Sample records for superior temporal cortex

  1. Network modulation during complex syntactic processing

    PubMed Central

    den Ouden, Dirk-Bart; Saur, Dorothee; Mader, Wolfgang; Schelter, Björn; Lukic, Sladjana; Wali, Eisha; Timmer, Jens; Thompson, Cynthia K.

    2011-01-01

    Complex sentence processing is supported by a left-lateralized neural network including inferior frontal cortex and posterior superior temporal cortex. This study investigates the pattern of connectivity and information flow within this network. We used fMRI BOLD data derived from 12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B., Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to identify activation peaks associated with object-cleft over syntactically less complex subject-cleft processing. Directed Partial Correlation Analysis was conducted on time series extracted from participant-specific activation peaks and showed evidence of functional connectivity between four regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal Modeling of networks with a driving input to posterior superior temporal cortex, which likely supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a core region associated with syntactic computation. The optimal model was determined through both frequentist and Bayesian model selection and turned out to reflect a network with a primary drive from inferior frontal cortex and modulation of the connection between inferior frontal and posterior superior temporal cortex by complex sentence processing. The winning model also showed a substantive role for a feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior temporal cortex, which supports verb argument structure processing. PMID:21820518

  2. Superior Temporal Activation as a Function of Linguistic Knowledge: Insights from Deaf Native Signers Who Speechread

    ERIC Educational Resources Information Center

    Capek, Cheryl M.; Woll, Bencie; MacSweeney, Mairead; Waters, Dafydd; McGuire, Philip K.; David, Anthony S.; Brammer, Michael J.; Campbell, Ruth

    2010-01-01

    Studies of spoken and signed language processing reliably show involvement of the posterior superior temporal cortex. This region is also reliably activated by observation of meaningless oral and manual actions. In this study we directly compared the extent to which activation in posterior superior temporal cortex is modulated by linguistic…

  3. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    PubMed

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  4. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia

    PubMed Central

    Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.

    2013-01-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097

  5. Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing

    PubMed Central

    Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.

    2013-01-01

    Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860

  6. Articulatory movements modulate auditory responses to speech

    PubMed Central

    Agnew, Z.K.; McGettigan, C.; Banks, B.; Scott, S.K.

    2013-01-01

    Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior–posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information. PMID:22982103

  7. Neuro-cognitive foundations of word stress processing - evidence from fMRI

    PubMed Central

    2011-01-01

    Background To date, the neural correlates of phonological word stress processing are largely unknown. Methods In the present study, we investigated the processing of word stress and vowel quality using an identity matching task with pseudowords. Results In line with previous studies, a bilateral fronto-temporal network comprising the superior temporal gyri extending into the sulci as well as the inferior frontal gyri was observed for word stress processing. Moreover, we found differences in the superior temporal gyrus and the superior temporal sulcus, bilaterally, for the processing of different stress patterns. For vowel quality processing, our data reveal a substantial contribution of the left intraparietal cortex. All activations were modulated by task demands, yielding different patterns for same and different pairs of stimuli. Conclusions Our results suggest that the left superior temporal gyrus represents a basic system underlying stress processing to which additional structures including the homologous cortex site are recruited with increasing difficulty. PMID:21575209

  8. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  9. Specialization along the left superior temporal sulcus for auditory categorization.

    PubMed

    Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R

    2010-12-01

    The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.

  10. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson's disease.

    PubMed

    Koob, Andrew O; Shaked, Gideon M; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer

    2014-12-03

    Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson's disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson's disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson's disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson's disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Neurogranin binds α-synuclein in the human superior temporal cortex and interaction is decreased in Parkinson’s disease

    PubMed Central

    Koob, Andrew O.; Shaked, Gideon M.; Bender, Andreas; Bisquertt, Alejandro; Rockenstein, Edward; Masliah, Eliezer

    2016-01-01

    Neurogranin is a calmodulin binding protein that has been implicated in learning and memory, long-term potentiation and synaptic plasticity. Neurons expressing neurogranin in the cortex degenerate in late stages of Parkinson’s disease with widespread α-synuclein pathology. While analyzing neurogranin gene expression levels through rtPCR in brains of mouse models overexpressing human α-synuclein, we found levels were elevated 2.5 times when compared to nontransgenic animals. Immunohistochemistry in the cortex revealed colocalization between α-synuclein and neurogranin in mouse transgenics when compared to control mice. Coimmunoprecipitation studies in the superior temporal cortex in humans confirmed interaction between α-synuclein and neurogranin, and decreased interaction between α-synuclein and neurogranin was noticed in patients diagnosed with Parkinson’s disease when compared to normal control brains. Additionally, phosphorylated neurogranin levels were also decreased in the human superior temporal cortex in patients diagnosed with Parkinson’s disease and patients diagnosed with dementia with Lewy bodies. Here, we show for the first time that neurogranin binds to α-synuclein in the human cortex, and this interaction decreases in Parkinson’s disease along with the phosphorylation of neurogranin, a molecular process thought to be involved in learning and memory. PMID:25446004

  12. Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex.

    PubMed

    Altmann, Christian F; Gomes de Oliveira Júnior, Cícero; Heinemann, Linda; Kaiser, Jochen

    2010-08-01

    In daily life, we usually identify sounds effortlessly and efficiently. Two properties are particularly salient and of importance for sound identification: the sound's overall spectral envelope and its temporal amplitude envelope. In this study, we aimed at investigating the representation of these two features in the human auditory cortex by using a functional magnetic resonance imaging adaptation paradigm. We presented pairs of sound stimuli derived from animal vocalizations that preserved the time-averaged frequency spectrum of the animal vocalizations and the amplitude envelope. We presented the pairs in four different conditions: (a) pairs with the same amplitude envelope and mean spectral envelope, (b) same amplitude envelope, but different mean spectral envelope, (c) different amplitude envelope, but same mean spectral envelope and (d) both different amplitude envelope and mean spectral envelope. We found fMRI adaptation effects for both the mean spectral envelope and the amplitude envelope of animal vocalizations in overlapping cortical areas in the bilateral superior temporal gyrus posterior to Heschl's gyrus. Areas sensitive to the amplitude envelope extended further anteriorly along the lateral superior temporal gyrus in the left hemisphere, while areas sensitive to the spectral envelope extended further anteriorly along the right lateral superior temporal gyrus. Posterior tonotopic areas within the left superior temporal lobe displayed sensitivity for the mean spectrum. Our findings suggest involvement of primary auditory areas in the representation of spectral cues and encoding of general spectro-temporal features of natural sounds in non-primary posterior and lateral superior temporal cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  14. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  15. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex.

    PubMed

    van Atteveldt, Nienke M; Blau, Vera C; Blomert, Leo; Goebel, Rainer

    2010-02-02

    Efficient multisensory integration is of vital importance for adequate interaction with the environment. In addition to basic binding cues like temporal and spatial coherence, meaningful multisensory information is also bound together by content-based associations. Many functional Magnetic Resonance Imaging (fMRI) studies propose the (posterior) superior temporal cortex (STC) as the key structure for integrating meaningful multisensory information. However, a still unanswered question is how superior temporal cortex encodes content-based associations, especially in light of inconsistent results from studies comparing brain activation to semantically matching (congruent) versus nonmatching (incongruent) multisensory inputs. Here, we used fMR-adaptation (fMR-A) in order to circumvent potential problems with standard fMRI approaches, including spatial averaging and amplitude saturation confounds. We presented repetitions of audiovisual stimuli (letter-speech sound pairs) and manipulated the associative relation between the auditory and visual inputs (congruent/incongruent pairs). We predicted that if multisensory neuronal populations exist in STC and encode audiovisual content relatedness, adaptation should be affected by the manipulated audiovisual relation. The results revealed an occipital-temporal network that adapted independently of the audiovisual relation. Interestingly, several smaller clusters distributed over superior temporal cortex within that network, adapted stronger to congruent than to incongruent audiovisual repetitions, indicating sensitivity to content congruency. These results suggest that the revealed clusters contain multisensory neuronal populations that encode content relatedness by selectively responding to congruent audiovisual inputs, since unisensory neuronal populations are assumed to be insensitive to the audiovisual relation. These findings extend our previously revealed mechanism for the integration of letters and speech sounds and demonstrate that fMR-A is sensitive to multisensory congruency effects that may not be revealed in BOLD amplitude per se.

  16. Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis

    PubMed Central

    Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich

    2014-01-01

    Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859

  17. Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain

    PubMed Central

    Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph

    2008-01-01

    Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268

  18. Prefrontal cortex afferents to the anterior temporal lobe in the Macaca fascicularis monkey.

    PubMed

    Mohedano-Moriano, Alicia; Muñoz-López, Mónica; Sanz-Arigita, Ernesto; Pró-Sistiaga, Palma; Martínez-Marcos, Alino; Legidos-Garcia, María Ester; Insausti, Ana María; Cebada-Sánchez, Sandra; Arroyo-Jiménez, María Del Mar; Marcos, Pilar; Artacho-Pérula, Emilio; Insausti, Ricardo

    2015-12-01

    The anatomical organization of the lateral prefrontal cortex (LPFC) afferents to the anterior part of the temporal lobe (ATL) remains to be clarified. The LPFC has two subdivisions, dorsal (dLPFC) and ventral (vLPFC), which have been linked to cognitive processes. The ATL includes several different cortical areas, namely, the temporal polar cortex and rostral parts of the perirhinal, inferotemporal, and anterior tip of the superior temporal gyrus cortices. Multiple sensory modalities converge in the ATL. All of them (except the rostral inferotemporal and superior temporal gyrus cortices) are components of the medial temporal lobe, which is critical for long-term memory processing. We studied the LPFC connections with the ATL by placing retrograde tracer injections into the ATL: the temporal polar (n = 3), perirhinal (areas 35 and 36, n = 6), and inferotemporal cortices (area TE, n = 5), plus one additional deposit in the posterior parahippocampal cortex (area TF, n = 1). Anterograde tracer deposits into the dLPFC (A9 and A46, n = 2), the vLPFC (A46v, n = 2), and the orbitofrontal cortex (OF; n = 2) were placed for confirmation of those projections. The results showed that the vLPFC displays a moderate projection to rostral area TE and the dorsomedial portion of the temporal polar cortex; in contrast, the dLPFC connections with the ATL were weak. By comparison, the OFC and medial frontal cortices (MFC) showed dense connectivity with the ATL, namely, A13 with the temporopolar and perirhinal cortices. All areas of the MFC projected to the temporopolar cortex, albeit with a lower intensity. The functional significance of such paucity of LPFC afferents is unknown. © 2015 Wiley Periodicals, Inc.

  19. Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder.

    PubMed

    Peyrin, C; Démonet, J F; N'Guyen-Morel, M A; Le Bas, J F; Valdois, S

    2011-09-01

    A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Distributed Processing and Cortical Specialization for Speech and Environmental Sounds in Human Temporal Cortex

    ERIC Educational Resources Information Center

    Leech, Robert; Saygin, Ayse Pinar

    2011-01-01

    Using functional MRI, we investigated whether auditory processing of both speech and meaningful non-linguistic environmental sounds in superior and middle temporal cortex relies on a complex and spatially distributed neural system. We found that evidence for spatially distributed processing of speech and environmental sounds in a substantial…

  1. Reduced Cortical Thickness and Increased Surface Area in Antisocial Personality Disorder

    PubMed Central

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-01-01

    Antisocial Personality Disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness and surface area, as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of cortical thickness and surface area in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger surface area in several specific brain regions, i.e., bilateral superior frontal gyrus, orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus, middle temporal gyrus, and left bank of superior temporal sulcus. In addition, we also found that the ability of impulse control was positively correlated with cortical thickness in the superior frontal gyrus, middle frontal gyrus, orbitofrontal cortex, pars triangularis, superior temporal gyrus, and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in cortical thickness and surface area in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. PMID:27600947

  2. Co-localisation of abnormal brain structure and function in specific language impairment.

    PubMed

    Badcock, Nicholas A; Bishop, Dorothy V M; Hardiman, Mervyn J; Barry, Johanna G; Watkins, Kate E

    2012-03-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  4. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  5. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    PubMed

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the perisylvian cortex and potentially contribute to the emergence of "coarse" speech representations in inferior frontal gyrus typically associated with high-level language processing. These findings add to the previous work on auditory processing and underline a distinctive role of inferior frontal gyrus in natural speech comprehension. Copyright © 2017 the authors 0270-6474/17/377906-15$15.00/0.

  7. Different forms of effective connectivity in primate frontotemporal pathways.

    PubMed

    Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K

    2015-01-23

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.

  8. Different forms of effective connectivity in primate frontotemporal pathways

    PubMed Central

    Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.

    2015-01-01

    It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079

  9. Technetium-99m HMPAO brain SPECT in autistic children and their families.

    PubMed

    Degirmenci, Berna; Miral, Süha; Kaya, Gamze Capa; Iyilikçi, Leyla; Arslan, Gulhan; Baykara, Ayşen; Evren, Ismail; Durak, Hatice

    2008-04-15

    The purpose of the study was to investigate perfusion patterns in autistic children (AC) and their families. Ten AC (9 boys, 1 girl; mean age: 6.9+/-1.7 years) with autistic disorder defined by DSM-III-R criteria, five age-matched children (3 boys, 2 girls) as a control group, and the immediate family members of eight AC (8 mothers, 8 fathers, 7 siblings; mean ages: 39+/-4 years, 36+/-5 years and 13+/-5 years, respectively) were included in the study. Age- and sex-matched control groups for both the parents and the siblings were also included in the study. Brain perfusion images were obtained 1 h after the intravenous injection of an adjusted dose of Tc-99m HMPAO to children and the adults. Visual and semiquantitative evaluations were performed. Hypoperfusion was seen in the right posterior parietal cortex in three AC, in bilateral parietal cortex in one AC, bilateral frontal cortex in two AC, left parietal and temporal cortex in one AC, and right parietal and temporal cortex in one AC. Asymmetric perfusion was observed in the caudate nucleus in four AC. In semiquantitative analyses, statistically significant hypoperfusion was found in the right inferior and superior frontal, left superior frontal, right parietal, right mesial temporal and right caudate nucleus. In parents of AC, significant hypoperfusion was noted in the right parietal and bilateral inferior frontal cortex. In siblings of AC, perfusion in the right frontal cortex, right nucleus caudate and left parietal cortex was significantly decreased. This preliminary study suggests the existence of regional brain perfusion alterations in frontal, temporal, and parietal cortex and in caudate nucleus in AC and in their first-degree family members.

  10. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    PubMed

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.

  11. Differential neural responses to food images in women with bulimia versus anorexia nervosa.

    PubMed

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2011-01-01

    Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

  12. Reduced cortical thickness and increased surface area in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Li, Gang; Liu, Huasheng; Shi, Feng; Wang, Tao; Shen, Celina; Shen, Hui; Lee, Seong-Whan; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2016-11-19

    Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.

    PubMed

    Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J

    2017-02-01

    Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders

    PubMed Central

    Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine

    2009-01-01

    Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498

  15. Sex differences in cortical thickness and their possible genetic and sex hormonal underpinnings.

    PubMed

    Savic, I; Arver, S

    2014-12-01

    Although it has been shown that cortical thickness (Cth) differs between sexes, the underlying mechanisms are unknown. Seeing as XXY males have 1 extra X chromosome, we investigated the possible effects of X- and sex-chromosome dosage on Cth by comparing data from 31 XXY males with 39 XY and 47 XX controls. Plasma testosterone and estrogen were also measured in an effort to differentiate between possible sex-hormone and sex-chromosome gene effects. Cth was calculated with FreeSurfer software. Parietal and occipital Cth was greater in XX females than XY males. In these regions Cth was inversely correlated with z-normalized testosterone. In the motor strip, the cortex was thinner in XY males compared with both XX females and XXY males, indicating the possibility of an X-chromosome gene-dosage effect. XXY males had thinner right superior temporal and left middle temporal cortex, and a thicker right orbitofrontal cortex and lingual cortex than both control groups. Based on these data and previous reports from women with XO monosomy, it is hypothesized that programming of the motor cortex is influenced by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of the superior temporal cortex is mediated by X-chromosome escapee genes with Y-homologs. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Oxytocin enhances brain function in children with autism.

    PubMed

    Gordon, Ilanit; Vander Wyk, Brent C; Bennett, Randi H; Cordeaux, Cara; Lucas, Molly V; Eilbott, Jeffrey A; Zagoory-Sharon, Orna; Leckman, James F; Feldman, Ruth; Pelphrey, Kevin A

    2013-12-24

    Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.

  17. Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    PubMed Central

    Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2011-01-01

    Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807

  18. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.

  19. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  20. MEG Coherence and DTI Connectivity in mTLE

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2017-01-01

    Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092

  1. Neural correlates of conversion disorder: overview and meta-analysis of neuroimaging studies on motor conversion disorder.

    PubMed

    Boeckle, Markus; Liegl, Gregor; Jank, Robert; Pieh, Christoph

    2016-06-10

    Conversion Disorders (CD) are prevalent functional disorders. Although the pathogenesis is still not completely understood, an interaction of genetic, neurobiological, and psychosocial factors is quite likely. The aim of this study is to provide a systematic overview on imaging studies on CDs and investigate neuronal areas involved in Motor Conversion Disorders (MCD). A systematic literature search was conducted on CD. Subsequently a meta-analysis of functional neuroimaging studies on MCD was implemented using an Activation Likelihood Estimation (ALE). We calculated differences between patients and healthy controls as well as between affected versus unaffected sides in addition to an overall analysis in order to identify neuronal areas related to MCD. Patients with MCD differ from healthy controls in the amygdala, superior temporal lobe, retrosplenial area, primary motor cortex, insula, red nucleus, thalamus, anterior as well as dorsolateral prefrontal and frontal cortex. When comparing affected versus unaffected sides, temporal cortex, dorsal anterior cingulate cortex, supramarginal gyrus, dorsal temporal lobe, anterior insula, primary somatosensory cortex, superior frontal gyrus and anterior prefrontal as well as frontal cortex show significant differences. Neuronal areas seem to be involved in the pathogenesis, maintenance or as a result of MCD. Areas that are important for motor-planning, motor-selection or autonomic response seem to be especially relevant. Our results support the emotional unawareness theory but also underline the need of more support by conduction imaging studies on both CD and MCD.

  2. Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm.

    PubMed

    Liebenthal, Einat; Ellingson, Michael L; Spanaki, Marianna V; Prieto, Thomas E; Ropella, Kristina M; Binder, Jeffrey R

    2003-08-01

    Infrequent occurrences of a deviant sound within a sequence of repetitive standard sounds elicit the automatic mismatch negativity (MMN) event-related potential (ERP). The main MMN generators are located in the superior temporal cortex, but their number, precise location, and temporal sequence of activation remain unclear. In this study, ERP and functional magnetic resonance imaging (fMRI) data were obtained simultaneously during a passive frequency oddball paradigm. There were three conditions, a STANDARD, a SMALL deviant, and a LARGE deviant. A clustered image acquisition technique was applied to prevent contamination of the fMRI data by the acoustic noise of the scanner and to limit contamination of the electroencephalogram (EEG) by the gradient-switching artifact. The ERP data were used to identify areas in which the blood oxygenation (BOLD) signal varied with the magnitude of the negativity in each condition. A significant ERP MMN was obtained, with larger peaks to LARGE deviants and with frontocentral scalp distribution, consistent with the MMN reported outside the magnetic field. This result validates the experimental procedures for simultaneous ERP/fMRI of the auditory cortex. Main foci of increased BOLD signal were observed in the right superior temporal gyrus [STG; Brodmann area (BA) 22] and right superior temporal plane (STP; BA 41 and 42). The imaging results provide new information supporting the idea that generators in the right lateral aspect of the STG are implicated in processes of frequency deviant detection, in addition to generators in the right and left STP.

  3. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex.

    PubMed

    Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S

    2004-01-01

    Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.

  4. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions.

    PubMed

    Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A

    2016-02-03

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.

  5. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana

    2016-01-01

    The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633

  6. The cortical language circuit: from auditory perception to sentence comprehension.

    PubMed

    Friederici, Angela D

    2012-05-01

    Over the years, a large body of work on the brain basis of language comprehension has accumulated, paving the way for the formulation of a comprehensive model. The model proposed here describes the functional neuroanatomy of the different processing steps from auditory perception to comprehension as located in different gray matter brain regions. It also specifies the information flow between these regions, taking into account white matter fiber tract connections. Bottom-up, input-driven processes proceeding from the auditory cortex to the anterior superior temporal cortex and from there to the prefrontal cortex, as well as top-down, controlled and predictive processes from the prefrontal cortex back to the temporal cortex are proposed to constitute the cortical language circuit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia.

    PubMed

    Zierhut, Kathrin C; Schulte-Kemna, Anna; Kaufmann, Jörn; Steiner, Johann; Bogerts, Bernhard; Schiltz, Kolja

    2013-04-01

    Schizophrenia is considered a brain disease with a quite heterogeneous clinical presentation. Studies in schizophrenia have yielded a wide array of correlations between structural and functional brain changes and clinical and cognitive symptoms. Reductions of grey matter volume (GMV) in the prefrontal and temporal cortex have been described which are crucial for the development of positive and negative symptoms and impaired working memory (WM). Associations between GMV reduction and positive and negative symptoms as well as WM impairment were assessed in schizophrenia patients (symptomatology in 34, WM in 26) and compared to healthy controls (36 total, WM in 26). GMV was determined by voxel-based morphometry and its relation to positive and negative symptoms as well as WM performance was assessed. In schizophrenia patients, reductions of GMV were evident in anterior cingulate cortex, ventrolateral prefrontal cortex (VLPFC), superior temporal cortex, and insula. GMV reductions in the superior temporal gyrus (STG) were associated with positive symptom severity as well as WM impairment. Furthermore, the absolute GMV of VLPFC was strongly related to negative symptoms. These predicted WM performance as well as processing speed. The present results support the assumption of two distinct pathomechanisms responsible for impaired WM in schizophrenia: (1) GMV reductions in the VLPFC predict the severity of negative symptoms. Increased negative symptoms in turn are associated with a slowing down of processing speed and predict an impaired WM. (2) GMV reductions in the temporal and mediofrontal cortex are involved in the development of positive symptoms and impair WM performance, too. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Language-associated cortical regions are proportionally larger in the female brain.

    PubMed

    Harasty, J; Double, K L; Halliday, G M; Kril, J J; McRitchie, D A

    1997-02-01

    Many studies have demonstrated significant sexual dimorphism in verbal ability. However, few studies have examined anatomical differences between the sexes that may underlie such dimorphism. To examine sex differences in the absolute and proportional volumes of the main language-associated regions of the cerebral cortex. Control neuropathological case series of consecutive autopsies from a teaching hospital. No significant age-related volume changes were identified in the sample. Two language-associated cortical regions, the superior temporal gyrus (part of the Wernicke area) and its subdivisions (planum temporale, Heschl gyrus, and anterior superior temporal gyrus) and the inferior frontal gyrus (Broca area in the dominant hemisphere), and a non-language-associated region, the frontal pole, were measured using stereological techniques in brains fixed with formaldehyde solution serially sectioned at 3-mm intervals. Volume comparisons between the sexes and between brain hemispheres were performed using 2-way analysis of variance. Studies were conducted at the University of Sydney and the Prince of Wales Medical Research Institute, Sydney, Australia. Ten males and 11 females free from neurologic or neuropathological abnormalities. The volume of the superior temporal cortex, expressed as a proportion of total cerebral volume, was significantly larger in females compared with males (17.8% increase; P = .04). This was accounted for by 1 section of the superior temporal cortex, the planum temporale, which was 29.8% larger in females (P = .04). In addition, the cortical volume fraction of the Broca area in females was 20.4% larger than in males (P = .05). In contrast, no significant differences were found in the proportional volume of the frontal pole or in regional volumes between the left and right hemispheres in either sex group. Our results suggest that females have proportionally larger Wernicke and Broca language-associated regions compared with males. These anatomical differences may correlate with superior language skills previously demonstrated in females.

  9. Emotion disrupts neural activity during selective attention in psychopathy

    PubMed Central

    Spielberg, Jeffrey M.; Heller, Wendy; Herrington, John D.; Engels, Anna S.; Warren, Stacie L.; Crocker, Laura D.; Sutton, Bradley P.; Miller, Gregory A.

    2013-01-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes. PMID:22210673

  10. Emotion disrupts neural activity during selective attention in psychopathy.

    PubMed

    Sadeh, Naomi; Spielberg, Jeffrey M; Heller, Wendy; Herrington, John D; Engels, Anna S; Warren, Stacie L; Crocker, Laura D; Sutton, Bradley P; Miller, Gregory A

    2013-03-01

    Dimensions of psychopathy are theorized to be associated with distinct cognitive and emotional abnormalities that may represent unique neurobiological risk factors for the disorder. This hypothesis was investigated by examining whether the psychopathic personality dimensions of fearless-dominance and impulsive-antisociality moderated neural activity and behavioral responses associated with selective attention and emotional processing during an emotion-word Stroop task in 49 adults. As predicted, the dimensions evidenced divergent selective-attention deficits and sensitivity to emotional distraction. Fearless-dominance was associated with disrupted attentional control to positive words, and activation in right superior frontal gyrus mediated the relationship between fearless-dominance and errors to positive words. In contrast, impulsive-antisociality evidenced increased behavioral interference to both positive and negative words and correlated positively with recruitment of regions associated with motivational salience (amygdala, orbitofrontal cortex, insula), emotion regulation (temporal cortex, superior frontal gyrus) and attentional control (dorsal anterior cingulate cortex). Individuals high on both dimensions had increased recruitment of regions related to attentional control (temporal cortex, rostral anterior cingulate cortex), response preparation (pre-/post-central gyri) and motivational value (orbitofrontal cortex) in response to negative words. These findings provide evidence that the psychopathy dimensions represent dual sets of risk factors characterized by divergent dysfunction in cognitive and affective processes.

  11. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    PubMed

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temporal characteristics of audiovisual information processing.

    PubMed

    Fuhrmann Alpert, Galit; Hein, Grit; Tsai, Nancy; Naumer, Marcus J; Knight, Robert T

    2008-05-14

    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices.

  13. Differential involvement of the posterior temporal cortex in mentalizing but not perspective taking

    PubMed Central

    Aumann, Carolin; Santos, Natacha S.; Bewernick, Bettina H.; Eickhoff, Simon B.; Newen, Albert; Shah, N. Jon; Fink, Gereon R.; Vogeley, Kai

    2008-01-01

    Understanding and predicting other people's mental states and behavior are important prerequisites for social interactions. The capacity to attribute mental states such as desires, thoughts or intentions to oneself or others is referred to as mentalizing. The right posterior temporal cortex at the temporal–parietal junction has been associated with mentalizing but also with taking someone else's spatial perspective onto the world—possibly an important prerequisite for mentalizing. Here, we directly compared the neural correlates of mentalizing and perspective taking using the same stimulus material. We found significantly increased neural activity in the right posterior segment of the superior temporal sulcus only during mentalizing but not perspective taking. Our data further clarify the role of the posterior temporal cortex in social cognition by showing that it is involved in processing information from socially salient visual cues in situations that require the inference about other people's mental states. PMID:19015120

  14. How sensory-motor systems impact the neural organization for language: direct contrasts between spoken and signed language

    PubMed Central

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Grabowski, Thomas J.

    2014-01-01

    To investigate the impact of sensory-motor systems on the neural organization for language, we conducted an H215O-PET study of sign and spoken word production (picture-naming) and an fMRI study of sign and audio-visual spoken language comprehension (detection of a semantically anomalous sentence) with hearing bilinguals who are native users of American Sign Language (ASL) and English. Directly contrasting speech and sign production revealed greater activation in bilateral parietal cortex for signing, while speaking resulted in greater activation in bilateral superior temporal cortex (STC) and right frontal cortex, likely reflecting auditory feedback control. Surprisingly, the language production contrast revealed a relative increase in activation in bilateral occipital cortex for speaking. We speculate that greater activation in visual cortex for speaking may actually reflect cortical attenuation when signing, which functions to distinguish self-produced from externally generated visual input. Directly contrasting speech and sign comprehension revealed greater activation in bilateral STC for speech and greater activation in bilateral occipital-temporal cortex for sign. Sign comprehension, like sign production, engaged bilateral parietal cortex to a greater extent than spoken language. We hypothesize that posterior parietal activation in part reflects processing related to spatial classifier constructions in ASL and that anterior parietal activation may reflect covert imitation that functions as a predictive model during sign comprehension. The conjunction analysis for comprehension revealed that both speech and sign bilaterally engaged the inferior frontal gyrus (with more extensive activation on the left) and the superior temporal sulcus, suggesting an invariant bilateral perisylvian language system. We conclude that surface level differences between sign and spoken languages should not be dismissed and are critical for understanding the neurobiology of language. PMID:24904497

  15. Roman Catholic beliefs produce characteristic neural responses to moral dilemmas

    PubMed Central

    Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J.; Munar, Enric

    2014-01-01

    This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances—but thou shalt not kill. PMID:23160812

  16. Roman Catholic beliefs produce characteristic neural responses to moral dilemmas.

    PubMed

    Christensen, Julia F; Flexas, Albert; de Miguel, Pedro; Cela-Conde, Camilo J; Munar, Enric

    2014-02-01

    This study provides exploratory evidence about how behavioral and neural responses to standard moral dilemmas are influenced by religious belief. Eleven Catholics and 13 Atheists (all female) judged 48 moral dilemmas. Differential neural activity between the two groups was found in precuneus and in prefrontal, frontal and temporal regions. Furthermore, a double dissociation showed that Catholics recruited different areas for deontological (precuneus; temporoparietal junction) and utilitarian moral judgments [dorsolateral prefrontal cortex (DLPFC); temporal poles], whereas Atheists did not (superior parietal gyrus for both types of judgment). Finally, we tested how both groups responded to personal and impersonal moral dilemmas: Catholics showed enhanced activity in DLPFC and posterior cingulate cortex during utilitarian moral judgments to impersonal moral dilemmas and enhanced responses in anterior cingulate cortex and superior temporal sulcus during deontological moral judgments to personal moral dilemmas. Our results indicate that moral judgment can be influenced by an acquired set of norms and conventions transmitted through religious indoctrination and practice. Catholic individuals may hold enhanced awareness of the incommensurability between two unequivocal doctrines of the Catholic belief set, triggered explicitly in a moral dilemma: help and care in all circumstances-but thou shalt not kill.

  17. Task-dependent modulation of regions in the left temporal cortex during auditory sentence comprehension.

    PubMed

    Zhang, Linjun; Yue, Qiuhai; Zhang, Yang; Shu, Hua; Li, Ping

    2015-01-01

    Numerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g., active vs. passive listening) modulate the functional specificity of these sub-areas. In the present functional magnetic resonance imaging (fMRI) study, we addressed this issue by applying both independent component analysis (ICA) and general linear model (GLM) methods. Consistent with previous studies, intelligible sentences elicited greater activity in the left lateral temporal cortex relative to unintelligible sentences. Moreover, responses to intelligibility in the sub-regions were differentially modulated by task demands. While the overall activation patterns of the anterior and posterior superior temporal sulcus and middle temporal gyrus (STS/MTG) were equivalent during both passive and active tasks, a middle portion of the STS/MTG was found to be selectively activated only during the active task under a refined analysis of sub-regional contributions. Our results not only confirm the critical role of the left lateral temporal cortex in auditory sentence comprehension but further demonstrate that task demands modulate functional specialization of the anterior-middle-posterior temporal sub-areas. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Cortical thickness and folding deficits in conduct-disordered adolescents

    PubMed Central

    Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.

    2012-01-01

    Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639

  19. Configural processing of biological motion in human superior temporal sulcus.

    PubMed

    Thompson, James C; Clarke, Michele; Stewart, Tennille; Puce, Aina

    2005-09-28

    Observers recognize subtle changes in the movements of others with relative ease. However, tracking a walking human is computationally difficult, because the degree of articulation is high and scene changes can temporarily occlude parts of the moving figure. Here, we used functional magnetic resonance imaging to test the hypothesis that the superior temporal sulcus (STS) uses form cues to aid biological movement tracking. The same 10 healthy subjects detected human gait changes in a walking mannequin in two experiments. In experiment 1, we tested the effects of configural change and occlusion. The walking mannequin was presented intact or with the limbs and torso apart in visual space and either unoccluded or occluded by a set of vertical white bars. In experiment 2, the effects of inversion and occlusion were investigated, using an intact walking mannequin. Subjects reliably detected gait changes under all stimulus conditions. The intact walker produced significantly greater activation in the STS, inferior temporal sulcus (ITS), and inferior parietal cortex relative to the apart walker, regardless of occlusion. Interestingly, STS and ITS activation to the upright versus inverted walker was not significantly different. In contrast, superior parietal lobule and parieto-occipital cortex showed greater activation to the apart relative to intact walker. In the absence of an intact body configuration, parietal cortex activity increased to the independent movements of the limbs and torso. Our data suggest that the STS may use a body configuration-based model to process biological movement, thus forming a representation that survives partial occlusion.

  20. Age-related changes in the functional neuroanatomy of overt speech production.

    PubMed

    Sörös, Peter; Bose, Arpita; Sokoloff, Lisa Guttman; Graham, Simon J; Stuss, Donald T

    2011-08-01

    Alterations of existing neural networks during healthy aging, resulting in behavioral deficits and changes in brain activity, have been described for cognitive, motor, and sensory functions. To investigate age-related changes in the neural circuitry underlying overt non-lexical speech production, functional MRI was performed in 14 healthy younger (21-32 years) and 14 healthy older individuals (62-84 years). The experimental task involved the acoustically cued overt production of the vowel /a/ and the polysyllabic utterance /pataka/. In younger and older individuals, overt speech production was associated with the activation of a widespread articulo-phonological network, including the primary motor cortex, the supplementary motor area, the cingulate motor areas, and the posterior superior temporal cortex, similar in the /a/ and /pataka/ condition. An analysis of variance with the factors age and condition revealed a significant main effect of age. Irrespective of the experimental condition, significantly greater activation was found in the bilateral posterior superior temporal cortex, the posterior temporal plane, and the transverse temporal gyri in younger compared to older individuals. Significantly greater activation was found in the bilateral middle temporal gyri, medial frontal gyri, middle frontal gyri, and inferior frontal gyri in older vs. younger individuals. The analysis of variance did not reveal a significant main effect of condition and no significant interaction of age and condition. These results suggest a complex reorganization of neural networks dedicated to the production of speech during healthy aging. Copyright © 2009 Elsevier Inc. All rights reserved.

  1. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  2. Subcortical aphasia: a longitudinal PET study.

    PubMed

    de Boissezon, Xavier; Démonet, Jean-François; Puel, Michèle; Marie, Nathalie; Raboyeau, Gaëlle; Albucher, Jean-François; Chollet, François; Cardebat, Dominique

    2005-07-01

    Very few neuroimaging studies have focused on follow-up of subcortical aphasia. Here, overt language production tasks were used to correlate regional cerebral blood flow (rCBF) changes and language performance in patients with vascular subcortical lesions. Seven aphasic patients were scanned twice with positron emission tomography (PET) at 1-year interval during a word-generation task. Using SPM2, Language-Rest contrast at PET1 was correlated to language performance and to time-lag from stroke. The same contrast was performed at PET2 and session effect (PET2-PET1) was correlated with performance improvement. At PET1, correlation between rCBF and delay from stroke involved mainly ventral regions of the left temporal cortex and mesial frontal cortex. Correlations between rCBF and performance showed predominantly left dorsal regions in the frontal, temporal, and parietal lobes, but also the left ventral temporal cortex. One year apart, language performance improved and rCBF increased in perisylvian regions bilaterally. Best performers at PET2 showed an increase of activity in left ventral temporal cortex as well as in right middle temporal gyrus. On follow-up, expected language improvement and increase of activation in the classical language areas and their counterparts were observed. Moreover, all correlational analyses both at PET1 and on follow-up implicated the anterior part of the left inferior temporal gyrus, suggesting a disconnection between the superior and inferior parts of the left temporal cortex and a specific role for this region in lexical semantic processing.

  3. Prior Knowledge Guides Speech Segregation in Human Auditory Cortex.

    PubMed

    Wang, Yuanye; Zhang, Jianfeng; Zou, Jiajie; Luo, Huan; Ding, Nai

    2018-05-18

    Segregating concurrent sound streams is a computationally challenging task that requires integrating bottom-up acoustic cues (e.g. pitch) and top-down prior knowledge about sound streams. In a multi-talker environment, the brain can segregate different speakers in about 100 ms in auditory cortex. Here, we used magnetoencephalographic (MEG) recordings to investigate the temporal and spatial signature of how the brain utilizes prior knowledge to segregate 2 speech streams from the same speaker, which can hardly be separated based on bottom-up acoustic cues. In a primed condition, the participants know the target speech stream in advance while in an unprimed condition no such prior knowledge is available. Neural encoding of each speech stream is characterized by the MEG responses tracking the speech envelope. We demonstrate that an effect in bilateral superior temporal gyrus and superior temporal sulcus is much stronger in the primed condition than in the unprimed condition. Priming effects are observed at about 100 ms latency and last more than 600 ms. Interestingly, prior knowledge about the target stream facilitates speech segregation by mainly suppressing the neural tracking of the non-target speech stream. In sum, prior knowledge leads to reliable speech segregation in auditory cortex, even in the absence of reliable bottom-up speech segregation cue.

  4. Spatial and temporal relationships of electrocorticographic alpha and gamma activity during auditory processing.

    PubMed

    Potes, Cristhian; Brunner, Peter; Gunduz, Aysegul; Knight, Robert T; Schalk, Gerwin

    2014-08-15

    Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  6. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    PubMed

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.

  7. Sentence processing in anterior superior temporal cortex shows a social-emotional bias.

    PubMed

    Mellem, Monika S; Jasmin, Kyle M; Peng, Cynthia; Martin, Alex

    2016-08-01

    The anterior region of the left superior temporal gyrus/superior temporal sulcus (aSTG/STS) has been implicated in two very different cognitive functions: sentence processing and social-emotional processing. However, the vast majority of the sentence stimuli in previous reports have been of a social or social-emotional nature suggesting that sentence processing may be confounded with semantic content. To evaluate this possibility we had subjects read word lists that differed in phrase/constituent size (single words, 3-word phrases, 6-word sentences) and semantic content (social-emotional, social, and inanimate objects) while scanned in a 7T environment. This allowed us to investigate if the aSTG/STS responded to increasing constituent structure (with increased activity as a function of constituent size) with or without regard to a specific domain of concepts, i.e., social and/or social-emotional content. Activity in the left aSTG/STS was found to increase with constituent size. This region was also modulated by content, however, such that social-emotional concepts were preferred over social and object stimuli. Reading also induced content type effects in domain-specific semantic regions. Those preferring social-emotional content included aSTG/STS, inferior frontal gyrus, posterior STS, lateral fusiform, ventromedial prefrontal cortex, and amygdala, regions included in the "social brain", while those preferring object content included parahippocampal gyrus, retrosplenial cortex, and caudate, regions involved in object processing. These results suggest that semantic content affects higher-level linguistic processing and should be taken into account in future studies. Copyright © 2016. Published by Elsevier Ltd.

  8. Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus.

    PubMed

    Keysers, C; Xiao, D-K; Foldiak, P; Perrett, D I

    2005-05-01

    Iconic memory, the short-lasting visual memory of a briefly flashed stimulus, is an important component of most models of visual perception. Here we investigate what physiological mechanisms underlie this capacity by showing rapid serial visual presentation (RSVP) sequences with and without interstimulus gaps to human observers and macaque monkeys. For gaps of up to 93 ms between consecutive images, human observers and neurones in the temporal cortex of macaque monkeys were found to continue processing a stimulus as if it was still present on the screen. The continued firing of neurones in temporal cortex may therefore underlie iconic memory. Based on these findings, a neurophysiological vision of iconic memory is presented.

  9. Altered resting-state functional activity in isolated pontine infarction patients with pathological laughing and crying.

    PubMed

    Liu, Tao; Li, Jianjun; Huang, Shixiong; Li, Changqinq; Zhao, Zhongyan; Wen, Guoqiang; Chen, Feng

    2017-10-13

    We used resting-state functional magnetic resonance imaging to investigate the global spontaneous neural activity involved in pathological laughing and crying after stroke. Twelve pathological laughing and crying patients with isolated pontine infarction were included, along with 12 age- and gender-matched acute isolated pontine infarction patients without pathological laughing and crying, and 12 age- and gender-matched healthy controls. We examined both the amplitude of low-frequency fluctuation and the regional homogeneity in order to comprehensively evaluate the intrinsic activity in patients with post-stroke pathological laughing and crying. In the post-stroke pathological laughing and crying group, changes in these measures were observed mainly in components of the default mode network (medial prefrontal cortex/anterior cingulate cortex, middle temporal gyrus, inferior temporal gyrus, superior frontal gyrus, middle frontal gyrus and inferior parietal lobule), sensorimotor network (supplementary motor area, precentral gyrus and paracentral lobule), affective network (medial prefrontal cortex/anterior cingulate cortex, parahippocampal gyrus, middle temporal gyrus and inferior temporal gyrus) and cerebellar lobes (cerebellum posterior lobe). We therefore speculate that when disinhibition of the volitional system is lost, increased activation of the emotional system causes pathological laughing and crying.

