxygen depth profiling by resonant RBS in NiTi after plasma immersion ion implantation
NASA Astrophysics Data System (ADS)
Mändl, S.; Lindner, J. K. N.
2006-08-01
NiTi exhibits super-elastic as well as shape-memory properties, which results in a large potential application field in biomedical technology. Using oxygen ion implantation at elevated temperatures, it is possible to improve the biocompatibility. Resonant Rutherford backscattering spectroscopy (RRBS) is used to investigate the oxygen depth profile obtained after oxygen plasma immersion ion implantation (PIII) at 25 kV and 400-600 °C. At all temperatures, a layered structure consisting of TiO2/Ni3Ti/NiTi was found with sharp interfaces while no discernible content of oxygen inside Ni3Ti or nickel in TiO2 was found. These data are compatible with a titanium diffusion from the bulk towards the implanted oxygen.
Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon.
Kujala, Sauli; Pajala, Ari; Kallioinen, Matti; Pramila, Antti; Tuukkanen, Juha; Ryhänen, Jorma
2004-01-01
Nitinol (NiTi) is a promising new tendon suture material with good strength, easy handling and good super-elastic properties. NiTi sutures were implanted for biocompatibility testing into the right medial gastrocnemius tendon in 15 rabbits for 2, 6 and 12 weeks. Additional sutures were implanted in subcutaneous tissue for strength measurements in order to determine the effect of implantation on strength properties of NiTi suture material. Braided polyester sutures (Ethibond) of approximately the same diameter were used as control. Encapsulating membrane formation around the sutures was minimal in the case of both materials. The breaking load of NiTi was significantly greater compared to braided polyester. Implantation did not affect the strength properties of either material.
On the Mechanisms for Martensite Formation in YAG Laser Welded Austenitic NiTi
NASA Astrophysics Data System (ADS)
Oliveira, J. P.; Braz Fernandes, F. M.; Miranda, R. M.; Schell, N.
2016-03-01
Extensive work has been reported on the microstructure of laser-welded NiTi alloys either superelastic or with shape memory effect, motivated by the fact that the microstructure affects the functional properties. However, some effects of laser beam/material interaction with these alloys have not yet been discussed. This paper aims to discuss the mechanisms for the occurrence of martensite in the heat-affected zone and in the fusion zone at room temperature, while the base material is fully austenitic. For this purpose, synchrotron radiation was used together with a simple thermal analytic mathematical model. Two distinct mechanisms are proposed for the presence of martensite in different zones of a weld, which affects the mechanical and functional behavior of a welded component.
Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires
NASA Astrophysics Data System (ADS)
Zhang, Xuexi; Qian, Mingfang; Zhang, Zhe; Wei, Longsha; Geng, Lin; Sun, Jianfei
2016-02-01
Ni-Mn-Ga-X microwires were produced by melt-extraction technique on a large scale. Their shape memory effect, superelasticity, and damping capacity have been demonstrated. Here, the excellent magnetocaloric effect was revealed in Ni-Mn-Ga-Cu microwires produced by melt-extraction and subsequent annealing. The overlap of the martensitic and magnetic transformations, i.e., magnetostructural coupling, was achieved in the annealed microwires. The magnetostructural coupling and wide martensitic transformation temperature range contribute to a large magnetic entropy change of -8.3 J/kg K with a wide working temperature interval of ˜13 K under a magnetic field of 50 kOe. Accordingly, a high refrigeration capacity of ˜78 J/kg was produced in the annealed microwires.
FOREWORD: Shape Memory and Related Technologies
NASA Astrophysics Data System (ADS)
Liu, Yong
2005-10-01
The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory materials in various demanding fields. Some top researchers from Asia, Australia, Europe and USA attended the meeting and gave oral presentations on both the fundamentals and applied aspects of SMAs and MSMs. Several prominent experts have delivered invited talks on the damping capacity of SMAs (J Van Humbeeck), SMA thin films (S Miyazaki), MSMs (V Lindross and O Söderberg) and SMA microtubes (Q P Sun). At the end of the Symposium, a panel discussion on various aspects of shape memory materials was held in the Nanyang Technological University. Comments, suggestions, opinions, discussions etc from all participants are greatly appreciated and acknowledged. I would like to thank all the participants for their valuable contributions toward the success of SMART2004, and thank all the session chairpersons for making this Symposium an event full of beneficial discussions. This special issue includes some of the manuscripts submitted to SMART2004. I want to express my deep gratitude to the editorial office of the journal of Smart Materials and Structures and all the referees for their great help in producing this special issue. This symposium has received support from the Institute of Materials (East Asia) and the School of Mechanical and Aerospace Engineering of the Nanyang Technological University. The following sponsors are gratefully acknowledged: Lee Foundation (Singapore) Accelrys Instron (Singapore Pte Ltd).
Modeling of hydrogen effect on the superelastic behavior of Ni-Ti shape memory alloy wires
NASA Astrophysics Data System (ADS)
Lachiguer, Amani; Bouby, Céline; Gamaoun, Fehmi; Bouraoui, Tarak; Ben Zineb, Tarak
2016-11-01
Superelastic NiTi wires are widely used in orthodontic treatments, but sometimes fracture can be observed after few months of use in buccal cavity and attributed to the degradation of NiTi mechanical properties due to hydrogen absorption. In this paper, a modeling approach is proposed in order to describe the effect of hydrogen diffusion on the transformation properties of NiTi SMAs. In order to experimentally predict such effects, cathodic hydrogen charging was performed at a current density of 10 A/{m}2 for 6h, 24h, 48h and 72h in 0.9% NaCl aqueous solution at room temperature. Tensile tests were carried out shortly after hydrogen charging. The obtained stress-strain curves showed an increase of yield transformation stresses for forward and reverse martensitic transformations and a decrease of maximum transformation strain. Using Fick’s second law, the transformation temperatures variation can be expressed as a function of the mean concentration of absorbed hydrogen and then taked into account in the SMA constitutive model developed by Chemisky et al (2011). The numerical results are compared to the experimental ones to calibrate the proposed method. Simulations showed that hydrogen diffusion induces a shifting of transfomation temperatures, a decreasing of maximum transformation strain and an increasing of yield transfomation stresses.
NASA Astrophysics Data System (ADS)
Helbert, Guillaume; Saint-Sulpice, Luc; Arbab Chirani, Shabnam; Dieng, Lamine; Lecompte, Thibaut; Calloch, Sylvain; Pilvin, Philippe
2017-02-01
The well-known martensitic transformation is not always the unique solid-solid phase change in NiTi shape memory alloys (SMA). For this material, R-phase can occur from both austenite and martensite. In some applications, macroscopic strain of the material can be limited to 2%. In these cases, R-phase contribution can not be neglected anymore when compared with martensite. Furthermore, different thermomechanical couplings have to be taken into account to carefully predict strain rate effects and to better describe application conditions. In this paper, a new model taking into account various phase transformations with thermomechanical couplings is presented. This model is based on several transformation criteria. In most applications, SMA are used as wires, submitted to tensile-tensile loadings, in the superelasticity working range. Consequently, a uniaxial reduction of the model is presented for its simplicity. A thermodynamic framework is proposed. It enables to describe the internal variables evolution laws. The simple and fast identification process of model parameters is briefly presented. To verify the validity of the proposed model, simulation results are compared with experimental ones. The influences of testing temperature and strain amplitude on the material behavior is discussed. The damping capacity is also studied, using an energy-based criterion.
NASA Astrophysics Data System (ADS)
Varela, Sebastian; ‘Saiid' Saiidi, M.
2016-07-01
This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.
Biomedical engineering in design and application of nitinol stents with shape memory effect
NASA Astrophysics Data System (ADS)
Ryklina, E. P.; Khmelevskaya, I. Y.; Morozova, Tamara V.; Prokoshkin, S. D.
1996-04-01
Our studies in the field of endosurgery in collaboration with the physicians of the National Research Center of Surgery of the Academy of Medical Sciences are carried out beginning in 1983. These studies laid the foundation for the new direction of X-ray surgery--X-ray Nitinol stenting of vessels and tubular structures. X-ray nitinol stents are unique self-fixing shells based on the shape memory effect and superelasticity of nickel-titanium alloys self- reconstructed under human body temperature. Applied for stenting of arteries in cases of stenosis etc., bile ducts in cases of benign and malignant stenoses, digestive tract in cases of oesophageal cancer and cervical canal uterus in cases of postsurgical atresiss and strictures of uterine. The purpose of stenting is restoration of the shape of artery or tubular structure by a cylinder frame formation. The especially elaborated original method of stenting allows to avoid the traditional surgical operation, i.e. the stenting is performed without blood, narcosis and surgical knife. The stent to be implanted is transported into the affected zone through the puncture under the X-ray control. Clinical applications of X-ray endovascular stenting has been started in March 1984. During this period nearly 400 operations on stenting have been performed on femoral, iliac, brachio-cephalic, subclavian arteries, bile ducts, tracheas, digestive tract and cervical canal uterus.
NASA Astrophysics Data System (ADS)
Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.
2013-12-01
The unique properties of NiTi alloy, such as its shape memory effect, super-elasticity and biocompatibility, make it ideal material for various applications such as aerospace, micro-electronics and medical device. In order to meet the requirement of increasing applications, great attention has been given to joining of this material to itself and to other materials during past few years. Laser welding has been known as a suitable joining technique for NiTi shape memory alloy. Hence, in this work, a comparative study on laser welding of NiTi wire to itself and to AISI 304 austenitic stainless steel wire has been made. Microstructures, mechanical properties and fracture morphologies of the laser joints were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), Vickers microhardness (HV0.2) and tensile testing techniques. The results showed that the NiTi-NiTi laser joint reached about 63% of the ultimate tensile strength of the as-received NiTi wire (i.e. 835 MPa) with rupture strain of about 16%. This joint also enabled the possibility to benefit from the pseudo-elastic properties of the NiTi component. However, tensile strength and ductility decreased significantly after dissimilar laser welding of NiTi to stainless steel due to the formation of brittle intermetallic compounds in the weld zone during laser welding. Therefore, a suitable modification process is required for improvement of the joint properties of the dissimilar welded wires.
Additive manufacturing of patient-specific tubular continuum manipulators
NASA Astrophysics Data System (ADS)
Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica
2015-03-01
Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.
Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Yan, Lina; Liu, Yong
2016-06-01
Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.
Trépanier, C; Leung, T K; Tabrizian, M; Yahia, L H; Bienvenu, J G; Tanguay, J F; Piron, D L; Bilodeau, L
1999-01-01
Nickel-titanium (NiTi) offers many advantages for the fabrication of coronary stents: shape memory, superelasticity, and radiopacity. However, many authors highlighted the selective dissolution of Ni from the alloy during the corrosion process that could lead to potential toxicity. The improvement of the NiTi stent's corrosion resistance by different surface treatments (electropolishing, heat treatment, and nitric acid passivation) was reported in a previous article. In the present study a comparative biocompatibility evaluation of such stents was performed through in vitro and in vivo assays. A cell proliferation test was completed to evaluate the cytotoxicity of surface treated NiTi using human fibroblasts. Then a stent implantation was performed in rabbit paramuscular muscle to study the inflammatory response generated by the same implants. Cell proliferation tests generally indicated an in vitro biocompatibility of our samples similar to the control group. An in vivo implantation study demonstrated the gradual overall reduction with time of the fibrocellular capsule thickness surrounding the implants. After a 12-week implantation period, the fibrous capsules surrounding the different implants tended toward the same value of 0.07 mm, which suggested that all surface treatments produced a similar biological response. This low value of the fibrocellular capsule indicated that our NiTi surface treated implants were relatively inert.
Structural energy dissipation in extreme loading events using shape memory alloys
NASA Astrophysics Data System (ADS)
Angioni, Stefano L.
It is well known that composite materials have a poor resistance to the damage caused by the impact of foreign objects on their outer surface. There are various methods for improving the impact damage tolerance of composite materials, such as: fibre toughening, matrix toughening, interface toughening, through the thickness reinforcements and selective interlayers and hybrids. Hybrid composites with improved impact resistance would be particularly useful in military and commercial civil applications. Hybridizing composites using shape memory alloys (SMAs) is one solution since SMA materials can absorb the energy of impact through superelastic deformation or recovery stress reducing the effects of the impact on the composite structure. The SMA material may be embedded in the hybrid composites (SMAHC) in many different forms and also the characteristics of the fibre reinforcements may vary, such as SMA wires in unidirectional laminates or SMA foils in unidirectional laminates only to cite two examples. Recently SMA fibres have been embedded in 2-D woven composites. As part of this work, the existing theoretical models for woven composites have been extended to the case of woven SMAHC using a multiscale methodology in order to predict the mechanical properties and failure behaviour of SMAHC plates. Also several parts of the model have been coded in MATLAB and validated against results extracted from the literature, showing good correlation..
Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank
2013-07-21
The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.
Jahadakbar, Ahmadreza; Shayesteh Moghaddam, Narges; Amerinatanzi, Amirhesam; Dean, David; Karaca, Haluk E.; Elahinia, Mohammad
2016-01-01
Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, we present a study of mandibular reconstruction that uses a dry cadaver mandible to validate our geometric and biomechanical design and fabrication (i.e., 3D printing) of NiTi skeletal fixation hardware. Based on the reference-dried mandible, we have developed a Finite Element model to evaluate the performance of the proposed fixation. Our results show a closer-to-normal stress distribution and an enhanced contact pressure at the bone graft interface than would be in the case with Ti-6Al-4V off-the-shelf fixation hardware. The porous fixation plates used in this study were fabricated by selective laser melting. PMID:28952598
Jahadakbar, Ahmadreza; Shayesteh Moghaddam, Narges; Amerinatanzi, Amirhesam; Dean, David; Karaca, Haluk E; Elahinia, Mohammad
2016-12-19
Process parameters and post-processing heat treatment techniques have been developed to produce both shape memory and superelastic NiTi using Additive Manufacturing. By introducing engineered porosity, the stiffness of NiTi can be tuned to the level closely matching cortical bone. Using additively manufactured porous superelastic NiTi, we have proposed the use of patient-specific, stiffness-matched fixation hardware, for mandible skeletal reconstructive surgery. Currently, Ti-6Al-4V is the most commonly used material for skeletal fixation devices. Although this material offers more than sufficient strength for immobilization during the bone healing process, the high stiffness of Ti-6Al-4V implants can cause stress shielding. In this paper, we present a study of mandibular reconstruction that uses a dry cadaver mandible to validate our geometric and biomechanical design and fabrication (i.e., 3D printing) of NiTi skeletal fixation hardware. Based on the reference-dried mandible, we have developed a Finite Element model to evaluate the performance of the proposed fixation. Our results show a closer-to-normal stress distribution and an enhanced contact pressure at the bone graft interface than would be in the case with Ti-6Al-4V off-the-shelf fixation hardware. The porous fixation plates used in this study were fabricated by selective laser melting.
NASA Astrophysics Data System (ADS)
Guida, M.; Marulo, F.; Russo, S.
2018-04-01
This paper investigates experimentally and numerically the response of a smart hybrid thermoplastic aircraft slat system subjected to a short-duration and high-frequency event like a birdstrike. The focus of the paper is to exploit the ability that superelastic shape memory alloys have to absorb and dissipate energy compared to conventional composite structures. The final objective of the work is to develop an innovative thermoplastic wing leading edge slat able to resist to an impact of 4-lb (1.8 kg) bird at speed of 350 kts (132 m/s), as requested by the aeronautical requirements. Aircraft leading edges must be certified for a proven level of bird impact resistance. In particular, the main structural requirement is to protect the torsion box and control devices from any significant damage caused by birdstrike in order to allow the aircraft to land safely. A clear increase of the composites toughness and higher absorbed energy levels before failure were also observed. This is due to the fact that SMA wires can absorb kinetic energy during the impact due to their remarkably large failure and recoverable strain and to their superelastic and hysteretic behaviour. The activities have been performed within the European Project COALESCE "Cost Efficient Advanced Leading Edge Structure", funded by the Seventh Framework Program Theme 7 Transport (incl. Aeronautics).
Ryhänen, J; Kallioinen, M; Tuukkanen, J; Lehenkari, P; Junila, J; Niemelä, E; Sandvik, P; Serlo, W
1999-07-01
The purpose of this study was to evaluate the new bone formation, modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. We used a regional acceleratory phenomenon (RAP) model, in which a periosteal contact stimulus provokes an adaptive modelling response. NiTi has thermal shape memory and superelasticity properties uncommon in other implant alloys. So far, there are insufficient data concerning the biocompatibility of NiTi as a bone implant. NiTi was compared to stainless steel (stst) and Ti-6Al-4V. The test implant was placed in contact with the intact femur periosteum, but it was not fixed inside the bone. Histomorphometry with digital image analysis was used to determine the bone formation and resorption parameters. The ultrastructural features of cell-material adhesion were analysed with scanning electron microscopy (FESEM). A typical peri-implant bone wall modelation was seen due to the normal RAP. The maximum new woven bone formation started earlier (2 weeks) in the Ti-6Al-4V group than in the NiTi (P < 0.01) group, but also decreased earlier, and at 8 weeks the NiTi (P < 0.05) and stst (P < 0.005) groups had greater cortical bone width. At 12 and 26 weeks no statistical differences were seen in the histomorphometric values. The histological response of the soft tissues around the NiTi implant was also clearly non-toxic and non-irritating. Cell adhesion and focal contacts were similar between the materials studied by FESEM. We conclude that NiTi had no negative effect on total new bone formation or normal RAP after periosteal implantation during a 26-week follow-up.
Soft ferromagnetic properties of Ni44Fe6Mn32Al18 doped Co partially
NASA Astrophysics Data System (ADS)
Notonegoro, Hamdan Akbar; Kurniawan, Budhy; Kurniawan, Candra; Manaf, Azwar
2017-01-01
Research in finding suitable magnetocaloric material around room temperature made ferromagnetic (FM) (Ni-Mn)-based Heusler alloys receive considerable attention as a potential candidate for the magnetic refrigerator. This compound are associated with the shape-memory effect, magnetic superelasticity, and more others magneto-functional properties. The compounds were prepared by vacuum arc melter (VAM) under argon atmosphere which sintering and annealing process were running with quartz cube in vacuum condition. A small amount of coercivity value at σ = 0 in the hysteresis curve occurred whereas magnetization of the sample in various temperature does not reach saturation. The Currie temperature Tc of the sample was obtained at 358 K. Nevertheless, this is dubious value because at T = 300 K the curves had swooped down. Additional measurements necessary to taken as a comparison to verify this value.
Fatigue and mechanical properties of nickel-titanium endodontic instruments.
Kuhn, Grégoire; Jordan, Laurence
2002-10-01
Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.
Liu, X M; Wu, S L; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, C L; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2007-08-01
NiTi shape memory alloy is one of the promising orthopedic materials due to the unique shape memory effect and superelasticity. However, the large amount of Ni in the alloy may cause allergic reactions and toxic effects thereby limiting its applications. In this work, the surface of NiTi alloy was modified by nitrogen plasma immersion ion implantation (N-PIII) at various voltages. The materials were characterized by X-ray photoelectron spectroscopy (XPS). The topography and roughness before and after N-PIII were measured by atomic force microscope. The effects of the modified surfaces on nickel release and cytotoxicity were assessed by immersion tests and cell cultures. The XPS results reveal that near-surface Ni concentration is significantly reduced by PIII and the surface TiN layer suppresses nickel release and favors osteoblast proliferation, especially for samples implanted at higher voltages. The surfaces produced at higher voltages of 30 and 40 kV show better adhesion ability to osteoblasts compared to the unimplanted and 20 kV PIII samples. The effects of heating during PIII on the phase transformation behavior and cyclic deformation response of the materials were investigated by differential scanning calorimetry and three-point bending tests. Our results show that N-PIII conducted using the proper conditions improves the biocompatibility and mechanical properties of the NiTi alloy significantly.
Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition
NASA Astrophysics Data System (ADS)
Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.
2006-03-01
As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.
NASA Astrophysics Data System (ADS)
Zafar, Adeel; Andrawes, Bassem
2012-02-01
Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.
NiTi-Enabled Composite Design for Exceptional Performances
Shao, Yang; Guo, Fangmin; Ren, Yang; ...
2017-03-08
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yang; Guo, Fangmin; Ren, Yang
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality.
Si, Yang; Yu, Jianyong; Tang, Xiaomin; Ge, Jianlong; Ding, Bin
2014-12-16
Three-dimensional nanofibrous aerogels (NFAs) that are both highly compressible and resilient would have broad technological implications for areas ranging from electrical devices and bioengineering to damping materials; however, creating such NFAs has proven extremely challenging. Here we report a novel strategy to create fibrous, isotropically bonded elastic reconstructed (FIBER) NFAs with a hierarchical cellular structure and superelasticity by combining electrospun nanofibres and the fibrous freeze-shaping technique. Our approach causes the intrinsically lamellar deposited electrospun nanofibres to assemble into elastic bulk aerogels with tunable densities and desirable shapes on a large scale. The resulting FIBER NFAs exhibit densities of >0.12 mg cm(-3), rapid recovery from deformation, efficient energy absorption and multifunctionality in terms of the combination of thermal insulation, sound absorption, emulsion separation and elasticity-responsive electric conduction. The successful synthesis of such fascinating materials may provide new insights into the design and development of multifunctional NFAs for various applications.
A fitting empirical potential for NiTi alloy and its application
NASA Astrophysics Data System (ADS)
Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin
Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.
NASA Technical Reports Server (NTRS)
Garg, A.; Benafan, O.; Noebe, R. D.; Padula, S. A., II; Clausen, B.; Vogel, S.; Vaidyanathan, R.
2013-01-01
Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes.
FE analysis of SMA-based bio-inspired bone-joint system
NASA Astrophysics Data System (ADS)
Yang, S.; Seelecke, S.
2009-10-01
This paper presents the finite element (FE) analysis of a bio-inspired bone-joint system. Motivated by the BATMAV project, which aims at the development of a micro-air-vehicle platform that implements bat-like flapping flight capabilities, we study the actuation of a typical elbow joint, using shape memory alloy (SMA) in a dual manner. Micro-scale martensitic SMA wires are used as 'metal muscles' to actuate a system of humerus, elbow joint and radius, in concert with austenitic wires, which operate as flexible joints due to their superelastic character. For the FE analysis, the humerus and radius are modeled as standard elastic beams, while the elbow joint and muscle wires use the Achenbach-Muller-Seelecke SMA model as beams and cable elements, respectively. The particular focus of the paper is on the implementation of the above SMA model in COMSOL.
Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin
2018-04-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.
Wang, Xueqin; Dou, Lvye; Yu, Jianyong
2018-01-01
Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm−3, rapid recovery from 80% strain, zero Poisson’s ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form. PMID:29719867
Vibrational excitation of triatomic molecules near the shape resonance region
NASA Astrophysics Data System (ADS)
Ishijima, Y.; Ohkawa, M.; Hoshino, M.; Campbell, L.; Brunger, M. J.; Tanaka, H.
