Science.gov

Sample records for superionic conductor beta-liga

  1. A lithium superionic conductor

    NASA Astrophysics Data System (ADS)

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-09-01

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10-2 S cm-1) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li10GeP2S12 that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm-1 at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  2. The Seebeck coefficient of superionic conductors

    SciTech Connect

    Mahan, G. D.

    2015-01-28

    We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu{sub 2}Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.

  3. The Seebeck coefficient of superionic conductors

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2015-01-01

    We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu2Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.

  4. Computer simulation of superionic conductors: II. Cationic conductors. Review

    SciTech Connect

    Ivanov-Shitz, A. K.

    2007-03-15

    The state of the art of the molecular-dynamics simulation of superionic conductors is reviewed. The main studies devoted to the structural, dynamic, and transport properties of the basic classes of solid electrolytes with conductivity via silver, copper, lithium, sodium, and hydrogen cations are considered. The premelting effect in ionic crystals is discussed.

  5. Mobility propagation and dynamic facilitation in superionic conductors

    SciTech Connect

    Annamareddy, Ajay Eapen, Jacob

    2015-11-21

    In an earlier work [V. A. Annamareddy et al., Phys. Rev. E 89, 010301(R) (2014)], we showed the manifestation of dynamical heterogeneity (DH)—the presence of clustered mobile and immobile regions—in UO{sub 2}, a model type II superionic conductor. In the current work, we demonstrate the mechanism of dynamic facilitation (DF) in two superionic conductors (CaF{sub 2} and UO{sub 2}) using atomistic simulations. Using the mobility transfer function, DF is shown to vary non-monotonically with temperature with the intensity of DF peaking at temperatures close to the superionic transition temperature (T{sub λ}). Both the metrics quantifying DH and DF show remarkable correspondence implying that DF, in the framework of kinematically constrained models, underpins the heterogeneous dynamics in type II superionic conductors.

  6. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire.

  7. Fundamental Physics and Promising Applications of Superionic Conductors

    NASA Astrophysics Data System (ADS)

    Yugami, Hiroo; Ishigame, Mareo

    1993-02-01

    Recently, superionic conductors (SIC’s) have been considered to be a key material for several application fields as well as energy engineering and ceramic technology. We review the recent stage of the basic models and concepts for the physical understanding of high-speed ionic transport in solids. In the latter part of this paper, we briefly review the applications of SIC’s to solid-state fuel cells and sensors. As a new application of SIC’s, we introduce a technique developed on a complex system consisting of an oxygen ionic conductor and high-Tc oxide super-conductors. Finally, we introduce the possibility of the application of SIC’s to optical devices.

  8. Ion Dynamics in Organic-Inorganic Composite Superionic Conductor Glasses

    SciTech Connect

    Asayama, Ryo; Kuwata, Naoaki; Kawamura, Junichi

    2006-05-05

    Ionic conductivity of organic-inorganic composite superionic conductor glasses composed of AgI and alkylammoniumiodides is measured as a function of frequency, temperature and composition. A clear transition from insulator to superionic conductor is confirmed at the volume fraction {phi} of AgI is about 35 %. The dc component of the conductivity is fitted to the {sigma}{approx}({phi}-{phi}c){mu} with {phi}c=0.36, {mu}=2.5 for the present data. Near the percolation threshold, a power-law type frequency dependence of {omega}n (n{approx}0.67) is seen in mid frequency and {omega}1.0 at higher frequency corresponding to the constant loss region power-law is observed. The activation energies and preexponential factors derived from the temperature dependence increase from 0.3 to 0.7 eV approaching to the threshold. From these results, the ion dynamics in these glasses can be explained by the static site percolation theory at first approximation, but require the consideration on the chemical bond variation between the Ag and I modified by the organic ions.

  9. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  10. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10‑3 S cm‑1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  11. Origin of activation energy in a superionic conductor.

    PubMed

    Kamishima, O; Kawamura, K; Hattori, T; Kawamura, J

    2011-06-08

    The characteristics of cation diffusion with many-body effects are discussed using Ag β-alumina as an example of a superionic conductor. Polarized Raman spectra of Ag β-alumina have been measured at room temperature. The interatomic potentials were determined by a non-linear least square fitting between the phonon eigenvalues from the Raman observations and a dynamical matrix calculation based on a rigid-ion model. The obtained potential parameters for the model crystal of Ag β-alumina successfully reproduce the macroscopic properties with respect to the heat capacity, isothermal compressibility and self-diffusion constant. A molecular dynamics (MD) calculation has been carried out using the model crystal of Ag β-alumina to understand the many-body effects for the fast ionic diffusion. It was found that the Ag-Ag repulsion by excess Ag defects significantly reduced the cost of the energy difference of the occupancy between the stable and metastable sites. It is possible for the system to take various configurations of the mobile ions through defects easily, and then the fast ionic diffusion will appear. On the other hand, the Ag-Ag repulsion changes the dynamics of the Ag ions from a random hopping to a cooperative motion. In the cooperative motion, the ionic transport becomes difficult due to the additional energy required for the structural relaxation of the surrounding Ag ions. We propose a new insight into the superionic conduction, that is, the activation energy for the ionic transport is composed of two kinds of elements: a 'static' activation energy and a 'dynamic' one. The static activation energy is the cost of the averaged energy difference in the various structural configurations in the equilibrium state. The dynamic activation energy is the additional energy required for the structural relaxation induced by the jump process.

  12. Superionic conductor repetitive opening switches for advanced pulse power

    NASA Astrophysics Data System (ADS)

    Scott, James F.

    1987-06-01

    The initial phase of investigation has been completed to analyze an unusual photo-electric effect in the superionic conductor silver iodide tungstate (Ag13I9W2O8). This material exhibits a sharp decrease in electrical conductivity upon illumination with laser light (in contrast to the increase observed for all other known materials), which suggests its potential use as a very fast, repetitive opening switch. Work this year reveals a previously unknown aging process that may preclude commercial development of such an opening switch. This was independently discovered by Suthanthiraraj this year (Bull. Electrochem. 2, 553 (1986). In the dark, the power drops by 84% after 125 days, when utilized as a battery; similar degradation occurs for use as a switch. The presence of laser light greatly accelerates the aging. A very fast all-operational-amplifier circuit has been designed and fabricated to measure optical response of this material; however, the need to use fresh samples for reproducible results complicates the program.

  13. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; ...

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  14. Superionics

    DTIC Science & Technology

    1991-04-30

    was made for GaSe .( 3) A calculation for InSe within a tight-binding model has been carried out in a two- 71 dimensional approximation.(4) Extensions to...separator, and a cathode of the layer compound InSe which readily intercalates lithium ions and which is also an electronic conductor. The battery operates by...lithium-intercalated layer compound InSe , the experimental studies have yielded important data on optical properties due to electronic transitions and on

  15. Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Saafi, M.; Piukovics, G.; Ye, J.

    2016-10-01

    In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.

  16. Applications of Superionic Conductors in Microbatteries and Elsewhere

    NASA Astrophysics Data System (ADS)

    Balkanski, M.

    The following sections are included: * Introduction * Fast Ion Conductors * Crystalline Materials * Introduction * Different Systems Exhibit High Ionic Conductivity * Values of Ionic Conductivities * Polymer Electrolytes * Organic Polymer Electrolyte * Organic-Inorganic Polymers * Lithium Glasses * Glass Systems * Materials for Insertion Cathodes * Introduction * Properties of the Host Materials * Structures of Insertion Materials * Electronic Properties * Transport Properties * Intercalation * Graphite * Intercalation in InSe and In2Se3 * Transition Metal Dichalcogenides * Solid State Batteries * Introduction * Microbatteries * Electrical Currents and Energy * Model of Functioning of the Battery * Solid State Primary Lithium Batteries * Lithium-Iodine Cell * Lithium, Lithium Iodine Cells with Different Cathodes * Solid State Secondary Batteries with Insertion Cathodes * The Li-V2O5 Battery * Silver-Cells * Rocking-Chair Batteries * Thin Film Solid State Microbatteries * Polymer Batteries * High Energy Batteries * Na-S Batteries * Sodium Chloride Batteries * Solid State Electrochemical Sensors * Principles of Solid State Electrochemical Gas Sensors * Practical Examples of Solid State Electrochemical Gas Sensors * Oxygen Sensors * Hydrogen Sensors * Carbon Dioxide Sensors * Moisture Sensors * Solid State Electrochromics * Conclusion * References

  17. Preparation and Structural Characterization of Superionic Conductor RbAg4I5 Crystalline Grain Film

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Sun, Hong-San; Sun, Jia-Lin; Tian, Guang-Yan; Xing, Zhi; Guo, Ji-Hua

    2003-05-01

    Superionic conductor RbAg4I5 crystalline grain films were prepared by vacuum thermal evaporation on NaCl crystalline substrates. The surface morphology, microstructure and the electronic energy states of the films were examined by atomic force microscopy, transmission-electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the obtained RbAg4I5 layer has an epitaxial film of perfect crystalline structure, and the unit cell of crystalline grain RbAg4I5 films belongs to cubic crystal system. The principal x-ray diffraction peaks at d = 3.7447 and 1.8733 Å are related to the structure of ternary compound RbAg4I5 films.

  18. High-power all-solid-state batteries using sulfide superionic conductors

    NASA Astrophysics Data System (ADS)

    Kato, Yuki; Hori, Satoshi; Saito, Toshiya; Suzuki, Kota; Hirayama, Masaaki; Mitsui, Akio; Yonemura, Masao; Iba, Hideki; Kanno, Ryoji

    2016-04-01

    Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries offer an attractive option owing to their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research efforts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with an exceptionally high conductivity (25 mS cm-1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ˜0 V versus Li metal for Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance, especially at 100 ∘C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes. Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is also demonstrated.

  19. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries

    NASA Astrophysics Data System (ADS)

    Guin, M.; Tietz, F.

    2015-01-01

    One important issue in future scenarios predominantly using renewable energy sources is the electrochemical storage of electricity in batteries. Among all rechargeable battery technologies, Li-ion cells have the largest energy density and output voltage today, but they have yet to be optimized in terms of capacity, safety and cost for use as stationary systems. Recently, sodium batteries have been attracting attention again because of the abundant availability of Na. However, much work is still required in the field of sodium batteries in order to mature this technology. Sodium superionic conductor (NASICON) materials are a thoroughly studied class of solid electrolytes. In this study, their crystal structure, compositional diversity and ionic conductivity are surveyed and analysed in order to correlate the lattice parameters and specific crystal structure data with sodium conductivity and activation energy using as much data sets as possible. Approximately 110 compositions with the general formula Na 1 + 2 w + x - y + zMw(II) Mx(III) My(V) M2- w - x - y (IV) (SiO4)z(PO4) 3 - z were included in the data collection to determine an optimal size for the M cations. In addition, the impact of the amount of Na per formula unit on the conductivity and the substitution of P with Si are discussed. An extensive study of the size of the structural bottleneck for sodium conduction (formed by triangles of oxygen ions) was carried out to validate the influence of this geometrical parameter on sodium conductivity.

  20. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    SciTech Connect

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  1. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect.

    PubMed

    Deng, Yue; Eames, Christopher; Fleutot, Benoit; David, Rénald; Chotard, Jean-Noël; Suard, Emmanuelle; Masquelier, Christian; Islam, M Saiful

    2017-03-01

    Lithium superionic conductor (LISICON)-related compositions Li4±xSi1-xXxO4 (X = P, Al, or Ge) are important materials that have been identified as potential solid electrolytes for all solid state batteries. Here, we show that the room temperature lithium ion conductivity can be improved by several orders of magnitude through substitution on Si sites. We apply a combined computer simulation and experimental approach to a wide range of compositions (Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4, and Li4Al1/3Si1/6Ge1/6P1/3O4) which include new doped materials. Depending on the temperature, three different Li(+) ion diffusion mechanisms are observed. The polyanion mixing introduced by substitution lowers the temperature at which the transition to a superionic state with high Li(+) ion conductivity occurs. These insights help to rationalize the mechanism of the lithium ion conductivity enhancement and provide strategies for designing materials with promising transport properties.

  2. The exciton absorption spectrum of thin CuPb3Br7 superionic conductor films

    NASA Astrophysics Data System (ADS)

    Yunakova, O. N.; Yunakov, N. N.; Kovalenko, E. N.; Kovalenko, V. V.

    2016-09-01

    A study of the absorption spectrum of thin CuPb2Br7 films in the 2-6 eV spectral and 90-500 K temperature ranges. It is shown that the exciton spectrum of the compound is associated with transitions in the lead ion. The temperature dependence of the spectral position and half-width of the low-frequency exciton band contains features associated with phase transitions γ → β (Tc1 = 159 K) and β → α (Tc2 = 434 K) and the disordering of the cation sublattice of the compound in the transition to the superionic state.

  3. Li10Si0.3Sn0.7P2S12 - A low-cost and low-grain-boundary-resistance lithium superionic conductor

    NASA Astrophysics Data System (ADS)

    Bron, Philipp; Dehnen, Stefanie; Roling, Bernhard

    2016-10-01

    Despite remarkable recent advances in the field of solid electrolytes for lithium ion batteries, there is still considerable room for improvements with respect to ionic conductivity, cost and electrochemical stability. This study tests systematically how much Sn in the superionic conductor Li10SnP2S12 can be replaced by Si or Al, while retaining its tetragonal structure. For comparison, also the known superionic conductors Li10SnP2S12, Li10GeP2S12, and Li10SiP2S12 are synthesized and characterized with respect to their grain and grain boundary resistances. The results show that due to the negligible grain boundary resistance of the new compound Li10Si0.3Sn0.7P2S12, its total Li+ ion conductivity is only 10-20% lower than that of the expensive superionic conductor Li10GeP2S12 and about four times higher than that of Li10SiP2S12.

  4. Diffuse scattering and low-energy phonons in superionic conductor Cu1.8SSe

    NASA Astrophysics Data System (ADS)

    Danilkin, Sergey; Hoser, Andreas; Schweika, Werner

    2005-03-01

    The neutron diffuse and inelastic scattering were studied in the superionic α-phase of copper selenide. In neutron diffraction experiments on Cu1.85Se single crystal the diffuse scattering features were observed along [111] direction in vicinity of (400) and (422) reflections. In inelastic neutron scattering measurements performed with time-of-flight spectrometer the elastic and inelastic scattering processes were separated and a strong inelastic scattering was observed also along [111] nearby (400) and (022). This shows that diffuse scattering found in conventional diffraction experiment is mainly inelastic and most probably comes from the low-energy phonons. Such phonons with optic-like behaviour of transverse acoustic modes at q/qm> 0.2-0.4 were found earlier in α-Cu1.85Se [1]. [1] S.A. Danilkin, A.N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, N.N. Bickulova, Crystal structure and lattice dynamics of superionic copper selenide Cu2-δSe, J. Alloys and Compounds, 2003, v. 361, p. 57-61.

  5. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure

    DOE PAGES

    Wang, Hui; Chen, Yan; Hood, Zachary D.; ...

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na3SbS4, a novel Na superionic conductor that needs much lower processing temperature below 200 Cmore » and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm-1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  6. NMR study of Cu2Se and Cu1.98Ag0.2Se superionic conductors

    NASA Astrophysics Data System (ADS)

    Sirusi Arvij, Ali; Ross, Joseph H., Jr.; Ballikaya, Sedat; Uher, Ctirad

    2015-03-01

    Cu2Se and Cu1.98Ag0.2Se are well known as superionic conductors and recently as thermoelectric materials due to observation of high ZT. We will report NMR of these compounds. Our results include indications of glassy anharmonic behavior at low temperatures, Cu ionic motion which becomes initiated near 90K, and motional narrowing near the phase transition at high temperatures as well as modified dynamics observed in the Ag-doped sample. NMR is particularly well suited to probe low frequency dynamics and at low temperatures the relaxation rate indicates anharmonic rattling behavior similar to what has been observed in other thermoelectric materials. A 90K change in the NMR spectra corresponds to the recently observed transport anomaly and indicates that the slow motion of Cu ions is initiated at this temperature and eventually becomes liquid-like at higher temperatures. We detect fast ionic motion in Cu2Se starting at 140K whereas in the Ag-doped compound this onset shifts to a higher temperature around 300K. At high temperatures the spectra become motionally narrowed, and we will discuss the narrowing and shifts in terms of activated carrier density and ionic motion. This work was supported by the Robert A. Welch Foundation.

  7. An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor

    DOE PAGES

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; ...

    2015-01-20

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  8. Sol-Gel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-03-12

    AFRL-RQ-WP-TP-2015-0055 SOL-GEL-DERIVED LITHIUM SUPERIONIC CONDUCTOR LI1.5AL0.5GE1.5(PO4)3 ELECTROLYTE FOR SOLID -STATE LITHIUM -OXYGEN...2014 4. TITLE AND SUBTITLE SOL-GEL-DERIVED LITHIUM SUPERIONIC CONDUCTOR LI1.5AL0.5GE1.5(PO4)3 ELECTROLYTE FOR SOLID -STATE LITHIUM -OXYGEN BATTERIES...attracting a great deal of attention as a solid electrolyte for lithium -oxygen (Li- O2) batteries due to its high ionic conductivity. In this study, LAGP

  9. Electrical conductivity of {gamma}-irradiated crystals of La{sub 0.95}Ba{sub 0.05}F{sub 2.95} superionic conductor

    SciTech Connect

    Sorokin, N. I. Sobolev, B. P.

    2012-03-15

    The electrical conductivity of single crystals of the La{sub 0.95}Ba{sub 0.05}F{sub 2.95} superionic conductor subjected to irradiation by {gamma} quanta (source {gamma}-{sup 60}Co, dose 2 Multiplication-Sign 10{sup 6} rad) has been investigated. It is shown that the radiation defects do not have a great effect on the ionic conductivity of nonstoichiometric La{sub 0.95}Ba{sub 0.05}F{sub 2.95} crystals, which is caused by the heterovalent replacements of La{sup 3+} cations with Ba{sup 2+} cations.

  10. Lithium Diffusion Pathway in Li(1.3)Al(0.3)Ti(1.7)(PO4)3 (LATP) Superionic Conductor.

    PubMed

    Monchak, Mykhailo; Hupfer, Thomas; Senyshyn, Anatoliy; Boysen, Hans; Chernyshov, Dmitry; Hansen, Thomas; Schell, Karl G; Bucharsky, Ethel C; Hoffmann, Michael J; Ehrenberg, Helmut

    2016-03-21

    The Al-substituted LiTi2(PO4)3 powders Li(1+x)Al(x)Ti(2-x)(PO4)3 (LATP) were successfully prepared by a water-based sol-gel process with subsequent calcination and sintering. The crystal structure of obtained samples was characterized at different temperatures using high-resolution synchrotron-based X-ray and neutron powder diffraction. Possible lithium diffusion pathways were initially evaluated using the difference bond-valence approach. Experimental 3D lithium diffusion pathway in LATP was extracted from the negative nuclear density maps reconstructed by the maximum entropy method. Evaluation of the energy landscape determining the lithium diffusion process in NASICON-type superionic conductor is shown for the first time.

  11. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure

    SciTech Connect

    Wang, Hui; Chen, Yan; Hood, Zachary D.; Samuthira Pandian, Amaresh; Keum, Jong Kahk; An, Ke; Sahu, Gayatri; Liang, Chengdu

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na3SbS4, a novel Na superionic conductor that needs much lower processing temperature below 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm-1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.

  12. An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Zhou, Wei; Wu, Hui; Greenbaum, Steve; Liang, Chengdu

    2015-01-20

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  13. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study.

    PubMed

    Chu, Iek-Heng; Nguyen, Han; Hy, Sunny; Lin, Yuh-Chieh; Wang, Zhenbin; Xu, Zihan; Deng, Zhi; Meng, Ying Shirley; Ong, Shyue Ping

    2016-03-01

    The Li7P3S11 glass-ceramic is a promising superionic conductor electrolyte (SCE) with an extremely high Li(+) conductivity that exceeds that of even traditional organic electrolytes. In this work, we present a combined computational and experimental investigation of the material performance limitations in terms of its phase and electrochemical stability, and Li(+) conductivity. We find that Li7P3S11 is metastable at 0 K but becomes stable at above 630 K (∼360 °C) when vibrational entropy contributions are accounted for, in agreement with differential scanning calorimetry measurements. Both scanning electron microscopy and the calculated Wulff shape show that Li7P3S11 tends to form relatively isotropic crystals. In terms of electrochemical stability, first-principles calculations predict that, unlike the LiCoO2 cathode, the olivine LiFePO4 and spinel LiMn2O4 cathodes are likely to form stable passivation interfaces with the Li7P3S11 SCE. This finding underscores the importance of considering multicomponent integration in developing an all-solid-state architecture. To probe the fundamental limit of its bulk Li(+) conductivity, a comparison of conventional cold-press sintered versus spark-plasma sintering (SPS) Li7P3S11 was done in conjunction with ab initio molecular dynamics (AIMD) simulations. Though the measured diffusion activation barriers are in excellent agreement, the AIMD-predicted room-temperature Li(+) conductivity of 57 mS cm(-1) is much higher than the experimental values. The optimized SPS sample exhibits a room-temperature Li(+) conductivity of 11.6 mS cm(-1), significantly higher than that of the cold-pressed sample (1.3 mS cm(-1)) due to the reduction of grain boundary resistance by densification. We conclude that grain boundary conductivity is limiting the overall Li(+) conductivity in Li7P3S11, and further optimization of overall conductivities should be possible. Finally, we show that Li(+) motions in this material are highly collective, and

  14. A First-principles Molecular Dynamics Investigation of Superionic Conductivity

    NASA Astrophysics Data System (ADS)

    Wood, Brandon; Marzari, Nicola

    2007-03-01

    Superionic materials---solids with liquid-like transport properties---have found widespread use in a variety of applications in fuel cells, switches, sensors, and batteries. However, reasons for fast-ion conduction in such materials, as well as the specific atomistic mechanisms involved, remain ill understood. Our work uses first-principles molecular dynamics to illuminate the mechanisms, pathways, and motivations for superionic conductivity in two materials representing different classes of ion conductors: α-AgI, an archetypal Type-I superionic; and CsHSO4, an anhydrous solid-state electrolyte candidate for hydrogen fuel cells. For α-AgI, we trace common pathways for silver ion conduction and discuss how a chemical signature in the electronic structure relates to enhanced silver ion mobility. We also characterize the dynamical lattice structure in the superionic phase and present the likely motivations for its existence. For CsHSO4, we isolate the dominant atomistic mechanisms involved in superprotonic conduction and discuss the effect of correlated diffusive events in enhancing proton transport. We also offer a detailed description of the dynamics of the hydrogen bond network topology in the course of proton diffusion and discuss the relevance of atomistic processes with competing timescales in facilitating proton transport.

  15. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures.

    PubMed

    Annamareddy, Ajay; Eapen, Jacob

    2017-03-27

    Among the superionic conductors that show a Faraday transition - the continuous increase in the ionic conductivity over a range of temperatures - the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa - a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors.

  16. Proton Disorder and Superionicity in Hot Dense Ammonia Ice

    NASA Astrophysics Data System (ADS)

    Ninet, S.; Datchi, F.; Saitta, A. M.

    2012-04-01

    We report the experimental discovery of a new phase of ammonia ice, stable at pressures above 57 GPa and temperatures above 700 K. The combination of our experimental results and ab initio molecular dynamics simulations reveal that this new phase is a superionic conductor, characterized by a large proton diffusion coefficient (1.0×10-4cm2/s at 70 GPa, 850 K). Proton diffusion occurs via a Grotthuss-like mechanism, at a surprisingly lower temperature than in water ice. This may have implications for the onset of superionicity in the molecular ice mixtures present in Jovian planets. Our simulations further suggest that the anisotropic proton hopping along different H bonds in the molecular solid may explain the formation of the recently predicted ionic phase at low temperatures.

  17. Proton disorder and superionicity in hot dense ammonia ice.

    PubMed

    Ninet, S; Datchi, F; Saitta, A M

    2012-04-20

    We report the experimental discovery of a new phase of ammonia ice, stable at pressures above 57 GPa and temperatures above 700 K. The combination of our experimental results and ab initio molecular dynamics simulations reveal that this new phase is a superionic conductor, characterized by a large proton diffusion coefficient (1.0×10(-4) cm(2)/s at 70 GPa, 850 K). Proton diffusion occurs via a Grotthuss-like mechanism, at a surprisingly lower temperature than in water ice. This may have implications for the onset of superionicity in the molecular ice mixtures present in Jovian planets. Our simulations further suggest that the anisotropic proton hopping along different H bonds in the molecular solid may explain the formation of the recently predicted ionic phase at low temperatures.

  18. Dynamical Structure, Bonding, and Thermodynamics of the Superionic Sublattice in ∝-AgI

    SciTech Connect

    Wood, Brandon J.; Marzari, Nicola N.

    2006-10-17

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We characterize the superionic phase transition and the lattice and electronic structures of the archetypal type-I superionic conductor ∝-AgI using extensive first-principles molecular dynamics calculations. We find that superionicity is signaled by a phase transition of the silver ions alone. In the superionic phase, the first silver shell surrounding an iodine displays a distinct dynamical structure that would escape a time-averaged characterization, and we capture this structure in a set of ordering rules. The electronic structure demonstrates a unique chemical signature of the weakest-bound silver in the first shell, which in turn is most likely to diffuse. Silver diffusion decreases upon melting, pointing to an unusual entropic contribution to the stability of the superionic phase.

  19. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    PubMed

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  20. Pressure induced ionic-superionic transition in silver iodide at ambient temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Wang, H. B.; Troyan, I. A.; Gao, C. X.; Eremets, M. I.

    2014-01-01

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω-1cm-1 could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag+ ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ˜3.4 × 10-4-8.6 × 10-4 cm2/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag+ ions, have been determined and it was suggested that Ag+ ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω-1cm-1. Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  1. Bonding in the Superionic Phase of Water

    SciTech Connect

    Goldman, N; Fried, L E; Kuo, I W; Mundy, C J

    2005-02-07

    The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, they find a solid superionic phase characterization by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character. In addition, they describe a new metastable superionic phase with quenched O disorder.

  2. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

    PubMed

    Li, Lingjun; Xu, Ming; Yao, Qi; Chen, Zhaoyong; Song, Liubin; Zhang, Zhian; Gao, Chunhui; Wang, Peng; Yu, Ziyang; Lai, Yanqing

    2016-11-16

    Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNi0.8Co0.1Mn0.1O2 (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor LixAlO2 with superconductor LixTi2O4 to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNi0.8Co0.1Mn0.1O2 cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g(-1) at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g(-1) with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

  3. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures

    PubMed Central

    Annamareddy, Ajay; Eapen, Jacob

    2017-01-01

    Among the superionic conductors that show a Faraday transition – the continuous increase in the ionic conductivity over a range of temperatures – the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa – a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors. PMID:28344314

  4. Superionic-Superionic Phase Transitions in Body-Centered Cubic H2O Ice

    NASA Astrophysics Data System (ADS)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2016-09-01

    From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O - H ⋯O bond (ice VII' to ice X transition) in body-centered-cubic (bcc) H2O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII'' hereinafter) is stable at low pressures. A first-order transition separates this phase from a superionic VII' , characterized by a finite degree of localization of protons along the nonsymmetric O - H ⋯O bonds. The transition is identified in structural, energetic, and elastic analysis. Upon further compression a second-order phase transition leads to the superionic ice X with symmetric O - H - O bonds.

  5. Superionic-Superionic Phase Transitions in Body-Centered Cubic H_{2}O Ice.

    PubMed

    Hernandez, Jean-Alexis; Caracas, Razvan

    2016-09-23

    From first-principles molecular dynamics, we investigate the relation between the superionic proton conduction and the behavior of the O─H⋯O bond (ice VII^{'} to ice X transition) in body-centered-cubic (bcc) H_{2}O ice between 1300 and 2000 K and up to 300 GPa. We bring evidence that there are three distinct phases in the superionic bcc stability field. A first superionic phase characterized by extremely fast diffusion of highly delocalized protons (denoted VII^{''}  hereinafter) is stable at low pressures. A first-order transition separates this phase from a superionic VII^{'}, characterized by a finite degree of localization of protons along the nonsymmetric O─H⋯O bonds. The transition is identified in structural, energetic, and elastic analysis. Upon further compression a second-order phase transition leads to the superionic ice X with symmetric O─H─O bonds.

  6. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  7. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Errandonea, Daniel

    2016-05-01

    Mechanocaloric materials experience a change in temperature when a mechanical stress is adiabatically applied on them. Thus far, only ferroelectrics and superelastic metallic alloys have been considered as potential mechanocaloric compounds to be exploited in solid-state cooling applications. Here we show that giant mechanocaloric effects occur in hitherto overlooked fast ion conductors (FIC), a class of multicomponent materials in which above a critical temperature, Ts, a constituent ionic species undergoes a sudden increase in mobility. Using first-principles and molecular dynamics simulations, we found that the superionic transition in fluorite-structured FIC, which is characterised by a large entropy increase of the order of 100 J/K*Kg, can be externally tuned with hydrostatic, biaxial or uniaxial stresses. In particular, Ts can be reduced several hundreds of degrees through the application of moderate tensile stresses due to the concomitant drop in the formation energy of Frenkel pair defects. We predict that the adiabatic temperature change in CaF2 and PbF2, two archetypal fluorite-structured FIC, close to their critical points are of the order of 100 and 10 K, respectively. This work advocates that FIC constitute a new family of mechanocaloric materials showing great promise for prospective solid-state refrigeration applications.

  8. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials.

    PubMed

    Cazorla, Claudio; Errandonea, Daniel

    2016-05-11

    Mechanocaloric materials experience a change in temperature when a mechanical stress is applied on them adiabatically. Thus, far, only ferroelectrics and superelastic metallic alloys have been considered as potential mechanocaloric compounds to be exploited in solid-state cooling applications. Here we show that giant mechanocaloric effects occur in hitherto overlooked fast ion conductors (FIC), a class of multicomponent materials in which above a critical temperature, Ts, a constituent ionic species undergoes a sudden increase in mobility. Using first-principles and molecular dynamics simulations, we found that the superionic transition in fluorite-structured FIC, which is characterized by a large entropy increase of the order of 10(2) JK(-1) kg(-1), can be externally tuned with hydrostatic, biaxial, or uniaxial stresses. In particular, Ts can be reduced several hundreds of degrees through the application of moderate tensile stresses due to the concomitant drop in the formation energy of Frenkel pair defects. We predict that the adiabatic temperature change in CaF2 and PbF2, two archetypal fluorite-structured FIC, close to their critical points are of the order of 10(2) and 10(1) K, respectively. This work advocates that FIC constitute a new family of mechanocaloric materials showing great promise for prospective solid-state refrigeration applications.

  9. Modeling Superionic Behavior of Plutonium Dioxide

    NASA Astrophysics Data System (ADS)

    Günay, S. D.; Akgenç, B.; Taşseven, Ç.

    2016-11-01

    The Bredig transition to the superionic phase indicated with the λ-peak in Cp was highly expected for plutonium dioxide (Pu{0}_2)) as other actinide dioxides. However, least-square fit and local smoothing techniques applied to the experimental enthalpy data of PuO2 in 1980s could not detect a λ-peak in specific heat that might be due to too scattered and insufficient experimental data. Therefore, this issue has not been yet put beyond the doubts. In the current article, a superionic model of Pu{0}_2 is developed with partially ionic model of a rigid ion potential. Thermophysical properties were calculated in constant pressure-temperature ensemble using molecular dynamics simulation. The Bredig transition with vicinity of a λ-peak in specific heat was successfully observed for the model system at about 2,100 K. Moreover, the experimental enthalpy change was well reproduced before and after the estimated transition temperature.