  10. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  11. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study.

    PubMed

    Pinsk, Mark A; Arcaro, Michael; Weiner, Kevin S; Kalkus, Jan F; Inati, Souheil J; Gross, Charles G; Kastner, Sabine

    2009-05-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas.

  12. Neural Representations of Faces and Body Parts in Macaque and Human Cortex: A Comparative fMRI Study

    PubMed Central

    Pinsk, Mark A.; Arcaro, Michael; Weiner, Kevin S.; Kalkus, Jan F.; Inati, Souheil J.; Gross, Charles G.; Kastner, Sabine

    2009-01-01

    Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part–selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part–selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas. PMID:19225169

  13. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    PubMed

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Structural Alteration of the Dorsal Visual Network in DLB Patients with Visual Hallucinations: A Cortical Thickness MRI Study

    PubMed Central

    Delli Pizzi, Stefano; Franciotti, Raffaella; Tartaro, Armando; Caulo, Massimo; Thomas, Astrid; Onofrj, Marco; Bonanni, Laura

    2014-01-01

    Visual hallucinations (VH) represent one of the core features in discriminating dementia with Lewy bodies (DLB) from Alzheimer’s Disease (AD). Previous studies reported that in DLB patients functional alterations of the parieto-occipital regions were correlated with the presence of VH. The aim of our study was to assess whether morphological changes in specific cortical regions of DLB could be related to the presence and severity of VH. We performed a cortical thickness analysis on magnetic resonance imaging data in a cohort including 18 DLB patients, 15 AD patients and 14 healthy control subjects. Relatively to DLB group, correlation analysis between the cortical thickness and the Neuropsychiatric Inventory (NPI) hallucination item scores was also performed. Cortical thickness was reduced bilaterally in DLB compared to controls in the pericalcarine and lingual gyri, cuneus, precuneus, superior parietal gyrus. Cortical thinning was found bilaterally in AD compared to controls in temporal cortex including the superior and middle temporal gyrus, part of inferior temporal cortex, temporal pole and insula. Inferior parietal and supramarginal gyri were also affected bilaterally in AD as compared to controls. The comparison between DLB and AD evidenced cortical thinning in DLB group in the right posterior regions including superior parietal gyrus, precuneus, cuneus, pericalcarine and lingual gyri. Furthermore, the correlation analysis between cortical thickness and NPI hallucination item scores showed that the structural alteration in the dorsal visual regions including superior parietal gyrus and precuneus closely correlated with the occurrence and severity of VH. We suggest that structural changes in key regions of the dorsal visual network may play a crucial role in the physiopathology of VH in DLB patients. PMID:24466177

  16. An architecture for encoding sentence meaning in left mid-superior temporal cortex

    PubMed Central

    Frankland, Steven M.; Greene, Joshua D.

    2015-01-01

    Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of “bite,” “dog,” and “man,” we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes “who did what to whom” in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables (“Who did it?” and “To whom was it done?”) in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning (“Who did what to whom?”) and (ii) predict affect-related amygdala responses that depend on this information (e.g., “the baby kicked the grandfather” vs. “the grandfather kicked the baby”). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current “agent” (“Who did it?”) and the current “patient” (“To whom was it done?”). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts. PMID:26305927

  17. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    PubMed

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  18. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients.

    PubMed

    Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco

    2018-06-01

    The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.

  19. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing

    PubMed Central

    Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386

  20. The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.

    PubMed

    Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R

    2016-01-01

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

  1. Emotional expressions in voice and music: same code, same effect?

    PubMed

    Escoffier, Nicolas; Zhong, Jidan; Schirmer, Annett; Qiu, Anqi

    2013-08-01

    Scholars have documented similarities in the way voice and music convey emotions. By using functional magnetic resonance imaging (fMRI) we explored whether these similarities imply overlapping processing substrates. We asked participants to trace changes in either the emotion or pitch of vocalizations and music using a joystick. Compared to music, vocalizations more strongly activated superior and middle temporal cortex, cuneus, and precuneus. However, despite these differences, overlapping rather than differing regions emerged when comparing emotion with pitch tracing for music and vocalizations, respectively. Relative to pitch tracing, emotion tracing activated medial superior frontal and anterior cingulate cortex regardless of stimulus type. Additionally, we observed emotion specific effects in primary and secondary auditory cortex as well as in medial frontal cortex that were comparable for voice and music. Together these results indicate that similar mechanisms support emotional inferences from vocalizations and music and that these mechanisms tap on a general system involved in social cognition. Copyright © 2011 Wiley Periodicals, Inc.

  2. Identification of a pathway for intelligible speech in the left temporal lobe

    PubMed Central

    Scott, Sophie K.; Blank, C. Catrin; Rosen, Stuart; Wise, Richard J. S.

    2017-01-01

    Summary It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension. PMID:11099443

  3. Intrinsic resting-state activity predicts working memory brain activation and behavioral performance.

    PubMed

    Zou, Qihong; Ross, Thomas J; Gu, Hong; Geng, Xiujuan; Zuo, Xi-Nian; Hong, L Elliot; Gao, Jia-Hong; Stein, Elliot A; Zang, Yu-Feng; Yang, Yihong

    2013-12-01

    Although resting-state brain activity has been demonstrated to correspond with task-evoked brain activation, the relationship between intrinsic and evoked brain activity has not been fully characterized. For example, it is unclear whether intrinsic activity can also predict task-evoked deactivation and whether the rest-task relationship is dependent on task load. In this study, we addressed these issues on 40 healthy control subjects using resting-state and task-driven [N-back working memory (WM) task] functional magnetic resonance imaging data collected in the same session. Using amplitude of low-frequency fluctuation (ALFF) as an index of intrinsic resting-state activity, we found that ALFF in the middle frontal gyrus and inferior/superior parietal lobules was positively correlated with WM task-evoked activation, while ALFF in the medial prefrontal cortex, posterior cingulate cortex, superior frontal gyrus, superior temporal gyrus, and fusiform gyrus was negatively correlated with WM task-evoked deactivation. Further, the relationship between the intrinsic resting-state activity and task-evoked activation in lateral/superior frontal gyri, inferior/superior parietal lobules, superior temporal gyrus, and midline regions was stronger at higher WM task loads. In addition, both resting-state activity and the task-evoked activation in the superior parietal lobule/precuneus were significantly correlated with the WM task behavioral performance, explaining similar portions of intersubject performance variance. Together, these findings suggest that intrinsic resting-state activity facilitates or is permissive of specific brain circuit engagement to perform a cognitive task, and that resting activity can predict subsequent task-evoked brain responses and behavioral performance. Copyright © 2012 Wiley Periodicals, Inc.

  4. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    PubMed Central

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  5. Neuronal correlates of theory of mind and empathy: a functional magnetic resonance imaging study in a nonverbal task.

    PubMed

    Völlm, Birgit A; Taylor, Alexander N W; Richardson, Paul; Corcoran, Rhiannon; Stirling, John; McKie, Shane; Deakin, John F W; Elliott, Rebecca

    2006-01-01

    Theory of Mind (ToM), the ability to attribute mental states to others, and empathy, the ability to infer emotional experiences, are important processes in social cognition. Brain imaging studies in healthy subjects have described a brain system involving medial prefrontal cortex, superior temporal sulcus and temporal pole in ToM processing. Studies investigating networks associated with empathic responding also suggest involvement of temporal and frontal lobe regions. In this fMRI study, we used a cartoon task derived from Sarfati et al. (1997) [Sarfati, Y., Hardy-Bayle, M.C., Besche, C., Widlocher, D. 1997. Attribution of intentions to others in people with schizophrenia: a non-verbal exploration with comic strips. Schizophrenia Research 25, 199-209.]with both ToM and empathy stimuli in order to allow comparison of brain activations in these two processes. Results of 13 right-handed, healthy, male volunteers were included. Functional images were acquired using a 1.5 T Phillips Gyroscan. Our results confirmed that ToM and empathy stimuli are associated with overlapping but distinct neuronal networks. Common areas of activation included the medial prefrontal cortex, temporoparietal junction and temporal poles. Compared to the empathy condition, ToM stimuli revealed increased activations in lateral orbitofrontal cortex, middle frontal gyrus, cuneus and superior temporal gyrus. Empathy, on the other hand, was associated with enhanced activations of paracingulate, anterior and posterior cingulate and amygdala. We therefore suggest that ToM and empathy both rely on networks associated with making inferences about mental states of others. However, empathic responding requires the additional recruitment of networks involved in emotional processing. These results have implications for our understanding of disorders characterized by impairments of social cognition, such as autism and psychopathy.

  6. Pronounced prefronto-temporal cortical thinning in schizophrenia: Neuroanatomical correlate of suicidal behavior?

    PubMed

    Besteher, Bianca; Wagner, Gerd; Koch, Kathrin; Schachtzabel, Claudia; Reichenbach, Jürgen R; Schlösser, Ralf; Sauer, Heinrich; Schultz, C Christoph

    2016-10-01

    Schizophrenia is characterized by increased mortality for which suicidality is the decisive factor. An analysis of cortical thickness and folding to further elucidate neuroanatomical correlates of suicidality in schizophrenia has not yet been performed. We searched for relevant brain regions with such differences between patients with suicide-attempts, patients without any suicidal thoughts and healthy controls. 37 schizophrenia patients (14 suicide-attempters and 23 non-suicidal) and 50 age- and gender-matched healthy controls were included. Suicidality was documented through clinical interview and chart review. All participants underwent T1-weighted MRI scans. Whole brain node-by-node cortical thickness and folding were estimated (FreeSurfer Software) and compared. Additionally a three group comparison for prefrontal regions-of-interest was performed in SPSS using a multifactorial GLM. Compared with the healthy controls patients showed a typical pattern of cortical thinning in prefronto-temporal regions and altered cortical folding in the right medial temporal cortex. Patients with suicidal behavior compared with non-suicidal patients demonstrated pronounced (p<0.05) cortical thinning in the right DLPFC and the superior temporal cortex. Comparing cortical thickness in suicidal patients with non-suicidal patients significant (p<0.05) cortical thinning was additionally found in the right superior and middle temporal, temporopolar and insular cortex. Our findings extend the evidence for neuroanatomical underpinnings of suicidal behaviour in schizophrenia. We identified cortical thinning in a network strongly involved in regulation of impulsivity, emotions and planning of behaviour in suicide attempters, which might lead to neuronal dysregulation in this network and consequently to a higher risk of suicidal behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. T’ain’t what you say, it’s the way that you say it – left insula and inferior frontal cortex work in interaction with superior temporal regions to control the performance of vocal impersonations

    PubMed Central

    McGettigan, Carolyn; Eisner, Frank; Agnew, Zarinah K; Manly, Tom; Wisbey, Duncan; Scott, Sophie K

    2014-01-01

    Historically, the study of human identity perception has focused on faces, but the voice is also central to our expressions and experiences of identity (P. Belin, Fecteau, & Bedard, 2004). Our voices are highly flexible and dynamic; talkers speak differently depending on their health, emotional state, and the social setting, as well as extrinsic factors such as background noise. However, to date, there have been no studies of the neural correlates of identity modulation in speech production. In the current fMRI experiment, we measured the neural activity supporting controlled voice change in adult participants performing spoken impressions. We reveal that deliberate modulation of vocal identity recruits the left anterior insula and inferior frontal gyrus, supporting the planning of novel articulations. Bilateral sites in posterior superior temporal/inferior parietal cortex and a region in right mid/anterior superior temporal sulcus showed greater responses during the emulation of specific vocal identities than for impressions of generic accents. Using functional connectivity analyses, we describe roles for these three sites in their interactions with the brain regions supporting speech planning and production. Our findings mark a significant step toward understanding the neural control of vocal identity, with wider implications for the cognitive control of voluntary motor acts. PMID:23691984

  8. Functional Connectivity of Human Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  9. Process Versus Product in Social Learning: Comparative Diffusion Tensor Imaging of Neural Systems for Action Execution–Observation Matching in Macaques, Chimpanzees, and Humans

    PubMed Central

    Hecht, Erin E.; Gutman, David A.; Preuss, Todd M.; Sanchez, Mar M.; Parr, Lisa A.; Rilling, James K.

    2013-01-01

    Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal–temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal–parietal and frontal–parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611

  10. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy

    PubMed Central

    Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.

    2013-01-01

    Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488

  12. Automatic Semantic Facilitation in Anterior Temporal Cortex Revealed through Multimodal Neuroimaging

    PubMed Central

    Gramfort, Alexandre; Hämäläinen, Matti S.; Kuperberg, Gina R.

    2013-01-01

    A core property of human semantic processing is the rapid, facilitatory influence of prior input on extracting the meaning of what comes next, even under conditions of minimal awareness. Previous work has shown a number of neurophysiological indices of this facilitation, but the mapping between time course and localization—critical for separating automatic semantic facilitation from other mechanisms—has thus far been unclear. In the current study, we used a multimodal imaging approach to isolate early, bottom-up effects of context on semantic memory, acquiring a combination of electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) measurements in the same individuals with a masked semantic priming paradigm. Across techniques, the results provide a strikingly convergent picture of early automatic semantic facilitation. Event-related potentials demonstrated early sensitivity to semantic association between 300 and 500 ms; MEG localized the differential neural response within this time window to the left anterior temporal cortex, and fMRI localized the effect more precisely to the left anterior superior temporal gyrus, a region previously implicated in semantic associative processing. However, fMRI diverged from early EEG/MEG measures in revealing semantic enhancement effects within frontal and parietal regions, perhaps reflecting downstream attempts to consciously access the semantic features of the masked prime. Together, these results provide strong evidence that automatic associative semantic facilitation is realized as reduced activity within the left anterior superior temporal cortex between 300 and 500 ms after a word is presented, and emphasize the importance of multimodal neuroimaging approaches in distinguishing the contributions of multiple regions to semantic processing. PMID:24155321

  13. Increased regional cerebral blood flow in the contralateral thalamus after successful motor cortex stimulation in a patient with poststroke pain.

    PubMed

    Saitoh, Youichi; Osaki, Yasuhiro; Nishimura, Hiroshi; Hirano, Shun-ichiro; Kato, Amami; Hashikawa, Kazuo; Hatazawa, Jun; Yoshimine, Toshiki

    2004-05-01

    The mechanisms underlying poststroke pain have not been clearly identified. Although motor cortex stimulation (MCS) sometimes reduces poststroke pain successfully, the exact mechanism is not yet known. For further investigation of the neural pathways involved in the processing of poststroke pain and in pain reduction by MCS, the authors used positron emission tomography (PET) scanning to determine significant changes in regional cerebral blood flow (rCBF). This 58-year-old right-handed man suffered from right-sided poststroke pain for which he underwent implantation of a stimulation electrode in the right motor cortex. After 30 minutes of stimulation, his pain was remarkably reduced (Visual Analog Scale scores decreased 8 to 1) and he felt warmth in his left arm. The rCBF was studied using PET scanning with 15O-labeled water when the patient was in the following states: before MCS (painful condition, no stimulation) and after successful MCS (painless condition, no stimulation). The images were analyzed using statistical parametric mapping software. State-dependent differences in global blood flow were covaried using analysis of covariance. Comparisons of the patient's rCBF in the painful condition with that in the painless condition revealed significant rCBF increases in the left rectus gyrus (BA11), left superior frontal lobe (BA9), left anterior cingulate gyms (BA32), and the left thalamus (p < 0.05, corrected). On the other hand, there were significant decreases in rCBF in the right superior temporal gyrus (BA22, p < 0.01, corrected) and the left middle occipital gyrus (BA19, p < 0.05, corrected). The efficacy of MCS was mainly related to increased synaptic activity in the thalamus, whereas the activations in the rectus gyrus, anterior cingulate gyrus, and superior frontal cortex as well as the inactivation of the superior temporal lobe may be related to emotional processes. This is the first report in which the contralateral thalamus was significantly activated and pain relief was achieved using MCS.

  14. Effects of generation mode in fMRI adaptations of semantic fluency: Paced production and overt speech

    PubMed Central

    Basho, Surina; Palmer, Erica D.; Rubio, Miguel A.; Wulfeck, Beverly; Müller, Ralph-Axel

    2007-01-01

    Verbal fluency is a widely used neuropsychological paradigm. In fMRI implementations, conventional unpaced (self-paced) versions are suboptimal due to uncontrolled timing of responses, and overt responses carry the risk of motion artifact. We investigated the behavioral and neurofunctional effects of response pacing and overt speech in semantic category-driven word generation. Twelve right-handed adults (8 female) ages 21–37 were scanned in four conditions each: Paced-Overt, Paced-Covert, Unpaced-Overt, and Unpaced-Covert. There was no significant difference in the number of exemplars generated between overt versions of the paced and unpaced conditions. Imaging results for category-driven word generation overall showed left-hemispheric activation in inferior frontal cortex, premotor cortex, cingulate gyrus, thalamus, and basal ganglia. Direct comparison of generation modes revealed significantly greater activation for the paced compared to unpaced conditions in right superior temporal, bilateral middle frontal, and bilateral anterior cingulate cortex, including regions associated with sustained attention, motor planning, and response inhibition. Covert (compared to overt) conditions showed significantly greater effects in right parietal and anterior cingulate, as well as left middle temporal and superior frontal regions. We conclude that paced overt paradigms are useful adaptations of conventional semantic fluency in fMRI, given their superiority with regard to control over and monitoring of behavioral responses. However, response pacing is associated with additional non-linguistic effects related to response inhibition, motor preparation, and sustained attention. PMID:17292926

  15. Self-development: integrating cognitive, socioemotional, and neuroimaging perspectives.

    PubMed

    Pfeifer, Jennifer H; Peake, Shannon J

    2012-01-01

    This review integrates cognitive, socioemotional, and neuroimaging perspectives on self-development. Neural correlates of key processes implicated in personal and social identity are reported from studies of children, adolescents, and adults, including autobiographical memory, direct and reflected self-appraisals, and social exclusion. While cortical midline structures of medial prefrontal cortex and medial posterior parietal cortex are consistently identified in neuroimaging studies considering personal identity from a primarily cognitive perspective ("who am I?"), additional regions are implicated by studies considering personal and social identity from a more socioemotional perspective ("what do others think about me, where do I fit in?"), especially in child or adolescent samples. The involvement of these additional regions (including tempo-parietal junction and posterior superior temporal sulcus, temporal poles, anterior insula, ventral striatum, anterior cingulate cortex, middle cingulate cortex, and ventrolateral prefrontal cortex) suggests mentalizing, emotion, and emotion regulation are central to self-development. In addition, these regions appear to function atypically during personal and social identity tasks in autism and depression, exhibiting a broad pattern of hypoactivation and hyperactivation, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Early sensitivity of left perisylvian cortex to relationality in nouns and verbs.

    PubMed

    Williams, Adina; Reddigari, Samir; Pylkkänen, Liina

    2017-06-01

    The ability to track the relationality of concepts, i.e., their capacity to encode a relationship between entities, is one of the core semantic abilities humans possess. In language processing, we systematically leverage this ability when computing verbal argument structure, in order to link participants to the events they participate in. Previous work has converged on a large region of left posterior perisylvian cortex as a locus for such processing, but the wide range of experimental stimuli and manipulations has yielded an unclear picture of the region's exact role(s). Importantly, there is a tendency for effects of relationality in single-word studies to localize to posterior temporo-parietal cortex, while argument structure effects in sentences appear in left superior temporal cortex. To characterize these sensitivities, we designed two MEG experiments that cross the factors relationality and eventivity. The first used minimal noun phrases and tested for an effect of semantic composition, while the second employed full sentences and a manipulation of grammatical category. The former identified a region of the left inferior parietal lobe sensitive to relationality, but not eventivity or combination, beginning at 170ms. The latter revealed a similarly-timed effect of relationality in left mid-superior temporal cortex, independent of eventivity and category. The results suggest that i) multiple sub-regions of perisylvian cortex are sensitive to the relationality carried by concepts even in the absence of arguments, ii) linguistic context modulates the locus of this sensitivity, consistent with prior studies, and iii) relationality information is accessed early - before 200ms - regardless of the concept's event status or syntactic category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind.

    PubMed

    van Veluw, Susanne J; Chance, Steven A

    2014-03-01

    The perception of self and others is a key aspect of social cognition. In order to investigate the neurobiological basis of this distinction we reviewed two classes of task that study self-awareness and awareness of others (theory of mind, ToM). A reliable task to measure self-awareness is the recognition of one's own face in contrast to the recognition of others' faces. False-belief tasks are widely used to identify neural correlates of ToM as a measure of awareness of others. We performed an activation likelihood estimation meta-analysis, using the fMRI literature on self-face recognition and false-belief tasks. The brain areas involved in performing false-belief tasks were the medial prefrontal cortex (MPFC), bilateral temporo-parietal junction, precuneus, and the bilateral middle temporal gyrus. Distinct self-face recognition regions were the right superior temporal gyrus, the right parahippocampal gyrus, the right inferior frontal gyrus/anterior cingulate cortex, and the left inferior parietal lobe. Overlapping brain areas were the superior temporal gyrus, and the more ventral parts of the MPFC. We confirmed that self-recognition in contrast to recognition of others' faces, and awareness of others involves a network that consists of separate, distinct neural pathways, but also includes overlapping regions of higher order prefrontal cortex where these processes may be combined. Insights derived from the neurobiology of disorders such as autism and schizophrenia are consistent with this notion.

  18. Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception

    PubMed Central

    Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas

    2011-01-01

    How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432

  19. Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.

    PubMed

    Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong

    2017-11-02

    Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.

  20. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Brain regions sensitive to the face inversion effect: a functional magnetic resonance imaging study in humans.

    PubMed

    Leube, Dirk T; Yoon, Hyo Woon; Rapp, Alexander; Erb, Michael; Grodd, Wolfgang; Bartels, Mathias; Kircher, Tilo T J

    2003-05-22

    Perception of upright faces relies on configural processing. Therefore recognition of inverted, compared to upright faces is impaired. In a functional magnetic resonance imaging experiment we investigated the neural correlate of a face inversion task. Thirteen healthy subjects were presented with a equal number of upright and inverted faces alternating with a low level baseline with an upright and inverted picture of an abstract symbol. Brain activation was calculated for upright minus inverted faces. For this differential contrast, we found a signal change in the right superior temporal sulcus and right insula. Configural properties are processed in a network comprising right superior temporal and insular cortex.

  2. Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging

    PubMed Central

    Bordier, Cecile; Puja, Francesco; Macaluso, Emiliano

    2013-01-01

    The investigation of brain activity using naturalistic, ecologically-valid stimuli is becoming an important challenge for neuroscience research. Several approaches have been proposed, primarily relying on data-driven methods (e.g. independent component analysis, ICA). However, data-driven methods often require some post-hoc interpretation of the imaging results to draw inferences about the underlying sensory, motor or cognitive functions. Here, we propose using a biologically-plausible computational model to extract (multi-)sensory stimulus statistics that can be used for standard hypothesis-driven analyses (general linear model, GLM). We ran two separate fMRI experiments, which both involved subjects watching an episode of a TV-series. In Exp 1, we manipulated the presentation by switching on-and-off color, motion and/or sound at variable intervals, whereas in Exp 2, the video was played in the original version, with all the consequent continuous changes of the different sensory features intact. Both for vision and audition, we extracted stimulus statistics corresponding to spatial and temporal discontinuities of low-level features, as well as a combined measure related to the overall stimulus saliency. Results showed that activity in occipital visual cortex and the superior temporal auditory cortex co-varied with changes of low-level features. Visual saliency was found to further boost activity in extra-striate visual cortex plus posterior parietal cortex, while auditory saliency was found to enhance activity in the superior temporal cortex. Data-driven ICA analyses of the same datasets also identified “sensory” networks comprising visual and auditory areas, but without providing specific information about the possible underlying processes, e.g., these processes could relate to modality, stimulus features and/or saliency. We conclude that the combination of computational modeling and GLM enables the tracking of the impact of bottom–up signals on brain activity during viewing of complex and dynamic multisensory stimuli, beyond the capability of purely data-driven approaches. PMID:23202431

  3. A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder.

    PubMed

    Jaworska, Natalia; MacMaster, Frank P; Gaxiola, Ismael; Cortese, Filomeno; Goodyear, Bradley; Ramasubbu, Rajamannar

    2014-01-01

    Major depressive disorder (MDD) neural underpinnings may differ based on onset age and childhood trauma. We assessed cortical thickness in patients who differed in age of MDD onset and examined trauma history influence. Adults with MDD (N=36) and controls (HC; N=18) underwent magnetic resonance imaging. Twenty patients had MDD onset<24 years of age (pediatric onset) and 16 had onset>25 years of age (adult onset). The MDD group was also subdivided into those with (N=12) and without (N=19) physical and/or sexual abuse as assessed by the Childhood Trauma Questionnaire (CTQ). Cortical thickness was analyzed with FreeSurfer software. Thicker frontal pole and a tendency for thinner transverse temporal cortices existed in MDD. The former was driven by the pediatric onset group and abuse history (independently), particularly in the right frontal pole. Inverse correlations existed between CTQ scores and frontal pole cortex thickness. A similar inverse relation existed with left inferior and right superior parietal cortex thickness. The superior temporal cortex tended to be thinner in pediatric versus adult onset groups with childhood abuse. This preliminary work suggests neural differences between pediatric and adult MDD onset. Trauma history also contributes to cytoarchitectural modulation. Thickened frontal pole cortices as a compensatory mechanism in MDD warrant evaluation.

  4. Cortical thickness and surface area in neonates at high risk for schizophrenia.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2016-01-01

    Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.

  5. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    PubMed

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  6. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection.

    PubMed

    Baumann, Oliver; Vromen, Joyce M G; Cheung, Allen; McFadyen, Jessica; Ren, Yudan; Guo, Christine C

    2018-01-01

    We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.

  7. Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection

    PubMed Central

    Ren, Yudan

    2018-01-01

    Abstract We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection. PMID:29354682

  8. Representation of action in occipito-temporal cortex.

    PubMed

    Wiggett, Alison J; Downing, Paul E

    2011-07-01

    A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498-1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.

  9. Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: A double-blinded placebo controlled pilot study.

    PubMed

    Lee, Jooyeon; Torosyan, Nare; Silverman, Daniel H

    2017-01-01

    Natural compounds in grapes such as resveratrol are known for their antioxidant and anti-inflammatory properties. Some studies have shown a potential role for grapes or wine in slowing cognitive decline and other effects of aging. However, well-controlled experimental data obtained in human subjects are still in need of further development. Here we aimed to systematically assess effects of grapes on regional cerebral metabolism. Ten subjects with mild decline in cognition (mean, 72.2±4.7years; 50% female) were included in this analysis. Participants were randomized into an active grape formulation arm or a placebo arm which consumed a formulation free of polyphenols for six months. Cognitive performance was measured through neuropsychological assessments performed at baseline and 6months after initiation of therapy. Changes in brain metabolism occurring with each therapy regimen were assessed by brain PET scans with the radiotracer [F-18] fluorodeoxyglucose (FDG), obtained during initial evaluation and 6months later. Standardized volumes of interest (sVOI) and statistical parametric mapping (SPM) methods were applied to FDG-PET scans to identify significant regional cerebral metabolic changes. In contrast to participants taking the active grape formulation, who displayed no significant decline in metabolism, the placebo arm underwent significant metabolic decline in sVOI's of the right posterior cingulate cortex (p=0.01), and left superior posterolateral temporal cortex (p=0.04). SPM analyses also found significant declines in the placebo group, particularly in left prefrontal, cingulate, and left superior posterolateral temporal cortex (p<0.01) with stable brain metabolism in the active formulation arm. No significant differences were seen in scores on the neuropsychological battery of tests between the two groups. However, metabolism in right superior parietal cortex and left inferior anterior temporal cortex was correlated with improvements in attention/working memory, as measured with WAIS-III Digital Span within the active formulation group (r=-0.69, p=0.04). The placebo arm had declines in regions of the brain known to be significantly affected in the early stages of Alzheimer's disease, while the active formulation group was spared such decline. This suggests a protective effect of grapes against early pathologic metabolic decline. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Network Model of Observation and Imitation of Speech

    PubMed Central

    Mashal, Nira; Solodkin, Ana; Dick, Anthony Steven; Chen, E. Elinor; Small, Steven L.

    2012-01-01

    Much evidence has now accumulated demonstrating and quantifying the extent of shared regional brain activation for observation and execution of speech. However, the nature of the actual networks that implement these functions, i.e., both the brain regions and the connections among them, and the similarities and differences across these networks has not been elucidated. The current study aims to characterize formally a network for observation and imitation of syllables in the healthy adult brain and to compare their structure and effective connectivity. Eleven healthy participants observed or imitated audiovisual syllables spoken by a human actor. We constructed four structural equation models to characterize the networks for observation and imitation in each of the two hemispheres. Our results show that the network models for observation and imitation comprise the same essential structure but differ in important ways from each other (in both hemispheres) based on connectivity. In particular, our results show that the connections from posterior superior temporal gyrus and sulcus to ventral premotor, ventral premotor to dorsal premotor, and dorsal premotor to primary motor cortex in the left hemisphere are stronger during imitation than during observation. The first two connections are implicated in a putative dorsal stream of speech perception, thought to involve translating auditory speech signals into motor representations. Thus, the current results suggest that flow of information during imitation, starting at the posterior superior temporal cortex and ending in the motor cortex, enhances input to the motor cortex in the service of speech execution. PMID:22470360

  11. [The neurobiology of antisocial behaviour].

    PubMed

    Loomans, M M; Tulen, J H M; van Marle, H J C

    2010-01-01

    Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.

  12. Visual cortex extrastriate body-selective area activation in congenitally blind people "seeing" by using sounds.

    PubMed

    Striem-Amit, Ella; Amedi, Amir

    2014-03-17

    Vision is by far the most prevalent sense for experiencing others' body shapes, postures, actions, and intentions, and its congenital absence may dramatically hamper body-shape representation in the brain. We investigated whether the absence of visual experience and limited exposure to others' body shapes could still lead to body-shape selectivity. We taught congenitally fully-blind adults to perceive full-body shapes conveyed through a sensory-substitution algorithm topographically translating images into soundscapes [1]. Despite the limited experience of the congenitally blind with external body shapes (via touch of close-by bodies and for ~10 hr via soundscapes), once the blind could retrieve body shapes via soundscapes, they robustly activated the visual cortex, specifically the extrastriate body area (EBA; [2]). Furthermore, body selectivity versus textures, objects, and faces in both the blind and sighted control groups was not found in the temporal (auditory) or parietal (somatosensory) cortex but only in the visual EBA. Finally, resting-state data showed that the blind EBA is functionally connected to the temporal cortex temporal-parietal junction/superior temporal sulcus Theory-of-Mind areas [3]. Thus, the EBA preference is present without visual experience and with little exposure to external body-shape information, supporting the view that the brain has a sensory-independent, task-selective supramodal organization rather than a sensory-specific organization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Amygdala functional disconnection with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood.

    PubMed

    Chen, Yu-Chen; Bo, Fan; Xia, Wenqing; Liu, Shenghua; Wang, Peng; Su, Wen; Xu, Jin-Jing; Xiong, Zhenyu; Yin, Xindao

    2017-10-03

    Chronic tinnitus is often accompanied with depressive symptom, which may arise from aberrant functional coupling between the amygdala and cerebral cortex. To explore this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to investigate the disrupted amygdala-cortical functional connectivity (FC) in chronic tinnitus patients with depressive mood. Chronic tinnitus patients with depressive mood (n=20), without depressive mood (n=20), and well-matched healthy controls (n=23) underwent resting-state fMRI scanning. Amygdala-cortical FC was characterized using a seed-based whole-brain correlation method. The bilateral amygdala FC was compared among the three groups. Compared to non-depressed patients, depressive tinnitus patients showed decreased amygdala FC with the prefrontal cortex and anterior cingulate cortex as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. Relative to healthy controls, depressive tinnitus patients revealed decreased amygdala FC with the superior and middle temporal gyrus, anterior and posterior cingulate cortex, and prefrontal cortex, as well as increased amygdala FC with the postcentral gyrus and lingual gyrus. The current study identified for the first time abnormal resting-state amygdala-cortical FC with the prefrontal-cingulate-temporal circuit in chronic tinnitus patients with depressive mood, which will provide novel insight into the underlying neuropathological mechanisms of tinnitus-induced depressive disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.

    PubMed

    Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier

    2016-02-03

    Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.

  15. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  16. Single cell integration of animate form, motion and location in the superior temporal cortex of the macaque monkey.

    PubMed

    Jellema, Tjeerd; Maassen, Gerard; Perrett, David I

    2004-07-01

    This study investigated the cellular mechanisms in the anterior part of the superior temporal sulcus (STSa) that underlie the integration of different features of the same visually perceived animate object. Three visual features were systematically manipulated: form, motion and location. In 58% of a population of cells selectively responsive to the sight of a walking agent, the location of the agent significantly influenced the cell's response. The influence of position was often evident in intricate two- and three-way interactions with the factors form and/or motion. For only one of the 31 cells tested, the response could be explained by just a single factor. For all other cells at least two factors, and for half of the cells (52%) all three factors, played a significant role in controlling responses. Our findings support a reformulation of the Ungerleider and Mishkin model, which envisages a subdivision of the visual processing into a ventral 'what' and a dorsal 'where' stream. We demonstrated that at least part of the temporal cortex ('what' stream) makes ample use of visual spatial information. Our findings open up the prospect of a much more elaborate integration of visual properties of animate objects at the single cell level. Such integration may support the comprehension of animals and their actions.

  17. Cortical NMDA receptor expression in human chronic alcoholism: influence of the TaqIA allele of ANKK1.

    PubMed

    Ridge, Justin P; Dodd, Peter R

    2009-10-01

    Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.

  18. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    PubMed

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  19. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    NASA Technical Reports Server (NTRS)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  20. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    NASA Technical Reports Server (NTRS)

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  1. Disrupted functional connectivity of the pain network in fibromyalgia.

    PubMed

    Cifre, Ignacio; Sitges, Carolina; Fraiman, Daniel; Muñoz, Miguel Ángel; Balenzuela, Pablo; González-Roldán, Ana; Martínez-Jauand, Mercedes; Birbaumer, Niels; Chialvo, Dante R; Montoya, Pedro

    2012-01-01

    To investigate the impact of chronic pain on brain dynamics at rest. Functional connectivity was examined in patients with fibromyalgia (FM) (n = 9) and healthy controls (n = 11) by calculating partial correlations between low-frequency blood oxygen level-dependent fluctuations extracted from 15 brain regions. Patients with FM had more positive and negative correlations within the pain network than healthy controls. Patients with FM displayed enhanced functional connectivity of the anterior cingulate cortex (ACC) with the insula (INS) and basal ganglia (p values between .01 and .05), the secondary somatosensory area with the caudate (CAU) (p = .012), the primary motor cortex with the supplementary motor area (p = .007), the globus pallidus with the amygdala and superior temporal sulcus (both p values < .05), and the medial prefrontal cortex with the posterior cingulate cortex (PCC) and CAU (both p values < .05). Functional connectivity of the ACC with the amygdala and periaqueductal gray (PAG) matter (p values between .001 and .05), the thalamus with the INS and PAG (both p values < .01), the INS with the putamen (p = .038), the PAG with the CAU (p = .038), the secondary somatosensory area with the motor cortex and PCC (both p values < .05), and the PCC with the superior temporal sulcus (p = .002) was also reduced in FM. In addition, significant negative correlations were observed between depression and PAG connectivity strength with the thalamus (r = -0.64, p = .003) and ACC (r = -0.60, p = .004). These findings demonstrate that patients with FM display a substantial imbalance of the connectivity within the pain network during rest, suggesting that chronic pain may also lead to changes in brain activity during internally generated thought processes such as occur at rest.

  2. A voxel-based morphometry study of anosmic patients

    PubMed Central

    Peng, P; Xiao, W; Si, L F; Wang, J F; Wang, S K; Zhai, R Y; Wei, Y X

    2013-01-01

    Objective: The aim of our study was to compare volume change in grey matter (GM) and white matter (WM) in a group of subjects with anosmia and a healthy control group. We tried to find a regular pattern of atrophy within and between GM and WM and to determine whether any particular areas are more sensitive to olfactory injury. Methods: There were 19 anosmic patients and 20 age- and sex-matched control subjects. We acquired MR images on a 3-T scanner and performed voxel-based morphometry using the VBM8 toolbox and SPM8 in a MATLAB® (MathWorks®, Natick, MA) environment. Results: Patients with anosmia showed a significant decrease in GM volume, mainly in the anterior cingulate cortex, middle temporal gyrus, superior temporal gyrus, fusiform gyrus, supramarginal gyrus, superior frontal gyrus, middle frontal gyrus, middle occipital gyrus, anterior insular cortex and cerebellum. In addition, we observed volume decreases in smaller areas such as the piriform cortex, the inferior temporal gyrus, the precuneus and the subcallosal gyrus. All WM areas with atrophy were near those GM areas that experienced volume loss. There was more volume atrophy in GM areas corresponding to WM areas with more volume loss. Atrophy increased with disease duration. Conclusion: There is simultaneous atrophy in GM and WM, and the degree of atrophy is greater with longer disease duration. Different GM and WM areas have different sensitivities to olfactory injury. Advances in knowledge: This study examines the atrophy pattern in and between GM and WM—a subject that has not been widely researched previously. PMID:24133057

  3. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits.

    PubMed

    Wallace, Gregory L; White, Stuart F; Robustelli, Briana; Sinclair, Stephen; Hwang, Soonjo; Martin, Alex; Blair, R James R

    2014-04-01

    Although there is growing evidence of brain abnormalities among individuals with conduct disorder (CD), the structural neuroimaging literature is mixed and frequently aggregates cortical volume rather than differentiating cortical thickness from surface area. The current study assesses CD-related differences in cortical thickness, surface area, and gyrification as well as volume differences in subcortical structures critical to neurodevelopmental models of CD (amygdala; striatum) in a carefully characterized sample. We also examined whether group structural differences were related to severity of callous-unemotional (CU) traits in the CD sample. Participants were 49 community adolescents aged 10 to 18 years, 22 with CD and 27 healthy comparison youth. Structural MRI was collected and the FreeSurfer image analysis suite was used to provide measures of cortical thickness, surface area, and local gyrification as well as subcortical (amygdala and striatum) volumes. Youths with CD showed reduced cortical thickness in the superior temporal cortex. There were also indications of reduced gyrification in the ventromedial frontal cortex, particularly for youths with CD without comorbid attention-deficit/hyperactivity disorder. There were no group differences in cortical surface area. However, youths with CD also showed reduced amygdala and striatum (putamen and pallidum) volumes. Right temporal cortical thickness was significantly inversely related to severity of CU traits. Youths with CD show reduced cortical thickness within superior temporal regions, some indication of reduced gyrification within ventromedial frontal cortex and reduced amygdala and striatum (putamen and pallidum) volumes. These results are discussed with reference to neurobiological models of CD. Published by Elsevier Inc.

  4. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    PubMed

    Dykstra, Andrew R; Halgren, Eric; Gutschalk, Alexander; Eskandar, Emad N; Cash, Sydney S

    2016-01-01

    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  5. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study.

    PubMed

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song

    2014-05-30

    Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.

  6. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study

    PubMed Central

    2014-01-01

    Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073

  7. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Arthur K.; Marcus, Karen J.; Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA

    2007-07-15

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from amore » larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications.« less

  8. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study.

    PubMed

    Simonyan, Kristina; Ludlow, Christy L

    2010-11-01

    Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD.

  9. Abnormal Activation of the Primary Somatosensory Cortex in Spasmodic Dysphonia: An fMRI Study

    PubMed Central

    Ludlow, Christy L.

    2010-01-01

    Spasmodic dysphonia (SD) is a task-specific focal dystonia of unknown pathophysiology, characterized by involuntary spasms in the laryngeal muscles during speaking. Our aim was to identify symptom-specific functional brain activation abnormalities in adductor spasmodic dysphonia (ADSD) and abductor spasmodic dysphonia (ABSD). Both SD groups showed increased activation extent in the primary sensorimotor cortex, insula, and superior temporal gyrus during symptomatic and asymptomatic tasks and decreased activation extent in the basal ganglia, thalamus, and cerebellum during asymptomatic tasks. Increased activation intensity in SD patients was found only in the primary somatosensory cortex during symptomatic voice production, which showed a tendency for correlation with ADSD symptoms. Both SD groups had lower correlation of activation intensities between the primary motor and sensory cortices and additional correlations between the basal ganglia, thalamus, and cerebellum during symptomatic and asymptomatic tasks. Compared with ADSD patients, ABSD patients had larger activation extent in the primary sensorimotor cortex and ventral thalamus during symptomatic task and in the inferior temporal cortex and cerebellum during symptomatic and asymptomatic voice production. The primary somatosensory cortex shows consistent abnormalities in activation extent, intensity, correlation with other brain regions, and symptom severity in SD patients and, therefore, may be involved in the pathophysiology of SD. PMID:20194686

  10. Repetition Suppression and Reactivation in Auditory–Verbal Short-Term Recognition Memory

    PubMed Central

    D'Esposito, Mark

    2009-01-01

    The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related “increases” should be observed in the same posterior temporal regions that have been previously associated with “persistent activity” in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory–verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe. PMID:18987393

  11. Repetition suppression and reactivation in auditory-verbal short-term recognition memory.

    PubMed

    Buchsbaum, Bradley R; D'Esposito, Mark

    2009-06-01

    The neural response to stimulus repetition is not uniform across brain regions, stimulus modalities, or task contexts. For instance, it has been observed in many functional magnetic resonance imaging (fMRI) studies that sometimes stimulus repetition leads to a relative reduction in neural activity (repetition suppression), whereas in other cases repetition results in a relative increase in activity (repetition enhancement). In the present study, we hypothesized that in the context of a verbal short-term recognition memory task, repetition-related "increases" should be observed in the same posterior temporal regions that have been previously associated with "persistent activity" in working memory rehearsal paradigms. We used fMRI and a continuous recognition memory paradigm with short lags to examine repetition effects in the posterior and anterior regions of the superior temporal cortex. Results showed that, consistent with our hypothesis, the 2 posterior temporal regions consistently associated with working memory maintenance, also show repetition increases during short-term recognition memory. In contrast, a region in the anterior superior temporal lobe showed repetition suppression effects, consistent with previous research work on perceptual adaptation in the auditory-verbal domain. We interpret these results in light of recent theories of the functional specialization along the anterior and posterior axes of the superior temporal lobe.