2012-11-01
In this study we have measured angular distributions of differential cross sections (DCS) for vibrational excitation and superelastic scattering from vibrationally excited N2O. The results are analyzed and interpreted using the angular correlation theory by Read.
Brauchli, Lorenz M; Keller, Heidi; Senn, Christiane; Wichelhaus, Andrea
2011-05-01
Nickel-titanium orthodontic archwires are used with bonded appliances for initial leveling. However, precise bending of these archwires is difficult and can lead to changes within the crystal structure of the alloy, thus changing the mechanical properties unpredictably. The aim of this study was to evaluate different bending methods in relation to the subsequent mechanical characteristics of the alloy. The mechanical behaviors of 3 archwires (Copper NiTi 35°C [Ormco, Glendora, Calif], Neo Sentalloy F 80 [GAC International, Bohemia, NY], and Titanol Low Force [Forestadent, Pforzheim, Germany]) were investigated after heat-treatment in a dental furnace at 550-650°C, treatment with an electrical current (Memory-Maker, Forestadent), and cold forming. In addition, the change in A(f) temperature was registered by means of differential scanning calorimetry. Heat-treatment in the dental furnace as well as with the Memory-Maker led to widely varying force levels for each product. Cold forming resulted in similar or slightly reduced force levels when compared to the original state of the wires. A(f) temperatures were in general inversely proportional to force levels. Archwire shape can be modified by using either chair-side technique (Memory-Maker, cold forming) because the superelastic behavior of the archwires is not strongly affected. However it is important to know the specific changes in force levels induced for each individual archwire with heat-treatment. Cold forming resulted in more predictable forces for all products tested. Therefore, cold forming is recommended as a chair-side technique for the shaping of NiTi archwires. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Energy-efficient miniature-scale heat pumping based on shape memory alloys
NASA Astrophysics Data System (ADS)
Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred
2016-08-01
Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).
NASA Astrophysics Data System (ADS)
Castellano, Maria G.; Indirli, Maurizio; Martelli, Alessandro
2001-07-01
A wide ranging R&D Project (ISTECH) on validation and application of the Innovative Antiseismic Techniques (IATs) for the restoration of Cultural Heritage Structures (CUHESs), especially masonry buildings, based on the Shape Memory Alloys (SMAs), has been funded by the European Commission (EC), in the framework of the Environment and Climate RTD Programme. Because Traditional Restoration Techniques (TRTs) have sometimes proved inadequate in avoiding collapses and often too invasive, the use of superelastic SMA Devices (SMADs) has been developed. Theoretical and numerical studies, as well as intensive testing of material specimens, devices, structural models and in situ campaigns, show that SMADs can substantially increase the stability of masonry CUHESs exposed to an earthquake. Different SMAD types have been investigated to fulfil different structural needs and they can be custom designed taking into account each monument's characteristics. The successful results of the research and its exploitation led to important applications in Italy: the S. Giorgio Church Bell-Tower, located at Trignano, S. Martino in Rio, Reggio Emilia, damaged by the 15th October 1996 earthquake, the transept tympana of the S. Francesco Basilica in Assisi and the S. Feliciano Cathedral façade in Foligno, both heavily damaged by the September 1997 earthquake. In addition, further studies and applications of SMAD technology are foreseen in Italy in the next future, in the framework of Italian and European research projects and proposals.
NASA Astrophysics Data System (ADS)
Sreekumar, M.; Nagarajan, T.; Singaperumal, M.
2008-12-01
This experimental study investigates the coupled effect of the force developed by the shape memory alloy (SMA) actuators and the force required for the large deflection of an elastica member in a compliant parallel mechanism. The compliant mechanism developed in house consists of a moving platform mounted on a superelastic pillar and three SMA wire actuators to manipulate the platform. A three-axis MEMS accelerometer has been mounted on the moving platform to measure its tilt angle. Three miniature force sensors have been designed and fabricated out of cantilever beams, each mounted with a pair of strain gauges, to measure the force developed by the respective actuators. The force sensors are highly sensitive and cost effective compared to commercially available miniature force sensors. Calibration of the force sensors has been accomplished with known weights, and for the three-axis MEMS accelerometer a rotary base has been considered which is usually used in optical applications. The calibration curves obtained, with R-squared values between 0.9997 and 1.0, show that both the tilt and force sensors considered are most appropriate for the respective applications. The mechanism fixed with the sensors and the drivers for the SMA actuators is integrated with a National Instrument's data acquisition system. The experimental results have been compared with the analytical results and it was found that the relative error is less than 2%. This is a preliminary study in the development of a mechanism for eye prosthesis and similar applications.
Čolić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Marković, Evgenija; Šćepan, Ivana
2016-08-01
Superelastic (SE) and thermo-activated (TA) nickel-titanium (NiTi) archwires are used in everyday orthodontic practice, based on their acceptable biocompatibility and well-defined shape memory properties. However, the differences in their surface microstructure and cytotoxicity have not been clearly defined, and the standard cytotoxicity tests are too robust to detect small differences in the cytotoxicity of these alloys, all of which can lead to unexpected adverse reactions in some patients. Therefore, we tested the hypothesis that the differences in manufacture and microstructure of commercially available SE and TA archwires may influence their biocompatibility. The archwires were studied as-received and after conditioning for 24 h or 35 days in a cell culture medium under static conditions. All of the tested archwires, including their conditioned medium (CM), were non-cytotoxic for L929 cells, but Rematitan SE (both as received and conditioned) induced the apoptosis of rat thymocytes in a direct contact. In contrast, TruFlex SE and Equire TA increased the proliferation of thymocytes. The cytotoxic effect of Rematitan SE correlated with the higher release of Ni ions in CM, higher concentration of surface Ni and an increased oxygen layer thickness after the conditioning. In conclusion, the apoptosis assay on rat thymocytes, in contrast to the less sensitive standard assay on L929 cells, revealed that Rematitan SE was less cytocompatible compared to other archwires and the effect was most probably associated with a higher exposition of the cells to Ni on the surface of the archwire, due to the formation of unstable oxide layer.
Ye, Jia; Gao, Yong
2012-01-01
Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P < .05) were observed on Vickers microhardness for samples with 60% and 90% fatigue life compared with as-received and 30% fatigue life. Coincidentally, substantial growth of martensite grains and martensite twins was observed in microstructure under transmission electron microscopy after 60% fatigue life. The results of the present study suggested that endodontic instruments manufactured with M-Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Briceño, J; Romeu, A; Espinar, E; Llamas, J M; Gil, F J
2013-12-01
The aim of this work was to determine the influence of the present phases and the chemical composition on the corrosion behavior and the nickel ion release of the NiTi orthodontic archwires. Eight Ni-Ti archwires from six commercial brands, in the as-received condition, were studied. The chemical composition, roughness, microstructure and the proportion of the phases as well as the corrosion behavior were analyzed for each archwire. The nickel ion release was characterized in artificial saliva immersion settings ranging up to 4 weeks. The results show that the presence of the martensitic phase improves corrosion resistance and significantly decreases Ni release into exterior medium in comparison with the austenitic specimens. In spite of the partial loss of superelasticity produced in the martensitic phase, it could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys. © 2013.
Porous NiTi for bone implants: a review.
Bansiddhi, A; Sargeant, T D; Stupp, S I; Dunand, D C
2008-07-01
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) in vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants.
Porous NiTi for bone implants: A review
Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C.
2011-01-01
NiTi foams are unique among biocompatible porous metals because of their high recovery strain (due to the shape-memory or superelastic effects) and their low stiffness facilitating integration with bone structures. To optimize NiTi foams for bone implant applications, two key areas are under active study: synthesis of foams with optimal architectures, microstructure and mechanical properties; and tailoring of biological interactions through modifications of pore surfaces. This article reviews recent research on NiTi foams for bone replacement, focusing on three specific topics: (i) surface modifications designed to create bio-inert porous NiTi surfaces with low Ni release and corrosion, as well as bioactive surfaces to enhance and accelerate biological activity; (ii) In vitro and in vivo biocompatibility studies to confirm the long-term safety of porous NiTi implants; and (iii) biological evaluations for specific applications, such as in intervertebral fusion devices and bone tissue scaffolds. Possible future directions for bio-performance and processing studies are discussed that could lead to optimized porous NiTi implants. PMID:18348912
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
NASA Astrophysics Data System (ADS)
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Texture evolution during nitinol martensite detwinning and phase transformation
NASA Astrophysics Data System (ADS)
Cai, S.; Schaffer, J. E.; Ren, Y.; Yu, C.
2013-12-01
Nitinol has been widely used to make medical devices for years due to its unique shape memory and superelastic properties. However, the texture of the nitinol wires has been largely ignored due to inherent complexity. In this study, in situ synchrotron X-ray diffraction has been carried out during uniaxial tensile testing to investigate the texture evolution of the nitinol wires during martensite detwinning, variant reorientation, and phase transformation. It was found that the thermal martensitic nitinol wire comprised primarily an axial (1¯20), (120), and (102)-fiber texture. Detwinning initially converted the (120) and (102) fibers to the (1¯20) fiber and progressed to a (1¯30)-fiber texture by rigid body rotation. At strains above 10%, the (1¯30)-fiber was shifted to the (110) fiber by (21¯0) deformation twinning. The austenitic wire exhibited an axial (334)-fiber, which transformed to the near-(1¯30) martensite texture after the stress-induced phase transformation.
Factors Controlling Superelastic Damping Capacity of SMAs
NASA Astrophysics Data System (ADS)
Heller, L.; Šittner, P.; Pilch, J.; Landa, M.
2009-08-01
In this paper, questions linked to the practical use of superelastic damping exploiting stress-induced martensitic transformation for vibration damping are addressed. Four parameters, particularly vibration amplitude, prestrain, temperature of surroundings, and frequency, are identified as having the most pronounced influence on the superelastic damping. Their influence on superelastic damping of a commercially available superelastic NiTi wire was experimentally investigated using a self-developed dedicated vibrational equipment. Experimental results show how the vibration amplitude, frequency, prestrain, and temperature affect the capacity of a superelastic NiTi wire to dissipate energy of vibrations through the superelastic damping. A special attention is paid to the frequency dependence (i.e., rate dependence) of the superelastic damping. It is shown that this is nearly negligible in case the wire is in the thermal chamber controlling actively the environmental temperature. In case of wire exposed to free environmental temperature in actual damping applications, however, the superelastic damping capacity significantly decreases with increasing frequency. This was explained to be a combined effect of the heat effects affecting the mean wire temperature and material properties with the help of simulations using the heat equation coupled phenomenological SMA model.
NASA Astrophysics Data System (ADS)
Indirli, Maurizio; Castellano, Maria G.; Clemente, Paolo; Martelli, Alessandro
2001-07-01
This paper describes the rehabilitation of the S. Giorgio Church Bell-Tower (Trignano, Municipality of S. Martino in Rio, Reggio Emilia, Italy), completed in September 1999. This masonry building, seriously damaged by the earthquake of October 15th 1996 which struck the Reggio Emilia and Modena Districts, Italy), was investigated by the authors immediately after the seismic event, as other ancient Cultural Heritage Structures (CUHESs) in the same area. In the past, seismic events have visited substantial destruction that translates into a significant loss of architectural heritage. The most common solution traditionally used to enhance the CUHESs seismic behaviour is the introduction of localized reinforcements, usually Traditional Steel Ties (TSTs), increasing stability and ductility. Anyway, in many cases said reinforcement techniques, often too invasive, proved to be inadequate to prevent collapse. For these reasons, the Bell-Tower intervention applies Innovative Antiseismic Techniques (IATs) by the use of superelastic Shape Memory Alloy (SMA) Devices (SMADs), a technology developed after a large amount of theoretical studies, numerical analyses and test campaigns. The SMADs, which can be considered a powerful tool with respect to the traditional methods, provide acceleration reduction, force limitation and energy dissipation. Furthermore, they are characterized by low invasivity and complete reversibility. When another earthquake occurred on June 18th 2000, with the same epicenter and a comparable Richter Magnitudo, the Bell-Tower, subjected to a new investigation, showed no damage of any type. Thus, the new seismic event has been the best verification of the retrofit intervention.
Shen, Ya; Qian, Wei; Abtin, Houman; Gao, Yuan; Haapasalo, Markus
2012-03-01
This study examined the fatigue behavior of 2 types of nickel-titanium (NiTi) instruments made from a novel controlled memory NiTi wire (CM wire) under various environment conditions. Three conventional superelastic NiTi instruments of ProFile (Dentsply Maillefer, Ballaigues, Switzerland), Typhoon (Clinician's Choice Dental Products, New Milford, CT), and DS-SS0250425NEYY (Clinician's Choice Dental Products) and 2 new CM wire instruments of Typhoon CM and DS-SS0250425NEYY CM were subjected to rotational bending at the curvature of 35° in air, deionized water, 17% EDTA, or deionized water after immersion in 6% sodium hypochlorite for 25 minutes, and the number of revolutions of fracture (N(f)) was recorded. The fracture surface of all fragments was examined by a scanning electron microscope. The crack-initiation sites and the percentage of dimple area to the whole fracture cross-section were noted. Two new CM Wire instruments yielded an improvement of >4 to 9 times in N(f) than conventional NiTi files with the same design under various environments (P < .05). The fatigue life of 3 conventional superelastic NiTi instruments was similar under various environments, whereas the N(f) of 2 new CM Wire instruments was significantly longer in liquid media than in air (P < .05). The vast majority of CM instruments showed multiple crack origins, whereas most instruments made from conventional NiTi wire had one crack origin. The values of the area fraction occupied by the dimple region were significantly smaller on CM NiTi instruments than in conventional NiTi instruments under various environments (P < .05). Within the limitations of this study, the type of NiTi metal alloy (CM files vs conventional superelastic NiTi files) influences the cyclic fatigue resistance under various environments. The fatigue life of CM instruments is longer in liquid media than in air. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Ryhänen, J; Kallioinen, M; Serlo, W; Perämäki, P; Junila, J; Sandvik, P; Niemelä, E; Tuukkanen, J
1999-12-15
Its shape memory effect, superelasticity, and good wear and damping properties make the NiTi shape memory alloy a material with fascinating potential for orthopedic surgery. It provides a possibility for making self-locking, self-expanding, and self-compressing implants. Problems, however, may arise because of its high nickel content. The purpose of this work was to determine the corrosion of NiTi in vivo and to evaluate the possible deleterious effects of NiTi on osteotomy healing, bone mineralization, and the remodeling response. Femoral osteotomies of 40 rats were fixed with either NiTi or stainless steel (StSt) intramedullary nails. The rats were killed at 2, 4, 8, 12, 26, and 60 weeks. Bone healing was examined with radiographs, peripheral quantitative computed tomography, (pQCT) and histologically. The corrosion of the retrieved implants was analyzed by electron microscopy (FESEM). Trace metals from several organs were determined by graphite furnace atomic absorption spectrometry (GF-AAS) or by inductively coupled plasma-atomic emission spectrometry (ICP-AES). There were more healed bone unions in the NiTi than in the StSt group at early (4 and 8 weeks) time points. Callus size was equal between the groups. The total and cortical bone mineral densities did not differ between the NiTi and StSt groups. Mineral density in both groups was lower in the osteotomy area than in the other areas along the nail. Density in the nail area was lower than in the proximal part of the operated femur or the contralateral femur. Bone contact to NiTi was close. A peri-implant lamellar bone sheet formed in the metaphyseal area after 8 weeks, indicating good tissue tolerance. The FESEM assessment showed surface corrosion changes to be more evident in the StSt implants. There were no statistically significant differences in nickel concentration between the NiTi and StSt groups in any of the organs. NiTi appears to be an appropriate material for further intramedullary use because it has good biocompatibility in bone tissue. Copyright 1999 John Wiley & Sons, Inc.
Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures
NASA Astrophysics Data System (ADS)
Biggs, Daniel B.
Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical analyses, and an empirical correlation is presented. This provides a method to better model the thermal behavior of helical SMA actuators and highlights the non-monotonic dependence of the convective heat transfer coefficient of helical wire with respect to the angle of the flow.
In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.
Rosalbino, F; Macciò, D; Scavino, G; Saccone, A
2012-04-01
The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface increases with exposure time displaying the highest values to Ti-18Nb-4Sn alloy. All these electrochemical results suggest that Ti-Nb-Sn alloys are promising materials for biomedical applications.
Finite element modeling of superelastic nickel-titanium orthodontic wires.
Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled
2014-11-28
Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.
NASA Astrophysics Data System (ADS)
Rujeerapaiboon, N.; Anuwongnukroh, N.; Dechkunakorn, S.; Jariyaboon, M.
2017-04-01
Bending superelastic NiTi archwire is indicated in some stages of orthodontic treatment. The difference in bending techniques may affect corrosion resistance and nickel release. The purpose of this study was to investigate the corrosion resistance and nickel release after different bending techniques of NiTi archwires. Preform-curved NiTi archwires were used as a template for bending and used as a control group. 0.016×0.022 inches superelastic NiTi archwires were bent to curve-shape by cold bending, DERHT bending and cold bending then DERHT technique. Potentiodynamic polarization technique was used to measure corrosion behavior of the wires. Corrosion potential (ECORR), corrosion density (ICORR), and breakdown potential of each wire were determined. In addition, the amount of nickel release in the solution after the test was inductively coupled plasma mass spectrometry (ICP-MS). Although, the results showed that ECORR and ICORR were not statistically significantly different among all groups, the difference in breakdown potential and nickel release were observed. Similar corrosion resistance and nickel release were presented in the preform-curved NiTi archwires, cold bending, and cold bending then DERHT group. The DERHT bending group showed the lowest breakdown potential and highest nickel release.
He, Jian; Zhao, Hangyuan; Li, Xiaolei; Su, Dong; Zhang, Fengrui; Ji, Huiming; Liu, Rui
2018-03-15
Bacterial cellulose aerogels/silica aerogels (BCAs/SAs) are prepared using three-dimensional self-assembled BC skeleton as reinforcement and methyltriethoxysilane derived silica aerogels as filler through vacuum infiltration and freeze drying. The BCAs/SAs possess a hierarchical cellular structure giving them superelasticity and recyclable compressibility. The BCAs/SAs can bear a compressive strain up to 80% and recover their original shapes after the release of the stress. The BCAs/SAs exhibit super-hydrophobicity with a contact angle of 152° and super-oleophilicity resulting from the methyl groups on the surface of silica aerogel filler. This endows the BCAs/SAs outstanding oil absorbing capability with the quality factor Q from 8 to 14 for organic solvents and oils. Moreover, the absorbed oil can be retrieved by mechanically squeezed with a recovery of 88% related to the superelastic ability of the composites. In addition, the oil absorbing of BS/SAs could be well maintained with the quality factor Q about 11 for gasoline after harsh conditional treatment down to -200 °C and up to 300 °C. Such outstanding elastic and oleophilic properties make the BC/SAs tremendous potential for applications of oil absorbing, recovery and oil-water separation. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bechtold, Christoph; Lima de Miranda, Rodrigo; Chluba, Christoph; Zamponi, Christiane; Quandt, Eckhard
2016-12-01
Nitinol is the material of choice for many medical applications, in particular for minimally invasive implants due to its superelasticity and biocompatibility. However, NiTi has limited radiopacity which complicates positioning in the body. A common strategy to increase the radiopacity of NiTi devices is the addition of radiopaque markers by micro-riveting or micro-welding. The recent trend of miniaturizing medical devices, however, reduces their radiopacity further, and makes the addition of radiopaque markers to these miniaturized devices difficult. NiTi thin film technology has great potential to overcome such limitations and to fabricate new generations of miniaturized, self-expandable NiTi medical devices with additional functionalities, such as structured multilayer devices with increased radiopacity. For this purpose, we have produced superelastic thin film NiTi samples covered locally with Tantalum structures of different thickness and different shape. These multilayer devices were characterized regarding their mechanical and corrosion properties as well as their X-ray visibility. The superelastic behavior of the underlying NiTi layer is impeded by the Ta layer, and shows therefore a dependence on the Tantalum patterning geometry and thickness. No delamination was observed after mechanical and corrosion tests. The multilayers reveal excellent corrosion resistance, as well as a significant increase in radiopacity.
Mechanical splicing of superelastic Cu–Al–Mn alloy bars with headed ends
NASA Astrophysics Data System (ADS)
Kise, S.; Mohebbi, A.; Saiidi, M. S.; Omori, T.; Kainuma, R.; Shrestha, K. C.; Araki, Y.
2018-06-01
This paper examines the feasibility of mechanical splicing using a steel coupler to connect headed ends of superelastic Cu–Al–Mn alloy (Camalloy) bars and steel reinforcing bars to be used in concrete structures. Although threading of Camalloy is as easy as that of steel, mechanical splicing using threaded ends requires machining of Camalloy bars into dog-bone shape to avoid brittle fracture at the threaded ends. The machining process requires significant time and cost and wastes substantial amount of the material. This paper attempts to resolve this issue by applying mechanical splicing using steel couplers to connect headed ends of Camalloy and steel reinforcing bars. To study its feasibility, we prepare 3 specimens wherein both ends of each Camalloy bar (13 mm diameter and 300 mm length) are connected to steel reinforcing bars. The specimens are tested under monotonic, single-cycle, and full-cycle tension loading conditions. From these tests, we observed (1) excellent superelasticity with recoverable strain of around 6% and (2) large ductility with fracture strain of over 19%. It should be emphasized here that, in all the specimens, ductile fracture occurred at the locations apart from the headed ends. This is in sharp contrast with brittle fracture of headed superelastic Ni–Ti SMA bars, most of which took place around the headed ends. From the results of the microstructural analysis, we identified the following reasons for avoiding brittle fracture at the headed ends: (1) Precipitation hardening increases the strength around the boundary between the straight and headed (tapered) portions, where stress concentration takes place. (2) The strength of the straight portion does not increase significantly up to the ductile fracture if its grain orientation is close to 〈0 0 1〉.
A novel multifunctional NiTi/Ag hierarchical composite
Hao, Shijie; Cui, Lishan; Jiang, Jiang; Guo, Fangmin; Xiao, Xianghui; Jiang, Daqiang; Yu, Cun; Chen, Zonghai; Zhou, Hua; Wang, Yandong; Liu, YuZi; Brown, Dennis E.; Ren, Yang
2014-01-01
Creating multifunctional materials is an eternal goal of mankind. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is neatly illustrated by the formation of nature materials where contrasting components are combined in sophisticated hierarchical designs. In this study, inspired by the hierarchical structure of the tendon, we fabricated a novel composite by subtly combining two contrasting components: NiTi shape-memory alloy and Ag. The composite exhibits simultaneously exceptional mechanical properties of high strength, good superelasticity and high mechanical damping, and remarkable functional properties of high electric conductivity, high visibility under fluoroscopy and excellent thermal-driven ability. All of these result from the effective-synergy between the NiTi and Ag components, and place the composite in a unique position in the properties chart of all known structural-functional materials providing new opportunities for innovative electrical, mechanical and biomedical applications. Furthermore, this work may open new avenues for designing and fabricating advanced multifunctional materials by subtly combining contrasting multi-components. PMID:24919945
Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO 2
NASA Astrophysics Data System (ADS)
Ng, K. W.; Man, H. C.; Yue, T. M.