  10. The phase diagram of high-pressure superionic ice

    PubMed Central

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto

    2015-01-01

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P21/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P21/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P21/c superionic phase transition. PMID:26315260

  11. Superionic phase transition of doped fluorites

    NASA Astrophysics Data System (ADS)

    den Hartog, H. W.; van der Veen, J.

    1988-02-01

    In this paper we present new results of specific-heat experiments on superionic mixtures of cubic lead fluoride and some rare-earth fluorides. The results depend very strongly on the rare-earth ion; for samples doped with LaF3 we observe a peak in the specific heat as a function of T, which is located at an approximately fixed position. This peak, which is due to the superionic transition, increases in width with increasing concentrations of LaF3. If we add YbF3, however, the position of the peak varies. It appears that in samples doped with a few mol % YbF3 there are two peaks in the ``specific-heat spectrum'': one very similar to the peak observed in pure PbF2 and a second peak situated at significantly lower temperatures. The results are discussed in view of the experimental data on the clustering properties of the different solid solutions. In addition, we treat some of the specific-heat data with theoretical models, which have been proposed by Vlieg, den Hartog, and Winnink. This analysis suggests that due to the introduction of La impurities the formation of Frenkel pairs is more difficult. The introduction of Yb impurities, however, leads to additional Frenkel-pair formation, because Pb1-xYbxF2+x clusters, consisting of more than one Yb-F interstitial pair, trap extra interstitial F- ions. Because the energy of these extra trapped interstitial F- ions is lower than the energy of free anion interstitials, this leads to an enhancement of the formation of Frenkel pairs.

  12. Superionic to superionic phase change in water: consequences for the interiors of uranus and neptune.

    PubMed

    Wilson, Hugh F; Wong, Michael L; Militzer, Burkhard

    2013-04-12

    Using density functional molecular dynamics free energy calculations, we show that the body centered cubic (bcc) phase of superionic ice previously believed to be the only phase is, in fact, thermodynamically unstable compared to a novel phase with oxygen positions in face centered cubic lattice sites. The novel phase has a lower proton mobility than the bcc phase and may exhibit a higher melting temperature. We predict a transition between the two phases at a pressure of 1±0.5  Mbar, with potential consequences for the interiors of ice giants such as Uranus and Neptune.

  13. Superionic to Superionic Phase Change in Water: Consequences for the Interiors of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Wilson, Hugh F.; Wong, Michael L.; Militzer, Burkhard

    2013-04-01

    Using density functional molecular dynamics free energy calculations, we show that the body centered cubic (bcc) phase of superionic ice previously believed to be the only phase is, in fact, thermodynamically unstable compared to a novel phase with oxygen positions in face centered cubic lattice sites. The novel phase has a lower proton mobility than the bcc phase and may exhibit a higher melting temperature. We predict a transition between the two phases at a pressure of 1±0.5Mbar, with potential consequences for the interiors of ice giants such as Uranus and Neptune.

  14. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles

    NASA Astrophysics Data System (ADS)

    Makiura, Rie; Yonemura, Takayuki; Yamada, Teppei; Yamauchi, Miho; Ikeda, Ryuichi; Kitagawa, Hiroshi; Kato, Kenichi; Takata, Masaki

    2009-06-01

    Solid-state ionic conductors are actively studied for their large application potential in batteries and sensors. From the view of future nanodevices, nanoscaled ionic conductors are attracting much interest. Silver iodide (AgI) is a well-known ionic conductor for which the high-temperature α-phase shows a superionic conductivity greater than 1Ω-1cm-1 (ref. 6). Below 147∘C, α-AgI undergoes a phase transition into the poorly conducting β- and γ-polymorphs, thereby limiting its applications. Here, we report the facile synthesis of variable-size AgI nanoparticles coated with poly-N-vinyl-2-pyrrolidone (PVP) and the controllable tuning of the α- to β-/γ-phase transition temperature (Tc↓). Tc↓ shifts considerably to lower temperatures with decreasing nanoparticle size, leading to a progressively enlarged thermal hysteresis. Specifically, when the size approaches 10-11nm, the α-phase survives down to 30∘C-the lowest temperature for any AgI family material. We attribute the suppression of the phase transition not only to the increase of the surface energy, but also to the presence of defects and the accompanying charge imbalance induced by PVP. Moreover, the conductivity of as-prepared 11nm β-/γ-AgI nanoparticles at 24∘C is ~1.5×10-2Ω-1cm-1-the highest ionic conductivity for a binary solid at room temperature. The stabilized superionic phase and the remarkable transport properties at a practical temperature reported here suggest promising applications in silver-ion-based electrochemical devices.

  15. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te.

    PubMed

    Ouyang, Tao; Zhang, Xiaoliang; Hu, Ming

    2015-01-16

    Thermoelectric devices, which can generate electricity from waste heat, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. In the past few decades, the search for high-efficiency thermoelectrics has been guided by the concept of 'phonon-glass electron-crystal' (PGEC), i.e. an ideal thermoelectric material should have high carrier mobility and low thermal conductivity. Although remarkable progress has already been made along this line, the efficiency of thermoelectrics is still too poor to compete with other electricity producing methods. Ordered-disordered material, an emerging trend of high performance thermoelectrics under the concept of PGEC, is a new hot topic in the current thermoelectric research community. Taking superionic phase silver telluride (α-Ag2Te) as an example, we performed a comprehensive study of the thermal transport properties and of its physical mechanism by means of equilibrium molecular dynamic simulations. The results show that the thermal conductivity of α-Ag2Te is intrinsically very low. By analyzing the different contributions to the overall thermal conductivity, we revealed for the first time from atomistic simulations that the vibration of the Te(2-) sublattice dominates the thermal transport of α-Ag2Te, while the collision between the randomly diffusing Ag(+) ions and the Te(2-) sublattice yields a significant negative contribution to the thermal transport. We also studied the effect of isotropic compressive stain and carrier concentration on the thermal conductivity of α-Ag2Te. It has been found that the thermal conductivity can be largely reduced by applying compressive strain or with stoichiometric quantity modulation. Our studies shed light on the governing mechanism of thermal transport in ordered-disordered materials and could offer useful guidance for engineering the thermal transport properties of superionic conductors in terms of enhancing their thermoelectric

  16. Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba- closo -borate Salts

    SciTech Connect

    Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.; Dimitrievska, Mirjana; Stavila, Vitalie; Orimo, Shin-ichi; Udovic, Terrence J.

    2016-10-14

    Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB9H10- and CB11H12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambient to high temperatures. This result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.

  17. Superionic solid-state polymer electrolyte membrane for high temperature applications

    NASA Astrophysics Data System (ADS)

    Kyu, Thein; He, Ruixuan; Cao, Jinwei

    2015-03-01

    Completely amorphous, flexible, solid-state polymer electrolyte membranes (ss-PEM) consisted of polyethylene glycol diacrylate /succinonitrile plasticizer (SCN)/lithium trifluorosulfonyl imide were fabricated via UV polymerization. The room temperature ionic conductivity of our ss-PEM is extremely high (i.e., 10-3S/cm), which is already in the superionic conductor range of inorganic and/or liquid electrolyte counterparts. Of particular interest is that our ss-PEM is thermally stable up to 140°C, which is superior to the liquid electrolyte counterpart that degrades above 80°C. The ss-PEM exhibits cyclic stability in both LiFePO4/Li and Li4Ti5O12 /Li half-cells up to 50 cycles tested. The trend of conductivity enhancement with temperature is reproducible in the repeated cycles, showing melting transitions of the SCN plastic crystals. In the compositions close to the solid (SCN plastic crystal)-liquid coexistence line, polymerization-induced crystallization occurs during photo-curing. The effect of solid-liquid segregation on ionic conductivity behavior is discussed. Supported by NSF-DMR 1161070.

  18. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  19. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  20. Design and synthesis of the superionic conductor Na10SnP2S12

    PubMed Central

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-01-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm−1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity. PMID:26984102

  1. Design and synthesis of the superionic conductor Na10SnP2S12

    NASA Astrophysics Data System (ADS)

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-03-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

  2. Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells

    SciTech Connect

    Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

    2005-11-01

    Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The

  3. Super-ion inspired colorful hybrid perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Jena, Puru

    Organic-inorganic hybrid perovskites, with the general formula AMX3 (A =cation; M =metal; X =halogen), have emerged as a new generation of efficient yet inexpensive photovoltaic cells. These materials show record high conversion efficiency as solar cells and have excellent light-emission properties that can also be used in other optoelectronic devices. They can be processed easily from solution with optic band gaps, tunable from visible to infrared regions and are considered to be ``the next big thing in photovoltaics''. However, several important issues such as the relationship between their photoexcitation properties and the chemical structures, their stability under ambient conditions, as well as the possibility to invent their environment-friendly analogues remain unsolved. In this work, our aim is not only to gain a fundamental understanding of the structure-property relationship of organic-inorganic hybrid perovskites, but also to rationally design a new class of hybrid perovskites that have desired electronic band gaps for solar cell applications. This is accomplished by using super-ions that can mimic the properties of elementary alkali and halogen ions as building blocks. These super-ions include superalkalis - CH3NH3+,HC(NH2) 2 + , and Li3O+ as cations and hyperhalogens - Ge(BH4) 3 - and Sn(BH4) 3 - as anions. The results are compared with perovskites composed of GeCl3-,GeBr3-,GeI3-,SnCl3-,SnBr3-,and SnI3-superhalogen anions. We develop a strategy to assemble these super-ions to form environment-friendly solar cells with adjustable band gaps (covering the visible range and beyond) and with improved resistance to moisture.

  4. First principles simulation of a superionic phase of hydrogen fluoride (HF) at high pressures and temperatures

    SciTech Connect

    Goldman, N; Fried, L E

    2006-04-10

    The authors have conducted Ab initio molecular dynamics simulations of hydrogen fluoride (HF) at pressures of 5-66 GPa along the 900 K isotherm. They predict a superionic phase at 33 GPa, where the fluorine atoms are fixed in a bcc lattice while the hydrogen atoms diffuse rapidly with a diffusion constant of between 2 x 10{sup -5} and 5 x 10{sup -5} cm{sup 2}/s. They find that a transformation from asymmetric to symmetric hydrogen bonding occurs in HF at 66 GPa and 900 K. With superionic HF they have discovered a model system where symmetric hydrogen bonding occurs at experimentally achievable conditions. Given previous results on superionic H{sub 2}O[1,2,3] and NH{sub 3}[1], they conclude that high P,T superionic phases of electronegative element hydrides could be common.

  5. Atomistic simulation of a superionic transition in fluorite type structures UO2, UN2, TiH2

    NASA Astrophysics Data System (ADS)

    Korneva, M. A.; Starikov, S. V.

    2016-11-01

    The results of the atomistic simulation of a superionic transition and melting of stoichiometric UN2, UO2 and TiH2 have been presented. Simulation shows that superionic transitions of UO2 and TiH2 take place at temperature below melting temperature, while UN2 did not show such feature. This difference in properties of studied structures is caused by various gap between formation energies of Frenkel pair defects for sublattices. The possibility of describing the superionic transition within the theory of second-order phase transitions has been discussed, the conditions of the existence of superionic transition have been discussed.

  6. Stretchable, transparent, ionic conductors.

    PubMed

    Keplinger, Christoph; Sun, Jeong-Yun; Foo, Choon Chiang; Rothemund, Philipp; Whitesides, George M; Suo, Zhigang

    2013-08-30

    Existing stretchable, transparent conductors are mostly electronic conductors. They limit the performance of interconnects, sensors, and actuators as components of stretchable electronics and soft machines. We describe a class of devices enabled by ionic conductors that are highly stretchable, fully transparent to light of all colors, and capable of operation at frequencies beyond 10 kilohertz and voltages above 10 kilovolts. We demonstrate a transparent actuator that can generate large strains and a transparent loudspeaker that produces sound over the entire audible range. The electromechanical transduction is achieved without electrochemical reaction. The ionic conductors have higher resistivity than many electronic conductors; however, when large stretchability and high transmittance are required, the ionic conductors have lower sheet resistance than all existing electronic conductors.

  7. Thunderclouds and Lightning Conductors

    ERIC Educational Resources Information Center

    Martin, P. F.

    1973-01-01

    Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)

  8. Water Under the Extreme Conditions of Planetary Interiors: Symmetric Hydrogen Bonding in the Superionic Phase

    SciTech Connect

    Goldman, N; Fried, L E

    2005-07-08

    The predicted superionic phase of water is investigated via ab initio molecular dynamics at densities of 2.0-3.0 g/cc (34-115 GPa) along the 2000 K isotherm. They find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa, a much higher pressure than suggested in prior work. They find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Above 95 GPa, a transient network phase is found characterized by symmetric O-H hydrogen bonding with nearly 50% covalent character.

  9. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  10. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    SciTech Connect

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.

  11. Electronic and structural properties of superionic Cu2Se from density functional theory

    NASA Astrophysics Data System (ADS)

    Råsander, Mikael; Bergqvist, Lars; Delin, Anna

    2013-03-01

    The superionic high temperature phase of Cu2Se has been found to yield high thermoelectric efficiency due to an interesting combination of low thermal conductivity and a rather high power factor. The low thermal conductivity has been found to be due to the quasi-liquid behaviour of the superionic Cu atoms (Liu et al., Nature Materials, 11, 422-425 (2012)). Here we will present results obtained using density functional theory calculations of the electronic and structural properties of the superionic Cu2Se phase. We will especially address how the inclusion of non-local exchange by the use of hybrid density functionals as well as how localization of the Cu 3d-states affect the electronic structure of Cu2Se. This work was financed through the EU project NexTec, VR (the Swedish Research Council) and SSF (Swedish Foundation for Strategic Research)

  12. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    NASA Astrophysics Data System (ADS)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-01

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII and X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. Differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.

  13. Correlation of ion dynamics and structure of superionic tellurite glasses

    SciTech Connect

    Dutta, D.; Ghosh, A.

    2008-01-28

    Ion dynamics and structure of a series of superionic AgI-doped silver tellurite glasses have been investigated in this paper. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. We have observed that the conductivity increases and the activation energy decreases with increase of AgI content and that the tellurite glasses have higher conductivity than those for phosphate or borate glasses. We have analyzed the ac electrical data in the framework of the power law and the electric modulus formalisms. We have established a correlation between the crossover rate of the mobile silver ions and the rearrangement of the structural units in tellurite glasses. The scaling of the conductivity spectra has been used to interpret the temperature and composition dependence of the relaxation dynamics. Analysis of the dielectric relaxation in the framework of modulus formalism indicates an increase in the ion-ion cooperation in the glass compositions with increasing AgI content.

  14. Photoinduced color centers creation in superionic crystals RbAg 4 I 5

    NASA Astrophysics Data System (ADS)

    Kovaleva, N.; Boris, A.; Bredikhin, S.; Awano, T.

    1995-12-01

    A new phenomenon of a reversible photoinduced coloration caused by light irradiation is discovered and investigated in superionic RbAg 4 I 5 crystals. The reversible photoinduced absorption is found to be a result of irradiation by light with wavelengths in the region from 420 nm to 450 nm. The proposed mechanism of the discovered effect is associated with ambipolar diffusion of screened by mobile ions optically excited electronic carriers. The processes of color centers creation in superionic crystals RbAg 4 I 5 due to additive coloring in iodine vapours, ionic implantation and ?-ray irradiation are considered.

  15. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... least a No. 18 AWG conductor. (e) Each conductor installed separately must be at least a No. 16 AWG conductor. (f) Each No. 18 AWG conductor in a multiconductor sheath may not extend out of the sheath more... length and cranking motor conductors. Table 5—Allowable Amperage of Conductors Conductor size...

  16. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... least a No. 18 AWG conductor. (e) Each conductor installed separately must be at least a No. 16 AWG conductor. (f) Each No. 18 AWG conductor in a multiconductor sheath may not extend out of the sheath more... length and cranking motor conductors. Table 5—Allowable Amperage of Conductors Conductor size...

  17. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... least a No. 18 AWG conductor. (e) Each conductor installed separately must be at least a No. 16 AWG conductor. (f) Each No. 18 AWG conductor in a multiconductor sheath may not extend out of the sheath more... length and cranking motor conductors. Table 5—Allowable Amperage of Conductors Conductor size...

  18. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... least a No. 18 AWG conductor. (e) Each conductor installed separately must be at least a No. 16 AWG conductor. (f) Each No. 18 AWG conductor in a multiconductor sheath may not extend out of the sheath more... length and cranking motor conductors. Table 5—Allowable Amperage of Conductors Conductor size...

  19. 33 CFR 183.425 - Conductors: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... least a No. 18 AWG conductor. (e) Each conductor installed separately must be at least a No. 16 AWG conductor. (f) Each No. 18 AWG conductor in a multiconductor sheath may not extend out of the sheath more... length and cranking motor conductors. Table 5—Allowable Amperage of Conductors Conductor size...

  20. Plasma Generator Using Spiral Conductors

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)

    2016-01-01

    A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.

  1. Anchored terminal conductor

    SciTech Connect

    Milewski, M.A.; Delmolino, W.P.

    1986-08-19

    An electrochemical cell is described comprising a cell container which is closed by a resilient insulative cell top and an electrode conductor inserted through the cell top and into an electrode of the cell, with the electrode conductor being physically and electrically accessible to the exterior of the cell whereby it functions as a terminal for the electrode, and wherein a portion of the electrode conductor is enclosed within the cell top, characterized in that the cell further comprises means for substantially restraining movement of the electrode conductor relative to the cell top. The electrode conductor has a nail configuration comprising a head and a shank with the head of the nail providing the external physical and electrical accessibility, wherein the restraining means is integrated with the shank of the nail. The restraining means is positioned on the shank, interior to the cell container and below the interior surface of the cell top and in close juxtaposition to the interior surface. The restraining means comprises a circumferential barb longitudinally disposed on the shank and having an upper portion which engages the interior surface to provide the substantial restraining of movement.

  2. Plasmonic transparent conductors

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.

    2016-09-01

    Many of today's technological applications, such as solar cells, light-emitting diodes, displays, and touch screens, require materials that are simultaneously optically transparent and electrically conducting. Here we explore transparent conductors based on the excitation of surface plasmons in nanostructured metal films. We measure both the optical and electrical properties of films perforated with nanometer-scale features and optimize the design parameters in order to maximize optical transmission without sacrificing electrical conductivity. We demonstrate that plasmonic transparent conductors can out-perform indium tin oxide in terms of both their transparency and their conductivity.

  3. Modified Anion Packing of Na2B12H12 in Close to Room Temperature Superionic Conductors.

    PubMed

    Sadikin, Yolanda; Schouwink, Pascal; Brighi, Matteo; Łodziana, Zbigniew; Černý, Radovan

    2017-04-11

    Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10(-1) S cm(-1) at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

  4. 75 FR 69165 - Conductor Certification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ...FRA proposes to prescribe regulations for certification of conductors, as required by the Rail Safety Improvement Act of 2008. The proposed rule would require railroads to have a formal program for certifying conductors. As part of that program, railroads would be required to have a formal process for training prospective conductors and determining that all persons are competent before......

  5. Superionic Phases of the 1:1 Water-Ammonia Mixture.

    PubMed

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald; Hamel, Sebastien

    2015-10-22

    We report four structures for the 1:1 water-ammonia mixture showing superionic behavior at high temperature with the space groups P4/nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water-ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia. Finally, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.

  6. Ab initio Simulations of Fluid and Superionic Water in the Interiors of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard; Zhang, Shuai

    2014-03-01

    Water is one of the most prevalent substances in our solar system. Large quantities are assumed to be stored in the interiors of ice giant planets. Water has an unusually rich phase diagram with 15 solid phases that were determined experimentally and 6 additional ones that were predicted theoretically at high pressure. Water is predicted to assume a superionic state where the oxygen ions remain confined to specific lattice sites while the hydrogen ions move through the crystal structure like a fluid. In our recent article [Physical Review Letters 110 (2013) 151102], we predicted the oxygen sub-lattice to assume a face-centered cubic structure at pressures above 1 Mbar. For this presentation, we extended our density functional molecular dynamics simulations in order to determine the equation of state of fluid and superionic water. We employed a thermodynamics integration technique to derive the entropy and the Gibbs free energy of both phases. We discuss how a novel superionic state could be identified in high pressure experiments and talk about the implications for the interiors of Uranus and Neptune.

  7. Polymeric ion conductors

    SciTech Connect

    Nagai, J.; Mizuhashi, M.; Kamimori, T.

    1990-12-31

    There are several requirements for (polymeric) ion conductors in electrochromic window applications: (1) they have high ionic conductivity (desirably, > 1 {times} 10{sup {minus}4} Scm{sup {minus}1}); (2) they have high chemical and electrochemical stabilities with respect to the wide usable potential window and thermal and UV stabilities; (3) they are transparent in a specific wavelength region, which is, however, dependent of applications; and (4) they have enough adhesiveness to the substrates and have acceptable mechanical properties. Many kinds of polymeric ionic conductors have since been reported and some of them were applied to electrochromic uses. In this chapter, electrochemical and physicochemical properties of these materials are reviewed. However, certain aspects such as crystallographic studies and conduction models in detail have been omitted, which are still controversial.

  8. Intercalated Graphite Fiber Conductor.

    DTIC Science & Technology

    1980-12-01

    Lightweight electrical conductors were developed from graphitic fibers inter- calated with highly electrophilic intercalants. Conductance increases of...intercalated with highly electrophilic molecules ("intercalants") to en- hance their electrical conductivity. Evaluation of the elec- trical resistance of two...corrosion resistant to fluorine containing chemicals. Since the moisture permeability of the TFE is much less than that of the FEP, attempts were made to

  9. Photoluminescent conductor polymer holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Olivares-Pérez, A.; Ponce-Lee, E. L.; Hernández-Garay, M. P.; Páez-Trujillo, G.; Fuentes-Tapia, I.

    2007-02-01

    An organic conductor polymer was doped with benzalkonium chloride to get a photoluminescent effect at 560 nm and it was used as holographic material. We used a digital image to generate a hologram in a computer and it was transferred by microlithography techniques to our polymer to get a phase hologram. The transference is successful by rubbing, the heat increment produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. We recorded some gratings to observe the behavior of photoluminescent light with different frequencies when it is radiated with a green laser beam at 532 nm.

  10. Floating insulated conductors for heating subsurface formations

    DOEpatents

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  11. Study of Relaxation Dynamics in Mixed Iodide Doped Silver-Vanado-Borate Superionic Glass System

    NASA Astrophysics Data System (ADS)

    Sharma, Poonam; Kanchan, D. K.; Pant, Meenakshi; Gondaliya, Nirali; Jayswal, Manish S.

    2011-07-01

    Electrical conductivity and impedance measurements were carried out for a new mixed metal iodide salt doped silver vanado-borate i.e., [(PbI2-CuI)-Ag2O-V2O5-B2O3] super-ionic glass system. The impedance plots (Z″ vs. Z') for all the prepared glass samples were recorded and found to exhibit depressed semi circles over the studied temperature range. Frequency dependence of the imaginary part of impedance Z″ and the imaginary part of modulus M″ at different temperatures were also investigated. Also, relaxation dynamics in framework of modulus formalism has been discussed.

  12. Superionic and metallic states of water and ammonia at giant planet conditions.

    PubMed

    Cavazzoni, C; Chiarotti, G L; Scandolo, S; Tosatti, E; Bernasconi, M; Parrinello, M

    1999-01-01

    The phase diagrams of water and ammonia were determined by constant pressure ab initio molecular dynamic simulations at pressures (30 to 300 gigapascal) and temperatures (300 to 7000 kelvin) of relevance for the middle ice layers of the giant planets Neptune and Uranus. Along the planetary isentrope water and ammonia behave as fully dissociated ionic, electronically insulating fluid phases, which turn metallic at temperatures exceeding 7000 kelvin for water and 5500 kelvin for ammonia. At lower temperatures, the phase diagrams of water and ammonia exhibit a superionic solid phase between the solid and the ionic liquid. These simulations improve our understanding of the properties of the middle ice layers of Neptune and Uranus.

  13. Intercalated graphite electrical conductors

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  14. YBCO COATED CONDUCTORS

    SciTech Connect

    Paranthaman, Mariappan Parans

    2010-01-01

    Since the discovery of high-temperature superconductors (HTS) in 1986, both (Bi,Pb)2Sr2Ca2Cu3O10 (BSCCO or 2223 with a critical temperature, Tc of 110 K) and YBa2Cu3O7- (YBCO or 123 with a Tc of 91 K) have emerged as the leading candidate materials for the first generation (1G) and second generation (2G) high temperature superconductor wires or tapes that will carry high critical current density in liquid nitrogen temperatures [1-7]. The crystal structures and detailed fundamental properties of BSCCO and YBCO superconductors have been reviewed by Matsumoto in a separate chapter in this book. The U.S. Department of Energy s target price for the conductor is close to the current copper wire cost of $10-50/kA-meter, i.e. a meter of copper type conductor carrying 1000 A current costs ~ $ 50 [8]. The long-term goal for the DOE, Office of Electricity, Advanced Conductors and Cables program is to achieve HTS wire in 1000 meters long with current carrying capacity of 1000 A/cm [8]. Robust, high-performance HTS wire will certainly revolutionize the electric power grid and various other electric power equipments as well. Sumitomo Electric Power (Japan) has been widely recognized as the world leader in manufacturing the first-generation HTS wires based on BSCCO materials using the Oxide-Powder-In-Tube (OPIT) over-pressure process [9]. Typically, 1G HTS wires carry critical currents, Ic, of over 200 Amperes (A) in piece lengths of one kilometer lengths at the standard 4 mm width and ~ 200 m thickness. However, due to the higher cost of 1G wire, mainly because of the cost of Ag alloy sheath, the researchers shifted their effort towards the development of YBCO (second generation 2G) tapes in the last fifteen years [1-7]. One of the main obstacles to the ability to carry high critical currents in YBCO films has been the phenomenon of weak links, i.e., grain boundaries formed by the misalignment of neighboring YBCO grains are known to form obstacles to current flow [10]. By

  15. Plasmonic graphene transparent conductors.

    PubMed

    Xu, Guowei; Liu, Jianwei; Wang, Qian; Hui, Rongqing; Chen, Zhijun; Maroni, Victor A; Wu, Judy

    2012-03-08

    Plasmonic graphene is fabricated using thermally assisted self-assembly of silver nanoparticles on graphene. The localized surface-plasmonic effect is demonstrated with the resonance frequency shifting from 446 to 495 nm when the lateral dimension of the Ag nanoparticles increases from about 50 to 150 nm. Finite-difference time-domain simulations are employed to confirm the experimentally observed light-scattering enhancement in the solar spectrum in plasmonic graphene and the decrease of both the plasmonic resonance frequency and amplitude with increasing graphene thickness. In addition, plasmonic graphene shows much-improved electrical conductance by a factor of 2-4 as compared to the original graphene, making the plasmonic graphene a promising advanced transparent conductor with enhanced light scattering for thin-film optoelectronic devices.

  16. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

    DOE PAGES

    Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei; ...

    2015-10-08

    Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122– anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li2B12H12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB11H12 and NaCB11H12 salts, which contain icosahedral, monovalent CB11H12– anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, andmore » truly stellar ionic conductivities (>0.1 S cm–1) unmatched by any other known polycrystalline materials at these temperatures. Furthermore with proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.« less

  17. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

    SciTech Connect

    Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei; Stavila, Vitalie; Matsuo, Motoaki; Wu, Hui; Orimo, Shin-ichi; Udovic, Terrence J.

    2015-10-08

    Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122– anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li2B12H12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB11H12 and NaCB11H12 salts, which contain icosahedral, monovalent CB11H12– anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm–1) unmatched by any other known polycrystalline materials at these temperatures. Furthermore with proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.

  18. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  19. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage...

  20. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 57.12004 Section 57... Surface and Underground § 57.12004 Electrical conductors. Electrical conductors shall be of a sufficient... operations will not damage the insulating materials. Electrical conductors exposed to mechanical damage...

  1. 33 CFR 183.445 - Conductors: Protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors: Protection. 183.445 Section 183.445 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Conductors: Protection. (a) Each conductor or group of conductors that passes through a bulkhead,...

  2. Testing flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1976-01-01

    Report describes characteristics of type of FCC which consists of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with self-extinguishing polyester adhesive.

  3. 77 FR 6482 - Conductor Certification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... management'' (CRM), a concept perfected in aviation and urgently pressed on the railroad industry by the... railroads have included CRM in their training programs. It is particularly important that a conductor...

  4. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  5. Apparent critical phenomena in the superionic phase transition of Cu2-xSe

    DOE PAGES

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...

    2016-01-11

    The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less

  6. Phase behaviour and structure of a superionic liquid in nonpolarized nanoconfinement

    NASA Astrophysics Data System (ADS)

    Dudka, Maxym; Kondrat, Svyatoslav; Kornyshev, Alexei; Oshanin, Gleb

    2016-11-01

    The ion-ion interactions become exponentially screened for ions confined in ultranarrow metallic pores. To study the phase behaviour of an assembly of such ions, called a superionic liquid, we develop a statistical theory formulated on bipartite lattices, which allows an analytical solution within the Bethe-lattice approach. Our solution predicts the existence of ordered and disordered phases in which ions form a crystal-like structure and a homogeneous mixture, respectively. The transition between these two phases can potentially be first or second order, depending on the ion diameter, degree of confinement and pore ionophobicity. We supplement our analytical results by three-dimensional off-lattice Monte Carlo simulations of an ionic liquid in slit nanopores. The simulations predict formation of ionic clusters and ordered snake-like patterns, leading to characteristic close-standing peaks in the cation-cation and anion-anion radial distribution functions.

  7. Superionic adjustment leading to weakly temperature-dependent ZT values in bulk thermoelectrics.

    PubMed

    Chen, Hong; Lin, Hua; Lin, Zi-Xiong; Shen, Jin-Ni; Chen, Ling; Wu, Li-Ming

    2015-02-02

    Thermoelectric (TE) materials are of worldwide interest for energy sustainability through direct waste-heat-to-electricity conversion. Practically, a TE power generator requires a large working temperature gradient; to achieve high efficiency, key TE materials with high ZT values are necessary and, furthermore, their ZT values should decline as little as possible over the imposed temperature range. Unfortunately, sharp ZT declines in all of the known materials are inevitable. Here we found the bulk superionic α-Ag(1-x)CuSe material exhibits unusual weakly temperature-dependent ZT values in the range of 480-693 K with the smallest ZT-T slope known to date. These result from the Seebeck coefficient balance of the countercontributions of holes and electrons and the weakly temperature-dependent thermal conductivity.

  8. Ionic conductivity measurements of H2O ice at high pressure and temperature and superionic ice in the mantle of ice giants

    NASA Astrophysics Data System (ADS)

    Sugimura, E.; Komabayashi, T.; Ohta, K.; Hirose, K.; Sata, N.; Ohishi, Y.; Shimizu, K.; Dubrovinsky, L. S.