  12. Attribution of emotions to body postures: an independent component analysis study of functional connectivity in autism.

    PubMed

    Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K

    2014-10-01

    The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.

  13. Whole-brain haemodynamic after-effects of 1-Hz magnetic stimulation of the posterior superior temporal cortex during action observation.

    PubMed

    Arfeller, Carola; Schwarzbach, Jens; Ubaldi, Silvia; Ferrari, Paolo; Barchiesi, Guido; Cattaneo, Luigi

    2013-04-01

    The posterior superior temporal sulcus (pSTS) is active when observing biological motion. We investigated the functional connections of the pSTS node within the action observation network by measuring the after-effect of focal repetitive transcranial magnetic stimulation (rTMS) with whole-brain functional magnetic resonance imaging (fMRI). Participants received 1-Hz rTMS over the pSTS region for 10 min and underwent fMRI immediately after. While scanned, they were shown short video clips of a hand grasping an object (grasp clips) or moving next to it (control clips). rTMS-fMRI was repeated for four consecutive blocks. In two blocks we stimulated the left pSTS region and in the other two the right pSTS region. For each side TMS was applied with an effective intensity (95 % of motor threshold) or with ineffective intensity (50 % of motor threshold). Brain regions showing interactive effects of (clip type) × (TMS intensity) were identified in the lateral temporo-occipital cortex, in the anterior intraparietal region and in the ventral premotor cortex. Remote effects of rTMS were mostly limited to the stimulated hemisphere and consisted in an increase of blood oxygen level-dependent responses to grasp clips compared to control clips. We show that the pSTS occupies a pivotal relay position during observation of goal-directed actions.

  14. Neural Responses to Meaningless Pseudosigns: Evidence for Sign-Based Phonetic Processing in Superior Temporal Cortex

    ERIC Educational Resources Information Center

    Emmorey, Karen; Xu, Jiang; Braun, Allen

    2011-01-01

    To identify neural regions that automatically respond to linguistically structured, but meaningless manual gestures, 14 deaf native users of American Sign Language (ASL) and 14 hearing non-signers passively viewed pseudosigns (possible but non-existent ASL signs) and non-iconic ASL signs, in addition to a fixation baseline. For the contrast…

  15. Nonlinear modulation of interacting between COMT and depression on brain function.

    PubMed

    Gong, L; He, C; Yin, Y; Ye, Q; Bai, F; Yuan, Y; Zhang, H; Lv, L; Zhang, H; Zhang, Z; Xie, C

    2017-09-01

    The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth

    PubMed Central

    Wallace, Gregory L.; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S.; Raznahan, Armin; Lenroot, Rhoshel K.; Martin, Alex; Giedd, Jay N.

    2012-01-01

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in non-clinical populations. Therefore, we sought to determine if autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. 323 typically developing youth (age at first scan: mean=10.63, SD=3.71 years) underwent anatomic magnetic resonance imaging (1–6 scans each; total=742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies. PMID:22492041

  17. A Shared Neural Substrate for Mentalizing and the Affective Component of Sentence Comprehension

    PubMed Central

    Hervé, Pierre-Yves; Razafimandimby, Annick; Jobard, Gaël; Tzourio-Mazoyer, Nathalie

    2013-01-01

    Using event-related fMRI in a sample of 42 healthy participants, we compared the cerebral activity maps obtained when classifying spoken sentences based on the mental content of the main character (belief, deception or empathy) or on the emotional tonality of the sentence (happiness, anger or sadness). To control for the effects of different syntactic constructions (such as embedded clauses in belief sentences), we subtracted from each map the BOLD activations obtained during plausibility judgments on structurally matching sentences, devoid of emotions or ToM. The obtained theory of mind (ToM) and emotional speech comprehension networks overlapped in the bilateral temporo-parietal junction, posterior cingulate cortex, right anterior temporal lobe, dorsomedial prefrontal cortex and in the left inferior frontal sulcus. These regions form a ToM network, which contributes to the emotional component of spoken sentence comprehension. Compared with the ToM task, in which the sentences were enounced on a neutral tone, the emotional sentence classification task, in which the sentences were play-acted, was associated with a greater activity in the bilateral superior temporal sulcus, in line with the presence of emotional prosody. Besides, the ventromedial prefrontal cortex was more active during emotional than ToM sentence processing. This region may link mental state representations with verbal and prosodic emotional cues. Compared with emotional sentence classification, ToM was associated with greater activity in the caudate nucleus, paracingulate cortex, and superior frontal and parietal regions, in line with behavioral data showing that ToM sentence comprehension was a more demanding task. PMID:23342148

  18. Pilot study of brain morphometry in a sample of Brazilian children with attention deficit hyperactivity disorder: influence of clinical presentation.

    PubMed

    Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra

    2017-12-01

    Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.

  19. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth.

    PubMed

    Wallace, Gregory L; Shaw, Philip; Lee, Nancy Raitano; Clasen, Liv S; Raznahan, Armin; Lenroot, Rhoshel K; Martin, Alex; Giedd, Jay N

    2012-04-04

    In humans, behaviors associated with autism and antisociality, disorders characterized by distinct social impairments, can be viewed as quantitative traits that range from frank impairment to normal variation, as found in the general population. Neuroimaging investigations of autism and antisociality demonstrate diagnostically specific aberrant cortical brain structure. However, little is known about structural brain correlates of social behavior in nonclinical populations. Therefore, we sought to determine whether autistic and antisocial traits exhibit dissociable cortical correlates and whether these associations are stable across development among typically developing youth. Three hundred twenty-three typically developing youth (age at first scan: mean = 10.63, SD = 3.71 years) underwent anatomic magnetic resonance imaging (1-6 scans each; total = 742 scans), and provided ratings of autistic and antisocial traits. Higher autistic trait ratings were associated with thinner cortex most prominently in right superior temporal sulcus while higher antisocial trait ratings were associated with thinner cortex in primarily bilateral anterior prefrontal cortices. There was no interaction with age, indicating that these brain-behavior associations were stable across development. Using assessments of both subclinical autistic and subclinical antisocial traits within a large longitudinal sample of typically developing youth, we demonstrate dissociable neuroanatomic correlations that parallel those found in the frank clinical disorders of autism (e.g., superior temporal cortex) and antisociality (e.g., anterior prefrontal cortex). Moreover, these correlations appear to be established in early childhood and remain fixed into early adulthood. These results support the dimensional view of psychopathology and provide neural signatures that can serve as informative endophenotypes for future genetic studies.

  20. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends

    PubMed Central

    Weisberg, Jill; McCullough, Stephen; Emmorey, Karen

    2018-01-01

    Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161

  1. Hand and mouth: Cortical correlates of lexical processing in British Sign Language and speechreading English

    PubMed Central

    Capek, Cheryl M.; Waters, Dafydd; Woll, Bencie; MacSweeney, Mairéad; Brammer, Michael J.; McGuire, Philip K.; David, Anthony S.; Campbell, Ruth

    2012-01-01

    Spoken languages use one set of articulators – the vocal tract, whereas signed languages use multiple articulators, including both manual and facial actions. How sensitive are the cortical circuits for language processing to the particular articulators that are observed? This question can only be addressed with participants who use both speech and a signed language. In this study, we used fMRI to compare the processing of speechreading and sign processing in deaf native signers of British Sign Language (BSL) who were also proficient speechreaders. The following questions were addressed: To what extent do these different language types rely on a common brain network? To what extent do the patterns of activation differ? How are these networks affected by the articulators that languages use? Common perisylvian regions were activated both for speechreading English words and for BSL signs. Distinctive activation was also observed reflecting the language form. Speechreading elicited greater activation in the left mid-superior temporal cortex than BSL, whereas BSL processing generated greater activation at the parieto-occipito-temporal junction in both hemispheres. We probed this distinction further within BSL, where manual signs can be accompanied by different sorts of mouth action. BSL signs with speech-like mouth actions showed greater superior temporal activation, while signs made with non-speech-like mouth actions showed more activation in posterior and inferior temporal regions. Distinct regions within the temporal cortex are not only differentially sensitive to perception of the distinctive articulators for speech and for sign, but also show sensitivity to the different articulators within the (signed) language. PMID:18284353

  2. Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.

    PubMed

    Simon, Shiri; Mukamel, Roy

    2017-05-01

    Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.

  3. Multivariate sensitivity to voice during auditory categorization.

    PubMed

    Lee, Yune Sang; Peelle, Jonathan E; Kraemer, David; Lloyd, Samuel; Granger, Richard

    2015-09-01

    Past neuroimaging studies have documented discrete regions of human temporal cortex that are more strongly activated by conspecific voice sounds than by nonvoice sounds. However, the mechanisms underlying this voice sensitivity remain unclear. In the present functional MRI study, we took a novel approach to examining voice sensitivity, in which we applied a signal detection paradigm to the assessment of multivariate pattern classification among several living and nonliving categories of auditory stimuli. Within this framework, voice sensitivity can be interpreted as a distinct neural representation of brain activity that correctly distinguishes human vocalizations from other auditory object categories. Across a series of auditory categorization tests, we found that bilateral superior and middle temporal cortex consistently exhibited robust sensitivity to human vocal sounds. Although the strongest categorization was in distinguishing human voice from other categories, subsets of these regions were also able to distinguish reliably between nonhuman categories, suggesting a general role in auditory object categorization. Our findings complement the current evidence of cortical sensitivity to human vocal sounds by revealing that the greatest sensitivity during categorization tasks is devoted to distinguishing voice from nonvoice categories within human temporal cortex. Copyright © 2015 the American Physiological Society.

  4. The influence of gender on auditory and language cortical activation patterns: preliminary data.

    PubMed

    Kocak, Mehmet; Ulmer, John L; Biswal, Bharat B; Aralasmak, Ayse; Daniels, David L; Mark, Leighton P

    2005-10-01

    Intersex cortical and functional asymmetry is an ongoing topic of investigation. In this pilot study, we sought to determine the influence of acoustic scanner noise and sex on auditory and language cortical activation patterns of the dominant hemisphere. Echoplanar functional MR imaging (fMRI; 1.5T) was performed on 12 healthy right-handed subjects (6 men and 6 women). Passive text listening tasks were employed in 2 different background acoustic scanner noise conditions (12 sections/2 seconds TR [6 Hz] and 4 sections/2 seconds TR [2 Hz]), with the first 4 sections in identical locations in the left hemisphere. Cross-correlation analysis was used to construct activation maps in subregions of auditory and language relevant cortex of the dominant (left) hemisphere, and activation areas were calculated by using coefficient thresholds of 0.5, 0.6, and 0.7. Text listening caused robust activation in anatomically defined auditory cortex, and weaker activation in language relevant cortex of all 12 individuals. As a whole, there was no significant difference in regional cortical activation between the 2 background acoustic scanner noise conditions. When sex was considered, men showed a significantly (P < .01) greater change in left hemisphere activation during the high scanner noise rate condition than did women. This effect was significant (P < .05) in the left superior temporal gyrus, the posterior aspect of the left middle temporal gyrus and superior temporal sulcus, and the left inferior frontal gyrus. Increase in the rate of background acoustic scanner noise caused increased activation in auditory and language relevant cortex of the dominant hemisphere in men compared with women where no such change in activation was observed. Our preliminary data suggest possible methodologic confounds of fMRI research and calls for larger investigations to substantiate our findings and further characterize sex-based influences on hemispheric activation patterns.

  5. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    NASA Technical Reports Server (NTRS)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate our stimulation method, we measured the ocular VEMP outside of the scanner. This measurement showed that both skull tap and auditory tone burst elicited vestibular evoked activation, indicated by eye muscle response. Our preliminary analyses showed that the skull tap elicited activation in medial frontal gyrus, superior temporal gyrus, postcentral gyrus, transverse temporal gyrus, anterior cingulate, and putamen. The auditory tone bursts elicited activation in medial frontal gyrus, superior temporal gyrus, superior frontal gyrus, precentral gyrus, inferior and superior parietal lobules. In line with our hypothesis, skull taps elicited a pattern of cortical activity closely similar to one elicited by auditory tone bursts. Further analysis will determine the extent to which the skull taps can replace the auditory tone stimulation in clinical and basic science vestibular assessments.

  6. Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder.

    PubMed

    Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J

    2017-09-01

    Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.

  7. Changes in cortical thickness during the course of illness in schizophrenia.

    PubMed

    van Haren, Neeltje E M; Schnack, Hugo G; Cahn, Wiepke; van den Heuvel, Martijn P; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S

    2011-09-01

    Whether cortical thickness changes in schizophrenia over time are more pronounced relative to the changes that can be attributed to normal aging has not been studied. To compare patients with schizophrenia and healthy control participants on cortical thickness change. A 5-year longitudinal study comparing schizophrenic patients and healthy controls using 2 magnetic resonance images of the brain. Patients were recruited from the Department of Psychiatry at the University Medical Centre Utrecht and from other psychiatric hospitals in the Netherlands. Healthy controls were recruited via advertisement in newspapers and notice boards. Ninety-six schizophrenic patients and 113 healthy controls aged 16 to 56 years. Cortical thickness and change in cortical thickness on a vertex-by-vertex basis across the cortical mantle, measures of functional and symptomatic outcome, and cumulative intake of antipsychotics during the scan interval. At baseline, the schizophrenic patients had thinner left orbitofrontal and right parahippocampal and superior temporal cortices and a thicker superior parietal lobule and occipital pole compared with the controls. Mean cortical thickness did not differ between the groups. Over time, excessive cortical thinning was found in widespread areas on the cortical mantle, most pronounced bilaterally in the temporal cortex and in the left frontal area. Poor outcome in patients was associated with more pronounced cortical thinning. Higher cumulative intake of typical antipsychotics during the scan interval was associated with more pronounced cortical thinning, whereas higher cumulative intake of atypical antipsychotic medication was associated with less pronounced cortical thinning. In schizophrenia, the cortex shows excessive thinning over time in widespread areas of the brain, most pronounced in the frontal and temporal areas, and progresses across the entire course of the illness. The excessive thinning of the cortex appears related to outcome and medication intake.

  8. Spontaneous mentalizing during an interactive real world task: an fMRI study.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2006-01-01

    There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.

  9. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes.

    PubMed

    Castelli, Fulvia; Frith, Chris; Happé, Francesca; Frith, Uta

    2002-08-01

    Ten able adults with autism or Asperger syndrome and 10 normal volunteers were PET scanned while watching animated sequences. The animations depicted two triangles moving about on a screen in three different conditions: moving randomly, moving in a goal-directed fashion (chasing, fighting), and moving interactively with implied intentions (coaxing, tricking). The last condition frequently elicited descriptions in terms of mental states that viewers attributed to the triangles (mentalizing). The autism group gave fewer and less accurate descriptions of these latter animations, but equally accurate descriptions of the other animations compared with controls. While viewing animations that elicited mentalizing, in contrast to randomly moving shapes, the normal group showed increased activation in a previously identified mentalizing network (medial prefrontal cortex, superior temporal sulcus at the temporo-parietal junction and temporal poles). The autism group showed less activation than the normal group in all these regions. However, one additional region, extrastriate cortex, which was highly active when watching animations that elicited mentalizing, showed the same amount of increased activation in both groups. In the autism group this extrastriate region showed reduced functional connectivity with the superior temporal sulcus at the temporo-parietal junction, an area associated with the processing of biological motion as well as with mentalizing. This finding suggests a physiological cause for the mentalizing dysfunction in autism: a bottleneck in the interaction between higher order and lower order perceptual processes.

  10. The neural circuitry of visual artistic production and appreciation: A proposition.

    PubMed

    Chakravarty, Ambar

    2012-04-01

    The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.

  11. Relationships between Cerebral Blood Flow and IQ in Typically Developing Children and Adolescents.

    PubMed

    Kilroy, Emily; Liu, Collin Y; Yan, Lirong; Kim, Yoon Chun; Dapretto, Mirella; Mendez, Mario F; Wang, Danny J J

    2011-01-01

    The objective of this study was to explore the relationships between IQ and cerebral blood flow (CBF) measured by arterial spin labeling (ASL) in children and adolescents. ASL was used to collect perfusion MRI data on 39 healthy participants aged 7 to 17. The Wechsler Abbreviated Intelligence Scale was administered to determine IQ scores. Multivariate regression was applied to reveal correlations between CBF and IQ scores, accounting for age, sex and global mean CBF. Voxel Based Morphometry (VBM) analysis, which measures regional cortical volume, was performed as a control. Regression analyses were further performed on CBF data with adjustment of regional gray matter density (GMD). A positive correlation between CBF and IQ scores was primarily seen in the subgenual/anterior cingulate, right orbitofrontal, superior temporal and right inferior parietal regions. An inverse relationship between CBF and IQ was mainly observed in bilateral posterior temporal regions. After adjusting for regional GMD, the correlations between CBF and IQ in the subgenual/anterior cingulate cortex, right orbitofrontal, superior temporal regions and left insula remained significant. These findings support the Parieto-Frontal Integration Theory of intelligence, especially the role of the subgenual/anterior cingulate cortex in the neural networks associated with intelligence. The present study also demonstrates the unique value of CBF in assessing brain-behavior relationships, in addition to structural morphometric measures.

  12. Spontaneous alterations of regional brain activity in patients with adult generalized anxiety disorder

    PubMed Central

    Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua

    2017-01-01

    Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831

  13. The neural circuitry of visual artistic production and appreciation: A proposition

    PubMed Central

    Chakravarty, Ambar

    2012-01-01

    The nondominant inferior parietal lobule is probably a major “store house” of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo–amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously. PMID:22566716

  14. Perceiving emotional expressions in others: Activation likelihood estimation meta-analyses of explicit evaluation, passive perception and incidental perception of emotions.

    PubMed

    Dricu, Mihai; Frühholz, Sascha

    2016-12-01

    We conducted a series of activation likelihood estimation (ALE) meta-analyses to determine the commonalities and distinctions between separate levels of emotion perception, namely incidental perception, passive perception, and explicit evaluation of emotional expressions. Pooling together more than 180 neuroimaging experiments using facial, vocal or body expressions, our results are threefold. First, explicitly evaluating the emotions of others recruits brain regions associated with the sensory processing of expressions, such as the inferior occipital gyrus, middle fusiform gyrus and the superior temporal gyrus, and brain regions involved in low-level and high-level mindreading, namely the posterior superior temporal sulcus, the inferior frontal cortex and dorsomedial frontal cortex. Second, we show that only the sensory regions were also consistently active during the passive perception of emotional expressions. Third, we show that the brain regions involved in mindreading were active during the explicit evaluation of both facial and vocal expressions. We discuss these results in light of the existing literature and conclude by proposing a cognitive model for perceiving and evaluating the emotions of others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Neural basis of processing threatening voices in a crowded auditory world

    PubMed Central

    Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.

    2016-01-01

    In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543

  16. Independence of Early Speech Processing from Word Meaning

    PubMed Central

    Travis, Katherine E.; Leonard, Matthew K.; Chan, Alexander M.; Torres, Christina; Sizemore, Marisa L.; Qu, Zhe; Eskandar, Emad; Dale, Anders M.; Elman, Jeffrey L.; Cash, Sydney S.; Halgren, Eric

    2013-01-01

    We combined magnetoencephalography (MEG) with magnetic resonance imaging and electrocorticography to separate in anatomy and latency 2 fundamental stages underlying speech comprehension. The first acoustic-phonetic stage is selective for words relative to control stimuli individually matched on acoustic properties. It begins ∼60 ms after stimulus onset and is localized to middle superior temporal cortex. It was replicated in another experiment, but is strongly dissociated from the response to tones in the same subjects. Within the same task, semantic priming of the same words by a related picture modulates cortical processing in a broader network, but this does not begin until ∼217 ms. The earlier onset of acoustic-phonetic processing compared with lexico-semantic modulation was significant in each individual subject. The MEG source estimates were confirmed with intracranial local field potential and high gamma power responses acquired in 2 additional subjects performing the same task. These recordings further identified sites within superior temporal cortex that responded only to the acoustic-phonetic contrast at short latencies, or the lexico-semantic at long. The independence of the early acoustic-phonetic response from semantic context suggests a limited role for lexical feedback in early speech perception. PMID:22875868

  17. Navigating the complex path between the oxytocin receptor gene (OXTR) and cooperation: an endophenotype approach.

    PubMed

    Haas, Brian W; Anderson, Ian W; Smith, Jessica M

    2013-11-28

    Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation.

  18. Navigating the complex path between the oxytocin receptor gene (OXTR) and cooperation: an endophenotype approach

    PubMed Central

    Haas, Brian W.; Anderson, Ian W.; Smith, Jessica M.

    2013-01-01

    Although cooperation represents a core facet of human social behavior there exists considerable variability across people in terms of the tendency to cooperate. One factor that may contribute to individual differences in cooperation is a key gene within the oxytocin (OT) system, the OT reception gene (OXTR). In this article, we aim to bridge the gap between the OXTR gene and cooperation by using an endophenotype approach. We present evidence that the association between the OXTR gene and cooperation may in part be due to how the OXTR gene affects brain systems involved in emotion recognition, empathy/theory of mind, social communication and social reward seeking. There is evidence that the OXTR gene is associated with the functional anatomy of the amygdala, visual cortex (VC), anterior cingulate and superior temporal gyrus (STG). However, it is currently unknown how the OXTR gene may be linked to the functional anatomy of other relevant brain regions that include the fusiform gyrus (FG), superior temporal sulcus (STS), ventromedial prefrontal cortex (VMPFC), temporoparietal junction (TPJ) and nucleus accumbens (NAcc). We conclude by highlighting potential future research directions that may elucidate the path between OXTR and complex behaviors such as cooperation. PMID:24348360

  19. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandya, D.N.; Seltzer, B.

    1982-01-10

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2)more » and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.« less

  20. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality

    PubMed Central

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio

    2017-01-01

    Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961

  1. The iconography of mourning and its neural correlates: a functional neuroimaging study

    PubMed Central

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C.

    2017-01-01

    Abstract The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. PMID:28449116

  2. Morphometric MRI features are associated with surgical outcome in mesial temporal lobe epilepsy with hippocampal sclerosis.

    PubMed

    Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Sandim, Gabriel Barbosa; Assunção Leme, Idaiane Batista; Carrete, Henrique; Centeno, Ricardo Silva; Sato, João Ricardo; Yacubian, Elza Márcia Targas

    2017-05-01

    Corticoamygdalohippocampectomy (CAH) improves seizure control, quality of life, and decreases mortality for refractory mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). One-third of patients continue having seizures, and it is pivotal to determine structural abnormalities that might influence the postoperative outcome. Studies indicate that nonhippocampal regions may play a role in the epileptogenic network in MTLE-HS and could generate seizures postoperatively. The aim of this study is to analyze areas of atrophy, not always detected on routine MRI, comparing patients who became seizure free (SF) with those non seizure free (NSF) after CAH, in an attempt to establish possible predictors of surgical outcome. 105 patients with refractory MTLE-HS submitted to CAH (59 left MTLE; 46 males) and 47 controls were enrolled. FreeSurfer was performed for cortical thickness and volume estimation comparing patients to controls and SF versus NSF patients. The final sample after post processing procedures resulted in 99 patients. Cortical thickness analyses showed reductions in left insula in NSF patients compared to those SF. Significant volume reductions in SF patients were present in bilateral thalami, hippocampi and pars opercularis, left parahippocampal gyrus and right temporal pole. In NSF patients reductions were present bilaterally in thalami, hippocampi, entorhinal cortices, superior frontal and supramarginal gyri; on the left: superior and middle temporal gyri, temporal pole, parahippocampal gyrus, pars opercularis and middle frontal gyrus; and on the right: precentral, superior, middle and inferior temporal gyri. Comparison between SF and NSF patients showed ipsilateral gray matter reductions in the right entorhinal cortex (p=0.003) and contralateral parahippocampal gyrus (p=0.05) in right MTLE-HS. Patients NSF had a longer duration of epilepsy than those SF (p=0.028). NSF patients exhibited more extensive areas of atrophy than SF ones. As entorhinal cortex and parahippocampal gyrus are reduced in NSF patients compared to those SF these structures might be implicated in the network responsible for the maintenance of postoperative seizures. Duration of epilepsy is a predictor of seizure outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    PubMed

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  4. Childhood abuse and reduced cortical thickness in brain regions involved in emotional processing.

    PubMed

    Gold, Andrea L; Sheridan, Margaret A; Peverill, Matthew; Busso, Daniel S; Lambert, Hilary K; Alves, Sonia; Pine, Daniel S; McLaughlin, Katie A

    2016-10-01

    Alterations in gray matter development represent a potential pathway through which childhood abuse is associated with psychopathology. Several prior studies find reduced volume and thickness of prefrontal (PFC) and temporal cortex regions in abused compared with nonabused adolescents, although most prior research is based on adults and volume-based measures. This study tests the hypothesis that child abuse, independent of parental education, predicts reduced cortical thickness in prefrontal and temporal cortices as well as reduced gray mater volume (GMV) in subcortical regions during adolescence. Structural MRI scans were obtained from 21 adolescents exposed to physical and/or sexual abuse and 37 nonabused adolescents (ages 13-20). Abuse was operationalized using dichotomous and continuous measures. We examined associations between abuse and brain structure in several a priori-defined regions, controlling for parental education, age, sex, race, and total brain volume for subcortical GMV. Significance was evaluated at p < .05 with a false discovery rate correction. Child abuse exposure and severity were associated with reduced thickness in ventromedial prefrontal cortex (PFC), right lateral orbitofrontal cortex, right inferior frontal gyrus, bilateral parahippocampal gyrus (PHG), left temporal pole, and bilateral inferior, right middle, and right superior temporal gyri. Neither abuse measure predicted cortical surface area or subcortical GMV. Bilateral PHG thickness was inversely related to externalizing symptoms. Child abuse, an experience characterized by a high degree of threat, is associated with reduced cortical thickness in ventromedial and ventrolateral PFC and medial and lateral temporal cortex in adolescence. Reduced PHG thickness may be a mediator linking abuse with externalizing psychopathology, although prospective research is needed to evaluate this possibility. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Default network connectivity as a vulnerability marker for obsessive compulsive disorder.

    PubMed

    Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K

    2014-05-01

    Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.

  6. Increased Executive Functioning, Attention, and Cortical Thickness in White-Collar Criminals

    PubMed Central

    Raine, Adrian; Laufer, William S.; Yang, Yaling; Narr, Katherine L.; Thompson, Paul; Toga, Arthur W.

    2011-01-01

    Very little is known on white collar crime and how it differs to other forms of offending. This study tests the hypothesis that white collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared to offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared to controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals It is hypothesized that white collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. PMID:22002326

  7. Increased executive functioning, attention, and cortical thickness in white-collar criminals.

    PubMed

    Raine, Adrian; Laufer, William S; Yang, Yaling; Narr, Katherine L; Thompson, Paul; Toga, Arthur W

    2012-12-01

    Very little is known on white-collar crime and how it differs to other forms of offending. This study tests the hypothesis that white-collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared with offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white-collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White-collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared with controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals. It is hypothesized that white-collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. Copyright © 2011 Wiley Periodicals, Inc.

  8. Neural systems for social cognition: gray matter volume abnormalities in boys at high genetic risk of autism symptoms, and a comparison with idiopathic autism spectrum disorder.

    PubMed

    Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie

    2016-09-01

    Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.

  9. Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study.

    PubMed

    Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars

    2009-01-01

    Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.

  10. Corticocortical evoked potentials reveal projectors and integrators in human brain networks.

    PubMed

    Keller, Corey J; Honey, Christopher J; Entz, Laszlo; Bickel, Stephan; Groppe, David M; Toth, Emilia; Ulbert, Istvan; Lado, Fred A; Mehta, Ashesh D

    2014-07-02

    The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter-regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks. Copyright © 2014 the authors 0270-6474/14/349152-12$15.00/0.

  11. Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar – a functional magnetic resonance imaging (fMRI) study

    PubMed Central

    2013-01-01

    Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896

  12. Mapping the cortical representation of speech sounds in a syllable repetition task.

    PubMed

    Markiewicz, Christopher J; Bohland, Jason W

    2016-11-01

    Speech repetition relies on a series of distributed cortical representations and functional pathways. A speaker must map auditory representations of incoming sounds onto learned speech items, maintain an accurate representation of those items in short-term memory, interface that representation with the motor output system, and fluently articulate the target sequence. A "dorsal stream" consisting of posterior temporal, inferior parietal and premotor regions is thought to mediate auditory-motor representations and transformations, but the nature and activation of these representations for different portions of speech repetition tasks remains unclear. Here we mapped the correlates of phonetic and/or phonological information related to the specific phonemes and syllables that were heard, remembered, and produced using a series of cortical searchlight multi-voxel pattern analyses trained on estimates of BOLD responses from individual trials. Based on responses linked to input events (auditory syllable presentation), predictive vowel-level information was found in the left inferior frontal sulcus, while syllable prediction revealed significant clusters in the left ventral premotor cortex and central sulcus and the left mid superior temporal sulcus. Responses linked to output events (the GO signal cueing overt production) revealed strong clusters of vowel-related information bilaterally in the mid to posterior superior temporal sulcus. For the prediction of onset and coda consonants, input-linked responses yielded distributed clusters in the superior temporal cortices, which were further informative for classifiers trained on output-linked responses. Output-linked responses in the Rolandic cortex made strong predictions for the syllables and consonants produced, but their predictive power was reduced for vowels. The results of this study provide a systematic survey of how cortical response patterns covary with the identity of speech sounds, which will help to constrain and guide theoretical models of speech perception, speech production, and phonological working memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Abnormal functional connectivity of the posterior cingulate cortex is associated with depressive symptoms in patients with Alzheimer’s disease

    PubMed Central

    Zhang, Jiangtao; Guo, Zhongwei; Liu, Xiaozheng; Jia, Xize; Li, Jiapeng; Li, Yaoyao; Lv, Danmei; Chen, Wei

    2017-01-01

    Background Depressive symptoms are significant and very common psychiatric complications in patients with Alzheimer’s disease (AD), which can aggravate the decline in social function. However, changes in the functional connectivity (FC) of the brain in AD patients with depressive symptoms (D-AD) remain unclear. Objective To investigate whether any differences exist in the FC of the posterior cingulate cortex (PCC) between D-AD patients and non-depressed AD patients (nD-AD). Materials and methods We recruited 15 D-AD patients and 17 age-, sex-, educational level-, and Mini-Mental State Examination (MMSE)-matched nD-AD patients to undergo tests using the Neuropsychiatric Inventory, Hamilton Depression Rating Scale, and 3.0T resting-state functional magnetic resonance imaging. Bilateral PCC were selected as the regions of interest and between-group differences in the PCC FC network were assessed using Student’s t-test. Results Compared with the nD-AD group, D-AD patients showed increased PCC FC in the right amygdala, right parahippocampus, right superior temporal pole, right middle temporal lobe, right middle temporal pole, and right hippocampus (AlphaSim correction; P<0.05). In the nD-AD group, MMSE scores were positively correlated with PCC FC in the right superior temporal pole and right hippocampus (false discovery rate corrected; P<0.05). Conclusion Differences were detected in PCC FC between nD-AD and D-AD patients, which may be related to depressive symptoms. Our study provides a significant enhancement to our understanding of the functional mechanisms underlying D-AD. PMID:29066900

  14. Frontotemporal neural systems supporting semantic processing in Alzheimer's disease.

    PubMed

    Peelle, Jonathan E; Powers, John; Cook, Philip A; Smith, Edward E; Grossman, Murray

    2014-03-01

    We hypothesized that semantic memory for object concepts involves both representations of visual feature knowledge in modality-specific association cortex and heteromodal regions that are important for integrating and organizing this semantic knowledge so that it can be used in a flexible, contextually appropriate manner. We examined this hypothesis in an fMRI study of mild Alzheimer's disease (AD). Participants were presented with pairs of printed words and asked whether the words matched on a given visual-perceptual feature (e.g., guitar, violin: SHAPE). The stimuli probed natural kinds and manufactured objects, and the judgments involved shape or color. We found activation of bilateral ventral temporal cortex and left dorsolateral prefrontal cortex during semantic judgments, with AD patients showing less activation of these regions than healthy seniors. Moreover, AD patients showed less ventral temporal activation than did healthy seniors for manufactured objects, but not for natural kinds. We also used diffusion-weighted MRI of white matter to examine fractional anisotropy (FA). Patients with AD showed significantly reduced FA in the superior longitudinal fasciculus and inferior frontal-occipital fasciculus, which carry projections linking temporal and frontal regions of this semantic network. Our results are consistent with the hypothesis that semantic memory is supported in part by a large-scale neural network involving modality-specific association cortex, heteromodal association cortex, and projections between these regions. The semantic deficit in AD thus arises from gray matter disease that affects the representation of feature knowledge and processing its content, as well as white matter disease that interrupts the integrated functioning of this large-scale network.

  15. Association of Hippocampal Substructure Resting-State Functional Connectivity with Memory Performance in Older Adults.

    PubMed

    Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J

    2018-06-01

    Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    PubMed

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Neural Substrates of Counterfactual Emotions After Risky Decisions in Late Adolescents and Young Adults.

    PubMed

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn

    2018-03-01

    Adolescents' neural substrates of emotional reactions to the consequences of risky decisions are poorly understood. In this functional magnetic resonance imaging study, 30 late adolescents and 30 young adults made risky and neutral decisions in social scenarios and received valenced outcomes. Negative outcomes in risky decisions eliciting regret, as compared with negative outcomes in neutral decisions eliciting disappointment, activated executive control (orbitofrontal cortex) and self-relevance regions (middle temporal gyrus [MTG], posterior cingulate cortex, and precuneus) for both age groups. Young adults showed more activation than adolescents in regret and disappointment as compared with relief and elation conditions in the avoidance (insula), action monitoring (inferior frontal gyrus, pre-SMA, and caudate), and social-cognition regions (superior temporal sulcus and MTG). These late socio-emotional developments may pave the way for more adaptive decision-making behavior in social contexts. © 2018 Society for Research on Adolescence.

  18. Cortical Integration of Audio-Visual Information

    PubMed Central

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  19. A case of musical anhedonia due to right putaminal hemorrhage: a disconnection syndrome between the auditory cortex and insula.

    PubMed

    Satoh, Masayuki; Kato, Natsuko; Tabei, Ken-Ichi; Nakano, Chizuru; Abe, Makiko; Fujita, Risa; Kida, Hirotaka; Tomimoto, Hidekazu; Kondo, Kiyohiko

    2016-12-01

    A 63-year-old, right-handed professional chorus conductor developed right putaminal hemorrhage, and became unable to experience emotion while listening to music. Two years later, neurological examination revealed slight left hemiparesis. Neuromusicological assessments revealed impaired judgment of "musical sense," and the inability to discriminate the sound of chords in pure intervals from those in equal temperament. Brain MRI and tractography identified the old hemorrhagic lesion in the right putamen and impaired fiber connectivity between the right insula and superior temporal lobe. These findings suggest that musical anhedonia might be caused by a disconnection between the insula and auditory cortex.

  20. The frequency modulated auditory evoked response (FMAER), a technical advance for study of childhood language disorders: cortical source localization and selected case studies

    PubMed Central

    2013-01-01

    Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings. PMID:23351174

  1. Localization of cortical areas activated by thinking.

    PubMed

    Roland, P E; Friberg, L

    1985-05-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All rCBF increases extended over a few square centimeters of the cortex. The activation of the superior prefrontal cortex was attributed to the organization of thinking. The activation of the angular cortex in 50-3 thinking was attributed to the retrieval of the numerical memory and memory for subtractions. The activation of the right midtemporal cortex was attributed to the retrieval of the nonverbal auditory memory.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex

    PubMed Central

    Jeong, Su Keun

    2016-01-01

    The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been associated with human occipital and temporal cortices, here we show, by measuring fMRI response patterns, that a region in the human parietal cortex can robustly represent task-relevant object identities. These representations are invariant to changes in a host of visual features, such as viewpoint, and reflect an abstract level of representation that has not previously been reported in the human parietal cortex. Critically, these neural representations are behaviorally relevant as they closely track the perceived object identities. Human parietal cortex thus participates in the moment-to-moment goal-directed visual information representation in the brain. PMID:26843642

  3. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  4. Reafferent copies of imitated actions in the right superior temporal cortex

    PubMed Central

    Iacoboni, Marco; Koski, Lisa M.; Brass, Marcel; Bekkering, Harold; Woods, Roger P.; Dubeau, Marie-Charlotte; Mazziotta, John C.; Rizzolatti, Giacomo

    2001-01-01

    Imitation is a complex phenomenon, the neural mechanisms of which are still largely unknown. When individuals imitate an action that already is present in their motor repertoire, a mechanism matching the observed action onto an internal motor representation of that action should suffice for the purpose. When one has to copy a new action, however, or to adjust an action present in one's motor repertoire to a different observed action, an additional mechanism is needed that allows the observer to compare the action made by another individual with the sensory consequences of the same action made by himself. Previous experiments have shown that a mechanism that directly matches observed actions on their motor counterparts exists in the premotor cortex of monkeys and humans. Here we report the results of functional magnetic resonance experiments, suggesting that in the superior temporal sulcus, a higher order visual region, there is a sector that becomes active both during hand action observation and during imitation even in the absence of direct vision of the imitator's hand. The motor-related activity is greater during imitation than during control motor tasks. This newly identified region has all the requisites for being the region at which the observed actions, and the reafferent motor-related copies of actions made by the imitator, interact. PMID:11717457

  5. Phonetically Irregular Word Pronunciation and Cortical Thickness in the Adult Brain

    PubMed Central

    Blackmon, Karen; Barr, William B.; Kuzniecky, Ruben; DuBois, Jonathan; Carlson, Chad; Quinn, Brian T.; Blumberg, Mark; Halgren, Eric; Hagler, Donald J.; Mikhly, Mark; Devinsky, Orrin; McDonald, Carrie R.; Dale, Anders M.; Thesen, Thomas

    2010-01-01

    Accurate pronunciation of phonetically irregular words (exception words) requires prior exposure to unique relationships between orthographic and phonemic features. Whether such word knowledge is accompanied by structural variation in areas associated with orthographic-to-phonemic transformations has not been investigated. We used high resolution MRI to determine whether performance on a visual word-reading test composed of phonetically irregular words, the Wechsler Test of Adult Reading (WTAR), is associated with regional variations in cortical structure. A sample of 60 right-handed, neurologically intact individuals were administered the WTAR and underwent 3T volumetric MRI. Using quantitative, surface-based image analysis, cortical thickness was estimated at each vertex on the cortical mantle and correlated with WTAR scores while controlling for age. Higher scores on the WTAR were associated with thicker cortex in bilateral anterior superior temporal gyrus, bilateral angular gyrus/posterior superior temporal gyrus, and left hemisphere intraparietal sulcus. Higher scores were also associated with thinner cortex in left hemisphere posterior fusiform gyrus and central sulcus, bilateral inferior frontal gyrus, and right hemisphere lingual gyrus and supramarginal gyrus. These results suggest that the ability to correctly pronounce phonetically irregular words is associated with structural variations in cortical areas that are commonly activated in functional neuroimaging studies of word reading, including areas associated with grapheme-to–phonemic conversion. PMID:20302944

  6. Sensitive period for white-matter connectivity of superior temporal cortex in deaf people.

    PubMed

    Li, Yanyan; Ding, Guosheng; Booth, James R; Huang, Ruiwang; Lv, Yating; Zang, Yufeng; He, Yong; Peng, Danling

    2012-02-01

    Previous studies have shown that white matter in the deaf brain changes due to hearing loss. However, how white-matter development is influenced by early hearing experience of deaf people is still unknown. Using diffusion tensor imaging and tract-based spatial statistics, we compared white-matter structures among three groups of subjects including 60 congenitally deaf individuals, 36 acquired deaf (AD) individuals, and 38 sex- and age-matched hearing controls (HC). The result showed that the deaf individuals had significantly reduced fractional anisotropy (FA) values in bilateral superior temporal cortex and the splenium of corpus callosum compared to HC. The reduction of FA values in acquired deafness correlated with onset age of deafness, but not the duration of deafness. To explore the underlying mechanism of FA changes in the deaf groups, we further analyzed radial and axial diffusivities and found that (1) the reduced FA values in deaf individuals compared to HC is primarily driven by higher radial diffusivity values and (2) in the AD, higher radial diffusivity was correlated with earlier onset age of deafness, but not the duration of deafness. These findings imply that early sensory experience is critical for the growth of fiber myelination, and anatomical reorganization following auditory deprivation is sensitive to early plasticity in the brain. Copyright © 2010 Wiley Periodicals, Inc.