2008-08-01
Because of its biocompatibility, superelasticity and shape memory characteristics, NiTi alloys have been gaining immense interest in the medical field. However, there is still concern on the corrosion resistance of this alloy if it is going to be implanted in the human body for a long time. Titanium is not toxic but nickel is carcinogenic and is implicated in various reactions including allergic response and degeneration of muscle tissue. Debris from wear and the subsequent release of Ni + ions due to corrosion in the body system are fatal issues for long-term application of this alloy in the human body. This paper reports the corrosion and wear properties of laser surface modified NiTi using Mo and ZrO 2 as surface alloying elements, respectively. The modified layers which are free from microcracks and porosity, act as both physical barrier to nickel release and enhance the bulk properties, such as hardness, wear resistance, and corrosion resistance. The electrochemical performance of the surface modified alloy was studied in Hanks' solution. Electrochemical impedance spectroscopy was measured.
Effect of modification of oxide layer on NiTi stent corrosion resistance.
Trépanier, C; Tabrizian, M; Yahia, L H; Bilodeau, L; Piron, D L
1998-01-01
Because of its good radiopacity, superelasticity, and shape memory properties, nickel-titanium (NiTi) is a potential material for fabrication of stents because these properties can facilitate their implantation and precise positioning. However, in vitro studies of NiTi alloys report the dependence of alloy biocompatibility and corrosion behavior on surface conditions. Surface oxidation seems to be very promising for improving the corrosion resistance and biocompatibility of NiTi. In this work, we studied the effect on corrosion resistance and surface characteristics of electropolishing, heat treatment, and nitric acid passivation of NiTi stents. Characterization techniques such as potentiodynamic polarization tests, scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy were used to relate corrosion behavior to surface characteristics and surface treatments. Results show that all of these surface treatments improve the corrosion resistance of the alloy. This improvement is attributed to the plastically deformed native oxide layer removal and replacement by a newly grown, more uniform one. The uniformity of the oxide layer, rather than its thickness and composition, seems to be the predominant factor to explain the corrosion resistance improvement.
Biocompatibility of NiTi alloys in the cell behaviour.
Sevcikova, Jana; Pavkova Goldbergova, Monika
2017-04-01
Metallic biomaterial alloys composed of nickel and titanium have unique thermal shape memory, superelastic, and high damping properties, which are widely used in the medicine. The major parameter evaluated in the studies regarding the behaviour of the material in the contact with organism or cells is biocompatibility. The aim of the studies is to clarify the differences in the proliferation, growth, and morphology especially in the cell cultures. The cytotoxicity is affected among other by release of the metal ions in the presence of the metal alloy, which is further dependent on the possible treatments of the material and the corrosive properties. To evaluate the cytotoxicity, wide range of tests including the Sulforhodamine B assay and MTT tests, expression profiles, cell survival tests such as apoptotic test are used. The review compares the cell behaviour in contact with the material alloys composed of nickel and titanium with respect to different materials composition and different surface treatment that affects the ion release. Even though the results published so far are controversial, almost all data suggest sufficient biocompatibility in medical use.
Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.
Shabalovskaya, Svetlana A
2002-01-01
The present review surveys studies on physical-chemical properties and biological response of living tissues to NiTi (Nitinol) carried out recently, aiming at an understanding of the place of this material among the implant alloys in use. Advantages of shape memory and superelasticity are analyzed in respect to functionality of implants in the body. Various approaches to surface treatment, sterilization procedures, and resulting surface conditions are analyzed. A review of corrosion studies conducted both on wrought and as-cast alloys using potentiodynamic and potentiostatic techniques in various corrosive media and in actual body fluids is also given. The parameters of localized and galvanic corrosion are presented. The corrosion behavior is analyzed with respect to alloy composition, phase state, surface treatment, and strain and compared to that of conventional implant alloys. Biocompatibility of porous Nitinol, Ni release and its effect on living cells are analyzed based on understanding of the surface conditions and corrosion behavior. Additionally, the paper offers a brief overview of the comparative toxicity of metals, components of commonly used medical alloys, indicating that the biocompatibility profile of Nitinol is conducive to present in vivo applications.
Bioactivity of plasma implanted biomaterials
NASA Astrophysics Data System (ADS)
Chu, Paul K.
2006-01-01
Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.
Creating poly(ethylene glycol) film on the surface of NiTi alloy by gamma irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongyan; Yan, Jin; Ma, Huiling; Zeng, Xinmiao; Liu, Yang; Zhao, Xinqing
2015-07-01
NiTi alloy has been extensively utilized as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. However, concern with the toxic and allergic responses of nickel potentially releasing from implants stimulated lots of researches of modification on NiTi alloy surface. Creating chemical bond attachment of bioorganic film on NiTi alloy surface could effectively inhibit Ni releasing and obtain bioactive functions for further application. In this work, to get a bioorganic surface, NiTi alloy was modified with poly(ethylene glycol) (PEG) film by gamma ray induced grafting or crosslinking. X-ray diffraction (XRD) spectrum, water contact angle geometer and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize the NiTi surface. The results indicated that PEG was covalent bonded on NiTi alloy surface. Fluorescence microscope (FM) images for morphology of 1 day osteoblast culture on the PEG coated NiTi surface showed that PEG could improve cell proliferation on NiTi surface. Our work offers a way to introduce a bioorganic metal surface by gamma irradiation.
NASA Astrophysics Data System (ADS)
Etminanfar, M. R.; Khalil-Allafi, J.
2016-02-01
In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.
NASA Technical Reports Server (NTRS)
Scholten, William D.; Patterson, Ryan D.; Hartl, Darren J.; Strganac, Thomas W.; Chapelon, Quentin H. C.; Turner, Travis
2017-01-01
Airframe noise is a significant component of overall noise produced by transport aircraft during landing and approach (low speed maneuvers). A significant source for this noise is the cove of the leading-edge slat. The slat-cove filler (SCF) has been shown to be effective at mitigating slat noise. The objective of this work is to understand the fluid-structure interaction (FSI) behavior of a superelastic shape memory alloy (SMA) SCF in flow using both computational and physical models of a high-lift wing. Initial understanding of flow around the SCF and wing is obtained using computational fluid dynamics (CFD) analysis at various angles of attack. A framework compatible with an SMA constitutive model (implemented as a user material subroutine) is used to perform FSI analysis for multiple flow and configuration cases. A scaled physical model of the high-lift wing is constructed and tested in the Texas A&M 3 ft-by-4-foot wind tunnel. Initial validation of both CFD and FSI analysis is conducted by comparing lift, drag and pressure distributions with experimental results.
Atomic Layer-Deposited TiO2 Coatings on NiTi Surface
NASA Astrophysics Data System (ADS)
Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.
2018-02-01
NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.
Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.
Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; -Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei
2016-06-01
Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere
NASA Astrophysics Data System (ADS)
Aydoğmuş, Tarik; Bor, Şakir
2012-12-01
TiNi alloy foams are promising candidates for biomaterials to be used as artificial orthopedic implant materials for bone replacement applications in biomedical sector. However, certain problems exist in their processing routes, such as formation of unwanted secondary intermetallic phases leading to brittleness and deterioration of shape memory and superelasticity characteristics; and the contamination during processing resulting in oxides and carbonitrides which affect mechanical properties negatively. Moreover, the eutectic reaction present in Ti-Ni binary system at 1391 K (1118 °C) prevents employment of higher sintering temperatures (and higher mechanical properties) even when equiatomic prealloyed powders are used because of Ni enrichment of TiNi matrix as a result of oxidation. It is essential to prevent oxidation of TiNi powders during processing for high-temperature (>1391 K i.e., 1118 °C) sintering practices. In the current study, magnesium powders were used as space holder material to produce TiNi foams with the porosities in the range of 40 to 65 pct. It has been found that magnesium prevents secondary phase formation and contamination. It also prevents liquid phase formation while enabling employment of higher sintering temperatures by two-step sintering processing: holding the sample at 1373 K (1100 °C) for 30 minutes, and subsequently sintering at temperatures higher than the eutectic temperature, 1391 K (1118 °C). By this procedure, magnesium may allow sintering up to temperatures close to the melting point of TiNi. TiNi foams produced with porosities in the range of 40 to 55 pct were found to be acceptable as implant materials in the light of their favorable mechanical properties.
Tremblay, Jaëlle; Mac-Thiong, Jean-Marc; Brailovski, Vladimir; Petit, Yvan
2015-09-01
This study investigates the use of braided tubular superelastic cables, previously used for sternum closure following sternotomy, as sublaminar fixation method. It compares the biomechanical performance of spinal instrumentation fixation systems with regular sublaminar cables and proprietary superelastic cables. A hybrid experimental protocol was applied to six porcine L1-L4 spinal segments to compare multifilament sublaminar cables (Atlas, Medtronic Sofamor Danek, Memphis, TN) with proprietary superelastic cables. First, intact total range of motion was determined for all specimens using pure moment loading. Second, pure moments were imposed to the instrumented specimens until these intact total ranges of motion were reproduced. Compared to the intact specimens, the use of superelastic cables resulted in stiffer instrumented specimens than the use of multifilament cables for all the loading modes except axial torsion. Consequently, the superelastic cables limited the instrumented segments mobility more than the multifilament cables. Spinal instrumentation fixation systems using superelastic cables could be a good alternative to conventional sublaminar cables as it maintains a constant stabilization of the spine during loading. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Gannoun, M.; Laroussi Hellara, M.; Bouby, C.; Ben Zineb, T.; Bouraoui, T.
2018-04-01
Nickel Titanium (NiTi) Superelastic (SE) Shape Memory Alloys (SMAs) are widely considered for applications that need high reversible strain or high recovery forces. In particular, the SE SMAs present a high interest for biomedical applications such as endodontic and orthodontic apparatus. They are available in a large variety of archwires exerting continuum forces to ensure the dental displacement. The purpose of this study is to report the clinical implications of NiTi SE wires for dental treatment in a given configuration. Three main constitutive models of the literature (Lagoudas and Boyd 1996 Int. J. Plast. 12 805–842, Auricchio and Petrini 2004 Int. J. Numer. Meth. Engng. 61 807–836 and Chemisky et al 2011 Mech. Mater. 68 361–376) are considered for the finite element (FE) numerical simulations of the SMA archwires response. Tensile tests had been carried out in order to identify the material parameters of these constitutive models. The FE numerical study allowed to predict the dental displacement and its corresponding orthodontic force level exerted by the wire in similar conditions to those in the oral environment. This work allows to predict the orthodontic generated load by a NiTi SE archwire with a 0.64 × 0.46 mm2 rectangular cross section under prescribed thermomechanical conditions. The effect of the temperature and the alveolar bone stiffness on the orthodontic load level and the tooth displacement degree has been investigated. The performed numerical simulations demonstrate that the orthodontic load is sensitive to the displacement magnitude, to the tooth stiffness and to the temperature variations. The obtained forces applied continuously and at a constant level are within the acceptable orthodontic force level range. Some directives are therefore provided to help orthodontists to select the optimal archwire.
Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I
2008-11-01
Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha; ...
2018-03-23
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures
NASA Astrophysics Data System (ADS)
Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.
2018-03-01
Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.
Optimization of Electropolishing on NiTi Alloy Stents and Its Influence on Corrosion Behavior.
Kim, Jinwoo; Park, Jun-Kyu; Kim, Han Ki; Unnithan, Afeesh Rajan; Kim, Cheol Sang; Park, Chan Hee
2017-04-01
Nitinol or NiTi alloys are well-known as an attractive biomedical material due to their unique properties such as the shape memory effect, super-elasticity and biocompatibility. These characteristics enable them to be best candidates for implant materials such as stent. One of the major factors that strongly affect the performance of nitinol stent is its unique surface properties. In this study, the influence of electropolishing on nitinol stents and its corrosion behavior were observed. Electropolishing is an effective method for surface treatment, which not only controls the surface state but also helps to produce uniform surface layers. Therefore, to improve the surface quality of nitinol stents, we conducted an electropolishing under various conditions from 30–40 V and 10–30 s as a post heat treatment for nitinol stent manufacturing process. In order to find the optimal surface state of NiTi stents, various electropolished samples were explored using various characterization techniques. Furthermore, the potentiodynamic polarization tests were also performed to determine the corrosion resistance. The electropolished nitinol stents under the condition of 40 V for 10 s exhibited the best corrosion performance as well as surface quality.
Increased affinity of endothelial cells to NiTi using ultraviolet irradiation: An in vitro study.
Tateshima, Satoshi; Kaneko, Naoki; Yamada, Masahiro; Duckwiler, Gary; Vinuela, Fernando; Ogawa, Takahiro
2018-04-01
Nickel-titanium alloy (NiTi) is one of the most popular materials used endovascularly because of its shape memory and superelasticity. The NiTi device needs to be covered by endothelial cells after being placed in the blood vessel to reduce ischemic complications. The objective of this study was to examine the impact of ultraviolet (UV) irradiation on the biocompatibility of NiTi surfaces with endothelial cells. NiTi sheets were treated with UV irradiation for 48 h and human aorta derived endothelial cells were used in this study. UV irradiation converted the NiTi surface to hydrophilic state and increased albumin adsorption. The number of endothelial cell migration, attachment, proliferation as well as their metabolic activity were significantly increased on UV treated NiTi. This study provides the first evidence of the photoactivation of NiTi surfaces by UV irradiation and demonstrates improved biocompatibility of UV-treated NiTi surfaces with vascular endothelial cells. These results suggest that UV irradiation may promote endothelialization of NiTi devices in blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1034-1038, 2018. © 2017 Wiley Periodicals, Inc.
Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi
NASA Astrophysics Data System (ADS)
Taheri Andani, Mohsen
In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase transformation temperatures of the manufactured parts. To this end both phase transformation and mechanical behavior of the AM parts are studied. Moreover, the application of additive manufacturing to develop NiTi components with desired stiffness by introducing engineered porosity is studied. To this end, a unit cell made of two interconnecting struts is used to generate the CAD files for a series of porous structures with six different levels of porosity in the range of 20% to 82%. Finite element analyses are conducted to examine the stress-strain behavior of the fabricated structures under loading. To validate the simulations, uniaxial compression tests are performed on three NiTi samples with three different levels of porosity (32%, 45%, and 58%). The experimental data closely match with the analytical results. The findings of this study indicate that introducing porosity to a NiTi structure results in a significant drop in the stiffness of the component. These results pave the way for designing porous NiTi structures with the desired level of stiffness.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher (Inventor)
2014-01-01
A method and an apparatus confer full superelastic properties to the active surface of a mechanical component constructed of a superelastic material prior to service. A compressive load is applied to the active surface of the mechanical component followed by removing the compressive load from the active surface whereby substantially all load strain is recoverable after applying and removing of subsequent compressive loads.
NASA Astrophysics Data System (ADS)
Biffi, Carlo Alberto; Bassani, P.; Tuissi, A.; Carnevale, M.; Lecis, N.; LoConte, A.; Previtali, B.
2012-12-01
Shape memory alloys (SMAs) are very interesting smart materials not only for their shape memory and superelastic effects but also because of their significant intrinsic damping capacity. The latter is exhibited upon martensitic transformations and especially in martensitic state. The combination of these SMA properties with the mechanical and the lightweight of fiberglass-reinforced polymer (FGRP) is a promising solution for manufacturing of innovative composites for vibration suppression in structural applications. CuZnAl sheets, after laser patterning, were embedded in a laminated composite between a thick FGRP core and two thin outer layers with the aim of maximizing the damping capacity of the beam for passive vibration suppression. The selected SMA Cu66Zn24Al10 at.% was prepared by vacuum induction melting; the ingot was subsequently hot-and-cold rolled down to 0.2 mm thickness tape. The choice of a copper alloy is related to some advantages in comparison with NiTiCu SMA alloys, which was tested for the similar presented application in a previous study: lower cost, higher storage modulus and consequently higher damping properties in martensitic state. The patterning of the SMA sheets was performed by means of a pulsed fiber laser. After the laser processing, the SMA sheets were heat treated to obtain the desired martensitic state at room temperature. The transformation temperatures were measured by differential scanning calorimetry (DSC). The damping properties were determined, at room temperature, on full-scale sheet, using a universal testing machine (MTS), with cyclic tensile tests at different deformation amplitudes. Damping properties were also determined as a function of the temperature on miniature samples with a dynamical mechanical analyzer (DMA). Numerical modeling of the laminated composite, done with finite element method analysis and modal strain energy approaches, was performed to estimate the corresponding total damping capacity and then compared to experimental results.
NASA Astrophysics Data System (ADS)
Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan
2018-05-01
Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the conventional steel at limiting residual displacements and crack formation in the concrete beams and this ability makes this smart structure special to maintain their serviceability even after a strong earthquake for seismic mitigation.
NASA Astrophysics Data System (ADS)
Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Naghdi, Fariba; Habibi-Parsa, Mohammad; Haririan, Ismaeil
2014-04-01
The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.
Barwart, O; Rollinger, J M; Burger, A
1999-10-01
Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.
Improving greater trochanteric reattachment with a novel cable plate system.
Baril, Yannick; Bourgeois, Yan; Brailovski, Vladimir; Duke, Kajsa; Laflamme, G Yves; Petit, Yvan
2013-03-01
Cable-grip systems are commonly used for greater trochanteric reattachment because they have provided the best fixation performance to date, even though they have a rather high complication rate. A novel reattachment system is proposed with the aim of improving fixation stability. It consists of a Y-shaped fixation plate combined with locking screws and superelastic cables to reduce cable loosening and limit greater trochanter movement. The novel system is compared with a commercially available reattachment system in terms of greater trochanter movement and cable tensions under different greater trochanteric abductor application angles. A factorial design of experiments was used including four independent variables: plate system, cable type, abductor application angle, and femur model. The test procedure included 50 cycles of simultaneous application of an abductor force on the greater trochanter and a hip force on the femoral head. The novel plate reduces the movements of a greater trochanter fragment within a single loading cycle up to 26%. Permanent degradation of the fixation (accumulated movement based on 50-cycle testing) is reduced up to 46%. The use of superelastic cables reduces tension loosening up to 24%. However this last improvement did not result in a significant reduction of the grater trochanter movement. The novel plate and cables present advantages over the commercially available greater trochanter reattachment system. The plate reduces movements generated by the hip abductor. The superelastic cables reduce cable loosening during cycling. Both of these positive effects could decrease the risks related to grater trochanter non-union. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments.
Shen, Ya; Zhou, Hui-Min; Zheng, Yu-Feng; Campbell, Les; Peng, Bin; Haapasalo, Markus
2011-11-01
To improve the fracture resistance of nickel-titanium (NiTi) files, manufacturers have introduced new alloys and developed new manufacturing processes for the fabrication of NiTi files. This study aimed to examine the phase transformation behavior and microstructure of NiTi instruments from a novel controlled memory NiTi wire (CM wire). Instruments of EndoSequence (ES), ProFile (PF), ProFile Vortex (Vortex), Twisted Files (TF), Typhoon (TYP), and Typhoon™ CM (TYP CM), all size 25/.04, were examined by differential scanning calorimetry (DSC) and x-ray diffraction (XRD). Microstructures of etched instruments were observed by optical microscopy and scanning electron microscopy with x-ray energy-dispersive spectrometric (EDS) analyses. The DSC analyses showed that each segment of the TYP CM and Vortex instruments had an austenite transformation completion or austenite-finish (A(f)) temperature exceeding 37°C, whereas the NiTi instruments made from conventional superelastic NiTi wire (ES, PF, and TYP) and TF had A(f) temperatures substantially below mouth temperature. The higher A(f) temperature of TYP CM instruments was consistent with a mixture of austenite and martensite structure, which was observed at room temperature with XRD. All NiTi instruments had room temperature martensite microstructures consisting of colonies of lenticular features with substantial twinning. EDS analysis indicated that the precipitates in all NiTi instruments were titanium-rich, with an approximate composition of Ti(2)Ni. The TYP CM and Vortex instruments with heat treatment contribute to increase austenite transformation temperature. The CM instrument has significant changes in the phase transformation behavior, compared with conventional superelastic NiTi instruments. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Honarvar, Mohammad
Needle-based intervention insertion is one of the common surgical techniques used in many diagnostic and therapeutic percutaneous procedures. The success of such procedures highly depends on the accuracy of needle placement at target locations. An active needle has the potential to enhance the accuracy of needle placement as well as to improve clinical outcome. Bending forces provided by the attached actuators can assist the maneuverability in order to reach the targets following a desired trajectory. There are three major research parts in the development of active needle project in the Composites Laboratory of Temple University. They are thermomechanical characterization of shape memory alloy (SMA) or Nitinol as an actuator for smart needle, mechanical modeling and design of smart needles, and study of tissue needle interaction. The characterization of SMA is the focus of this dissertation. Unique thermomechanical properties of Nitinol known as shape memory effect and superelasticity make it applicable for different fields such as biomedical, structural and aerospace engineering. These unique behaviors are due to the comparatively large amount of recoverable strain which is being produced in a martensitic phase transformation. However, under certain ranges of stresses and temperatures, Nitinol wires exhibit unrecovered strain (also known as residual strain); which limits their applicability. Therefore, for applications that rely on the strain response in repetitive loading and unloading cycles, it is important to understand the generation of the unrecovered strain in the Nitinol wires. In this study, the unrecovered strain of Nitinol wires with various diameters was investigated, using two experimental approaches: constant stress and uniaxial tensile tests. Moreover, a critical range of stress was found beyond which the unrecovered strain was negligible at temperatures of 70 to 80°C depending on the wire diameter. Wire diameters varied from 0.10 to 0.29 mm were tested and different ranges of critical stress were found for different wire diameters. The transformation temperatures of different wire diameters at zero stress have been achieved by performing the Differential Scanning Calorimetry (DSC) test. The actuation force created by Nitinol wire is measured through constant strain experiment. X-Ray Diffraction (XRD) study was also performed to investigate the phase of Nitinol wires under various thermomechanical loading conditions. In summary, the effect of wire diameter on the required critical stresses to avoid the unrecovered strain between first and second cycle of heating and cooling are presented and the results of both mechanical tests are justified by the results obtained from the XRD study.