    2011-12-01

    The experimental evidence for the superionic conduction in H2O ice at high pressure (P) and temperature (T) has been long-searched since its theoretical prediction. Melting experiments reported a steep rise of the melting curve at P-T range of 35-43 GP and 1000-1600 K, which could be due to a first-order phase transition in the solid phases, namely the presence of the triple point of water, ice VII, and a high-T phase which was assumed superionic. Nonetheless, there has still been no report on direct experimental evidence for superionic conduction (ca. 0.1 S/cm) in ice at high pressure. Here we examined ionic conductivity and isothermal molar volume of ice at high-P-T based on impedance spectroscopy (IS) and x-ray diffraction measurements in an externally-resistive heated diamond anvil cell. In situ IS measurements up to 62 GPa and 920 K demonstrated that ice exhibits superionic conduction (> 0.1 S/cm) above 580-720 K at 20-60 GPa. This suggests that superionic conduction occurs at sufficiently lower P-T than the triple point. Isothermal P-V data collected at P = 33-101 GPa and T = 873 K revealed that an anomalous volume reduction occurs at P = 50-53 GPa. This compression manner corresponds to the previously reported highly compressible regime at P = 40-60 GPa, T = 300 K, which were attributed to hydrogen bond symmetrization. There is no volume discontinuity in the isothermal compression, which contradicts the proposed first order P-T boundary between ice VII and superionic ice. Furthermore, all the conductivity data is expressed by a single Arrhenius equation so that the superionic conduction occurs regardless of the ongoing hydrogen bond symmetrization upon compression. We suggests that the previously reported steep rise of the melting temperature of ice above 35-43 GPa is independent of superionic transition, and is a consequence of the hydrogen bond symmetrization. Combining above results with the existing planetary isentropes, superionic conduction in H2O ice

  9. Conductor shears as iceberg encroaches

    SciTech Connect

    Not Available

    1984-10-01

    Operators in the Arctic regions must protect wellheads from encroaching icebergs and icepack sheets. Diverting ice masses and excavating large holes below scour depth is expensive. Now an alternate approach allows the conductor to shear, shuts in the well, and provides a method of re-entering the well. The new system has been successfully used by Mobil on two exploratory wells in the Hibernia field off eastern Canada. The wells used 18 3/4-in. wellheads rated at 10,000 psi with 36-in. conductor pipe. The performance of the system is discussed.

  10. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  11. 46 CFR 111.15-20 - Conductors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...

  12. 46 CFR 111.15-20 - Conductors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...

  13. 46 CFR 111.15-20 - Conductors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...

  14. 46 CFR 111.15-20 - Conductors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...

  15. 46 CFR 111.15-20 - Conductors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-20 Conductors. (a) Each conductor penetration to a battery room must be made watertight. (b) The termination of each...

  16. 33 CFR 159.73 - Conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...

  17. 33 CFR 159.73 - Conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...

  18. 33 CFR 159.73 - Conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...

  19. 33 CFR 159.73 - Conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...

  20. 33 CFR 159.73 - Conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Conductors. 159.73 Section 159.73 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.73 Conductors. Current carrying conductors must...

  1. Preparing the Conductor as Teacher

    ERIC Educational Resources Information Center

    Ulrich, Jerry

    2009-01-01

    While music is as old as humanity, conducting as a profession is relatively new. Although a nineteenth-century model has served as the template for the training of conductors, many undergraduate conducting students will spend their teaching careers working with inexperienced and/or amateur musicians. Additionally, the size of many ensembles in…

  2. The superionic phase transitions in (NH4)3H(SeO4)2 under hydrostatic pressure up to 400 MPa

    NASA Astrophysics Data System (ADS)

    Lindner, Ł.; Zdanowska-FrÄ czek, M.; Pawłowski, A.; FrÄ czek, Z. J.

    2014-10-01

    The effect of hydrostatic pressure on proton conductivity of (NH4)3H(SeO4)2 superionic crystal was studied in a wide temperature range and different isobaric conditions by means of impedance spectroscopy method. The measurements were performed along the trigonal c axis of the crystal, i.e., along the direction perpendicular to the plane in which, in the superionic phases, a dynamically disordered H-bond network is formed. The obtained pressure-temperature phase diagram is linear with increasing pressure. The triple point, which is the point of coexistence of the three phases: ferroelastic phase IV, ferroelastic phase III, and superionic phase II was found at p = 116.3 MPa and T = 287.3 K. High pressure leads to increase in the temperature range of stability of both superionic phases and to a drastic decrease in the temperature width of the ferroelastic phase III. With increasing pressure, the range of the superionic phase II expands at the expense of the range of the ferroelastic phase III, which is unstable and vanishes at the triple point.

  3. The superionic phase transitions in (NH{sub 4}){sub 3}H(SeO{sub 4}){sub 2} under hydrostatic pressure up to 400 MPa

    SciTech Connect

    Lindner, Ł.; Zdanowska-Frączek, M. Pawłowski, A.; Frączek, Z. J.

    2014-10-28

    The effect of hydrostatic pressure on proton conductivity of (NH{sub 4}){sub 3}H(SeO{sub 4}){sub 2} superionic crystal was studied in a wide temperature range and different isobaric conditions by means of impedance spectroscopy method. The measurements were performed along the trigonal c axis of the crystal, i.e., along the direction perpendicular to the plane in which, in the superionic phases, a dynamically disordered H-bond network is formed. The obtained pressure-temperature phase diagram is linear with increasing pressure. The triple point, which is the point of coexistence of the three phases: ferroelastic phase IV, ferroelastic phase III, and superionic phase II was found at p = 116.3 MPa and T = 287.3 K. High pressure leads to increase in the temperature range of stability of both superionic phases and to a drastic decrease in the temperature width of the ferroelastic phase III. With increasing pressure, the range of the superionic phase II expands at the expense of the range of the ferroelastic phase III, which is unstable and vanishes at the triple point.

  4. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  5. High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se

    NASA Astrophysics Data System (ADS)

    Zhong, Bin; Zhang, Yong; Li, Weiqian; Chen, Zhenrui; Cui, Jingying; Li, Wei; Xie, Yuandong; Hao, Qing; He, Qinyu

    2014-09-01

    Good thermoelectric materials should have low thermal conductivity, high electrical conductivity, and Seebeck coefficient, which cannot be easily balanced in bulk materials. Exceptionally, the super-ionics in β-Cu2Se can favorably contribute large ionic electrical conductivity and a liquid-like thermal conductivity by Cu+ ions. In the previous work, the superionic mechanism was found to be enhanced by small and randomly orientated lamellae with alternating ordered Se ion monolayer and disordered Cu ion bilayers. Here, we further enhance the superionic mechanism by increasing and better aligning lamellae in bulk Cu1.94Al0.02Se, resulting in a large thermoelectric figure of merit of 2.62 at 756 °C.

  6. High-pressure phases of group-II difluorides: Polymorphism and superionicity

    NASA Astrophysics Data System (ADS)

    Nelson, Joseph R.; Needs, Richard J.; Pickard, Chris J.

    2017-02-01

    We investigate the high-pressure behavior of beryllium, magnesium, and calcium difluorides using ab initio random structure searching and density functional theory (DFT) calculations, over the pressure range 0 -70 GPa. Beryllium fluoride exhibits extensive polymorphism at low pressures, and we find two new phases for this compound—the silica moganite and CaCl2 structures—which are stable over the wide pressure range 12 -57 GPa. For magnesium fluoride, our searching results show that the orthorhombic "O-I" TiO2 structure (P b c a ,Z =8 ) is stable for this compound between 40 and 44 GPa. Our searches find no new phases at the static-lattice level for calcium difluoride between 0 and 70 GPa; however, a phase with P 6 ¯2 m symmetry is close to stability over this pressure range, and our calculations predict that this phase is stabilized at high temperature. The P 6 ¯2 m structure exhibits an unstable phonon mode at large volumes which may signal a transition to a superionic state at high temperatures. The group-II difluorides are isoelectronic to a number of other AB2-type compounds such as SiO2 and TiO2, and we discuss our results in light of these similarities.

  7. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

    PubMed

    Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro

    2012-05-22

    Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.

  8. Temperature limited heater utilizing non-ferromagnetic conductor

    DOEpatents

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  9. Method for making conductors for ferrite memory arrays. [from pre-formed metal conductors

    NASA Technical Reports Server (NTRS)

    Heckler, C. H.; Baba, P. D.; Bhiwandker, N. C. (Inventor)

    1974-01-01

    The ferrite memory arrays are made from pre-formed metal conductors for the ferrite arrays. The conductors are made by forming a thin sheet of a metallizing paste of metal alloy powder, drying the paste layer, bisque firing the dried sheet at a first temperature, and then punching the conductors from the fired sheet. During the bisque firing, the conductor sheet shrinks to 58 percent of its pre-fired volume and the alloy particles sinter together. The conductors are embedded in ferrite sheet material and finally fired at a second higher temperature during which firing the conductors shrink approximately the same degree as the ferrite material.

  10. Tetrathiapentalene-based organic conductors

    PubMed Central

    Misaki, Yohji

    2009-01-01

    The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a β-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the β-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole)-1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT)3Au(CN)2 as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced π-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt)2 (M = Ni, Au). PMID:27877274

  11. Protective riser-conductor for offshore structures

    SciTech Connect

    Rutherford, D. A.; Albers, G. P.

    1985-07-09

    A protective sleeve for fitting about the periphery of the leg of an offshore structure. The sleeve comprises means for carrying and enclosing a plurality of conductors. It further includes one or more inner rings; an outer jacket is fixedly spaced from the rings to define longitudinal passages within which the respective conductors are fixedly positioned. The sleeve is capable of deflecting packed ice and floating objects which represent possible sources of damage to the structure or to conductors.

  12. Flexible, Polymer-Filled Metallic Conductors

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Swec, Diane M.

    1989-01-01

    Procedure developed to make materials both flexible and reasonably good electrical conductors. Metal or polymer sheet substrate cleaned with beam of energetic inert-gas ions to remove adsorbed gases and contaminants from surface. After cleaning, substrate coated by cosputter deposition of both conductive metal and flexible polymer. Removed by either mechanical or chemical-dissolution technique, and resulting flexible metal/polymer conductor bonded at low temperature to conductor-surface contacts.

  13. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor

    PubMed Central

    Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han; Zhu, Zhuoying; Hy, Sunny; Deng, Zhi; Meng, Ying Shirley; Ong, Shyue Ping

    2016-01-01

    All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na+ conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3−xPS4−xClx) solid electrolyte with a room-temperature Na+ conductivity exceeding 1 mS cm−1. We demonstrate that an all-solid-state TiS2/t-Na3−xPS4−xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g−1 over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na+ conductivity of the solid electrolyte, but also due to the effect that “salting” Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase. PMID:27645565

  14. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    DOE PAGES

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; ...

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  15. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    SciTech Connect

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  16. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor

    NASA Astrophysics Data System (ADS)

    Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han; Zhu, Zhuoying; Hy, Sunny; Deng, Zhi; Meng, Ying Shirley; Ong, Shyue Ping

    2016-09-01

    All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na+ conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3‑xPS4‑xClx) solid electrolyte with a room-temperature Na+ conductivity exceeding 1 mS cm‑1. We demonstrate that an all-solid-state TiS2/t-Na3‑xPS4‑xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g‑1 over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na+ conductivity of the solid electrolyte, but also due to the effect that “salting” Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase.

  17. Precision gold conductors for HMCs

    NASA Astrophysics Data System (ADS)

    Widmer, M. R.

    1994-08-01

    Ti/Pd/Au multiple code coded switch (MCCS) networks were built and compared to Cr/Au MCCS networks. The data showed no measurable difference between the two systems. Interface resistance of both types of networks was measured as a diagnostic aid to determine if hydrogen was affecting the Ti/Pd/Au MCCS networks. The data showed that although hydrogen does affect Ti/Pd/Au, the changes are not significant with respect to MCCS environments. An evaluation of several proprietary gold electroplating solutions for use in the production of Ti/Pd/Au conductors was performed. All the testing results were comparable to the current product requirements.

  18. Structural and electrical investigation of (Ag3AsS3) x (As2S3)1- x superionic glasses

    NASA Astrophysics Data System (ADS)

    Studenyak, Ihor; Neimet, Yuriy; Cserháti, Csaba; Kökényesi, Sándor; Kazakevičius, Edvardas; Šalkus, Tomas; Kežionis, Algimantas; Orliukas, Antanas

    2012-02-01

    Structural studies of (Ag3AsS3) x (As2S3)1- x chalcogenide superionic glasses in the compositional range x = 0.3-0.9 were performed by scanning electron microscopy. Temperature and compositional dependences of transmission coefficient, electrical conductivity, and activation energy were investigated

  19. Supercell design for first-principles simulations of solids and application to diamond, silica, and superionic water

    NASA Astrophysics Data System (ADS)

    Militzer, B.

    2016-12-01

    For efficient first-principles computation of crystalline materials at high density and temperature, an optimal choice of the supercell is important to minimize finite size errors. An algorithm is presented to construct compact supercells for arbitrary crystal structures. Rather than constructing standard supercells by replicating the conventional unit cell, we employ the full flexibility that we gain by using arbitrary combinations of the primitive cell vectors in order to construct a series of cubic and nearly cubic supercells. In cases where different polymorphs of a material needed to be compared, we are able construct supercells of consistent size. Our approach also allows us to efficiently study the finite size effects in systems like superionic water where they would otherwise difficult to obtain because a standard replication of the unit cells leads to supercells that are too expensive to be used for first-principles simulations. We apply our method to simple, body-centered, and face-centered cubic as well as hexagonal close packed cells. We present simulation results for diamond, silica in the pyrite structure, and superionic water with an face-centered cubic oxygen sub-lattice. The effects of the finite simulation cell size and Brillouin zone sampling on the computed pressure and internal energy are analyzed.

  20. Solid-state proton conductors

    NASA Astrophysics Data System (ADS)

    Jewulski, J. R.; Osif, T. L.; Remick, R. J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.

  1. Solid-state proton conductors

    SciTech Connect

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  2. Doped LZO buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  3. Frontiers of organic conductors and superconductors.

    PubMed

    Saito, Gunzi; Yoshida, Yukihiro

    2012-01-01

    We review the development of conductive organic molecular assemblies including organic metals, superconductors, single component conductors, conductive films, conductors with a switching function, and new spin state (quantum spin liquid state). We emphasize the importance of the ionicity phase diagram for a variety of charge transfer systems to provide a strategy for the development of functional organic solids (Mott insulator, semiconductor, superconductor, metal, complex isomer, neutral-ionic system, alignment of chemical potentials, etc.). For organic (super)conductors, the electronic dimensionality of the solids is a key parameter and can be designed based on the self-aggregation ability of a molecule. We present characteristic structural and physical properties of organic superconductors.

  4. An Exploratory Comparison of Novice, Intermediate, and Expert Orchestral Conductors

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2005-01-01

    This study compared novice, "intermediate" (graduate student), and expert orchestral conductors. Two novice conductors, one graduate student in orchestral conducting, and one expert conductor led a university symphony orchestra in part of the first movement of Brahms's Symphony No. 2. Wired for sound, conductors attempted to verbalize their…

  5. Apparent critical phenomena in the superionic phase transition of Cu2-xSe

    SciTech Connect

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; Avdeev, Maxim; Studer, Andrew; Snyder, G. Jeffrey

    2016-01-11

    The superionic phase transition of ${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.

  6. The manufacture of flat conductor cable

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1974-01-01

    The major techniques are described for fabricating flat conductor cable (FCC). Various types of FCC, including unshielded, shielded, power, and signal, in both existing and conceptual constructions, are covered.

  7. Improving YBCO Coated Conductors for Applications (Postprint)

    DTIC Science & Technology

    2012-02-01

    are lighter in weight and smaller in size than their conventional counterparts. The YBCO coated conductor is expected to be the premiere HTS conductor...superconductors (HTS) can enable megawatt-class power systems which are lighter in weight and smaller in size than their conventional counterparts. The...Pinning, Superconducting Machines . PACS: 74.60.G, 74.76.B, 74.25.H, 74.72.B INTRODUCTION A variety of future military systems will require large amounts

  8. Conductor Development for High Field Dipole Magnets

    SciTech Connect

    Scanlan, R.M.; Dietderich, D.R.; Higley, H.C.

    2000-03-01

    Historically, improvements in dipole magnet performance have been paced by improvements in the superconductor available for use in these magnets. The critical conductor performance parameters for dipole magnets include current density, piece length, effective filament size, and cost. Each of these parameters is important for efficient, cost effective dipoles, with critical current density being perhaps the most important. Several promising magnet designs for the next hadron collider or a muon collider require fields of 12 T or higber, i.e. beyond the reach of NbTi. The conductor options include Nb{sub 3}Sn, Nb{sub 3}Al, or the high temperature superconductors. Although these conductors have the potential to provide the combination of performance and cost required, none of them have been developed sufficiently at this point to satisfy all the requirements. This paper will review the status of each class of advanced conductor and discuss the remaining problems that require solutions before these new conductors can be considered as practical. In particular, the plans for a new program to develop Nb{sub 3}Sn and Nb{sub 3}Al conductors for high energy physics applications will be presented. Also, the development of a multikiloamp Bi-2212 cable for dipole magnet applications will be reported.

  9. Nonlinear electrochemical relaxation around conductors.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2006-07-01

    We analyze the simplest problem of electrochemical relaxation in more than one dimension-the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasineutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.

  10. Conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Yoon, Kue H.

    1984-04-10

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed perpendicular to the direction of travel of the inner conductor/insulating support assembly.

  11. Effects of Conductor Baton Use on Band and Choral Musicians' Perceptions of Conductor Expressivity and Clarity

    ERIC Educational Resources Information Center

    Nápoles, Jessica; Silvey, Brian A.

    2017-01-01

    The purpose of this study was to examine participants' (college band and choral musicians, N = 143) perceptions of conductor clarity and expressivity after viewing band and choral directors conducting with or without a baton. One band and one choral conductor each prepared and conducted two excerpts of Guy Forbes's "O Nata Lux", a piece…

  12. Hydrate melting in soil around hot conductor

    SciTech Connect

    Briaud, J.L.; Chaouch, A.

    1997-07-01

    There is ice in the Gulf of Mexico, and this type of ice called gas hydrates burns when ignited. Gas hydrates form slowly within the soil mass when the gas seeping up from offshore oil reservoirs mixes with water under high pressures (>500 m of water) and low temperatures (a few degrees Celsius). The oil travels from the well to the platform through a conductor pipe. The oil and therefore the conductor are very hot and melt the existing hydrates that are within the depth of the foundation piles. The melting process generates a large amount of gas that can endanger the stability of the foundation. The rate at which the temperature rises around the hot conductor in the hydrate rich soil is studied using the finite-element method (FEM). A detailed thermodynamic analysis is performed. It includes a laboratory experiment to help validate FEM, a study of the mesh size, the thermodynamic analysis results, a study of the conductor size, and of the latent heat influence. The results can be used to evaluate the temperature rise around a hot pipe buried in soil and therefore the propagation of the hydrate melting front around the conductor and toward the piles.

  13. Infrared thermography and overloaded neutral conductors

    NASA Astrophysics Data System (ADS)

    McComb, John; Niebla, Hector E.

    1999-03-01

    Present findings of two recent case studies. One involves transformer failures on three computer-stores within eight hours of their grand opening. The second discusses the findings during an infrared thermography-training course for electric utility engineers of a transformer vault serving an industrial customer. Both of these deal with overloaded neutral conductors. Historically, the average neutral conductor carried only the imbalance of the current between the phases of a three-phase system. This current was typically small in relation to the load being served. In fact, for economic reasons many neutrals were installed smaller than their associated phase conductors. Today however, certain types of loads (non-linear loads such as computers) and certain transformer connections (4 bushing single phase with a collector bus) cause the neutral to have up to three times as much amperage as the phase conductors. This paper will discuss the conditions under which such loading occurs and further investigate steps that can be taken/recommended should an infrared test indicate an overloaded neutral conductor.

  14. Thermal conductor for high-energy electrochemical cells

    DOEpatents

    Hoffman, Joseph A.; Domroese, Michael K.; Lindeman, David D.; Radewald, Vern E.; Rouillard, Roger; Trice, Jennifer L.

    2000-01-01

    A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

  15. Tunable Broadband Printed Carbon Transparent Conductor

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wan, Jiayu

    Transparent conductors have been widely applied in solar cells, transparent smart skins, and sensing/imaging antennas, etc. Carbon-based transparent conductor has attracted great attention for its low cost and broad range transparency. Ion intercalation has been known to highly dope graphitic materials, thereby tuning materials' optoelectronic properties. For the first time, we successfully tune the optical transmittance of a reduced graphene oxide (RGO)/CNT network from mid-IR range to visible range by means of Li-ion intercalation/deintercalation. We also observed a simultaneous increase of the electrical conductivity with the Li-ion intercalation. This printed carbon hybrid thin film was prepared through all solution processes and was easily scalable. This study demonstrates the possibility of using ion intercalation for low cost, tunable broadband transparent conductors.

  16. Quench propagation velocity for highly stabilized conductors

    SciTech Connect

    Mints, R.G. |; Ogitsu, T. |; Devred, A.

    1995-05-01

    Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.

  17. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying capacity if it is smaller than is provided for in the National Electric Code, 1968. In addition,...

  18. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying capacity if it is smaller than is provided for in the National Electric Code, 1968. In addition,...

  19. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying capacity if it is smaller than is provided for in the National Electric Code, 1968. In addition,...

  20. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying capacity if it is smaller than is provided for in the National Electric Code, 1968. In addition,...

  1. 30 CFR 75.513-1 - Electric conductor; size.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Electric conductor; size. An electric conductor is not of sufficient size to have adequate carrying capacity if it is smaller than is provided for in the National Electric Code, 1968. In addition,...

  2. Measuring the Magnetic Force on a Current-Carrying Conductor.

    ERIC Educational Resources Information Center

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  3. Resistive coating for current conductors in cryogenic applications

    DOEpatents

    Hirayama, Chikara; Wagner, George R.

    1982-05-18

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu.sub.2 S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors.

  4. Method and apparatus for preparing multiconductor cable with flat conductors

    NASA Technical Reports Server (NTRS)

    Marcell, G. V. (Inventor)

    1969-01-01

    A method and apparatus for preparing flat conductor cable having a plurality of ribbon-like conductors disposed upon and adhesively bonded to the surface of a substrate is described. The conductors are brought into contact with the substrate surface, and while maintained in axial tension on said substrate, the combination is seated on a yieldably compressible layer to permit the conductor to become embedded into the surface of the substrate film.

  5. Full tape thickness feature conductors for EMI structures

    DOEpatents

    Peterson, Kenneth A.; Knudson, Richard T.; Smith, Frank R.; Barner, Gregory

    2014-06-10

    Generally annular full tape thickness conductors are formed in single or multiple tape layers, and then stacked to produce an annular solid conductive wall for enclosing an electromagnetic isolation cavity. The conductors may be formed using punch and fill operations, or by flowing conductor-containing material onto the tape edge surfaces that define the interior sidewalls of the cavity.

  6. 30 CFR 57.12080 - Bare conductor guards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at mantrip loading and unloading points, and at shaft stations. Where such trolley wires and bare...

  7. 30 CFR 57.12080 - Bare conductor guards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at mantrip loading and unloading points, and at shaft stations. Where such trolley wires and bare...

  8. 30 CFR 57.12080 - Bare conductor guards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at mantrip loading and unloading points, and at shaft stations. Where such trolley wires and bare...

  9. 30 CFR 57.12080 - Bare conductor guards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at mantrip loading and unloading points, and at shaft stations. Where such trolley wires and bare...

  10. 30 CFR 57.12080 - Bare conductor guards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bare conductor guards. 57.12080 Section 57... Underground Only § 57.12080 Bare conductor guards. Trolley wires and bare power conductors shall be guarded at mantrip loading and unloading points, and at shaft stations. Where such trolley wires and bare...

  11. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductor; capacity and insulation....

  12. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductor; capacity and insulation....

  13. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductor; capacity and insulation....

  14. 30 CFR 77.503 - Electric conductors; capacity and insulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductors; capacity and...

  15. 30 CFR 77.503 - Electric conductors; capacity and insulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors; capacity and...

  16. 30 CFR 77.503 - Electric conductors; capacity and insulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors; capacity and...

  17. 30 CFR 77.503 - Electric conductors; capacity and insulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductors; capacity and...

  18. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductor; capacity and insulation....

  19. 30 CFR 77.503 - Electric conductors; capacity and insulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... UNDERGROUND COAL MINES Electrical Equipment-General § 77.503 Electric conductors; capacity and insulation. Electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductors; capacity and...

  20. 30 CFR 75.513 - Electric conductor; capacity and insulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 75.513 Electric conductor; capacity and insulation. All electric conductors shall be sufficient in size and have adequate current carrying capacity and be of such construction that a rise in temperature... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductor; capacity and insulation....

  1. 33 CFR 159.71 - Electrical controls and conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...

  2. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.503-1 Electric conductors. Electric conductors shall be sufficient in size to...

  3. 33 CFR 159.71 - Electrical controls and conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...

  4. 33 CFR 159.71 - Electrical controls and conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...

  5. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.503-1 Electric conductors. Electric conductors shall be sufficient in size to...

  6. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.503-1 Electric conductors. Electric conductors shall be sufficient in size to...

  7. 33 CFR 159.71 - Electrical controls and conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...

  8. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.503-1 Electric conductors. Electric conductors shall be sufficient in size to...

  9. 33 CFR 159.71 - Electrical controls and conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Electrical controls and... Electrical controls and conductors. Electrical controls and conductors must be installed in accordance with good marine practice. Wire must be copper and must be stranded. Electrical controls and conductors...

  10. 30 CFR 77.503-1 - Electric conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric conductors. 77.503-1 Section 77.503-1... MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.503-1 Electric conductors. Electric conductors shall be sufficient in size to...

  11. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be #14 AWG (2.10 mm2) or larger; and (b) Each thermocouple, pyrometer, or instrumentation cable conductor must be #22 AWG (0.33 mm2) or larger....

  12. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be #14 AWG (2.10 mm2) or larger; and (b) Each thermocouple, pyrometer, or instrumentation cable conductor must be #22 AWG (0.33 mm2) or larger....

  13. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be #14 AWG (2.10 mm2) or larger; and (b) Each thermocouple, pyrometer, or instrumentation cable conductor must be #22 AWG (0.33 mm2) or larger....

  14. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be #14 AWG (2.10 mm2) or larger; and (b) Each thermocouple, pyrometer, or instrumentation cable conductor must be #22 AWG (0.33 mm2) or larger....

  15. 46 CFR 111.60-4 - Minimum cable conductor size.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conductor must be #18 AWG (0.82 mm2) or larger except— (a) Each power and lighting cable conductor must be #14 AWG (2.10 mm2) or larger; and (b) Each thermocouple, pyrometer, or instrumentation cable conductor must be #22 AWG (0.33 mm2) or larger....

  16. 46 CFR 120.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment and conductor grounding. 120.372 Section 120... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... together to a common ground by a normally non-current carrying conductor. Metallic cases of instruments...

  17. 46 CFR 111.50-3 - Protection of conductors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of overcurrent protection for conductors is to open the electric circuit if the current reaches a... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... in each ungrounded conductor of the same circuit. (b) Overcurrent protection of conductors....

  18. 46 CFR 111.50-3 - Protection of conductors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of overcurrent protection for conductors is to open the electric circuit if the current reaches a... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... in each ungrounded conductor of the same circuit. (b) Overcurrent protection of conductors....

  19. 46 CFR 111.50-3 - Protection of conductors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of overcurrent protection for conductors is to open the electric circuit if the current reaches a... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... in each ungrounded conductor of the same circuit. (b) Overcurrent protection of conductors....

  20. 46 CFR 111.50-3 - Protection of conductors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of overcurrent protection for conductors is to open the electric circuit if the current reaches a... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... in each ungrounded conductor of the same circuit. (b) Overcurrent protection of conductors....

  1. 46 CFR 111.50-3 - Protection of conductors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of overcurrent protection for conductors is to open the electric circuit if the current reaches a... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... in each ungrounded conductor of the same circuit. (b) Overcurrent protection of conductors....

  2. High Temperature Protonic Conductors by Melt Growth

    DTIC Science & Technology

    2006-11-21

    A.R. de Arellano-López, A. Sayir. “Microestructura y Comportamiento Plástico de Perovsquitas Conductoras Protónicas de Alta Temperatura ”. Bol. Soc...Conductores Protónicos de Alta Temperatura Crecidos por Fusión de Zona Flotante”. VII Reunión Nacional y VI Conferencia Iberoamericana (Electrocerámica

  3. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  4. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  5. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 57.12004 Section 57.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  6. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical conductors. 57.12004 Section 57.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  7. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  8. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  9. 30 CFR 57.12004 - Electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical conductors. 57.12004 Section 57.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  10. 30 CFR 56.12004 - Electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical conductors. 56.12004 Section 56.12004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity §...

  11. High-temperature superconducting conductors and cables

    SciTech Connect

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  12. Charge transport in superionic and melted AgI under a magnetic field studied via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Gagliardi, Luca; Bonella, Sara

    2016-10-01

    Charge transport in AgI subject to an external magnetic field is studied via computer simulations. We demonstrate that a recently developed algorithm can effectively complement problematic experiments to detect the ionic Hall effect, and identify previously unreported effects such as ionic magnetoresistance. We focus first on the charge transport properties of superionic AgI, showing that the magnetic field induces a considerable reduction in the diagonal elements of the conductivity tensor (magnetoresistance). Within the limits of the signal-to-noise ratio, calculation of the off-diagonal elements of this tensor also shows the onset of the Hall effect in this material. We then present numerical evidence supporting the use of the Nerst-Einstein approximation to obtain the Hall mobility of the system. This approximation enables very efficient detection of the Hall signal, with values of the mobility and of the migration activation energy in very good agreement with experiments. Having validated our simulation approach, we consider melted AgI to investigate if the Hall signal persists in this nonsuperionic case, finding a detectable signal. Comparison of the diffusion tensor of this system with that of molten NaCl also indicates why the Hall signal is absent in the latter. This work paves the way for the routine use of simulations to study transport, and in particular the ionic Hall effect, in ionic systems under external magnetic field.

  13. Light scattering and computer simulation studies of superionic pure and La-doped BaF2

    NASA Astrophysics Data System (ADS)

    Rammutla, K. E.; Comins, J. D.; Erasmus, R. M.; Netshisaulu, T. T.; Ngoepe, P. E.; Chadwick, A. V.

    2016-03-01

    A combination of both Raman and Brillouin scattering experiments as well as Molecular Dynamics (MD) was used to study the superionic behaviour of BaF2 doped with a wide range of LaF3 concentrations (0 ⩽ x ⩽ 50 mol%). Raman spectroscopy reveals that for undoped BaF2 and those doped with 5% and 10% LaF3, the room temperature spectra show the usual T2g symmetry mode at 241 cm-1 whereas for those doped with 20%, 30% and 50% LaF3, the dominant Raman mode is of the Eg symmetry situated at ∼263, 275 and 286 cm-1, respectively. The Raman linewidths show near linear increases with temperature followed by rapid increases above the characteristic transition temperatures (Tc), being at 1200, 850, 800, 975, 950 and 920 K for LaF3 concentrations of 0, 5, 10, 20, 30 and 50; respectively. The temperature dependence of the squares of the Brillouin frequencies (ΔωB)2 of the LA and TA acoustic modes respectively related to elastic constants C11 and C44 showed linear decreases followed by significant deviations around the same temperatures (Tc), at which the Raman linewidths start to show substantial increases. The complementary studies using MD simulations show that the diffusion coefficients increase markedly above the same temperatures observed experimentally. The extrinsic fluorine ion trajectories were also determined from the MD simulations to better understand the mechanisms of diffusion.