  7. ‘Inner voices’: the cerebral representation of emotional voice cues described in literary texts

    PubMed Central

    Kreifelts, Benjamin; Gößling-Arnold, Christina; Wertheimer, Jürgen; Wildgruber, Dirk

    2014-01-01

    While non-verbal affective voice cues are generally recognized as a crucial behavioral guide in any day-to-day conversation their role as a powerful source of information may extend well beyond close-up personal interactions and include other modes of communication such as written discourse or literature as well. Building on the assumption that similarities between the different ‘modes’ of voice cues may not only be limited to their functional role but may also include cerebral mechanisms engaged in the decoding process, the present functional magnetic resonance imaging study aimed at exploring brain responses associated with processing emotional voice signals described in literary texts. Emphasis was placed on evaluating ‘voice’ sensitive as well as task- and emotion-related modulations of brain activation frequently associated with the decoding of acoustic vocal cues. Obtained findings suggest that several similarities emerge with respect to the perception of acoustic voice signals: results identify the superior temporal, lateral and medial frontal cortex as well as the posterior cingulate cortex and cerebellum to contribute to the decoding process, with similarities to acoustic voice perception reflected in a ‘voice’-cue preference of temporal voice areas as well as an emotion-related modulation of the medial frontal cortex and a task-modulated response of the lateral frontal cortex. PMID:24396008

  8. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    PubMed Central

    Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061

  9. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.

    PubMed

    Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  10. The iconography of mourning and its neural correlates: a functional neuroimaging study.

    PubMed

    Labek, Karin; Berger, Samantha; Buchheim, Anna; Bosch, Julia; Spohrs, Jennifer; Dommes, Lisa; Beschoner, Petra; Stingl, Julia C; Viviani, Roberto

    2017-08-01

    The present functional neuroimaging study focuses on the iconography of mourning. A culture-specific pattern of body postures of mourning individuals, mostly suggesting withdrawal, emerged from a survey of visual material. When used in different combinations in stylized drawings in our neuroimaging study, this material activated cortical areas commonly seen in studies of social cognition (temporo-parietal junction, superior temporal gyrus, and inferior temporal lobe), empathy for pain (somatosensory cortex), and loss (precuneus, middle/posterior cingular gyrus). This pattern of activation developed over time. While in the early phases of exposure lower association areas, such as the extrastriate body area, were active, in the late phases activation in parietal and temporal association areas and the prefrontal cortex was more prominent. These findings are consistent with the conventional and contextual character of iconographic material, and further differentiate it from emotionally negatively valenced and high-arousing stimuli. In future studies, this neuroimaging assay may be useful in characterizing interpretive appraisal of material of negative emotional valence. © The Author (2017). Published by Oxford University Press.

  11. Tracking speech comprehension in space and time.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto J; Marslen-Wilson, William D

    2006-07-01

    A fundamental challenge for the cognitive neuroscience of language is to capture the spatio-temporal patterns of brain activity that underlie critical functional components of the language comprehension process. We combine here psycholinguistic analysis, whole-head magnetoencephalography (MEG), the Mismatch Negativity (MMN) paradigm, and state-of-the-art source localization techniques (Equivalent Current Dipole and L1 Minimum-Norm Current Estimates) to locate the process of spoken word recognition at a specific moment in space and time. The magnetic MMN to words presented as rare "deviant stimuli" in an oddball paradigm among repetitive "standard" speech stimuli, peaked 100-150 ms after the information in the acoustic input, was sufficient for word recognition. The latency with which words were recognized corresponded to that of an MMN source in the left superior temporal cortex. There was a significant correlation (r = 0.7) of latency measures of word recognition in individual study participants with the latency of the activity peak of the superior temporal source. These results demonstrate a correspondence between the behaviorally determined recognition point for spoken words and the cortical activation in left posterior superior temporal areas. Both the MMN calculated in the classic manner, obtained by subtracting standard from deviant stimulus response recorded in the same experiment, and the identity MMN (iMMN), defined as the difference between the neuromagnetic responses to the same stimulus presented as standard and deviant stimulus, showed the same significant correlation with word recognition processes.

  12. Memory traces for spoken words in the brain as revealed by the hemodynamic correlate of the mismatch negativity.

    PubMed

    Shtyrov, Yury; Osswald, Katja; Pulvermüller, Friedemann

    2008-01-01

    The mismatch negativity response, considered a brain correlate of automatic preattentive auditory processing, is enhanced for word stimuli as compared with acoustically matched pseudowords. This lexical enhancement, taken as a signature of activation of language-specific long-term memory traces, was investigated here using functional magnetic resonance imaging to complement the previous electrophysiological studies. In passive oddball paradigm, word stimuli were randomly presented as rare deviants among frequent pseudowords; the reverse conditions employed infrequent pseudowords among word stimuli. Random-effect analysis indicated clearly distinct patterns for the different lexical types. Whereas the hemodynamic mismatch response was significant for the word deviants, it did not reach significance for the pseudoword conditions. This difference, more pronounced in the left than right hemisphere, was also assessed by analyzing average parameter estimates in regions of interests within both temporal lobes. A significant hemisphere-by-lexicality interaction confirmed stronger blood oxygenation level-dependent mismatch responses to words than pseudowords in the left but not in the right superior temporal cortex. The increased left superior temporal activation and the laterality of cortical sources elicited by spoken words compared with pseudowords may indicate the activation of cortical circuits for lexical material even in passive oddball conditions and suggest involvement of the left superior temporal areas in housing such word-processing neuronal circuits.

  13. The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    PubMed Central

    Evans, S.; Kyong, J.S.; Rosen, S.; Golestani, N.; Warren, J.E.; McGettigan, C.; Mourão-Miranda, J.; Wise, R.J.S.; Scott, S.K.

    2014-01-01

    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing. PMID:23585519

  14. Understanding The Neural Mechanisms Involved In Sensory Control Of Voice Production

    PubMed Central

    Parkinson, Amy L.; Flagmeier, Sabina G.; Manes, Jordan L.; Larson, Charles R.; Rogers, Bill; Robin, Donald A.

    2012-01-01

    Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0. PMID:22406500

  15. Neural Activation during Anticipation of Near Pain-Threshold Stimulation among the Pain-Fearful.

    PubMed

    Yang, Zhou; Jackson, Todd; Huang, Chengzhi

    2016-01-01

    Fear of pain (FOP) can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men) and less (7 women, 6 men) pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI) during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain perception regions (e.g., bilateral insula, midcingulate cortex (MCC), thalamus, superior frontal gyrus) and visual areas linked to decoding stimulus valences (inferior orbital cortex) during anticipation of "painful" stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole), though group differences were not apparent in most so-called "pain matrix" regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation.

  16. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  17. Dissociation of working memory processing associated with native and second languages: PET investigation.

    PubMed

    Kim, Jae-Jin; Kim, Myung Sun; Lee, Jae Sung; Lee, Dong Soo; Lee, Myung Chul; Kwon, Jun Soo

    2002-04-01

    Verbal working memory plays a significant role in language comprehension and problem-solving. The prefrontal cortex has been suggested as a critical area in working memory. Given that domain-specific dissociations of working memory may exist within the prefrontal cortex, it is possible that there may also be further functional divisions within the verbal working memory processing. While differences in the areas of the brain engaged in native and second languages have been demonstrated, little is known about the dissociation of verbal working memory associated with native and second languages. We have used H2(15)O positron emission tomography in 14 normal subjects in order to identify the neural correlates selectively involved in working memory of native (Korean) and second (English) languages. All subjects were highly proficient in the native language but poorly proficient in the second language. Cognitive tasks were a two-back task for three kinds of visually presented objects: simple pictures, English words, and Korean words. The anterior portion of the right dorsolateral prefrontal cortex and the left superior temporal gyrus were activated in working memory for the native language, whereas the posterior portion of the right dorsolateral prefrontal cortex and the left inferior temporal gyrus were activated in working memory for the second language. The results suggest that the right dorsolateral prefrontal cortex and left temporal lobe may be organized into two discrete, language-related functional systems. Internal phonological processing seems to play a predominant role in working memory processing for the native language with a high proficiency, whereas visual higher order control does so for the second language with a low proficiency. (C)2002 Elsevier Science (USA).

  18. Brain structural abnormalities and mental health sequelae in South Vietnamese ex-political detainees who survived traumatic head injury and torture.

    PubMed

    Mollica, Richard F; Lyoo, In Kyoon; Chernoff, Miriam C; Bui, Hoan X; Lavelle, James; Yoon, Sujung J; Kim, Jieun E; Renshaw, Perry F

    2009-11-01

    A pilot study of South Vietnamese ex-political detainees who had been incarcerated in Vietnamese reeducation camps and resettled in the United States disclosed significant mental health problems associated with torture and traumatic head injury (THI). To identify structural brain alterations associated with THI and to investigate whether these deficits are associated with posttraumatic stress disorder and depression. Cross-sectional neuroimaging study. Massachusetts General Hospital and McLean Hospital. A subsample of Vietnamese ex-political detainees (n = 42) and comparison subjects (n = 16) selected from a community study of 337 ex-political detainees and 82 comparison subjects. Scores on the Vietnamese versions of the Hopkins Symptom Checklist-25 (HSCL) and Harvard Trauma Questionnaire for depression and posttraumatic stress disorder, respectively; cerebral regional cortical thickness; and manual volumetric morphometry of the amygdala, hippocampus, and thalamus. Ex-political detainees exposed to THI (n = 16) showed a higher rate of depression (odds ratio, 10.2; 95% confidence interval, 1.2-90.0) than those without THI exposure (n = 26). Ex-political detainees with THI had thinner prefrontotemporal cortices than those without THI exposure (P < .001 by the statistical difference brain map) in the left dorsolateral prefrontal and bilateral superior temporal cortices, controlling for age, handedness, and number of trauma/torture events (left superior frontal cortex [SFC], P = .006; left middle frontal cortex, P = .01; left superior temporal cortex [STC], P = .007; right STC, P = .01). Trauma/torture events were associated with bilateral amygdala volume loss (left, P = .045; right, P = .003). Cortical thinning associated with THI in the left SFC and bilateral STC was related to HSCL depression scores in THI-exposed (vs non-THI-exposed) ex-political detainees (left SFC, P for interaction = .007; left STC, P for interaction = .03; right STC, P for interaction = .02). Structural deficits in prefrontotemporal brain regions are linked to THI exposures. These brain lesions are associated with the symptom severity of depression in Vietnamese ex-political detainees.

  19. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    PubMed

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.

  20. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.

    PubMed

    Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao

    2017-05-01

    The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp 38:2384-2397, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Increased binding of 5-HT1A receptors in a dissociative amnesic patient after the recovery process.

    PubMed

    Kitamura, Soichiro; Yasuno, Fumihiko; Inoue, Makoto; Kosaka, Jun; Kiuchi, Kuniaki; Matsuoka, Kiwamu; Kishimoto, Toshifumi; Suhara, Tetsuya

    2014-10-30

    Dissociative amnesia is characterized by an inability to retrieve information already saved in memories. 5-HT has some role in neural regulatory control and may be related to the recovery from dissociative amnesia. To examine the role of 5-HT1A receptors in the recovery from dissociative amnesia, we performed two positron emission tomography (PET) scans on a 30-year-old patient of dissociative amnesia using [(11)C]WAY-100635, the first at amnesic state, and the second at the time he had recovered. Exploratory voxel-based analysis (VBA) was performed using SPM software. 5-HT1A BPND images were compared between the patient at amnesic and recovery states and healthy subjects (14 males, mean age 29.8 ± 6.45) with Jack-knife analysis. 5-HT1A receptor bindings of the patient at the recovery state were significantly higher than those of healthy subjects in the right superior and middle frontal cortex, left inferior frontal and orbitofrontal cortex and bilateral inferior temporal cortex. The increase in BPND values of recovery state was beyond 10% of those of amnesia state in these regions except in the right superior frontal cortex. We considered that neural regulatory control by the increase of 5-HT1A receptors in cortical regions played a role in the recovery from dissociative amnesia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.

    PubMed

    Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise

    2018-03-01

    We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The lexical processing of abstract and concrete nouns.

    PubMed

    Papagno, Costanza; Fogliata, Arianna; Catricalà, Eleonora; Miniussi, Carlo

    2009-03-31

    Recent activation studies have suggested different neural correlates for processing concrete and abstract words. However, the precise localization is far from being defined. One reason for the heterogeneity of these results could lie in the extreme variability of experimental paradigms, ranging from explicit semantic judgments to lexical decision tasks (auditory and/or visual). The present study explored the processing of abstract/concrete nouns by using repetitive Transcranial Magnetic Stimulation (rTMS) and a lexical decision paradigm in neurologically-unimpaired subjects. Four sites were investigated: left inferior frontal, bilaterally posterior-superior temporal and left posterior-inferior parietal. An interference on accuracy was found for abstract words when rTMS was applied over the left temporal site, while for concrete words accuracy decreased when rTMS was applied over the right temporal site. Accuracy for abstract words, but not for concrete words, decreased after frontal stimulation as compared to the sham condition. These results suggest that abstract lexical entries are stored in the posterior part of the left temporal superior gyrus and possibly in the left frontal inferior gyrus, while the regions involved in storing concrete items include the right temporal cortex. It cannot be excluded, however, that additional areas, not tested in this experiment, are involved in processing both, concrete and abstract nouns.

  4. Thalamic connections of the core auditory cortex and rostral supratemporal plane in the macaque monkey.

    PubMed

    Scott, Brian H; Saleem, Kadharbatcha S; Kikuchi, Yukiko; Fukushima, Makoto; Mishkin, Mortimer; Saunders, Richard C

    2017-11-01

    In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs. © 2017 Wiley Periodicals, Inc.

  5. Neural foundation of human moral reasoning: an ALE meta-analysis about the role of personal perspective.

    PubMed

    Boccia, M; Dacquino, C; Piccardi, L; Cordellieri, P; Guariglia, C; Ferlazzo, F; Ferracuti, S; Giannini, A M

    2017-02-01

    Moral sense is defined as a feeling of the rightness or wrongness of an action that knowingly causes harm to people other than the agent. The large amount of data collected over the past decade allows drawing some definite conclusions about the neurobiological foundations of moral reasoning as well as a systematic investigation of methodological variables during fMRI studies. Here, we verified the existence of converging and consistent evidence in the current literature by means of a meta-analysis of fMRI studies of moral reasoning, using activation likelihood estimation meta-analysis. We also tested for a possible neural segregation as function of the perspective used during moral reasoning i.e., first or third person perspectives. Results demonstrate the existence of a wide network of areas underpinning moral reasoning, including orbitofrontal cortex, insula, amygdala, anterior cingulate cortex as well as precuneus and posterior cingulate cortex. Within this network we found a neural segregation as a function of the personal perspective, with 1PP eliciting higher activation in the bilateral insula and superior temporal gyrus as well as in the anterior cingulate cortex, lingual and fusiform gyri, middle temporal gyrus and precentral gyrus in the left hemisphere, and 3PP eliciting higher activation in the bilateral amygdala, the posterior cingulate cortex, insula and supramarginal gyrus in the left hemisphere as well as the medial and ventromedial prefrontal cortex in the right hemisphere. These results shed some more light on the contribution of these areas to moral reasoning, strongly supporting a functional specialization as a function of the perspective used during moral reasoning.

  6. Tell me twice: A multi-study analysis of the functional connectivity between the cerebrum and cerebellum after repeated trait information.

    PubMed

    Van Overwalle, Frank; Heleven, Elien; Ma, Ning; Mariën, Peter

    2017-01-01

    This multi-study analysis (6 fMRI studies; 142 participants) explores the functional activation and connectivity of the cerebellum with the cerebrum during repeated behavioral information uptake informing about personality traits of different persons. The results suggest that trait repetition recruits activity in areas belonging to the mentalizing and executive control networks in the cerebrum, and the executive control areas in the cerebellum. Cerebral activation was observed in the executive control network including the posterior medial frontal cortex (pmFC), the bilateral prefrontal cortex (PFC) and bilateral inferior parietal cortex (IPC), in the mentalizing network including the bilateral middle temporal cortex (MTC) extending to the right superior temporal cortex (STC), as well as in the visual network including the left cuneus (Cun) and the left inferior occipital cortex. Moreover, cerebellar activation was found bilaterally in lobules VI and VII belonging to the executive control network. Importantly, significant patterns of functional connectivity were found linking these cerebellar executive areas with cerebral executive areas in the medial pmFC, the left PFC and the left IPC, and mentalizing areas in the left MTC. In addition, connectivity was found between the cerebral areas in the left hemisphere involved in the executive and mentalizing networks, as well as with their homolog areas in the right hemisphere. The discussion centers on the role of these cerebello-cerebral connections in matching internal predictions generated by the cerebellum with external information from the cerebrum, presumably involving the sequencing of behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Nature and Neural Correlates of Semantic Association versus Conceptual Similarity

    PubMed Central

    Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A.

    2015-01-01

    The ability to represent concepts and the relationships between them is critical to human cognition. How does the brain code relationships between items that share basic conceptual properties (e.g., dog and wolf) while simultaneously representing associative links between dissimilar items that co-occur in particular contexts (e.g., dog and bone)? To clarify the neural bases of these semantic components in neurologically intact participants, both types of semantic relationship were investigated in an fMRI study optimized for anterior temporal lobe (ATL) coverage. The clear principal finding was that the same core semantic network (ATL, superior temporal sulcus, ventral prefrontal cortex) was equivalently engaged when participants made semantic judgments on the basis of association or conceptual similarity. Direct comparisons revealed small, weaker differences for conceptual similarity > associative decisions (e.g., inferior prefrontal cortex) and associative > conceptual similarity (e.g., ventral parietal cortex) which appear to reflect graded differences in task difficulty. Indeed, once reaction time was entered as a covariate into the analysis, no associative versus category differences remained. The paper concludes with a discussion of how categorical/feature-based and associative relationships might be represented within a single, unified semantic system. PMID:25636912

  8. Differential roles of right temporal cortex and Broca's area in pitch processing: evidence from music and Mandarin.

    PubMed

    Nan, Yun; Friederici, Angela D

    2013-09-01

    Superior temporal and inferior frontal cortices are involved in the processing of pitch information in the domain of language and music. Here, we used fMRI to test the particular roles of these brain regions in the neural implementation of pitch in music and in tone language (Mandarin) with a group of Mandarin speaking musicians whose pertaining experiences in pitch are similar across domains. Our findings demonstrate that the neural network for pitch processing includes the pars triangularis of Broca's area and the right superior temporal gyrus (STG) across domains. Within this network, pitch sensitive activation in Broca's area is tightly linked to the behavioral performance of pitch congruity judgment, thereby reflecting controlled processes. Activation in the right STG is independent of performance and more sensitive to pitch congruity in music than in tone language, suggesting a domain-specific modulation of the perceptual processes. These observations provide a first glimpse at the cortical pitch processing network shared across domains. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  9. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys.

    PubMed

    Muntané, Gerard; Santpere, Gabriel; Verendeev, Andrey; Seeley, William W; Jacobs, Bob; Hopkins, William D; Navarro, Arcadi; Sherwood, Chet C

    2017-09-01

    Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.

  10. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability

    PubMed Central

    Thivard, Lionel; Pradat, Pierre‐François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-01-01

    The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS‐R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS‐R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS‐R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant. PMID:17635981

  11. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability.

    PubMed

    Thivard, Lionel; Pradat, Pierre-François; Lehéricy, Stéphane; Lacomblez, Lucette; Dormont, Didier; Chiras, Jacques; Benali, Habib; Meininger, Vincent

    2007-08-01

    The aim of this study was to investigate the extent of cortical and subcortical lesions in amyotrophic lateral sclerosis (ALS) using, in combination, voxel based diffusion tensor imaging (DTI) and voxel based morphometry (VBM). We included 15 patients with definite or probable ALS and 25 healthy volunteers. Patients were assessed using the revised ALS Functional Rating Scale (ALSFRS-R). In patients, reduced fractional anisotropy was found in bilateral corticospinal tracts, the left insula/ventrolateral premotor cortex, the right parietal cortex and the thalamus, which correlated with the ALSFRS-R. Increased mean diffusivity (MD) was found bilaterally in the motor cortex, the ventrolateral premotor cortex/insula, the hippocampal formations and the right superior temporal gyrus, which did not correlate with the ALSFRS-R. VBM analysis showed no changes in white matter but widespread volume decreases in grey matter in several regions exhibiting MD abnormalities. In ALS patients, our results show that subcortical lesions extend beyond the corticospinal tract and are clinically relevant.

  12. Direct cortical stimulation of inferior frontal cortex disrupts both speech and music production in highly trained musicians.

    PubMed

    Leonard, Matthew K; Desai, Maansi; Hungate, Dylan; Cai, Ruofan; Singhal, Nilika S; Knowlton, Robert C; Chang, Edward F

    2018-05-22

    Music and speech are human-specific behaviours that share numerous properties, including the fine motor skills required to produce them. Given these similarities, previous work has suggested that music and speech may at least partially share neural substrates. To date, much of this work has focused on perception, and has not investigated the neural basis of production, particularly in trained musicians. Here, we report two rare cases of musicians undergoing neurosurgical procedures, where it was possible to directly stimulate the left hemisphere cortex during speech and piano/guitar music production tasks. We found that stimulation to left inferior frontal cortex, including pars opercularis and ventral pre-central gyrus, caused slowing and arrest for both speech and music, and note sequence errors for music. Stimulation to posterior superior temporal cortex only caused production errors during speech. These results demonstrate partially dissociable networks underlying speech and music production, with a shared substrate in frontal regions.

  13. Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    PubMed Central

    Gutiérrez-Galve, Leticia; Wheeler-Kingshott, Claudia A.M.; Altmann, Daniel R.; Price, Gary; Chu, Elvina M.; Leeson, Verity C.; Lobo, Antonio; Barker, Gareth J.; Barnes, Thomas R.E.; Joyce, Eileen M.; Ron, María A.

    2010-01-01

    Background Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters. Methods Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function. Results Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered. Conclusions Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases. PMID:20452574

  14. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women.

    PubMed

    García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo

    2017-07-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  15. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  16. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.

    PubMed

    Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T

    2016-01-01

    The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70-150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance.

  17. Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus

    PubMed Central

    Foo, Francine; King-Stephens, David; Weber, Peter; Laxer, Kenneth; Parvizi, Josef; Knight, Robert T.

    2016-01-01

    The auditory cortex is well-known to be critical for music perception, including the perception of consonance and dissonance. Studies on the neural correlates of consonance and dissonance perception have largely employed non-invasive electrophysiological and functional imaging techniques in humans as well as neurophysiological recordings in animals, but the fine-grained spatiotemporal dynamics within the human auditory cortex remain unknown. We recorded electrocorticographic (ECoG) signals directly from the lateral surface of either the left or right temporal lobe of eight patients undergoing neurosurgical treatment as they passively listened to highly consonant and highly dissonant musical chords. We assessed ECoG activity in the high gamma (γhigh, 70–150 Hz) frequency range within the superior temporal gyrus (STG) and observed two types of cortical sites of interest in both hemispheres: one type showed no significant difference in γhigh activity between consonant and dissonant chords, and another type showed increased γhigh responses to dissonant chords between 75 and 200 ms post-stimulus onset. Furthermore, a subset of these sites exhibited additional sensitivity towards different types of dissonant chords, and a positive correlation between changes in γhigh power and the degree of stimulus roughness was observed in both hemispheres. We also observed a distinct spatial organization of cortical sites in the right STG, with dissonant-sensitive sites located anterior to non-sensitive sites. In sum, these findings demonstrate differential processing of consonance and dissonance in bilateral STG with the right hemisphere exhibiting robust and spatially organized sensitivity toward dissonance. PMID:27148011

  18. Brain organization underlying superior mathematical abilities in children with autism.

    PubMed

    Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod

    2014-02-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study.

    PubMed

    Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran

    2014-09-01

    We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S

    2015-09-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Resting state functional connectivity of the anterior striatum and prefrontal cortex predicts reading performance in school-age children.

    PubMed

    Alcauter, Sarael; García-Mondragón, Liliana; Gracia-Tabuenca, Zeus; Moreno, Martha B; Ortiz, Juan J; Barrios, Fernando A

    2017-11-01

    The current study investigated the neural basis of reading performance in 60 school-age Spanish-speaking children, aged 6 to 9years. By using a data-driven approach and an automated matching procedure, we identified a left-lateralized resting state network that included typical language regions (Wernicke's and Broca's regions), prefrontal cortex, pre- and post-central gyri, superior and middle temporal gyri, cerebellum, and subcortical regions, and explored its relevance for reading performance (accuracy, comprehension and speed). Functional connectivity of the left frontal and temporal cortices and subcortical regions predicted reading speed. These results extend previous findings on the relationship between functional connectivity and reading competence in children, providing new evidence about such relationships in previously unexplored regions in the resting brain, including the left caudate, putamen and thalamus. This work highlights the relevance of a broad network, functionally synchronized in the resting state, for the acquisition and perfecting of reading abilities in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mapping the Primate Visual System with [2-14C]Deoxyglucose

    NASA Astrophysics Data System (ADS)

    Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer

    1982-10-01

    The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.

  3. Cross-Modal and Intra-Modal Characteristics of Visual Function and Speech Perception Performance in Postlingually Deafened, Cochlear Implant Users

    PubMed Central

    Kim, Min-Beom; Shim, Hyun-Yong; Jin, Sun Hwa; Kang, Soojin; Woo, Jihwan; Han, Jong Chul; Lee, Ji Young; Kim, Martha; Cho, Yang-Sun

    2016-01-01

    Evidence of visual-auditory cross-modal plasticity in deaf individuals has been widely reported. Superior visual abilities of deaf individuals have been shown to result in enhanced reactivity to visual events and/or enhanced peripheral spatial attention. The goal of this study was to investigate the association between visual-auditory cross-modal plasticity and speech perception in post-lingually deafened, adult cochlear implant (CI) users. Post-lingually deafened adults with CIs (N = 14) and a group of normal hearing, adult controls (N = 12) participated in this study. The CI participants were divided into a good performer group (good CI, N = 7) and a poor performer group (poor CI, N = 7) based on word recognition scores. Visual evoked potentials (VEP) were recorded from the temporal and occipital cortex to assess reactivity. Visual field (VF) testing was used to assess spatial attention and Goldmann perimetry measures were analyzed to identify differences across groups in the VF. The association of the amplitude of the P1 VEP response over the right temporal or occipital cortex among three groups (control, good CI, poor CI) was analyzed. In addition, the association between VF by different stimuli and word perception score was evaluated. The P1 VEP amplitude recorded from the right temporal cortex was larger in the group of poorly performing CI users than the group of good performers. The P1 amplitude recorded from electrodes near the occipital cortex was smaller for the poor performing group. P1 VEP amplitude in right temporal lobe was negatively correlated with speech perception outcomes for the CI participants (r = -0.736, P = 0.003). However, P1 VEP amplitude measures recorded from near the occipital cortex had a positive correlation with speech perception outcome in the CI participants (r = 0.775, P = 0.001). In VF analysis, CI users showed narrowed central VF (VF to low intensity stimuli). However, their far peripheral VF (VF to high intensity stimuli) was not different from the controls. In addition, the extent of their central VF was positively correlated with speech perception outcome (r = 0.669, P = 0.009). Persistent visual activation in right temporal cortex even after CI causes negative effect on outcome in post-lingual deaf adults. We interpret these results to suggest that insufficient intra-modal (visual) compensation by the occipital cortex may cause negative effects on outcome. Based on our results, it appears that a narrowed central VF could help identify CI users with poor outcomes with their device. PMID:26848755

  4. Three-way ROC validation of rs-fMRI visual information propagation transfer functions used to differentiate between RRMS and CIS optic neuritis patients.

    PubMed

    Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R

    2017-07-01

    Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.

  5. Brain abnormalities in antisocial individuals: implications for the law.

    PubMed

    Yang, Yaling; Glenn, Andrea L; Raine, Adrian

    2008-01-01

    With the increasing popularity in the use of brain imaging on antisocial individuals, an increasing number of brain imaging studies have revealed structural and functional impairments in antisocial, psychopathic, and violent individuals. This review summarizes key findings from brain imaging studies on antisocial/aggressive behavior. Key regions commonly found to be impaired in antisocial populations include the prefrontal cortex (particularly orbitofrontal and dorsolateral prefrontal cortex), superior temporal gyrus, amygdala-hippocampal complex, and anterior cingulate cortex. Key functions of these regions are reviewed to provide a better understanding on how deficits in these regions may predispose to antisocial behavior. Objections to the use of imaging findings in a legal context are outlined, and alternative perspectives raised. It is argued that brain dysfunction is a risk factor for antisocial behavior and that it is likely that imaging will play an increasing (albeit limited) role in legal decision-making. (c) 2008 John Wiley & Sons, Ltd.

  6. Amygdala atrophy affects emotion-related activity in face-responsive regions in frontotemporal degeneration.

    PubMed

    De Winter, François-Laurent; Van den Stock, Jan; de Gelder, Beatrice; Peeters, Ronald; Jastorff, Jan; Sunaert, Stefan; Vanduffel, Wim; Vandenberghe, Rik; Vandenbulcke, Mathieu

    2016-09-01

    In the healthy brain, modulatory influences from the amygdala commonly explain enhanced activation in face-responsive areas by emotional facial expressions relative to neutral expressions. In the behavioral variant frontotemporal dementia (bvFTD) facial emotion recognition is impaired and has been associated with atrophy of the amygdala. By combining structural and functional MRI in 19 patients with bvFTD and 20 controls we investigated the neural effects of emotion in face-responsive cortex and its relationship with amygdalar gray matter (GM) volume in neurodegeneration. Voxel-based morphometry revealed decreased GM volume in anterior medio-temporal regions including amygdala in patients compared to controls. During fMRI, we presented dynamic facial expressions (fear and chewing) and their spatiotemporally scrambled versions. We found enhanced activation for fearful compared to neutral faces in ventral temporal cortex and superior temporal sulcus in controls, but not in patients. In the bvFTD group left amygdalar GM volume correlated positively with emotion-related activity in left fusiform face area (FFA). This correlation was amygdala-specific and driven by GM in superficial and basolateral (BLA) subnuclei, consistent with reported amygdalar-cortical networks. The data suggests that anterior medio-temporal atrophy in bvFTD affects emotion processing in distant posterior areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. I remember you: a role for memory in social cognition and the functional neuroanatomy of their interaction.

    PubMed

    Spreng, R Nathan; Mar, Raymond A

    2012-01-05

    Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    PubMed

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. I remember you: A role for memory in social cognition and the functional neuroanatomy of their interaction

    PubMed Central

    Spreng, R. Nathan; Mar, Raymond A.

    2011-01-01

    Remembering events from the personal past (autobiographical memory) and inferring the thoughts and feelings of other people (mentalizing) share a neural substrate. The shared functional neuroanatomy of these processes has been demonstrated in a meta-analysis of independent task domains (Spreng, Mar & Kim, 2009) and within subjects performing both tasks (Rabin, Gilboa, Stuss, Mar, & Rosenbaum, 2010; Spreng & Grady, 2010). Here, we examine spontaneous low-frequency fluctuations in fMRI BOLD signal during rest from two separate regions key to memory and mentalizing, the left hippocampus and right temporal parietal junction, respectively. Activity in these two regions was then correlated with the entire brain in a resting-state functional connectivity analysis. Although the left hippocampus and right temporal parietal junction were not correlated with each other, both were correlated with a distributed network of brain regions. These regions were consistent with the previously observed overlap between autobiographical memory and mentalizing evoked brain activity found in past studies. Reliable patterns of overlap included the superior temporal sulcus, anterior temporal lobe, lateral inferior parietal cortex (angular gyrus), posterior cingulate cortex, dorsomedial and ventral prefrontal cortex, inferior frontal gyrus, and the amygdala. We propose that the functional overlap facilitates the integration of personal and interpersonal information and provides a means for personal experiences to become social conceptual knowledge. This knowledge, in turn, informs strategic social behavior in support of personal goals. In closing, we argue for a new perspective within social cognitive neuroscience, emphasizing the importance of memory in social cognition. PMID:21172325

  10. The Impact of Single Session Intermittent Theta-Burst Stimulation over the Dorsolateral Prefrontal Cortex and Posterior Superior Temporal Sulcus on Adults with Autism Spectrum Disorder

    PubMed Central

    Ni, Hsing-Chang; Hung, June; Wu, Chen-Te; Wu, Yu-Yu; Chang, Chee-Jen; Chen, Rou-Shayn; Huang, Ying-Zu

    2017-01-01

    Intermittent theta burst stimulation (iTBS), a patterned repetitive transcranial magnetic stimulation, was applied over the posterior superior temporal sulcus (pSTS) or dorsolateral prefrontal cortex (DLPFC) to explore its impact in adults with autism spectrum disorder (ASD). Among 25 adults with ASD, 19 (mean age: 20.8 years) completed the randomized, sham-controlled, crossover trial. Every participant received iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation) in a randomized order with a 1-week interval. Neuropsychological functions were assessed using the Conners' Continuous Performance Test (CCPT) and the Wisconsin Card Sorting Test (WCST). Behavioral outcomes were measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Social Responsiveness Scale (SRS). In comparison to that in the sham stimulation, the reaction time in the CCPT significantly decreased following single DLPFC session (p = 0.04, effect size = 0.71) while there were no significant differences in the CCPT and WCST following single pSTS session. Besides, the results in behavioral outcomes were inconsistent and had discrepancy between reports of parents and patients. In conclusion, a single session of iTBS over the bilateral DLPFC may alter the neuropsychological function in adults with ASD. The impacts of multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations. PMID:28536500

  11. Induction of Fear by Intraoperative Stimulation During Awake Craniotomy: Case Presentation and Systematic Review of the Literature.

    PubMed

    Nowacki, Andreas; Seidel, Kathleen; Schucht, Philippe; Schindler, Kaspar; Abela, Eugenio; Heinemann, Dorothea; Gutbrod, Klemens; Wiest, Roland; Raabe, Andreas; Pollo, Claudio

    2015-08-01

    A case is presented and a systematic review of the literature is provided to update our current knowledge of induction of fear by cortical stimulation. We present a case of refractory epilepsy associated with a lesion where fear could be induced by intraoperative electrical stimulation of the posterior inner part of the superior temporal gyrus. We performed a systematic review of the literature using PubMed with the key words "epilepsy AND emotion", "cortical stimulation AND emotion," and "human brain stimulation AND behavior". Intraoperative cortical stimulation of the inner part of the posterior superior temporal gyrus reliably induced fear and progressive screaming behavior. Stimulation through subdural grid electrodes did not induce this phenomenon. A systematic review of the literature identified fear induction by stimulation of different widespread cortical areas including the temporal pole, the insula, and the anterior cingulate cortex. The posterior part of the superior temporal gyrus has so far not been associated with fear induction after electrical stimulation. Although our observation suggests that this area of the brain could be part of a network involved in the elicitation of fear, dysfunction of this network induced by epilepsy could also explain the observed phenomenon. Electrophysiologic and imaging studies must be conducted to improve our understanding of the cortical networks forming the neuroanatomical substrate of higher brain functions and experiences such as fear. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Culture modulates brain activity during empathy with anger.

    PubMed

    de Greck, Moritz; Shi, Zhenhao; Wang, Gang; Zuo, Xiangyu; Yang, Xuedong; Wang, Xiaoying; Northoff, Georg; Han, Shihui

    2012-02-01

    Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger--an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast 'intentional empathy for familiar angry'>'baseline' revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast 'intentional empathy for familiar angry'>'baseline'. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle insula. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results

    PubMed Central

    Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.

    2013-01-01

    Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535

  14. The neural basis for writing from dictation in the temporoparietal cortex.

    PubMed

    Roux, Franck-Emmanuel; Durand, Jean-Baptiste; Réhault, Emilie; Planton, Samuel; Draper, Louisa; Démonet, Jean-François

    2014-01-01

    Cortical electrical stimulation mapping was used to study neural substrates of the function of writing in the temporoparietal cortex. We identified the sites involved in oral language (sentence reading and naming) and writing from dictation, in order to spare these areas during removal of brain tumours in 30 patients (23 in the left, and 7 in the right hemisphere). Electrostimulation of the cortex impaired writing ability in 62 restricted cortical areas (.25 cm2). These were found in left temporoparietal lobes and were mostly located along the superior temporal gyrus (Brodmann's areas 22 and 42). Stimulation of right temporoparietal lobes in right-handed patients produced no writing impairments. However there was a high variability of location between individuals. Stimulation resulted in combined symptoms (affecting oral language and writing) in fourteen patients, whereas in eight other patients, stimulation-induced pure agraphia symptoms with no oral language disturbance in twelve of the identified areas. Each detected area affected writing in a different way. We detected the various different stages of the auditory-to-motor pathway of writing from dictation: either through comprehension of the dictated sentences (word deafness areas), lexico-semantic retrieval, or phonologic processing. In group analysis, barycentres of all different types of writing interferences reveal a hierarchical functional organization along the superior temporal gyrus from initial word recognition to lexico-semantic and phonologic processes along the ventral and the dorsal comprehension pathways, supporting the previously described auditory-to-motor process. The left posterior Sylvian region supports different aspects of writing function that are extremely specialized and localized, sometimes being segregated in a way that could account for the occurrence of pure agraphia that has long-been described in cases of damage to this region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Early cortical metabolic rearrangement related to clinical data in idiopathic sudden sensorineural hearing loss.

    PubMed

    Micarelli, Alessandro; Chiaravalloti, Agostino; Viziano, Andrea; Danieli, Roberta; Schillaci, Orazio; Alessandrini, Marco

    2017-07-01

    Results in studies concerning cortical changes in idiopathic sudden sensorineural hearing loss (ISSNHL) are not homogeneous, in particular due to the different neuroimaging techniques implemented and the diverse stages of ISSNHL studied. Considering the recent advances in state-of-the-art positron emission tomography (PET) cameras, the aim of this study was to gain more insight into the neuroanatomical differences associated with the earliest stages of unilateral ISSNHL and clinical-perceptual performance changes. After an audiological examination including the mean auditory threshold (mean AT), mean speech discrimination score (mean SDS) and Tinnitus Handicap Inventory (THI), 14 right-handed ISSNHL patients underwent brain [ 18 F]fluorodeoxyglucose (FDG)-PET within 72 h of the onset of symptoms. When compared to an homogeneous group of 35 healthy subjects by means of statistical parametric mapping, a relative increase in FDG uptake was found in the right superior and medial frontal gyrus as well as in the right anterior cingulate cortex in ISSNHL patients. Conversely, the same group showed a significant relative decrease in FDG uptake in the right middle temporal, precentral and postcentral gyrus as well as in the left posterior cingulate cortex, left lingual, superior, middle temporal and middle frontal gyrus and in the left insula. Regression analysis showed a positive correlation between mean THI and glucose consumption in the right anterior cingulate cortex and a positive correlation between mean SDS and glucose consumption in the left precentral gyrus. The relative changes in FDG uptake found in these brain regions and the positive correlation with mean SDS and THI scores in ISSNHL could possibly highlight new aspects of cerebral rearrangement, contributing to further explain changes in those functions that support speech recognition during the sudden impairment of unilateral auditory input. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neural Activation during Anticipation of Near Pain-Threshold Stimulation among the Pain-Fearful

    PubMed Central

    Yang, Zhou; Jackson, Todd; Huang, Chengzhi

    2016-01-01

    Fear of pain (FOP) can increase risk for chronic pain and disability but little is known about corresponding neural responses in anticipation of potential pain. In this study, more (10 women, 6 men) and less (7 women, 6 men) pain-fearful groups underwent whole-brain functional magnetic resonance imaging (fMRI) during anticipation of near pain-threshold stimulation. Groups did not differ in the proportion of stimuli judged to be painful but pain-fearful participants reported significantly more state fear prior to stimulus exposure. Within the entire sample, stronger activation was found in several pain perception regions (e.g., bilateral insula, midcingulate cortex (MCC), thalamus, superior frontal gyrus) and visual areas linked to decoding stimulus valences (inferior orbital cortex) during anticipation of “painful” stimuli. Between groups and correlation analyses indicated pain-fearful participants experienced comparatively more activity in regions implicated in evaluating potential threats and processing negative emotions during anticipation (i.e., MCC, mid occipital cortex, superior temporal pole), though group differences were not apparent in most so-called “pain matrix” regions. In sum, trait- and task-based FOP is associated with enhanced responsiveness in regions involved in threat processing and negative affect during anticipation of potentially painful stimulation. PMID:27489536

  17. Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2017-01-01

    The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral visual field than those in the V3A/B cluster. Reliability measurements of VFMs in pSTS and V3A/B reveal that these cloverleaf clusters are remarkably consistent and functionally differentiable. Our findings add to the growing number of measurements of widespread sensory CFMs organized into cloverleaf clusters, indicating that CFMs and cloverleaf clusters may both be fundamental organizing principles in cortical sensory processing. PMID:28293182

  18. Region-specific reduction of auditory sensory gating in older adults.

    PubMed

    Cheng, Chia-Hsiung; Baillet, Sylvain; Lin, Yung-Yang

    2015-12-01

    Aging has been associated with declines in sensory-perceptual processes. Sensory gating (SG), or repetition suppression, refers to the attenuation of neural activity in response to a second stimulus and is considered to be an automatic process to inhibit redundant sensory inputs. It is controversial whether SG deficits, as tested with an auditory paired-stimulus protocol, accompany normal aging in humans. To reconcile the debates arising from event-related potential studies, we recorded auditory neuromagnetic reactivity in 20 young and 19 elderly adult men and determined the neural activation by using minimum-norm estimate (MNE) source modeling. SG of M100 was calculated by the ratio of the response to the second stimulus over that to the first stimulus. MNE results revealed that fronto-temporo-parietal networks were implicated in the M100 SG. Compared to the younger participants, the elderly showed selectively increased SG ratios in the anterior superior temporal gyrus, anterior middle temporal gyrus, temporal pole and orbitofrontal cortex, suggesting an insufficient age-related gating to repetitive auditory stimulation. These findings also highlight the loss of frontal inhibition of the auditory cortex in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

    PubMed Central

    Bethmann, Anja; Scheich, Henning; Brechmann, André

    2012-01-01

    It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826

  20. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.