NASA Technical Reports Server (NTRS)
Register, D. F.; Trajmar, S.; Fineman, M. A.; Poe, R. T.; Csanak, G.; Jensen, S. W.
1983-01-01
Differential (in angle) electron scattering experiments on laser-excited Ba-138 1P were carried out at 30- and 100-eV impact energies. The laser light was linearly polarized and located in the scattering plane. The superelastic scattering signal was measured as a function of polarization direction of the laser light with respect to the scattering plane. It was found at low electron scattering angles that the superelastic scattering signal was asymmetric to reflection of the polarization vector with respect to the scattering plane. This is in contradiction with theoretical predictions. An attempt was made to pinpoint the reason for this observation, and a detailed investigation of the influence of experimental conditions on the superelastic scattering was undertaken. No explanation for the asymmetry has as yet been found.
NASA Astrophysics Data System (ADS)
Puffer, Andrew J.
Many vascular system problems stem from insufficient blood return flow to the heart. One of the main causes is a blockage within veins or arteries known as a blood clot, or thrombus. This can occur after trauma, surgery, or other phenomenological reasons. Each year in the U.S. more than 175,000 bypass procedures and more than 160,000 amputations resulting from peripheral vessel disease are performed. Clinical data indicates that clot removal devices and procedures can reduce the need for an amputation by 80 percent. Percutaneous thrombectomy refers to the removal of thrombus using catheter based non-surgical methods. The ultimate goal of any modality to treat these conditions of the arterial or venous system is to restore patency, quickly, safely, and cost effectively. Catheter directed thrombectomy and thrombolysis is less traumatic and avoids the morbidity and mortality associated with conventional surgical technique. As a result, there has been a push recently for the use of percutaneous mechanical thrombectomy (PMT) devices. However, all devices have their own set of drawbacks: distal embolization, vessel wall trauma, hemolysis, to name a few. Ongoing efforts have been made to create a prototype thrombectomy device that uses elements of superelastic nitinol (a type of shape memory alloy), that seeks to address some of the drawbacks of current devices. The prototype was designed and tested in a simulated human circulatory system along side a commercially available device (The DiverCE Clot Extraction Catheter). The test evaluated how well the devices minimized distal embolization of a human blood clot created in vitro.. Results of the testing showed that the prototype device created significantly less embolization when compared to the DiverCE particles greater than 102mum (p = 0.0332). Means were statistically not different for particles between 25mum and 102mum (p = 0.2454), and particles between 5mum and 25mum (p = 0.6524). In addition the prototype was shown to create insignificant embolization when compared to a control (p = 0.108). The DiverCE, on the other hand, was shown to create significant embolization when compared to a control (p = 0.027).
Clarke, B; Carroll, W; Rochev, Y; Hynes, M; Bradley, D; Plumley, D
2006-10-01
Medical implants and devices are now used successfully in surgical procedures on a daily basis. Alloys of nickel and titanium, and in particular Nitinol are of special interest in the medical device industry, because of their shape memory and superelastic properties. The corrosion behavior of nitinol in the body is also of critical importance because of the known toxicological effects of nickel. The stability of a NiTi alloy in the physiological environment is dependant primarily on the properties of the mostly TiO(2) oxide layer that is present on the surface. For the present study, a range of nitinol wires have been prepared using different drawing processes and a range of surface preparation procedures. It is clear from the results obtained that the wire samples with very thick oxides also contain a high nickel content in the oxide layer. The untreated samples with the thicker oxides show the lowest pitting potential values and greater nickel release in both long and short-term experiments. It was also found that after long-term immersion tests breakdown potentials increased for samples that exhibited lower values initially. From these results it would appear that surface treatment is essential for the optimum bioperformance of nitinol. (c) 2006 Wiley Periodicals, Inc
Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu
2016-10-01
The aim of this work is to describe and compare mechanical properties of eight widely used nickel-titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel-titanium archwire segments of 0.016 inch. To obtain a load-deflection curve, the centre of each segment was deflected to 3.1 mm and then unloaded until force became zero. On the unloading curve, deflection at the end of the plateau and forces delivered at that point, and at 3, 2, 1 and 0.5 mm of deflection, were recorded. Plateau slopes were calculated from 3 and from 2 mm of deflection. Data obtained were statistically analysed to determine inter-brand, intra-brand and inter-batch differences (P < 0.05). The results show that at 2 mm of deflection, maximum differential force exerted among brands [Nitinol SuperElastic (1.999N)-Sentalloy M (1.001 N)] was 0.998 N (102 gf). The Nitinol SuperElastic plateau slope (0.353 N/mm) was the only one that was statistically different from 2 mm of deflection, as compared with the other brand values (0.129-0.155 N/mm). Damon Optimal Force described the gentlest slope from 3 mm of deflection (0.230 N/mm) and one of the longest plateaus. Titanol and Orthonol showed the most notable intra-brand differences, whereas inter-batch variability was significant for Nitinol (Henry Schein), Euro Ni-Ti and Orthonol. Superelasticity degree and exerted forces differed significantly among brands. Superelasticity of Nitinol SuperElastic was not observed, while Damon Optimal Force and Proclinic Ni-Ti Superelástico (G&H) showed the most superelastic curves. Intra-brand and inter-batch differences were observed in some brands. In all cases, the heat treatment at 600 °C produces precipitation in the matrix. The precipitates are rich in titanium and this fact produce changes in the chemical composition of the matrix and the loss of the superelasticity. At 400 °C these precipitates are not produced and the forces delivered by the wires are very similar with wires untreated.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2009-09-22
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA
2012-05-29
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
Shape memory system with integrated actuation using embedded particles
Buckley, Patrick R.; Maitland, Duncan J.
2014-04-01
A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuanglei; Kim, Eun-soo; Kim, Yeon-wook
Highlights: • The B2-R-B19′ transformation occurred in 49Ti-50.3Ni-0.7Ag alloy fibers. • Annealing treated alloy fibers showed superelastic recovery ratio of 93%. • Ageing treated scaffold had an elastic modulus of 0.67 GPa. • Ageing treated scaffold exhibited good superelasticity at human body temperature. - Abstract: Ti-Ni-Ag scaffolds were prepared by sintering rapidly solidified alloy fibers. Microstructures and transformation behaviors of alloy fibers and scaffolds were investigated by means of electron probe micro-analyzer (EPMA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The B2-R-B19′ transformation occurs in alloy fibers. The alloy fibers have good superelasticity with superelastic recovery ratio of 93%more » after annealing heat treatment. The as-sintered Ti-Ni-Ag scaffolds possess three-dimensional and interconnected pores and have the porosity level of 80%. The heat treated Ti-Ni-Ag scaffolds not only have an elastic modulus of 0.67 GPa, which match well with that of cancellous bone, but also show excellent superelasticity at human body temperature. In terms of the mechanical properties, the Ti-Ni-Ag scaffolds in this study can meet the main requirements of bone scaffold for the purpose of bone replacement applications.« less
BATMAV - A Bio-Inspired Micro-Aerial Vehicle for Flapping Flight
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe
The main objective of the BATMAV project is the development of a biologically-inspired Micro Aerial Vehicle (MAV) with flexible and foldable wings for flapping flight. While flapping flight in MAV has been previously studied and a number of models were realized they usually had unfoldable wings actuated with DC motors and mechanical transmission to achieve flapping motion. This approach limits the system to a rather small number of degrees of freedom with little flexibility and introduces an additional disadvantage of a heavy flight platform. The BATMAV project aims at the development of a flight platform that features bat-inspired wings with smart materials-based flexible joints and artificial muscles, which has the potential to closely mimic the kinematics of the real mammalian flyer. The bat-like flight platform was selected after an extensive analysis of morphological and aerodynamic flight parameters of small birds, bats and large insects characterized by a superior maneuverability and wind gust rejection. Morphological and aerodynamic parameters were collected from existing literature and compared concluding that bat wing present a suitable platform that can be actuated efficiently using artificial muscles. Due to their wing camber variation, the bat species can operate effectively at a large range of speeds and exhibit a remarkably maneuverable and agile flight. Although numerous studies were recently investigated the flapping flight, flexible and foldable wings that reproduce the natural intricate and efficient flapping motion were not designed yet. A comprehensive analysis of flight styles in bats based on the data collected by Norberg (Norberg, 1976) and the engineering theory of robotic manipulators resulted in a 2 and 3-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The flexible joints of the 2 and 2-DOF models were replicated using smart materials like superelastic Shape Memory Alloys (SMA). The results of these kinematic models can be used to optimize the lengths and the attachment locations of the actuator muscle-wires such that enough lift, thrust and wing stroke are obtained. Bat skeleton measurements were taken from real bats and modeled in SolidWorks to accurately reproduce bones and body via rapid prototyping methods. Much attention was paid specifically to achieving the comparable strength, elasticity, and range of motion of a naturally occurring bat. The wing joints of the BATMAV platform were fabricated using superelastic Shape Memory Alloys (SMA), a key technology for the development of an engineering skeleton structure. This has enabled a simple and straightforward connection between different bones while at the same time has preserved the full range of functionality of the natural role model. Therefore, several desktop models were designed, fabricated and assembled in order to study various materials used in design phase. As a whole, the BATMAV project consists of four major stages of development: the current phase -- design and fabrication of the skeletal structure of the flight platform, selection and testing different materials for the design of a compliant bat-like membrane, analysis of the kinematics and kinetics of bat flight in order to design a biomechanical muscle system for actuation, and design of the electrical control architecture to coordinate the platform flight.
NASA Astrophysics Data System (ADS)
Soul, H.; Yawny, A.
2017-08-01
The dynamic response to different seismic inputs of an isolated structure disposed on a sliding layer and connected to the ground with a superelastic NiTi device was analyzed. The device allows wires of NiTi to be mechanically cycled by supporting externally applied tension/compression forces exploiting both dissipative and self-centering capabilities associated with superelasticity. Simulations were carried out modifying the wires length and the structural mass. Both parameters were varied over two orders of magnitude with the aim of evaluating the type of response, the mitigation level that can be accomplished and the combination of parameters resulting in an optimal response. Results indicate that the proposed device is suitable for seismic protection of isolated structures and it is demonstrated that the protective action is more related with the restraining and self-centering properties of the NiTi superelastic wires than with its damping capacity.
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2017-03-01
Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.
Superelastic carbon spheres under high pressure
NASA Astrophysics Data System (ADS)
Li, Meifen; Guo, Junjie; Xu, Bingshe
2013-03-01
We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.
Superelasticity by reversible variant reorientation in a Ni-Mn-Ga microwire with bamboo grains
Wang, Z. L.; Zheng, P.; Nie, Z. H.; ...
2015-08-26
The link between microstructure and mechanical properties is investigated for a superelastic Ni–Mn–Ga microwire with 226 μm diameter, created by solidification via the Taylor method. The wire, which consists of bamboo grains with tetragonal martensite matrix and coarse γ precipitates, exhibits fully reversible superelastic behavior up to 4% tensile strain. Upon multiple tensile load–unload cycles, reproducible stress fluctuations of ~3 MPa are measured on the loading superelastic stress plateau of ~50 MPa. During cycles at various temperatures spanning -70 to 55 °C, the plateau stress decreases from 58 to 48 MPa near linearly with increasing temperature. Based on in situmore » synchrotron X-ray diffraction measurements, we conclude that this superelastic behavior is due to reversible martensite variants reorientation (i.e., reversible twinning) with lattice rotation of ~13°. The reproducible stress plateau fluctuations are assigned to reversible twinning at well-defined locations along the wire. The strain recovery during unloading is attributed to reverse twinning, driven by the internal stress generated on loading between the elastic γ precipitates and the twinning martensite matrix. Lastly, the temperature dependence of the twining stress on loading is related to the change in tetragonality of the martensite, as measured by X-ray diffraction.« less
Xue, Zhaoguo; Sun, Mei; Dong, Taige; Tang, Zhiqiang; Zhao, Yaolong; Wang, Junzhuan; Wei, Xianlong; Yu, Linwei; Chen, Qing; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere
2017-12-13
Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.
NASA Astrophysics Data System (ADS)
Aun, Diego Pinheiro; Houmard, Manuel; Mermoux, Michel; Latu-Romain, Laurence; Joud, Jean-Charles; Berthomé, Gregory; Buono, Vicente Tadeu Lopes
2016-07-01
An experimental procedure to coat superelastic NiTi alloys with flexible TiO2 protective nanocomposite films using sol-gel technology was developed in this work to improve the metal biocompatibility without deteriorating its superelastic mechanical properties. The coatings were characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and glazing incidence X-ray diffraction. The elasticity of the film was tested in coated specimens submitted to three-point bending tests. A short densification by thermal treatment at 500 °C for 10 min yielded a bilayer film consisting of a 50 nm-thick crystallized TiO2 at the inner interface with another 50-nm-thick amorphous oxide film at the outer interface. This bilayer could sustain over 6.4% strain without cracking and could thus be used to coat biomedical instruments as well as other devices made with superelastic NiTi alloys.
Effect of Thermomechanical Processing on Texture and Superelasticity in Fe-Ni-Co-Al-Ti-B Alloy
NASA Astrophysics Data System (ADS)
Lee, Doyup; Omori, Toshihiro; Han, Kwangsik; Hayakawa, Yasuyuki; Kainuma, Ryosuke
2018-03-01
The texture and superelasticity were investigated in austenitic Fe-Ni-Co-Al-Ti-B alloy with various reduction ratios of cold rolling and heating ratios in annealing. The rolled sheets show the {110} <112> deformation texture at a reduction ratio higher than 80%, while the texture hardly changes in the primary recrystallization at 1000 °C. The β (B2) precipitates inhibit the grain growth at this temperature, but they dissolve during heating, and secondary recrystallization occurs due to decreased pinning force at temperatures higher than 1100 °C, resulting in texture change to {210} <001> . The recrystallization texture is more strongly developed when the reduction ratio and heating rate are high and slow, respectively. The 90% cold-rolled and slowly heated sheet shows the recrystallization texture and high fraction of low-angle boundaries. As a result, ductility and superelasticity can be drastically improved in the 90% cold-rolled sheet, although superelasticity was previously obtained only in thin sheets with 98.5% reduction.
Superelastic supercapacitors with high performances during stretching.
Zhang, Zhitao; Deng, Jue; Li, Xueyi; Yang, Zhibin; He, Sisi; Chen, Xuli; Guan, Guozhen; Ren, Jing; Peng, Huisheng
2015-01-14
A fiber-shaped supercapacitor that can be stretched over 400% is developed by using two aligned carbon nanotube/polyaniline composite sheets as electrodes. A high specific capacitance of approximately 79.4 F g(-1) is well maintained after stretching at a strain of 300% for 5000 cycles or 100.8 F g(-1) after bending for 5000 cycles at a current density of 1 A g(-1). In particular, the high specific capacitance is maintained by 95.8% at a stretching speed as high as 30 mm s(-1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape memory polymer medical device
Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA
2010-06-29
A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.
System Assessment of a High Power 3-U CubeSat
NASA Technical Reports Server (NTRS)
Shaw, Katie
2016-01-01
The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the ability to reset the mechanism, allowing functional tests of the mechanisms prior to flight with no degradation of performance. The project is currently in preparation at the NASA Glenn Research Center for a launch in late calendar year of 2017. The 100 Watt power distribution and dual purpose, re-settable SMA mechanisms introduced several system level challenges due to the physical constraints in volume, mass and surface area of 3-U CubeSats. Several trade studies and design cycles have been completed to develop a system which supports the project objectives. This paper is a report on the results of the system level trade studies and assessments. The results include assessment of options for thermal control of 100 Watts of power dissipation, data from system analyses and engineering development tests, limitations of the 3-U system and extensibility to larger scale CubeSat missions.
Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Gur, Sourav
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.
Wilson, Thomas S.; Bearinger, Jane P.
2017-08-29
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Research of Customized Aortic Stent Graft Manufacture
NASA Astrophysics Data System (ADS)
Zhang, Lei; Chen, Xin; Liu, Muhan
2017-03-01
Thoracic descending aorta diseases include aortic dissection and aortic aneurysm, of which the natural mortality rate is extremely high. At present, endovascular aneurysm repair (EVAR) has been widely used as an effective means for the treatment of descending aortic disease. Most of the existing coating stents are standard design, which are unable to meet the size or structure of different patients. As a result, failure of treatment would be caused by dimensional discrepancy between stent and vessels, which could lead to internal leakage or rupture of blood vessels. Therefore, based on rapid prototyping sacrificial core - coating forming (RPSC-CF), a customized aortic stent graft manufactured technique has been proposed in this study. The aortic stent graft consists of film and metallic stent, so polyether polyurethane (PU) and nickel-titanium (NiTi) shape memory alloy with good biocompatibility were chosen. To minimum film thickness without degrading performance, effect of different dip coating conditions on the thickness of film were studied. To make the NiTi alloy exhibit super-elasticity at body temperature (37°C), influence of different heat treatment conditions on austenite transformation temperature (Af) and mechanical properties were studied. The results show that the customized stent grafts could meet the demand of personalized therapy, and have good performance in blasting pressure and radial support force, laying the foundation for further animal experiment and clinical experiment.
Biomedical titanium alloys with Young’s moduli close to that of cortical bone
Niinomi, Mitsuo; Liu, Yi; Nakai, Masaki; Liu, Huihong; Li, Hua
2016-01-01
Biomedical titanium alloys with Young’s moduli close to that of cortical bone, i.e., low Young’s modulus titanium alloys, are receiving extensive attentions because of their potential in preventing stress shielding, which usually leads to bone resorption and poor bone remodeling, when implants made of their alloys are used. They are generally β-type titanium alloys composed of non-toxic and allergy-free elements such as Ti–29Nb–13Ta–4.6Zr referred to as TNTZ, which is highly expected to be used as a biomaterial for implants replacing failed hard tissue. Furthermore, to satisfy the demands from both patients and surgeons, i.e., a low Young’s modulus of the whole implant and a high Young’s modulus of the deformed part of implant, titanium alloys with changeable Young’s modulus, which are also β-type titanium alloys, for instance Ti–12Cr, have been developed. In this review article, by focusing on TNTZ and Ti–12Cr, the biological and mechanical properties of the titanium alloys with low Young’s modulus and changeable Young’s modulus are described. In addition, the titanium alloys with shape memory and superelastic properties were briefly addressed. Surface modifications for tailoring the biological and anti-wear/corrosion performances of the alloys have also been briefly introduced. PMID:27252887
Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad
2015-01-01
This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.
Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy
NASA Astrophysics Data System (ADS)
Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.
2016-03-01
In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S.; Maitland, Duncan J.
2017-03-21
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA
2012-03-13
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
Shape memory polymer foams for endovascular therapies
Wilson, Thomas S.; Maitland, Duncan J.
2015-05-26
A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.
NASA Astrophysics Data System (ADS)
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-01
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei
2017-12-19
Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g -1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g -1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm -3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.
Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin
NASA Astrophysics Data System (ADS)
McClung, Amber J. W.; Tandon, Gyaneshwar P.; Baur, Jeffery W.
2013-02-01
Shape-memory polymers have attracted great interest in recent years for application in reconfigurable structures (for instance morphing aircraft, micro air vehicles, and deployable space structures). However, before such applications can be attempted, the mechanical behavior of the shape-memory polymers must be thoroughly understood. The present study represents an assessment of viscous effects during multiple shape-memory cycles of Veriflex-E, an epoxy-based, thermally triggered shape-memory polymer resin. The experimental program is designed to explore the influence of multiple thermomechanical cycles on the shape-memory performance of Veriflex-E. The effects of the deformation rate and hold times at elevated temperature on the shape-memory behavior are also investigated.
High-strain slide-ring shape-memory polycaprolactone-based polyurethane.
Wu, Ruiqing; Lai, Jingjuan; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-06-06
To enable shape-memory polymer networks to achieve recoverable high deformability with a simultaneous high shape-fixity ratio and shape-recovery ratio, novel semi-crystalline slide-ring shape-memory polycaprolactone-based polyurethane (SR-SMPCLU) with movable net-points constructed by a topologically interlocked slide-ring structure was designed and fabricated. The SR-SMPCLU not only exhibited good shape fixity, almost complete shape recovery, and a fast shape-recovery speed, it also showed an outstanding recoverable high-strain capacity with 95.83% Rr under a deformation strain of 1410% due to the pulley effect of the topological slide-ring structure. Furthermore, the SR-SMPCLU system maintained excellent shape-memory performance with increasing the training cycle numbers at 45% and even 280% deformation strain. The effects of the slide-ring cross-linker content, deformation strain, and successive shape-memory cycles on the shape-memory performance were investigated. A possible mechanism for the shape-memory effect of the SR-SMPCLU system is proposed.
Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo
2014-05-01
To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borza, F., E-mail: fborza@phys-iasi.ro; Lupu, N.; Dobrea, V.
2015-05-07
Ferromagnetic Fe-Ni-Co-Al-(Ta,Nb)-B microwires with diameters from 170 μm to 50 μm, which possess both superelastic and good magnetic properties, have been prepared by rapid quenching from the melt using the in rotating water spinning technique followed by cold-drawing and ageing. The cold-drawing and annealing processes lead to the initialization of premartensitic phases as confirmed by the X-ray diffraction and scanning transmission electron microscopic investigations, more significantly in the 50 μm cold-drawn microwires. An increase in the coercive field and in the saturation magnetization has been obtained by annealing, more importantly in the case of Nb-containing alloy. Ageing by thermal or current annealing ledmore » to the initialization of the superelastic effect. High values of strain of up to 1.8%, very good repeatability under successive loading, and values of superelastic effect of up to 1.2% have been achieved. The structural analysis coupled with the stress-strain data suggests that these materials annealed at 800 °C have superelastic potential at reduced ageing times. The magnetic behavior was found to be easily tailored through both thermal and thermomagnetic treatments with changes in the magnetic parameters which can be contactless detected. The results are important for future applications where both mechanical and magnetic properties matter, i.e., sensing/actuating systems.« less
Sandhu, Satpal Singh; Sandhu, Jasleen
2013-01-01
Objective:To investigate and compare the effects of superelastic nickel–titanium and multistranded stainless steel archwires on pain during the initial phase of orthodontic treatment. Design:A double-blind two-arm parallel design stratified randomized clinical trial. Setting:A single centre in India between December 2010 and June 2012. A total of 96 participants (48 male and 48 females; 14.1±2.1 years old) were randomized (stratified on age, sex and initial crowding) to superelastic nickel–titanium or multistranded stainless steel archwire groups using a computer-generated allocation sequence. Methods:We compared 0.016-inch superelastic nickel–titanium and 0.0175-inch multistranded stainless steel wires in 0.022-inch slot (Roth prescription) preadjusted edgewise appliances. The follow-up period was 14 days. Outcome was assessed with a visual analogue scale at baseline and 32 pre-specified follow-up points. Data was analyzed using mixed-effects model analysis. Results:One participant was lost to follow up and 10 were excluded from the analysis due to bond failure or incomplete questionnaire answers. Ultimately, 85 participants (42 males and 43 females; 14.1±2.0 years old) were analysed for the final results. No statistically significant difference was found for overall pain [F value = 2.65, degrees of freedom (df) = 92.6; P = 0.1071]. However, compared to multistranded stainless steel wires, pain in subjects with superelastic nickel–titanium archwires was significantly greater at 12 h (t = 2.34; P = 0.0193), as well as at day 1 in the morning (t = 2.21, P = 0.0273), afternoon (t = 2.11, P = 0.0346) and at bedtime (t = 2.03, P = 0.042). Conclusion:For overall pain, there was no statistically significant difference between the two wires. However, subjects with superelastic nickel–titanium archwires had a significantly higher pain at peak level. PMID:24297959
A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-03-01
Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.
Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C
2016-09-01
New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng
2015-01-01
Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulbakin, D. E., E-mail: kulbakin-d@mail.ru; Tomsk State University, 36, Lenin Avenue, Tomsk, 634050; Mukhamedov, M. R., E-mail: muhamedov@oncology.tomsk.ru
2015-11-17
Our study has demonstrated feasibility of performing larynx preservation surgeries in patients with recurrent laryngeal cancer after failure of radiotherapy. The technique of combined laryngeal reconstruction with endografts from superelastic titanium-nickelid-based alloy Singular tissue Plural tissues results in improvement of life quality by preserving laryngeal functions.
NASA Astrophysics Data System (ADS)
Kulbakin, D. E.; Mukhamedov, M. R.; Choynzonov, E. L.; Gynter, V. E.
2015-11-01
Our study has demonstrated feasibility of performing larynx preservation surgeries in patients with recurrent laryngeal cancer after failure of radiotherapy. The technique of combined laryngeal reconstruction with endografts from superelastic titanium-nickelid-based alloy Singular tissue Plural tissues results in improvement of life quality by preserving laryngeal functions.
In vitro biocompatibility of nickel-titanium esthetic orthodontic archwires.
Rongo, Roberto; Valletta, Rosa; Bucci, Rosaria; Rivieccio, Virginia; Galeotti, Angela; Michelotti, Ambrosina; D'Antò, Vincenzo
2016-09-01
To investigate the cytotoxicity of nickel-titanium (NiTi) esthetic orthodontic archwires with different surface coatings. Three fully coated, tooth-colored NiTi wires (BioCosmetic, Titanol Cosmetic, EverWhite), two ion-implanted wires (TMA Purple, Sentalloy High Aesthetic), five uncoated NiTi wires (BioStarter, BioTorque, Titanol Superelastic, Memory Wire Superelastic, and Sentalloy), one β-titanium wire (TMA), and one stainless steel wire (Stainless Steel) were considered for this study. The wire samples were placed at 37°C in airtight test tubes containing Dulbecco's Modified Eagle's Medium (0.1 mg/mL) for 1, 7, 14, and 30 days. The cell viability of human gingival fibroblasts (HGFs) cultured with this medium was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by a two-way analysis of variance (α = .05). The highest cytotoxic effect was reached on day 30 for all samples. The archwires exhibited a cytotoxicity on HGFs ranging from "none" to "slight," with the exception of the BioTorque, which resulted in moderate cytotoxicity on day 30. Significant differences were found between esthetic archwires and their uncoated pairs only for BioCosmetic (P = .001) and EverWhite (P < .001). Under the experimental conditions, all of the NiTi esthetic archwires resulted in slight cytotoxicity, as did the respective uncoated wires. For this reason their clinical use may be considered to have similar risks to the uncoated archwires.
NASA Astrophysics Data System (ADS)
Cantrell, Jason T.
This document outlines in detail the research performed by applying shape memory polymers in a generic unimorph actuator configuration. A set of experiments designed to investigate the influence of transverse curvature, the relative widths of shape memory polymer and composite substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles is presented in detail. A theoretical model of the moment required to maintain shape fixity with minimal shape retention loss was developed and experimentally validated for unimorph composite actuators of varying cross-sectional areas. Theoretical models were also developed and evaluated to determine the relationship between the materials neutral axes and thermal stability during a thermo-mechanical cycle. Research was conducted on the incorporation of shape memory polymers on micro air vehicle wings to maximize shape fixity and shape recoverability while minimizing the volume of shape memory polymer on the wing surface. Applications based research also included experimentally evaluating the feasibility of shape memory polymers on deployable satellite antenna ribs both with and without resistance heaters which could be utilized to assist in antenna deployment.
AC Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.
2011-01-01
Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.
Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
Xue, Pengfei; Li, Yan; Li, Kangming; Zhang, Deyuan; Zhou, Chungen
2015-05-01
Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti-19Zr-10Nb-1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti-19Zr-10Nb-1Fe alloy is composed of α' and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress-strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading-unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti-19Zr-10Nb-1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti-19Zr-10Nb-1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.
Blast Coating of Superelastic NiTi Wire with PTFE to Enhance Wear Properties
NASA Astrophysics Data System (ADS)
Dunne, Conor F.; Roche, Kevin; Twomey, Barry; Hodgson, Darel; Stanton, Kenneth T.
2015-03-01
This work investigates the deposition of polytetrafluoroethylene (PTFE) onto a superelastic NiTi wire using an ambient temperature-coating technique known as CoBlast. The process utilises a stream of abrasive (Al2O3) and a coating medium (PTFE) sprayed simultaneously at the surface of the substrate. Superelastic NiTi wire is used in guidewire applications, and PTFE coatings are commonly applied to reduce damage to vessel walls during insertion and removal, and to aid in accurate positioning by minimising the force required to advance, retract or rotate the wire. The CoBlast coated wires were compared to wire treated with PTFE only. The coated samples were examined using variety of techniques: X-ray diffraction (XRD), microscopy, surface roughness, wear testing and flexural tests. The CoBlast coated samples had an adherent coating with a significant resistance to wear compared to the samples coated with PTFE only. The XRD revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of PTFE onto the surface of superelastic NiTi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reading, Matthew W.
Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation ofmore » joining of the shape-memory members with the hub components.« less
Residual stresses in injection molded shape memory polymer parts
NASA Astrophysics Data System (ADS)
Katmer, Sukran; Esen, Huseyin; Karatas, Cetin
2016-03-01
Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
Qin, Yuyang; Peng, Qingyu; Ding, Yujie; Lin, Zaishan; Wang, Chunhui; Li, Ying; Xu, Fan; Li, Jianjun; Yuan, Ye; He, Xiaodong; Li, Yibin
2015-09-22
The creation of superelastic, flexible three-dimensional (3D) graphene-based architectures is still a great challenge due to structure collapse or significant plastic deformation. Herein, we report a facile approach of transforming the mechanically fragile reduced graphene oxide (rGO) aerogel into superflexible 3D architectures by introducing water-soluble polyimide (PI). The rGO/PI nanocomposites are fabricated using strategies of freeze casting and thermal annealing. The resulting monoliths exhibit low density, excellent flexibility, superelasticity with high recovery rate, and extraordinary reversible compressibility. The synergistic effect between rGO and PI endows the elastomer with desirable electrical conductivity, remarkable compression sensitivity, and excellent durable stability. The rGO/PI nanocomposites show potential applications in multifunctional strain sensors under the deformations of compression, bending, stretching, and torsion.
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2017-10-01
This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.
Guide wire extension for shape memory polymer occlusion removal devices
Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA
2009-11-03
A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.
Biodegradable Shape Memory Polymers in Medicine.
Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L
2017-11-01
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Ruan, Liqun; Valiev, R. Z.
2011-04-01
NiTi alloy has a unique combination of mechanical properties, shape memory effects and superelastic behavior that makes it attractive for several biomedical applications. In recent years, concerns about its biocompatibility have been aroused due to the toxic or side effect of released nickel ions, which restricts its application as an implant material. Bulk ultrafine-grained Ni50.8Ti49.2 alloy (UFG NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study. A homogeneous and smooth SrO-SiO2-TiO2 sol-gel coating without cracks was fabricated on its surface by dip-coating method with the aim of increasing its corrosion resistance and cytocompatibility. Electrochemical tests in simulated body fluid (SBF) showed that the pitting corrosion potential of UFG NiTi was increased from 393 mV(SCE) to 1800 mV(SCE) after coated with SrO-SiO2-TiO2 film and the corrosion current density decreased from 3.41 μA/cm2 to 0.629 μA/cm2. Meanwhile, the sol-gel coating significantly decreased the release of nickel ions of UFG NiTi when soaked in SBF. UFG NiTi with SrO-SiO2-TiO2 sol-gel coating exhibited enhanced osteoblast-like cells attachment, spreading and proliferation compared with UFG NiTi without coating and CG NiTi.
Characterization and corrosion study of NiTi laser surface alloyed with Nb or Co
NASA Astrophysics Data System (ADS)
Ng, K. W.; Man, H. C.; Yue, T. M.
2011-02-01
The interest in NiTi alloys for medical applications has been steadily growing in recent years because of its biocompatibility, superelasticity and shape memory characteristics. However, the high Ni content in NiTi alloys is still a concern for its long-term applications in the human body. The release of Ni ion into the human body might cause serious problems, as Ni is capable of eliciting toxic and allergic responses. In view of this, surface modification to reduce the surface content of Ni and to improve the corrosion resistance, both of which would reduce Ni release, is an important step in the development of NiTi implants. In the present study, NiTi was surface alloyed with Nb or Co by laser processing. The fine dendritic structure characteristic of laser processing has been described in terms of rapid solidification. The amount of surface elemental Ni was reduced to 10% and 35% for the Nb-alloyed and Co-alloyed layer, respectively. The corrosion resistance in Hanks' solution (a simulated body fluid) was increased as evidenced by a reduced passive current density and a higher pitting potential for both the Nb- and Co-alloyed specimens. The composition and hardness profiles along the depth of the modified layer were correlated with the distribution of the dendrites. The microhardness of the alloyed layers was around 700-800 Hv, which was about four times that of the untreated NiTi specimens.
Optimized Delivery System Achieves Enhanced Endomyocardial Stem Cell Retention
Behfar, Atta; Latere, Jean-Pierre; Bartunek, Jozef; Homsy, Christian; Daro, Dorothee; Crespo-Diaz, Ruben J.; Stalboerger, Paul G.; Steenwinckel, Valerie; Seron, Aymeric; Redfield, Margaret M.; Terzic, Andre
2014-01-01
Background Regenerative cell-based therapies are associated with limited myocardial retention of delivered stem cells. The objective of this study is to develop an endocardial delivery system for enhanced cell retention. Methods and Results Stem cell retention was simulated in silico using one and three-dimensional models of tissue distortion and compliance associated with delivery. Needle designs, predicted to be optimal, were accordingly engineered using nitinol – a nickel and titanium alloy displaying shape memory and super-elasticity. Biocompatibility was tested with human mesenchymal stem cells. Experimental validation was performed with species-matched cells directly delivered into Langendorff-perfused porcine hearts or administered percutaneously into the endocardium of infarcted pigs. Cell retention was quantified by flow cytometry and real time quantitative polymerase chain reaction methodology. Models, computing optimal distribution of distortion calibrated to favor tissue compliance, predicted that a 75°-curved needle featuring small-to-large graded side holes would ensure the highest cell retention profile. In isolated hearts, the nitinol curved needle catheter (C-Cath) design ensured 3-fold superior stem cell retention compared to a standard needle. In the setting of chronic infarction, percutaneous delivery of stem cells with C-Cath yielded a 37.7±7.1% versus 10.0±2.8% retention achieved with a traditional needle, without impact on biocompatibility or safety. Conclusions Modeling guided development of a nitinol-based curved needle delivery system with incremental side holes achieved enhanced myocardial stem cell retention. PMID:24326777
Analysis-Driven Design Optimization of a SMA-Based Slat-Cove Filler for Aeroacoustic Noise Reduction
NASA Technical Reports Server (NTRS)
Scholten, William; Hartl, Darren; Turner, Travis
2013-01-01
Airframe noise is a significant component of environmental noise in the vicinity of airports. The noise associated with the leading-edge slat of typical transport aircraft is a prominent source of airframe noise. Previous work suggests that a slat-cove filler (SCF) may be an effective noise treatment. Hence, development and optimization of a practical slat-cove-filler structure is a priority. The objectives of this work are to optimize the design of a functioning SCF which incorporates superelastic shape memory alloy (SMA) materials as flexures that permit the deformations involved in the configuration change. The goal of the optimization is to minimize the actuation force needed to retract the slat-SCF assembly while satisfying constraints on the maximum SMA stress and on the SCF deflection under static aerodynamic pressure loads, while also satisfying the condition that the SCF self-deploy during slat extension. A finite element analysis model based on a physical bench-top model is created in Abaqus such that automated iterative analysis of the design could be performed. In order to achieve an optimized design, several design variables associated with the current SCF configuration are considered, such as the thicknesses of SMA flexures and the dimensions of various components, SMA and conventional. Designs of experiment (DOE) are performed to investigate structural response to an aerodynamic pressure load and to slat retraction and deployment. DOE results are then used to inform the optimization process, which determines a design minimizing actuator forces while satisfying the required constraints.
Shape-Memory-Alloy Actuator For Flight Controls
NASA Technical Reports Server (NTRS)
Barret, Chris
1995-01-01
Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.
Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan
2007-05-01
Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P <.05) increased in both types of wire. However, they showed a significant decrease in friction from 3 to 4 mm of deflection. L & H Titan wires had less friction than Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.
The Measurement and Interpretation of Transformation Temperatures in Nitinol
NASA Astrophysics Data System (ADS)
Duerig, T. W.; Pelton, A. R.; Bhattacharya, K.
2017-12-01
A previous paper (Duerig and Bhattacharya in Shap Mem Superelasticity 1:153-161, 2015) introduced several engineering considerations surrounding the R-phase in Nitinol and highlighted a common, if not pervasive, misconception regarding the use of the term Af by the medical device industry. This paper brings additional data to bear on the issue and proposes more accurate terminology. Moreover, a variety of tools are used to establish the forward and reverse stress-temperature phase diagrams for a superelastic wire typical of that used in medical devices. Once established, the two most common methods of measuring transformation temperatures, Differential Scanning Calorimetry and Bend Free Recovery, are tested against the observed behavior. Light is also shed upon the origin of the Clausius-Clapeyron ratio (d σ/d T), the triple point, and why such large variations are reported in superelastic alloys.
NASA Astrophysics Data System (ADS)
Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.
Biaxial Fatigue Behavior of Niti Shape Memory Alloy
2005-03-01
BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Daniel M. Jensen, 1st Lieutenant...BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of...FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GA/ENY/05-M06 BIAXIAL FATIGUE BEHAVIOR OF NiTi SHAPE MEMORY ALLOY Daniel M. Jensen
Gordin, D M; Busardo, D; Cimpean, A; Vasilescu, C; Höche, D; Drob, S I; Mitran, V; Cornen, M; Gloriant, T
2013-10-01
In this study, a superelastic Ni-free Ti-based biomedical alloy was treated in surface by the implantation of nitrogen ions for the first time. The N-implanted surface was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy, and the superficial mechanical properties were evaluated by nano-indentation and by ball-on-disk tribological tests. To investigate the biocompatibility, the corrosion resistance of the N-implanted Ti alloy was evaluated in simulated body fluids (SBF) complemented by in-vitro cytocompatibility tests on human fetal osteoblasts. After implantation, surface analysis methods revealed the formation of a titanium-based nitride on the substrate surface. Consequently, an increase in superficial hardness and a significant reduction of friction coefficient were observed compared to the non-implanted sample. Also, a better corrosion resistance and a significant decrease in ion release rates have been obtained. Cell culture experiments indicated that the cytocompatibility of the N-implanted Ti alloy was superior to that of the corresponding non-treated sample. Thus, this new functional N-implanted titanium-based superelastic alloy presents the optimized properties that are required for various medical devices: superelasticity, high superficial mechanical properties, high corrosion resistance and excellent cytocompatibility. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of Variable Amplitude Blocks' Ordering on the Functional Fatigue of Superelastic NiTi Wires
NASA Astrophysics Data System (ADS)
Soul, Hugo; Yawny, Alejandro
2017-12-01
Accumulation of superelastic cycles in NiTi uniaxial element generates changes on the stress-strain response. Basically, there is an uneven drop of martensitic transformation stress plateaus and an increase of residual strain. This evolution associated with deterioration of superelastic characteristics is referred to as "functional fatigue" and occurs due to irreversible microstructural changes taking place each time a material domain transforms. Unlike complete cycles, for which straining is continued up to elastic loading of martensite, partial cycles result in a differentiated evolution of those material portions affected by the transformation. It is then expected that the global stress-strain response would reflect the previous cycling history of the specimen. In the present work, the consequences of cycling of NiTi wires using blocks of different strain amplitudes interspersed in different sequences are analyzed. The effect of successive increasing, successive decreasing, and interleaved strain amplitudes on the evolution of the superelastic response is characterized. The feasibility of postulating a functional fatigue criterion similar to the Miner's cumulative damage law used in structural fatigue analysis is discussed. The relation of the observed stress-strain response with the transformational history of the specimen can be rationalized by considering that the stress-induced transformation proceeds via localized propagating fronts.
Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.
Zhao, Xiaoli; Yao, Weiquan; Gao, Weiwei; Chen, Hao; Gao, Chao
2017-09-01
Graphene aerogel has attracted great attention due to its unique properties, such as ultralow density, superelasticity, and high specific surface area. It shows huge potential in energy devices, high-performance pressure sensors, contaminates adsorbents, and electromagnetic wave absorbing materials. However, there still remain some challenges to further promote the development and real application of graphene aerogel including cost-effective scalable fabrication and miniaturization with group effect. This study shows millimeter-scale superelastic graphene aerogel spheres (GSs) with group effect and multifunctionality. The GSs are continuously fabricated on a large scale by wet spinning of graphene oxide liquid crystals followed by facile drying and thermal annealing. Such GS has an unusual core-shell structure with excellent elasticity and specific strength. Significantly, both horizontally and vertically grouped spheres exhibit superelasticity comparable to individual spheres, enabling it to fully recover at 95% strain, and even after 1000 compressive cycles at 70% strain, paving the way to wide applications such as pressure-elastic and adsorbing materials. The GS shows a press-fly behavior with an extremely high jump velocity up to 1.2 m s -1 . For the first time, both free and oil-adsorbed GSs are remotely manipulated on water by electrostatic charge due to their ultralow density and hydrophobic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strain-Detecting Composite Materials
NASA Technical Reports Server (NTRS)
Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)
2016-01-01
A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.
Thermomechanical behavior of a two-way shape memory composite actuator
NASA Astrophysics Data System (ADS)
Ge, Qi; Westbrook, Kristofer K.; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2013-05-01
Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design.
Shape memory polymer actuator and catheter
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.
2004-05-25
An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.
Shape memory polymer actuator and catheter
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.
2007-11-06
An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.
NASA Astrophysics Data System (ADS)
Böttcher, J.; Jahn, M.; Tatzko, S.
2017-12-01
Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.
Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.
Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela
2014-07-01
Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.
Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers
NASA Astrophysics Data System (ADS)
Phillippi, Ben
As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.
High strength, low stiffness, porous NiTi with superelastic properties.
Greiner, Christian; Oppenheimer, Scott M; Dunand, David C
2005-11-01
Near-stoichiometric NiTi with up to 18% closed porosity was produced by expansion at 1200 degrees C of argon-filled pores trapped by powder metallurgy within a NiTi billet. When optimally heat-treated, NiTi with 6-16% porosity exhibits superelasticity, with recoverable compressive strains up to 6% at a maximum compressive stress up to 1700 MPa. The apparent Young's modulus of NiTi with 16% porosity, measured during uniaxial compression, is in the range of 15-25 GPa (similar to human bone), but is much lower than measured ultrasonically (approximately 40 GPa), or predicted from continuum elastic mechanics. This effect is attributed to the reversible stress-induced transformation contributing to the linear elastic deformation of porous NiTi. The unique combination of low stiffness, high strength, high recoverable strains and large energy absorption of porous superelastic NiTi, together with the known biocompatibility of NiTi, makes this material attractive for bone-implant applications.
Lin, Tianquan; Liu, Fengxin; Xu, Feng; Bi, Hui; Du, Yahui; Tang, Yufeng; Huang, Fuqiang
2015-11-18
Flexible/stretchable devices for energy storage are essential for future wearable and flexible electronics. Electrochemical capacitors (ECs) are an important technology for supplement batteries in the energy storage and harvesting field, but they are limited by relatively low energy density. Herein, we report a superelastic foam consisting of few-layer carbon nanowalls made from natural cotton as a good scaffold to growth conductive polymer polyaniline for stretchable, lightweight, and flexible all-solid-state ECs. As-prepared superelastic bulk tubular carbon foam (surface area ∼950 m(2)/g) can withstand >90% repeated compression cycling and support >45,000 times its own weight but no damage. The flexible device has a high specific capacitance of 510 F g(-1), a specific energy of 25.5 Wh kg(-1) and a power density of 28.5 kW kg(-1) in weight of the total electrode materials and withstands 5,000 charging/discharging cycles.
Shape memory effect and super elasticity. Its dental applications.
Kotian, R
2001-01-01
The shape memory alloys are quite fascinating materials characterized by a shape memory effect and super elasticity which ordinary metals do not have. This unique behaviour was first found in a Au-47.5 at % Cd alloy in 1951, and was published in 1963 by the discovery of Ti-Ni alloy. Shape memory alloys now being practically used as new functional alloys for various dental and medical applications.
Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-04-20
Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shape memory alloy thaw sensors
Shahinpoor, M.; Martinez, D.R.
1998-04-07
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.
Shape memory alloy thaw sensors
Shahinpoor, Mohsen; Martinez, David R.
1998-01-01
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.
Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita
2005-01-01
Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.
Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA
NASA Astrophysics Data System (ADS)
Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei
2018-01-01
In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.
Strategic design and fabrication of acrylic shape memory polymers
NASA Astrophysics Data System (ADS)
Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok
2017-08-01
Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.
Constitutive modeling of glassy shape memory polymers
NASA Astrophysics Data System (ADS)
Khanolkar, Mahesh
The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.
NASA Astrophysics Data System (ADS)
Fei, Pengzhan; Cavicchi, Kevin
2011-03-01
A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.
Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.
2004-01-01
"Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.
Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali E.; Naguib, Hani E.
2016-04-01
Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.
Method for fabricating uranium alloy articles without shape memory effects
Banker, John G.
1985-01-01
Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.
Method for fabricating uranium alloy articles without shape memory effects
Banker, J.G.
1980-05-21
Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.
Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks
NASA Astrophysics Data System (ADS)
Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr
2018-02-01
In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.