  14. Two dimensional fluoride ion conductor RbSn {2}F {5} studied by impedance spectroscopy and {19}F, {119}Sn, and {87}Rb NMR

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Ahmad, M. M.; Ogiso, Y.; Okuda, T.; Chikami, J.; Miehe, G.; Ehrenberg, H.; Fuess, H.

    2004-07-01

    RbSn2F5 is a two-dimensional fluoride ion conductor. It undergoes a first-order phase transition to a superionic state at 368 K. The structure of the low temperature phase has been determined from the Rietveld analysis of the X-ray powder diffraction. The dynamic properties of the fluoride ions in RbSn2F5 have been studied by impedance spectroscopy and solid state NMR. The dc ionic conductivity of this sample shows an abrupt increase at the phase transition temperature. We have obtained the hopping frequency and the concentration of the charge carriers (F- ions) at different temperatures from the analysis of the conductivity spectra using Almond-West formalism. The estimated values of the charge carriers’ concentration agree well with that determined from the structure and were found to be independent of temperature. The relatively small value of the power-law exponent, n ≈ 0.55, supports the two-dimensional property of the investigated material. Furthermore, 19F NMR with simulation has suggested the diffusive motions of the fluoride ions between different sites. In contrast, 119Sn and 87Rb NMR spectra below 250 K supported the intrinsic disordered nature due to the random distribution of the fluoride ion vacancies.

  15. Local noise in a diffusive conductor

    PubMed Central

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-01-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes. PMID:27466216

  16. Local noise in a diffusive conductor

    NASA Astrophysics Data System (ADS)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-07-01

    The control and measurement of local non-equilibrium configurations is of utmost importance in applications on energy harvesting, thermoelectrics and heat management in nano-electronics. This challenging task can be achieved with the help of various local probes, prominent examples including superconducting or quantum dot based tunnel junctions, classical and quantum resistors, and Raman thermography. Beyond time-averaged properties, valuable information can also be gained from spontaneous fluctuations of current (noise). From these perspective, however, a fundamental constraint is set by current conservation, which makes noise a characteristic of the whole conductor, rather than some part of it. Here we demonstrate how to remove this obstacle and pick up a local noise temperature of a current biased diffusive conductor with the help of a miniature noise probe. This approach is virtually noninvasive for the electronic energy distributions and extends primary local measurements towards strongly non-equilibrium regimes.

  17. Coated conductors for power applications: materials challenges

    NASA Astrophysics Data System (ADS)

    Obradors, Xavier; Puig, Teresa

    2014-04-01

    This manuscript reports on the recent progress and the remaining materials challenges in the development of coated conductors (CCs) for power applications and magnets, with a particular emphasis on the different initiatives being active at present in Europe. We first summarize the scientific and technological scope where CCs have been raised as a complex technology product and then we show that there exists still much room for performance improvement. The objectives and CC architectures being explored in the scope of the European project EUROTAPES are widely described and their potential in generating novel breakthroughs emphasized. The overall goal of this project is to create synergy among academic and industrial partners to go well beyond the state of the art in several scientific issues related to CCs’ enhanced performances and to develop nanoengineered CCs with reduced costs, using high throughput manufacturing processes which incorporate quality control tools and so lead to higher yields. Three general application targets are considered which will require different conductor architectures and performances and so the strategy is to combine vacuum and chemical solution deposition approaches to achieve the targeted goals. A few examples of such approaches are described related to defining new conductor architectures and shapes, as well as vortex pinning enhancement through novel paths towards nanostructure generation. Particular emphasis is made on solution chemistry approaches. We also describe the efforts being made in transforming the CCs into assembled conductors and cables which achieve appealing mechanical and electromagnetic performances for power systems. Finally, we briefly mention some outstanding superconducting power application projects being active at present, in Europe and worldwide, to exemplify the strong advances in reaching the demands to integrate them in a new electrical engineering paradigm.

  18. Ionic conductors for solid oxide fuel cells

    SciTech Connect

    Krumpelt, M.; Bloom, I.D.; Pullockaran, J.D.; Myles, K.M.

    1991-12-31

    An electrolyte that operates at temperatures ranging from 600{degree}C to 800{degree}C is discussed. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  19. Ionic conductors for solid oxide fuel cells

    DOEpatents

    Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.

    1993-01-01

    An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.

  20. Cost-effectiveness of three treatment strategies for lumbar spinal stenosis: Conservative care, laminectomy, and the Superion interspinous spacer

    PubMed Central

    Anderson, Louise H.; Nelson, Teresa; Patel, Vikas V.

    2015-01-01

    Background Lumbar spinal stenosis is a painful and debilitating condition resulting in healthcare costs totaling tens of billions of dollars annually. Initial treatment consists of conservative care modalities such as physical therapy, NSAIDs, opioids, and steroid injections. Patients refractory to these therapies can undergo decompressive surgery, which has good long-term efficacy but is more traumatic and can be associated with high post-operative adverse event (AE) rates. Interspinous spacers have been developed to offer a less-invasive alternative. The objective of this study was to compare the costs and quality adjusted life years (QALYs) gained of conservative care (CC) and decompressive surgery (DS) to a new minimally-invasive interspinous spacer. Methods A Markov model was developed evaluating 3 strategies of care for lumbar spinal stenosis. If initial therapies failed, the model moved patients to more invasive therapies. Data from the Superion FDA clinical trial, a prospective spinal registry, and the literature were used to populate the model. Direct medical care costs were modeled from 2014 Medicare reimbursements for healthcare services. QALYs came from the SF-12 PCS and MCS components. The analysis used a 2-year time horizon with a 3% discount rate. Results CC had the lowest cost at $10,540, while Spacers and DS were nearly identical at about $13,950. CC also had the lowest QALY increase (0.06), while Spacers and DS were again nearly identical (.28). The incremental cost-effectiveness ratios (ICER) for Spacers compared to CC was $16,300 and for DS was $15,200. Conclusions Both the Spacer and DS strategies are far below the commonly cited $50,000/QALY threshold and produced several times the QALY increase versus CC, suggesting that surgical care provides superior value (cost / effectiveness) versus sustained conservative care in the treatment of lumbar spinal stenosis. PMID:26273546

  1. Testing of the 3M Company Composite Conductor

    SciTech Connect

    Stovall, John P; Rizy, D Tom; Kisner, Roger A

    2010-10-01

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have been installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.

  2. High temperature crystal structures and superionic properties of SrCl{sub 2}, SrBr{sub 2}, BaCl{sub 2} and BaBr{sub 2}

    SciTech Connect

    Hull, Stephen; Norberg, Stefan T.; Ahmed, Istaq; Eriksson, Sten G.; Mohn, Chris E.

    2011-11-15

    The structural properties of the binary alkaline-earth halides SrCl{sub 2}, SrBr{sub 2}, BaCl{sub 2} and BaBr{sub 2} have been investigated from ambient temperature up to close to their melting points, using the neutron powder diffraction technique. Fluorite-structured SrCl{sub 2} undergoes a gradual transition to a superionic phase at 900-1100 K, characterised by an increasing concentration of anion Frenkel defects. At a temperature of 920(3) K, the tetragonal phase of SrBr{sub 2} undergoes a first-order transition to a cubic fluorite phase. This high temperature phase shows the presence of extensive disorder within the anion sublattice, which differs from that found in superionic SrCl{sub 2}. BaCl{sub 2} and BaBr{sub 2} both adopt the cotunnite crystal structure under ambient conditions. BaCl{sub 2} undergoes a first-order structural transition at 917(5) K to a disordered fluorite-structured phase. The relationship between the (disordered) crystal structures and the ionic conductivity behaviour is discussed and the influence of the size of the mobile anion on the superionic behaviour is explored. - Graphical abstract: Anomalous behaviour of the lattice expansion of SrCl{sub 2} at temperatures of {approx}1000 K is associated with the gradual transition to a superionic phase, whilst SrBr{sub 2} undergoes a first-order structural transition ({beta}{yields}{alpha}) to a fluorite-structured superionic phase at 920(3) K. Highlights: > Anomalous behaviour of the lattice expansion of SrCl{sub 2} occurs at temperatures {approx}1000 K. > Crystal structure of {beta}-SrBr{sub 2} is described in detail. > On heating, SrBr{sub 2} and BaCl{sub 2} transform to a fluorite-structured superionic phase. > Temperature dependence of the BaCl{sub 2} and BaBr{sub 2} structures is presented. > Nature of the superionic phases within the alkaline-earth halides is discussed.

  3. Multipole Expansion for a Single Helical Current Conductor

    NASA Astrophysics Data System (ADS)

    Tominaka, T.; Hatanaka, K.; Katayama, T.

    1997-05-01

    The purpose of this paper is to give the expression of the multipole expansion for a single helical current conductor. This analytical expression will be useful for the electromagnetic analysis of various helical coils such as helical dipoles, multifilamentary superconductors and superconducting strands. The present treatment of the multipole expansion for a single helical current conductor is derived as the extension of the case for a single straight current conductor. In addition, the comparison between the analytical and numerical calculations is presented for a single helical current conductor. As a result, the agreement between the analytical and numerical calculations is quite good, except the region near the radius of a single helical current conductor. Then, for the sum of the multipole expansion for a single helical current conductor, the Cesaro's method of summation are adopted.

  4. Transport AC Losses in Striated YBCO Coated Conductors (Postprint)

    DTIC Science & Technology

    2012-02-01

    AFRL-RZ-WP-TP-2012-0124 TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) G.A. Levin and P.N. Barnes Mechanical Energy...TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...2006. 14. ABSTRACT DC current-voltage characteristics and transport ac losses of striated and non-striated Y1Ba2Cu3O7-δ ( YBCO ) coated conductors

  5. Protection of Overhead Conductors at the Inlet to a Connector

    SciTech Connect

    Trofimov, S. V.

    2003-11-15

    A method that enables determination of maximum amplitudes of standing vibration waves, off-horizontal angles of the conductors, moments of resistance, and cutting forces in any cross section of any type of conductor and connector with the help of 'SVT-connector' software is described. Comparative values of the mentioned parameters at the outlet of the conductor from rigid dress and at the inlet to the connector are presented.

  6. Flat conductor cable connectors with individually sealed contacts

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Information is presented on flat conductor cable connectors, a series with individually sealed contacts. Data are concerned with connector historical development, design requirements, and testing and costs.

  7. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  8. Development of twisted high-temperature superconductor composite conductors

    SciTech Connect

    Christopherson, C.J.; Riley, G.N. Jr.

    1995-04-24

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm {sup 2} (77 K, self-field, 1 {mu}V/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  9. Development of twisted high-temperature superconductor composite conductors

    NASA Astrophysics Data System (ADS)

    Christopherson, C. J.; Riley, G. N., Jr.

    1995-04-01

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm 2 (77 K, self-field, 1 μV/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  10. Actuating dielectric elastomers in pure shear deformation by elastomeric conductors

    SciTech Connect

    Wang, Yin; Chen, Baohong; Zhou, Jinxiong; Bai, Yuanyuan; Wang, Hong

    2014-02-10

    Pure shear experiments are commonly used to characterize dielectric elastomer (DE) material properties and to evaluate DE actuator/generator performance. It is increasingly important for many applications to replace conventional carbon grease electrodes with stretchable elastomeric conductors. We formulate a theory for DE with elastomeric conductors, synthesize transparent hydrogel as ionic conductors, and measure actuation of DE in pure shear deformation. Maximum 67% actuation strain is demonstrated. The theory agrees well with our measurement and also correlates well with reported experiments on DE with electronic conductors.

  11. 30 CFR 56.12048 - Communication conductors on power poles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electricity § 56.12048 Communication conductors on power poles. Telegraph, telephone, or signal wires shall... powerlines, they shall be installed as specified by the National Electrical Code....

  12. Flat conductor cable for electrical packaging

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Flat conductor cable (FCC) is relatively new, highly promising means for electrical packaging and system integration. FCC offers numerous desirable traits (weight, volume and cost savings, flexibility, high reliability, predictable and repeatable electrical characteristics) which make it extremely attractive as a packaging medium. FCC, today, finds wide application in everything from integration of lunar equipment to the packaging of electronics in nuclear submarines. Described are cable construction and means of termination, applicable specifications and standards, and total FCC systems. A list of additional sources of data is also included for more intensive study.

  13. Miniaturized bendable 400 MHz artificial magnetic conductor

    NASA Astrophysics Data System (ADS)

    Presse, Anthony; Tarot, Anne-Claude

    2016-04-01

    A bendable artificial magnetic conductor (AMC) with a resonant frequency of 400 MHz is proposed. The dimensions of the unit cell are 50 × 50 mm2 or 0.07 × 0.07 λ0. The miniaturization is achieved with closely coupled patches printed on each side of a 0.127-mm-thick dielectric substrate. This last one is stacked on a flexible 3-mm-thick silicone over a ground plane. An AMC prototype is simulated and manufactured. Also, a printed inverted-F antenna is used to highlight the bandwidth of the AMC.

  14. NASA Test Conductor Monitoring DIME competition

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA test conductor at the top of the 2.2-second Drop Tower monitors a student lecture at a lower level. This was part of the Microgravity Environment (DIME) competition held April 23-25, 2002, at NASA's Glenn Research Center. Competitors included two teams from Sycamore High School, Cincinnati, OH, and one each from Bay High School, Bay Village, OH, and COSI Academy, Columbus, OH. DIME is part of NASA's education and outreach activities. Details are on line at http://microgravity.grc.nasa.gov/DIME_2002.html.

  15. Method for preparing a thick film conductor

    DOEpatents

    Nagesh, Voddarahalli K.; Fulrath, deceased, Richard M.

    1978-01-01

    A method for preparing a thick film conductor which comprises providing surface active glass particles, mixing the surface active glass particles with a thermally decomposable organometallic compound, for example, a silver resinate, and then decomposing the organometallic compound by heating, thereby chemically depositing metal on the glass particles. The glass particle mixture is applied to a suitable substrate either before or after the organometallic compound is thermally decomposed. The resulting system is then fired in an oxidizing atmosphere, providing a microstructure of glass particles substantially uniformly coated with metal.

  16. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  17. 30 CFR 56.12010 - Isolation or insulation of communication conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conductors. 56.12010 Section 56.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12010 Isolation or insulation of communication conductors. Telephone and low... energized power conductors or any other power source....

  18. Testing of the 3M Company ACCR Conductor

    SciTech Connect

    Stovall, J.P.; RIzy, D.T.; Kisner, R.A.; Deve, H.E.

    2010-09-15

    The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying capability have been examined. One of the key limiting factors in the design of a transmission line is the conductor sag which determines the clearance of the conductor above ground or underlying structures needed for electrical safety. Increasing the current carrying capability of a conductor increases the joule heating in the conductor which increases the conductor sag. A conductor designed for high-temperature and lowsag operation requires an engineered modification of the conductor materials. To make an advanced cable, the 3M Company solution has been the development of a composite conductor consisting of Nextel ceramic fibers to replace the steel core and

  19. Casimir interaction of arbitrarily shaped conductors

    NASA Astrophysics Data System (ADS)

    Straley, Joseph P.; Kolomeisky, Eugene B.

    2017-04-01

    We review a systematic practical implementation of the multiple scattering formalism due to Balian and Duplantier (1977 Ann. Phys. 104 300, 1978 Ann. Phys. 112 165) for the calculation of the Casimir interaction between arbitrarily shaped smooth conductors. The leading two-point scattering term of the expansion has a simple compact form, amenable to exact or accurate numerical evaluation. It is a general expression which improves upon the proximity force and pairwise summation approximations. We show that for many geometries it captures the bulk of the interaction effect. The inclusion of terms beyond the two-point approximation provides an accuracy check and explains screening. As an illustration of the power and versatility of the method we re-evaluate sphere–sphere and sphere–plane interactions and compared the results with previous findings that employed different methods. We also compute for the first time interaction of a hyperboloid (mimicking an atomic force microscope tip) and a plane. We also analyze the anomalous situations involving long cylindrical conductors where the two-point scattering approximation fails qualitatively. In such cases analytic summation of the entire scattering series is carried out and a topological argument is put forward as an explanation of the result. We give the extension of this theory to the case of finite temperatures where the two-point scattering approximation result has a simple compact form, also amenable to exact or accurate numerical evaluation.

  20. Maximum permissible voltage of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.

    2014-06-01

    Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  1. Effect of Conductor Expressivity on Ensemble Evaluations by Nonmusic Majors

    ERIC Educational Resources Information Center

    Price, Harry E.; Mann, Alison; Morrison, Steven J.

    2016-01-01

    This study continues research that examines effects that conductors have on the assessment of ensemble performances. The current study used the same four recordings orders of two strict and two expressive examples by two conductors with a single repeated recording used in previous research, but the participants were not music majors. In addition…

  2. The Effect of Conductor Expressivity on Ensemble Performance Evaluation

    ERIC Educational Resources Information Center

    Morrison, Steven J.; Price, Harry E.; Geiger, Carla G.; Cornacchio, Rachel A.

    2009-01-01

    In this study, the authors examined whether a conductor's use of high-expressivity or low-expressivity techniques affected evaluations of ensemble performances that were identical across conducting conditions. Two conductors each conducted two 1-minute parallel excerpts from Percy Grainger's "Walking Tune." Each directed one excerpt…

  3. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  4. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  5. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  6. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  7. 30 CFR 57.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 57.12011 Section 57.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Electricity Surface and Underground § 57.12011 High-potential electrical conductors. High-potential...

  8. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conductors is a device that is inserted into the esophagus to listen to a patient's heart and breath...

  9. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conductors is a device that is inserted into the esophagus to listen to a patient's heart and breath...

  10. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conductors is a device that is inserted into the esophagus to listen to a patient's heart and breath...

  11. 21 CFR 868.1920 - Esophageal stethoscope with electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Esophageal stethoscope with electrical conductors. 868.1920 Section 868.1920 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... conductors is a device that is inserted into the esophagus to listen to a patient's heart and breath...

  12. [Disorders of adaptive processes in conductors of passenger cars].

    PubMed

    Kopirovskiĭ, K M; Delektorskiĭ, N V; Kutovoĭ, V S

    1998-01-01

    Passenger carriage conductors work under difficult conditions, including night working hours, unfavorable working and rest conditions with sleep impairment, and other poor factors. This makes it necessary to assume that the conductors should be given some advantages: privilege pension provision, shorter working travelling hours, longer intertrip rest and annual vacation, special nutrition, etc.

  13. The Identification of Conductor-Distinguished Functions of Conducting

    ERIC Educational Resources Information Center

    Gumm, Alan J.; Battersby, Sharyn L.; Simon, Kathryn L.; Shankles, Andrew E.

    2011-01-01

    The purpose of the present study was to identify whether conductors distinguish functions of conducting similarly to functions implied in previous research. A sample of 84 conductors with a full range of experience levels (M = 9.8) and of a full range of large ensemble types and ensemble age levels rated how much they pay attention to 82…

  14. Characterization of MgB2 Conductors for Coil Development

    NASA Astrophysics Data System (ADS)

    Aslanoglu, Z.; Arda, L.; Akin, Y.; Sumption, M. D.; Tomsic, M.; Hascicek, Y. S.

    2004-06-01

    The effects of the heat treatment conditions on microstructure and the transport critical current density of MgB2 wires, which were fabricated by the Continuous Tube Forming and Filling (CTFF) process, have been investigated. Two types of MgB2 conductors, Fe/MgB2 and Cu/MgB2, were studied. It was found that the sheath materials affect the optimum annealing profile of MgB2 conductor. The annealing temperature for Cu/MgB2 conductors was lower than that for the Fe/MgB2 conductors. The critical current density, Jc was measured to be 1.1×105 A/cm2 at 20 K in-self field for Cu/MgB2 conductor of 1.25 mm in diameter. The processing, microstructure and superconducting properties are presented.

  15. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    SciTech Connect

    Fischer, W.H.

    1984-04-24

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly. 7 figs.

  16. Non-binding conductor load bearing roller for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.

    1984-01-01

    A gas-insulated transmission line includes a corrugated outer conductor, an inner conductor disposed within and insulated from the outer conductor by means of support insulators and an insulating gas, and a non-binding transport device for supporting and permitting movement of the inner conductor/insulating support assembly axially along the corrugated outer conductor without radial displacement and for moving without binding along corrugations of any slope less than vertical. The transport device includes two movable contacts, such as skids or rollers, supported on a common pivot lever, the pivot lever being rotatably disposed about a pivot lever axis, which pivot lever axis is in turn disposed on the periphery of a support insulator or particle trap if one is used. The movable contacts are separated axially a distance equal to the axial distance between the peaks and valleys of the corrugations of the outer conductor and separated radially a distance equal to the radial distance between the peaks and valleys of the corrugations of the outer conductor. The transport device has the pivot lever axis disposed parallel to the motion of travel of the inner conductor/insulating support assembly.

  17. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  18. Proteins as solid-state electronic conductors.

    PubMed

    Ron, Izhar; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2010-07-20

    Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron

  19. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.

    PubMed

    Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya

    2015-08-12

    Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.

  20. Plasmonics with two-dimensional conductors.

    PubMed

    Yoon, Hosang; Yeung, Kitty Y M; Kim, Philip; Ham, Donhee

    2014-03-28

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics.

  1. Plasmonics with two-dimensional conductors

    PubMed Central

    Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee

    2014-01-01

    A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472

  2. Plasma waves and jets from moving conductors

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Zimmerman, Peter

    2016-06-01

    We consider force-free plasma waves launched by the motion of conducting material through a magnetic field. We develop a spacetime-covariant formalism for perturbations of a uniform magnetic field and show how the transverse motion of a conducting fluid acts as a source. We show that fast-mode waves are sourced by the compressibility of the fluid, with incompressible fluids launching a pure-Alfvén outflow. Remarkably, this outflow can be written down in closed form for an arbitrary time-dependent, nonaxisymmetric incompressible flow. The instantaneous flow velocity is imprinted on the magnetic field and transmitted away at the speed of light, carrying detailed information about the conducting source at the time of emission. These results can be applied to transients in pulsar outflows and to jets from neutron stars orbiting in the magnetosphere of another compact object. We discuss jets from moving conductors in some detail.

  3. Plasma bullets behavior in a tube covered by a conductor

    SciTech Connect

    Xian, Y. B.; Xu, H. T.; Lu, X. P. Pei, X. K.; Gong, W. W.; Lu, Y.; Liu, D. W.; Yang, Y.

    2015-06-15

    In this work, for better applications of atmospheric pressure plasma jets, the physics of plasma streamers in a glass tube with a part of it covered by a conductor is investigated. To better understand the propagation mechanism of plasma bullets in capillary tubes passing through a curved or narrow passage for some biomedical or material applications, the propagation of plasma streamers in a tube covered by a floating conductor is investigated. For a plasma streamer propagating in a tube covered by a conductor, the plasma streamer is suppressed and becomes shorter, and a secondary streamer is generated in the tube at the downstream end of the conductor. The larger the area covered by the conductor, or the thinner the tube, the stronger the plasma streamer is inhibited. The electric potential of the conductor is measured to be as high as 6 kV. On the other hand, a higher voltage applied on the HV electrode, or a higher gas flow rate will make the secondary plasma streamer longer. It is found that the capacitor formed by the conductor outside the tube and the wall of the tube plays an important role in inhibiting the original plasma streamer and generating the secondary streamer. Moreover, the active species generated by the original plasma play important role in generating a secondary plasma streamer.

  4. 30 CFR 56.12005 - Protection of power conductors from mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... MINES Electricity § 56.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over power conductors, unless...

  5. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Conductors in circuits of 50... Requirements § 183.435 Conductors in circuits of 50 volts or more. (a) Each conductor in a circuit that has a nominal voltage of 50 volts or more must be: (1) A conductor that has insulation listed and...

  6. Insulation failure and externalized conductor of a single-coil Kentrox lead: an ongoing story?

    PubMed

    Bogossian, Harilaos; Mijic, Dejan; Frommeyer, Gerrit; Winter, Joachim

    2015-02-01

    Conductor externalization is a frequent complication with the St. Jude Medical Riata lead. Single case reports also reported externalization of conductors for dual-coil Biotronik leads. Up to now, conductor externalization has not yet been reported for any single coil leads. We report for the first time an externalization of conductors in a Biotronik Kentrox single-coil implantable cardioverter defibrillator (ICD) lead.

  7. Instability of Dielectrics and Conductors in Electrostatic Fields

    NASA Astrophysics Data System (ADS)

    Allaire, Grégoire; Rauch, Jeffrey

    2017-04-01

    This article proves most of the assertion in §116 of Maxwell's treatise on electromagnetism. The results go under the name Earnshaw's Theorem and assert the absence of stable equilibrium configurations of conductors and dielectrics in an external electrostatic field.

  8. Numerical analysis of quench in coated conductors with defects

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Yong, Huadong; Zhou, Youhe

    2016-09-01

    When the superconductor is subjected to local thermal perturbations, a large amount of joule heat may be generated in the conductor, which may lead to a quench. In a quench event, a normal zone irreversibly spreads throughout the conductor leading to failure of the superconducting device. In this paper, we will discuss the one-dimensional quench behavior in the coated conductors with internal defects or interface defects. Based on the numerical procedure given in the previous works, the normal zone propagation is studied by using the finite difference method. The numerical results are presented to discuss the normal zone propagation. We consider the effect of internal defect on the nonuniform temperature propagation. For the conductor with interface defects, it can be found that the normal zone propagation velocity is increased by defects.

  9. 42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ROOM INTERIOR (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  10. Contact-spring forming machine for flat conductor cable receptacles

    NASA Technical Reports Server (NTRS)

    Angele, W.; Martineck, H. G.

    1968-01-01

    Machine tool produces beryllium-copper contact springs for FCC /flat conductor cable/ feed-through receptacles. The springs are heat-treated and plated to impart the required electrical contact properties.

  11. A microstructure continuum approach to electromagneto-elastic conductors

    NASA Astrophysics Data System (ADS)

    Romeo, Maurizio

    2016-11-01

    A micromorphic continuum model of a deformable electromagnetic conductor is established introducing microdensities of bound and free charges. The conductive part of electric current consists of contributions due to free charges and microdeformation. Beside the conservation of charge, we derive suitable evolution equations for electric multipoles which are exploited to obtain the macroscopic form of Maxwell's equations. A constitutive model for electromagneto-elastic conductors is considered which allows for a natural characterization of perfect conductors independently on the form of the constitutive equation for the conduction current. A generalized Ohm's law is also derived for not ideal conductors which accounts for relaxation effects. The consequences of the linearized Ohm's law on the classic magnetic transport equation are shown.

  12. 46 CFR 120.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... secondary windings of instrument transformers must be grounded. (b) On a nonmetallic vessel, where a...

  13. 30 CFR 57.12048 - Communication conductors on power poles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., telephone, or signal wires shall not be installed on the same crossarm with power conductors. When carried on poles supporting powerlines, they shall be installed as specified by the National Electrical Code....

  14. Surface-mounted flat conductor cable for home wiring

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Carden, J. R.

    1974-01-01

    The concepts are discussed which are being considered and developed for surface-mounted wiring using flat conductor cable. Safety aspects, problems being encountered, and advantages are also discussed.

  15. High voltage switches having one or more floating conductor layers

    SciTech Connect

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  16. 46 CFR 120.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All... secondary windings of instrument transformers must be grounded. (b) On a nonmetallic vessel, where a...

  17. Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)

    NASA Technical Reports Server (NTRS)

    Rigling, W. S.

    1974-01-01

    The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.

  18. New resistivity for high-mobility quantum Hall conductors

    NASA Technical Reports Server (NTRS)

    Mceuen, P. L.; Szafer, A.; Richter, C. A.; Alphenaar, B. W.; Jain, J. K.

    1990-01-01

    Measurements showing dramatic nonlocal behavior in the four-terminal resistances of a high-mobility quantum Hall conductor are presented. These measurements illustrate that the standard definition of the resistivity tensor is inappropriate, but they are in excellent agreement with a new model of the conductor that treats the edge and bulk conducting pathways independently. This model uses a single intensive parameter, analogous to a local resistivity for the bulk channel only, to characterize the system.

  19. The magnetic field due to a number of toroidal conductors

    NASA Astrophysics Data System (ADS)

    Caldwell, J.

    1982-03-01

    This is an extension of the work carried out by Gibson and Caldwell on the optimization of the uniformity of the magnetic field produced in the bore of a toroidal conductor of rectangular cross section. In this paper the work is extended to consider the magnetic field due to a number of conductors. The usefulness of the work is assessed by comparing it to the work of Garrett, and numerical results are given for particular coil parameters.

  20. 46 CFR 111.05-31 - Grounding conductors for systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for... equivalent for parallel generators—AWG-MCM (mm2) Greater than Less than or equal to Size of the system grounding conductor—AWG(mm2) 2 (33.6) 8 (8.4) 2 (33.6) 0 (53.5) 6 (13.3) 0 (53.5) 3/0 (85.0) 4 (21.2)...

  1. 46 CFR 111.05-31 - Grounding conductors for systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for... equivalent for parallel generators—AWG-MCM (mm2) Greater than Less than or equal to Size of the system grounding conductor—AWG(mm2) 2 (33.6) 8 (8.4) 2 (33.6) 0 (53.5) 6 (13.3) 0 (53.5) 3/0 (85.0) 4 (21.2)...

  2. 46 CFR 111.05-31 - Grounding conductors for systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for... equivalent for parallel generators—AWG-MCM (mm2) Greater than Less than or equal to Size of the system grounding conductor—AWG(mm2) 2 (33.6) 8 (8.4) 2 (33.6) 0 (53.5) 6 (13.3) 0 (53.5) 3/0 (85.0) 4 (21.2)...

  3. 46 CFR 111.05-31 - Grounding conductors for systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for... equivalent for parallel generators—AWG-MCM (mm2) Greater than Less than or equal to Size of the system grounding conductor—AWG(mm2) 2 (33.6) 8 (8.4) 2 (33.6) 0 (53.5) 6 (13.3) 0 (53.5) 3/0 (85.0) 4 (21.2)...

  4. 46 CFR 111.05-31 - Grounding conductors for systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of: (1) The largest conductor supplying the system; or (2) No. 8 AWG (8.4mm2). (b) A conductor for... equivalent for parallel generators—AWG-MCM (mm2) Greater than Less than or equal to Size of the system grounding conductor—AWG(mm2) 2 (33.6) 8 (8.4) 2 (33.6) 0 (53.5) 6 (13.3) 0 (53.5) 3/0 (85.0) 4 (21.2)...

  5. Tilt stability of rotating current rings with passive conductors

    SciTech Connect

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings.

  6. Assembly of conductor guides for off-shore drilling platform

    SciTech Connect

    Campo, J. J.

    1985-12-31

    A conductor guide assembly for conductors of an off-shore well platform having a jacket with an interior pile for extending from a sea bed to above a water level which is over the sea bed. In accordance with one inventive feature, a first guide mechanism comprising a plurality of vertically spaced supports which hold the tubular conduits within the interior pile is assembled in a plurality of sections wherein the upper support of each section is provided with removable bolt-on units for supporting the first guide mechanism as successive sections are jointed thereto. In accordance with another inventive feature, a second guide mechanism comprises a pair of circular plates positioned to rotate within a lower deck opening and which are connected together and define a plurality of passages for receiving the plurality of conductors that extend in the interior pile. The connected plates are temporarily attached to the lower deck for transport so that the second guide mechanism can be detached and rotated to align the passages with the intended positions for the conductors whereafter the second guide mechanism is permanently attached to the lower deck. In accordance with another inventive feature, a third guide mechanism comprising a plurality of radially extending beams is supported on an upper deck. The second guide mechanism also has passages for access to the conductors and it too can be rotated into a position of alignment with the conductors and thereafter permanently fixed to the upper deck.