    PubMed

    Janzen, J; Schlindwein, P; Bense, S; Bauermann, T; Vucurevic, G; Stoeter, P; Dieterich, M

    2008-10-01

    Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predominance of the ipsilateral saccular-otolith projection, and (3) evaluate the impact of both factors on the temporo-parieto-insular activation pattern. A block design with three stimulation and rest conditions was applied: (1) 102 dB-VEMP stimulation; (2) 65 dB-control-acoustic stimulation, (3) 102 dB-white-noise-control stimulation. After subtraction of acoustic side effects, bilateral activations were found in the posterior insula, the superior/middle/transverse temporal gyri, and the inferior parietal lobule. The distribution of the saccular-otolith activations was influenced by the two factors but with topographic disparity: whereas the inferior parts of the temporo-parietal cortex were mainly influenced by the ipsilaterality of the pathways, the upper parts reflected the dominance of the non-dominant hemisphere. This is in contrast to the processing of acoustic stimulation, which showed a predominance of the contralateral pathways. Our study proves the importance of the hemispheric preponderance also in left-handers, which is of relevance in the superior parts of the insula gyrus V, the inferior parietal lobule, and the superior temporal gyri.

  1. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.

    PubMed

    Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz

    2017-01-01

    Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.

  2. Sex differences in neural activation to facial expressions denoting contempt and disgust.

    PubMed

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other.

  3. Sex Differences in Neural Activation to Facial Expressions Denoting Contempt and Disgust

    PubMed Central

    Aleman, André; Swart, Marte

    2008-01-01

    The facial expression of contempt has been regarded to communicate feelings of moral superiority. Contempt is an emotion that is closely related to disgust, but in contrast to disgust, contempt is inherently interpersonal and hierarchical. The aim of this study was twofold. First, to investigate the hypothesis of preferential amygdala responses to contempt expressions versus disgust. Second, to investigate whether, at a neural level, men would respond stronger to biological signals of interpersonal superiority (e.g., contempt) than women. We performed an experiment using functional magnetic resonance imaging (fMRI), in which participants watched facial expressions of contempt and disgust in addition to neutral expressions. The faces were presented as distractors in an oddball task in which participants had to react to one target face. Facial expressions of contempt and disgust activated a network of brain regions, including prefrontal areas (superior, middle and medial prefrontal gyrus), anterior cingulate, insula, amygdala, parietal cortex, fusiform gyrus, occipital cortex, putamen and thalamus. Contemptuous faces did not elicit stronger amygdala activation than did disgusted expressions. To limit the number of statistical comparisons, we confined our analyses of sex differences to the frontal and temporal lobes. Men displayed stronger brain activation than women to facial expressions of contempt in the medial frontal gyrus, inferior frontal gyrus, and superior temporal gyrus. Conversely, women showed stronger neural responses than men to facial expressions of disgust. In addition, the effect of stimulus sex differed for men versus women. Specifically, women showed stronger responses to male contemptuous faces (as compared to female expressions), in the insula and middle frontal gyrus. Contempt has been conceptualized as signaling perceived moral violations of social hierarchy, whereas disgust would signal violations of physical purity. Thus, our results suggest a neural basis for sex differences in moral sensitivity regarding hierarchy on the one hand and physical purity on the other. PMID:18985147

  4. Disturbed prefrontal and temporal brain function during emotion and cognition interaction in criminal psychopathy.

    PubMed

    Müller, Jürgen L; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-01-01

    Impaired emotional responsiveness has been revealed as a hallmark of psychopathy. In spite of an increasing database on emotion processing, studies on cognitive function and in particular on the impact of emotion on cognition in psychopathy are rare. We used pictures from the International Affective Picture Set (IAPS) and a Simon Paradigm to address emotion-cognition interaction while functional and structural imaging data were obtained in 12 healthy controls and 10 psychopaths. We found an impaired emotion-cognition interaction in psychopaths that correlated with a changed prefrontal and temporal brain activation. With regard to the temporal cortex, it is shown that structure and function of the right superior temporal gyrus is disturbed in psychopathy, supporting a neurobiological approach to psychopathy, in which structure and function of the right STG may be important. (c) 2008 John Wiley & Sons, Ltd.

  5. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    PubMed

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  6. Good, bad and ugly word stress--fMRI evidence for foot structure driven processing of prosodic violations.

    PubMed

    Domahs, Ulrike; Klein, Elise; Huber, Walter; Domahs, Frank

    2013-06-01

    Using a stress violation paradigm, we investigated whether metrical feet constrain the way prosodic patterns are processed and evaluated. Processing of correctly versus incorrectly stressed words was associated with activation in left posterior angular and retrosplenial cortex, indicating the recognition of an expected and familiar pattern, whereas the inverse contrast yielded enhanced bilateral activation in the superior temporal gyrus, reflecting higher costs in auditory (re-)analysis. More fine-grained analyses of severe versus mild stress violations revealed activations of the left superior temporal and left anterior angular gyrus whereas the opposite contrast led to frontal activations including Broca's area and its right-hemisphere homologue, suggesting that detection of mild violations lead to increased effort in working memory and deeper phonological processing. Our results provide first evidence that different incorrect stress patterns are processed in a qualitatively different way and that the underlying foot structure seems to determine potential stress positions in German words. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.

    PubMed

    Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya

    2015-01-01

    Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p < .001). Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p < .001) as well as in a cluster covering the right superior parietal cortex, cuneus, and precuneus (p < .001). Our results suggest that prosocial behavior is associated with cortical thickness in regions related to theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).

  8. [Prosopagnosia and facial expression recognition].

    PubMed

    Koyama, Shinichi

    2014-04-01

    This paper reviews clinical neuropsychological studies that have indicated that the recognition of a person's identity and the recognition of facial expressions are processed by different cortical and subcortical areas of the brain. The fusiform gyrus, especially the right fusiform gyrus, plays an important role in the recognition of identity. The superior temporal sulcus, amygdala, and medial frontal cortex play important roles in facial-expression recognition. Both facial recognition and facial-expression recognition are highly intellectual processes that involve several regions of the brain.

  9. Lateralization of the human mirror neuron system.

    PubMed

    Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2006-03-15

    A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.

  10. Identification of degenerate neuronal systems based on intersubject variability.

    PubMed

    Noppeney, Uta; Penny, Will D; Price, Cathy J; Flandin, Guillaume; Friston, Karl J

    2006-04-15

    Group studies implicitly assume that all subjects activate one common system to sustain a particular cognitive task. Intersubject variability is generally treated as well-behaved and uninteresting noise. However, intersubject variability might result from subjects engaging different degenerate neuronal systems that are each sufficient for task performance. This would produce a multimodal distribution of intersubject variability. We have explored this idea with the help of Gaussian Mixture Modeling and Bayesian model comparison procedures. We illustrate our approach using a crossmodal priming paradigm, in which subjects perform a semantic decision on environmental sounds or their spoken names that were preceded by a semantically congruent or incongruent picture or written name. All subjects consistently activated the superior temporal gyri bilaterally, the left fusiform gyrus and the inferior frontal sulcus. Comparing a One and Two Gaussian Mixture Model of the unexplained residuals provided very strong evidence for two groups with distinct activation patterns: 6 subjects exhibited additional activations in the superior temporal sulci bilaterally, the right superior frontal and central sulcus. 11 subjects showed increased activation in the striate and the right inferior parietal cortex. These results suggest that semantic decisions on auditory-visual compound stimuli might be accomplished by two overlapping degenerate neuronal systems.

  11. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    PubMed

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fronto-limbic dysfunction in borderline personality disorder: a 18F-FDG positron emission tomography study.

    PubMed

    Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo

    2011-06-01

    Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. On the definition and interpretation of voice selective activation in the temporal cortex

    PubMed Central

    Bethmann, Anja; Brechmann, André

    2014-01-01

    Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes. PMID:25071527

  14. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation

    PubMed Central

    Green, Sophie; Lambon Ralph, Matthew A.; Moll, Jorge; Stamatakis, Emmanuel A.; Grafman, Jordan; Zahn, Roland

    2010-01-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. “critical” and “faultfinding”). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. PMID:20493953

  15. Spatially generalizable representations of facial expressions: Decoding across partial face samples.

    PubMed

    Greening, Steven G; Mitchell, Derek G V; Smith, Fraser W

    2018-04-01

    A network of cortical and sub-cortical regions is known to be important in the processing of facial expression. However, to date no study has investigated whether representations of facial expressions present in this network permit generalization across independent samples of face information (e.g., eye region vs mouth region). We presented participants with partial face samples of five expression categories in a rapid event-related fMRI experiment. We reveal a network of face-sensitive regions that contain information about facial expression categories regardless of which part of the face is presented. We further reveal that the neural information present in a subset of these regions: dorsal prefrontal cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 'eyes only' vs 'eyes removed'). Furthermore, classification performance was correlated to behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g., STS, dPFC) and lower level cortical regions contain information useful for facial expression decoding that go beyond the visual information presented, and implicate a key role for contextual mechanisms such as cortical feedback in facial expression perception under challenging conditions of visual occlusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Gu, Huaguang; Zhang, Jie; Feng, Jianfeng

    2015-05-01

    Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing involved in social behaviour. This system has reduced functional connectivity with the ventromedial prefrontal cortex, which is implicated in emotion and social communication. The middle temporal gyrus system is also implicated in theory of mind processing. We also identified in autism a second key system in the precuneus/superior parietal lobule region with reduced functional connectivity, which is implicated in spatial functions including of oneself, and of the spatial environment. It is proposed that these two types of functionality, face expression-related, and of one's self and the environment, are important components of the computations involved in theory of mind, whether of oneself or of others, and that reduced connectivity within and between these regions may make a major contribution to the symptoms of autism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Disentangling syntax and intelligibility in auditory language comprehension.

    PubMed

    Friederici, Angela D; Kotz, Sonja A; Scott, Sophie K; Obleser, Jonas

    2010-03-01

    Studies of the neural basis of spoken language comprehension typically focus on aspects of auditory processing by varying signal intelligibility, or on higher-level aspects of language processing such as syntax. Most studies in either of these threads of language research report brain activation including peaks in the superior temporal gyrus (STG) and/or the superior temporal sulcus (STS), but it is not clear why these areas are recruited in functionally different studies. The current fMRI study aims to disentangle the functional neuroanatomy of intelligibility and syntax in an orthogonal design. The data substantiate functional dissociations between STS and STG in the left and right hemispheres: first, manipulations of speech intelligibility yield bilateral mid-anterior STS peak activation, whereas syntactic phrase structure violations elicit strongly left-lateralized mid STG and posterior STS activation. Second, ROI analyses indicate all interactions of speech intelligibility and syntactic correctness to be located in the left frontal and temporal cortex, while the observed right-hemispheric activations reflect less specific responses to intelligibility and syntax. Our data demonstrate that the mid-to-anterior STS activation is associated with increasing speech intelligibility, while the mid-to-posterior STG/STS is more sensitive to syntactic information within the speech. 2009 Wiley-Liss, Inc.

  18. Distributed Source Modeling of Language with Magnetoencephalography: Application to Patients with Intractable Epilepsy

    PubMed Central

    McDonald, Carrie R.; Thesen, Thomas; Hagler, Donald J.; Carlson, Chad; Devinksy, Orrin; Kuzniecky, Rubin; Barr, William; Gharapetian, Lusineh; Trongnetrpunya, Amy; Dale, Anders M.; Halgren, Eric

    2009-01-01

    Purpose To examine distributed patterns of language processing in healthy controls and patients with epilepsy using magnetoencephalography (MEG), and to evaluate the concordance between laterality of distributed MEG sources and language laterality as determined by the intracarotid amobarbitol procedure (IAP). Methods MEG was performed in ten healthy controls using an anatomically-constrained, noise-normalized distributed source solution (dSPM). Distributed source modeling of language was then applied to eight patients with intractable epilepsy. Average source strengths within temporoparietal and frontal lobe regions of interest (ROIs) were calculated and the laterality of activity within ROIs during discrete time windows was compared to results from the IAP. Results In healthy controls, dSPM revealed activity in visual cortex bilaterally from ~80-120ms in response to novel words and sensory control stimuli (i.e., false fonts). Activity then spread to fusiform cortex ~160-200ms, and was dominated by left hemisphere activity in response to novel words. From ~240-450ms, novel words produced activity that was left-lateralized in frontal and temporal lobe regions, including anterior and inferior temporal, temporal pole, and pars opercularis, as well as bilaterally in posterior superior temporal cortex. Analysis of patient data with dSPM demonstrated that from 350-450ms, laterality of temporoparietal sources agreed with the IAP 75% of the time, whereas laterality of frontal MEG sources agreed with the IAP in all eight patients. Discussion Our results reveal that dSPM can unveil the timing and spatial extent of language processes in patients with epilepsy and may enhance knowledge of language lateralization and localization for use in preoperative planning. PMID:19552656

  19. Neural circuitry of emotional face processing in autism spectrum disorders.

    PubMed

    Monk, Christopher S; Weng, Shih-Jen; Wiggins, Jillian Lee; Kurapati, Nikhil; Louro, Hugo M C; Carrasco, Melisa; Maslowsky, Julie; Risi, Susan; Lord, Catherine

    2010-03-01

    Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces. Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces. In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces. The small sample size may have affected our ability to detect additional group differences. When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.

  20. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    PubMed

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age, which likely has close relationships with the lateralization of brain functions of these regions. This study provides detailed insights into the spatial distribution and temporal development of deep sulcal landmarks in infants. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Neural correlates of prospective memory impairments in schizophrenia.

    PubMed

    Chen, Xing-jie; Wang, Ya; Wang, Yi; Yang, Tian-xiao; Zou, Lai-quan; Huang, Jia; Li, Feng-hua; Chen, An-tao; Wang, Wei-hong; Zheng, Han-feng; Cheung, Eric F C; Shum, David H K; Chan, Raymond C K

    2016-02-01

    Prospective memory (PM) refers to the ability to remember to carry out intended actions after a delay. PM impairments are common in schizophrenia patients and are thought to be related to their prefrontal cortex dysfunction; however, this has not yet been examined directly in the research literature. The current study aimed to examine abnormalities in brain activation during PM task performance in schizophrenia patients. Twenty-two schizophrenia patients and 25 matched healthy controls were scanned in a 3-T MRI machine while performing a PM task. The results showed that compared to the healthy controls, schizophrenia patients performed significantly worse on the PM task. Furthermore, they exhibited decreased brain activation in frontal cortex including the right superior frontal gyri (Brodmann area 10), and other related brain areas like the anterior cingulate gyrus, parietal and temporal cortex, including precuneus, and some subcortext, including parahippocampal gyrus and putamen. These findings confirm the involvement and importance of the prefrontal cortex in PM and show evidence of hypofrontality in schizophrenia patients while performing a PM task. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  2. Listening to an audio drama activates two processing networks, one for all sounds, another exclusively for speech.

    PubMed

    Boldt, Robert; Malinen, Sanna; Seppä, Mika; Tikka, Pia; Savolainen, Petri; Hari, Riitta; Carlson, Synnöve

    2013-01-01

    Earlier studies have shown considerable intersubject synchronization of brain activity when subjects watch the same movie or listen to the same story. Here we investigated the across-subjects similarity of brain responses to speech and non-speech sounds in a continuous audio drama designed for blind people. Thirteen healthy adults listened for ∼19 min to the audio drama while their brain activity was measured with 3 T functional magnetic resonance imaging (fMRI). An intersubject-correlation (ISC) map, computed across the whole experiment to assess the stimulus-driven extrinsic brain network, indicated statistically significant ISC in temporal, frontal and parietal cortices, cingulate cortex, and amygdala. Group-level independent component (IC) analysis was used to parcel out the brain signals into functionally coupled networks, and the dependence of the ICs on external stimuli was tested by comparing them with the ISC map. This procedure revealed four extrinsic ICs of which two-covering non-overlapping areas of the auditory cortex-were modulated by both speech and non-speech sounds. The two other extrinsic ICs, one left-hemisphere-lateralized and the other right-hemisphere-lateralized, were speech-related and comprised the superior and middle temporal gyri, temporal poles, and the left angular and inferior orbital gyri. In areas of low ISC four ICs that were defined intrinsic fluctuated similarly as the time-courses of either the speech-sound-related or all-sounds-related extrinsic ICs. These ICs included the superior temporal gyrus, the anterior insula, and the frontal, parietal and midline occipital cortices. Taken together, substantial intersubject synchronization of cortical activity was observed in subjects listening to an audio drama, with results suggesting that speech is processed in two separate networks, one dedicated to the processing of speech sounds and the other to both speech and non-speech sounds.

  3. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.

    PubMed

    Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico

    2009-10-01

    Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.

  4. EEG-LORETA endophenotypes of the common idiopathic generalized epilepsy syndromes.

    PubMed

    Clemens, B; Puskás, S; Besenyei, M; Emri, M; Opposits, G; Kis, S A; Hollódy, K; Fogarasi, A; Kondákor, I; Füle, K; Bense, K; Fekete, I

    2012-05-01

    We tested the hypothesis that the cortical areas with abnormal local EEG synchronization are dissimilar in the three common idiopathic generalized epilepsy (IGE) phenotypes: IGE patients with absence seizures (ABS), juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures exclusively (EGTCS). Groups of unmedicated ABS, JME and EGTCS patients were investigated. Waking EEG background activity (without any epileptiform potentials) was analyzed by a source localization method, LORETA (Low Resolution Electromagnetic Tomography). Each patient group was compared to a separate, age-matched group of healthy control persons. Voxel-based, normalized broad-band (delta, theta, alpha, and beta) and very narrow band (VNB, 1Hz bandwidth, from 1 to 25Hz) LORETA activity (=current source density, A/m(2)) were computed for each person. Group comparison included subtraction (average patient data minus average control data) and group statistics (multiple t-tests, where Bonferroni-corrected p<0.05 values were accepted as statistically significant). Statistically not significant main findings were: overall increased delta and theta broad band activity in the ABS and JME groups; decrease of alpha and beta activity in the EGTCS group. Statistically significant main findings were as follows. JME group: bilaterally increased theta activity in posterior (temporal, parietal, and occipital) cortical areas; bilaterally increased activity in the medial and basal prefrontal area in the 8Hz VNB; bilaterally decreased activity in the precuneus, posterior cingulate and superior parietal lobule in the 11Hz and 21-22Hz VNBs. ABS group: bilaterally increased theta activity emerged in the basal prefrontal and medial temporal limbic areas. Decreased activity was found at 19-21Hz in the right postcentral gyrus and parts of the right superior and medial temporal gyri. EGTCS group: decreased activity was found in the frontal cortex and the postcentral gyrus at 10-11Hz, increased activity in the right parahippocampal gyrus at 16-18Hz. Increased theta activity in the posterior parts of the cortex is the endophenotype for JME. Increased theta activity in the fronto-temporal limbic areas is the endophenotype for ABS. Statistically not significant findings might indicate diffuse biochemical abnormality of the cortex in JME and ABS. EEG-LORETA endophenotypes may correspond to the selective propensity to generate absence and myoclonic seizures in the ABS and JME syndromes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.

    PubMed

    Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred

    2011-01-01

    It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.

    PubMed

    Deen, Ben; McCarthy, Gregory

    2010-05-01

    Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human motion at a conceptual level, such as during story comprehension. Here, we obtained functional magnetic resonance images from subjects reading brief stories that described a human character's background and then concluded with an action or decision made by the character. Half of the stories contained incidental descriptions of biological motion (such as the character's walking or grasping) while the remaining half did not. As a second factor, the final action of the story was either congruent or incongruent with the character's background and implied goals and intentions. Stories that contained biological motion strongly activated the pSTS bilaterally, along with ventral temporal areas, premotor cortex, left motor cortex, and the precuneus. Active regions of pSTS in individual subjects closely overlapped with regions identified with a separate biological motion localizer (point-light display) task. Reading incongruent versus congruent stories activated dorsal anterior cingulate cortex and bilateral anterior insula. These results support the hypothesis that reading can engage higher visual cortex in a content-specific manner, and suggest that the presence of biological motion should be controlled as a potential confound in fMRI studies using story comprehension tasks. 2010. Published by Elsevier Ltd.

  7. Neural Mechanism of Inferring Person's Inner Attitude towards Another Person through Observing the Facial Affect in an Emotional Context.

    PubMed

    Kim, Ji-Woong; Kim, Jae-Jin; Jeong, Bumseok; Kim, Sung-Eun; Ki, Seon Wan

    2010-03-01

    The goal of the present study was to identify the brain mechanism involved in the attribution of person's attitude toward another person, using facial affective pictures and pictures displaying an affectively-loaded situation. Twenty four right-handed healthy subjects volunteered for our study. We used functional magnetic resonance imaging (MRI) to examine brain activation during attitude attribution task as compared to gender matching tasks. We identified activation in the left inferior frontal cortex, left superior temporal sulcus, and left inferior parietal lobule during the attitude attribution task, compared to the gender matching task. This study suggests that mirror neuron system and ventrolateral inferior frontal cortex play a critical role in the attribution of a person's inner attitude towards another person in an emotional situation.

  8. Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study.

    PubMed

    Harris, Robert; de Jong, Bauke M

    2015-10-22

    Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Brain activity in near-death experiencers during a meditative state.

    PubMed

    Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent

    2009-09-01

    To measure brain activity in near-death experiencers during a meditative state. In two separate experiments, brain activity was measured with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) during a Meditation condition and a Control condition. In the Meditation condition, participants were asked to mentally visualize and emotionally connect with the "being of light" allegedly encountered during their "near-death experience". In the Control condition, participants were instructed to mentally visualize the light emitted by a lamp. In the fMRI experiment, significant loci of activation were found during the Meditation condition (compared to the Control condition) in the right brainstem, right lateral orbitofrontal cortex, right medial prefrontal cortex, right superior parietal lobule, left superior occipital gyrus, left anterior temporal pole, left inferior temporal gyrus, left anterior insula, left parahippocampal gyrus and left substantia nigra. In the EEG experiment, electrode sites showed greater theta power in the Meditation condition relative to the Control condition at FP1, F7, F3, T5, P3, O1, FP2, F4, F8, P4, Fz, Cz and Pz. In addition, higher alpha power was detected at FP1, F7, T3 and FP2, whereas higher gamma power was found at FP2, F7, T4 and T5. The results indicate that the meditative state was associated with marked hemodynamic and neuroelectric changes in brain regions known to be involved either in positive emotions, visual mental imagery, attention or spiritual experiences.

  10. Concentric scheme of monkey auditory cortex

    NASA Astrophysics Data System (ADS)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  11. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception

    PubMed Central

    Liu, Sheng; Angelaki, Dora E.

    2009-01-01

    Visual and vestibular signals converge onto the dorsal medial superior temporal area (MSTd) of the macaque extrastriate visual cortex, which is thought to be involved in multisensory heading perception for spatial navigation. Peripheral otolith information, however, is ambiguous and cannot distinguish linear accelerations experienced during self-motion from those due to changes in spatial orientation relative to gravity. Here we show that, unlike peripheral vestibular sensors but similar to lobules 9 and 10 of the cerebellar vermis (nodulus and uvula), MSTd neurons respond selectively to heading and not to changes in orientation relative to gravity. In support of a role in heading perception, MSTd vestibular responses are also dominated by velocity-like temporal dynamics, which might optimize sensory integration with visual motion information. Unlike the cerebellar vermis, however, MSTd neurons also carry a spatial orientation-independent rotation signal from the semicircular canals, which could be useful in compensating for the effects of head rotation on the processing of optic flow. These findings show that vestibular signals in MSTd are appropriately processed to support a functional role in multisensory heading perception. PMID:19605631

  12. Frequency of Maternal Touch Predicts Resting Activity and Connectivity of the Developing Social Brain.

    PubMed

    Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett

    2016-08-01

    Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.

  13. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women

    PubMed Central

    García-Casares, Natalia; Bernal-López, María R.; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; García-Arnés, Juan A.; Ramos-Rodriguez, José R.; Alfaro, Francisco; Santamaria-Fernández, Sonia; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J.; Gómez-Huelgas, Ricardo

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m2) was 38.15 ± 4.7 vs. 34.18 ± 4.5 (p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 (p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex (p < 0.001), left posterior cingulate (p < 0.001), and right posterior cingulate (p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex (p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex (p < 0.025); and decreased connectivity between the left and right posterior cingulate (p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise. PMID:28671558

  14. Laterality patterns of brain functional connectivity: gender effects.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  15. Laterality Patterns of Brain Functional Connectivity: Gender Effects

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism). PMID:21878483

  16. The 10 Hz Frequency: A Fulcrum For Transitional Brain States.

    PubMed

    Garcia-Rill, E; D'Onofrio, S; Luster, B; Mahaffey, S; Urbano, F J; Phillips, C

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest ( mu rhythm), in the superior and middle temporal lobe ( tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  17. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    PubMed Central

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness. PMID:27547831

  18. Can you hear me yet? An intracranial investigation of speech and non-speech audiovisual interactions in human cortex.

    PubMed

    Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob

    In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.

  19. Integration of faces and vocalizations in ventral prefrontal cortex: Implications for the evolution of audiovisual speech

    PubMed Central

    Romanski, Lizabeth M.

    2012-01-01

    The integration of facial gestures and vocal signals is an essential process in human communication and relies on an interconnected circuit of brain regions, including language regions in the inferior frontal gyrus (IFG). Studies have determined that ventral prefrontal cortical regions in macaques [e.g., the ventrolateral prefrontal cortex (VLPFC)] share similar cytoarchitectonic features as cortical areas in the human IFG, suggesting structural homology. Anterograde and retrograde tracing studies show that macaque VLPFC receives afferents from the superior and inferior temporal gyrus, which provide complex auditory and visual information, respectively. Moreover, physiological studies have shown that single neurons in VLPFC integrate species-specific face and vocal stimuli. Although bimodal responses may be found across a wide region of prefrontal cortex, vocalization responsive cells, which also respond to faces, are mainly found in anterior VLPFC. This suggests that VLPFC may be specialized to process and integrate social communication information, just as the IFG is specialized to process and integrate speech and gestures in the human brain. PMID:22723356

  20. Top-down and bottom-up modulation of brain structures involved in auditory discrimination.

    PubMed

    Diekhof, Esther K; Biedermann, Franziska; Ruebsamen, Rudolf; Gruber, Oliver

    2009-11-10

    Auditory deviancy detection comprises both automatic and voluntary processing. Here, we investigated the neural correlates of different components of the sensory discrimination process using functional magnetic resonance imaging. Subliminal auditory processing of deviant events that were not detected led to activation in left superior temporal gyrus. On the other hand, both correct detection of deviancy and false alarms activated a frontoparietal network of attentional processing and response selection, i.e. this network was activated regardless of the physical presence of deviant events. Finally, activation in the putamen, anterior cingulate and middle temporal cortex depended on factual stimulus representations and occurred only during correct deviancy detection. These results indicate that sensory discrimination may rely on dynamic bottom-up and top-down interactions.

  1. Disturbance in the neural circuitry underlying positive emotional processing in post-traumatic stress disorder (PTSD). An fMRI study.

    PubMed

    Jatzko, Alexander; Schmitt, Andrea; Demirakca, Traute; Weimer, Erik; Braus, Dieter F

    2006-03-01

    This study was designed to investigate the circuitry underlying movie-induced positive emotional processing in subjects with chronic PTSD. Ten male subjects with chronic PTSD and ten matched controls were studied. In an fMRI-paradigm a sequence of a wellknown Walt Disney cartoon with positive emotional valence was shown. PTSD subjects showed an increased activation in the right posterior temporal, precentral and superior frontal cortex. Controls recruited more emotion-related regions bilateral in the temporal pole and areas of the left fusiform and parahippocampal gyrus. This pilot study is the first to reveal alterations in the processing of positive emotions in PTSD possibly reflecting a neuronal correlate of the symptom of emotional numbness in PTSD.

  2. Neuronal correlates of perception, imagery, and memory for familiar tunes.

    PubMed

    Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J

    2012-06-01

    We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.

  3. Do not throw out the baby with the bath water: choosing an effective baseline for a functional localizer of speech processing.

    PubMed

    Stoppelman, Nadav; Harpaz, Tamar; Ben-Shachar, Michal

    2013-05-01

    Speech processing engages multiple cortical regions in the temporal, parietal, and frontal lobes. Isolating speech-sensitive cortex in individual participants is of major clinical and scientific importance. This task is complicated by the fact that responses to sensory and linguistic aspects of speech are tightly packed within the posterior superior temporal cortex. In functional magnetic resonance imaging (fMRI), various baseline conditions are typically used in order to isolate speech-specific from basic auditory responses. Using a short, continuous sampling paradigm, we show that reversed ("backward") speech, a commonly used auditory baseline for speech processing, removes much of the speech responses in frontal and temporal language regions of adult individuals. On the other hand, signal correlated noise (SCN) serves as an effective baseline for removing primary auditory responses while maintaining strong signals in the same language regions. We show that the response to reversed speech in left inferior frontal gyrus decays significantly faster than the response to speech, thus suggesting that this response reflects bottom-up activation of speech analysis followed up by top-down attenuation once the signal is classified as nonspeech. The results overall favor SCN as an auditory baseline for speech processing.

  4. Pure word deafness following left temporal damage: Behavioral and neuroanatomical evidence from a new case.

    PubMed

    Maffei, Chiara; Capasso, Rita; Cazzolli, Giulia; Colosimo, Cesare; Dell'Acqua, Flavio; Piludu, Francesca; Catani, Marco; Miceli, Gabriele

    2017-12-01

    Pure Word Deafness (PWD) is a rare disorder, characterized by selective loss of speech input processing. Its most common cause is temporal damage to the primary auditory cortex of both hemispheres, but it has been reported also following unilateral lesions. In unilateral cases, PWD has been attributed to the disconnection of Wernicke's area from both right and left primary auditory cortex. Here we report behavioral and neuroimaging evidence from a new case of left unilateral PWD with both cortical and white matter damage due to a relatively small stroke lesion in the left temporal gyrus. Selective impairment in auditory language processing was accompanied by intact processing of nonspeech sounds and normal speech, reading and writing. Performance on dichotic listening was characterized by a reversal of the right-ear advantage typically observed in healthy subjects. Cortical thickness and gyral volume were severely reduced in the left superior temporal gyrus (STG), although abnormalities were not uniformly distributed and residual intact cortical areas were detected, for example in the medial portion of the Heschl's gyrus. Diffusion tractography documented partial damage to the acoustic radiations (AR), callosal temporal connections and intralobar tracts dedicated to single words comprehension. Behavioral and neuroimaging results in this case are difficult to integrate in a pure cortical or disconnection framework, as damage to primary auditory cortex in the left STG was only partial and Wernicke's area was not completely isolated from left or right-hemisphere input. On the basis of our findings we suggest that in this case of PWD, concurrent partial topological (cortical) and disconnection mechanisms have contributed to a selective impairment of speech sounds. The discrepancy between speech and non-speech sounds suggests selective damage to a language-specific left lateralized network involved in phoneme processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Lesion correlates of impairments in actual tool use following unilateral brain damage.

    PubMed

    Salazar-López, E; Schwaiger, B J; Hermsdörfer, J

    2016-04-01

    To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns

    PubMed Central

    BURTON, H.; SNYDER, A. Z.; DIAMOND, J. B.; RAICHLE, M. E.

    2013-01-01

    Literacy for blind people requires learning Braille. Along with others, we have shown that reading Braille activates visual cortex. This includes striate cortex (V1), i.e., banks of calcarine sulcus, and several higher visual areas in lingual, fusiform, cuneus, lateral occipital, inferior temporal, and middle temporal gyri. The spatial extent and magnitude of magnetic resonance (MR) signals in visual cortex is greatest for those who became blind early in life. Individuals who lost sight as adults, and subsequently learned Braille, still exhibited activity in some of the same visual cortex regions, especially V1. These findings suggest these visual cortex regions become adapted to processing tactile information and that this cross-modal neural change might support Braille literacy. Here we tested the alternative hypothesis that these regions directly respond to linguistic aspects of a task. Accordingly, language task performance by blind persons should activate the same visual cortex regions regardless of input modality. Specifically, visual cortex activity in blind people ought to arise during a language task involving heard words. Eight early blind, six late blind, and eight sighted subjects were studied using functional magnetic resonance imaging (fMRI) during covert generation of verbs to heard nouns. The control task was passive listening to indecipherable sounds (reverse words) matched to the nouns in sound intensity, duration, and spectral content. Functional responses were analyzed at the level of individual subjects using methods based on the general linear model and at the group level, using voxel based ANOVA and t-test analyses. Blind and sighted subjects showed comparable activation of language areas in left inferior frontal, dorsolateral prefrontal, and left posterior superior temporal gyri. The main distinction was bilateral, left dominant activation of the same visual cortex regions previously noted with Braille reading in all blind subjects. The spatial extent and magnitude of responses was greatest on the left in early blind individuals. Responses in the late blind group mostly were confined to V1 and nearby portions of the lingual and fusiform gyri. These results confirm the presence of adaptations in visual cortex of blind people but argue against the notion that this activity during Braille reading represents somatosensory (haptic) processing. Rather, we suggest that these responses can be most parsimoniously explained in terms of linguistic operations. It remains possible that these responses represent adaptations which initially are for processing either sound or touch, but which are later generalized to the other modality during acquisition of Braille reading skills. PMID:12466452

  7. New human-specific brain landmark: the depth asymmetry of superior temporal sulcus.

    PubMed

    Leroy, François; Cai, Qing; Bogart, Stephanie L; Dubois, Jessica; Coulon, Olivier; Monzalvo, Karla; Fischer, Clara; Glasel, Hervé; Van der Haegen, Lise; Bénézit, Audrey; Lin, Ching-Po; Kennedy, David N; Ihara, Aya S; Hertz-Pannier, Lucie; Moutard, Marie-Laure; Poupon, Cyril; Brysbaert, Marc; Roberts, Neil; Hopkins, William D; Mangin, Jean-François; Dehaene-Lambertz, Ghislaine

    2015-01-27

    Identifying potentially unique features of the human cerebral cortex is a first step to understanding how evolution has shaped the brain in our species. By analyzing MR images obtained from 177 humans and 73 chimpanzees, we observed a human-specific asymmetry in the superior temporal sulcus at the heart of the communication regions and which we have named the "superior temporal asymmetrical pit" (STAP). This 45-mm-long segment ventral to Heschl's gyrus is deeper in the right hemisphere than in the left in 95% of typical human subjects, from infanthood till adulthood, and is present, irrespective of handedness, language lateralization, and sex although it is greater in males than in females. The STAP also is seen in several groups of atypical subjects including persons with situs inversus, autistic spectrum disorder, Turner syndrome, and corpus callosum agenesis. It is explained in part by the larger number of sulcal interruptions in the left than in the right hemisphere. Its early presence in the infants of this study as well as in fetuses and premature infants suggests a strong genetic influence. Because this asymmetry is barely visible in chimpanzees, we recommend the STAP region during midgestation as an important phenotype to investigate asymmetrical variations of gene expression among the primate lineage. This genetic target may provide important insights regarding the evolution of the crucial cognitive abilities sustained by this sulcus in our species, namely communication and social cognition.

  8. Direct recordings from the auditory cortex in a cochlear implant user.

    PubMed

    Nourski, Kirill V; Etler, Christine P; Brugge, John F; Oya, Hiroyuki; Kawasaki, Hiroto; Reale, Richard A; Abbas, Paul J; Brown, Carolyn J; Howard, Matthew A

    2013-06-01

    Electrical stimulation of the auditory nerve with a cochlear implant (CI) is the method of choice for treatment of severe-to-profound hearing loss. Understanding how the human auditory cortex responds to CI stimulation is important for advances in stimulation paradigms and rehabilitation strategies. In this study, auditory cortical responses to CI stimulation were recorded intracranially in a neurosurgical patient to examine directly the functional organization of the auditory cortex and compare the findings with those obtained in normal-hearing subjects. The subject was a bilateral CI user with a 20-year history of deafness and refractory epilepsy. As part of the epilepsy treatment, a subdural grid electrode was implanted over the left temporal lobe. Pure tones, click trains, sinusoidal amplitude-modulated noise, and speech were presented via the auxiliary input of the right CI speech processor. Additional experiments were conducted with bilateral CI stimulation. Auditory event-related changes in cortical activity, characterized by the averaged evoked potential and event-related band power, were localized to posterolateral superior temporal gyrus. Responses were stable across recording sessions and were abolished under general anesthesia. Response latency decreased and magnitude increased with increasing stimulus level. More apical intracochlear stimulation yielded the largest responses. Cortical evoked potentials were phase-locked to the temporal modulations of periodic stimuli and speech utterances. Bilateral electrical stimulation resulted in minimal artifact contamination. This study demonstrates the feasibility of intracranial electrophysiological recordings of responses to CI stimulation in a human subject, shows that cortical response properties may be similar to those obtained in normal-hearing individuals, and provides a basis for future comparisons with extracranial recordings.

  9. Dissimilar processing of emotional facial expressions in human and monkey temporal cortex

    PubMed Central

    Zhu, Qi; Nelissen, Koen; Van den Stock, Jan; De Winter, François-Laurent; Pauwels, Karl; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2013-01-01

    Emotional facial expressions play an important role in social communication across primates. Despite major progress made in our understanding of categorical information processing such as for objects and faces, little is known, however, about how the primate brain evolved to process emotional cues. In this study, we used functional magnetic resonance imaging (fMRI) to compare the processing of emotional facial expressions between monkeys and humans. We used a 2 × 2 × 2 factorial design with species (human and monkey), expression (fear and chewing) and configuration (intact versus scrambled) as factors. At the whole brain level, selective neural responses to conspecific emotional expressions were anatomically confined to the superior temporal sulcus (STS) in humans. Within the human STS, we found functional subdivisions with a face-selective right posterior STS area that also responded selectively to emotional expressions of other species and a more anterior area in the right middle STS that responded specifically to human emotions. Hence, we argue that the latter region does not show a mere emotion-dependent modulation of activity but is primarily driven by human emotional facial expressions. Conversely, in monkeys, emotional responses appeared in earlier visual cortex and outside face-selective regions in inferior temporal cortex that responded also to multiple visual categories. Within monkey IT, we also found areas that were more responsive to conspecific than to non-conspecific emotional expressions but these responses were not as specific as in human middle STS. Overall, our results indicate that human STS may have developed unique properties to deal with social cues such as emotional expressions. PMID:23142071

  10. Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: A post-mortem study.

    PubMed

    Uhrig, Stefanie; Hirth, Natalie; Broccoli, Laura; von Wilmsdorff, Martina; Bauer, Manfred; Sommer, Clemens; Zink, Mathias; Steiner, Johann; Frodl, Thomas; Malchow, Berend; Falkai, Peter; Spanagel, Rainer; Hansson, Anita C; Schmitt, Andrea

    2016-11-01

    Schizophrenia is a severe neuropsychiatric disorder with impairments in social cognition. Several brain regions have been implicated in social cognition, including the nucleus caudatus, prefrontal and temporal cortex, and cerebellum. Oxytocin is a critical modulator of social cognition and the formation and maintenance of social relationships and was shown to improve symptoms and social cognition in schizophrenia patients. However, it is unknown whether the oxytocin receptor is altered in the brain. Therefore, we used qRT-PCR and Ornithine Vasotocin Analog ([ 125 I]OVTA)-based receptor autoradiography to investigate oxytocin receptor expression at both the mRNA and protein level in the left prefrontal and middle temporal cortex, left nucleus caudatus, and right posterior superior vermis in 10 schizophrenia patients and 6 healthy controls. Furthermore, to investigate confounding effects of long-term antipsychotic medication we treated rats with clozapine or haloperidol for 12weeks and assessed expression of the oxytocin receptor in cortical and subcortical brain regions. In schizophrenia patients, we found a downregulation of oxytocin receptor mRNA in the temporal cortex and a decrease in receptor binding in the vermis. In the other regions, the results showed trends in the same direction, without reaching statistical significance. We found no differences between antipsychotic-treated rats and controls. Downregulated expression and binding of the oxytocin receptor in brain regions involved in social cognition may lead to a dysfunction of oxytocin signaling. Our results support a dysfunction of the oxytocin receptor in schizophrenia, which may contribute to deficits of social cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Face processing in different brain areas, and critical band masking.