Reversible Shape Memory Polymers and Composites: Synthesis, Modeling and Design
2013-03-01
Polymer; and (iii) Development of a Shape Memory Assisted Self - Healing Polymer. Page 3 of 19 Mather/FA9550-09-1-0195 IV(i) Modeling and Model...0195 IV(iii) Development of a Shape Memory Assisted Self - Healing Polymer Erika D. Rodriguez, X. Luo, and P.T. Mather, “Linear and Crosslinked...Poly (ε- Caprolactone) Polymers for Shape Memory Assisted Self - Healing (SMASH),” ACS Applied Materials and Interfaces 3 152-161 (2011). Self
2016-11-01
Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Kathryn Esham, Luis Bravo, Anindya Ghoshal, Muthuvel Murugan, and Michael...Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Luis Bravo, Anindya Ghoshal, Muthuvel...High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation 5a
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
A Foldable Lithium-Sulfur Battery.
Li, Lu; Wu, Zi Ping; Sun, Hao; Chen, Deming; Gao, Jian; Suresh, Shravan; Chow, Philippe; Singh, Chandra Veer; Koratkar, Nikhil
2015-11-24
The next generation of deformable and shape-conformable electronics devices will need to be powered by batteries that are not only flexible but also foldable. Here we report a foldable lithium-sulfur (Li-S) rechargeable battery, with the highest areal capacity (∼3 mAh cm(-2)) reported to date among all types of foldable energy-storage devices. The key to this result lies in the use of fully foldable and superelastic carbon nanotube current-collector films and impregnation of the active materials (S and Li) into the current-collectors in a checkerboard pattern, enabling the battery to be folded along two mutually orthogonal directions. The carbon nanotube films also serve as the sulfur entrapment layer in the Li-S battery. The foldable battery showed <12% loss in specific capacity over 100 continuous folding and unfolding cycles. Such shape-conformable Li-S batteries with significantly greater energy density than traditional lithium-ion batteries could power the flexible and foldable devices of the future including laptops, cell phones, tablet computers, surgical tools, and implantable biomedical devices.
The quintuple-shape memory effect in electrospun nanofiber membranes
NASA Astrophysics Data System (ADS)
Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong
2013-08-01
Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization.
Alberto, Nélia; Fonseca, Maria A; Neto, Victor; Nogueira, Rogério; Oliveira, Mónica; Moreira, Rui
2017-11-11
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology's success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application.
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization
Nogueira, Rogério; Moreira, Rui
2017-01-01
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology’s success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application. PMID:29137136
Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.
Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui
2016-03-16
A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Peng, Huabei; Huang, Pan; Zhou, Tiannan; Wang, Shanling; Wen, Yuhua
2017-05-01
In this study, we investigated the shape memory behavior and phase transformations of solution-treated Fe43.61Mn34.74Al13.38Ni8.27 alloy between room temperature and 1173 K (900 °C). This alloy exhibits the reverse shape memory effect resulting from the phase transformation of α (bcc) → γ (fcc) between 673 K and 1073 K (400 °C and 800 °C) in addition to the shape memory effect resulting from the martensitic reverse transformation of γ' (fcc) → α (bcc) below 673 K (400 °C). There is a high density of hairpin-shaped dislocations in the α phase undergoing the martensitic reverse transformation of γ' → α. The lath γ phase, which preferentially nucleates and grows in the reversed α phase, has the same crystal orientation with the reverse-transformed γ' martensite. However, the vermiculate γ phase, which is precipitated in the α phase between lath γ phase, has different crystal orientations. The lath γ phase is beneficial to attaining better reverse shape memory effect than the vermiculate γ phase.
Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.
Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki
2007-12-01
Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.
A generalized analytical approach to the coupled effect of SMA actuation and elastica deflection
NASA Astrophysics Data System (ADS)
Sreekumar, M.; Singaperumal, M.
2009-11-01
A compliant miniature parallel manipulator made of superelastic nitinol pipe as its central pillar and actuated by three symmetrically attached shape memory alloy (SMA) wires is under development. The mobility for the platform is obtained by the selective actuation of one or two wires at a time. If one wire is actuated, the other two unactuated wires provide the counter effect. Similarly, if two wires are actuated simultaneously or in a differential manner, the third unactuated wire resists the movement of the platform. In an earlier work of the authors, the static displacement analysis was presented without considering the effect of unactuated wires. In this contribution, the force-displacement analysis is presented considering the effect of both actuated and unactuated wires. Subsequently, an attempt has been made to obtain a generalized approach from which six types of actuation methods are identified using a group of conditional parameters. Each method leads to a set of large deflection expressions suitable for a particular actuation method. As the large deflection expressions derived for the mechanism are nonlinear and involve interdependent parameters, their simplified form using a parametric approximation have also been obtained using Howell's algorithm. The generalized approach and the solution algorithm developed can be applied to any kind of compliant mechanism having large deflection capabilities, including planar and spatial MEMS devices and stability analysis of long slender columns supported by wires or cables. The procedure developed is also suitable for the static analysis of spatial compliant mechanisms actuated by multiple SMA actuators.
Methods of Making and Using Shape Memory Polymer Composite Patches
NASA Technical Reports Server (NTRS)
Hood, Patrick J.
2011-01-01
A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.
Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins
NASA Technical Reports Server (NTRS)
Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel
2011-01-01
Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.
Fejős, Márta; Molnár, Kolos; Karger-Kocsis, József
2013-01-01
Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm. PMID:28788342
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA)
2015-08-01
Shape Memory Alloy (SMA) by Cory R Knick and Christopher J Morris Approved for public release; distribution unlimited...Laboratory Development and Verification of Sputtered Thin-Film Nickel-Titanium (NiTi) Shape Memory Alloy (SMA) by Cory R Knick and Christopher
Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure
NASA Astrophysics Data System (ADS)
Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong
2016-09-01
Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.
NASA Astrophysics Data System (ADS)
Panchenko, E. Yu.; Chumlyakov, Yu. I.; Timofeeva, E. E.; Vetoshkina, N. G.; Maier, H.
2013-02-01
The results of investigation of the effect of precipitates of different sizes, from 5 to 300 nm, on the character of stress-induced martensitic transformations, the value of stress hysteresis and cyclic stability of superelasticity in Ni49Fe18Ga27Со6 (at.%) ferromagnetic single crystals oriented along the [ {bar{1}}23 ] axis are presented. It is shown that a martensitic transformation in single crystals of Ni49Fe18Ga27Со6 containing dispersed particles of the γ- and γ'-phases measuring up to 30 nm (ageing at 673 K for 1 and 4 hours) is characterized by storing considerable elastic energy. It is revealed that these single crystals exhibit higher cyclic stability of superelasticity and a narrower stress hysteresis compared to those in the initial state and aged at 823 K for 0.5 hour, the latter containing much larger (150-300 nm) particles.
Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad
2017-04-01
Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong
2018-06-01
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Post polymerization cure shape memory polymers
Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.
2017-01-10
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Post polymerization cure shape memory polymers
Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P
2014-11-11
This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.
Medical applications of shape memory polymers
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.
2005-01-01
Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.
Biomedical applications of thermally activated shape memory polymers†
Small, Ward; Singhal, Pooja; Wilson, Thomas S.
2011-01-01
Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605
Biomedical Applications of Thermally Activated Shape Memory Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small IV, W; Singhal, P; Wilson, T S
2009-04-10
Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.
Bistable Microvalve For Use With Microcatheter System
Seward, Kirk Patrick
2003-12-16
A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can be opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.
Bistable microvalve and microcatheter system
Seward, Kirk Patrick
2003-05-20
A bistable microvalve of shape memory material is operatively connected to a microcatheter. The bistable microvalve includes a tip that can be closed off until it is in the desired position. Once it is in position it can opened and closed. The system uses heat and pressure to open and close the microvalve. The shape memory material will change stiffness and shape when heated above a transition temperature. The shape memory material is adapted to move from a first shape to a second shape, either open or closed, where it can perform a desired function.
Periodic Cellular Structure Technology for Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Chen, Edward Y.
2015-01-01
Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Enhanced associative memory for colour (but not shape or location) in synaesthesia.
Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie
2013-05-01
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Brudnicki, Myron (Inventor)
1995-01-01
Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui
2015-02-01
Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate themore » effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.« less
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
Multi-range force sensors utilizing shape memory alloys
Varma, Venugopal K.
2003-04-15
The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.
Shape memory alloys: Properties and biomedical applications
NASA Astrophysics Data System (ADS)
Mantovani, Diego
2000-10-01
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2017-09-05
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Resistively heated shape memory polymer device
Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.
2016-10-25
A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.
Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas
NASA Astrophysics Data System (ADS)
Ren, Hongfeng
Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.
How we categorize objects is related to how we remember them: The shape bias as a memory bias
Vlach, Haley A.
2016-01-01
The “shape bias” describes the phenomenon that, after a certain point in development, children and adults generalize object categories based upon shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N = 72) and adults' (N = 240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than they were the color and size of objects. Taken together, this work suggests the development of a shape bias may engender better memory for shape information. PMID:27454236
How we categorize objects is related to how we remember them: The shape bias as a memory bias.
Vlach, Haley A
2016-12-01
The "shape bias" describes the phenomenon that, after a certain point in development, children and adults generalize object categories based on shape to a greater degree than other perceptual features. The focus of research on the shape bias has been to examine the types of information that learners attend to in one moment in time. The current work takes a different approach by examining whether learners' categorical biases are related to their retention of information across time. In three experiments, children's (N=72) and adults' (N=240) memory performance for features of objects was examined in relation to their categorical biases. The results of these experiments demonstrated that the number of shape matches chosen during the shape bias task significantly predicted shape memory. Moreover, children and adults with a shape bias were more likely to remember the shape of objects than the color and size of objects. Taken together, this work suggests that the development of a shape bias may engender better memory for shape information. Copyright © 2016 Elsevier Inc. All rights reserved.
Durability of carbon fiber reinforced shape memory polymer composites in space
NASA Astrophysics Data System (ADS)
Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.
NASA Astrophysics Data System (ADS)
Manjavidze, A. G.; Barnov, V. A.; Jorjishvili, L. I.; Sobolevskaya, S. V.
2008-03-01
The properties of a cylindrical spiral spring of nitinol (shape-memory alloy) are studied. When this spring is used as a working element in a rotary martensitic engine, the appearance of the two-way shape-memory effect in it is shown to decrease the engine operation efficiency.
Static analysis of C-shape SMA middle ear prosthesis
NASA Astrophysics Data System (ADS)
Latalski, Jarosław; Rusinek, Rafał
2017-08-01
Shape memory alloys are a family of metals with the ability to change specimen shape depending on their temperature. This unique property is useful in many areas of mechanical and biomechanical engineering. A new half-ring middle ear prosthesis design made of a shape memory alloy, that is undergoing initial clinical tests, is investigated in this research paper. The analytical model of the studied structure made of nonlinear constitutive material is solved to identify the temperature-dependent stiffness characteristics of the proposed design on the basis of the Crotti-Engesser theorem. The final integral expression for the element deflection is highly complex, thus the solution has to be computed numerically. The final results show the proposed shape memory C-shape element to behave linearly in the analysed range of loadings and temperatures. This is an important observation that significantly simplifies the analysis of the prototype structure and opens wide perspectives for further possible applications of shape memory alloys.
Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.
Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T
2018-06-19
We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
Thermomechanical Analysis of Shape-Memory Composite Tape Spring
NASA Astrophysics Data System (ADS)
Yang, H.; Wang, L. Y.
2013-06-01
Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.
Fabrication and characterization of shape memory polymers at small-scales
NASA Astrophysics Data System (ADS)
Wornyo, Edem
The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.
Additively Manufactured and Surface Biofunctionalized Porous Nitinol.
Gorgin Karaji, Z; Speirs, M; Dadbakhsh, S; Kruth, J-P; Weinans, H; Zadpoor, A A; Amin Yavari, S
2017-01-18
Enhanced bone tissue regeneration and improved osseointegration are among the most important goals in design of multifunctional orthopedic biomaterials. In this study, we used additive manufacturing (selective laser melting) to develop multifunctional porous nitinol that combines superelasticity with a rationally designed microarchitecture and biofunctionalized surface. The rational design based on triply periodic minimal surfaces aimed to properly adjust the pore size, increase the surface area (thereby amplifying the effects of surface biofunctionalization), and resemble the curvature characteristics of trabecular bone. The surface of additively manufactured (AM) porous nitinol was biofunctionalized using polydopamine-immobilized rhBMP2 for better control of the release kinetics. The actual morphological properties of porous nitinol measured by microcomputed tomography (e.g., open/close porosity, and surface area) closely matched the design values. The superelasticity originated from the austenite phase formed in the nitinol porous structure at room temperature. Polydopamine and rhBMP2 signature peaks were confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy tests. The release of rhBMP2 continued until 28 days. The early time and long-term release profiles were found to be adjustable independent of each other. In vitro cell culture showed improved cell attachment, cell proliferation, cell morphology (spreading, spindle-like shape), and cell coverage as well as elevated levels of ALP activity and increased calcium content for biofunctionalized surfaces as compared to as-manufactured specimens. The demonstrated functionalities of porous nitinol could be used as a basis for deployable orthopedic implants with rationally designed microarchitectures that maximize bone tissue regeneration performance by release of biomolecules with adjustable and well-controlled release profiles.
NASA Astrophysics Data System (ADS)
Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor
2015-02-01
The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.
NASA Astrophysics Data System (ADS)
Casati, R.; Saghafi, F.; Biffi, C. A.; Vedani, M.; Tuissi, A.
2017-10-01
Martensitic Ti-rich NiTi intermetallics are broadly used in various cyclic applications as actuators, which exploit the shape memory effect (SME). Recently, a new approach for exploiting austenitic Ni-rich NiTi shape memory alloys as actuators was proposed and named high-performance shape memory effect (HP-SME). HP-SME is based on thermal recovery of de-twinned martensite produced by mechanical loading of the parent phase. The aim of the manuscript consists in evaluating and comparing the fatigue and actuation properties of austenitic HP-SME wires and conventional martensitic SME wires. The effect of the thermomechanical cycling on the actuation response and the changes in the electrical resistivity of both shape memory materials were studied by performing the actuation tests at different stages of the fatigue life. Finally, the changes in the transition temperatures before and after cycling were also investigated by differential calorimetric tests.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2010-01-01
A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.
NASA Technical Reports Server (NTRS)
Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.
2011-01-01
A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.
Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.
Segal, Nadav; Hell, Jess; Berzins, David W
2009-06-01
The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P < 0.05) in OCP with deflection were found for the TMA and the Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P < 0.05) in i(corr) with deflection were also observed. All 3 wire groups had their lowest mean i(corr) values when not deflected. The i(corr) for superelastic Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase transformation.
A New Strategy to Prepare Polymer-based Shape Memory Elastomers.
Song, Shijie; Feng, Jiachun; Wu, Peiyi
2011-10-04
A new strategy that utilizes the microphase separation of block copolymer and phase transition of small molecules for preparing polymer-based shape memory elastomer has been proposed. According to this strategy, a novel kind of shape memory elastomer comprising styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and paraffin has been prepared. Because paraffins are midblock-selective molecules for SEBS, they will preferentially enter and swell EB blocks supporting paraffins as an excellent switch phase for shape memory effect. Microstructures of SEBS/paraffin composites have been characterized by transmission electron microscopy, polarized light microscopy, and differential scanning calorimetry. The composites demonstrate various phase morphologies with regard to different paraffin loading. It has been found that under low paraffin loading, all the paraffins precisely embed in and swell EB-rich domains. While under higher loading, part of the paraffins become free and a larger-scaled phase separation has been observed. However, within wide paraffin loadings, all composites show good shape fixing, shape recovery performances, and improved tensile properties. Compared to the reported methods for shape memory elastomers preparation, this method not only simplifies the fabrication procedure from raw materials to processing but also offers a controllable approach for the optimization of shape memory properties as well as balancing the rigidity and softness of the material. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A water-responsive shape memory ionomer with permanent shape reconfiguration ability
NASA Astrophysics Data System (ADS)
Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin
2018-04-01
In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.
Li, Ming; Guan, Qingbao; Dingemans, Theo J
2018-05-21
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets
2018-01-01
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899
3D Printing of Shape Memory Polymers for Flexible Electronic Devices.
Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo
2016-06-01
The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl
2013-01-01
A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.
Ni-Mn-Ga shape memory nanoactuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M., E-mail: manfred.kohl@kit.edu; Schmitt, M.; Krevet, B.
2014-01-27
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Ni-Mn-Ga shape memory nanoactuation
NASA Astrophysics Data System (ADS)
Kohl, M.; Schmitt, M.; Backen, A.; Schultz, L.; Krevet, B.; Fähler, S.
2014-01-01
To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys
NASA Astrophysics Data System (ADS)
Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.
2018-04-01
10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Effect of nitrogen on iron-manganese-based shape memory alloys
NASA Astrophysics Data System (ADS)
Ariapour, Azita
Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the proposed applications for high strength Fe-Mn-based alloys is as tendon rods in prestressed concrete. The advantage of M alloys in this application is the possibility of producing curved structural prestressed concrete.
New intrinsic mechanism on gum-like superelasticity of multifunctional alloys
Liu, Jia-Peng; Wang, Yan-Dong; Hao, Yu-Lin; Wang, Yunzhi; Nie, Zhi-Hua; Wang, Dong; Ren, Yang; Lu, Zhao-Ping; Wang, Jinguo; Wang, Haoliang; Hui, Xidong; Lu, Ning; Kim, Moon J.; Yang, Rui
2013-01-01
Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite. PMID:23831664
Novel Super-Elastic Materials for Advanced Bearing Applications
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
2014-01-01
Tribological surfaces of mechanical components encounter harsh conditions in terrestrial, marine and aerospace environments. Brinell denting, abrasive wear and fatigue often lead to life-limiting bearing and gear failures. Novel superelastic materials based upon Ni-Ti alloys are an emerging solution. Ni-Ti alloys are intermetallic materials that possess characteristics of both metals and ceramics. Ni-Ti alloys have intrinsically good aqueous corrosion resistance (they cannot rust), high hardness, relatively low elastic modulus, are chemically inert and readily lubricated. Ni-Ti alloys also belong to the family of superelastics and, despite high hardness, are able to withstand large strains without suffering permanent plastic deformation. In this paper, the use of hard, resilient Ni-Ti alloys for corrosion-proof, shockproof bearing and gear applications are presented. Through a series of bearing and gear development projects, it is demonstrated that Ni-Tis unique blend of materials properties lead to significantly improved load capacity, reduced weight and intrinsic corrosion resistance not found in any other bearing materials. Ni-Ti thus represents a new materials solution to demanding tribological applications.
Photo-elastic stress analysis of initial alignment archwires.
Badran, Serene A; Orr, John F; Stevenson, Mike; Burden, Donald J
2003-04-01
Photo-elastic models replicating a lower arch with a moderate degree of lower incisor crowding and a palatally displaced maxillary canine were used to evaluate the stresses transmitted to the roots of the teeth by initial alignment archwires. Six initial alignment archwires were compared, two multi-strand stainless steel wires, two non-super-elastic (stabilized martensitic form) nickel titanium wires, and two stress-induced super-elastic (austenitic active) nickel titanium wires. Three specimens of each archwire type were tested. Analysis of the photo-elastic fringe patterns, in the medium supporting the teeth, revealed that the non-super-elastic nickel titanium archwires produced the highest shear stresses (P = 0.001). However, the shear stresses generated by the super-elastic alignment archwires and the multi-strand stainless steel archwires were very similar (P = 1.00). These results show that even in situations where large deflections of initial alignment archwires are required, super-elastic archwires do not appear to have any marked advantage over multi-strand stainless steel alignment archwires in terms of the stresses transferred to the roots of the teeth.
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Self-folding with shape memory composites at the millimeter scale
NASA Astrophysics Data System (ADS)
Felton, S. M.; Becker, K. P.; Aukes, D. M.; Wood, R. J.
2015-08-01
Self-folding is an effective method for creating 3D shapes from flat sheets. In particular, shape memory composites—laminates containing shape memory polymers—have been used to self-fold complex structures and machines. To date, however, these composites have been limited to feature sizes larger than one centimeter. We present a new shape memory composite capable of folding millimeter-scale features. This technique can be activated by a global heat source for simultaneous folding, or by resistive heaters for sequential folding. It is capable of feature sizes ranging from 0.5 to 40 mm, and is compatible with multiple laminate compositions. We demonstrate the ability to produce complex structures and mechanisms by building two self-folding pieces: a model ship and a model bumblebee.
Shape Memory Alloy Isolation Valves: Public Quad Chart
2017-05-12
NUMBER (Include area code) 12 May 2017 Briefing Charts 12 April 2017 - 12 May 2017 Shape Memory Alloy Isolation Valves: Public Quad Chart William...Unclassified Unclassified Unclassified SAR 2 William Hargus N/A PAYOFF/TRANSITIONTECHNICAL APPROACH MOTIVATION APPLYING AFRL TO SUSTAINMENT • Evaluate...spacecraft (15+ yrs) • Shaped memory alloy isolation valves provide an intrinsically safe isolation system that increases lifetime >5x over SOTA and
Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams
Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.
2012-01-01
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509
Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments
NASA Technical Reports Server (NTRS)
Jardine, Andrew Peter (Inventor)
2015-01-01
This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.
Shape-memory surfaces for cell mechanobiology
Ebara, Mitsuhiro
2015-01-01
Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology. PMID:27877747
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
Early, Involuntary Top-Down Guidance of Attention From Working Memory
ERIC Educational Resources Information Center
Soto, David; Heinke, Dietmar; Humphreys, Glyn W.; Blanco, Manuel J.
2005-01-01
Four experiments explored the interrelations between working memory, attention, and eye movements. Observers had to identify a tilted line amongst vertical distractors. Each line was surrounded by a colored shape that could be precued by a matching item held in memory. Relative to a neutral baseline, in which no shapes matched the memory item,…
Shape memory alloys: a state of art review
NASA Astrophysics Data System (ADS)
Naresh, C.; Bose, P. S. C.; Rao, C. S. P.
2016-09-01
Shape memory alloys (SMAs) are the special materials that have the ability to return to a predetermined shape when heated. When this alloy is in below transformation temperature it undergoes low yield strength and will deform easily into any new shape which it will retain, if this alloy is heated above its transformation temperature it changes its crystal lattice structure which returns to its real shape. SMAs are remarkably different from other materials are primarily due to shape memory effect (SME) and pseudoelasticity which are related with the specific way the phase transformation occurs, biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. SMA are used in many applications such as aerospace, medical, automobile, tubes, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, actuators, miniature grippers, micro valves, pumps, landing gears, eye glass frames, Material for helicopter blades, sprinklers in fine alarm systems packaging devices for electronic materials, dental materials, etc. This paper focuses on introducing shape memory alloy and their applications in past, present and in future, also revealed the concept and mechanism of shape memory materials for a particular requirement. Properties of SMAs, behaviour and characteristics of SMA, summary of recent advances and new application opportunities are also discussed.