  7. Search for solid conductors of Na/+/ and K/+/ ions - Five new conductors

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H.; Fielder, W.; Fordyce, J.

    1975-01-01

    Five new conductors of positive Na and K ions, for use as separators in high energy secondary batteries, have been discovered. They include: (1) the pyrochlores NaTaWO6 and NaTa2O5F; (2) the bcc form of NaSbO3; and (3) the niobates 2Na2O-3Nb2O5 and 2K2O-3Nb2O5, with the alkali ions probably in open layers of the completely determined structure. On the basis of approximately 40 structure types, generalizations have been made regarding the relation between structure and ionic transport.

  8. SYNTHESIS AND CHARACTERIZATION OF PROTON CONDUCTORS

    SciTech Connect

    Brinkman, K.

    2010-02-18

    The morphological and electrical properties of yttrium (Y) and indium (In) doped barium cerate perovskites of the form BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} (with x=0-0.3) prepared by a modified Pechini method were investigated as potential high temperature proton conductors with improved chemical stability. The sinterability increased with the increase of In-doping, and the perovskite phase was found in the BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} solid solutions over the range 0 {le} x {le} 0.3. The conductivities decreased (from x to x, insert quantitative values) while the tolerance to wet CO{sub 2} improved for BaIn{sub 0.3-x}Y{sub x}Ce{sub 0.7}O{sub 3-{delta}} samples with an increase of In-doping.

  9. Conductor gestures influence evaluations of ensemble performance

    PubMed Central

    Morrison, Steven J.; Price, Harry E.; Smedley, Eric M.; Meals, Cory D.

    2014-01-01

    Previous research has found that listener evaluations of ensemble performances vary depending on the expressivity of the conductor’s gestures, even when performances are otherwise identical. It was the purpose of the present study to test whether this effect of visual information was evident in the evaluation of specific aspects of ensemble performance: articulation and dynamics. We constructed a set of 32 music performances that combined auditory and visual information and were designed to feature a high degree of contrast along one of two target characteristics: articulation and dynamics. We paired each of four music excerpts recorded by a chamber ensemble in both a high- and low-contrast condition with video of four conductors demonstrating high- and low-contrast gesture specifically appropriate to either articulation or dynamics. Using one of two equivalent test forms, college music majors and non-majors (N = 285) viewed sixteen 30 s performances and evaluated the quality of the ensemble’s articulation, dynamics, technique, and tempo along with overall expressivity. Results showed significantly higher evaluations for performances featuring high rather than low conducting expressivity regardless of the ensemble’s performance quality. Evaluations for both articulation and dynamics were strongly and positively correlated with evaluations of overall ensemble expressivity. PMID:25104944

  10. The load-carrying and thermal characteristics of flat conductor cable

    NASA Technical Reports Server (NTRS)

    Adams, G. D.

    1973-01-01

    The load-carrying and thermal characteristics of flat conductor cable and round wire cables have been investigated with all conductors in each cable under varying loads in air and vacuum environments. The test procedure is described and results are presented in graphic form. Derating factors for both round wire and flat conductor cable are established for operation in a vacuum environment. Rating factors are established for flat conductor cable for use with round wire loading tables. The results of these tests show that single layer flat conductor size, or that the voltage drop across flat conductor cable will be lower than that of round cable under the same load.

  11. Center conductor diagnostic for multipactor detection in inaccessible geometries.

    PubMed

    Chaplin, Vernon H; Hubble, Aimee A; Clements, Kathryn A; Graves, Timothy P

    2017-01-01

    Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying VDC/VRF0<0.8, where VRF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting VDC/VRF0<0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all-this is the preferred implementation, but biases in the range VDC=0-10V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.

  12. Center conductor diagnostic for multipactor detection in inaccessible geometries

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Hubble, Aimee A.; Clements, Kathryn A.; Graves, Timothy P.

    2017-01-01

    Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying VD C/VR F 0 <0.8 , where VRF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting VD C/VR F 0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all—this is the preferred implementation, but biases in the range VD C=0 -10 V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.

  13. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-02-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

  14. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.

  15. Hearing status among Norwegian train drivers and train conductors

    PubMed Central

    2013-01-01

    Background There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. Aims To study job-related hearing loss among train drivers and train conductors. Methods Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an external reference group of people not occupationally exposed to noise. The monaural hearing threshold level at 4kHz, the mean binaural value at 3, 4 and 6kHz and the prevalence of audiometric notches (≥25 dB at 4kHz) were used for comparison. Results Audiograms were available for 1567 drivers, 1565 conductors, 4029 railway worker controls and 15 012 people not occupationally exposed to noise. No difference in hearing level or prevalence of audiometric notches was found between study groups after adjusting for age and gender. Conclusions Norwegian train drivers and conductors have normal hearing threshold levels comparable with those in non-exposed groups. PMID:24204021

  16. Synergistic, ultrafast mass storage and removal in artificial mixed conductors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-01

    Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.

  17. Search for solid conductors of Na(+) and K(+) ions: Five new conductors

    NASA Technical Reports Server (NTRS)

    Singer, J.; Kautz, H.; Fielder, W. L.; Fordyce, J.

    1975-01-01

    Five conductors of three structure types were discovered which, as solids, can transport Na(+) or K(+) ions with conductivities of approximately .00001/(omega cm) at 300 K. These compounds are: (1) the pyrochlores NaTaWO6 and NaTa2O5F, both with an activation energy for conduction delta E of 21 kJ/mole; (2) the bodycentered cubic form of NaSbO3, with delta E = 42 kJ/mole; and (3) the niobates 2Na2O with 3Nb2O5 and 2K2O with 3Nb2O5, with the alkali ions probably in open layers of the incompletely determined structure; delta E = 17 kJ/mole. On the basis of approximately 40 structure types, some generalizations were made regarding the relation between structure and ionic transport.

  18. Transport in low-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Hruska, Marina Milan

    In this thesis, I address the problems of transport in low-dimensional conductors and superconductors. The problem of how the onset of superconductivity takes place in low-dimensional superconductors has been studied for a long time. Until recently, the zero-temperature phase transition in thin films was believed to occur from the superconducting to an insulating state. The question of existence of an intermediate metallic phase in a superconductor-metal-insulator transition is still an open experimental question. The effects that need to be addressed are those of superconducting quantum fluctuations and the weak-localization effects. In this dissertation I neglect the weak-localization corrections. I present a model which shows the existence of a zero-temperature superconductor-metal transition in thin films. The transition takes place even in the absence of disorder, and at an arbitrarily large normal-state film conductance. Mesoscopic superconducting fluctuations in superconducting junctions have been studied since the 1980's, but only recently has experimental evidence appeared with advances in fabrication of superconductor-ferromagnet-superconductor junctions. I studied the case of thick superconductor-metallic ferromagnet-superconductor junctions and present how even in this case, when the current averaged over the impurity distribution is exponentially small in the ferromagnetic-layer thickness, mesoscopic effects can cause the sample specific current to oscillate with temperature. The conductance of an electron gas at low temperatures is dominated by quantum, interference effects, whereas at high temperatures the scattering events can be considered independent of each other, so the Boltzmann kinetic equation governs the electron dynamics and the Drude result is obtained. In the intermediate region of temperatures, there appear classical corrections to transport coefficients that are due to correlations between individual scattering events. The effects of

  19. Transient finite element method using edge elements for moving conductor

    SciTech Connect

    Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)

    1999-05-01

    For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.

  20. Quantum Optics Theory of Electronic Noise in Coherent Conductors.

    PubMed

    Grimsmo, Arne L; Qassemi, Farzad; Reulet, Bertrand; Blais, Alexandre

    2016-01-29

    We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)].

  1. A base-metal conductor system for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.

    1980-01-01

    Solder, copper, and silver are evaluated as conductor layer metals for silicon solar cell metallization on the basis of metal price stability and reliability under operating conditions. Due to its properties and cost, copper becomes an attractive candidate for the conductor layer. It is shown that nickel operates as an excellent diffusion barrier between copper and silicon while simultaneously serving as an electrical contact and mechanical contact to silicon. The nickel-copper system may be applied to the silicon by plating techniques utilizing a variety of plating bath compositions. Solar cells having excellent current-voltage characteristics are fabricated to demonstrate the nickel-copper metallization system.

  2. Equivalent circuit of the barrier-conductor structures

    NASA Astrophysics Data System (ADS)

    Sinkkonen, J.

    Novel heterostructure devices are comprised of potential barriers connected by short conductors. In this paper we present a simple theory for the transport properties of the barrier-conductor chain. The analysis is based on the solution of the Boltzmann equation supplemented by the boundary conditions provided by the barrier reflection and transmission probabilities. As an application of the theory the small signal equivalent circuit is constructed for the single and double barrier cases and for the infinite periodic chain. The high frequency properties of these structures are discussed. In general, the multibarrier structures show transit time resonances associated with multiple reflections.

  3. Conductor design for the VLHC transmission line magnet

    SciTech Connect

    Foster, G.W.; Kashikhin, V.; McAshan, M.; Mazur, P.O.; Piekarz, H.; Volk, J.T.; Walker, R.

    1999-03-01

    The transmission line magnet [1] is under development for the Very Large Hadron Collider (VLHC) at Fermilab with the expectation that it’s cost will be several times less (per Tesla-meter) than conventional superconducting magnets. It is a dual-aperture warm-iron superferric magnet built around an 80kA superconducting transmission line. The superconductor consists of 8 Rutherford (SSC Outer) cables in an Invar pipe jacket. The conductor design requirements and development program is described. A 100kA conductor test facility based on inductive coupling is described.

  4. Improvement of SOFC electrodes using mixed ionic-electronic conductors

    SciTech Connect

    Matsuzaki, Y.; Hishinuma, M.

    1996-12-31

    Since the electrode reaction of SOFC is limited to the proximity of a triple phase boundary (TPB), the local current density at the electrode and electrolyte interface is larger than mean current density, which causes large ohmic and electrode polarization. This paper describes an application of mixed ionic-electronic conductors to reduce such polarization by means of (1) enhancing ionic conductivity of the electrolyte surface layer by coating a high ionic conductors, and (2) reducing the local current density by increasing the electrochemically active sites.

  5. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines

    PubMed Central

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-01-01

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness. PMID:27735852

  6. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volts or more. 183.435 Section 183.435 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Requirements § 183.435 Conductors in circuits of 50 volts or more. (a) Each conductor in a circuit that has a nominal voltage of 50 volts or more must be: (1) A conductor that has insulation listed and...

  7. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Equipment safety grounding (bonding) conductors. 111.05-33 Section 111.05-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL... § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor...

  8. 46 CFR 111.05-33 - Equipment safety grounding (bonding) conductors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Equipment safety grounding (bonding) conductors. 111.05-33 Section 111.05-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL... § 111.05-33 Equipment safety grounding (bonding) conductors. (a) Each equipment-grounding conductor...

  9. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  10. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  11. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  12. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  13. 30 CFR 77.508 - Lightning arresters, ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... power conductors and telephone wires. 77.508 Section 77.508 Mineral Resources MINE SAFETY AND HEALTH... arresters, ungrounded and exposed power conductors and telephone wires. All ungrounded, exposed power conductors and telephone wires shall be equipped with suitable lightning arresters which are...

  14. 30 CFR 57.12010 - Isolation or insulation of communication conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conductors. 57.12010 Section 57.12010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... conductors. Telephone and low-potential signal wire shall be protected, by isolation or suitable insulation, or both, from contacting energized power conductors or any other power source....

  15. 30 CFR 57.12005 - Protection of power conductors from mobile equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of power conductors from mobile... NONMETAL MINES Electricity Surface and Underground § 57.12005 Protection of power conductors from mobile equipment. Mobile equipment shall not run over power conductors, nor shall loads be dragged over...

  16. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout...

  17. 30 CFR 75.1002 - Installation of electric equipment and conductors; permissibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conductors; permissibility. 75.1002 Section 75.1002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Wires and Trolley Feeder Wires § 75.1002 Installation of electric equipment and conductors... equipment is located within 150 feet of pillar workings or longwall faces. (b) Electric conductors...

  18. The Review on the Charge Distribution on the Conductor Surface

    ERIC Educational Resources Information Center

    Matehkolaee, M. Jafari; Asrami, A. Naderi

    2013-01-01

    In this paper we have a full review on the surface charge density at disordered conductor surfaces. Basically, reading text books does not resolve ambiguities in this field. As far as is possible, we have tried to the concepts easier to turn. In fact we will answer two questions. One of them is that why do charges tend to go where the curvature is…

  19. Overview of Materials and Power Applications of Coated Conductors Project

    NASA Astrophysics Data System (ADS)

    Shiohara, Yuh; Taneda, Takahiro; Yoshizumi, Masateru

    2012-01-01

    There are high expectations for coated conductors in electric power applications such as superconducting magnetic energy storage (SMES) systems, power cables, and transformers owing to their ability to contribute to stabilizing and increasing the capacity of the electric power supply grid as well as to reducing CO2 emission as a result of their high critical-current characteristics. Research and development has been performed on wires/tapes and electric power devices worldwide. The Materials and Power Applications of Coated Conductors (M-PACC) Project is a five-year national project in Japan started in 2008, supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO), to develop both coated conductors that meet market requirements and basic technologies for the above-mentioned power applications using coated conductors. In this article, research and development results are reviewed and compared with the interim/final targets of the project, and future prospects are discussed.

  20. Exploring a Metamorphosis: Identity Formation for an Emerging Conductor

    ERIC Educational Resources Information Center

    Ponchione, Cayenna

    2013-01-01

    Exploring the manner in which professional identity formation in emerging conductors is entangled with the cultural context of orchestras, I focus on the amorphous evolution from a student identity to that of a professional, illuminating some underlying social conditions of the ever-elusive profession of conducting. Prevailing assumptions about…

  1. Glass ceramic ionic conductor materials and method of making

    SciTech Connect

    Badzioch, S.

    1985-03-26

    Solid, crystalline glass ceramic compositions which are useful as ionic conductor materials, especially for use as solid electrolytes in high temperature, high energy density storage batteries. The glass ceramics are derived from sodium or calcium borates containing one or more metal halide, preferably the chlorides and bromides of the metals from Group 2 to 8 of the Periodic Table of the Elements.

  2. Phenomenology of electromagnetic coupling: Conductors penetrating an aperture

    SciTech Connect

    Wright, D.B.; King, R.J.

    1987-06-01

    The purpose of this study was to investigate the coupling effects of penetrating conductors through free-standing apertures. This penetrating conductor and aperture arrangement are referred to as a modified aperture. A penetrating conductor is defined here to be a thin, single wire bent twice at 90 angles. The wire was inserted through a rectangular aperture in a metal wall. Vertical segments on both sides of the wall coupled energy from one region to the other. Energy was incident upon the modified aperture from what is referred to as the exterior region. The amount of coupling was measured by a D sensor on the other (interior) side of the wall. This configuration of an aperture in a metal wall was used as opposed to an aperture in a cavity in order to simplify the interpretation of resulting data. The added complexity of multiple cavity resonances was therefore eliminated. Determining the effects of penetrating conductors on aperture coupling is one of several topics being investigated as part of on-going research at Lawrence Livermore National Laboratory on the phenomenology of electromagnetic coupling. These phenomenology studies are concerned with the vulnerability of electronic systems to high intensity electromagnetic fields. The investigation is relevant to high altitude EMP (HEMP), enhanced HEMP (EHEMP), and high power microwave (HPM) coupling.

  3. Improved Writing-Conductor Designs For Magnetic Memory

    NASA Technical Reports Server (NTRS)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1994-01-01

    Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).

  4. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  5. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  6. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  7. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  8. 30 CFR 56.12011 - High-potential electrical conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-potential electrical conductors. 56.12011 Section 56.12011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES...

  9. Undergraduate Conductors' and Conducting Teachers' Perceptions of Basic Conducting Efficacy

    ERIC Educational Resources Information Center

    Silvey, Brian A.; Baumgartner, Christopher M.

    2016-01-01

    The purpose of this study was to examine undergraduate conductors' and conducting teachers' perceptions about basic conducting efficacy. At the beginning and end of the semester, undergraduate students (N = 19) enrolled in a basic conducting course (a) were surveyed about the importance of certain skills necessary for being an effective conductor…

  10. Aharonov-Bohm oscillations in singly connected disordered conductors.

    PubMed

    Aleiner, I L; Andreev, A V; Vinokur, V

    2015-02-20

    We show that the transport and thermodynamic properties of a singly connected disordered conductor exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through the sample. The oscillations are associated with the interference contribution from a special class of electron trajectories confined to the surface of the sample.

  11. Attentional flexibility and memory capacity in conductors and pianists.

    PubMed

    Wöllner, Clemens; Halpern, Andrea R

    2016-01-01

    Individuals with high working memory (WM) capacity also tend to have better selective and divided attention. Although both capacities are essential for skilled performance in many areas, evidence for potential training and expertise effects is scarce. We investigated the attentional flexibility of musical conductors by comparing them to equivalently trained pianists. Conductors must focus their attention both on individual instruments and on larger sections of different instruments. We studied students and professionals in both domains to assess the contributions of age and training to these skills. Participants completed WM span tests for auditory and visual (notated) pitches and timing durations, as well as long-term memory tests. In three dichotic attention tasks, they were asked to detect small pitch and timing deviations from two melodic streams presented in baseline (separate streams), selective-attention (concentrating on only one stream), and divided-attention (concentrating on targets in both streams simultaneously) conditions. Conductors were better than pianists in detecting timing deviations in divided attention, and experts detected more targets than students. We found no group differences for WM capacity or for pitch deviations in the attention tasks, even after controlling for the older age of the experts. Musicians' WM spans across multimodal conditions were positively related to selective and divided attention. High-WM participants also had shorter reaction times in selective attention. Taken together, conductors showed higher attentional flexibility in successfully switching between different foci of attention.

  12. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    ERIC Educational Resources Information Center

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  13. Development of flat conductor cable for commercial and residential wiring

    NASA Technical Reports Server (NTRS)

    Carden, J. R.

    1977-01-01

    The overall spectrum of the space technology spin-off development project: development of Flat Conductor Cable (FCC) for commercial and residential wiring, is presented. A discussion of the background, program milestones, industry participants, system outgrowth, hardware availability, cost estimates, and overall status of the program is presented for the 1970-to-present time period.

  14. 46 CFR 120.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MORE THAN 150 PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.372 Equipment and conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently grounded to the hull on...

  15. 46 CFR 183.372 - Equipment and conductor grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.372 Equipment and conductor grounding. (a) All metallic enclosures and frames of electrical equipment must be permanently grounded to the hull on a metallic vessel. On a nonmetallic vessel, the enclosures and frames of...

  16. Removal of degradation of the performance of an epoxy impregnated YBCO-coated conductor double pancake coil by using a polyimide-electrodeposited YBCO-coated conductor

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Y.; Sato, K.; Piao, R.; Nakagome, H.; Takematsu, T.; Takao, T.; Kamibayashi, H.; Takahashi, M.; Maeda, H.

    2012-06-01

    Degradation of the epoxy impregnated YBCO coil performance is due to tensile radial stress concentration on the outer edge of the conductor during cool down. This stress acts as a cleavage stress and opens the conductor edge, fracturing the YBCO layer. The fracture propagates to another edge of the conductor, resulting in degradation of the coil performance. Degradation of the epoxy impregnated YBCO coil is eliminated, if we use a polyimide-electrodeposited YBCO-coated conductor: tensile radial stress concentration on the outer edge of the conductor is reduced due to plastic deformation of the ductile polyimide. Polyimide electrodeposition onto the YBCO-coated conductor is reliable, uniform, easy to apply, and can be extended to larger YBCO magnets, removing the risk of coil degradation.

  17. Multiwire conductor having greatly increased interwire resistance and method for making same

    DOEpatents

    Luhman, Thomas; Suenaga, Masaki

    1984-01-17

    An improved multiwire conductor of the type which is mechanically stabilized by a tin based solder filler. A solder filled conductor is heated to a temperature above its melting point for a period long enough to allow a substantial amount of copper to be dissolved from the wires comprising the conductor. The copper forms the brittle intermetallic compound Cu.sub.5 Sn.sub.6 with tin in the solder. After cooling the conductor is flexed causing a random cracking of the solder, and thereby increasing the interwire resistance of the conductor. The subject invention is particularly adapted for use with braided, ribbon-type solder filled superconductors.

  18. Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same

    DOEpatents

    Luhman, Thomas; Klamut, Carl

    1984-02-14

    An improved multiwire conductor of the type which is mechanically stabilized by a solder filler. A solder filled conductor is heated to a temperature sufficient to make the solder brittle, but below the melting point of the solder. While still hot, the conductor is flexed, causing the solder to separate from the wires comprising the conductor, thereby increasing the interwire resistance. In one embodiment the conductor may be heated to a temperature above the eutectic temperature of the solder so that a controlled amount of solder is removed. The subject invention is particularly suited for use with braided, ribbon-type, solder filled superconductors.

  19. Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same

    DOEpatents

    Luhman, T.; Klamut, C.

    1982-03-15

    An improved multiwire conductor of the type which is mechanically stabilized by a solder filler. A solder filled conductor is heated to a temperature sufficient to make the solder brittle, but below the melting point of the solder. While still hot, the conductor is flexed, causing the solder to separate from the wires comprising the conductor, thereby increasing the interwire resistance. In one embodiment the conductor may be heated to a temperature above the eutectic temperature of the solder so that a controlled amount of solder is removed. The subject invention is particularly suited for use with braided, ribbon-type, solder filled superconductors.

  20. Multiwire conductor having greatly increased interwire resistance and method for making same

    DOEpatents

    Luhman, T.; Suenaga, M.

    1982-03-15

    An improved multiwire conductor of the type which is mechanically stabilized by a tin based solder filler is described. A solder filled conductor is heated to a temperature above its melting point for a period long enough to allow a substantial amount of copper to be dissolved from the wires comprising the conductor. The copper forms the brittle intermetallic compound Cu/sub 5/Sn/sub 6/ with tin in the solder. After cooling the conductor is flexed causing a random cracking of the solder, and thereby increasing the interwire resistance of the conductor. The subject invention is particularly adapted for use with braided, ribbon-type solder filled superconductors.

  1. Test results of the FER/ITER conductors in the FENIX test facility

    NASA Astrophysics Data System (ADS)

    Sugimoto, M.; Isono, T.; Koizumi, K.; Takahashi, Y.; Nishi, M.; Okuno, K.; Yoshida, K.; Nakajima, H.; Ando, T.; Hosono, F.

    1994-07-01

    The Japan Atomic Energy Research Institute (JAERI) has developed the Advanced Disk and the Hollow Monolithic conductors for the FER/ITER Toroidal Field coils. The Advanced Disk conductor is a Cable-in-Conduit conductor which consists of 324 Nb3Sn strands. The Hollow monolithic conductor has hollow cooling channels and 23 Nb3Sn strands. The JA-FENIX sample consists of a pair of straight legs: one leg is the Advanced disk conductor and another is the Hollow Monolithic one. The FENIX facility at the Lawrence Livermore National Laboratory (LLNL) can provide a magnetic field up to 13T on a sample conductor of over 40cm-length. The performance test of the JA-sample was carried out in Autumn 1992. The critical current, the current sharing temperature, and the stability margin of each conductor were measured in this test. These results are presented and discussed.

  2. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  3. Development and testing of a Bi-2212 textured powder conductor

    NASA Astrophysics Data System (ADS)

    Damborsky, Kyle Cameron

    Superconducting wires based on the high field superconductor Bi 2Sr2Ca1Cu2O8+x are an enabling technology for the development of very high field (>18 T) magnets. While these conductors have the potential to serve as the conductors for magnets operating in excess of 45 T, the achieved current carrying capacity of these materials is too low for economical implementation in high field operation. This is in part due to low density of the superconductors within the cores, the presence of current occluding non-superconducting phases, and a non-optimum alignment of the superconducting particles that form the conductor. The body of work reported in this dissertation aims to develop methods to align (texture) the superconducting particles within the conductors, to enhance the density of the superconducting filaments, to examine a heat treatment that does not form parasitic phases, and to demonstrate that long lengths of superconducting wire can be fabricated with these properties. Three general experimental thrusts are carried out within the work. First, methods for texturing Bi-2212 loose powders were developed and the products of these developments were characterized via x-ray diffraction and microscopy to qualify the degree of imparted texture. The second thrust focused on the development of a monocore wire based on a high density textured Bi-2212 precursor. Multiple wires were extruded and drawn through traditional processes and the products were characterized microscopically to ascertain the quality of the products. The third and final thrust was the development of a non-melt heat treatment that was shown to grow grains of Bi-2212 powder and densify composites. Measurements of the transport critical currents for the heat treated conductors were carried out in boiling liquid helium and background magnetic fields of up to 5 T. These results were correlated to microstructural observations. Ultimately, it was found that the connections between grains in the sintered

  4. Semiclassical Transport Theory For Quantum Barrier-Conductor Chains

    NASA Astrophysics Data System (ADS)

    Sinkkonen, Juha A. T.

    1988-08-01

    A simple semiclassical treatment of the vertical transport in barrier-conductor structures is presented. The distribution function is constructed by fitting the solutions of the Boltzmann equation for the conductor parts with the barrier reflection and transmission probabilities. This semiclassical theory describes multiple reflection in a random phase approximation leaving out the fine structure associated with the quantum interference. As an application we analyze single and double barrier structures in detail. We study the high frequency behaviour of various diode structures. For the hot electron transistors (HET) we derive simple formulas for the base transport factor, transconductance and other elements of the ac-small signal equivalent circuit. The transistor model is also valid for the resonant hot electron transistor (RHET).

  5. Physical and Electronic Isolation of Carbon Nanotube Conductors

    NASA Technical Reports Server (NTRS)

    OKeeffe, James; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Multi-walled nanotubes are proposed as a method to electrically and physically isolate nanoscale conductors from their surroundings. We use tight binding (TB) and density functional theory (DFT) to simulate the effects of an external electric field on multi-wall nanotubes. Two categories of multi-wall nanotube are investigated, those with metallic and semiconducting outer shells. In the metallic case, simulations show that the outer wall effectively screens the inner core from an applied electric field. This offers the ability to reduce crosstalk between nanotube conductors. A semiconducting outer shell is found not to perturb an electric field incident on the inner core, thereby providing physical isolation while allowing the tube to remain electrically coupled to its surroundings.

  6. Non-stripe charge order in dimerized organic conductors

    NASA Astrophysics Data System (ADS)

    Mori, Takehiko

    2016-06-01

    This paper demonstrates charge order is important in dimerized β - and κ -phase organic conductors similar to the uniform θ - and α -phase conductors. Here the magnitude of the dimerization represents the deviation from the ideal triangular lattice in analogy with the anisotropy in the θ phase. Since the ratio of the intradimer transfer integral to the interdimer transfer integral is as large as ˜2.6 , these dimerized phases lead to a dimer Mott insulator, whereas the Coulomb repulsion is closer to the triangular lattice because the ratio of the intradimer Coulomb repulsion to the interdimer Coulomb repulsion is comparatively small (˜1.7 ). Accordingly, in the static-limit calculation, non-stripe charge order with threefold periodicity appears between the uniform and the stripe phases, and the analogy with the θ phase suggests the first-order nature of the metal-insulator transition.

  7. Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites

    PubMed Central

    2015-01-01

    Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates. PMID:25491507

  8. Photogalvanic effect in a quantum ring with attached conductors

    NASA Astrophysics Data System (ADS)

    Grigor'kin, A. A.; Dunaevskii, S. M.; Pyataev, M. A.

    2015-03-01

    The electric current induced by the circularly polarized radiation in a quantum ring with two arbitrarily attached one-dimensional conductors has been investigated. Contacts between the ring and conductors are modeled using the theory of zero-range potentials. The expression for the electron transmission coefficient is derived taking into account the inelastic interaction with the radiation. It is shown that two mechanisms of photocurrent generation occur in this system. The first one is caused by the difference in amplitudes of the zero-range potential in contact points, while the second one is caused by the asymmetry in the arrangement of contacts on the ring. The dependence of the photocurrent on the chemical potential of electrons, radiation frequency, arrangement of contacts, amplitudes of the zero-range potential, and magnetic flux through the ring is investigated.

  9. Vacuum-surface flashover switch with cantilever conductors

    SciTech Connect

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2001-01-01

    A dielectric-wall linear accelerator is improved by a high-voltage, fast rise-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.

  10. Thermoelectric effects in organic conductors in a strong magnetic field

    SciTech Connect

    Kirichenko, O. V.; Peschanskii, V. G. Hasan, R. A.

    2007-07-15

    The linear response of the electron system of a layered conductor to the temperature gradient in this system in a strong magnetic field is investigated theoretically. Thermoelectric emf is studied as a function of the magnitude and orientation of a strong external magnetic field; the experimental investigation of this function, combined with the study of the electric and thermal resistance, allows one to completely determine the structure of the energy spectrum of charge carriers.

  11. Study, selection, and preparation of solid cationic conductors

    NASA Technical Reports Server (NTRS)

    Roth, W. L.; Mitoff, S. P.; King, R. N.

    1972-01-01

    Crystal chemical principles and transport theory were used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. More than twenty compounds were synthesized or obtained and screened by nuclear magnetic resonance and conductivity. Many were densified by sintering or hot pressing. Encouraging results were obtained for nine of these materials but none have yet been good ionic conductors at low temperature.

  12. What is a good conductor for metamaterials or plasmonics

    NASA Astrophysics Data System (ADS)

    Soukoulis, Costas M.; Koschny, Thomas; Tassin, Philippe; Shen, Nian-Hai; Dastmalchi, Babak

    2015-04-01

    We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.

  13. An Organic Mixed Ion-Electron Conductor for Power Electronics.

    PubMed

    Malti, Abdellah; Edberg, Jesper; Granberg, Hjalmar; Khan, Zia Ullah; Andreasen, Jens W; Liu, Xianjie; Zhao, Dan; Zhang, Hao; Yao, Yulong; Brill, Joseph W; Engquist, Isak; Fahlman, Mats; Wågberg, Lars; Crispin, Xavier; Berggren, Magnus

    2016-02-01

    A mixed ionic-electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio-phene):-poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.

  14. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  15. Fallen conductor accidents: The challenge to improve safety

    SciTech Connect

    Aucoin, B.M.; Russell, B.D.

    1992-02-01

    What is the worst nightmare of an electric utility manager or engineer Many respond that it is an electrocution resulting from a fallen conductor accident. Few subjects in the operation of an electric utility are more emotional and sobering than this. Traditionally, a utility could do little to prevent such accidents, but some answers from research are emerging, calling for a new look at this old problem.

  16. New solid conductors of Na/+/ and K/+/ ions

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Kautz, H. E.; Fordyce, J. S.