    PubMed

    Rolls, Edmund T

    2008-09-01

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size, view, and spatial frequency of faces and objects, and that these neurons show rapid processing and rapid learning. Critical band spatial frequency masking is shown to be a property of these face-selective neurons and of the human visual perception of faces. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximizing the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalization, and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses generalize to other views of the same face. A theory is described of how such invariant representations may be produced by self-organizing learning in a hierarchically organized set of visual cortical areas with convergent connectivity. The theory utilizes either temporal or spatial continuity with an associative synaptic modification rule. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye-gaze, face view, and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the human orbitofrontal and pregenual cingulate cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.

  12. The representation of information about faces in the temporal and frontal lobes.

    PubMed

    Rolls, Edmund T

    2007-01-07

    Neurophysiological evidence is described showing that some neurons in the macaque inferior temporal visual cortex have responses that are invariant with respect to the position, size and view of faces and objects, and that these neurons show rapid processing and rapid learning. Which face or object is present is encoded using a distributed representation in which each neuron conveys independent information in its firing rate, with little information evident in the relative time of firing of different neurons. This ensemble encoding has the advantages of maximising the information in the representation useful for discrimination between stimuli using a simple weighted sum of the neuronal firing by the receiving neurons, generalisation and graceful degradation. These invariant representations are ideally suited to provide the inputs to brain regions such as the orbitofrontal cortex and amygdala that learn the reinforcement associations of an individual's face, for then the learning, and the appropriate social and emotional responses, generalise to other views of the same face. A theory is described of how such invariant representations may be produced in a hierarchically organised set of visual cortical areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured at each stage that is invariant about objects as the objects change in retinal view, position, size and rotation. Another population of neurons in the cortex in the superior temporal sulcus encodes other aspects of faces such as face expression, eye gaze, face view and whether the head is moving. These neurons thus provide important additional inputs to parts of the brain such as the orbitofrontal cortex and amygdala that are involved in social communication and emotional behaviour. Outputs of these systems reach the amygdala, in which face-selective neurons are found, and also the orbitofrontal cortex, in which some neurons are tuned to face identity and others to face expression. In humans, activation of the orbitofrontal cortex is found when a change of face expression acts as a social signal that behaviour should change; and damage to the orbitofrontal cortex can impair face and voice expression identification, and also the reversal of emotional behaviour that normally occurs when reinforcers are reversed.

  13. The vestibulocochlear nerve (VIII).

    PubMed

    Benoudiba, F; Toulgoat, F; Sarrazin, J-L

    2013-10-01

    The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. Copyright © 2013. Published by Elsevier Masson SAS.

  14. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Hearing and seeing meaning in speech and gesture: insights from brain and behaviour

    PubMed Central

    Özyürek, Aslı

    2014-01-01

    As we speak, we use not only the arbitrary form–meaning mappings of the speech channel but also motivated form–meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal–posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. PMID:25092664

  16. Hearing and seeing meaning in speech and gesture: insights from brain and behaviour.

    PubMed

    Özyürek, Aslı

    2014-09-19

    As we speak, we use not only the arbitrary form-meaning mappings of the speech channel but also motivated form-meaning correspondences, i.e. iconic gestures that accompany speech (e.g. inverted V-shaped hand wiggling across gesture space to demonstrate walking). This article reviews what we know about processing of semantic information from speech and iconic gestures in spoken languages during comprehension of such composite utterances. Several studies have shown that comprehension of iconic gestures involves brain activations known to be involved in semantic processing of speech: i.e. modulation of the electrophysiological recording component N400, which is sensitive to the ease of semantic integration of a word to previous context, and recruitment of the left-lateralized frontal-posterior temporal network (left inferior frontal gyrus (IFG), medial temporal gyrus (MTG) and superior temporal gyrus/sulcus (STG/S)). Furthermore, we integrate the information coming from both channels recruiting brain areas such as left IFG, posterior superior temporal sulcus (STS)/MTG and even motor cortex. Finally, this integration is flexible: the temporal synchrony between the iconic gesture and the speech segment, as well as the perceived communicative intent of the speaker, modulate the integration process. Whether these findings are special to gestures or are shared with actions or other visual accompaniments to speech (e.g. lips) or other visual symbols such as pictures are discussed, as well as the implications for a multimodal view of language. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation.

    PubMed

    Green, Sophie; Ralph, Matthew A Lambon; Moll, Jorge; Stamatakis, Emmanuel A; Grafman, Jordan; Zahn, Roland

    2010-10-01

    It has been hypothesized that the experience of different moral sentiments such as guilt and indignation is underpinned by activation in temporal and fronto-mesolimbic regions and that functional integration between these regions is necessary for the differentiated experience of these moral sentiments. A recent fMRI study revealed that the right superior anterior temporal lobe (ATL) was activated irrespective of the context of moral feelings (guilt or indignation). This region has been associated with context-independent conceptual social knowledge which allows us to make fine-grained differentiations between qualities of social behaviours (e.g. "critical" and "faultfinding"). This knowledge is required to make emotional evaluations of social behaviour. In contrast to the context-independent activation of the ATL, there were context-dependent activations within different fronto-mesolimbic regions for guilt and indignation. However, it is unknown whether functional integration occurs between these regions and whether regional patterns of integration are distinctive for the experience of different moral sentiments. Here, we used fMRI and psychophysiological interaction analysis, an established measure of functional integration to investigate this issue. We found selective functional integration between the right superior ATL and a subgenual cingulate region during the experience of guilt and between the right superior ATL and the lateral orbitofrontal cortex for indignation. Our data provide the first evidence for functional integration of conceptual social knowledge representations in the right superior ATL with representations of different feeling contexts in fronto-mesolimbic regions. We speculate that this functional architecture allows for the conceptually differentiated experience of moral sentiments in healthy individuals. Copyright 2010 Elsevier Inc. All rights reserved.

  18. [Neural mechanisms of facial recognition].

    PubMed

    Nagai, Chiyoko

    2007-01-01

    We review recent researches in neural mechanisms of facial recognition in the light of three aspects: facial discrimination and identification, recognition of facial expressions, and face perception in itself. First, it has been demonstrated that the fusiform gyrus has a main role of facial discrimination and identification. However, whether the FFA (fusiform face area) is really a special area for facial processing or not is controversial; some researchers insist that the FFA is related to 'becoming an expert' for some kinds of visual objects, including faces. Neural mechanisms of prosopagnosia would be deeply concerned to this issue. Second, the amygdala seems to be very concerned to recognition of facial expressions, especially fear. The amygdala, connected with the superior temporal sulcus and the orbitofrontal cortex, appears to operate the cortical function. The amygdala and the superior temporal sulcus are related to gaze recognition, which explains why a patient with bilateral amygdala damage could not recognize only a fear expression; the information from eyes is necessary for fear recognition. Finally, even a newborn infant can recognize a face as a face, which is congruent with the innate hypothesis of facial recognition. Some researchers speculate that the neural basis of such face perception is the subcortical network, comprised of the amygdala, the superior colliculus, and the pulvinar. This network would relate to covert recognition that prosopagnosic patients have.

  19. Altered brain network centrality in patients with adult comitant exotropia strabismus: A resting-state fMRI study

    PubMed Central

    Tan, Gang; Dan, Zeng-Renqing; Zhang, Ying; Huang, Xin; Zhong, Yu-Lin; Ye, Lin-Hong; Rong, Rong; Ye, Lei; Zhou, Qiong; Shao, Yi

    2017-01-01

    Objective To investigate the underlying functional network brain-activity changes in patients with adult comitant exotropia strabismus (CES) and the relationship with clinical features using the voxel-wise degree centrality (DC) method. Methods A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs; 17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was conducted to distinguish CESs from HCs. The relationship between mean DC values in various brain regions and behavioral performance was examined with correlation analysis. Results Compared with HCs, CES patients exhibited decreased DC values in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal lobule. However, there was no correlation between mean DC values and behavioral performance in any brain regions. Conclusions Adult comitant exotropia strabismus is associated with abnormal brain network activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility disorders in CES. PMID:28679330

  20. Phonological Working Memory for Words and Nonwords in Cerebral Cortex.

    PubMed

    Perrachione, Tyler K; Ghosh, Satrajit S; Ostrovskaya, Irina; Gabrieli, John D E; Kovelman, Ioulia

    2017-07-12

    The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production.

  1. Male and female voices activate distinct regions in the male brain.

    PubMed

    Sokhi, Dilraj S; Hunter, Michael D; Wilkinson, Iain D; Woodruff, Peter W R

    2005-09-01

    In schizophrenia, auditory verbal hallucinations (AVHs) are likely to be perceived as gender-specific. Given that functional neuro-imaging correlates of AVHs involve multiple brain regions principally including auditory cortex, it is likely that those brain regions responsible for attribution of gender to speech are invoked during AVHs. We used functional magnetic resonance imaging (fMRI) and a paradigm utilising 'gender-apparent' (unaltered) and 'gender-ambiguous' (pitch-scaled) male and female voice stimuli to test the hypothesis that male and female voices activate distinct brain areas during gender attribution. The perception of female voices, when compared with male voices, affected greater activation of the right anterior superior temporal gyrus, near the superior temporal sulcus. Similarly, male voice perception activated the mesio-parietal precuneus area. These different gender associations could not be explained by either simple pitch perception or behavioural response because the activations that we observed were conjointly activated by both 'gender-apparent' and 'gender-ambiguous' voices. The results of this study demonstrate that, in the male brain, the perception of male and female voices activates distinct brain regions.

  2. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia.

    PubMed

    Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H

    2012-09-01

    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).

  3. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    PubMed

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Adaptive changes in early and late blind: a fMRI study of Braille reading.

    PubMed

    Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E

    2002-01-01

    Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.

  5. Adaptive Changes in Early and Late Blind: A fMRI Study of Braille Reading

    PubMed Central

    SNYDER, A. Z.; CONTURO, T. E.; AKBUDAK, E.; OLLINGER, J. M.; RAICHLE, M. E.

    2013-01-01

    Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex. PMID:11784773

  6. Functional neuroanatomy of grief: an FMRI study.

    PubMed

    Gündel, Harald; O'Connor, Mary-Frances; Littrell, Lindsey; Fort, Carolyn; Lane, Richard D

    2003-11-01

    In this study the authors examined the functional neuroanatomy of grief, which to their knowledge has not been studied previously in functional neuroimaging research. Grief was elicited in eight bereaved women through photographs of the deceased versus a stranger, combined with words specific to the death event versus neutral words. Use of both pictures and words resulted in a 2x2 factorial design. Three brain regions were independently activated by the picture and word factors: posterior cingulate cortex, medial/superior frontal gyrus, and cerebellum. The two factors also activated distinct regions: for the picture factor, they were the cuneus, superior lingual gyrus, insula, dorsal anterior cingulate cortex, inferior temporal gyrus, and fusiform gyrus; and for the word factor, they were the precuneus, precentral gyrus, midbrain, and vermis. The interaction of the two factors showed significant activation in the cerebellar vermis. Grief is mediated by a distributed neural network that subserves affect processing, mentalizing, episodic memory retrieval, processing of familiar faces, visual imagery, autonomic regulation, and modulation/coordination of these functions. This neural network may account for the unique, subjective quality of grief and provide new leads in understanding the health consequences of grief and the neurobiology of attachment.

  7. Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment

    PubMed Central

    Hinkley, Leighton B.N.; Vinogradov, Sophia; Guggisberg, Adrian G.; Fisher, Melissa; Findlay, Anne M.; Nagarajan, Srikantan S.

    2011-01-01

    Background Schizophrenia is associated with functional decoupling between cortical regions, but we do not know whether and where this occurs in low-frequency electromagnetic oscillations. The goal of this study was to use magnetoencephalography (MEG) to identify brain regions that exhibit abnormal resting-state connectivity in the alpha frequency range in patients with schizophrenia and investigate associations between functional connectivity and clinical symptoms in stable outpatient participants. Method Thirty patients with schizophrenia and fifteen healthy comparison participants were scanned in resting-state MEG (eyes closed). Functional connectivity MEGI (fcMEGI) data were reconstructed globally in the alpha range, quantified by the mean imaginary coherence between a voxel and the rest of the brain. Results In patients, decreased connectivity was observed in left pre-frontal cortex (PFC) and right superior temporal cortex while increased connectivity was observed in left extrastriate cortex and the right inferior PFC. Functional connectivity of left inferior parietal cortex was negatively related to positive symptoms. Low left PFC connectivity was associated with negative symptoms. Functional connectivity of midline PFC was negatively correlated with depressed symptoms. Functional connectivity of right PFC was associated with other (cognitive) symptoms. Conclusions This study demonstrates direct functional disconnection in schizophrenia between specific cortical fields within low-frequency resting-state oscillations. Impaired alpha coupling in frontal, parietal, and temporal regions is associated with clinical symptoms in these stable outpatients. Our findings indicate that this level of functional disconnection between cortical regions is an important treatment target in schizophrenia. PMID:21861988

  8. Brain substrates of social decision-making in dual diagnosis: cocaine dependence and personality disorders.

    PubMed

    Verdejo-Garcia, Antonio; Verdejo-Román, Juan; Albein-Urios, Natalia; Martínez-González, José M; Soriano-Mas, Carles

    2017-03-01

    Cocaine dependence frequently co-occurs with personality disorders, leading to increased interpersonal problems and greater burden of disease. Personality disorders are characterised by patterns of thinking and feeling that divert from social expectations. However, the comorbidity between cocaine dependence and personality disorders has not been substantiated by measures of brain activation during social decision-making. We applied functional magnetic resonance imaging to compare brain activations evoked by a social decision-making task-the Ultimatum Game-in 24 cocaine dependents with personality disorders (CDPD), 19 cocaine dependents without comorbidities and 19 healthy controls. In the Ultimatum Game participants had to accept or reject bids made by another player to split monetary stakes. Offers varied in fairness (in fair offers the proposer shares ~50 percent of the money; in unfair offers the proposer shares <30 percent of the money), and participants were told that if they accept both players get the money, and if they reject both players lose it. We contrasted brain activations during unfair versus fair offers and accept versus reject choices. During evaluation of unfair offers CDPD displayed lower activation in the insula and the anterior cingulate cortex and higher activation in the lateral orbitofrontal cortex and superior frontal and temporal gyri. Frontal activations negatively correlated with emotion recognition. During rejection of offers CDPD displayed lower activation in the anterior cingulate cortex, striatum and midbrain. Dual diagnosis is linked to hypo-activation of the insula and anterior cingulate cortex and hyper-activation of frontal-temporal regions during social decision-making, which associates with poorer emotion recognition. © 2015 Society for the Study of Addiction.

  9. Face processing pattern under top-down perception: a functional MRI study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming

    2009-02-01

    Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.

  10. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  11. Superior temporal sulcus--It's my area: or is it?

    PubMed

    Hein, Grit; Knight, Robert T

    2008-12-01

    The superior temporal sulcus (STS) is the chameleon of the human brain. Several research areas claim the STS as the host brain region for their particular behavior of interest. Some see it as one of the core structures for theory of mind. For others, it is the main region for audiovisual integration. It plays an important role in biological motion perception, but is also claimed to be essential for speech processing and processing of faces. We review the foci of activations in the STS from multiple functional magnetic resonance imaging studies, focusing on theory of mind, audiovisual integration, motion processing, speech processing, and face processing. The results indicate a differentiation of the STS region in an anterior portion, mainly involved in speech processing, and a posterior portion recruited by cognitive demands of all these different research areas. The latter finding argues against a strict functional subdivision of the STS. In line with anatomical evidence from tracer studies, we propose that the function of the STS varies depending on the nature of network coactivations with different regions in the frontal cortex and medial-temporal lobe. This view is more in keeping with the notion that the same brain region can support different cognitive operations depending on task-dependent network connections, emphasizing the role of network connectivity analysis in neuroimaging.

  12. Altered Medial Frontal and Superior Temporal Response to Implicit Processing of Emotions in Autism.

    PubMed

    Kana, Rajesh K; Patriquin, Michelle A; Black, Briley S; Channell, Marie M; Wicker, Bruno

    2016-01-01

    Interpreting emotional expressions appropriately poses a challenge for individuals with autism spectrum disorder (ASD). In particular, difficulties with emotional processing in ASD are more pronounced in contexts where emotional expressions are subtle, automatic, and reflexive-that is, implicit. In contrast, explicit emotional processing, which requires the cognitive evaluation of an emotional experience, appears to be relatively intact in individuals with ASD. In the present study, we examined the brain activation and functional connectivity differences underlying explicit and implicit emotional processing in age- and IQ-matched adults with (n = 17) and without (n = 15) ASD. Results indicated: (1) significantly reduced levels of brain activation in participants with ASD in medial prefrontal cortex (MPFC) and superior temporal gyrus (STG) during implicit emotion processing; (2) significantly weaker functional connectivity in the ASD group in connections of the MPFC with the amygdala, temporal lobe, parietal lobe, and fusiform gyrus; (3) No group difference in performance accuracy or reaction time; and (4) Significant positive relationship between empathizing ability and STG activity in ASD but not in typically developing participants. These findings suggest that the neural mechanisms underlying implicit, but not explicit, emotion processing may be altered at multiple levels in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  13. Mirror Neurons in a New World Monkey, Common Marmoset

    PubMed Central

    Suzuki, Wataru; Banno, Taku; Miyakawa, Naohisa; Abe, Hiroshi; Goda, Naokazu; Ichinohe, Noritaka

    2015-01-01

    Mirror neurons respond when executing a motor act and when observing others' similar act. So far, mirror neurons have been found only in macaques, humans, and songbirds. To investigate the degree of phylogenetic specialization of mirror neurons during the course of their evolution, we determined whether mirror neurons with similar properties to macaques occur in a New World monkey, the common marmoset (Callithrix jacchus). The ventral premotor cortex (PMv), where mirror neurons have been reported in macaques, is difficult to identify in marmosets, since no sulcal landmarks exist in the frontal cortex. We addressed this problem using “in vivo” connection imaging methods. That is, we first identified cells responsive to others' grasping action in a clear landmark, the superior temporal sulcus (STS), under anesthesia, and injected fluorescent tracers into the region. By fluorescence stereomicroscopy, we identified clusters of labeled cells in the ventrolateral frontal cortex, which were confirmed to be within the ventrolateral frontal cortex including PMv after sacrifice. We next implanted electrodes into the ventrolateral frontal cortex and STS and recorded single/multi-units under an awake condition. As a result, we found neurons in the ventrolateral frontal cortex with characteristic “mirror” properties quite similar to those in macaques. This finding suggests that mirror neurons occur in a common ancestor of New and Old World monkeys and its common properties are preserved during the course of primate evolution. PMID:26696817

  14. Visioning in the brain: an fMRI study of inspirational coaching and mentoring.

    PubMed

    Jack, Anthony I; Boyatzis, Richard E; Khawaja, Masud S; Passarelli, Angela M; Leckie, Regina L

    2013-01-01

    Effective coaching and mentoring is crucial to the success of individuals and organizations, yet relatively little is known about its neural underpinnings. Coaching and mentoring to the Positive Emotional Attractor (PEA) emphasizes compassion for the individual's hopes and dreams and has been shown to enhance a behavioral change. In contrast, coaching to the Negative Emotional Attractor (NEA), by focusing on externally defined criteria for success and the individual's weaknesses in relation to them, does not show sustained change. We used fMRI to measure BOLD responses associated with these two coaching styles. We hypothesized that PEA coaching would be associated with increased global visual processing and with engagement of the parasympathetic nervous system (PNS), while the NEA coaching would involve greater engagement of the sympathetic nervous system (SNS). Regions showing more activity in PEA conditions included the lateral occipital cortex, superior temporal cortex, medial parietal, subgenual cingulate, nucleus accumbens, and left lateral prefrontal cortex. We relate these activations to visioning, PNS activity, and positive affect. Regions showing more activity in NEA conditions included medial prefrontal regions and right lateral prefrontal cortex. We relate these activations to SNS activity, self-trait attribution and negative affect.

  15. Functional neuroanatomy of auditory scene analysis in Alzheimer's disease

    PubMed Central

    Golden, Hannah L.; Agustus, Jennifer L.; Goll, Johanna C.; Downey, Laura E.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Auditory scene analysis is a demanding computational process that is performed automatically and efficiently by the healthy brain but vulnerable to the neurodegenerative pathology of Alzheimer's disease. Here we assessed the functional neuroanatomy of auditory scene analysis in Alzheimer's disease using the well-known ‘cocktail party effect’ as a model paradigm whereby stored templates for auditory objects (e.g., hearing one's spoken name) are used to segregate auditory ‘foreground’ and ‘background’. Patients with typical amnestic Alzheimer's disease (n = 13) and age-matched healthy individuals (n = 17) underwent functional 3T-MRI using a sparse acquisition protocol with passive listening to auditory stimulus conditions comprising the participant's own name interleaved with or superimposed on multi-talker babble, and spectrally rotated (unrecognisable) analogues of these conditions. Name identification (conditions containing the participant's own name contrasted with spectrally rotated analogues) produced extensive bilateral activation involving superior temporal cortex in both the AD and healthy control groups, with no significant differences between groups. Auditory object segregation (conditions with interleaved name sounds contrasted with superimposed name sounds) produced activation of right posterior superior temporal cortex in both groups, again with no differences between groups. However, the cocktail party effect (interaction of own name identification with auditory object segregation processing) produced activation of right supramarginal gyrus in the AD group that was significantly enhanced compared with the healthy control group. The findings delineate an altered functional neuroanatomical profile of auditory scene analysis in Alzheimer's disease that may constitute a novel computational signature of this neurodegenerative pathology. PMID:26029629

  16. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis.

    PubMed

    Webb, C A; Weber, M; Mundy, E A; Killgore, W D S

    2014-10-01

    Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.

  17. Spatiotemporal characteristics of sleep spindles depend on cortical location.

    PubMed

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S

    2017-02-01

    Since their discovery almost one century ago, sleep spindles, 0.5-2s long bursts of oscillatory activity at 9-16Hz during NREM sleep, have been thought to be global and relatively uniform throughout the cortex. Recent work, however, has brought this concept into question but it remains unclear to what degree spindles are global or local and if their properties are uniform or location-dependent. We addressed this question by recording sleep in eight patients undergoing evaluation for epilepsy with intracranial electrocorticography, which combines high spatial resolution with extensive cortical coverage. We find that spindle characteristics are not uniform but are strongly influenced by the underlying cortical regions, particularly for spindle density and fundamental frequency. We observe both highly isolated and spatially distributed spindles, but in highly skewed proportions: while most spindles are restricted to one or very few recording channels at any given time, there are spindles that occur over widespread areas, often involving lateral prefrontal cortices and superior temporal gyri. Their co-occurrence is affected by a subtle but significant propagation of spindles from the superior prefrontal regions and the temporal cortices towards the orbitofrontal cortex. This work provides a brain-wide characterization of sleep spindles as mostly local graphoelements with heterogeneous characteristics that depend on the underlying cortical area. We propose that the combination of local characteristics and global organization reflects the dual properties of the thalamo-cortical generators and provides a flexible framework to support the many functions ascribed to sleep in general and spindles specifically. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Two takes on the social brain: a comparison of theory of mind tasks.

    PubMed

    Gobbini, Maria Ida; Koralek, Aaron C; Bryan, Ronald E; Montgomery, Kimberly J; Haxby, James V

    2007-11-01

    We compared two tasks that are widely used in research on mentalizing--false belief stories and animations of rigid geometric shapes that depict social interactions--to investigate whether the neural systems that mediate the representation of others' mental states are consistent across these tasks. Whereas false belief stories activated primarily the anterior paracingulate cortex (APC), the posterior cingulate cortex/precuneus (PCC/PC), and the temporo-parietal junction (TPJ)--components of the distributed neural system for theory of mind (ToM)--the social animations activated an extensive region along nearly the full extent of the superior temporal sulcus, including a locus in the posterior superior temporal sulcus (pSTS), as well as the frontal operculum and inferior parietal lobule (IPL)--components of the distributed neural system for action understanding--and the fusiform gyrus. These results suggest that the representation of covert mental states that may predict behavior and the representation of intentions that are implied by perceived actions involve distinct neural systems. These results show that the TPJ and the pSTS play dissociable roles in mentalizing and are parts of different distributed neural systems. Because the social animations do not depict articulated body movements, these results also highlight that the perception of the kinematics of actions is not necessary to activate the mirror neuron system, suggesting that this system plays a general role in the representation of intentions and goals of actions. Furthermore, these results suggest that the fusiform gyrus plays a general role in the representation of visual stimuli that signify agency, independent of visual form.

  19. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    PubMed

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  20. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    PubMed Central

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470

  1. The signer and the sign: cortical correlates of person identity and language processing from point-light displays.

    PubMed

    Campbell, Ruth; Capek, Cheryl M; Gazarian, Karine; MacSweeney, Mairéad; Woll, Bencie; David, Anthony S; McGuire, Philip K; Brammer, Michael J

    2011-09-01

    In this study, the first to explore the cortical correlates of signed language (SL) processing under point-light display conditions, the observer identified either a signer or a lexical sign from a display in which different signers were seen producing a number of different individual signs. Many of the regions activated by point-light under these conditions replicated those previously reported for full-image displays, including regions within the inferior temporal cortex that are specialised for face and body-part identification, although such body parts were invisible in the display. Right frontal regions were also recruited - a pattern not usually seen in full-image SL processing. This activation may reflect the recruitment of information about person identity from the reduced display. A direct comparison of identify-signer and identify-sign conditions showed these tasks relied to a different extent on the posterior inferior regions. Signer identification elicited greater activation than sign identification in (bilateral) inferior temporal gyri (BA 37/19), fusiform gyri (BA 37), middle and posterior portions of the middle temporal gyri (BAs 37 and 19), and superior temporal gyri (BA 22 and 42). Right inferior frontal cortex was a further focus of differential activation (signer>sign). These findings suggest that the neural systems supporting point-light displays for the processing of SL rely on a cortical network including areas of the inferior temporal cortex specialized for face and body identification. While this might be predicted from other studies of whole body point-light actions (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001) it is not predicted from the perspective of spoken language processing, where voice characteristics and speech content recruit distinct cortical regions (Stevens, 2004) in addition to a common network. In this respect, our findings contrast with studies of voice/speech recognition (Von Kriegstein, Kleinschmidt, Sterzer, & Giraud, 2005). Inferior temporal regions associated with the visual recognition of a person appear to be required during SL processing, for both carrier and content information. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Adolescents’ risky decision-making activates neural networks related to social cognition and cognitive control processes

    PubMed Central

    Rodrigo, María José; Padrón, Iván; de Vega, Manuel; Ferstl, Evelyn C.

    2014-01-01

    This study examines by means of functional magnetic resonance imaging the neural mechanisms underlying adolescents’ risk decision-making in social contexts. We hypothesize that the social context could engage brain regions associated with social cognition processes and developmental changes are also expected. Sixty participants (adolescents: 17–18, and young adults: 21–22 years old) read narratives describing typical situations of decision-making in the presence of peers. They were asked to make choices in risky situations (e.g., taking or refusing a drug) or ambiguous situations (e.g., eating a hamburger or a hotdog). Risky as compared to ambiguous scenarios activated bilateral temporoparietal junction (TPJ), bilateral middle temporal gyrus (MTG), right medial prefrontal cortex, and the precuneus bilaterally; i.e., brain regions related to social cognition processes, such as self-reflection and theory of mind (ToM). In addition, brain structures related to cognitive control were active [right anterior cingulate cortex (ACC), bilateral dorsolateral prefrontal cortex (DLPFC), bilateral orbitofrontal cortex], whereas no significant clusters were obtained in the reward system (ventral striatum). Choosing the dangerous option involved a further activation of control areas (ACC) and emotional and social cognition areas (temporal pole). Adolescents employed more neural resources than young adults in the right DLPFC and the right TPJ in risk situations. When choosing the dangerous option, young adults showed a further engagement in ToM related regions (bilateral MTG) and in motor control regions related to the planning of actions (pre-supplementary motor area). Finally, the right insula and the right superior temporal gyrus were more activated in women than in men, suggesting more emotional involvement and more intensive modeling of the others’ perspective in the risky conditions. These findings call for more comprehensive developmental accounts of decision-making in social contexts that incorporate the role of emotional and social cognition processes. PMID:24592227

  3. Strategy over operation: neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children.

    PubMed

    Polspoel, Brecht; Peters, Lien; Vandermosten, Maaike; De Smedt, Bert

    2017-09-01

    Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Dynamic speech representations in the human temporal lobe.

    PubMed

    Leonard, Matthew K; Chang, Edward F

    2014-09-01

    Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge, even within individual areas. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Brain activation while forming memories of fearful and neutral faces in women and men.

    PubMed

    Fischer, Håkan; Sandblom, Johan; Nyberg, Lars; Herlitz, Agneta; Bäckman, Lars

    2007-11-01

    Event-related functional MRI (fMRI) was used to assess brain activity during encoding of fearful and neutral faces in 12 women and 12 men. In a subsequent memory analysis, the authors separated successful from unsuccessful encoding of both types of faces, based on whether they were remembered or forgotten in a later recognition memory test. Overall, women and men recruited overlapping neural circuitries. Both sexes activated right-sided medial-temporal regions during successful encoding of fearful faces. Successful encoding of neutral faces was associated with left-sided lateral prefrontal and right-sided superior frontal activation in both sexes. In women, relatively greater encoding related activity for neutral faces was seen in the superior parietal and parahippocampal cortices. By contrast, men activated the left and right superior/middle frontal cortex more than women during successful encoding of the same neutral faces. These findings suggest that women and men use similar neural networks to encode facial information, with only subtle sex differences observed for neutral faces.

  6. How Configural Is the Configural Superiority Effect? A Neuroimaging Investigation of Emergent Features in Visual Cortex

    PubMed Central

    Fox, Olivia M.; Harel, Assaf; Bennett, Kevin B.

    2017-01-01

    The perception of a visual stimulus is dependent not only upon local features, but also on the arrangement of those features. When stimulus features are perceptually well organized (e.g., symmetric or parallel), a global configuration with a high degree of salience emerges from the interactions between these features, often referred to as emergent features. Emergent features can be demonstrated in the Configural Superiority Effect (CSE): presenting a stimulus within an organized context relative to its presentation in a disarranged one results in better performance. Prior neuroimaging work on the perception of emergent features regards the CSE as an “all or none” phenomenon, focusing on the contrast between configural and non-configural stimuli. However, it is still not clear how emergent features are processed between these two endpoints. The current study examined the extent to which behavioral and neuroimaging markers of emergent features are responsive to the degree of configurality in visual displays. Subjects were tasked with reporting the anomalous quadrant in a visual search task while being scanned. Degree of configurality was manipulated by incrementally varying the rotational angle of low-level features within the stimulus arrays. Behaviorally, we observed faster response times with increasing levels of configurality. These behavioral changes were accompanied by increases in response magnitude across multiple visual areas in occipito-temporal cortex, primarily early visual cortex and object-selective cortex. Our findings suggest that the neural correlates of emergent features can be observed even in response to stimuli that are not fully configural, and demonstrate that configural information is already present at early stages of the visual hierarchy. PMID:28167924

  7. Neural correlates of the encoding of multimodal contextual features

    PubMed Central

    Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test requirement was to discriminate studied from unstudied pictures and, for each picture judged old, to retrieve its study location and the gender of the voice that spoke its name. Study trials associated with accurate rather than inaccurate location memory demonstrated enhanced activity in the fusiform and parahippocampal cortex and the hippocampus and reduced activity (a negative subsequent memory effect) in the medial occipital cortex. Successful encoding of voice information was associated with enhanced study activity in the right middle superior temporal sulcus and activity reduction in the right superior frontal cortex. These findings support the proposal that encoding of a contextual feature is associated with enhanced activity in regions engaged during its online processing. In addition, they indicate that negative subsequent memory effects can also demonstrate feature-selectivity. Relative to other classes of study trials, trials for which both contextual features were later retrieved demonstrated enhanced activity in the lateral occipital complex and reduced activity in the temporo-parietal junction. These findings suggest that multifeatural encoding was facilitated when the study item was processed efficiently and study processing was not interrupted by redirection of attention toward extraneous events. PMID:23166292

  8. Neural correlates of processing harmonic expectancy violations in children and adolescents with OCD.

    PubMed

    Buse, Judith; Roessner, Veit

    2016-01-01

    It has been suggested that patients with obsessive-compulsive disorder (OCD) exhibit enhanced awareness of embedded stimulus patterns as well as enhanced allocation of attention towards unexpected stimuli. Our study aimed at investigating these OCD characteristics by running the harmonic expectancy violation paradigm in 21 boys with OCD and 29 healthy controls matched for age, gender and IQ during a functional magnetic resonance imaging (fMRI) scan. Each trial consisted of a chord sequence in which the first four chords induced a strong expectancy for a harmonic chord at the next position. In 70% of the trials the fifth chord fulfilled this expectancy (harmonic condition), while in 30% the expectancy was violated (disharmonic condition). Overall, the harmonic condition elicited blood-oxygen-level dependent (BOLD) activation in the auditory cortex, while during the disharmonic condition the precuneus, the auditory cortex, the medial frontal gyrus, the premotor cortex, the lingual gyrus, the inferior frontal gyrus and the superior frontal gyrus were activated. In a cluster extending from the right superior temporal gyrus to the inferior frontal gyrus, boys with OCD exhibited increased activation compared to healthy controls in the harmonic condition and decreased activation in the disharmonic condition. Our findings might indicate that patients with OCD are excessively engaged in processing the implicit structure embedded in music stimuli, but they speak against the suggestion that OCD is associated with a misallocation of attention towards the processing of unexpected stimuli.

  9. Entorhinal Cortex: Antemortem Cortical Thickness and Postmortem Neurofibrillary Tangles and Amyloid Pathology.

    PubMed

    Thaker, A A; Weinberg, B D; Dillon, W P; Hess, C P; Cabral, H J; Fleischman, D A; Leurgans, S E; Bennett, D A; Hyman, B T; Albert, M S; Killiany, R J; Fischl, B; Dale, A M; Desikan, R S

    2017-05-01

    The entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures. We evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-β load within the entorhinal cortex and medial temporal and neocortical regions. We found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex ( P = .006) and medial temporal lobe tangles ( P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex ( P = .09) and medial temporal lobe amyloid-β ( P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles ( P = .003) and amyloid-β ( P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex ( P = .31) and medial temporal lobe tangles ( P = .051). Our findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology. © 2017 by American Journal of Neuroradiology.

  10. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  11. On the domain-specificity of the visual and non-visual face-selective regions.

    PubMed

    Axelrod, Vadim

    2016-08-01

    What happens in our brains when we see a face? The neural mechanisms of face processing - namely, the face-selective regions - have been extensively explored. Research has traditionally focused on visual cortex face-regions; more recently, the role of face-regions outside the visual cortex (i.e., non-visual-cortex face-regions) has been acknowledged as well. The major quest today is to reveal the functional role of each this region in face processing. To make progress in this direction, it is essential to understand the extent to which the face-regions, and particularly the non-visual-cortex face-regions, process only faces (i.e., face-specific, domain-specific processing) or rather are involved in a more domain-general cognitive processing. In the current functional MRI study, we systematically examined the activity of the whole face-network during face-unrelated reading task (i.e., written meaningful sentences with content unrelated to faces/people and non-words). We found that the non-visual-cortex (i.e., right lateral prefrontal cortex and posterior superior temporal sulcus), but not the visual cortex face-regions, responded significantly stronger to sentences than to non-words. In general, some degree of sentence selectivity was found in all non-visual-cortex cortex. Present result highlights the possibility that the processing in the non-visual-cortex face-selective regions might not be exclusively face-specific, but rather more or even fully domain-general. In this paper, we illustrate how the knowledge about domain-general processing in face-regions can help to advance our general understanding of face processing mechanisms. Our results therefore suggest that the problem of face processing should be approached in the broader scope of cognition in general. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years.

    PubMed

    Lean, Rachel E; Melzer, Tracy R; Bora, Samudragupta; Watts, Richard; Woodward, Lianne J

    2017-08-01

    This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).

  13. Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions.

    PubMed

    LoPresti, Matthew L; Schon, Karin; Tricarico, Marisa D; Swisher, Jascha D; Celone, Kim A; Stern, Chantal E

    2008-04-02

    During everyday interactions, we continuously monitor and maintain information about different individuals and their changing emotions in memory. Yet to date, working memory (WM) studies have primarily focused on mechanisms for maintaining face identity, but not emotional expression, and studies investigating the neural basis of emotion have focused on transient activity, not delay related activity. The goal of this functional magnetic resonance imaging study was to investigate WM for two critical social cues: identity and emotion. Subjects performed a delayed match-to-sample task that required them to match either the emotional expression or the identity of a face after a 10 s delay. Neuroanatomically, our predictions focused on the orbitofrontal cortex (OFC) and the amygdala, as these regions have previously been implicated in emotional processing and long-term memory, and studies have demonstrated sustained OFC and medial temporal lobe activity during visual WM. Consistent with previous studies, transient activity during the sample period representing emotion and identity was found in the superior temporal sulcus and inferior occipital cortex, respectively. Sustained delay-period activity was evident in OFC, amygdala, and hippocampus, for both emotion and identity trials. These results suggest that, although initial processing of emotion and identity is accomplished in anatomically segregated temporal and occipital regions, sustained delay related memory for these two critical features is held by the OFC, amygdala and hippocampus. These regions share rich connections, and have been shown previously to be necessary for binding features together in long-term memory. Our results suggest a role for these regions in active maintenance as well.

  14. Reading without the left ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  15. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients

    PubMed Central

    Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

    2014-01-01

    Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603

  16. 1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial.

    PubMed

    Landgrebe, Michael; Hajak, Göran; Wolf, Stefan; Padberg, Frank; Klupp, Philipp; Fallgatter, Andreas J; Polak, Thomas; Höppner, Jacqueline; Haker, Rene; Cordes, Joachim; Klenzner, Thomas; Schönfeldt-Lecuona, Carlos; Kammer, Thomas; Graf, Erika; Koller, Michael; Kleinjung, Tobias; Lehner, Astrid; Schecklmann, Martin; Pöppl, Timm B; Kreuzer, Peter; Frank, Elmar; Langguth, Berthold

    Chronic tinnitus is a frequent, difficult to treat disease with high morbidity. This multicenter randomized, sham-controlled trial investigated the efficacy and safety of 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal cortex in patients with chronic tinnitus. Tinnitus patients were randomized to receive 10 sessions of either real or sham 1-Hz-rTMS (2000 stimuli, 110% motor threshold) to the left temporal cortex. The primary outcome was the change in the sum score of the tinnitus questionnaire (TQ) of Goebel and Hiller from baseline to end of treatment. A total of 163 patients were enrolled in the study (real rTMS: 75; sham rTMS: 78). At day 12, the baseline mean of 43.1 TQ points in 71 patients assigned to real rTMS changed by -0.5 points; it changed by 0.5 points from a baseline of 42.1 in 75 patients randomized to sham rTMS (adjusted mean difference between groups: -1.0; 95.19% confidence interval: -3.2 to 1.2; p = 0.36). All secondary outcome measures including measures of depression and quality of life showed no significant differences either (p > 0.11). The number of participants with side-effects or adverse events did not differ between groups. Real 1-Hz-rTMS over the left temporal cortex was well tolerated but not superior compared with sham rTMS in improving tinnitus severity. These findings are in contrast to results from studies with smaller sample sizes and put the efficacy of this rTMS protocol for treatment of chronic tinnitus into question. Controlled Trials: http://www.isrctn.com/ISRCTN89848288. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Instruction-specific brain activations during episodic encoding. a generalized level of processing effect.