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
Method of preparing a two-way shape memory alloy
Johnson, Alfred D.
1984-01-01
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress.
Ban, Jianfeng; Zhu, Linjiang; Chen, Shaojun; Wang, Yiping
2016-01-01
To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. PMID:28773914
Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness
Samaroo, Harry D; Lu, Jing; Webster, Thomas J
2008-01-01
The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418
An overview of thin film nitinol endovascular devices.
Shayan, Mahdis; Chun, Youngjae
2015-07-01
Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
PREFACE: Tsukuba International Conference on Materials Science 2013
NASA Astrophysics Data System (ADS)
Kijima, Masashi; Ohshima, Kenichi; Kojima, Seiji; Nagasaki, Yukio; Miyazaki, Shuichi; Kim, Hee Young; Kadowaki, Kazuo; Kashiwagi, Takanari; Nakamura, Junji; Yamamoto, Yohei; Goto, Hiromasa
2014-03-01
Tsukuba International Conference on Materials Science (TICMS) was held from 28th August to 6th September, 2013 for the celebration of 40th year anniversary of the University of Tsukuba. The conference was organized by the Division of Materials Science, in cooperation with the Graduate School of Pure and Applied Sciences, and Tsukuba Research Center for Interdisciplinary Materials Science. The purpose of the conference was to provide a unique forum for researchers and students working in various fields of materials science, which have been progressing so rapidly that no single society could cover. The conference consists of following seven workshops to cover various fields. The organizing committee believed that the conference gave all participants new insights into the widespread development of materials science and enhanced the circulation, among them, of information released at the conference. The organizers are grateful for the financial support from University of Tsukuba. This volume contains 25 selected papers from invited and contributed papers, all of which have been screened on the basis of the standard review process of the program committee. The editors express their thanks to those authors who contributed the papers published in this proceedings, which reflects the scientific value of the conference. Nov. 20, 2013 Seiji Kojima, Prof. Dr. Chair, Division of Materials Science Chair, Doctoral Program in Materials Science TICMS 2013 (http://www.ticonfms.tsukuba.ac.jp/) Workshop list The 13th Japan-Korea Joint Workshop on Materials Science Summer School of Biomaterials Science The Japan-Korea Joint Workshop on Shape Memory and Superelastic Technologies The 2nd Workshop on THz Radiation from Intrinsic Josephson Junctions The 3rd German-Japan Nanoworkshop TICMS and IWP Joint Workshop on Conjugated Polymers International Workshop on Science and Patents (IWP) 2013
NASA Astrophysics Data System (ADS)
Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.
2016-03-01
The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.
A Material Model for the Cyclic Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael
2011-07-01
The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.
Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.
2011-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012
NASA Astrophysics Data System (ADS)
He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.
2004-10-01
NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.
Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E
2018-05-18
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, R; Stolken, J; Jannetti, C
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numericalmore » simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.« less
Determining the Mechanical Properties of Lattice Block Structures
NASA Technical Reports Server (NTRS)
Wilmoth, Nathan
2013-01-01
Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei
2017-09-01
TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects
Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard
2013-01-01
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316
Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.
2018-01-01
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626
Memory Metals (Marchon Eyewear)
NASA Technical Reports Server (NTRS)
1991-01-01
Another commercial application of memory metal technology is found in a "smart" eyeglass frame that remembers its shape and its wearer's fit. A patented "memory encoding process" makes this possible. Heat is not required to return the glasses to shape. A large commercial market is anticipated.
Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F
2016-11-29
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
NASA Astrophysics Data System (ADS)
Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.
2016-11-01
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
3D Printing of a Thermoplastic Shape Memory Polymer using FDM
NASA Astrophysics Data System (ADS)
Zhao, Zhiyang; Weiss, R. A.; Vogt, Bryan
Shape memory polymers (SMPs) change from a temporary shape to its permanent shape when exposed to an external stimulus. The shape memory relies on the presence of two independent networks. 3D printing provides a facile method to fabricate complex shapes with high degrees of customizability. The most common consumer 3D printing technology is fused deposition modeling (FDM), which relies on the extrusion of a thermoplastic filament to build-up the part in a layer by layer fashion. The material choices for FDM are limited, but growing. The generation of an SMP that is printable by FDM could open SMPs to many new potential applications. In this work, we demonstrate printing of thermally activated SMP using FDM. Partially neutralized poly(ethylene-co-r-methacrylic acid) ionomers (Surlyn by Dupont) was extruded into filaments and used as a model thermoplastic shape memory material. The properties of the SMP part can be readily tuned by print parameters, such as infill density or infill direction without changing the base material. We discuss the performance and characteristics of 3D printed shapes compared to their compression molded analogs.
Mechanisms of change of shape in deforming and heating titanium alloys with the shape memory effect
NASA Astrophysics Data System (ADS)
Il'in, A. A.; Kollerov, M. Yu.; Golovin, I. S.; Shinaev, A. A.
1998-04-01
Alloys with the shape memory effect based on titanium nickelide are well known and used quite widely in medicine, aircraft and spacecraft engineering, and other fields of mschine building. These alloys are used in creating thermomechanical parts of structures, temperature-sensitive gauges, and thermoregulators. Titanium alloys with the shape memory effect that posses high damping properties are used when vibrations and noise have to be limited in order to provide effective operation of machine parts and engineering systems as a whole. Commercial titanium-base alloys have lower characteristics of shape regeneration than alloys based on titanium nickelide. However, commercial alloys are much less expensive and are used to produce a wide range of semifinished products. In these materials the characteristics of shape regeneration and damping are often determined by the mechanism of change of shape in deformation, which has not yet been studied appropriately. The present work is devoted to the mechanisms of inelasticity in titanium alloys in various stages of the action of the shape memory effect.
No reliable evidence to guide initial arch wire choice for fixed appliance therapy.
Flores-Mir, Carlos
2013-12-01
The Cochrane Oral Health Group's Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Medline and Embase databases were searched. Conference proceedings and abstracts from the British Orthodontic Conference European Orthodontic Conference and the International Association for Dental Research were also searched together with the reference lists of identified studies. Study authors were contacted for additional information. Randomised controlled trials of initial arch wire involving participants with upper and/or lower full arch fixed orthodontic appliances were included. Study selection, data extraction and risk of bias assessment were carried out independently by at least two reviewers. Nine RCTs with 571 participants were included in this review. All trials were at high risk of bias. All trials had at least one potentially confounding factor (such as bracket type, slot size, ligation method, extraction of teeth) which is likely to have influenced the outcome and was not controlled in the trial. None of the trials reported the important adverse outcome of root resorption. The comparisons were made between:Multistrand stainless steel initial arch wires compared to superelastic nickel titanium (NiTi) initial arch wires. There were four trials in this group, with different comparisons and outcomes reported at different times. No meta-analysis was possible. There is insufficient evidence from these trials to determine whether or not there is a difference in either rate of alignment or pain between stainless steel and NiTi initial arch wires.Conventional (stabilised) NiTi initial arch wires compared to superelastic NiTi initial arch wires. There were two trials in this group, one reporting the outcome of alignment over six months and the other reporting pain over one week. There is insufficient evidence from these trials to determine whether or not there is any difference between conventional (stabilised) and superelastic NiTi initial arch wires with regard to either alignment or pain.Single-strand superelastic NiTi initial arch wires compared to other NiTi (coaxial, copper NiTi (CuNiTi) or thermoelastic) initial arch wires. The three trials in this comparison each compared a different product against single-strand superelastic NiTi. There is very weak unreliable evidence, based on one very small study (n = 24) at high risk of bias, that coaxial superelastic NiTi may produce greater tooth movement over 12 weeks, but no information on associated pain or root resorption. This result should be interpreted with caution until further research evidence is available. There is insufficient evidence to determine whether or not there is a difference between either thermoelastic or CuNiTi and superelastic NiTi initial arch wires. There is no reliable evidence from the trials included in this review that any specific initial arch wire material is better or worse than another with regard to speed of alignment or pain. There is no evidence at all about the effect of initial arch wire materials on the important adverse effect of root resorption. Further well-designed and conducted, adequately-powered RCTs are required to determine whether the performance of initial arch wire materials as demonstrated in the laboratory, makes a clinically important difference to the alignment of teeth in the initial stage of orthodontic treatment in patients.
NASA Astrophysics Data System (ADS)
Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.
2017-06-01
Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.
Wang, Hong-mei; Wang, Bang-kang; Ren, Chao-chao; Bai, Yu-xing
2011-03-01
To investigate the mechanical properties of Ni-Ti wires with direct electric resistance heat treatment (DERHT) method in three-point bending tests. Two superelastic Ni-Ti wires (wire A: Smart SE, wire B: SENTALLOY SE, 0.406 mm × 0.559 mm) and 2 heat-actived Ni-Ti wires (wire C: Smart SM, wire D: L&H TITAN, 0.406 mm × 0.559 mm) were selected. They were heat-treated using the DERHT method by a controlled electric current (6.36 A) applied for different period of time [0 (control), 1.0, 1.5, 2.0, 2.5 seconds). Then, a three-point bending test was performed under controlled temperature (37°C) to examine the relationships between the deflection and the load in the bending of wires. After DERHT treatment, the plateau in the force-deflection curve of superelastic Ni-Ti wires and heat-activated Ni-Ti wires were increased. When the wires were heated for 2.0 seconds and deflected to 1.5 mm, the loading force of A, B, C and D Ni-Ti wires increased from (3.85 ± 0.11), (3.62 ± 0.07), (3.28 ± 0.09), (2.91 ± 0.23) N to (4.33 ± 0.07), (4.07 ± 0.05), (4.52 ± 0.08), (3.27 ± 0.15) N respectively. DERHT method is very convenient for clinical use. It is possible to change the arch form and superelastic force of NiTi wires. The longer the heating time is, the more the superelastic characteristics of the wires are altered.
Fuck, Lars-Michael; Drescher, Dieter
2006-01-01
The determination of orthodontically-effective forces and moments places great demands on the technical equipment. Many patients report severe pain after fixed appliance insertion. Since it is assumed that pain from orthodontic appliances is associated with the force and moment levels applied to the teeth and since the occurrence of root resorption is a common therapeutic side effect, it would seem important to know the actual magnitudes of the components of the active orthodontic force systems. The aim of the present study was therefore to measure initial force systems produced by different leveling arch-wires in a complete multi-bracket appliance and to assess whether force and moment levels can be regarded as biologically acceptable or not. The actual bracket position in 42 patients was transferred onto a measurement model. Forces and moments produced by a super-elastic nickel-titanium (NiTi) archwire, a 6-strand stainless steel archwire, and a 7-strand super-elastic NiTi archwire were determined experimentally on different teeth. Average forces and moments produced by the super-elastic NiTi arch wires were found to be the highest. In spite if their larger diameter, the stranded arch wires' average force and moment levels were lower, especially that of the stranded super-elastic archwire. Nevertheless, maximum force levels sometimes exceeded recommended values in the literature and must be considered as too high. The measured arch wires' initial force systems differed significantly depending on the type of archwire and its material structure. Stranded arch wires produced lower force and moment levels, and we recommend their use in the initial phase of orthodontic treatment.
Hybrid Shape Memory Alloy Composites for Extreme Environments
2011-10-01
Shape Memory Alloys in Oil Well Applications,” Sintef Petroleum Research, 1999, Trondheim, Norway. 5. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins...Materials and Structures, Vol. 19, No. 1., 2009. 6. Hartl , D. J., Lagoudas, D., Mabe , J., Calkins, F., and Mooney, J., “Use of Ni60Ti Shape Memory...hydraulic actuators) and can thus be located in environments not previously accessible. SMA actuators can also be found in the aerospace ( Hartl and
Active Control of Flexible Space Structures Using the Nitinol Shape Memory Actuators
1987-10-01
number) FIELD !GROUP SUBGROUP I Active Control, Nitinol Actuators, Space Structures 9. ABSTRACT (Continue on reverse if necessary and identify by block...number) Summarizes research progress in the feasibility demonstration of active vibration control using Nitinol shape memory actuators. Tests on...FLEXIBLE SPACE STRUCTURES USING NITINOL SHAPE MEMORY ACTUATORS FINAL REPORT FOR PHASE I SDIO CONTRACT #F49620-87-C-0035 0 BY DR. AMR M. BAZ KARIM R
Shape-Memory Wires Switch Rotary Actuator
NASA Technical Reports Server (NTRS)
Brudnicki, Myron J.
1992-01-01
Thermomechanical rotary actuator based on shape-memory property of alloy composed of equal parts of titanium and nickel. If alloy stretched while below transition temperature, it reverts to original length when heated above transition temperature. Two capstans on same shaft wrapped with shape-memory wires. As one wire heated, it contracts and stretches opposite wire. Wires heated in alternation so they switch shaft between two extreme angular positions; "on" and "off" positions of rotary valve.
Modeling the behaviour of shape memory materials under large deformations
NASA Astrophysics Data System (ADS)
Rogovoy, A. A.; Stolbova, O. S.
2017-06-01
In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.
Method of preparing a two-way shape memory alloy
Johnson, A.D.
1984-03-06
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases are disclosed. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress. 8 figs.
Distinct regions of the hippocampus are associated with memory for different spatial locations.
Jeye, Brittany M; MacEvoy, Sean P; Karanian, Jessica M; Slotnick, Scott D
2018-05-15
In the present functional magnetic resonance imaging (fMRI) study, we aimed to evaluate whether distinct regions of the hippocampus were associated with spatial memory for items presented in different locations of the visual field. In Experiment 1, during the study phase, participants viewed abstract shapes in the left or right visual field while maintaining central fixation. At test, old shapes were presented at fixation and participants classified each shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. Accurate spatial memory for shapes in the left visual field was isolated by contrasting accurate versus inaccurate spatial location responses. This contrast produced one hippocampal activation in which the interaction between item type and accuracy was significant. The analogous contrast for right visual field shapes did not produce activity in the hippocampus; however, the contrast of high confidence versus low confidence right-hits produced one hippocampal activation in which the interaction between item type and confidence was significant. In Experiment 2, the same paradigm was used but shapes were presented in each quadrant of the visual field during the study phase. Accurate memory for shapes in each quadrant, exclusively masked by accurate memory for shapes in the other quadrants, produced a distinct activation in the hippocampus. A multi-voxel pattern analysis (MVPA) of hippocampal activity revealed a significant correlation between behavioral spatial location accuracy and hippocampal MVPA accuracy across participants. The findings of both experiments indicate that distinct hippocampal regions are associated with memory for different visual field locations. Copyright © 2018 Elsevier B.V. All rights reserved.
The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications
NASA Technical Reports Server (NTRS)
Jackson, C. M.; Wagner, H. J.; Wasilewski, R. J.
1972-01-01
A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications.
Fabrication of a helical coil shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Odonnell, R. E.
1992-02-01
A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.
Ancelet, Lindsay; Kirman, Joanna
2012-02-01
Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.
Working memory for braille is shaped by experience.
Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco
2011-03-01
Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.
4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices.
Zarek, Matt; Mansour, Nicola; Shapira, Shir; Cohn, Daniel
2017-01-01
The convergence of additive manufacturing and shape-morphing materials is promising for the advancement of personalized medical devices. The capability to transform 3D objects from one shape to another, right off the print bed, is known as 4D printing. Shape memory thermosets can be tailored to have a range of thermomechanical properties favorable to medical devices, but processing them is a challenge because they are insoluble and do not flow at any temperature. This study presents here a strategy to capitalize on a series of medical imaging modalities to construct a printable shape memory endoluminal device, exemplified by a tracheal stent. A methacrylated polycaprolactone precursor with a molecular weight of 10 000 g mol -1 is printed with a UV-LED stereolithography printer based on anatomical data. This approach converges with the zeitgeist of personalized medicine and it is anticipated that it will broadly expand the application of shape memory-exhibiting biomedical devices to myriad clinical indications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The shape-memory effect in ionic elastomers: fixation through ionic interactions.
González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L
2017-04-19
Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.
Low-cost high-quality Fe-based shape memory alloys suitable for pipe joints
NASA Astrophysics Data System (ADS)
Kajiwara, Setsuo; Baruj, Albert L.; Kikuchi, Takehiko; Shinya, Norio
2003-08-01
By addition of small amount of Nb and C to the conventional Fe-Mn-Si based shape memory alloys, shape memory properties are greatly improved in such an extent that the costly 'training' heat treatment is no more necessary. The key to this remarkable improvement of shape memory effect is to produce small NbC precipitates of about several nm in size in austenite. In order to generate such very small NbC particles, the sample is firstly rolled at 870 K and then aged at 1070 K. An example of Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass %) alloy is shown; 95% shape recovery for initial strain of 4% is obtained and the shape recovery stress of about 300 MPa is attained for the sample pre-rolled 14%, which is well above the criterion for industry application of pipe jointing. A pipe jointing with this material is demonstrated.
NASA Astrophysics Data System (ADS)
Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong
2017-12-01
Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.
Shape-memory alloy micro-actuator
NASA Technical Reports Server (NTRS)
Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)
1991-01-01
A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).
Preparation and characterization of triple shape memory composite foams.
Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T
2014-10-28
Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.
Fatigue properties of superelastic Ti-Ni filaments and braided cables for bone fixation.
Baril, Y; Brailovski, V
2010-02-01
This work is focused on the fatigue properties of the braided hollow tubular cables for bone fixation made of superelastic Ti-Ni filaments. To evaluate the fatigue life of the cable and the impact of braiding on fatigue life, a comparative study was conducted on both the braided cable and the single filament. The results of strain-controlled fatigue testing under variable mean and alternating strain conditions demonstrated that: (a) even though alternating strain is the most influent parameter, mean strain also has a significant impact on the fatigue life of both the filament and the braid; an improvement in the braided cable's fatigue life is observed under mean strains corresponding to the middle of the superelastic loop plateau; and (b) run-out (10(5) cycles) is reached at 1% of alternating strain for the filament, and at 0.3% for the braided cable. It was proved that the negative impact of braiding on fatigue life is caused: (a) by friction-induced damage of the braided filaments during cable manufacturing and (b) by locally occurring bending in the vicinity of the filaments' crossing, combined with the interfilament fretting during repetitive stretching of the braided cable.
Mechanical modeling of self-expandable stent fabricated using braiding technology.
Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol
2008-11-14
The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.
NASA Astrophysics Data System (ADS)
Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong
2016-01-01
A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.
1983-03-01
BUREAU OF STANDARDS-1963-A ,,...:-. .-. -.’" :.- --. . 4 Iq " USAAVRADCOM-TR-82-D-37 COMBAT MAINTENANCE CONCEPTS AND REPAIR TECHNIQUES USING SHAPE MEMORY...O APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT The results of this effort determined the feasibility of using the full-ring shape memory alloy...specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United
Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie
2008-07-01
The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.
Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng
2015-10-28
Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.
Thermomechanical behavior of shape memory elastomeric composites
NASA Astrophysics Data System (ADS)
Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2012-01-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.
Studies and applications of NiTi shape memory alloys in the medical field in China.
Dai, K; Chu, Y
1996-01-01
The biomedical study of NiTi shape memory alloys has been undertaken in China since 1978. A series of stimulating corrosion tests, histological observations, toxicity tests, carcinogenicity tests, trace nickel elements analysis and a number of clinical trials have been conducted. The results showed that the NiTi shape memory alloy is a good biomaterial with good biocompatibility and no obvious local tissue reaction, carcinogenesis or erosion of implants were found experimentally or clinically. In 1981, on the basis of fundamental studies, a shape memory staple was used for the first time inside the human body. Subsequently, various shape memory devices were designed and applied clinically for internal fixation of fractures, spine surgery, endoprostheses, gynaecological and craniofacial surgery. Since 1990, a series of internal stents have been developed for the management of biliary, tracheal and esophageal strictures and urethrostenosis as well as vascular obturator for tumour management. Several thousand cases have been treated and had a 1-10 year follow-up and good clinical results with a rather low complication rate were obtained.
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
Multifunctional shape-memory polymers.
Behl, Marc; Razzaq, Muhammad Yasar; Lendlein, Andreas
2010-08-17
The thermally-induced shape-memory effect (SME) is the capability of a material to change its shape in a predefined way in response to heat. In shape-memory polymers (SMP) this shape change is the entropy-driven recovery of a mechanical deformation, which was obtained before by application of external stress and was temporarily fixed by formation of physical crosslinks. The high technological significance of SMP becomes apparent in many established products (e.g., packaging materials, assembling devices, textiles, and membranes) and the broad SMP development activities in the field of biomedical as well as aerospace applications (e.g., medical devices or morphing structures for aerospace vehicles). Inspired by the complex and diverse requirements of these applications fundamental research is aiming at multifunctional SMP, in which SME is combined with additional functions and is proceeding rapidly. In this review different concepts for the creation of multifunctionality are derived from the various polymer network architectures of thermally-induced SMP. Multimaterial systems, such as nanocomposites, are described as well as one-component polymer systems, in which independent functions are integrated. Future challenges will be to transfer the concept of multifunctionality to other emerging shape-memory technologies like light-sensitive SMP, reversible shape changing effects or triple-shape polymers.
Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites
NASA Astrophysics Data System (ADS)
Yang, Qingsheng; Liu, Xia; Leng, Fangfang
2009-07-01
Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.
Shape memory alloy/shape memory polymer tools
Seward, Kirk P.; Krulevitch, Peter A.
2005-03-29
Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, II, Santo A (Inventor)
2013-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response
NASA Technical Reports Server (NTRS)
Padula, Santo A., II (Inventor)
2016-01-01
Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.
Working memory for braille is shaped by experience
Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco
2011-01-01
Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience. PMID:21655448
Lloyd-Jones, Toby J; Roberts, Mark V; Leek, E Charles; Fouquet, Nathalie C; Truchanowicz, Ewa G
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured - yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects.
Lloyd-Jones, Toby J.; Roberts, Mark V.; Leek, E. Charles; Fouquet, Nathalie C.; Truchanowicz, Ewa G.