    1976-01-01

    About 40 structure types for solid conductors of Na(+) and K(+) ions are surveyed. Five compounds in three structure types are discovered to be good solid conductors of alkali metal ions, capable of ion transport with conductivities in the vicinity of 0.00001/ohm-cm at 25 C. These compounds are a bcc form of NaSbO3, an orthorhombic layer structure of the composition 2M2O.3Nb2O5 with M equal to Na or K, and the Na pyrochlores NaTa2O5F and NaTaWO6. Ion exchange is required to produce each of these Na compounds. Only the 2K2O.3Nb2O5 can so far be synthesized directly from the oxides and thus is the only one which can be sintered readily. The niobate is about as good a conductor of K(+) ion as is K-beta alumina. The NaSbO3 compares well with Na beta at 280 C. A number of phase diagrams are developed.

  17. Strain evolution in Al conductor lines during electromigration.

    SciTech Connect

    Zang, H.; Cargill G. S.; Ge, Y.; Maniatty, A. M.; Liu, W.; Lehigh Univ.; Rensselear Polytechnic Inst.

    2008-01-01

    Monochromatic and white beam synchrotron x rays were used to study the deviatoric strains and full elastic strains in passivated Al conductor lines with near-bamboo structures during electromigration (EM) at 190 C. A strong strain gradient formed in the upstream part of the Al lines. Strains along the downstream part of the lines were smaller and more scattered. Numerical analysis using the Eshelby model and finite element method (FEM) calculations suggest that the moving of atoms during EM in these near-bamboo Al lines is dominated by top and/or bottom interface diffusion, which differs from the reported results for nonbamboo, polycrystalline Al conductor lines, where EM is mainly along the grain boundaries. Local strain measurements and FEM calculations indicate that the EM flux is also nonuniform across the width of the conductor line because of stronger mechanical constraint by the passivation layer near the edges of the line. Plastic deformation is observed during EM by changes in the Laue diffraction patterns. The effective valence |Z*| = 1.8 {+-} 0.4 is determined from the measured strain gradient.

  18. Homogeneous bilayer graphene film based flexible transparent conductor.

    PubMed

    Lee, Seunghyun; Lee, Kyunghoon; Liu, Chang-Hua; Zhong, Zhaohui

    2012-01-21

    Graphene is considered as a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 Ω(□) at a transmittance of 83%. In addition, bilayer graphene films transferred onto the plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.

  19. Stability measurements on the 50 kA SMES conductor

    NASA Astrophysics Data System (ADS)

    Pfotenhauer, M. J.

    Stability measurements have been made on a large aluminium stabilized conductor designed for use in a superconducting magnetic energy storage (SMES) coil. The conductor has been built to carry 50 kA at 1.8 K and in 4.6 T field. It consists of a 25.4 mm diameter, high purity aluminium stabilizer with eight superconducting strands of 2.8 mm diameter each, composed of 60% Cu, 40% NbTi. The strands are set in eight helical grooves, evenly spaced around the outer diameter of the aluminium. The conductor is designed for use in full scale SMES units and has been tested in the 1 m diameter, three-turn test coil of the University of Wisconsin proof of principle experiment (POPE). The POPE facility includes the test coil, a 4 T background magnet, a dewar for a 1.8 K, 1 atm environment and a 100 kA d.c. power supply. Test results demonstrate good agreement with a new dynamic stability model. The balance of time-dependent heat generation during current diffusion and time-dependent cooling to the helium produces three new features of stability: 1, a threshold current for propagation; 2, large propagation velocities; and 3, a finite length travelling normal zone. POPE measurements verify all three features of the dynamic stability model.

  20. Quaternized graphene oxide nanocomposites as fast hydroxide conductors.

    PubMed

    Zarrin, Hadis; Fu, Jing; Jiang, Gaopeng; Yoo, Skylar; Lenos, Jared; Fowler, Michael; Chen, Zhongwei

    2015-02-24

    Nanocomposites play a key role in performance improvements of hydroxide conductors employed in a wide range of alkaline-electrochemical systems such as fuel cells and metal-air batteries. Graphene oxide (GO) nanosheets are considered to be outstanding nanofillers for polymeric nanocomposites on account of their excellent physicochemical strength and electrochemical properties. In this work, a fast hydroxide conductor was developed on the basis of a chemically modified GO nanocomposite membrane. The high surface area of GO was functionalized with highly stable hydroxide-conductive groups using a dimethyloctadecyl [3-(trimethoxysilyl)propyl]ammonium chloride (DMAOP) precursor, named QAFGO, and then composed with porous polybenzimidazole PBI (pPBI) as a well-suited polymeric backbone. The nanocomposite exhibited outstanding hydroxide conductivity of 0.085 S cm(-1), high physicochemical strength, and electrochemical stability for 21 days. An alkaline fuel cell (AFC) setup was fabricated to determine the functionality of QAFGO/pPBI nanocomposite in an alkaline-based system. The high AFC performance with peak power density of 86.68 mW cm(-2) demonstrated that QAFGO/pPBI nanocomposite membrane has promising potential to be employed as a reliable hydroxide conductor for electrochemical systems working in alkaline conditions.

  1. Conductors for commercial MRI magnets beyond NbTi: requirements and challenges

    NASA Astrophysics Data System (ADS)

    Parizh, Michael; Lvovsky, Yuri; Sumption, Michael

    2017-01-01

    Magnetic resonance imaging (MRI), a powerful medical diagnostic tool, is the largest commercial application of superconductivity. The superconducting magnet is the largest and most expensive component of an MRI system. The magnet configuration is determined by competing requirements including optimized functional performance, patient comfort, ease of siting in a hospital environment, minimum acquisition and lifecycle cost including service. In this paper, we analyze conductor requirements for commercial MRI magnets beyond traditional NbTi conductors, while avoiding links to a particular magnet configuration or design decisions. Potential conductor candidates include MgB2, ReBCO and BSCCO options. The analysis shows that no MRI-ready non-NbTi conductor is commercially available at the moment. For some conductors, MRI specifications will be difficult to achieve in principle. For others, cost is a key barrier. In some cases, the prospects for developing an MRI-ready conductor are more favorable, but significant developments are still needed. The key needs include the development of, or significant improvements in: (a) conductors specifically designed for MRI applications, with form-fit-and-function readily integratable into the present MRI magnet technology with minimum modifications. Preferably, similar conductors should be available from multiple vendors; (b) conductors with improved quench characteristics, i.e. the ability to carry significant current without damage while in the resistive state; (c) insulation which is compatible with manufacturing and refrigeration technologies; (d) dramatic increases in production and long-length quality control, including large-volume conductor manufacturing technology. In-situ MgB2 is, perhaps, the closest to meeting commercial and technical requirements to become suitable for commercial MRI. Conductor technology is an important, but not the only, issue in introduction of HTS/MgB2 conductor into commercial MRI magnets. These

  2. The Conductor-Dielectric Junctions in a Low Density Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; deGroot, Wim; Thomson, Clint; Dennison, J. R.; Davies, Robert

    1999-01-01

    A conductor-dielectric junction exposed to the space environment is a frequent spacecraft design feature. Due to spacecraft charging and/or solar array operation, the conductor can acquire a high potential with respect to the surrounding plasma. If this potential is positive the insulators adjacent to exposed conductors can collect current as if they were conductors themselves. This phenomenon, called snapover, results in a substantial increase in current collection, and may even result in a glow discharge if the potential is high enough. If a conductor has a negative potential, arcing can occur at the site of a junction. Both of these phenomena negatively affect spacecraft operation. To prevent negative consequences, the physical mechanisms of snapover and arc inception require investigation. In this paper, results are presented of an experimental and theoretical study of snapover, glow discharge, and arc phenomena for different materials immersed in argon or xenon plasmas. The effect of snapover is investigated for several metal-dielectric junctions: copper-teflon, copper-Kapton, copper-glass, aluminum-teflon, aluminum-Kapton, steel-teflon, anodized aluminum with pinholes, and copper-ceramics. I-V curves are measured and snapover inception voltages, essential parameters (increase in current and collection area due to secondary electrons), and glow discharge inception thresholds are determined. Optical spectra are obtained for glow discharges in both argon and xenon plasmas. These spectra provide information regarding atomic species entrapped in the glow region. Some spectral lines can be used to estimate plasma parameters in the discharge area. A video-camera and linear array were used to confirm that snapover inception is accompanied by very low intensity visible light emission. This result seems to be important for the estimate of the light pollution around spacecraft. Optical spectra (wavelengths 380-650 nm) of arcs are also obtained on a negatively biased

  3. Vertically aligned gas-insulated transmission line having particle traps at the inner conductor

    DOEpatents

    Dale, Steinar J.

    1984-01-01

    Gas insulated electrical apparatus having first and second conductors separated by an insulating support within an insulating gas environment, and particle traps disposed along the surface of the high potential conductor for trapping and inactivating foreign particles which may be present within the insulating gas medium. Several embodiments of the invention were developed which are particularly suited for vertically aligned gas insulated transmission lines. The particle traps are grooves or cavities formed into the walls of the tubular inner conductor, without extending into the hollow portion of the conductor. In other embodiments, the traps are appendages or insert flanges extending from the inner conductor, with the insulator supports contacting the appendages instead of the inner conductor.

  4. Conductor and joint test results of JT-60SA CS and EF coils using the NIFS test facility

    NASA Astrophysics Data System (ADS)

    Obana, Tetsuhiro; Takahata, Kazuya; Hamaguchi, Shinji; Kizu, Kaname; Murakami, Haruyuki; Chikaraishi, Hirotaka; Noguchi, Hiroki; Kobuchi, Takashi; Moriuchi, Sadatomo; Imagawa, Shinsaku; Mito, Toshiyuki; Tsuchiya, Katsuhiko; Natsume, Kyohei; Yoshida, Kiyoshi; Nomoto, Kazuhiro; Kim, Tae-hyun

    2016-01-01

    In 2007, JAEA and NIFS launched the test project to evaluate the performance of cable-in-conduit (CIC) conductors and conductor joints for the JT-60SA CS and EF coils. In this project, conductor tests for four types of coil conductor and joint tests for seven types of conductor joint have been conducted for the past eight years using the NIFS test facility. As a result, the test project indicated that the CIC conductors and conductor joints fulfill the design requirement for the CS and EF coils. In addition, the NIFS test facility is expected to be utilized as the test facility for the development of a conductor and conductor joint for the purpose of the DEMO nuclear fusion power plant, provided that the required magnetic field strength is within 9 T.

  5. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, Prasad R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  6. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  7. Critical Current in YBCO Coated Conductors in the Presence of a Macroscopic Defect (POSTPRINT)

    DTIC Science & Technology

    2010-03-01

    AFRL-RZ-WP-TP-2010-2084 CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) Milan Polak and...CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c...display, or disclose the work. 14. ABSTRACT We have studied the effects of localized defects in the YBCO coated conductors on the critical current. The

  8. Calculation of the surface effect in the ferromagnetic conductor with the harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.

    2016-04-01

    The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.

  9. High temperature superconducting composite conductor and method for manufacturing the same

    DOEpatents

    Holesinger, Terry G.; Bingert, John F.

    2002-01-01

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  10. Stretchable nanoparticle conductors with self-organized conductive pathways

    NASA Astrophysics Data System (ADS)

    Kim, Yoonseob; Zhu, Jian; Yeom, Bongjun; di Prima, Matthew; Su, Xianli; Kim, Jin-Gyu; Yoo, Seung Jo; Uher, Ctirad; Kotov, Nicholas A.

    2013-08-01

    Research in stretchable conductors is fuelled by diverse technological needs. Flexible electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear systems require materials with high conductivity over a tensile strain of 100 per cent (refs 1, 2, 3). Furthermore, implantable devices or stretchable displays need materials with conductivities a thousand times higher while retaining a strain of 100 per cent. However, the molecular mechanisms that operate during material deformation and stiffening make stretchability and conductivity fundamentally difficult properties to combine. The macroscale stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization of electronic orbitals. This conductivity-stretchability dilemma can be exemplified by liquid metals, in which conduction pathways are retained on large deformation but weak interatomic bonds lead to compromised strength. The best-known stretchable conductors use polymer matrices containing percolated networks of high-aspect-ratio nanometre-scale tubes or nanowires to address this dilemma to some extent. Further improvements have been achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic composition, or with specific alignment (the way the fillers are arranged in the matrix). However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness increases with the volume content of metallic filler, and anisotropy increases with alignment. Pre-strained substrates, buckled microwires and three-dimensional microfluidic polymer networks have also been explored. Here we demonstrate stretchable conductors of polyurethane containing spherical nanoparticles deposited by either layer-by-layer assembly or vacuum-assisted flocculation. High conductivity and stretchability were observed in both composites despite the minimal aspect ratio of the nanoparticles. These materials also demonstrate the

  11. R&D of coated conductors for applications in Japan

    NASA Astrophysics Data System (ADS)

    Izumi, T.; Shiohara, Y.

    2010-11-01

    On the research and development of coated conductors in Japan, the Ic characteristics and the length have been remarkably improved in the national project. Five hundred meter-long tapes with higher Ic values than 300 A/cm-width were realized by the pulsed laser deposition (PLD) and the metal organic deposition using trifluoroacetates (TFA-MOD) processings for the superconducting layer on the IBAD-GZO buffered substrates. In order to realize the low cost by the increasing the production rate of the ion beam assisted deposition (IBAD) layer, the process of IBAD-MgO was developed and a 1000 m-long IBAD buffer tape was fabricated at an extremely high production rate of 1 km/h. On the other hand, the artificial pinning center has been introduced in both PLD and MOD processing. The BaZrO3 nano-rods were aligned along the c-axis of GdBCO superconducting films by the PLD process. The Jc value in the magnetic field parallel to the c-axis was remarkably improved. Additionally, the BaZrO3 nano-particles were uniformly dispersed in YGdBCO films by the TFA-MOD process and the Jc-B-θ property was confirmed to be isotropic. Based on the above-mentioned achievements, the new national project, whose main objective is the development of some electric power applications using a coated conductor, started in 2008. In this project, the improvement of the coated conductor includes the five sub-themes: (1) degradation of tapes, (2) high Ic under magnetic field, (3) low AC loss, (4) high mechanical strength and high Je and (5) low cost and high yield.

  12. Composite mixed oxide ionic and electronic conductors for hydrogen separation

    DOEpatents

    Gopalan, Srikanth; Pal, Uday B.; Karthikeyan, Annamalai; Hengdong, Cui

    2009-09-15

    A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.

  13. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  14. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  15. Polyvinyl alcohol doped with nickel chloride hexahydrate as conductor polymer

    NASA Astrophysics Data System (ADS)

    Ruiz-Limon, B.; Olivares-Perez, Arturo; Silva-Andrade, F.; Fuentes-Tapia, I.; Ibarra-Torres, Juan Carlos

    2004-06-01

    Polyvinyl alcohol is a viscous solution, with blue clear appearance, not has odor, when is deposited, as a film dry the appearance is clear transparent and has high flexibility. This polymer no has double link and don not has p orbital that permit the conductivity. However, can be doped with salts as ammonium dichromate and nickel chloride hexahydrate NiCl26H2O constructing a good conductor polymer with a resistivity around 300 ohms cm. Conserving the high flexibility opened new possibilities and applications.

  16. Magnetophonon oscillations caused by acoustic phonons in bulk conductors

    NASA Astrophysics Data System (ADS)

    Raichev, O. E.

    2016-09-01

    The interaction of electrons with acoustic phonons under a magnetic field leads to a remarkable kind of magnetophonon oscillation of transport coefficients, recently discovered in two-dimensional electron systems. The present study shows that similar oscillations exist in bulk conductors and provides a theory of this phenomenon for the case of spherical Fermi surfaces. The resonance peaks occur when the product of the Fermi surface diameter by the sound velocity is a multiple of the cyclotron frequency. Theoretical predictions may facilitate the experimental observation of the phenomenon.

  17. Observation of highly decoupled conductivity in protic ionic conductors.

    PubMed

    Wojnarowska, Zaneta; Wang, Yangyang; Paluch, Krzysztof J; Sokolov, Alexei P; Paluch, Marian

    2014-05-21

    Ionic liquids (ILs) are key materials for the development of a wide range of emerging technologies. Protic ionic liquids, an important class of ILs, have long been envisioned as promising anhydrous electrolytes for fuel cells. It is well known that in comparison to all other cations, protons exhibit abnormally high conductivity in water. Such superprotonic dynamics was expected in protic ionic conductors as well. However, many years of extensive studies led to the disappointing conclusion that this is not the case and most protic ionic liquids display subionic behavior. Therefore, the relatively low conductivity seems to be the main obstacle for the application of protic ionic liquids in fuel cells. Using dielectric spectroscopy, herein we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor. We show that its proton transport is strongly decoupled from the structural relaxation, in terms of both temperature dependence and characteristic rates. This finding offers a fresh look on the charge transport mechanism in PILs and also provides new ideas for design of anhydrous materials with exceptionally high proton conductivity.

  18. Broadband dielectric spectroscopy of inhomogeneous and composite weak conductors

    NASA Astrophysics Data System (ADS)

    Petzelt, J.; Nuzhnyy, D.

    2016-08-01

    In this paper, we discuss broadband dielectric spectroscopy from mHz up to the infrared range mainly for materials with inhomogeneous weak conductivity, including conductor-dielectric nanocomposites. Our discussion is based on the effective medium approximation (EMA) and experiments modeled by this approach are reviewed. We discuss core-shell composites modeled by coated-spheres (Hashin-Shtrikman model) and normal composites with a possible percolation of the conductor component resulting in sharp or smeared percolation threshold of the DC conductivity and diverging static permittivity in the former case. The sharp percolation threshold is modeled by the Bruggeman EMA or by general EMA with arbitrary percolation threshold and arbitrary critical exponents of the DC conductivity and static permittivity. For the case of smeared percolation threshold in the case of complex topologies, we use the Lichtenecker model allowing for partial percolation of both the components. Finally, numerous papers reporting negative permittivity in weakly conducting materials are criticized and concluded to be due to spurious effects.

  19. The cryogenic system for ITER CC superconducting conductor test facility

    NASA Astrophysics Data System (ADS)

    Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

    2011-01-01

    This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

  20. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    SciTech Connect

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  1. Strong light-field effects in correlated oraganic conductors

    NASA Astrophysics Data System (ADS)

    Iwai, Shinichiro; Kawakami, Yohei; Naitoh, Yota; Itoh, Hirotake; Ishihara, Sumio; Yonemitsu, Kenji

    Optical responses of organic conductors have attracted much attentions, because they exhibit ultrafast solid-state phase transitions in the conducting and/or dielectric natures upon photo-excitations. In this decade, photoinduced melting of correlated insulators with clear charge gap have been extensively investigated. On the other hand, optical rsponses of correlated metal has not been studied well. Here, we describe a charge localization induced by the 9.3 MV/cm instantaneous electric field of a 1.5 cycle (7 fs) infrared pulse in an organic conductor alpha- (bis[ethylenedithio]-tetrathiafulvelene)2I3. A large reflectivity change of 30 percent and a coherent charge oscillation along the time axis reflect the opening of the charge ordering gap in the metallic phase. This optical freezing of charges, which is the reverse of the photoinduced melting of electronic orders, is attributed to the 10 percent reduction of t driven by the strong, high-frequency electric field. Furthermore, the contribution of Coulomb repulsion will be discussed on the basis of the polarization dependence of the pump light and the theory.

  2. High current DyBCO-ROEBEL Assembled Coated Conductor (RACC)

    NASA Astrophysics Data System (ADS)

    Goldacker, W.; Nast, R.; Kotzyba, G.; Schlachter, S. I.; Frank, A.; Ringsdorf, B.; Schmidt, C.; Komarek, P.

    2006-06-01

    Low AC loss high transport current HTS cables (>1 kA) are required for application in transformers, generators and are considered for future generations of fusion reactors coils. 2G coated conductors are suitable candidates for high field application at quite high operation temperatures of 50-77 K, which is crucial precondition for economical cooling costs. As a feasibility study we present the first ROEBEL bar cable of approx. 35 cm length made from industrial DyBCO coated conductor (THEVA GmbH, Germany). Meander shaped ROEBEL strands of 4 mm width with a twist pitch of 180 mm were cut from 10 mm wide CC tapes using a specially designed tool. The strands carried in average 157 Amps/cm-width DC and were assembled to a subcable with 5 strands and a final cable with 16 strands. The 5 strand cable was tested and carried a transport current of >300 Amps DC at 77 K, equivalent to the sum of the individual strand transport critical currents. The 16 strand cable carried 500 A limited through heating effects and non sufficient stabilisation and current sharing. A pulse current load indicated a current carrying potential of >1 kA for the 16 strand cable.

  3. Modeling the electromagnetic detection of buried cylindrical conductors

    SciTech Connect

    Moses, R.W.; Kelly, R.E.; Mack, J.M.

    1996-05-01

    The remote detection of buried structures and tunnels is important to the mining, construction, and defense industries. It is often desirable to identify underground power lines, pipe lines, and utility tunnels which have unique electromagnetic cross sections. A computational model for the electromagnetic detection of buried conducting cylinders is described in this paper. The source of electromagnetic radiation is either current injection into the soil or a surface based magnetic dipole with possible extensions to airborne platforms. Frequency ranges from a few kHz to 100 kHz are considered. The target conductor is a cylinder buried directly in the soil or placed inside an insulating pipe. The receiver is a magnetic gradiometer held 1m above the ground, separate from the transmitter. Data are taken widely over the terrain under investigation. Cases where the target conductor is grounded at both ends, one end, or not at all are modeled. The scattered field and field gradient are computed at or above ground level and compared in magnitude and phase with the transmitted signal. Calculated results are compared with experimental tests done to detect a buried wire at Sandia National Laboratory and a tunnel at Yucca Mountain. Essential factors affecting detection performance are frequency optimization, dynamic range of reception and proper data processing.

  4. Duality and reciprocity of fluctuation-dissipation relations in conductors.

    PubMed

    Reggiani, Lino; Alfinito, Eleonora; Kuhn, Tilmann

    2016-09-01

    By analogy with linear response, we formulate the duality and reciprocity properties of current and voltage fluctuations expressed by Nyquist relations, including the intrinsic bandwidths of the respective fluctuations. For this purpose, we individuate total-number and drift-velocity fluctuations of carriers inside a conductor as the microscopic sources of noise. The spectral densities at low frequency of the current and voltage fluctuations and the respective conductance and resistance are related in a mutually exclusive way to the corresponding noise source. The macroscopic variances of current and voltage fluctuations are found to display a dual property via a plasma conductance that admits a reciprocal plasma resistance. Analogously, the microscopic noise sources are found to obey a dual property and a reciprocity relation. The formulation is carried out in the frame of the grand canonical (for current noise) and canonical (for voltage noise) ensembles, and results are derived that are valid for classical as well as degenerate statistics, including fractional exclusion statistics. The unifying theory so developed sheds new light on the microscopic interpretation of dissipation and fluctuation phenomena in conductors. In particular, it is proven that for fermions, as a consequence of the Pauli principle, nonvanishing single-carrier velocity fluctuations at zero temperature are responsible for diffusion but not for current noise, which vanishes in this limit.

  5. A dendrite-suppressing composite ion conductor from aramid nanofibres

    NASA Astrophysics Data System (ADS)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.

    2015-01-01

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  6. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    PubMed

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  7. Internal pressure effects in the AIRCO-LCT conductor sheath

    SciTech Connect

    Luton, J.N.; Clinard, J.A.; Lue, J.W.; Gray, W.H.; Summers, L.T.; Kershaw, R.

    1985-01-01

    The large Nb/sub 3/Sn superconducting test coil produced by Westinghouse Electric Corporation for the international Large Coil Task (LCT) utilizes a conductor composed of cabled multifilamentary strands immersed in flowing supercritical helium contained by a square structural sheath made of the high-strength stainless alloy JBX-75. Peak pressures of a few hundred atmospheres are predicted to occur during quench, and measurement of these pressures seems feasible only through penetrations of the sheath wall. Fully processed short lengths of conductor were taken from production ends, fitted with pressure taps and strain gauges, and pressurized with helium gas. Failure, at 1000 atm at liquid nitrogen temperature, was by a catastrophic splitting of the sheath at a corner. Strain measurements and burst pressure agreed with elastic-plastic finite element stress calculations made for the sheath alone. Neither the production seam weld nor the pressure tap penetrations or their fillet welds contributed to the failure, although the finite element calculations show that these areas were also highly stressed, and examination of the failed sample showed that the finite welds were of poor quality. Failure was by tensile overload, with no evidence of fatigue.

  8. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    NASA Astrophysics Data System (ADS)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-01

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  9. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... than 50 volts. 183.430 Section 183.430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a nominal voltage of less than 50 volts must: (1) Meet the requirements of § 183.435; or (2) Meet: (i)...

  10. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than 50 volts. 183.430 Section 183.430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a nominal voltage of less than 50 volts must: (1) Meet the requirements of § 183.435; or (2) Meet: (i)...

  11. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... than 50 volts. 183.430 Section 183.430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a nominal voltage of less than 50 volts must: (1) Meet the requirements of § 183.435; or (2) Meet: (i)...

  12. 33 CFR 183.430 - Conductors in circuits of less than 50 volts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 50 volts. 183.430 Section 183.430 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Requirements § 183.430 Conductors in circuits of less than 50 volts. (a) Each conductor in a circuit that has a nominal voltage of less than 50 volts must: (1) Meet the requirements of § 183.435; or (2) Meet: (i)...

  13. Effects of Conducting Plane on Band and Choral Musicians' Perceptions of Conductor and Ensemble Expressivity

    ERIC Educational Resources Information Center

    Silvey, Brian A.; Fisher, Ryan A.

    2015-01-01

    The purpose of this study was to examine whether one aspect of conducting technique, the conducting plane, would affect band and/or choral musicians' perceptions of conductor and ensemble expressivity. A band and a choral conductor were each videotaped conducting 1-min excerpts from Morten Lauridsen's "O Magnum Mysterium" while using a…

  14. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...

  15. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning arresters; ungrounded and exposed power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  16. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...

  17. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning arresters; ungrounded and exposed power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  18. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...

  19. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...

  20. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...

  1. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...

  2. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning arresters; ungrounded and exposed power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  3. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...

  4. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Lightning arresters; ungrounded and exposed power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  5. 30 CFR 75.521 - Lightning arresters; ungrounded and exposed power conductors and telephone wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning arresters; ungrounded and exposed power conductors and telephone wires. 75.521 Section 75.521 Mineral Resources MINE SAFETY AND HEALTH... telephone wires. Each ungrounded, exposed power conductor and each ungrounded, exposed telephone wire...

  6. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...

  7. 30 CFR 56.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Lightning protection for telephone wires and... NONMETAL MINES Electricity § 56.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded power conductor or telephone wire that leads underground and is directly exposed...

  8. 30 CFR 57.12069 - Lightning protection for telephone wires and ungrounded conductors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Lightning protection for telephone wires and... AND NONMETAL MINES Electricity Surface Only § 57.12069 Lightning protection for telephone wires and ungrounded conductors. Each ungrounded conductor or telephone wire that leads underground and is...

  9. Parallel-gap welding for joints between copper conductors and Kovar

    NASA Technical Reports Server (NTRS)

    Mc Daniel, G. E.

    1971-01-01

    Welding technique produces more reliable joints than soldering. Investigation used different sizes of copper conductors and component lead ribbons, corrosion protection platings, and melting points of metals being joined. Optimum combination is gold-plated component lead ribbons and solder-plated copper conductors.

  10. Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator

    DOEpatents

    Marchant, D.D.

    1983-06-10

    A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

  11. Extreme externalisation of a Riata defibrillator lead conductor cable with prolapse into the left pulmonary artery.

    PubMed

    Oktay, A Afşin; Dibs, Samer R; Silver, Jeffrey M; Akbar, M Sikander

    2014-12-01

    The Riata family of defibrillator leads (St. Jude Medical, Sylmar, CA) has been recalled because of externalisation of conductor cables and increased electrical failure. We describe the case of a man with an incidental finding of extreme externalisation of a conductor from the right ventricular defibrillator lead (Riata family) with prolapse into the left pulmonary artery.

  12. Thin magnetic conductor substrate for placement-immune, electrically-small antennas.

    SciTech Connect

    Eubanks, Travis Wayne; McDonald, Jacob J.; Loui, Hung

    2011-09-01

    An antenna is considered to be placement-immune when the antenna operates effectively regardless of where it is placed. By building antennas on magnetic conductor materials, the radiated fields will be positively reinforced in the desired radiation direction instead of being negatively affected by the environment. Although this idea has been discussed thoroughly in theoretical research, the difficulty in building thin magnetic conductor materials necessary for in-phase field reflections prevents this technology from becoming more widespread. This project's purpose is to build and measure an electrically-small antenna on a new type of non-metallic, thin magnetic conductor. This problem has not been previously addressed because non-metallic, thin magnetic conductor materials have not yet been discovered. This work proposed the creation of an artificial magnetic conductor (AMC) with in-phase field reflections without using internal electric conductors, the placement of an electrically-small antenna on this magnetic conductor, and the development of a transmit-receive system that utilizes the substrate and electrically-small antenna. By not using internal electric conductors to create the AMC, the substrate thickness can be minimized. The electrically-small antenna will demonstrate the substrate's ability to make an antenna placement immune, and the transmit-receive system combines both the antenna and the substrate while adding a third layer of system complexity to demonstrate the complete idea.

  13. A Systematic Inventory of Motives for Becoming an Orchestra Conductor: A Preliminary Study

    ERIC Educational Resources Information Center

    Makris, Ioannis; Mullet, Etienne

    2009-01-01

    The study examined the various motives (reasons) that may have led an individual to become an orchestra conductor interpreting classical works, using Apter's (2001) Metamotivational Theory framework. Questionnaires derived from the theory, consisting of 92 possible motives for becoming an orchestra conductor, were presented to 101 orchestra…

  14. Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1974-01-01

    The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.

  15. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... moisture resistant and flame retardant in Article 310, NFPA No. 70, National Electric Code; (2) A flexible cord type SO, STO, ST, SJO, SJT, or SJTO listed in Article 400, NFPA No. 70, National Electric Code; (3) A conductor that meets IEEE Standard 45. (4) A conductor that meets UL Standard 1426. (b) Where...

  16. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... moisture resistant and flame retardant in Article 310, NFPA No. 70, National Electric Code; (2) A flexible cord type SO, STO, ST, SJO, SJT, or SJTO listed in Article 400, NFPA No. 70, National Electric Code; (3) A conductor that meets IEEE Standard 45. (4) A conductor that meets UL Standard 1426. (b) Where...

  17. 33 CFR 183.435 - Conductors in circuits of 50 volts or more.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... moisture resistant and flame retardant in Article 310, NFPA No. 70, National Electric Code; (2) A flexible cord type SO, STO, ST, SJO, SJT, or SJTO listed in Article 400, NFPA No. 70, National Electric Code; (3) A conductor that meets IEEE Standard 45. (4) A conductor that meets UL Standard 1426. (b) Where...

  18. Theoretical Investigation on Skin Effect Factor of Conductor in Power Cables

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Kanaoka, Mamoru

    This paper describes a newly-derived theoretical equation on the skin effect factor of power cables, and its application to large-size OF and XLPE cables with segmental conductors, including insulated wires. The skin effect factors calculated with the new equation were fit very well to measurements in wide range conductor sizes. In the new equation, the important factor which characterizes the skin effect of segmental conductors is the `equivalent conductivity ratio' ν defined by the ratio of longitudinal conductivity in axial direction of conductor to conductivity of conductor wires. Since the obtained ratio ν in XLPE cable was three times greater than that in OF cable, the larger longitudinal eddy current passing from a wire to another increased the eddy current loss in conductor, which increased the conductor loss of XLPE cable. The new equation enables us to investigate quantitatively the dominant loss component affecting the skin effect factor. Then, the skin effect factors and coefficients for OF and XLPE cables were investigated with the new equation. It was revealed that the best number of separation, in which the skin effect became minimum, existed in OF and XLPE cables with segmental conductors. In addition, it was confirmed that the skin effect coefficients ks1 calculated with the new equation were consistent well with those used in JCS.