    PubMed

    Petersson, Karl Magnus; Sandblom, Johan; Elfgren, Christina; Ingvar, Martin

    2003-11-01

    In a within-subject design we investigated the levels-of-processing (LOP) effect using visual material in a behavioral and a corresponding PET study. In the behavioral study we characterize a generalized LOP effect, using pleasantness and graphical quality judgments in the encoding situation, with two types of visual material, figurative and nonfigurative line drawings. In the PET study we investigate the related pattern of brain activations along these two dimensions. The behavioral results indicate that instruction and material contribute independently to the level of recognition performance. Therefore the LOP effect appears to stem both from the relative relevance of the stimuli (encoding opportunity) and an altered processing of stimuli brought about by the explicit instruction (encoding mode). In the PET study, encoding of visual material under the pleasantness (deep) instruction yielded left lateralized frontoparietal and anterior temporal activations while surface-based perceptually oriented processing (shallow instruction) yielded right lateralized frontoparietal, posterior temporal, and occipitotemporal activations. The result that deep encoding was related to the left prefrontal cortex while shallow encoding was related to the right prefrontal cortex, holding the material constant, is not consistent with the HERA model. In addition, we suggest that the anterior medial superior frontal region is related to aspects of self-referential semantic processing and that the inferior parts of the anterior cingulate as well as the medial orbitofrontal cortex is related to affective processing, in this case pleasantness evaluation of the stimuli regardless of explicit semantic content. Finally, the left medial temporal lobe appears more actively engaged by elaborate meaning-based processing and the complex response pattern observed in different subregions of the MTL lends support to the suggestion that this region is functionally segregated.

  18. Navigating the auditory scene: an expert role for the hippocampus.

    PubMed

    Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D

    2012-08-29

    Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner.

  19. Effects of aripiprazole versus risperidone on brain activation during planning and social-emotional evaluation in schizophrenia: A single-blind randomized exploratory study.

    PubMed

    Liemburg, Edith J; van Es, Frank; Knegtering, Henderikus; Aleman, André

    2017-10-03

    Impaired function of prefrontal brain networks may be the source of both negative symptoms and neurocognitive problems in psychotic disorders. Whereas most antipsychotics may decrease prefrontal activation, the partial dopamine D2-receptor agonist aripiprazole is hypothesized to improve prefrontal function. This study investigated whether patients with a psychotic disorder would show stronger activation of prefrontal areas and associated regions after treatment with aripiprazole compared to risperidone treatment. In this exploratory pharmacological neuroimaging study, 24 patients were randomly assigned to either aripiprazole or risperidone. At baseline and after nine weeks treatment they underwent an interview and MRI session. Here we report on brain activation (measured with arterial spin labeling) during performance of two tasks, the Tower of London and the Wall of Faces. Aripiprazole treatment decreased activation of the middle frontal, superior frontal and occipital gyrus (ToL) and medial temporal and inferior frontal gyrus, putamen and cuneus (WoF), while activation increased after risperidone. Activation increased in the ventral anterior cingulate and posterior insula (ToL), and superior frontal, superior temporal and precentral gyrus (WoF) after aripiprazole treatment and decreased after risperidone. Both treatment groups had increased ventral insula activation (ToL) and middle temporal gyrus (WoF), and decreased occipital cortex, precuneus and caudate head activation (ToL) activation. In conclusion, patients treated with aripiprazole may need less frontal resources for planning performance and may show increased frontotemporal and frontostriatal reactivity to emotional stimuli. More research is needed to corroborate and extend these preliminary findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neural correlates of observing pretend play in which one object is represented as another

    PubMed Central

    Whitehead, Charles; Marchant, Jennifer L.; Craik, David

    2009-01-01

    Observers were scanned while they watched a video of an actor using an object. Three conditions were contrasted in which the same object was used: (i) normally (e.g. using a tennis racket to hit a ball), (ii) in an unusual way (e.g. using a tennis racket to strain spaghetti), (iii) in a pretend play (e.g. playing a tennis racket like a banjo). Observing real and unusual uses of objects activated areas previously seen in studies of tool use including areas associated with a mirror system for action. Observing pretend play activated additional areas previously associated with theory of mind tasks and listening to narrative, including medial prefrontal cortex, posterior superior temporal sulcus and temporal poles. After presentation of each video, observers were asked to name the object as used in the preceding action video (e.g. racket, sieve or banjo). Naming the pretend object elicited activity in medial prefrontal cortex. These results are consistent with proposals that pretend play is a form of communicative narrative, associated with the ability to mentalize. However, this leaves open the question as to whether pretence or mentalizing is the more basic process. PMID:19535615

  1. [Role of the orbitofrontal cortex in moral judgment].

    PubMed

    Mimura, Masaru

    2010-11-01

    The neural substrates of moral judgments have recently been advocated to consist of widely distributed brain networks including the orbitofrontal cortex (OFC), anterior temporal lobe and superior temporal gyrus. Moral judgments could be regarded as a conflict between the top-down rational/logical processes and the bottom-up irrational/emotional processes. Individuals with OFC damage are usually difficult to inhibit emotionally-driven outrages, thereby demonstrating severe impairment of moral judgments despite their well-preserved moral knowledge. Individuals with OFC damage frequently present with anti-social less moral behaviors. However, clinical observation indicates that some OFC patients may show "hypermoral" tendency in the sense that they are too strict to overlook other person's offense. Two representative cases with OFC damage were reported, both presented with extreme rage against others' offensive behaviors. To further elucidate the "hypermorality" of OFC patients, an experiment was performed in which patients with OFC damage and healthy control participants were asked to determine punishments for other's fictitious crimes that varied in perpetrator responsibility and crime severity. Individuals with OFC damage punished more strictly than healthy controls those persons for mitigating circumstances. The results are consistent with clinical observation of OFC patients' highly rigid and inflexible behaviors against third person's offense.

  2. The relationship between puberty and social emotion processing

    PubMed Central

    Goddings, Anne-Lise; Burnett Heyes, Stephanie; Bird, Geoffrey; Viner, Russell M; Blakemore, Sarah-Jayne

    2012-01-01

    The social brain undergoes developmental change during adolescence, and pubertal hormones are hypothesized to contribute to this development. We used fMRI to explore how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to brain activity during a social emotion task. Forty-two females aged 11.1 to 13.7 years underwent fMRI scanning while reading scenarios pertaining either to social emotions, which require the representation of another person’s mental states, or to basic emotions, which do not. Pubertal stage and menarcheal status were used to assign girls to early or late puberty groups. Across the entire sample, the contrast between social versus basic emotion resulted in activity within the social brain network, including dorsomedial prefrontal cortex (DMPFC), the posterior superior temporal sulcus, and the anterior temporal cortex (ATC) in both hemispheres. Increased hormone levels (independent of age) were associated with higher left ATC activity during social emotion processing. More advanced age (independent of hormone levels) was associated with lower DMPFC activity during social emotion processing. Our results suggest functionally dissociable effects of pubertal hormones and age on the adolescent social brain. PMID:23106734

  3. Dissociation between melodic and rhythmic processing during piano performance from musical scores.

    PubMed

    Bengtsson, Sara L; Ullén, Fredrik

    2006-03-01

    When performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception. Here, we used functional magnetic resonance imaging to dissociate between brain areas processing the melodic and the rhythmic aspects during piano playing from musical scores. This behavior requires that the pianist decodes two types of information from the score in order to produce the desired piece of music. The spatial location of a note head determines which piano key to strike, and the various features of the note, such as the stem and flags determine the timing of each key stroke. We found that the medial occipital lobe, the superior temporal lobe, the rostral cingulate cortex, the putamen and the cerebellum process the melodic information, whereas the lateral occipital and the inferior temporal cortex, the left supramarginal gyrus, the left inferior and ventral frontal gyri, the caudate nucleus, and the cerebellum process the rhythmic information. Thus, we suggest a dissociate involvement of the dorsal visual stream in the spatial pitch processing and the ventral visual stream in temporal movement preparation. We propose that this dissociate organization may be important for fast learning and flexibility in motor control.

  4. Cross-language differences in the brain network subserving intelligible speech.

    PubMed

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P; Gao, Jia-Hong

    2015-03-10

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca's and Wernicke's areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.

  5. Cross-language differences in the brain network subserving intelligible speech

    PubMed Central

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P.; Gao, Jia-Hong

    2015-01-01

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension. PMID:25713366

  6. BOLD temporal dynamics of rat superior colliculus and lateral geniculate nucleus following short duration visual stimulation.

    PubMed

    Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X

    2011-04-29

    The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.

  7. Testing for dual brain processing routes in reading: a direct contrast of chinese character and pinyin reading using FMRI.

    PubMed

    Chen, Yiping; Fu, Shimin; Iversen, Susan D; Smith, Steve M; Matthews, Paul M

    2002-10-01

    Chinese offers a unique tool for testing the effects of word form on language processing during reading. The processes of letter-mediated grapheme-to-phoneme translation and phonemic assembly (assembled phonology) critical for reading and spelling in any alphabetic orthography are largely absent when reading nonalphabetic Chinese characters. In contrast, script-to-sound translation based on the script as a whole (addressed phonology) is absent when reading the Chinese alphabetic sound symbols known as pinyin, for which the script-to-sound translation is based exclusively on assembled phonology. The present study aims to contrast patterns of brain activity associated with the different cognitive mechanisms needed for reading the two scripts. fMRI was used with a block design involving a phonological and lexical task in which subjects were asked to decide whether visually presented, paired Chinese characters or pinyin "sounded like" a word. Results demonstrate that reading Chinese characters and pinyin activate a common brain network including the inferior frontal, middle, and inferior temporal gyri, the inferior and superior parietal lobules, and the extrastriate areas. However, some regions show relatively greater activation for either pinyin or Chinese reading. Reading pinyin led to a greater activation in the inferior parietal cortex bilaterally, the precuneus, and the anterior middle temporal gyrus. In contrast, activation in the left fusiform gyrus, the bilateral cuneus, the posterior middle temporal, the right inferior frontal gyrus, and the bilateral superior frontal gyrus were greater for nonalphabetic Chinese reading. We conclude that both alphabetic and nonalphabetic scripts activate a common brain network for reading. Overall, there are no differences in terms of hemispheric specialization between alphabetic and nonalphabetic scripts. However, differences in language surface form appear to determine relative activation in other regions. Some of these regions (e.g., the inferior parietal cortex for pinyin and fusiform gyrus for Chinese characters) are candidate regions for specialized processes associated with reading via predominantly assembled (pinyin) or addressed (Chinese character) procedures.

  8. Decoding Multiple Sound Categories in the Human Temporal Cortex Using High Resolution fMRI

    PubMed Central

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C. M.

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain’s representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases. PMID:25692885

  9. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI.

    PubMed

    Zhang, Fengqing; Wang, Ji-Ping; Kim, Jieun; Parrish, Todd; Wong, Patrick C M

    2015-01-01

    Perception of sound categories is an important aspect of auditory perception. The extent to which the brain's representation of sound categories is encoded in specialized subregions or distributed across the auditory cortex remains unclear. Recent studies using multivariate pattern analysis (MVPA) of brain activations have provided important insights into how the brain decodes perceptual information. In the large existing literature on brain decoding using MVPA methods, relatively few studies have been conducted on multi-class categorization in the auditory domain. Here, we investigated the representation and processing of auditory categories within the human temporal cortex using high resolution fMRI and MVPA methods. More importantly, we considered decoding multiple sound categories simultaneously through multi-class support vector machine-recursive feature elimination (MSVM-RFE) as our MVPA tool. Results show that for all classifications the model MSVM-RFE was able to learn the functional relation between the multiple sound categories and the corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above chance. This indicates the feasibility of decoding multiple sound categories not only within but across subjects. However, the across-subject variation affects classification performance more than the within-subject variation, as the across-subject analysis has significantly lower classification accuracies. Sound category-selective brain maps were identified based on multi-class classification and revealed distributed patterns of brain activity in the superior temporal gyrus and the middle temporal gyrus. This is in accordance with previous studies, indicating that information in the spatially distributed patterns may reflect a more abstract perceptual level of representation of sound categories. Further, we show that the across-subject classification performance can be significantly improved by averaging the fMRI images over items, because the irrelevant variations between different items of the same sound category are reduced and in turn the proportion of signals relevant to sound categorization increases.

  10. Song and speech: brain regions involved with perception and covert production.

    PubMed

    Callan, Daniel E; Tsytsarev, Vassiliy; Hanakawa, Takashi; Callan, Akiko M; Katsuhara, Maya; Fukuyama, Hidenao; Turner, Robert

    2006-07-01

    This 3-T fMRI study investigates brain regions similarly and differentially involved with listening and covert production of singing relative to speech. Given the greater use of auditory-motor self-monitoring and imagery with respect to consonance in singing, brain regions involved with these processes are predicted to be differentially active for singing more than for speech. The stimuli consisted of six Japanese songs. A block design was employed in which the tasks for the subject were to listen passively to singing of the song lyrics, passively listen to speaking of the song lyrics, covertly sing the song lyrics visually presented, covertly speak the song lyrics visually presented, and to rest. The conjunction of passive listening and covert production tasks used in this study allow for general neural processes underlying both perception and production to be discerned that are not exclusively a result of stimulus induced auditory processing nor to low level articulatory motor control. Brain regions involved with both perception and production for singing as well as speech were found to include the left planum temporale/superior temporal parietal region, as well as left and right premotor cortex, lateral aspect of the VI lobule of posterior cerebellum, anterior superior temporal gyrus, and planum polare. Greater activity for the singing over the speech condition for both the listening and covert production tasks was found in the right planum temporale. Greater activity in brain regions involved with consonance, orbitofrontal cortex (listening task), subcallosal cingulate (covert production task) were also present for singing over speech. The results are consistent with the PT mediating representational transformation across auditory and motor domains in response to consonance for singing over that of speech. Hemispheric laterality was assessed by paired t tests between active voxels in the contrast of interest relative to the left-right flipped contrast of interest calculated from images normalized to the left-right reflected template. Consistent with some hypotheses regarding hemispheric specialization, a pattern of differential laterality for speech over singing (both covert production and listening tasks) occurs in the left temporal lobe, whereas, singing over speech (listening task only) occurs in right temporal lobe.

  11. Individual differences in moral judgment competence influence neural correlates of socio-normative judgments

    PubMed Central

    Wartenburger, Isabell; Mériau, Katja; Scheibe, Christina; Goodenough, Oliver R.; Villringer, Arno; van der Meer, Elke; Heekeren, Hauke R.

    2008-01-01

    To investigate how individual differences in moral judgment competence are reflected in the human brain, we used event-related functional magnetic resonance imaging, while 23 participants made either socio-normative or grammatical judgments. Participants with lower moral judgment competence recruited the left ventromedial prefrontal cortex and the left posterior superior temporal sulcus more than participants with greater competence in this domain when identifying social norm violations. Moreover, moral judgment competence scores were inversely correlated with activity in the right dorsolateral prefrontal cortex (DLPFC) during socio-normative relative to grammatical judgments. Greater activity in right DLPFC in participants with lower moral judgment competence indicates increased recruitment of rule-based knowledge and its controlled application during socio-normative judgments. These data support current models of the neurocognition of morality according to which both emotional and cognitive components play an important role. PMID:19015093

  12. Neural mechanisms underlying human consensus decision-making

    PubMed Central

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P.

    2015-01-01

    SUMMARY Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a novel computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority of group-members’ prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas: the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction and intraparietal sulcus, and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others and environments, processed in distinct brain modules. PMID:25864634

  13. Neural mechanisms underlying human consensus decision-making.

    PubMed

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The neural dynamics of updating person impressions

    PubMed Central

    Cai, Yang; Todorov, Alexander

    2013-01-01

    Person perception is a dynamic, evolving process. Because other people are an endless source of social information, people need to update their impressions of others based upon new information. We devised an fMRI study to identify brain regions involved in updating impressions. Participants saw faces paired with valenced behavioral information and were asked to form impressions of these individuals. Each face was seen five times in a row, each time with a different behavioral description. Critically, for half of the faces the behaviors were evaluatively consistent, while for the other half they were inconsistent. In line with prior work, dorsomedial prefrontal cortex (dmPFC) was associated with forming impressions of individuals based on behavioral information. More importantly, a whole-brain analysis revealed a network of other regions associated with updating impressions of individuals who exhibited evaluatively inconsistent behaviors, including rostrolateral PFC, superior temporal sulcus, right inferior parietal lobule and posterior cingulate cortex. PMID:22490923

  15. Neural Correlates of Multisensory Perceptual Learning

    PubMed Central

    Powers, Albert R.; Hevey, Matthew A.; Wallace, Mark T.

    2012-01-01

    The brain’s ability to bind incoming auditory and visual stimuli depends critically on the temporal structure of this information. Specifically, there exists a temporal window of audiovisual integration within which stimuli are highly likely to be perceived as part of the same environmental event. Several studies have described the temporal bounds of this window, but few have investigated its malleability. Recently, our laboratory has demonstrated that a perceptual training paradigm is capable of eliciting a 40% narrowing in the width of this window that is stable for at least one week after cessation of training. In the current study we sought to reveal the neural substrates of these changes. Eleven human subjects completed an audiovisual simultaneity judgment training paradigm, immediately before and after which they performed the same task during an event-related 3T fMRI session. The posterior superior temporal sulcus (pSTS) and areas of auditory and visual cortex exhibited robust BOLD decreases following training, and resting state and effective connectivity analyses revealed significant increases in coupling among these cortices after training. These results provide the first evidence of the neural correlates underlying changes in multisensory temporal binding and that likely represent the substrate for a multisensory temporal binding window. PMID:22553032

  16. Regional gray matter density associated with emotional conflict resolution: evidence from voxel-based morphometry.

    PubMed

    Deng, Z; Wei, D; Xue, S; Du, X; Hitchman, G; Qiu, J

    2014-09-05

    Successful emotion regulation is a fundamental prerequisite for well-being and dysregulation may lead to psychopathology. The ability to inhibit spontaneous emotions while behaving in accordance with desired goals is an important dimension of emotion regulation and can be measured using emotional conflict resolution tasks. Few studies have investigated the gray matter correlates underlying successful emotional conflict resolution at the whole-brain level. We had 190 adults complete an emotional conflict resolution task (face-word task) and examined the brain regions significantly correlated with successful emotional conflict resolution using voxel-based morphometry. We found successful emotional conflict resolution was associated with increased regional gray matter density in widely distributed brain regions. These regions included the dorsal anterior cingulate/dorsal medial prefrontal cortex, ventral medial prefrontal cortex, supplementary motor area, amygdala, ventral striatum, precuneus, posterior cingulate cortex, inferior parietal lobule, superior temporal gyrus and fusiform face area. Together, our results indicate that individual differences in emotional conflict resolution ability may be attributed to regional structural differences across widely distributed brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases.

    PubMed

    Quigg, Mark; Geldmacher, David S; Elias, W Jeff

    2006-05-01

    Assessment of eloquent functions during brain mapping usually relies on testing reading, speech, and comprehension to uncover transient deficits during electrical stimulation. These tests stem from findings predicted by the Geschwind-Wernicke hypothesis of receptive and expressive cortices connected by white matter tracts. Later work, however, has emphasized cortical mechanisms of language function. The authors report two cases that demonstrate that conduction aphasia is cortically mediated and can be inadequately assessed if not specifically evaluated during brain mapping. To determine the distribution of language on the dominant cortex, electrical cortical stimulation was performed in two cases by using implanted subdural electrodes during brain mapping before epilepsy surgery. A transient isolated deficit in repetition of language was reported during stimulation of the posterior portion of the dominant superior temporal gyrus in one patient and during stimulation of the supramarginal gyrus in the other patient. These cases demonstrate a localization of language repetition to the posterior perisylvian cortex. Brain mapping of this region should include assessment of verbal repetition to avoid potential deficits resembling conduction aphasia.

  18. fMRI evidence for strategic decision-making during resolution of pronoun reference

    PubMed Central

    McMillan, Corey T.; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray

    2012-01-01

    Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun’s referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun’s reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun’s reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. PMID:22245014

  19. Alternations of functional connectivity in amblyopia patients: a resting-state fMRI study

    NASA Astrophysics Data System (ADS)

    Wang, Jieqiong; Hu, Ling; Li, Wenjing; Xian, Junfang; Ai, Likun; He, Huiguang

    2014-03-01

    Amblyopia is a common yet hard-to-cure disease in children and results in poor or blurred vision. Some efforts such as voxel-based analysis, cortical thickness analysis have been tried to reveal the pathogenesis of amblyopia. However, few studies focused on alterations of the functional connectivity (FC) in amblyopia. In this study, we analyzed the abnormalities of amblyopia patients by both the seed-based FC with the left/right primary visual cortex and the network constructed throughout the whole brain. Experiments showed the following results: (1)As for the seed-based FC analysis, FC between superior occipital gyrus and the primary visual cortex was found to significantly decrease in both sides. The abnormalities were also found in lingual gyrus. The results may reflect functional deficits both in dorsal stream and ventral stream. (2)Two increased functional connectivities and 64 decreased functional connectivities were found in the whole brain network analysis. The decreased functional connectivities most concentrate in the temporal cortex. The results suggest that amblyopia may be caused by the deficits in the visual information transmission.

  20. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  1. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI.

    PubMed

    Lerch, Jason P; Worsley, Keith; Shaw, W Philip; Greenstein, Deanna K; Lenroot, Rhoshel K; Giedd, Jay; Evans, Alan C

    2006-07-01

    We introduce MACACC-Mapping Anatomical Correlations Across Cerebral Cortex-to study correlated changes within and across different cortical networks. The principal topic of investigation is whether the thickness of one area of the cortex changes in a statistically correlated fashion with changes in thickness of other cortical regions. We further extend these methods by introducing techniques to test whether different population groupings exhibit significantly varying MACACC patterns. The methods are described in detail and applied to a normal childhood development population (n = 292), and show that association cortices have the highest correlation strengths. Taking Brodmann Area (BA) 44 as a seed region revealed MACACC patterns strikingly similar to tractography maps obtained from diffusion tensor imaging. Furthermore, the MACACC map of BA 44 changed with age, older subjects featuring tighter correlations with BA 44 in the anterior portions of the superior temporal gyri. Lastly, IQ-dependent MACACC differences were investigated, revealing steeper correlations between BA 44 and multiple frontal and parietal regions for the higher IQ group, most significantly (t = 4.0) in the anterior cingulate.

  2. Read My Lips: Brain Dynamics Associated with Audiovisual Integration and Deviance Detection.

    PubMed

    Tse, Chun-Yu; Gratton, Gabriele; Garnsey, Susan M; Novak, Michael A; Fabiani, Monica

    2015-09-01

    Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.

  3. Functional anatomy of listening and reading comprehension during development.

    PubMed

    Berl, Madison M; Duke, Elizabeth S; Mayo, Jessica; Rosenberger, Lisa R; Moore, Erin N; VanMeter, John; Ratner, Nan Bernstein; Vaidya, Chandan J; Gaillard, William Davis

    2010-08-01

    Listening and reading comprehension of paragraph-length material are considered higher-order language skills fundamental to social and academic functioning. Using ecologically relevant language stimuli that were matched for difficulty according to developmental level, we analyze the effects of task, age, neuropsychological skills, and post-task performance on fMRI activation and hemispheric laterality. Areas of supramodal language processing are identified, with the most robust region being left-lateralized activation along the superior temporal sulcus. Functionally, this conjunction has a role in semantic and syntactic processing, leading us to refer to this conjunction as "comprehension cortex." Different from adults, supramodal areas for children include less extensive inferior frontal gyrus but more extensive right cerebellum and right temporal pole. Broader neuroanatomical pathways are recruited for reading, reflecting the more active processing and larger set of cognitive demands needed for reading compared to listening to stories. ROI analyses reveal that reading is a less lateralized language task than listening in inferior frontal and superior temporal areas, which likely reflects the difficulty of the task as children in this study are still developing their reading skills. For listening to stories, temporal activation is stable by age four with no correlations with age, neuropsychological skills or post-task performance. In contrast, frontal activation during listening to stories occurs more often in older children, and frontal activation is positively correlated with better performance on comprehension questions, suggesting that the activation of frontal networks may reflect greater integration and depth of story processing. 2010 Elsevier Inc. All rights reserved.

  4. Frontal and temporal lobe sources for a marker of controlled auditory attention: the negative difference (Nd) event-related potential.

    PubMed

    Jemel, Boutheina; Oades, Robert D; Oknina, Ljubov; Achenbach, Christiane; Röpcke, Bernd

    2003-01-01

    Frontal and temporal lobe sources for electrical activity associated with auditory controlled attention (negative difference, Nd) were sought for comparison with those reported to arise from the earlier detection of stimulus-change (mismatch negativity, MMN: Jemel et al. 2002). In two sessions a month apart (T1 and T2), 14 subjects were presented with a 3-tone oddball passively, then as a discrimination task. In EEG recordings (32 sites), Nd was calculated by subtraction of the event-related potential elicited by a non-attended stimulus from that after the same frequency-deviant as target Putative generators in the 180-228 ms latency-range were modelled with brain electrical source analysis and mapped to the modified Montreal brain-atlas. Initial T1-analyses located bilateral Nd dipoles in the superior temporal gyrus (BA22) and the dorsolateral prefrontal cortex (BA8). Re-test allowed estimates of the temporal and spatial extension of activity. Peak activity occurred 14 ms later. Step-by-stepanalysis showed that the best spatial fit for the inverse-solutions extended 3-6 mm from the point sources, but for temporal lobe sources this increased 15 mm caudally. The right mid-frontal source (BA10) was rostral and ventral from that in the left superior frontal gyrus (BAB). T1 and T2 dipole strengths were well correlated. Nd measures of controlled attention localised to areas associated with sustained attention, problem-solving and working-memory. Temporal lobe sources were later and more posterior and medial than for automatic change-detection. Frontal Nd sources were more dorsal on the right and more rostral on the left than MMN dipoles reported for the right inferior frontal and left anterior cingulate. The sequence of information processing is reviewed.

  5. Therapy-induced brain reorganization patterns in aphasia.

    PubMed

    Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten

    2015-04-01

    Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in bilateral inferior frontal gyrus and contralateral superior temporal gyrus. All components revealed increases in prefrontal areas. One component was negatively correlated with therapy gain. Therapy was associated exclusively with activation decreases, which could mainly be attributed to higher processing efficiency within the naming network. In our joint independent component analysis, all three lesion patterns disclosed involved deactivation of left inferior frontal gyrus. Moreover, we found evidence for increased demands on control processes. As expected, we saw partly differential reorganization profiles depending on lesion patterns. There was no compensatory deactivation for the large left inferior frontal lesion, with its less advantageous outcome probably being related to its disconnection from crucial language processing pathways. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Brain activity underlying auditory perceptual learning during short period training: simultaneous fMRI and EEG recording

    PubMed Central

    2013-01-01

    Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957

  7. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex.

    PubMed

    Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J

    2014-01-01

    Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.

  8. Theory of mind and frontal lobe pathology in schizophrenia: a voxel-based morphometry study.

    PubMed

    Hirao, Kazuyuki; Miyata, Jun; Fujiwara, Hironobu; Yamada, Makiko; Namiki, Chihiro; Shimizu, Mitsuaki; Sawamoto, Nobukatsu; Fukuyama, Hidenao; Hayashi, Takuji; Murai, Toshiya

    2008-10-01

    Impaired ability to infer the mental states of others (theory of mind; ToM) is considered to be a key contributor to the poor social functioning of patients with schizophrenia. Although neuroimaging and lesion studies have provided empirical evidence for the neural basis of ToM ability, including the involvement of several prefrontal and temporal structures, the association between pathology of these structures and ToM impairment in schizophrenia patients is less well understood. To address this issue, we investigated structural brain abnormalities and ToM impairment in patients with schizophrenia, and examined the relationship between them. Twenty schizophrenia patients and 20 age-, sex- and education-matched healthy participants underwent magnetic resonance imaging (MRI) and were examined for ToM ability based on the revised version of the "Reading the Mind in the Eyes" (or Eyes) test [Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., Plumb, I., 2001. The 'Reading the Mind in the Eyes' test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241-251]. Voxel-based morphometry (VBM) was performed to investigate regional brain alterations. Relative to normal controls, schizophrenia patients exhibited gray matter reductions in the dorsomedial prefrontal cortex (DMPFC), left ventrolateral prefrontal cortex (VLPFC), ventromedial prefrontal cortex (VMPFC), anterior cingulate cortex (ACC), right superior temporal gyrus (STG) and right insula. The patients performed poorly on the Eyes test. Importantly, poor performance on the Eyes test was found to be associated with gray matter reduction in the left VLPFC in the patient group. These results suggest that prefrontal cortical reduction, especially in the left VLPFC, is a key pathology underlying the difficulties faced by schizophrenia patients in inferring the mental states of others.

  9. Pruning or tuning? Maturational profiles of face specialization during typical development.

    PubMed

    Zhu, Xun; Bhatt, Ramesh S; Joseph, Jane E

    2016-06-01

    Face processing undergoes significant developmental change with age. Two kinds of developmental changes in face specialization were examined in this study: specialized maturation, or the continued tuning of a region to faces but little change in the tuning to other categories; and competitive interactions, or the continued tuning to faces accompanied by decreased tuning to nonfaces (i.e., pruning). Using fMRI, in regions where adults showed a face preference, a face- and object-specialization index were computed for younger children (5-8 years), older children (9-12 years) and adults (18-45 years). The specialization index was scaled to each subject's maximum activation magnitude in each region to control for overall age differences in the activation level. Although no regions showed significant face specialization in the younger age group, regions strongly associated with social cognition (e.g., right posterior superior temporal sulcus, right inferior orbital cortex) showed specialized maturation, in which tuning to faces increased with age but there was no pruning of nonface responses. Conversely, regions that are associated with more basic perceptual processing or motor mirroring (right middle temporal cortex, right inferior occipital cortex, right inferior frontal opercular cortex) showed competitive interactions in which tuning to faces was accompanied by pruning of object responses with age. The overall findings suggest that cortical maturation for face processing is regional-specific and involves both increased tuning to faces and diminished response to nonfaces. Regions that show competitive interactions likely support a more generalized function that is co-opted for face processing with development, whereas regions that show specialized maturation increase their tuning to faces, potentially in an activity-dependent, experience-driven manner.

  10. The Biology of Linguistic Expression Impacts Neural Correlates for Spatial Language

    PubMed Central

    Emmorey, Karen; McCullough, Stephen; Mehta, Sonya; Ponto, Laura L. B.; Grabowski, Thomas J.

    2013-01-01

    Biological differences between signed and spoken languages may be most evident in the expression of spatial information. PET was used to investigate the neural substrates supporting the production of spatial language in American Sign Language as expressed by classifier constructions, in which handshape indicates object type and the location/motion of the hand iconically depicts the location/motion of a referent object. Deaf native signers performed a picture description task in which they overtly named objects or produced classifier constructions that varied in location, motion, or object type. In contrast to the expression of location and motion, the production of both lexical signs and object type classifier morphemes engaged left inferior frontal cortex and left inferior temporal cortex, supporting the hypothesis that unlike the location and motion components of a classifier construction, classifier handshapes are categorical morphemes that are retrieved via left hemisphere language regions. In addition, lexical signs engaged the anterior temporal lobes to a greater extent than classifier constructions, which we suggest reflects increased semantic processing required to name individual objects compared with simply indicating the type of object. Both location and motion classifier constructions engaged bilateral superior parietal cortex, with some evidence that the expression of static locations differentially engaged the left intraparietal sulcus. We argue that bilateral parietal activation reflects the biological underpinnings of sign language. To express spatial information, signers must transform visual–spatial representations into a body-centered reference frame and reach toward target locations within signing space. PMID:23249348

  11. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Neural correlates of direct and reflected self-appraisals in adolescents and adults: when social perspective-taking informs self-perception.

    PubMed

    Pfeifer, Jennifer H; Masten, Carrie L; Borofsky, Larissa A; Dapretto, Mirella; Fuligni, Andrew J; Lieberman, Matthew D

    2009-01-01

    Classic theories of self-development suggest people define themselves in part through internalized perceptions of other people's beliefs about them, known as reflected self-appraisals. This study uses functional magnetic resonance imaging to compare the neural correlates of direct and reflected self-appraisals in adolescence (N = 12, ages 11-14 years) and adulthood (N = 12, ages 23-30 years). During direct self-reflection, adolescents demonstrated greater activity than adults in networks relevant to self-perception (medial prefrontal and parietal cortices) and social-cognition (dorsomedial prefrontal cortex, temporal-parietal junction, and posterior superior temporal sulcus), suggesting adolescent self-construals may rely more heavily on others' perspectives about the self. Activity in the medial fronto-parietal network was also enhanced when adolescents took the perspective of someone more relevant to a given domain.

  13. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  14. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    PubMed

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Verbal creativity in semantic variant primary progressive aphasia.

    PubMed

    Wu, Teresa Q; Miller, Zachary A; Adhimoolam, Babu; Zackey, Diana D; Khan, Baber K; Ketelle, Robin; Rankin, Katherine P; Miller, Bruce L

    2015-02-01

    Emergence of visual and musical creativity in the setting of neurologic disease has been reported in patients with semantic variant primary progressive aphasia (svPPA), also called semantic dementia (SD). It is hypothesized that loss of left anterior frontotemporal function facilitates activity of the right posterior hemispheric structures, leading to de novo creativity observed in visual artistic representation. We describe creativity in the verbal domain, for the first time, in three patients with svPPA. Clinical presentations are carefully described in three svPPA patients exhibiting verbal creativity, including neuropsychology, neurologic exam, and structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) was performed to quantify brain atrophy patterns in these patients against age-matched healthy controls. All three patients displayed new-onset creative writing behavior and produced extensive original work during the course of disease. Patient A developed interest in wordplay and generated a large volume of poetry. Patient B became fascinated with rhyming and punning. Patient C wrote and published a lifestyle guidebook. An overlap of their structural MR scans showed uniform sparing in the lateral portions of the language-dominant temporal lobe (superior and middle gyri) and atrophy in the medial temporal cortex (amygdala, limbic cortex). New-onset creativity in svPPA may represent a paradoxical functional facilitation. A similar drive for production is found in visually artistic and verbally creative patients. Mirroring the imaging findings in visually artistic patients, verbal preoccupation and creativity may be associated with medial atrophy in the language-dominant temporal lobe, but sparing of lateral dominant temporal and non-dominant posterior cortices.

  16. Hierarchical Processing of Auditory Objects in Humans

    PubMed Central

    Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D

    2007-01-01

    This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641

  17. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  18. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    PubMed

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Focal versus distributed temporal cortex activity for speech sound category assignment

    PubMed Central

    Bouton, Sophie; Chambon, Valérian; Tyrand, Rémi; Seeck, Margitta; Karkar, Sami; van de Ville, Dimitri; Giraud, Anne-Lise

    2018-01-01

    Percepts and words can be decoded from distributed neural activity measures. However, the existence of widespread representations might conflict with the more classical notions of hierarchical processing and efficient coding, which are especially relevant in speech processing. Using fMRI and magnetoencephalography during syllable identification, we show that sensory and decisional activity colocalize to a restricted part of the posterior superior temporal gyrus (pSTG). Next, using intracortical recordings, we demonstrate that early and focal neural activity in this region distinguishes correct from incorrect decisions and can be machine-decoded to classify syllables. Crucially, significant machine decoding was possible from neuronal activity sampled across different regions of the temporal and frontal lobes, despite weak or absent sensory or decision-related responses. These findings show that speech-sound categorization relies on an efficient readout of focal pSTG neural activity, while more distributed activity patterns, although classifiable by machine learning, instead reflect collateral processes of sensory perception and decision. PMID:29363598

  20. Phonological Working Memory for Words and Nonwords in Cerebral Cortex

    PubMed Central

    Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia

    2017-01-01

    Purpose The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. Method We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Results Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. Conclusion These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production. PMID:28631005

  1. Neural correlates of the perception of dynamic versus static facial expressions of emotion.

    PubMed

    Kessler, Henrik; Doyen-Waldecker, Cornelia; Hofer, Christian; Hoffmann, Holger; Traue, Harald C; Abler, Birgit

    2011-04-20

    This study investigated brain areas involved in the perception of dynamic facial expressions of emotion. A group of 30 healthy subjects was measured with fMRI when passively viewing prototypical facial expressions of fear, disgust, sadness and happiness. Using morphing techniques, all faces were displayed as still images and also dynamically as a film clip with the expressions evolving from neutral to emotional. Irrespective of a specific emotion, dynamic stimuli selectively activated bilateral superior temporal sulcus, visual area V5, fusiform gyrus, thalamus and other frontal and parietal areas. Interaction effects of emotion and mode of presentation (static/dynamic) were only found for the expression of happiness, where static faces evoked greater activity in the medial prefrontal cortex. Our results confirm previous findings on neural correlates of the perception of dynamic facial expressions and are in line with studies showing the importance of the superior temporal sulcus and V5 in the perception of biological motion. Differential activation in the fusiform gyrus for dynamic stimuli stands in contrast to classical models of face perception but is coherent with new findings arguing for a more general role of the fusiform gyrus in the processing of socially relevant stimuli.

  2. Glucose-induced inhibition of the appetitive brain response to visual food cues in polycystic ovary syndrome patients.

    PubMed

    Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L

    2014-04-16

    We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Neural correlates of the happy life: the amplitude of spontaneous low frequency fluctuations predicts subjective well-being.

    PubMed

    Kong, Feng; Hu, Siyuan; Wang, Xu; Song, Yiying; Liu, Jia

    2015-02-15

    Subjective well-being is assumed to be distributed in the hedonic hotspots of subcortical and cortical structures. However, the precise neural correlates underlying this construct, especially how it is maintained during the resting state, are still largely unknown. Here, we explored the neural basis of subjective well-being by correlating the regional fractional amplitude of low frequency fluctuations (fALFF) with the self-reported subjective well-being of healthy individuals. Behaviorally, we demonstrated that subjective well-being contained two related but distinct components: cognitive and affective well-being. Neurally, we showed that the fALFF in the bilateral posterior superior temporal gyrus (pSTG), right posterior mid-cingulate cortex (pMCC), right thalamus, left postcentral gyrus (PCG), right lingual gyrus, and left planum temporale (PT) positively predicted cognitive well-being, whereas the fALFF in the bilateral superior frontal gyrus (SFG), right orbitofrontal cortex (OFC), and left inferior temporal gyrus (ITG) negatively predicted cognitive well-being. In contrast, only the fALFF in the right amygdala reliably predicted affective well-being. Furthermore, emotional intelligence partially mediated the effects of the right pSTG and thalamus on cognitive well-being, as well as the effect of the right amygdala on affective well-being. In summary, we provide the first evidence that spontaneous brain activity in multiple regions associated with sensation, social perception, cognition, and emotion contributes to cognitive well-being, whereas the spontaneous brain activity in only one emotion-related region contributes to affective well-being, suggesting that the spontaneous activity of the human brain reflect the efficiency of subjective well-being. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data.

    PubMed

    Zhong, Xue; Pu, Weidan; Yao, Shuqiao

    2016-12-01

    The neurobiological mechanisms of depression are increasingly being explored through resting-state brain imaging studies. However, resting-state fMRI findings have varied, perhaps because of differences between study populations, which included the disorder course and medication use. The aim of our study was to integrate studies of resting-state fMRI and explore the alterations of abnormal brain activity in first-episode, drug-naïve patients with major depressive disorder. Relevant imaging reports in English were searched, retrieved, selected and subjected to analysis by activation likelihood estimation, a coordinate-based meta-analysis technique (final sample, 31 studies). Coordinates extracted from the original reports were assigned to two categories based on effect directionality. Compared with healthy controls, the first-episode, medication-naïve major depressive disorder patients showed decreased brain activity in the dorsolateral prefrontal cortex, superior temporal gyrus, posterior precuneus, and posterior cingulate, as well as in visual areas within the occipital lobe, lingual gyrus, and fusiform gyrus, and increased activity in the putamen and anterior precuneus. Not every study that has reported relevant data met the inclusion criteria. Resting-state functional alterations were located mainly in the fronto-limbic system, including the dorsolateral prefrontal cortex and putamen, and in the default mode network, namely the precuneus and superior/middle temporal gyrus. Abnormal functional alterations of the fronto-limbic circuit and default mode network may be characteristic of first-episode, drug-naïve major depressive disorder patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The “Perceptual Wedge” hypothesis as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging

    PubMed Central

    Petitto, L. A.; Berens, M. S.; Kovelman, I.; Dubins, M. H.; Jasinska, K.; Shalinsky, M.

    2011-01-01

    In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4–6 months, older 10–12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies’ enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies’ resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the “Perceptual Wedge Hypothesis”as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural “extent and variability” that our human species’ language processing brain areas could potentially achieve. PMID:21724244

  6. Continuous theta-burst stimulation may improve visuospatial neglect via modulating the attention network: a randomized controlled study.

    PubMed

    Fu, Wei; Cao, Lei; Zhang, Yanming; Huo, Su; Du, JuBao; Zhu, Lin; Song, Weiqun

    2017-05-01

    Visuospatial neglect (VSN) is devastating and common after stroke, and is thought to involve functional disturbance of the attention network. Non-invasive theta-burst stimulation (TBS) may help restore the normal function of attention network, therefore facilitating recovery from VSN. This study investigated the effects of continuous TBS on resting-state functional connectivity (RSFC) in the attention network, and behavioral performances of patients with VSN after stroke. Twelve patients were randomly assigned to receive 10-day cTBS of the left posterior parietal cortex delivered at 80% (the cTBS group), or 40% (the active control group) of the resting motor threshold. Both groups received daily visual scanning training and motor function treatment. Resting-state functional MRI (fMRI) and behavioral tests including line bisection test and star cancelation test were conducted at baseline and after the treatment. At baseline, the two groups showed comparable results in the resting-state fMRI experiments and behavioral tests. After treatment, the cTBS group showed lower functional connectivity between right temporoparietal junction (TPJ) and right anterior insula, and between right superior temporal sulcus and right anterior insula, as compared with the active control group; both groups showed improvement in the behavioral tests, with the cTBS group showing larger changes from baseline than the active control group. cTBS of the left posterior parietal cortex in patients with VSN may induce changes in inter-regional RSFC in the right ventral attention network. These changes may be associated with improved recovery of behavioral deficits after behavioral training. The TPJ and superior temporal sulcus may play crucial roles in recovery from VSN.