2012-01-01
Little is known about the timing of activating memory for objects and their associated perceptual properties, such as colour, and yet this is important for theories of human cognition. We investigated the time course associated with early cognitive processes related to the activation of object shape and object shape+colour representations respectively, during memory retrieval as assessed by repetition priming in an event-related potential (ERP) study. The main findings were as follows: (1) we identified a unique early modulation of mean ERP amplitude during the N1 that was associated with the activation of object shape independently of colour; (2) we also found a subsequent early P2 modulation of mean amplitude over the same electrode clusters associated with the activation of object shape+colour representations; (3) these findings were apparent across both familiar (i.e., correctly coloured – yellow banana) and novel (i.e., incorrectly coloured - blue strawberry) objects; and (4) neither of the modulations of mean ERP amplitude were evident during the P3. Together the findings delineate the timing of object shape and colour memory systems and support the notion that perceptual representations of object shape mediate the retrieval of temporary shape+colour representations for familiar and novel objects. PMID:23155393
Modeling and Bayesian Parameter Estimation for Shape Memory Alloy Bending Actuators
2012-02-01
prosthetic hand,” Technology and Health Care 10, 91–106 (2002). 4. Hartl , D., Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization,” Smart Materials and Structures 19, 1–14 (2010). 5. Hartl , D...Lagoudas, D., Calkins, F., and Mabe , J., “Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X
2016-12-01
Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Poly(Capro-Lactone) Networks as Actively Moving Polymers
NASA Astrophysics Data System (ADS)
Meng, Yuan
Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double network" that behaves as a real thermal "actuator". This approach places sub-chains under different degrees of configurational bias within the network to utilize the material's propensity to undergo stress-induced crystallization. Reconfiguration of model shape-memory networks containing photo-sensitive linkages can also be employed to program two-way actuator. Chain reshuffling of a partially reconfigurable network is initiated upon exposure to light under specific strains. Interesting photo-induced creep and stress relaxation behaviors were demonstrated and understood based on a novel transient network model we derived. In summary, delicate manipulation of shape-memory network architectures addressed critical issues constraining the application of this type of functional polymer material. Strategies developed in this thesis may provide new opportunity to the field of shape-memory polymers.
Shape memory alloy-actuated bistable composites for morphing structures
NASA Astrophysics Data System (ADS)
Chillara, Venkata Siva C.; Dapino, Marcelo J.
2018-03-01
Laminated composites with orthogonally-applied mechanical prestress have been shown to exhibit two stable shapes where each shape is influenced by only one prestrained lamina. The application of mechanical prestress is associated with an irreversible non-zero stress state; when combined with smart materials with controllable stress-states, this results in multifunctionality in morphing composites. This study presents an experimental characterization of the shape transition or snap-through in mechanically-prestressed bistable laminates. Measurements, conducted using tensile testing and 3D motion capture, show that snap-through in these laminates is a multi-stage phenomenon. An active bistable morphing composite is demonstrated using NiTi shape memory wire actuators in push-pull configuration; activation of one wire resets the second wire as the composite morphs. The set of shape memory actuators not only actuate the composite in both directions, but also act as dampers that enable vibration-free shape transition.
Working memory can enhance unconscious visual perception.
Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying
2012-06-01
We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.
Does the hippocampus mediate objective binding or subjective remembering?
Slotnick, Scott D
2010-01-15
Human functional magnetic resonance imaging (fMRI) evidence suggests the hippocampus is associated with context memory to a greater degree than item memory (where only context memory requires item-in-context binding). A separate line of fMRI research suggests the hippocampus is associated with "remember" responses to a greater degree than "know" or familiarity based responses (where only remembering reflects the subjective experience of specific detail). Previous studies, however, have confounded context memory with remembering and item memory with knowing. The present fMRI study independently tested the binding hypothesis and remembering hypothesis of hippocampal function by evaluating activity within hippocampal regions-of-interest (ROIs). At encoding, participants were presented with colored and gray abstract shapes and instructed to remember each shape and whether it was colored or gray. At retrieval, old and new shapes were presented in gray and participants classified each shape as "old and previously colored", "old and previously gray", or "new", followed by a "remember" or "know" response. In 3 of 11 hippocampal ROIs, activity was significantly greater for context memory than item memory, the context memory-item memory by remember-know interaction was significant, and activity was significantly greater for context memory-knowing than item memory-remembering. This pattern of activity only supports the binding hypothesis. The analogous pattern of activity that would have supported the remembering hypothesis was never observed in the hippocampus. However, a targeted analysis revealed remembering specific activity in the left inferior parietal cortex. The present results suggest parietal cortex may be associated with subjective remembering while the hippocampus mediates binding.
High-Strength, Superelastic Compounds
NASA Technical Reports Server (NTRS)
Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua
2013-01-01
In a previous disclosure, the use of 60- NiTiNOL, an ordered intermetallic compound composed of 60 weight percent nickel and 40 weight percent titanium, was investigated as a material for advanced aerospace bearings due to its unique combination of physical properties. Lessons learned during the development of applications for this material have led to the discovery that, with the addition of a ternary element, the resulting material can be thermally processed at a lower temperature to attain the same desirable hardness level as the original material. Processing at a lower temperature is beneficial, not only because it reduces processing costs from energy consumption, but because it also significantly reduces the possibility of quench cracking and thermal distortion, which have been problematic with the original material. A family of ternary substitutions has been identified, including Hf and Zr in various atomic percentages with varying concentrations of Ni and Ti. In the present innovation, a ternary intermetallic compound consisting of 57.6 weight percent Ni, 39.2 weight percent Ti, and 3.2 weight percent Hf (54Ni-45Ti-1Hf atomic percent) was prepared by casting. In this material, Hf substitutes for some of the Ti atoms in the material. In an alternate embodiment of the innovation, Zr, which is close in chemical behavior to Hf, is used as the substitutional element. With either substitution, the solvus temperature of the material is reduced, and lower temperatures can be used to obtain the necessary hardness values. The advantages of this innovation include the ability to solution-treat the material at a lower temperature and still achieve the required hardness for bearings (at least 50 Rockwell C) and superelastic behavior with recoverable strains greater than 2%. Most structural alloys will not return to their original shape after being deformed as little as 0.2% (a tenth of that possible with superelastic materials like 60 NiTiNOL). Because lower temperatures can be used in the heat treatment process, less energy will be consumed, and there will be less dimensional distortion and quench cracking. This results in fewer scrap parts, less material waste from large amounts of material removal, and fewer machining steps to rework parts that are out of specification. This material has a combination of properties that have been previously unobtainable. The material has a Young s modulus of approximately 95 GPa (about half that of conventional steels), moderate density (10 to 15% lower than conventional steels), excellent corrosion resistance, and high hardness (58 to 62 HRC). These properties make this material uniquely suited for advanced bearings.
Shape-memory properties in Ni-Ti sputter-deposited film
NASA Technical Reports Server (NTRS)
Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.
1990-01-01
A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.
Incidental biasing of attention from visual long-term memory.
Fan, Judith E; Turk-Browne, Nicholas B
2016-06-01
Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Functionally Graded Metal-Metal Composite Structures
NASA Technical Reports Server (NTRS)
Brice, Craig A. (Inventor)
2017-01-01
Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng
2018-03-25
A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa
NASA Astrophysics Data System (ADS)
Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.
2018-06-01
The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.
Binding of intrinsic and extrinsic features in working memory.
Ecker, Ullrich K H; Maybery, Murray; Zimmer, Hubert D
2013-02-01
There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent object. We presented a series of experiments that investigated the binding of color and shape, whereby color was either an intrinsic feature of the shape or an extrinsic feature of the shape's background. Results show that intrinsic color affected shape recognition, even when it was incidentally studied and irrelevant for the recognition task. In contrast, extrinsic color did not affect shape recognition, even when the association of color and shape was encoded and retrievable on demand. This strongly suggests that binding of intrinsic intra-item information but not extrinsic contextual information is obligatory in visual working memory. We highlight links to perception as well as implicit and explicit long-term memory, which suggest that the intrinsic-extrinsic dimension is a principle relevant to multiple domains of human cognition. 2013 APA, all rights reserved
Kalita, Hemjyoti; Karak, Niranjan
2014-07-01
Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.
Xie, Hanhan; Shao, Jundong; Ma, Yufei; Wang, Jiahong; Huang, Hao; Yang, Na; Wang, Huaiyu; Ruan, Changshun; Luo, Yanfeng; Wang, Qu-Quan; Chu, Paul K; Yu, Xue-Feng
2018-05-01
In this paper, we propose a new shape memory polymer (SMP) composite with excellent near-infrared (NIR)-photoresponsive shape memory performance and biodegradability. The composite is fabricated by using piperazine-based polyurethane (PU) as thermo-responsive SMP incorporated with black-phosphorus (BP) sheets as NIR photothermal nanofillers. Under 808 nm light irradiation, the incorporated BP sheets with concentration of only 0.08 wt% enable rapid temperature increase over the glass temperature of PU and trigger the shape change of the composite with shape recovery rate of ∼100%. The in vitro and in vivo toxicity examinations demonstrate the good biocompatibility of the PU/BP composite, and it degrades naturally into non-toxic carbon dioxide and water from PU and non-toxic phosphate from BP. By implanting PU/BP columns into back subcutis and vagina of mice, they exhibit excellent shape memory activity to change their shape quickly under moderate 808 nm light irradiaiton. Such SMP composite enable the development of intelligent implantable devices, which can be easily controlled by the remote NIR light and degrade gradually after performing the designed functions in the body. Copyright © 2018 Elsevier Ltd. All rights reserved.
Graphitization of Glassy Carbon after Compression at Room Temperature
NASA Astrophysics Data System (ADS)
Shiell, T. B.; McCulloch, D. G.; McKenzie, D. R.; Field, M. R.; Haberl, B.; Boehler, R.; Cook, B. A.; de Tomas, C.; Suarez-Martinez, I.; Marks, N. A.; Bradby, J. E.
2018-05-01
Glassy carbon is a technologically important material with isotropic properties that is nongraphitizing up to ˜3000 °C and displays complete or "superelastic" recovery from large compression. The pressure limit of these properties is not yet known. Here we use experiments and modeling to show permanent densification, and preferred orientation occurs in glassy carbon loaded to 45 GPa and above, where 45 GPa represents the limit to the superelastic and nongraphitizing properties of the material. The changes are explained by a transformation from its s p2 rich starting structure to a s p3 rich phase that reverts to fully s p2 bonded oriented graphite during pressure release.
Optically probing torsional superelasticity in spider silks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit
2013-11-11
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-basedmore » materials and devices.« less
Estimation of aneurysm wall stresses created by treatment with a shape memory polymer foam device
Hwang, Wonjun; Volk, Brent L.; Akberali, Farida; Singhal, Pooja; Criscione, John C.
2012-01-01
In this study, compliant latex thin-walled aneurysm models are fabricated to investigate the effects of expansion of shape memory polymer foam. A simplified cylindrical model is selected for the in-vitro aneurysm, which is a simplification of a real, saccular aneurysm. The studies are performed by crimping shape memory polymer foams, originally 6 and 8 mm in diameter, and monitoring the resulting deformation when deployed into 4-mm-diameter thin-walled latex tubes. The deformations of the latex tubes are used as inputs to physical, analytical, and computational models to estimate the circumferential stresses. Using the results of the stress analysis in the latex aneurysm model, a computational model of the human aneurysm is developed by changing the geometry and material properties. The model is then used to predict the stresses that would develop in a human aneurysm. The experimental, simulation, and analytical results suggest that shape memory polymer foams have potential of being a safe treatment for intracranial saccular aneurysms. In particular, this work suggests oversized shape memory foams may be used to better fill the entire aneurysm cavity while generating stresses below the aneurysm wall breaking stresses. PMID:21901546
Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong
2011-06-07
To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.
2011-11-01
sensor. volume 79781K. Proceedings of the SPIE 7978, 2011. [9] D.J. Hartl , D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory...alloy for active jet engine chevron application: I. thermomechanical characterization. Smart Materials and Structures, 19:1–14, 2010. [10] D.J. Hartl ...D.C. Lagoudas, F.T. Calkins, and J.H. Mabe . Use of a ni60ti shape memory alloy for active jet engine chevron application: II. experimentally validated
The ferromagnetic shape-memory effect in Ni Mn Ga
NASA Astrophysics Data System (ADS)
Marioni, M. A.; O'Handley, R. C.; Allen, S. M.; Hall, S. R.; Paul, D. I.; Richard, M. L.; Feuchtwanger, J.; Peterson, B. W.; Chambers, J. M.; Techapiesancharoenkij, R.
2005-04-01
Active materials have long been used in the construction of sensors and devices. Examples are piezo-electric ceramics and shape memory alloys. The more recently developed ferromagnetic shape-memory alloys (FSMAs) have received considerable attention due to their large magnetic field-induced, reversible strains (up to 10%). In this article, we review the basic physical characteristics of the FSMA Ni-Mn-Ga (crystallography, thermal, mechanical and magnetic behavior). Also, we present some of the works currently under way in the areas of pulse-field and acoustic-assisted actuation, and vibration energy absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Z. H.; Lin Peng, R.; Johansson, S.
2008-01-01
In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.
Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding
Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter
2012-01-01
Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811
Thermal response of novel shape memory polymer-shape memory alloy hybrids
NASA Astrophysics Data System (ADS)
Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu
2014-03-01
Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.
Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential
NASA Astrophysics Data System (ADS)
Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin
2015-06-01
Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.
Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T
2003-06-01
The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.
NASA Astrophysics Data System (ADS)
Dunne, Conor F.; Roche, Kevin; Ruddy, Mark; Doherty, Kevin A. J.; Twomey, Barry; O'Donoghue, John; Hodgson, Darel; Stanton, Kenneth T.
2018-06-01
This work investigates the deposition of hydroxyapatite (HA) onto superelastic nickel-titanium (NiTi) using an ambient temperature coating process known as CoBlast. The process utilises a stream of abrasive alumina (Al2O3) and a coating medium (HA) sprayed simultaneously at the surface of the substrate. The use of traditional coatings methods, such as plasma spray, is unsuitable due to the high temperatures of the process. This can result in changes to both the crystallinity of the HA and properties of the thermally sensitive NiTi. HA is a biocompatible, biodegradable and osteoconductive ceramic, which when used as a coating can promote bone growth and prevent the release of nickel from NiTi in vivo. Samples were coated using different blast pressures and abrasive particle sizes and were examined using a variety of techniques. The coated samples had a thin adherent coating, which increased in surface roughness and coating thickness with increasing abrasive particle size. X-ray diffraction analysis revealed that the process gave rise to a stress-induced martensite phase in the NiTi which may enhance mechanical properties. The study indicates that the CoBlast process can be used to deposit thin adherent coatings of HA onto the surface of superelastic NiTi.
NASA Astrophysics Data System (ADS)
Yokoyama, Ken'ichi; Hashimoto, Tatsuki; Sakai, Jun'ichi
2017-11-01
The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni-Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.
Shape Memory Alloy Rock Splitters (SMARS)
NASA Technical Reports Server (NTRS)
Benafan, Othmane (Inventor); Noebe, Ronald D. (Inventor)
2017-01-01
Shape memory alloys (SMAs) may be used for static rock splitting. The SMAs may be used as high-energy multifunctional materials, which have a unique ability to recover large deformations and generate high stresses in response to thermal loads.
Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.
2008-01-01
Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.
Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei
2016-09-21
Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...
2015-04-10
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Fabrication de couches minces a memoire de forme et effets de l'irradiation ionique
NASA Astrophysics Data System (ADS)
Goldberg, Florent
1998-09-01
Nickel and titanium when combined in the right stoichiometric proportion (1:1) can form alloys showing the shape memory effect. Within the scope of this thesis, thin films of such alloys have been successfully produced by sputtering. Precise control of composition is crucial in order to obtain the shape memory effect. A combination of analytical tools which can accurately determine the behavior of such materials is also required (calorimetric analysis, crystallography, composition analysis, etc.). Rutherford backscattering spectrometry has been used for quantitative composition analysis. Thereafter irradiation of films with light ions (He+) of few MeV was shown to allow lowering of the characteristic premartensitic transformation temperatures while preserving the shape memory effect. Those results open the door to a new field of research, particularly for ion irradiation and its potential use as a tool to modify the thermomechanical behavior of shape memory thin film actuators.
Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Pruitt, Cole; Rios, Orlando
Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less
Shape-memory effect of nanocomposites based on liquid-crystalline elastomers
NASA Astrophysics Data System (ADS)
Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.
2016-05-01
In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.
Improving the Performance of Electrically Activated NiTi Shape Memory Actuators by Pre-Aging
NASA Astrophysics Data System (ADS)
Rathmann1, Christian; Fleczok1, Benjamin; Otibar1, Dennis; Kuhlenkötter, Bernd
2017-06-01
Shape memory alloys possess an array of unique functional properties which are influenced by a complex interaction of different factors. Due to thermal sensitivity, slight changes in temperature may cause the properties to change significantly. This poses a huge challenge especially for the use of shape memory alloys as actuators. The displacement is the key performance indicator, which has to be of equal or better quality compared to conventional actuators. One problem of shape memory alloys is the change in functional fatigue in the first cycles, which makes it rather difficult to design the actuator. Therefore, the reduction of this shakedown effect is crucial. For this reason, this paper investigates the effect of electrical heat treatment as a method for pre-aging. This topic has so far been little investigated so that the investigations focus on identifying important factors and effects by using the design of experiments.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan; Wen, John T.
1997-06-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Preisach modeling of piezoceramic and shape memory alloy hysteresis
NASA Astrophysics Data System (ADS)
Hughes, Declan C.; Wen, John T.
1996-05-01
Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.
Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia
Zeng, Xiao Mei; Du, Zehui; Schuh, Christopher A.; ...
2015-12-17
Small volume zirconia ceramics with few or no grain boundaries have been demonstrated recently to exhibit the shape memory effect. To explore the shape memory properties of yttria doped zirconia (YDZ), it is desirable to develop large, microscale grains, instead of submicron grains that result from typical processing of YDZ. In this paper, we have successfully produced single crystal micro-pillars from microscale grains encouraged by the addition of titania during processing. Titania has been doped into YDZ ceramics and its effect on the grain growth, crystallization and microscale elemental distribution of the ceramics have been systematically studied. With 5 mol%more » titania doping, the grain size can be increased up to ~4 μm, while retaining a large quantity of the desired tetragonal phase of zirconia. Finally, micro-pillars machined from tetragonal grains exhibit the expected shape memory effects where pillars made from titania-free YDZ would not.« less
Chemical cross-linking of polypropylenes towards new shape memory polymers.
Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C
2015-04-01
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
NASA Astrophysics Data System (ADS)
Lashley, Jason
2005-03-01
Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and if reversible can allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the operative electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. Our findings suggest that electronic band structure gives rise to special features on the Fermi surface that is important to consider in the design of SME alloys.
Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin
2017-12-20
An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.
Spray forming of NiTi and NiTiPd shape-memory alloys
NASA Astrophysics Data System (ADS)
Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-03-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
Spray Forming of NiTi and NiTiPd Shape-Memory Alloys
NASA Technical Reports Server (NTRS)
Mabe, James; Ruggeri, Robert; Noebe, Ronald
2008-01-01
In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.
Self-sculpting of a dissolvable body due to gravitational convection
NASA Astrophysics Data System (ADS)
Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif
2018-04-01
Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.
High Cycle-life Shape Memory Polymer at High Temperature
Kong, Deyan; Xiao, Xinli
2016-01-01
High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148
NASA Astrophysics Data System (ADS)
Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.
Park, Jin Ho; Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu
2014-01-01
Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating. PMID:28788529
Shape-morphing composites with designed micro-architectures
NASA Astrophysics Data System (ADS)
Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.
2016-06-01
Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.
A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
Sanders, J O; Sanders, A E; More, R; Ashman, R B
1993-09-15
Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.
Towards Low-Cost Effective and Homogeneous Thermal Activation of Shape Memory Polymers
Lantada, Andrés Díaz; Rebollo, María Ángeles Santamaría
2013-01-01
A typical limitation of intelligent devices based on the use of shape-memory polymers as actuators is linked to the widespread use of distributed heating resistors, via Joule effect, as activation method, which involves several relevant issues needing attention, such as: (a) Final device size is importantly increased due to the additional space required for the resistances; (b) the use of resistances limits materials’ strength and the obtained devices are normally weaker; (c) the activation process through heating resistances is not homogeneous, thus leading to important temperature differences among the polymeric structure and to undesirable thermal gradients and stresses, also limiting the application fields of shape-memory polymers. In our present work we describe interesting activation alternatives, based on coating shape-memory polymers with different kinds of conductive materials, including textiles, conductive threads and conductive paint, which stand out for their easy, rapid and very cheap implementation. Distributed heating and homogeneous activation can be achieved in several of the alternatives studied and the technical results are comparable to those obtained by using advanced shape-memory nanocomposites, which have to deal with complex synthesis, processing and security aspects. Different combinations of shape memory epoxy resin with several coating electrotextiles, conductive films and paints are prepared, simulated with the help of thermal finite element method based resources and characterized using infrared thermography for validating the simulations and overall design process. A final application linked to an active catheter pincer is detailed and the advantages of using distributed heating instead of conventional resistors are discussed. PMID:28788401
Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitland, D.; Metzger, M. F.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.
NASA Armstrong Flight Tests Shape Memory Alloy Onboard PTERA Testbed
2017-12-15
PTERA takes off from the Rogers Dry Lakebed on a flight to test the ability of an innovative, lightweight material, called shape memory alloy, to fold the outer portion of an aircraft’s wings in flight.
Active shape control of composite blades using shape memory actuation
NASA Astrophysics Data System (ADS)
Chandra, Ramesh
2001-10-01
This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).
False memory for context activates the parahippocampal cortex.
Karanian, Jessica M; Slotnick, Scott D
2014-01-01
Previous studies have reported greater activity in the parahippocampal cortex during true memory than false memory, which has been interpreted as reflecting greater sensory processing during true memory. However, in these studies, sensory detail and contextual information were confounded. In the present fMRI study, we employed a novel paradigm to dissociate these factors. During encoding, abstract shapes were presented in one of two contexts (i.e., moving or stationary). During retrieval, participants classified shapes as previously "moving" or "stationary." Critically, contextual processing was relatively greater during false memory ("moving" responses to stationary items), while sensory processing was relatively greater during true memory ("moving" responses to moving items). Within the medial temporal lobe, false memory versus true memory produced greater activity in the parahippocampal cortex, whereas true memory versus false memory produced greater activity in the hippocampus. The present results indicate that the parahippocampal cortex mediates contextual processing rather than sensory processing.
Non-monotonic relationships between emotional arousal and memory for color and location.
Boywitt, C Dennis
2015-01-01
Recent research points to the decreased diagnostic value of subjective retrieval experience for memory accuracy for emotional stimuli. While for neutral stimuli rich recollective experiences are associated with better context memory than merely familiar memories this association appears questionable for emotional stimuli. The present research tested the implicit assumption that the effect of emotional arousal on memory is monotonic, that is, steadily increasing (or decreasing) with increasing arousal. In two experiments emotional arousal was manipulated in three steps using emotional pictures and subjective retrieval experience as well as context memory were assessed. The results show an inverted U-shape relationship between arousal and recognition memory but for context memory and retrieval experience the relationship was more complex. For frame colour, context memory decreased linearly while for spatial location it followed the inverted U-shape function. The complex, non-monotonic relationships between arousal and memory are discussed as possible explanations for earlier divergent findings.