  19. Examining the Mismatch between the Training and Assessment of Band and Orchestra Conductors in Michigan

    ERIC Educational Resources Information Center

    Becher, Eric A.

    2011-01-01

    The dissertation builds on the research literature studying conductor training and the musical attributes requisite for adequate conducting skill and musical performance. The study also provides evidence that effective tools for evaluation of band and orchestra conductors are prevalent throughout the music education literature. Public school…

  20. Thermal expulsion of helium from a quenching cable-in-conduit conductor

    SciTech Connect

    Dresner, L.

    1981-01-01

    Three problems are solved in this paper, all by similarity solutions. The first is thermal expulsion from an entire hydraulic circuit initially unpressurized but uniformly heated by the Joule power of the normal conductor. The second problem is expulsion from an unheated but initially pressurized conductor. In both of these problems, the ends of the conductor are imagined to intrude into constant-pressure chambers. The second problem has less practical importance in applied superconductivity than the first, but it teaches us some useful things that aid in the solution of the third problem. In the third problem, the ends of the heated part of the conductor intrude into unheated parts of identical construction rather than constant-pressure chambers. This problem sheds some light on normal-zone propagation in cable-in-conduit conductors.

  1. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  2. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  3. Development of termination and utilization concepts for flat conductor cables. Volume 3: Cost study comparison, flat versus round conductor cable

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A cost study comparing flat conductor cable (FCC) with small-gage wire (SGW) and conventional round conductor cable (RCC) is presented. This study was based on a vehicle wiring system consisting of 110,000 ft of conventional RCC equally divided between AWG sizes 20,22, and 24 using MIL-W-81044-type wire and MIL-C-26500 circular connectors. Basic cost data were developed on a similar-sized commercial jet airplane wiring system on a previous company R&D program in which advanced wiring techniques were carried through equivalent installations on an airplane mockup; and on data developed on typical average bundles during this program. Various cost elements included were engineering labor, operations (manufacturing) labor, material costs, and cost impact on payload. Engineering labor includes design, wiring system integration, wiring diagrams and cable assembly drawings, wire installations, and other related supporting functions such as the electronic data processing for the wiring. Operations labor includes mockup, tooling and production planning, fabrication, assembly, installation, and quality control cost impact on payload is the conversion of wiring system weight variations through use of different wiring concepts to program payload benefits in terms of dollars.

  4. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  5. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.

  6. Investigations of Carbon Nanotube Networks for use as Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Topinka, Mark

    2006-03-01

    Recently there has been increasing interest in the physics of conduction through carbon nanotube networks and the possibility of using carbon nanotube networks as transparent conducting layers for solar cells and other optoelectronic applications(1). Conductivities as high as 30 ohm/square with transparencies of about 80% have been reported(2). Here we present results of our work on understanding the underlying physics behind the real-world behavior of these systems and identifying the bottlenecks which are currently limiting their performance. We focus in particular on their possible use in solar cells as a low-cost alternative to more expensive transparent conductor technologies such as Indium Tin Oxide (ITO). We include numerical simulations of conduction through nanotube networks and scanning probe microscopy studies of transport through these systems. (1) L.Hu, D.S.Hecht, G.Gruner, NanoLetters 4, 2513 (2) Z.Wu, et al, Science 305, 1273

  7. Ag Nanowire Based Transparent Conductor for CIGS PV

    SciTech Connect

    Woods, L. M.; Wolk, J.; Smith, M.; Davande, H.; Ribelin, R. M.; Perkins, C. L.

    2011-01-01

    Coated silver nanowires (AgNW) have been considered as a replacement for transparent conducting oxides (TCOs) in CIGS based photovoltaic devices. The advantages of AgNW over TCOs are discussed, and optical and electrical characteristics of AgNWs on glass are presented. Similarly fabricated AgNWs with varying sheet resistance on CIGS devices were tested against ITO transparent conductor controls. The CIGS was produced using a roll-to-roll technique on a flexible polymer substrate. Variations in the ZnO layer resistivity that are adjacent to the AgNW layer in the CIGS device were also tested. Device results indicate similar Jsc, but a reduced FF for cells made with the AgNWs, and Voc dependence on the resistivity of the coated AgNW and ZnO window layers. FF and Voc losses associated with the use of AgNWs are discussed.

  8. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    SciTech Connect

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  9. Quantum interference in a macroscopic van der Waals conductor

    NASA Astrophysics Data System (ADS)

    Rischau, C. W.; Wiedmann, S.; Seyfarth, G.; LeBoeuf, D.; Behnia, K.; Fauqué, B.

    2017-02-01

    Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable to the phase coherence length. Here, we report the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of e2/h in macroscopic samples of highly oriented pyrolytic graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moiré superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length ℓB, the Fermi wavelength λF, and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.

  10. Fuel-Cell Electrolytes Based on Organosilica Hybrid Proton Conductors

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Pin S.

    2008-01-01

    A new membrane composite material that combines an organosilica proton conductor with perfluorinated Nafion material to achieve good proton conductivity and high-temperature performance for membranes used for fuel cells in stationary, transportation, and portable applications has been developed. To achieve high proton conductivities of the order of 10(exp -1)S/cm over a wide range of temperatures, a composite membrane based on a new class of mesoporous, proton-conducting, hydrogen-bonded organosilica, used with Nafion, will allow for water retention and high proton conductivity over a wider range of temperatures than currently offered by Nafion alone. At the time of this reporting, this innovation is at the concept level. Some of the materials and processes investigated have shown good proton conductivity, but membranes have not yet been prepared and demonstrated.

  11. Neuronal Recordings with Solid-Conductor Intracellular Nanoelectrodes (SCINEs)

    PubMed Central

    Angle, Matthew R.; Schaefer, Andreas T.

    2012-01-01

    Direct electrical recording of the neuronal transmembrane potential has been crucial to our understanding of the biophysical mechanisms subserving neuronal computation. Existing intracellular recording techniques, however, limit the accuracy and duration of such measurements by changing intracellular biochemistry and/or by damaging the plasma membrane. Here we demonstrate that nanoengineered electrodes can be used to record neuronal transmembrane potentials in brain tissue without causing these physiological perturbations. Using focused ion beam milling, we have fabricated Solid-Conductor Intracellular NanoElectrodes (SCINEs), from conventional tungsten microelectrodes. SCINEs have tips that are <300 nm in diameter for several micrometers, but can be easily handled and can be inserted into brain tissue. Performing simultaneous whole-cell patch recordings, we show that SCINEs can record action potentials (APs) as well as slower, subthreshold neuronal potentials without altering cellular properties. These results show a key role for nanotechnology in the development of new electrical recording techniques in neuroscience. PMID:22905231

  12. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  13. Dynamic corona characteristics of water droplets on charged conductor surface

    NASA Astrophysics Data System (ADS)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-03-01

    The formation of the Taylor cone of a water droplet on the surface of the conductor in a line-ground electrode system is captured using a high-speed camera, while the corona current is synchronously measured using a current measurement system. Repeated Taylor cone deformation is observed, yielding regular groupings of corona current pulses. The underlying mechanism of this deformation is studied and the correlation between corona discharge characteristics and cone deformation is investigated. Depending on the applied voltage and rate of water supply, the Taylor cone may be stable or unstable and has a significant influence on the characteristics of the corona currents. If the rate of water supply is large enough, the Taylor cone tends to be unstable and generates corona-current pulses of numerous induced current pulses with low amplitudes. In consequence, this difference suggests that large rainfall results in simultaneously lower radio interference and higher corona loss.

  14. Bounds for nonlinear composite conductors via the translation method

    NASA Astrophysics Data System (ADS)

    Peigney, B. E.; Peigney, M.

    Hashin-Shtrikman type bounds are proposed for nonlinear isotropic composite conductors in two dimensions. Those bounds are obtained by combining the translation method with the idea of embedding the original two-dimensional problem in an extended problem of dimension 6. Invariance properties allow the evaluation of the bounds to be dramatically simplified. Explicit results are obtained for the problem of dielectric breakdown. Numerical results are given for two-phase composites governed by power-law energy functions. The obtained bounds are shown to improve on the linear comparison bounds of the Hashin-Shtrikman type that are delivered by the Talbot-Willis (1985) approach and the Ponte Castañeda (1991) variational method.

  15. Bubbly flow velocity measurements near a heated cylindrical conductor

    SciTech Connect

    Canaan, R.E.; Hassan, Y.A. )

    1990-01-01

    The objective of this study is to apply recent advances and improvements in the digital pulsed laser velocimetry (DPLV) technique to the analysis of two-phase bubbly flow about a cylindrical conductor emitting a constant heat flux within a transparent rectangular enclosure. Pulsed laser velocimetry is a rapidly advancing fluid flow visualization technique that determines full-field instantaneous velocity vectors of a quantitative nature such that the flow field remains undisturbed by the measurement. The DPLV method offers several significant advantages over more traditional fluid velocity measurement techniques such as hot wire/film anemometry and laser Doppler anemometry because reliable instantaneous velocity data may be acquired over substantial flow areas in a single experiment.

  16. Development of HTS power cable using YBCO coated conductor

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Yagi, Masashi; Hirano, Hironobu; Yamada, Yutaka; Izumi, Teruo; Shiohara, Yuh

    2006-10-01

    Reductions of AC losses and of cost of HTS power cables are important to put it into practical power networks. Since an YBCO-coated-conductor (YBCO tape) has higher Jc and better magnetic property than a Bi2223-Ag-sheathed-tape, an AC power cable using YBCO tapes will obtain higher performance than XLPE-cables and HTS cables using BSCCO tapes in future. Especially, an YBCO HTS cable will be expected to become a higher economical cable than a Bi cable because an YBCO tape reduced its AC losses and its wire cost. We have started developing HTS power cables using YBCO tapes. Mechanical properties, superconducting properties and other electro magnetic properties of YBCO tapes have been measured to estimate the applicability to the HTS cable. Moreover, we have developed some technologies to bring out latent potentials of YBCO tapes.

  17. Full-counting statistics of time-dependent conductors

    NASA Astrophysics Data System (ADS)

    Benito, Mónica; Niklas, Michael; Kohler, Sigmund

    2016-11-01

    We develop a scheme for the computation of the full-counting statistics of transport described by Markovian master equations with an arbitrary time dependence. It is based on a hierarchy of generalized density operators, where the trace of each operator yields one cumulant. This direct relation offers a better numerical efficiency than the equivalent number-resolved master equation. The proposed method is particularly useful for conductors with an elaborate time dependence stemming, e.g., from pulses or combinations of slow and fast parameter switching. As a test bench for the evaluation of the numerical stability, we consider time-independent problems for which the full-counting statistics can be computed by other means. As applications, we study cumulants of higher order for two time-dependent transport problems of recent interest, namely steady-state coherent transfer by adiabatic passage (CTAP) and Landau-Zener-Stückelberg-Majorana (LZSM) interference in an open double quantum dot.

  18. Methodologies in Search of p-type Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Lam, Kanber

    P-type transparent conductors are rare in nature but could lead to a lot technological innovations. A systematic search for p-type transparent conductors can be divided into two types: to search for (I) experimentally unknown compounds and (II) experimentally known ones. The difference between the two types of search lies in the fact that we always start with the experimental crystal structure in type II search while such information is lacking in the type I search. To make the type I research possible, a reasonably efficient method in predicting the ground state crystal structure is required. And the evolutionary algorithm with the real-space cut-and-splice method is a promising candidate for the task. For both type I and type II searches, we have to accurately predict the fundamental band gap and the hole conductivity. Corrections to density functional theory band gap, such as screened exchange LDA (sxLDA) or G0W0 , are required. The hole conductivity is linearly dependent on the hole concentration and inversely proportional to the hole effective mass. And we focused on the study of host material properties, the fundamental band gaps and hole effective masses, in the oxide sulfide family and eight promising candidates as p-type transparent conducting hosts were found. The hole population in the known transparent conducting oxides (TCOs) is mostly orig- inating from intrinsic point defects. However, a material La5Cu6O4S7 , whose hole conduc- tivity is an order of magnitude higher than the known TCOs, has its holes originating from a line structure, namely the breaking of dimers on the sulfur chain. The sulfur chain is optically inactive and serves purely to generate holes traveling in the Cu6S6 layers at finite temperature. This interesting hole-generating mechanism could open up new possibilities to achieve high hole conductivity in p-type TCs.

  19. Electrohydrodynamic direct—writing of conductor—insulator-conductor multi-layer interconnection

    NASA Astrophysics Data System (ADS)

    Zheng, Gao-Feng; Pei, Yan-Bo; Wang, Xiang; Zheng, Jian-Yi; Sun, Dao-Heng

    2014-06-01

    A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor—insulator—conductor multi-layer interconnection structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is utilized to fabricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained results show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω·m and 1.39 × 10-7 Ω·m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor—insulator—conductor multi-layer interconnections in the electronic industry.

  20. Performance analysis of the Nb-Ti conductor qualification samples for the ITER project

    NASA Astrophysics Data System (ADS)

    Breschi, M.; Carati, D.; Bessette, D.; Devred, A.; Romano, G.; Vostner, A.; Zhou, C.

    2015-11-01

    The ITER machine will require approximately 275 tons of Nb-Ti strands that will be used in poloidal field (PF) coils, correction coils (CC) and feeder busbars. The performance of all these conductors for the ITER machine is qualified by a short full-size sample (4 m) current sharing temperature (T cs) test in the SULTAN facility at CRPP in Villigen, Switzerland, at the design operating current and peak field. Three ITER domestic agencies participated in PF conductor fabrication (China, the European Union, Russia) while the conductors for feeder busbars and correction coils are entirely produced by the Chinese domestic agency. Each conductor type was qualified by the ITER International Organization after reaching T cs values in excess of ITER specifications. This qualification enabled the launch of procurement and industrial production of the Nb-Ti cable-in-conduit conductors in each domestic agency. In this paper, we summarize the performance of the qualified Nb-Ti samples of the ITER Project, comparing strand performance with conductor performance. The details of the test results will be discussed in terms of dc performance, ac losses and minimum quench energies of each conductor type.

  1. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    SciTech Connect

    Chaikovsky, S. A. Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-15

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 10{sup 9} T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  2. Skin explosion of double-layer conductors in fast-rising high magnetic fields

    NASA Astrophysics Data System (ADS)

    Chaikovsky, S. A.; Oreshkin, V. I.; Datsko, I. M.; Labetskaya, N. A.; Ratakhin, N. A.

    2014-04-01

    An experiment has been performed to study the electrical explosion of thick cylindrical conductors using the MIG pulsed power generator capable of producing a peak current of 2.5 MA within 100 ns rise time. The experimental goal was to compare the skin explosion of a solid conductor with that of a double-layer conductor whose outer layer had a lower conductivity than the inner one. It has been shown that in magnetic fields of peak induction up to 300 T and average induction rise rate 3 × 109 T/s, the double-layer structure of a conductor makes it possible to achieve higher magnetic induction at the conductor surface before it explodes. This can be accounted for, in particular, by the reduction of the ratio of the Joule heat density to the energy density of the magnetic field at the surface of a double-layer conductor due to redistribution of the current density over the conductor cross section.

  3. Off-Diagonal Long-Range Order, Restricted Gauge Transformations, and Aharonov-Bohm Effect in Conductors

    SciTech Connect

    Peshkin, Murray

    1996-03-25

    The electrons in a conductor surrounding an external magnetic field are acted on by a vector potential that cannot be removed by a gauge transformation. Nevertheless, a macroscopic normal conductor can experience no Aharonov-Bohm (AB) effect. That is proved by assuming only that a normal conductor lacks off-diagonal long-range order (ODLRO), which means that the electrons lack long-range phase coherence. Then by restricting the Hilbert space to density matrices which lack ODLRO, one can introduce a restricted gauge transformation that removes the interaction of the conductor with the vector potential. Consequently, the AB effect on a beam particle is not shielded by the conductor.

  4. Assessment of the noise annoyance among subway train conductors in Tehran, Iran.

    PubMed

    Hamidi, Mansoureh; Kavousi, Amir; Zaheri, Somayeh; Hamadani, Abolfazl; Mirkazemi, Roksana

    2014-01-01

    Subway transportation system is a new phenomenon in Iran. Noise annoyance interferes with the individual's task performance, and the required alertness in the driving of subway trains. This is the first study conducted to measure the level of noise and noise annoyance among conductors of subway organization in Tehran, Iran. This cross sectional study was conducted among 167 randomly selected train conductors. Information related to noise annoyance was collected by using a self-administered questionnaire. The dosimetry and sound metering was done for the conductors and inside the cabins. There were 41 sound metering measuring samples inside the conductors' cabin, and there were 12 samples of conductors' noise exposure. The results of sound level meter showed that the mean Leq was 73.0 dBA ± 8.7 dBA and the dosimetry mean measured Leq was 82.1 dBA ± 6.8 dBA. 80% of conductors were very annoyed/annoyed by noise in their work place. 53.9% of conductors reported that noise affected their work performance and 63.5% reported that noise causes that they lose their concentration. The noise related to movement of train wheels on rail was reported as the worst by 83.2% followed by the noise of brakes (74.3%) and the ventilation noise (71.9%). 56.9% of conductors reported that they are suffering from sleeplessness, 40.1% from tinnitus and 80.2% feeling fatigue and sleepy. The study results showed the high level of noise and noise annoyance among train conductors and the poor health outcome of their exposure to this level of noise.

  5. Investigation of the pre-service science teachers' opinions about the concept of "Semi-conductor"

    NASA Astrophysics Data System (ADS)

    Eryilmaz Muştu, Özlem

    2017-02-01

    In the current study, the purpose was to determine the pre-service science teachers' opinions about the concept of semi-conductor. The participants of the current study carried out in 2015-2016 academic year were 55 third year pre-service science teachers. In the study, open-ended questions were used to determine the pre-service teachers' opinions about semi-conductors. After the administration of the open-ended questions, the students were taught the topic of semi-conductors within the lesson of special issues in physics. Then the open-ended questions were directed to the pre-service teachers again. The pre-service teachers' responses to these questions were categorized by using qualitative analysis method and their frequency values were obtained. The findings of the study revealed that the pre-service teachers had difficulties, before and after the administration of the questions, in defining semi-conductors. At the end of the study, the pre-service teachers were found to have some misconceptions; for example, they think that semi-conductors conduct the half of the electricity conducted by conductors. In the study, it was found that the pre-service teachers cannot define the concept of semi-conductor and this might indicate that they will not be able to teach this concept when they become teachers. In this connection, it can be suggested that studies and activities performed for teaching of abstract concepts such as conductor, semi-conductor, and insulator should be increased.

  6. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  7. Pressure rise during the quench of a superconducting magnet using internally cooled conductors

    SciTech Connect

    Miller, J.R.; Dresner, L.; Lue, J.W.; Shen, S.S.; Yeh, H.T.

    1980-01-01

    Superconducting magnets cooled by supercritical helium flowing through internal conductor passages are an alternative to magnets cooled in a boiling pool. This alternative involves a possible large pressure increase in the captured volume of helium during a quench. In the US Large Coil Program (LCP), three of six coils to be tested will use internally cooled conductors. This paper describes experiments performed to understand the quench behavior of the Westinghouse coil. Agreement between experiment and theory is good. Also discussed is the extension of this work to the EURATOM coil and the Swiss coil, as well as to any coils wound with internally cooled conductors.

  8. The fabrication and characterization of high strength copper/stainless steel conductors for pulsed magnets

    SciTech Connect

    Van Cleemput, M.; Jones, H.; Burgt, M. van der; Eyssa, Y.M.; Schneider-Muntau, H.J.

    1996-07-01

    Calculations have indicated that the simple macro composite conductor that comprises copper with a stainless steel sheath may be the best to use in high field pulsed magnets >50 T. The recently commissioned wire fabrication facility of the Clarendon Laboratory can finish this type of conductors to the required size and cold work, after industrial preprocessing. The conductors have strengths in excess of 1.2 GPa. In this paper the authors describe the facility and the mechanical and electrical characterization of the wires. They also report on their measurements of the temperature distribution in a macro composite wire during and after a typical pulse.

  9. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    SciTech Connect

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  10. Fabrication and modeling of stretchable conductors for traumatic brain injury research

    NASA Astrophysics Data System (ADS)

    Cao, Wenzhe

    Stretchable electronics are an emergent class of electronics that can retain their electric functionality under large mechanical deformation, such as stretching, bending and compression. Like traditional electric circuits, stretchable electronics rely on electrical conductors, but in this specific instance the conductors must also be stretchable. This thesis research had three goals: (1) fabricate elastically stretchable conductors that retain their electrical conductance when stretched by tens of percent of strain; (2) understand the underlying stretching mechanism of gold conductors on polydimethylsiloxane (PDMS) substrates; (3) produce a special device---a stretchable microelectrode array, which contains a matrix of stretchable conductors that enables a new approach to studying traumatic brain injury. We first developed and optimized the micro-fabrication process to make elastically stretchable thin gold film conductors on PDMS substrates. The conductors can retain electrical conduction while being stretched reversibly to 140% uniaxially and 16% radially. We further developed a fabrication process to encapsulate the conductors with either a commercially available photopatternable silicone (PPS) or with PDMS. 100 microm by 100 microm vias were patterned in the encapsulation layer to expose electrical contacts. PPS encapsulated conductors can be stretched uniaxially to 80%, and the PDMS encapsulated conductor can be stretched to ˜15%, without losing electrical conduction. We also introduced acrylate-based shape memory polymers (SMPs) as a new type of substrate for stretchable conductors. Their stiffness can be tuned by varying the monomer composition or by changing the ambient temperature. Thin gold film conductors deposited on pre-strained SMPs remain conductive when first stretched and then relaxed to their pre-strain value. Moreover, an SMP can also serve as a stretchable carrier to make pre-strained conductors on an overlying PDMS membrane. The resistance of

  11. AC losses in conductors based on high {Tc} superconductors

    SciTech Connect

    SUENAGA,M.

    2000-03-17

    In electrical power devices, ac losses from a superconductor is a primary factor which determines their usefulness as commercial power equipment. For this reason, extensive studies have been carried out on the losses of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag, [Bi(2223)/Ag], tapes. These studies were mostly limited to a single isolated tape. However, a conductor in a power device is surrounded by other conductors and the precise magnetic field distribution around it is very different from that for a single conductor carrying currents or in ac fields. Since the precise field distribution in and around a superconductor is critical in determining the losses, it is very important to measure and to understand the losses in Bi(2223)/Ag tapes which are surrounded by other tapes as in a power device. Taking this fact into consideration, recently the authors have studied ac losses in stacks of Bi(2223)/Ag tapes in parallel and perpendicular applied fields and shown that they can calculate the losses in these cases utilizing the critical state model if a number of appropriate factors about properties of the tape are taken into a consideration. However, in a power device such as a transformer, magnetic fields near the ends of a solenoid vary from parallel to perpendicular with the tape face. Thus, it is important to learn the behavior of the losses in the stacks of Bi(2223)/Ag tapes with respect to the variations in the angle between the applied field direction and the tape face. In order to accomplish this, they measured the angular dependence of the losses in the stacks which were made from two different Bi(2223)/Ag tapes. Here they report this result and discuss under what conditions they can calculate the losses with a reasonable accuracy. The angular dependence of the losses in ac applied fields were measured using a series of stacked Bi(2223)/Ag tapes having the angles with the direction of applied fields of 0, 7.5, 15, 30, 45, 60, and 90 degrees. The measured

  12. Feasibility of large-current capacity YBCO conductors with on-demand transposition

    NASA Astrophysics Data System (ADS)

    Yanagi, Nagato; Mito, Toshiyuki; Noguchi, Hiroki; Terazaki, Yoshiro; Tamura, Hitoshi; Iwakuma, Masataka; Aoki, Yuji; Izumi, Teruo; Shiohara, Yuh

    We propose a new idea for fabricating a large-current capacity YBCO conductor having a Roebel-type transposition formed by joining tapes. If the joule heating generated by joints is smaller than other heat sources, such as AC losses, this type of conductor may work as a quasi-superconductor. We note that the Roebel-type transposition can be included on demand in coil windings, not over the whole conductor length but rather locally, such as at terminals and coil edges to secure uniform current distribution among tapes. We fabricated a 1.2 m-long conductor sample based on this idea using 20 YBCO tapes. The Roebel-assembled tapes having joints with a 600-mm pitch length for meandering were imbedded in a copper jacket and soldered. The sample was tested in liquid nitrogen under the self magnetic field and the critical current was measured. The joint resistance was evaluated and compared with the expected value.

  13. Simple method for high-performance stretchable composite conductors with entrapped air bubbles.

    PubMed

    Hwang, Hyejin; Kim, Dae-Gon; Jang, Nam-Su; Kong, Jeong-Ho; Kim, Jong-Man

    2016-12-01

    We integrate air bubbles into conductive elastic composite-based stretchable conductors to make them mechanically less stiff and electrically more robust against physical deformations. A surfactant facilitates both the formation and maintenance of air bubbles inside the elastic composites, leading to a simple fabrication of bubble-entrapped stretchable conductors. Based on the unique bubble-entrapped architecture, the elastic properties are greatly enhanced and the resistance change in response to tensile strains can clearly be controlled. The bubble-entrapped conductor achieves ~80 % elongation at ~3.4 times lower stress and ~44.8 % smaller change in the electrical resistance at 80 % tensile strain, compared to bare conductor without air bubbles.

  14. Effective action in the theory of quasi-ballistic disordered conductors

    NASA Astrophysics Data System (ADS)

    Muzykantskiǐ, B. A.; Khmelnitskiǐ, D. E.

    1995-07-01

    We suggest an effective field theory for disorderd conductors, which describes quantum kinetics of ballistically propagating electrons. This theory contains non-linear $\\sigma$-model \\cite{Efetov} as its long wave limit.

  15. Stress-tuned conductor-polymer composite for use in sensors

    DOEpatents

    Martin, James E; Read, Douglas H

    2013-10-22

    A method for making a composite polymeric material with electrical conductivity determined by stress-tuning of the conductor-polymer composite, and sensors made with the stress-tuned conductor-polymer composite made by this method. Stress tuning is achieved by mixing a miscible liquid into the polymer precursor solution or by absorbing into the precursor solution a soluble compound from vapor in contact with the polymer precursor solution. The conductor may or may not be ordered by application of a magnetic field. The composite is formed by polymerization with the stress-tuning agent in the polymer matrix. The stress-tuning agent is removed following polymerization to produce a conductor-polymer composite with a stress field that depends on the amount of stress-tuning agent employed.

  16. Patient-specific volume conductor modeling for non-invasive imaging of cardiac electrophysiology.

    PubMed

    Pfeifer, B; Hanser, F; Seger, M; Fischer, G; Modre-Osprian, R; Tilg, B

    2008-01-01

    We propose a general workflow to numerically estimate the spread of electrical excitation in the patients' hearts. To this end, a semi-automatic segmentation pipeline for extracting the volume conductor model of structurally normal hearts is presented. The cardiac electrical source imaging technique aims to provide information about the spread of electrical excitation in order to assist the cardiologist in developing strategies for the treatment of cardiac arrhythmias. The volume conductor models of eight patients were extracted from cine-gated short-axis magnetic resonance imaging (MRI) data. The non-invasive estimation of electrical excitation was compared with the CARTO maps. The development of a volume conductor modeling pipeline for constructing a patient-specific volume conductor model in a fast and accurate way is one essential step to make the technique clinically applicable.

  17. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Grounding § 77.700 Grounding metallic sheaths, armors... conductors shall be electrically continuous throughout and shall be grounded by methods approved by...

  18. MHD instabilities developing in a conductor exploding in the skin effect mode

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Mesyats, G. A.; Oreshkin, E. V.; Ratakhin, N. A.; Rybka, D. V.

    2016-12-01

    The results of experiments with exploding copper conductors, performed on the MIG facility (providing currents of amplitude of about 2.5 MA and rise time of 100 ns), are analyzed. With an frame optical camera, large-scale instabilities of wavelength 0.2-0.5 mm were detected on the conductor surface. The instabilities show up as plasma "tongues" expanding with a sound velocity in the opposite direction to the magnetic field gradient. Analysis performed using a two-dimensional MHD code has shown that the structures observed in the experiments were formed most probably due to flute instabilities. The growth of flute instabilities is predetermined by the development of thermal instabilities near the conductor surface. The thermal instabilities arise behind the front of the nonlinear magnetic diffusion wave propagating through the conductor. The wavefront on its own is not subject to thermal instabilities.

  19. Skin effect mitigation in laser processed multi-walled carbon nanotube/copper conductors

    SciTech Connect

    Keramatnejad, K.; Zhou, Y. S.; Gao, Y.; Rabiee Golgir, H.; Wang, M.; Lu, Y. F.; Jiang, L.; Silvain, J.-F.

    2015-10-21

    In this study, laser-processed multi-walled carbon nanotube (MWCNT)/Cu conductors are introduced as potential passive components to mitigate the skin effect of Cu at high frequencies (0–10 MHz). Suppressed skin effect is observed in the MWCNT/Cu conductors compared to primitive Cu. At an AC frequency of 10 MHz, a maximum AC resistance reduction of 94% was observed in a MWCNT/Cu conductor after being irradiated at a laser power density of 189 W/cm{sup 2}. The reduced skin effect in the MWCNT/Cu conductors is ascribed to the presence of MWCNT channels which are insensitive to AC frequencies. The laser irradiation process is observed to play a crucial role in reducing contact resistance at the MWCNT-Cu interfaces, removing impurities in MWCNTs, and densifying MWCNT films.

  20. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    SciTech Connect

    Jacobson, Allan J.; Morgan, Dane; Grey, Clare

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  1. Numerical study of plasma formation from current carrying conductors

    NASA Astrophysics Data System (ADS)

    Angelova, Milena A.

    The problem of plasma formation from thick conductors driven by intense currents have practical applications in a number of high energy density (HED) fields of interest where complex interaction between conductor surfaces and megagauss magnetic fields is involved. These include: wire-array Z-pinches, magnetically accelerated flier plates, liner acceleration by magnetic field, ultrahigh magnetic field generators, high current fuses, magneto-inertial fusion (MIF), magnetically insulated transmission lines, as well as some astrophysical applications. Recent aluminum rod experiments driven by 1-MA Zebra generator at University of Nevada, Reno (UNR) have provided a benchmark for magnetohydrodynamic (MHD) modeling. The innovative 'hourglass' and 'barbell' load geometries used in the experiments made it possible to distinguish between plasma formation due to Ohmic heating, which can be studied numerically utilizing MHD codes, and plasma formation due to high electric fields, by introducing a large-diameter contact with the electrodes. This prevents nonthermal formation of plasma from being caused early in the current pulse by plasma at contacts, as occurs in simple straight-rod explosion experiments. The UNR megagauss rod experiments were modeled by employing the state-of-the-art radiation-magneto-hydrodynamic code MHRDR. Numerical simulations were performed for a wide range of rods, varying from 100 to 580 microns in radius. A "cold start" initiation was employed in order to create initial parameters close to the experimental conditions. Material properties of aluminum, crucial for such simulations, were modeled employing a set of well tested SESAME format equations-of-state (EOS), ionization, and thermal and electrical conductivity tables. The cold start initiation also allowed observation of the numerical phase transitions of the aluminum rod, from solid to liquid to vapor and finally to low density plasma as it is ohmically heated by the megaampere driving current

  2. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    NASA Astrophysics Data System (ADS)

    Sanabria, Charlie; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2016-07-01

    As part of the ITER conductor qualification process, 3 m long cable-in-conduit conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current-sharing temperature, T cs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the toroidal field (TF) and the central solenoid (CS) conductors, it was found that T cs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some T cs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganic Materials (VNIINM) avoided T cs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of T cs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but T cs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). It appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.

  3. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    SciTech Connect

    Sanabria, Charlie; Lee, Peter J.; Starch, William; Devred, Arnaud; Larbalestier, David C.

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, Tcs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that Tcs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some Tcs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganic Materials (VNIINM) avoided Tcs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of Tcs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.

  4. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full cyclic testing in SULTAN: III. The importance of strand surface roughness in long twist pitch conductors

    DOE PAGES

    Sanabria, Charlie; Lee, Peter J.; Starch, William; ...

    2016-05-31

    As part of the ITER conductor qualification process, 3 m long Cable-in-Conduit Conductors (CICCs) were tested at the SULTAN facility under conditions simulating ITER operation so as to establish the current sharing temperature, Tcs, as a function of multiple full Lorentz force loading cycles. After a comprehensive evaluation of both the Toroidal Field (TF) and the Central Solenoid (CS) conductors, it was found that Tcs degradation was common in long twist pitch TF conductors while short twist pitch CS conductors showed some Tcs increase. However, one kind of TF conductors containing superconducting strand fabricated by the Bochvar Institute of Inorganicmore » Materials (VNIINM) avoided Tcs degradation despite having long twist pitch. In our earlier metallographic autopsies of long and short twist pitch CS conductors, we observed a substantially greater transverse strand movement under Lorentz force loading for long twist pitch conductors, while short twist pitch conductors had negligible transverse movement. With help from the literature, we concluded that the transverse movement was not the source of Tcs degradation but rather an increase of the compressive strain in the Nb3Sn filaments possibly induced by longitudinal movement of the wires. Like all TF conductors this TF VNIINM conductor showed large transverse motions under Lorentz force loading, but Tcs actually increased, as in all short twist pitch CS conductors. We here propose that the high surface roughness of the VNIINM strand may be responsible for the suppression of the compressive strain enhancement (characteristic of long twist pitch conductors). Furthermore, it appears that increasing strand surface roughness could improve the performance of long twist pitch CICCs.« less

  5. The Integration of YBCO Coated Conductors into Magnets and Rotating Machinery (Postprint)

    DTIC Science & Technology

    2012-02-01

    AFRL-RZ-WP-TP-2012-0119 THE INTEGRATION OF YBCO COATED CONDUCTORS INTO MAGNETS AND ROTATING MACHINERY (POSTPRINT) G.A. Levin and P.N...COVERED (From - To) February 2012 Conference Paper Postprint 01 January 2004 – 01 January 2006 4. TITLE AND SUBTITLE THE INTEGRATION OF YBCO COATED...Keystone, CO (August 29-September 2, 2005) The Integration of YBCO Coated Conductors into Magnets and Rotating Machinery G. A. Levin and P. N. Barnes

  6. Doped Y.sub.2O.sub.3 buffer layers for laminated conductors

    DOEpatents

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2007-08-21

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  7. Stability and Normal Zone Propagation Speed in YBCO Coated Conductors with Increased Interfacial Resistance (PREPRINT)

    DTIC Science & Technology

    2010-03-01

    AFRL-RZ-WP-TP-2010-2085 STABILITY AND NORMAL ZONE PROPAGATION SPEED IN YBCO COATED CONDUCTORS WITH INCREASED INTERFACIAL RESISTANCE...August 2006 – 25 August 2008 4. TITLE AND SUBTITLE STABILITY AND NORMAL ZONE PROPAGATION SPEED IN YBCO COATED CONDUCTORS WITH INCREASED INTERFACIAL...reproduce, release, perform, display, or disclose the work. 14. ABSTRACT We will discuss how stability and speed of normal zone propagation in YBCO

  8. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    SciTech Connect

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  9. 4. "TEST CONDUCTORS PANEL AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST CONDUCTORS PANEL AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3098.58." A photograph of the control room, with seven men watching monitors and instrument panels. Photo no. "3098 58; G-AFFTC 15 JAN 58; Test Conductors Panel T.S. 1-A". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  10. Qualification of the US made conductors for ITER TF magnet system

    SciTech Connect

    Martovetsky, N; Hatfield, D; Miller, J; Bruzzone, P; Stepanov, B; Seber, B

    2009-10-08

    The US Domestic Agency (USDA) is one of the six suppliers of the TF conductor for ITER. In order to qualify conductors according to ITER requirements we prepared several lengths of the CICC and short samples for testing in the SULTAN facility in CRPP, Switzerland. We also fully characterized the strands that were used in these SULTAN samples. Fabrication experience and test results are presented and discussed.

  11. Low-loss LIGA-micromachined conductor-backed coplanar waveguide.

    SciTech Connect

    Forman, Michael A.

    2004-12-01

    A mesoscale low-loss LIGA-micromachined conductor-backed coplanar waveguide is presented. The 517 {micro}m lines are the tallest uniplanar LIGA-fabricated microwave transmission lines to date, as well as the first to be constructed of copper rather than nickel. The conductor-backed micromachined CPW on quartz achieves a measured attenuation of 0.064 dB/cm at 15.5 GHz.

  12. Manufacturing and test of 2G-HTS coils for rotating machines: Challenges, conductor requirements, realization

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn; Herkert, Werner; Bayer, Dietmar; Kummeth, Peter; Nick, Wolfgang; Arndt, Tabea

    2012-11-01

    We investigate the use of 2nd-generation High-Temperature Superconductors (2G-HTSs) in the rotors of electrical motors and generators. For these devices the conductor must be wound into robust impregnated coils, which are operated in vacuum at temperatures around 30 K, in strong magnetic fields of about 2T. Differences in thermal contraction between the coil former, conductor constituents, impregnation resin, bandage and heat-sink materials (assembled at room temperature) cause mechanical stresses at operating temperature. Rotating-machine operation adds Lorentz forces and challenging centripetal accelerations up to thousands of g. Second generation-HTS conductors withstand large tensile stresses in axial direction and compression in normal direction. However, shear stresses, axial compression, and tension normal to the conductor can cause degradation in superconducting properties. Such stresses can be mitigated by correct choice of materials, coil lay-out and manufacturing process. A certain stress level will remain, which the conductor must withstand. We have manufactured many impregnated round and race-track coils, using different 2G-HTS conductors, and tested them at temperatures from 25 K to 77 K. Degradation of the superconductor in early coils was traced to the mentioned differences in thermal contraction, and was completely avoided in coils produced later. We will discuss appropriate coil-winding techniques to assure robust and reliable superconductor performance.

  13. The effect of volume conductor modeling on the estimation of cardiac vectors in fetal magnetocardiography.

    PubMed

    Tao, Rong; Popescu, Elena-Anda; Drake, William B; Jackson, David N; Popescu, Mihai

    2012-04-01

    Previous studies based on fetal magnetocardiographic (fMCG) recordings used simplified volume conductor models to estimate the fetal cardiac vector as an unequivocal measure of the cardiac source strength. However, the effect of simplified volume conductor modeling on the accuracy of the fMCG inverse solution remains largely unknown. Aiming to determine the sensitivity of the source estimators to the details of the volume conductor model, we performed simulations using fetal-maternal anatomical information from ultrasound images obtained in 20 pregnant women in various stages of pregnancy. The magnetic field produced by a cardiac source model was computed using the boundary-element method for a piecewise homogeneous volume conductor with three nested compartments (fetal body, amniotic fluid and maternal abdomen) of different electrical conductivities. For late gestation, we also considered the case of a fourth highly insulating layer of vernix caseosa covering the fetus. The errors introduced for simplified volume conductors were assessed by comparing the reconstruction results obtained with realistic versus spherically symmetric models. Our study demonstrates the significant effect of simplified volume conductor modeling, resulting mainly in an underestimation of the cardiac vector magnitude and low goodness-of-fit. These findings are confirmed by the analysis of real fMCG data recorded in mid-gestation.

  14. The effect of volume conductor modeling on the estimation of cardiac vectors in fetal magnetocardiography

    PubMed Central

    Tao, Rong; Popescu, Elena-Anda; Drake, William B.; Jackson, David N.; Popescu, Mihai

    2012-01-01

    Previous studies based on fetal magnetocardiographic (fMCG) recordings used simplified volume conductor models to estimate the fetal cardiac vector as an unequivocal measure of the cardiac source strength. However, the effect of simplified volume conductor modeling on the accuracy of the fMCG inverse solution remains largely unknown. Aiming to determine the sensitivity of the source estimators to the details of the volume conductor model, we performed simulations using fetal-maternal anatomical information from ultrasound images obtained in 20 pregnant women in various stages of pregnancy. The magnetic field produced by a cardiac source model was computed using the boundary element method for a piecewise homogeneous volume conductor with three nested compartments (fetal body, amniotic fluid and maternal abdomen) of different electrical conductivities. For late gestation, we also considered the case of a fourth highly insulating layer of vernix caseosa covering the fetus. The errors introduced for simplified volume conductors were assessed by comparing the reconstruction results obtained with realistic versus spherically symmetric models. Our study demonstrates a significant effect of simplified volume conductor modeling, resulting mainly in an underestimation of the cardiac vector magnitude and low goodness-of-fit. These findings are confirmed by the analysis of real fMCG data recorded in mid-gestation. PMID:22442179

  15. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    SciTech Connect

    Colby, Ralph H.; Maranas, Janna K.; Mueller, Karl T.; Runt, James; Winey, Karen I.

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  16. Organic mixed conductors for bioelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan

    2016-09-01

    Direct measurement and stimulation of electrophysiological activity is a staple of neural and cardiac health monitoring, diagnosis and/or therapy. The ability to sensitively detect these signals can be enhanced by organic electronic materials that show mixed conduction properties (both electronic and ionic transport) in order to bridge the inherent mismatch that is prevalent between biological systems and traditional microelectronic materials/devices. Organic electrochemical transistors (OECTs) are one class of devices that utilize organic mixed conductors as the transistor channel, and have shown considerable promise as amplifying transducers due to their stability in aqueous conditions and high transconductance. These devices are fabricated in flexible, conformable form factors for in vivo recordings of epileptic activity, and for cutaneous EEG and ECG recordings in human subjects. The majority of high performance devices are based on conducting polymers such as poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate), PEDOT:PSS. By investigating PEDOT-based materials and devices, we are able to construct design rules for new formulations/materials. Introducing glycolated side chains to carefully selected semiconducting polymer backbones has enabled a new class high performance bioelectronic materials that feature high volumetric capacitance, transconductance >10mS (device dimensions ca. 10um), and steep subthreshold switching characteristics. A sub-set of these materials outperform PEDOT:PSS and shows significant promise for low power in vitro and in vivo biosensing applications.

  17. Eddy damping effect of additional conductors in superconducting levitation systems

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Fei; Gou, Xiao-Fan

    2015-12-01

    Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC-PM levitation system, the HTSC with higher critical current density Jc can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC-PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/VCu, in which VCu is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  18. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  19. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    NASA Astrophysics Data System (ADS)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  20. THE STABILITY AND ELECTRICAL PROPERTIES OF HIGH TEMPERATURE PROTON CONDUCTORS

    SciTech Connect

    Brinkman, K.

    2010-07-06

    The morphological and electrical properties of Ba{sub 1-x}Sr{sub x}Ce{sub 0.8}Y{sub 0.2}O{sub 3-{delta}} with x varying from 0 to 1 prepared by a modified Pechini method were investigated as potential high temperature proton conductors. Dense microstructures were achieved for all the samples upon sintering at 1500 C for 5 h. The phase structure analysis indicated that perovskite phase was formed for 0 {le} x {le} 0.2, while for x larger than 0.5, impurity phases of Sr{sub 2}CeO{sub 4} and Y{sub 2}O{sub 3} appeared. The tolerance to H{sub 2}O for the samples improved with the increase in Sr content when exposed to boiling water, while the electrical conductivity decreased from x = 0 to 1. However, the resistance to CO{sub 2} attack at elevated temperatures was not improved within the whole x range studied.

  1. Transport properties of hectorite based nanocomposite single ion conductors

    NASA Astrophysics Data System (ADS)

    Singhal, Ruchi Gupta; Capracotta, Michael D.; Martin, James D.; Khan, Saad A.; Fedkiw, Peter S.

    The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.

  2. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    PubMed

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  3. A comparative analysis of graphene oxide films as proton conductors

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Denisov, N. N.; Dremova, N. N.; Vol'fkovich, Y. M.; Rychagov, A. Y.; Sosenkin, V. E.; Belay, K. G.; Gutsev, G. L.; Shulga, N. Yu.; Shulga, Y. M.

    2014-12-01

    The electrical conductivity of graphene oxide (GO) films in vapors of water and acid solutions is found to be close to the conductivity of a film formed after drying the solution of phenol-2,4-disulfonic acid in polyvinyl alcohol, which is known to be a proton conductor. We found that the conductivity of a GO film in vapors of the H2O-H2SO4 electrolyte possesses a sharp maximum at ~1 % by weight of sulfuric acid. The highest conductivity of GO films can be expected when placing the films over acid vapors where the acid concentration is essentially lower than in the acid solutions at their maximum conductivity. Since the conductivity of the H2O-H2SO4 electrolyte itself has a maximum at ~30 % by weight of sulfuric acid, the use of intermediate concentrations of H2SO4 is recommended in practical applications. The GO films permeated with water or acid solution in water are expected to possess the proton-exchange properties similar to those of other proton-exchanging membranes.

  4. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Luo, Shu; Sun, Li; Wu, Yang; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-05-01

    Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10 000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous SACNT conductive network can be protected from fracture. Due to the excellent electrical and mechanical properties of SACNT films and the formation of the buckled structure, SACNT/PDMS films exhibit high stretchability and durability, possessing great potential for use as ultra-stretchable conductors for wearable electronics, sensors, and energy storage devices.Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10 000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous

  5. The ATLAS SemiConductor Tracker operation and performance

    NASA Astrophysics Data System (ADS)

    Pater, J. R.

    2012-04-01

    The ATLAS SemiConductor Tracker (SCT) is a key precision tracking detector in the ATLAS experiment at CERN's Large Hadron Collider. The SCT is composed of 4088 planar p-in-n silicon micro-strip detectors. The signals from the strips are processed in the front-end ABCD3TA ASICs, which operate in binary readout mode; data are transferred to the off-detector readout electronics via optical fibres. The SCT was completed in 2007. An extensive commissioning phase followed, during which calibration data were collected and analysed to determine the noise performance of the system, and further performance parameters of the detector were determined using cosmic ray data, both with and without magnetic field. After the commissioning phase, the SCT was ready for the first LHC proton-proton collisions in December 2009. From the beginning of data taking, the completed SCT has been in very good shape with more than 99% of its 6.3 million strips operational; the detector is well timed-in and the operational channels are 99.9% efficient in data acquisition. The noise occupancy and hit efficiency are better than the design specifications. The detector geometry is monitored continuously with a laser-based alignment system and is stable to the few-micron level; the alignment accuracy as determined by tracks is near specification and improving as statistics increase. The sensor behaviour in the 2T solenoidal magnetic field has been studied by measuring the Lorentz angle. Radiation damage in the silicon is monitored by periodic measurements of the leakage current; these measurements are in reasonable agreement with predictions.

  6. Continuum Modeling of Mixed Conductors: a Study of Ceria

    NASA Astrophysics Data System (ADS)

    Ciucci, Francesco

    In this thesis we have derived a new way to analyze the impedance response of mixed conducting materials for use in solid oxide fuel cells (SOFCs), with the main focus on anodic materials, in particular cerium oxides. First we have analyzed the impact of mixed conductivity coupled to electrocatalytic behavior in the linear time-independent domain for a thick ceria sample. We have derived that, for a promising fuel cell material, Samarium Doped Ceria, chemical reactions are the determining component of the polarization resistance. As a second step we have extended the previous model to the time-dependent case, where we focused on single harmonic excitation, the impedance spectroscopy conditions. We extended the model to the case where some input diffusivities are spatially nonuniform. For instance we considered the case where diffusivities change significantly in the vicinity of the electrocatalytic region. As a third and final step we use to model to capture the two dimensional behavior of mixed conducting thin films, where the electronic motion from one side of the sample to the other is impeded. Such conditions are similar to those encountered in fuel cells where an electrolyte conducting exclusively oxygen ions is placed between the anode and the cathode. The framework developed was also extended to study a popular cathodic material, Lanthanum Manganite. The model is used to give unprecedented insight in SOFC polarization resistance analysis of mixed conductors. It helps elucidate rigorously rate determining steps and to address the interplay of diffusion with diffusion losses. Electrochemical surface losses dominate for most experimental conditions of Samarium Doped Ceria and they are shown to be strongly dependent on geometry.

  7. High Jc coated conductors with a simple buffer layer architecture

    NASA Astrophysics Data System (ADS)

    Gianni, L.; Baldini, A.; Bindi, M.; Gauzzi, A.; Rampino, S.; Zannella, S.

    2005-10-01

    We report on the in situ route for the continuous fabrication of YBCO coated conductors (CC) by thermal co-evaporation. CC architecture consists of YBCO film grown on biaxially textured Ni-alloys tapes buffered with a single layer of CeO2. The buffer layer deposition has been optimized by either e-beam or thermal evaporation using respectively ceria or metallic cerium. Best results have been obtained on CeO2 film, with a thickness less or equal than 100 nm, grown in a reducing atmosphere at 690 °C with a growth rate of 2.4 Å/s. The optimal samples exhibit a highly biaxial texture, as indicated by FWHM values in the range of 5-8° and 4-6° for respectively in- and out-of-plane orientations. The layers are characterized by an uniform and crack-free surface with an average roughness lower than 10 nm. SIMS analysis confirms the effectiveness of CeO2 buffer layer against Ni interdiffusion. This template allows to obtain YBCO films strong textured, with good superconductive properties. YBCO texture data are equivalent the CeO2 ones. Midpoint critical temperature, Tc, falls reproducibly in 87-88 K range, with transition widths ΔTc < 2-3 K. Critical current density, Jc, up to 2 MA/cm2 at 77 K in self-field, have been achieved in a meter long CC corresponding to Ic/width value of 130 A/cm-width. Uniformity and reproducibility of long CC properties are under optimization.

  8. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-08-01

    Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  9. Free Molecular Heat Transfer Programs for Setup and Dynamic Updating the Conductors in Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Malroy, Eric T.

    2007-01-01

    The programs, arrays and logic structure were developed to enable the dynamic update of conductors in thermal desktop. The MatLab program FMHTPRE.m processes the Thermal Desktop conductors and sets up the arrays. The user needs to manually copy portions of the output to different input regions in Thermal Desktop. Also, Fortran subroutines are provided that perform the actual updates to the conductors. The subroutines are setup for helium gas, but the equations can be modified for other gases. The maximum number of free molecular conductors allowed is 10,000 for a given radiation task. Additional radiation tasks for FMHT can be generated to account for more conductors. Modifications to the Fortran subroutines may be warranted, when the mode of heat transfer is in the mixed or continuum mode. The FMHT Thermal Desktop model should be activated by using the "Case Set Manager" once the model is setup. Careful setup of the model is needed to avoid excessive solve times.

  10. Effects of the volume conductor on the apparent orientation of a known cardiac dipole.

    PubMed

    Salu, Y; Laughlin, D; Rogers, J; Marcus, M

    1978-04-01

    The surface electrocardiogram (EKG) is dependent on two major factors: the cardiac generator and the volume conductor. This investigation assessed the effects of the volume conductor in man on the apparent orientation of a simulated cardiac dipole. The apparent orientation of the dipole was calculated from measured surface potentials from about 60 locations on the body of five patients with implanted cardiac pacemakers. The real orientation of the dipole (an implanted pacemaker) was determined radiographically. The effects of both inhomogeneity and boundary characteristics of the volume conductor on the apparent orientation of the dipole were assessed using a new inverse algorithm. The difference between the orientation of the real and the calculated dipoles averaged 30 degrees (range 15 degrees--40 degrees) when the torso was assumed to be an infinite-homogeneous volume conductor. When the configuration of the torso was accounted for, however, the difference between the orientation of the real and calculated dipoles was reduced to 9 degrees (range 5 degrees--13 degrees). Thus, by taking into account the geometry of the torso and neglecting the inhomogeneities in the volume conductor, it is possible to calculate the orientation of a dipole in the cardiac region with an accuracy of about 9 degrees. It is reasonable to assume that the orientation of real activation wave fronts from localized areas of the heart could be calculated with a similar degree of accuracy.

  11. Conductor and associated hardware impacts during high temperature operations: Issues and problems. Final report

    SciTech Connect

    Shan, L.; Douglass, D.

    1997-12-01

    This report summarizes the results of a sensitivity study of high temperature conductor sag. Relevant calculations were performed using suitable sag-tension computer programs to quantify the sensitivity and range of possible errors related to the common conductor parameters which affect calculated high temperature sag (e.g., conductor creep, loading history, effect of ruling span design, interaction of steel and aluminum, differences in installation and manufacturing temperatures, radial temperatures, etc.). Additionally, it addresses the factors that cause errors in the calculation of high temperature sag for overhead transmission lines and suggests future development work in the area of high temperature operation. This report also discusses issues related to the life of conductors and hardware operated at elevated temperatures. Based on the results of this preliminary study, recommendations are provided for improving the ability to predict the performance of conductors and hardware operated at high temperature. This information is useful to utility engineers when designing new power lines or evaluating existing lines for high temperature operation.

  12. Measurements of the transverse resistance and eddy current losses in a cable-in-conduit conductor

    NASA Astrophysics Data System (ADS)

    Keilin, V. E.; Kovalev, I. A.; Kruglov, S. L.; Lelekhov, S. A.; Il'in, A. A.; Naumov, A. V.; Shcherbakov, V. I.; Shutov, K. A.

    2015-11-01

    In the case of plasma current interruption in tokamaks, the conductor of toroidial field (TF) coils experiences the action of a pulsed decreasing magnetic field (PDMF) parallel to the conductor's axis. To estimate the stability of a cable-in-conduit conductor against the PDMF, a new experimental method to study different types of losses is applied. This method exploits a high sensitivity of temperature and gas pressure to input energy in a closed volume. It allows one to measure hysteresis losses with a rather high accuracy (provided that the rate of change of the PDMF is low) and a sum of hysteresis losses and eddy current losses (when the rate of change of the PDMF is high). An experimental setup to measure the transverse (circumferential) resistance and losses has been developed at the National Research Centre Kurchatov Institute. A Russianmade Nb3Sn conductor intended for the TF coils of the International Thermonuclear Experimental Reactor is subjected to a PDMF with different amplitudes and characteristic times. The electromagnetic time constant and the transverse resistivity of the conductor are experimentally determined. The maximum temperature of strands under the action of the PDMF is calculated.

  13. Keeping an eye on the conductor: neural correlates of visuo-motor synchronization and musical experience

    PubMed Central

    Ono, Kentaro; Nakamura, Akinori; Maess, Burkhard

    2015-01-01

    For orchestra musicians, synchronized playing under a conductor’s direction is necessary to achieve optimal performance. Previous studies using simple auditory/visual stimuli have reported cortico-subcortical networks underlying synchronization and that training improves the accuracy of synchronization. However, it is unclear whether people who played regularly under a conductor and non-musicians activate the same networks when synchronizing with a conductor’s gestures. We conducted a functional magnetic resonance imaging (fMRI) experiment testing nonmusicians and musicians who regularly play music under a conductor. Participants were required to tap the rhythm they perceived from silent movies displaying either conductor’s gestures or a swinging metronome. Musicians performed tapping under a conductor with more precision than nonmusicians. Results from fMRI measurement showed greater activity in the anterior part of the left superior frontal gyrus (SFG) in musicians with more frequent practice under a conductor. Conversely, tapping with the metronome did not show any difference between musicians and nonmusicians, indicating that the expertize effect in tapping under the conductor does not result in a general increase in tapping performance for musicians. These results suggest that orchestra musicians have developed an advanced ability to predict conductor’s next action from the gestures. PMID:25883561

  14. Bending properties of different REBCO coated conductor tapes and Roebel cables at T = 77 K

    NASA Astrophysics Data System (ADS)

    Otten, Simon; Kario, Anna; Kling, Andrea; Goldacker, Wilfried

    2016-12-01

    Application of REBCO coated conductors in coils or cables involves deformation of the conductor in different modes, such as in-plane bending, out-of-plane bending and torsion. For example, the dipole magnet designs in the EuCARD-2 project require bending radii as low as 7.5 mm, inducing significant bending strain in the REBCO layer. In this paper, we investigate the effect of out-of-plane bending on the current-carrying properties of coated conductors from different manufacturers. The samples are manipulated by means of a Goldacker-type bending rig, which allows continuous bending at T = 77 K. By reversal to R=∞ after each bending step, the reversible strain effect is separated from irreversible degradation. All tested conductors are found to tolerate compressive bending to a radius of 6 mm with less than 5% irreversible degradation of the critical current. The magnitude of the reversible strain effect shows a large variation among the samples. The effect of out-of-plane bending on Roebel cables is investigated as well, and the results are compared to the bending characteristic of single conductors. The results show no detrimental effect of the cable assembly on the bending properties within the constraints of the test.

  15. Activity in SRL Nagoya Coated Conductor Center for YBCO Coated Conductor by IBAD+ PLD Method -Long, high Ic conductor and a new bamboo-like nanostructure for efficient pinning

    SciTech Connect

    Yamada, Yutaka; Ibi, Akira; Fukushima, Hiroyuki; Kuriki, Reiji; Takahashi, Kazuhiro; Kobayashi, Hiroyoshi; Ishida, Satoru; Konishi, Masaya; Miyata, Seiki; Watanabe, Tomonori; Kato, Takeharu; Hirayama, Tsukasa; Shiohara, Yuh

    2006-03-31

    In SRL-Nagoya Coated Conductor Center (NCCC), long buffered substrate tapes and YBCO coated conductors have been successfully fabricated by using ion-beam assisted deposition (IBAD) and pulsed laser deposition (PLD) methods. For the buffered tape, the PLD-CeO2 method, what we call the 'Self-Epitaxial' method, realized the high degree of in-plane texturing around 4 degrees along the length of 220 m. For YBCO deposition, we have recently introduced new reel-to-reel PLD equipment with a multi-plume and multi-turn deposition system (MPMT PLD). This system succeeded in fabricating a long coated conductor with a high critical current, Ic, of 245 A and length of 212 m. Ic xL (length) reached the world record of 51940 Am. Furthermore, the introduction of artificial pinning center and RE 123 materials were also studied for improving flux pinning and enhancing Ic. A new columnar structure of the 'bamboo structure' (BaZrO3/Y123 layer-stacked structure) was found in Y123+YSZ sample. This columnar structure and the stacking faults in Gd123 were found to be effective for enhancing pinning properties. Using these techniques, we have succeeded in increasing Ic at 0 T to 480 A/cm and also enhancing Ic in a magnetic field.

  16. Defects and properties of cadmium oxide based transparent conductors

    NASA Astrophysics Data System (ADS)

    Yu, Kin Man; Detert, D. M.; Chen, Guibin; Zhu, Wei; Liu, Chaoping; Grankowska, S.; Hsu, L.; Dubon, O. D.; Walukiewicz, Wladek

    2016-05-01

    Transparent conductors play an increasingly important role in a number of semiconductor technologies. This paper reports on the defects and properties of Cadmium Oxide, a transparent conducting oxide which can be potentially used for full spectrum photovoltaics. We carried out a systematic investigation on the effects of defects in CdO thin films undoped and intentionally doped with In and Ga under different deposition and annealing conditions. We found that at low growth temperatures (<200 °C), sputter deposition tends to trap both oxygen vacancies and compensating defects in the CdO film resulting in materials with high electron concentration of ˜2 × 1020/cm3 and mobility in the range of 40-100 cm2/V s. Thermal annealing experiments in different ambients revealed that the dominating defects in sputtered CdO films are oxygen vacancies. Oxygen rich CdO films grown by sputtering with increasing O2 partial pressure in the sputter gas mixture results in films with resistivity from ˜4 × 10-4 to >1 Ω cm due to incorporation of excess O in the form of O-related acceptor defects, likely to be O interstitials. Intentional doping with In and Ga donors leads to an increase of both the electron concentration and the mobility. With proper doping CdO films with electron concentration of more than 1021 cm-3 and electron mobility higher than 120 cm2/V s can be achieved. Thermal annealing of doped CdO films in N2 ambient can further improve the electrical properties by removing native acceptors and improving film crystallinity. Furthermore, the unique doping behavior and electrical properties of CdO were explored via simulations based on the amphoteric defect model. A comparison of the calculations and experimental results show that the formation energy of native donors and acceptors at the Fermi stabilization energy is ˜1 eV and that the mobility of sputtered deposited CdO is limited by a background acceptor concentration of ˜5-6 × 1020/cm3. The calculations offer an

  17. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  18. An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq-1)

    NASA Astrophysics Data System (ADS)

    Maniyara, Rinu Abraham; Mkhitaryan, Vahagn K.; Chen, Tong Lai; Ghosh, Dhriti Sundar; Pruneri, Valerio

    2016-12-01

    Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ~1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection design consisting in applying Al-doped ZnO and TiO2 layers with precise thicknesses to a highly conductive Ag ultrathin film. The proposed multilayer structure also possesses a low electrical resistance (5.75 Ω sq-1), a figure of merit four times larger than that of indium tin oxide, the most widely used transparent conductor today, and, contrary to it, is mechanically flexible and room temperature deposited. To assess the application potentials, transparent shielding of radiofrequency and microwave interference signals with ~30 dB attenuation up to 18 GHz was achieved.

  19. Measurement Of Transverse Jc Profiles Of Coated Conductors Using A Magnetic Knife Of Permanent Magnets

    SciTech Connect

    Hanisch, J; Mueller, F M; Ashworth, S P; Coulter, J Y; Matias, Vlad

    2008-01-01

    The transverse J{sub c} distribution in YBCO coated conductors was measured nondestructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of J{sub c} in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 {mu}m, and the J{sub c} resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse J{sub c} distribution in the sample. The J{sub c} profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straight-forward and inexpensive design, this J{sub c} imaging technique can be a powerful tool for quality control in coated-conductor production.

  20. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Kim, Kyun Kyu; Lee, Jongsoo; Kim, Ju Tae; Han, Chang-Soo

    2014-07-01

    Fabricating stretchable conductors through simple, cost-effective and scalable methods is a challenge. Here, we report on an approach used to develop nanowelded Ag nanowire/single-walled carbon nanotube (AgNW/SWCNT) hybrid films to be used as high-performance stretchable conductors. Plasmonic welding, which was done at the junctions of AgNWs in order to form hybrid AgNW/SWCNT conductors on an Ecoflex substrate, enabled excellent electrical and mechanical stability under large tensile strains of over 480% without the need to pre-strain. Furthermore, we demonstrate highly stretchable circuits that are used to power LED arrays. The LED arrays are formed using the plasmonic-welded AgNW/SWCNT/Ecoflex hybrid material, which demonstrates suitability for interconnector applications in flexible electronics.