  7. White matter structural alterations in pediatric obsessive-compulsive disorder: relation to symptom dimensions.

    PubMed

    Lázaro, L; Ortiz, A G; Calvo, A; Ortiz, A E; Moreno, E; Morer, A; Calvo, R; Bargallo, N

    2014-10-03

    The aims of this study were to identify gray matter (GM) and white matter (WM) volume abnormalities in pediatric obsessive-compulsive patients, to examine their relationship between these abnormalities and the severity of disorder, and to explore whether they could be explained by the different symptom dimensions. 62 child and adolescent OCD patients (11-18years old) and 46 healthy subjects of the same gender and similar age and estimated intellectual quotient were assessed by means of psychopathological scales and magnetic resonance imaging (MRI). Axial three-dimensional T1-weighted images were obtained in a 3T scanner and analyzed using optimized voxel-based morphometry (VBM). Compared with healthy controls, OCD patients showed lower white matter (WM) volume in the left dorsolateral and cingulate regions involving the superior and middle frontal gyri and anterior cingulate gyrus (t=4.35, p=0.049 FWE (family wise error)-corrected). There was no significant correlation between WM and the severity of obsessive-compulsive symptomatology. There were no regions with lower gray matter (GM) volume in OCD patients than in controls. Compared with healthy controls, only the "harm/checking" OCD dimension showed a cluster with a near significant decrease in WM volume in the right superior temporal gyrus extending into the insula (t=5.61, p=.056 FWE-corrected). The evidence suggests that abnormalities in the dorsolateral prefrontal cortex, anterior cingulate cortex, temporal and limbic regions play a central role in the pathophysiology of OCD. Moreover, regional brain volumes in OCD may vary depending on specific OCD symptom dimensions, indicating the clinical heterogeneity of the condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cultural differences in human brain activity: a quantitative meta-analysis.

    PubMed

    Han, Shihui; Ma, Yina

    2014-10-01

    Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Voxel-based comparison of brain glucose metabolism between patients with Cushing's disease and healthy subjects.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Li, Fang; Wang, Renzhi; Cheng, Xin

    2018-01-01

    Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up.

  10. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry.

    PubMed

    Wallace, Gregory L; Happé, Francesca; Giedd, Jay N

    2009-05-27

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.

  11. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry

    PubMed Central

    Wallace, Gregory L.; Happé, Francesca; Giedd, Jay N.

    2009-01-01

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and ‘weak’ central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure. PMID:19528026

  12. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex.

    PubMed

    Olulade, O A; Flowers, D L; Napoliello, E M; Eden, G F

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report absence of an IFC gradient and connectivity between the lateral aspect of the IFC and the anterior occipito-temporal cortex in the dyslexic children. Together, our results provide insights into the source of the anomalies reported in previous studies of dyslexia and add to the growing evidence of an orthographic role of IFC in reading.

  13. The role of the premotor cortex and the primary motor cortex in action verb comprehension: evidence from Granger causality analysis.

    PubMed

    Yang, Jie; Shu, Hua

    2012-08-01

    Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder

    PubMed Central

    Wang, Fei; Kalmar, Jessica H.; Womer, Fay Y.; Edmiston, Erin E.; Chepenik, Lara G.; Chen, Rachel; Spencer, Linda

    2011-01-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these factors implicate a central role for the olfactocentric paralimbic cortex in the development of bipolar disorder and suggest that abnormalities in this cortex may be expressed by adolescence in the disorder. We tested the hypothesis that differences in olfactocentric paralimbic cortex structure are a morphological feature in adolescents with bipolar disorder. Subjects included 118 adolescents (41 with bipolar disorder and 77 healthy controls). Cortical grey matter volume differences between adolescents with and without bipolar disorder were assessed with voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. Compared with healthy comparison adolescents, adolescents with bipolar disorder demonstrated significant volume decreases in olfactocentric paralimbic regions, including orbitofrontal, insular and temporopolar cortices. Findings in these regions survived small volume correction (P < 0.05, corrected). Volume decreases in adolescents with bipolar disorder were also noted in inferior prefrontal and superior temporal gyri and cerebellum. The findings suggest that abnormalities in the morphology of the olfactocentric paralimbic cortex may contribute to the bipolar disorder phenotype that emerges in adolescence. The morphological development of the olfactocentric paralimbic cortex has received little study. The importance of these cortices in emotional and social development, and support for a central role for these cortices in the development of bipolar disorder, suggest that study of the development of these cortices in health and in bipolar disorder is critically needed. PMID:21666263

  15. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder.

    PubMed

    Wang, Fei; Kalmar, Jessica H; Womer, Fay Y; Edmiston, Erin E; Chepenik, Lara G; Chen, Rachel; Spencer, Linda; Blumberg, Hilary P

    2011-07-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these factors implicate a central role for the olfactocentric paralimbic cortex in the development of bipolar disorder and suggest that abnormalities in this cortex may be expressed by adolescence in the disorder. We tested the hypothesis that differences in olfactocentric paralimbic cortex structure are a morphological feature in adolescents with bipolar disorder. Subjects included 118 adolescents (41 with bipolar disorder and 77 healthy controls). Cortical grey matter volume differences between adolescents with and without bipolar disorder were assessed with voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. Compared with healthy comparison adolescents, adolescents with bipolar disorder demonstrated significant volume decreases in olfactocentric paralimbic regions, including orbitofrontal, insular and temporopolar cortices. Findings in these regions survived small volume correction (P < 0.05, corrected). Volume decreases in adolescents with bipolar disorder were also noted in inferior prefrontal and superior temporal gyri and cerebellum. The findings suggest that abnormalities in the morphology of the olfactocentric paralimbic cortex may contribute to the bipolar disorder phenotype that emerges in adolescence. The morphological development of the olfactocentric paralimbic cortex has received little study. The importance of these cortices in emotional and social development, and support for a central role for these cortices in the development of bipolar disorder, suggest that study of the development of these cortices in health and in bipolar disorder is critically needed.

  16. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    PubMed Central

    Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561

  17. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia

    PubMed Central

    Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas

    2016-01-01

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766

  18. Spatial and temporal episodic memory retrieval recruit dissociable functional networks in the human brain.

    PubMed

    Ekstrom, Arne D; Bookheimer, Susan Y

    2007-10-01

    Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.

  19. Is a neutral expression also a neutral stimulus? A study with functional magnetic resonance.

    PubMed

    Carvajal, Fernando; Rubio, Sandra; Serrano, Juan M; Ríos-Lago, Marcos; Alvarez-Linera, Juan; Pacheco, Lara; Martín, Pilar

    2013-08-01

    Although neutral faces do not initially convey an explicit emotional message, it has been found that individuals tend to assign them an affective content. Moreover, previous research has shown that affective judgments are mediated by the task they have to perform. Using functional magnetic resonance imaging in 21 healthy participants, we focus this study on the cerebral activity patterns triggered by neutral and emotional faces in two different tasks (social or gender judgments). Results obtained, using conjunction analyses, indicated that viewing both emotional and neutral faces evokes activity in several similar brain areas indicating a common neural substrate. Moreover, neutral faces specifically elicit activation of cerebellum, frontal and temporal areas, while emotional faces involve the cuneus, anterior cingulated gyrus, medial orbitofrontal cortex, posterior superior temporal gyrus, precentral/postcentral gyrus and insula. The task selected was also found to influence brain activity, in that the social task recruited frontal areas while the gender task involved the posterior cingulated, inferior parietal lobule and middle temporal gyrus to a greater extent. Specifically, in the social task viewing neutral faces was associated with longer reaction times and increased activity of left dorsolateral frontal cortex compared with viewing facial expressions of emotions. In contrast, in the same task emotional expressions distinctively activated the left amygdale. The results are discussed taking into consideration the fact that, like other facial expressions, neutral expressions are usually assigned some emotional significance. However, neutral faces evoke a greater activation of circuits probably involved in more elaborate cognitive processing.

  20. Electrocortical N400 Effects of Semantic Satiation

    PubMed Central

    Ströberg, Kim; Andersen, Lau M.; Wiens, Stefan

    2017-01-01

    Semantic satiation is characterised by the subjective and temporary loss of meaning after high repetition of a prime word. To study the nature of this effect, previous electroencephalography (EEG) research recorded the N400, an ERP component that is sensitive to violations of semantic context. The N400 is characterised by a relative negativity to words that are unrelated vs. related to the semantic context. The semantic satiation hypothesis predicts that the N400 should decrease with high repetition. However, previous findings have been inconsistent. Because of these inconsistent findings and the shortcomings of previous research, we used a modified design that minimises confounding effects from non-semantic processes. We recorded 64-channel EEG and analysed the N400 in a semantic priming task in which the primes were repeated 3 or 30 times. Critically, we separated low and high repetition trials and excluded response trials. Further, we varied the physical features (letter case and format) of consecutive primes to minimise confounding effects from perceptual habituation. For centrofrontal electrodes, the N400 was reduced after 30 repetitions (vs. 3 repetitions). Explorative source reconstructions suggested that activity decreased after 30 repetitions in bilateral inferior temporal gyrus, the right posterior section of the superior and middle temporal gyrus, right supramarginal gyrus, bilateral lateral occipital cortex, and bilateral lateral orbitofrontal cortex. These areas overlap broadly with those typically involved in the N400, namely middle temporal gyrus and inferior frontal gyrus. The results support the semantic rather than the perceptual nature of the satiation effect. PMID:29375411

  1. An ALE meta-analysis on the audiovisual integration of speech signals.

    PubMed

    Erickson, Laura C; Heeg, Elizabeth; Rauschecker, Josef P; Turkeltaub, Peter E

    2014-11-01

    The brain improves speech processing through the integration of audiovisual (AV) signals. Situations involving AV speech integration may be crudely dichotomized into those where auditory and visual inputs contain (1) equivalent, complementary signals (validating AV speech) or (2) inconsistent, different signals (conflicting AV speech). This simple framework may allow the systematic examination of broad commonalities and differences between AV neural processes engaged by various experimental paradigms frequently used to study AV speech integration. We conducted an activation likelihood estimation metaanalysis of 22 functional imaging studies comprising 33 experiments, 311 subjects, and 347 foci examining "conflicting" versus "validating" AV speech. Experimental paradigms included content congruency, timing synchrony, and perceptual measures, such as the McGurk effect or synchrony judgments, across AV speech stimulus types (sublexical to sentence). Colocalization of conflicting AV speech experiments revealed consistency across at least two contrast types (e.g., synchrony and congruency) in a network of dorsal stream regions in the frontal, parietal, and temporal lobes. There was consistency across all contrast types (synchrony, congruency, and percept) in the bilateral posterior superior/middle temporal cortex. Although fewer studies were available, validating AV speech experiments were localized to other regions, such as ventral stream visual areas in the occipital and inferior temporal cortex. These results suggest that while equivalent, complementary AV speech signals may evoke activity in regions related to the corroboration of sensory input, conflicting AV speech signals recruit widespread dorsal stream areas likely involved in the resolution of conflicting sensory signals. Copyright © 2014 Wiley Periodicals, Inc.

  2. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  3. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  4. When a loved one feels unfamiliar: a case study on the neural basis of Capgras delusion.

    PubMed

    Thiel, Christiane M; Studte, Sara; Hildebrandt, Helmut; Huster, Rene; Weerda, Riklef

    2014-03-01

    Perception of familiar faces depends on a core system analysing visual appearance and an extended system dealing with inference of mental states and emotional responses. Damage to the core system impairs face perception as seen in prosopagnosia. In contrast, patients with Capgras delusion show intact face perception but believe that closely related persons are impostors. It has been suggested that two deficits are necessary for the delusion, an aberrant perceptual or affective experience that leads to a bizarre belief as well as an impaired ability to evaluate beliefs. Using functional magnetic resonance imaging, we compared neural activity to familiar and unfamiliar faces in a patient with Capgras delusion and an age matched control group. We provide evidence that Capgras delusion is related to dysfunctional activity in the extended face processing system. The patient, who developed the delusion for the partner after a large right prefrontal lesion sparing the ventromedial and medial orbitofrontal cortex, lacked neural activity to the partner's face in left posterior cingulate cortex and left posterior superior temporal sulcus. Further, we found impaired functional connectivity of the latter region with the left superior frontal gyrus and to a lesser extent with the right superior frontal sulcus/middle frontal gyrus. The findings of this case study suggest that the first factor in Capgras delusion may be reduced neural activity in the extended face processing system that deals with inference of mental states while the second factor may be due to a lesion in the right middle frontal gyrus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study.

    PubMed

    Wang, Yu; Dong, Debo; Todd, Jackson; Du, Jie; Yang, Zhou; Lu, Hui; Chen, Hong

    2016-09-19

    Many studies have reported that specific susceptibility to food cues plays an important role in disordered eating behavior. However, whether restraint status modulates the neural bases of attentional bias to different types of food cues remains unknown. Thus, functional magnetic resonance imaging (fMRI) was conducted in individuals (12 restraint eaters, 12 unrestraint eaters) exposed to high/low-energy food and neutral images while performing a two-choice oddball task. The results indicated that restrained eaters responded more quickly to high-energy food images than to neutral and low-energy food images. More notably, compared with unrestrained eaters, restrained eaters showed faster reaction times, hyper-activation in a much wider array of reward (e.g., insula/orbitofrontal cortex), attention (superior frontal gyrus) and visual processing (e.g., superior temporal gyrus) regions, and hypo-activation in cognitive control areas (e.g., anterior cingulate) in response to high-energy food cues. Furthermore, among restrained eaters, the longest reaction times were found for low-energy food images, and activation of the attention and visual-related cortex (e.g., superior parietal gyrus) in the low-neutral contrast condition was significantly stronger than in unrestrained eaters. These findings contribute to our understanding of susceptibility to food cues: in addition to the special sensitivity (attentional bias) to high-energy food images, restrained eaters may also be more sensitive (allocate more attentional resources) to low-energy food images. These potential neural bases of restrained eaters may help clarify why dieting to lose or maintain weight is so often unsuccessful. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Developmental changes in the structure of the social brain in late childhood and adolescence.

    PubMed

    Mills, Kathryn L; Lalonde, François; Clasen, Liv S; Giedd, Jay N; Blakemore, Sarah-Jayne

    2014-01-01

    Social cognition provides humans with the necessary skills to understand and interact with one another. One aspect of social cognition, mentalizing, is associated with a network of brain regions often referred to as the 'social brain.' These consist of medial prefrontal cortex [medial Brodmann Area 10 (mBA10)], temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS) and anterior temporal cortex (ATC). How these specific regions develop structurally across late childhood and adolescence is not well established. This study examined the structural developmental trajectories of social brain regions in the longest ongoing longitudinal neuroimaging study of human brain maturation. Structural trajectories of grey matter volume, cortical thickness and surface area were analyzed using surface-based cortical reconstruction software and mixed modeling in a longitudinal sample of 288 participants (ages 7-30 years, 857 total scans). Grey matter volume and cortical thickness in mBA10, TPJ and pSTS decreased from childhood into the early twenties. The ATC increased in grey matter volume until adolescence and in cortical thickness until early adulthood. Surface area for each region followed a cubic trajectory, peaking in early or pre-adolescence before decreasing into the early twenties. These results are discussed in the context of developmental changes in social cognition across adolescence.

  7. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  8. Contributions of Low and High Spatial Frequency Processing to Impaired Object Recognition Circuitry in Schizophrenia

    PubMed Central

    Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.

    2013-01-01

    Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157

  9. Irony comprehension: social conceptual knowledge and emotional response.

    PubMed

    Akimoto, Yoritaka; Sugiura, Motoaki; Yomogida, Yukihito; Miyauchi, Carlos Makoto; Miyazawa, Shiho; Kawashima, Ryuta

    2014-04-01

    Verbal irony conveys various emotional messages, from criticism to humor, that differ from the meaning of the actual words. To understand irony, we need conceptual knowledge of irony in addition to an understanding of context. We investigated the neural mechanism of irony comprehension, focusing on two overlooked issues: conceptual knowledge and emotional response. We studied 35 healthy subjects who underwent functional MRI. During the scan, the subject examined first-person-view stories describing verbal interactions, some of which included irony directed toward the subject. After MRI, the subject viewed the stories again and rated the degree of irony, humor, and negative emotion evoked by the statements. We identified several key findings about irony comprehension: (1) the right anterior superior temporal gyrus may be responsible for representing social conceptual knowledge of irony, (2) activation in the medial prefrontal cortex and the right anterior inferior temporal gyrus might underlie the understanding of context, (3) modulation of activity in the right amygdala, hippocampus, and parahippocampal gyrus is associated with the degree of irony perceived, and (4) modulation of activity in the right dorsolateral prefrontal cortex varies with the degree of humor perceived. Our results clarified the differential contributions of the neural loci of irony comprehension, enriching our understanding of pragmatic language communication from a social behavior point of view. Copyright © 2013 Wiley Periodicals, Inc.

  10. Neural activation during imitation with or without performance feedback: An fMRI study.

    PubMed

    Zhang, Kaihua; Wang, Hui; Dong, Guangheng; Wang, Mengxing; Zhang, Jilei; Zhang, Hui; Meng, Weixia; Du, Xiaoxia

    2016-08-26

    In our daily lives, we often receive performance feedback (PF) during imitative learning, and we adjust our behaviors accordingly to improve performance. However, little is known regarding the neural mechanisms underlying this learning process. We hypothesized that appropriate PF would enhance neural activation or recruit additional brain areas during subsequent action imitation. Pictures of 20 different finger gestures without any social meaning were shown to participants from the first-person perspective. Imitation with or without PF was investigated by functional magnetic resonance imaging in 30 healthy subjects. The PF was given by a real person or by a computer. PF from a real person induced hyperactivation of the parietal lobe (precuneus and cuneus), cingulate cortex (posterior and anterior), temporal lobe (superior and transverse temporal gyri), and cerebellum (posterior and anterior lobes) during subsequent imitation. The positive PF and negative PF from a real person, induced the activation of more brain areas during the following imitation. The hyperactivation of the cerebellum, posterior cingulate cortex, precuneus, and cuneus suggests that the subjects exhibited enhanced motor control and visual attention during imitation after PF. Additionally, random PF from a computer had a small effect on the next imitation. We suggest that positive and accurate PF may be helpful for imitation learning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Anatomical connections of the visual word form area.

    PubMed

    Bouhali, Florence; Thiebaut de Schotten, Michel; Pinel, Philippe; Poupon, Cyril; Mangin, Jean-François; Dehaene, Stanislas; Cohen, Laurent

    2014-11-12

    The visual word form area (VWFA), a region systematically involved in the identification of written words, occupies a reproducible location in the left occipitotemporal sulcus in expert readers of all cultures. Such a reproducible localization is paradoxical, given that reading is a recent invention that could not have influenced the genetic evolution of the cortex. Here, we test the hypothesis that the VWFA recycles a region of the ventral visual cortex that shows a high degree of anatomical connectivity to perisylvian language areas, thus providing an efficient circuit for both grapheme-phoneme conversion and lexical access. In two distinct experiments, using high-resolution diffusion-weighted data from 75 human subjects, we show that (1) the VWFA, compared with the fusiform face area, shows higher connectivity to left-hemispheric perisylvian superior temporal, anterior temporal and inferior frontal areas; (2) on a posterior-to-anterior axis, its localization within the left occipitotemporal sulcus maps onto a peak of connectivity with language areas, with slightly distinct subregions showing preferential projections to areas respectively involved in grapheme-phoneme conversion and lexical access. In agreement with functional data on the VWFA in blind subjects, the results suggest that connectivity to language areas, over and above visual factors, may be the primary determinant of VWFA localization. Copyright © 2014 the authors 0270-6474/14/3415402-13$15.00/0.

  12. Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.

    PubMed

    Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng

    2016-01-01

    Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.

  13. The role of the fusiform face area in social cognition: implications for the pathobiology of autism.

    PubMed Central

    Schultz, Robert T; Grelotti, David J; Klin, Ami; Kleinman, Jamie; Van der Gaag, Christiaan; Marois, René; Skudlarski, Pawel

    2003-01-01

    A region in the lateral aspect of the fusiform gyrus (FG) is more engaged by human faces than any other category of image. It has come to be known as the 'fusiform face area' (FFA). The origin and extent of this specialization is currently a topic of great interest and debate. This is of special relevance to autism, because recent studies have shown that the FFA is hypoactive to faces in this disorder. In two linked functional magnetic resonance imaging (fMRI) studies of healthy young adults, we show here that the FFA is engaged by a social attribution task (SAT) involving perception of human-like interactions among three simple geometric shapes. The amygdala, temporal pole, medial prefrontal cortex, inferolateral frontal cortex and superior temporal sulci were also significantly engaged. Activation of the FFA to a task without faces challenges the received view that the FFA is restricted in its activities to the perception of faces. We speculate that abstract semantic information associated with faces is encoded in the FG region and retrieved for social computations. From this perspective, the literature on hypoactivation of the FFA in autism may be interpreted as a reflection of a core social cognitive mechanism underlying the disorder. PMID:12639338

  14. Déjà-vu in temporal lobe epilepsy: metabolic pattern of cortical involvement in patients with normal brain MRI.

    PubMed

    Guedj, Eric; Aubert, Sandrine; McGonigal, Aileen; Mundler, Olivier; Bartolomei, Fabrice

    2010-06-01

    To contribute to the identification of brain regions involved in déjà-vu, we studied the metabolic pattern of cortical involvement in patients with seizures of temporal lobe origin presenting with or without déjà-vu. Using voxel-based analysis of 18FDG-PET brain scans, we compared glucose metabolic rate of 8 patients with déjà-vu, 8 patients without déjà-vu, and 20 age-matched healthy subjects. Patients were selected after comprehensive non-invasive presurgical evaluation, including normal brain MRI and surface electroclinical features compatible with unilateral temporal lobe epilepsy (TLE). Patients with and without déjà-vu did not differ in terms of age, gender, epilepsy lateralization, epilepsy onset, epilepsy duration, and other subjective ictal manifestations. TLE patients with déjà-vu exhibited ipsilateral hypometabolism of superior temporal gyrus and of parahippocampal region, in the vicinity of perirhinal/entorhinal cortex, in comparison either to healthy subjects or to TLE patients without déjà-vu (p<0.05 FDR-corrected). By contrast, no difference was found between patient subgroups for hypometabolism of hippocampus and amygdala. At an individual-level, in comparison to healthy subjects, hypometabolism of both parahippocampal region and superior temporal gyrus was present in 7/8 patients with déjà-vu. Hippocampal metabolism was spared in 3 of these 7 patients. These findings argue for metabolic dysfunction of a medial-lateral temporal network in patients with déjà-vu and normal brain MRI. Within the medial temporal lobe, specific involvement of the parahippocampal region, often in the absence of hippocampal impairment, suggests that the feeling of familiarity during seizures greatly depends on alteration of the recognition memory system. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Orbito-Frontal Cortex Is Necessary for Temporal Context Memory

    ERIC Educational Resources Information Center

    Duarte, Audrey; Henson, Richard N.; Knight, Robert T.; Emery, Tina; Graham, Kim S.

    2010-01-01

    Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two…

  16. Evidence That Default Network Connectivity During Rest Consolidates Social Information.

    PubMed

    Meyer, Meghan L; Davachi, Lila; Ochsner, Kevin N; Lieberman, Matthew D

    2018-04-13

    Brain regions engaged during social inference, medial prefrontal cortex (MPFC) and tempoparietal junction (TPJ), are also known to spontaneously engage during rest. While this overlap is well known, the social cognitive function of engaging these regions during rest remains unclear. Building on past research suggesting that new information is committed to memory during rest, we explored whether one function of MPFC and TPJ engagement during rest may be to consolidate new social information. MPFC and TPJ regions significantly increased connectivity during rest after encoding new social information (relative to baseline and post nonsocial encoding rest periods). Moreover, greater connectivity between rTPJ and MPFC, as well as other portions of the default network (vMPFC, anterior temporal lobe, and middle temporal gyrus) during post social encoding rest corresponded with superior social recognition and social associative memory. The tendency to engage MPFC and TPJ during rest may tune people towards social learning.

  17. Functional neuroimaging of extraversion-introversion.

    PubMed

    Lei, Xu; Yang, Tianliang; Wu, Taoyu

    2015-12-01

    Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

  18. fMRI evidence for strategic decision-making during resolution of pronoun reference.

    PubMed

    McMillan, Corey T; Clark, Robin; Gunawardena, Delani; Ryant, Neville; Grossman, Murray

    2012-04-01

    Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun's referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun's reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun's reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A neuroscientific approach to normative judgment in law and justice.

    PubMed Central

    Goodenough, Oliver R; Prehn, Kristin

    2004-01-01

    Developments in cognitive neuroscience are providing new insights into the nature of normative judgment. Traditional views in such disciplines as philosophy, religion, law, psychology and economics have differed over the role and usefulness of intuition and emotion in judging blameworthiness. Cognitive psychology and neurobiology provide new tools and methods for studying questions of normative judgment. Recently, a consensus view has emerged, which recognizes important roles for emotion and intuition and which suggests that normative judgment is a distributed process in the brain. Testing this approach through lesion and scanning studies has linked a set of brain regions to such judgment, including the ventromedial prefrontal cortex, orbitofrontal cortex, posterior cingulate cortex and posterior superior temporal sulcus. Better models of emotion and intuition will help provide further clarification of the processes involved. The study of law and justice is less well developed. We advance a model of law in the brain which suggests that law can recruit a wider variety of sources of information and paths of processing than do the intuitive moral responses that have been studied so far. We propose specific hypotheses and lines of further research that could help test this approach. PMID:15590612

  20. A neuroscientific approach to normative judgment in law and justice.

    PubMed

    Goodenough, Oliver R; Prehn, Kristin

    2004-11-29

    Developments in cognitive neuroscience are providing new insights into the nature of normative judgment. Traditional views in such disciplines as philosophy, religion, law, psychology and economics have differed over the role and usefulness of intuition and emotion in judging blameworthiness. Cognitive psychology and neurobiology provide new tools and methods for studying questions of normative judgment. Recently, a consensus view has emerged, which recognizes important roles for emotion and intuition and which suggests that normative judgment is a distributed process in the brain. Testing this approach through lesion and scanning studies has linked a set of brain regions to such judgment, including the ventromedial prefrontal cortex, orbitofrontal cortex, posterior cingulate cortex and posterior superior temporal sulcus. Better models of emotion and intuition will help provide further clarification of the processes involved. The study of law and justice is less well developed. We advance a model of law in the brain which suggests that law can recruit a wider variety of sources of information and paths of processing than do the intuitive moral responses that have been studied so far. We propose specific hypotheses and lines of further research that could help test this approach.

  1. Neural correlates of episodic and semantic memory retrieval in borderline personality disorder: an fMRI study.

    PubMed

    Mensebach, Christoph; Beblo, Thomas; Driessen, Martin; Wingenfeld, Katja; Mertens, Markus; Rullkoetter, Nina; Lange, Wolfgang; Markowitsch, Hans J; Ollech, Isabella; Saveedra, Anamaria Silva; Rau, Harald; Woermann, Friedrich G

    2009-02-28

    Verbal memory impairment in borderline personality disorder (BPD) is still a matter of debate. In this study we combine investigations of both, memory retrieval as well as underlying neural circuits in BPD. Functional magnetic resonance imaging (fMRI) was used to study regional brain activation in 18 right-handed female patients with BPD and 18 matched controls during the retrieval of an episodic memory retrieval (EMR) task (free recall of a word list) and a semantic memory retrieval (SMR) task (verbal fluency). Despite unaffected performance in EMR and SMR, patients with BPD showed task-specific increased activation compared with controls. During EMR, the increased activation encompassed the posterior cingulate cortex bilaterally, the left middle and superior temporal gyrus, the right inferior frontal gyrus, and the right angular gyrus. SMR was associated with increased activation of the posterior cingulate cortex, of the right fusiform gyrus, of the left anterior cingulate cortex, and of the left postcentral gyrus. Our findings suggest that BPD patients may need to engage larger brain areas to reach a level of performance in episodic and semantic retrieval tasks that is comparable to that of healthy controls.

  2. Functional Neuroimaging of Self-Referential Encoding with Age

    PubMed Central

    Gutchess, Angela H.; Kensinger, Elizabeth A.; Schacter, Daniel L.

    2009-01-01

    Aging impacts memory formation and the engagement of frontal and medial temporal regions. However, much of the research to date has focused on the encoding of neutral verbal and visual information. The present fMRI study investigated age differences in a social encoding task while participants made judgments about the self or another person. Although previous studies identified an intact self-reference effect with age, subserved by robust engagement of medial prefrontal cortex (mPFC) by both young and older adults, we identified a number of age differences. In regions including superior mPFC, inferior prefrontal cortex, and anterior and posterior cingulate cortex, young and older adults exhibited reversals in the pattern of activity for self and other conditions. Whereas young primarily evidenced subsequent forgetting effects in the self-reference condition, older adults demonstrated subsequent memory effects in the other-reference condition. These results indicate fundamental differences across the age groups in the engagement of elaborative encoding processes. We suggest that older adults may encode information about the self in a more normative manner, whereas young adults focus on encoding the unique aspects of the self and distinguishing the self from others. PMID:19765600

  3. Association of pituitary adenylate cyclase-activating polypeptide with cognitive decline in mild cognitive impairment due to Alzheimer disease.

    PubMed

    Han, Pengcheng; Caselli, Richard J; Baxter, Leslie; Serrano, Geidy; Yin, Junxiang; Beach, Thomas G; Reiman, Eric M; Shi, Jiong

    2015-03-01

    There is a deficit of pituitary adenylate cyclase-activating polypeptide (PACAP) in patients with neuropathologically confirmed Alzheimer dementia. However, whether this deficit is associated with the earlier stages of Alzheimer disease (AD) is unknown. This study was conducted to clarify the association between PACAP biomarkers and preclinical, mild cognitive impairment (MCI), and dementia stages of AD in postmortem brain tissue. To examine PACAP and PACAP receptor levels in postmortem brain tissues and cerebrospinal fluid from cognitively and neuropathologically normal control individuals, patients with MCI due to AD (MCI-AD), and individuals with AD; analyze the relationship between PACAP, cognitive, and pathologic features; and propose a model to assess these relationships. We measured PACAP and its receptor (PAC1) levels using enzyme-linked immunoassay. A total of 35 cases were included. All the brain tissue and cerebrospinal fluid samples were selected from Banner Sun Health Research Institute Brain and Body Donation Program. All cognitive test results were in record with the Arizona Alzheimer's Consortium. A comparison of PACAP and PAC1 levels among the healthy controls, MCI-AD, and AD dementia groups, as well as a systematic correlation analysis between PACAP level, cognitive performance, and pathologic severity. The PACAP levels in cerebrospinal fluid, the superior frontal gyrus, and the middle temporal gyrus were inversely related to dementia severity. The PACAP levels in cerebrospinal fluid correlated with the Mattis Dementia Rating Scale score (Pearson r = 0.50; P = .03) and inversely correlated with total amyloid plaques (Pearson r = -0.48; P < .01) and tangles (Pearson r = -0.55; P = .01) in the brain. The PACAP in the superior frontal gyrus and middle temporal gyrus correlated with the Stroop Color-Word Interference Test (Pearson r = 0.58; P < .01) and the Auditory Verbal Learning Test-Total Learning (Pearson r = 0.33; P = .02), respectively. The PACAP in the primary visual cortex did not correlate with the Judgment of Line orientation test (P = .14). Furthermore, the PAC1 level in the superior frontal gyrus showed an upregulation in MCI-AD but not in AD. The pharmacodynamic model of the PACAP-PAC1 interaction best predicted cognitive function in the superior frontal gyrus, but it was less predictive in the middle temporal gyrus and failed to be predictive in the primary visual cortex. Deficits in PACAP are associated with clinical severity in the MCI and dementia stages of AD. Additional studies are needed to clarify the role of PACAP deficits in the predisposition to, pathogenesis of, and treatment of AD.

  4. What’s special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study

    PubMed Central

    Ramdhani, Ritesh A.; Kumar, Veena; Velickovic, Miodrag; Frucht, Steven J.; Tagliati, Michele; Simonyan, Kristina

    2014-01-01

    Background Numerous brain imaging studies have demonstrated structural changes in the basal ganglia, thalamus, sensorimotor cortex and cerebellum across different forms of primary dystonia. However, our understanding of brain abnormalities contributing to the clinically well-described phenomenon of task-specificity in dystonia remained limited. Methods We used high-resolution MRI with voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics of fractional anisotropy to examine gray and white matter organization in two task-specific dystonia forms, writer’s cramp and laryngeal dystonia, and two non-task-specific dystonia forms, cervical dystonia and blepharospasm. Results A direct comparison between the both dystonia forms revealed that characteristic gray matter volumetric changes in task-specific dystonia involve the brain regions responsible for sensorimotor control during writing and speaking, such as primary somatosensory cortex, middle frontal gyrus, superior/inferior temporal gyrus, middle/posterior cingulate cortex, occipital cortex as well as the striatum and cerebellum (lobules VI-VIIa). These gray matter changes were accompanied by white matter abnormalities in the premotor cortex, middle/inferior frontal gyrus, genu of the corpus callosum, anterior limb/genu of the internal capsule, and putamen. Conversely, gray matter volumetric changes in non-task-specific group were limited to the left cerebellum (lobule VIIa) only, while white matter alterations were found to underlie the primary sensorimotor cortex, inferior parietal lobule and middle cingulate gyrus. Conclusion Distinct microstructural patterns in task-specific and non-task-specific dystonias may represent neuroimaging markers and provide evidence that these two dystonia subclasses likely follow divergent pathophysiological mechanisms precipitated by different triggers. PMID:24925463

  5. Underconnectivity between voice-selective cortex and reward circuitry in children with autism.

    PubMed

    Abrams, Daniel A; Lynch, Charles J; Cheng, Katherine M; Phillips, Jennifer; Supekar, Kaustubh; Ryali, Srikanth; Uddin, Lucina Q; Menon, Vinod

    2013-07-16

    Individuals with autism spectrum disorders (ASDs) often show insensitivity to the human voice, a deficit that is thought to play a key role in communication deficits in this population. The social motivation theory of ASD predicts that impaired function of reward and emotional systems impedes children with ASD from actively engaging with speech. Here we explore this theory by investigating distributed brain systems underlying human voice perception in children with ASD. Using resting-state functional MRI data acquired from 20 children with ASD and 19 age- and intelligence quotient-matched typically developing children, we examined intrinsic functional connectivity of voice-selective bilateral posterior superior temporal sulcus (pSTS). Children with ASD showed a striking pattern of underconnectivity between left-hemisphere pSTS and distributed nodes of the dopaminergic reward pathway, including bilateral ventral tegmental areas and nucleus accumbens, left-hemisphere insula, orbitofrontal cortex, and ventromedial prefrontal cortex. Children with ASD also showed underconnectivity between right-hemisphere pSTS, a region known for processing speech prosody, and the orbitofrontal cortex and amygdala, brain regions critical for emotion-related associative learning. The degree of underconnectivity between voice-selective cortex and reward pathways predicted symptom severity for communication deficits in children with ASD. Our results suggest that weak connectivity of voice-selective cortex and brain structures involved in reward and emotion may impair the ability of children with ASD to experience speech as a pleasurable stimulus, thereby impacting language and social skill development in this population. Our study provides support for the social motivation theory of ASD.

  6. Cross-modal representation of spoken and written word meaning in left pars triangularis.

    PubMed

    Liuzzi, Antonietta Gabriella; Bruffaerts, Rose; Peeters, Ronald; Adamczuk, Katarzyna; Keuleers, Emmanuel; De Deyne, Simon; Storms, Gerrit; Dupont, Patrick; Vandenberghe, Rik

    2017-04-15

    The correspondence in meaning extracted from written versus spoken input remains to be fully understood neurobiologically. Here, in a total of 38 subjects, the functional anatomy of cross-modal semantic similarity for concrete words was determined based on a dual criterion: First, a voxelwise univariate analysis had to show significant activation during a semantic task (property verification) performed with written and spoken concrete words compared to the perceptually matched control condition. Second, in an independent dataset, in these clusters, the similarity in fMRI response pattern to two distinct entities, one presented as a written and the other as a spoken word, had to correlate with the similarity in meaning between these entities. The left ventral occipitotemporal transition zone and ventromedial temporal cortex, retrosplenial cortex, pars orbitalis bilaterally, and the left pars triangularis were all activated in the univariate contrast. Only the left pars triangularis showed a cross-modal semantic similarity effect. There was no effect of phonological nor orthographic similarity in this region. The cross-modal semantic similarity effect was confirmed by a secondary analysis in the cytoarchitectonically defined BA45. A semantic similarity effect was also present in the ventral occipital regions but only within the visual modality, and in the anterior superior temporal cortex only within the auditory modality. This study provides direct evidence for the coding of word meaning in BA45 and positions its contribution to semantic processing at the confluence of input-modality specific pathways that code for meaning within the respective input modalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia

    PubMed Central

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2014-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. PMID:25098903

  8. Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia.

    PubMed

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B; Geary, David C; Menon, Vinod

    2015-05-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who were matched on age, IQ, reading ability, and working memory. Children with DD were slower and less accurate during problem solving than TD children, and were especially impaired on their ability to solve subtraction problems. Children with DD showed significantly greater activity in multiple parietal, occipito-temporal and prefrontal cortex regions while solving addition and subtraction problems. Despite poorer performance during subtraction, children with DD showed greater activity in multiple intra-parietal sulcus (IPS) and superior parietal lobule subdivisions in the dorsal posterior parietal cortex as well as fusiform gyrus in the ventral occipito-temporal cortex. Critically, effective connectivity analyses revealed hyper-connectivity, rather than reduced connectivity, between the IPS and multiple brain systems including the lateral fronto-parietal and default mode networks in children with DD during both addition and subtraction. These findings suggest the IPS and its functional circuits are a major locus of dysfunction during both addition and subtraction problem solving in DD, and that inappropriate task modulation and hyper-connectivity, rather than under-engagement and under-connectivity, are the neural mechanisms underlying problem solving difficulties in children with DD. We discuss our findings in the broader context of multiple levels of analysis and performance issues inherent in neuroimaging studies of typical and atypical development. © 2014 John Wiley & Sons Ltd.

  9. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex

    PubMed Central

    Mars, Rogier B.; Sallet, Jérôme; Neubert, Franz-Xaver; Rushworth, Matthew F. S.

    2013-01-01

    The human ability to infer the thoughts and beliefs of others, often referred to as “theory of mind,” as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor. PMID:23754406

  10. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response.

    PubMed

    Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison; Robinson, Delbert G; Gallego, Juan; Lencz, Todd; DeRosse, Pamela; Kingsley, Peter B; Szeszko, Philip R

    2018-05-09

    Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.

  11. Brain activation for lexical decision and reading aloud: two sides of the same coin?

    PubMed

    Carreiras, Manuel; Mechelli, Andrea; Estévez, Adelina; Price, Cathy J

    2007-03-01

    This functional magnetic resonance imaging study compared the neuronal implementation of word and pseudoword processing during two commonly used word recognition tasks: lexical decision and reading aloud. In the lexical decision task, participants made a finger-press response to indicate whether a visually presented letter string is a word or a pseudoword (e.g., "paple"). In the reading-aloud task, participants read aloud visually presented words and pseudowords. The same sets of words and pseudowords were used for both tasks. This enabled us to look for the effects of task (lexical decision vs. reading aloud), lexicality (words vs. nonwords), and the interaction of lexicality with task. We found very similar patterns of activation for lexical decision and reading aloud in areas associated with word recognition and lexical retrieval (e.g., left fusiform gyrus, posterior temporal cortex, pars opercularis, and bilateral insulae), but task differences were observed bilaterally in sensorimotor areas. Lexical decision increased activation in areas associated with decision making and finger tapping (bilateral postcentral gyri, supplementary motor area, and right cerebellum), whereas reading aloud increased activation in areas associated with articulation and hearing the sound of the spoken response (bilateral precentral gyri, superior temporal gyri, and posterior cerebellum). The effect of lexicality (pseudoword vs. words) was also remarkably consistent across tasks. Nevertheless, increased activation for pseudowords relative to words was greater in the left precentral cortex for reading than lexical decision, and greater in the right inferior frontal cortex for lexical decision than reading. We attribute these effects to differences in the demands on speech production and decision-making processes, respectively.

  12. Neural Correlates of Memories of Childhood Sexual Abuse in Women With and Without Posttraumatic Stress Disorder

    PubMed Central

    Bremner, J. Douglas; Narayan, Meena; Staib, Lawrence H.; Southwick, Steven M.; McGlashan, Thomas; Charney, Dennis S.

    2011-01-01

    Objective Childhood sexual abuse is very common in our society, but little is known about the long-term effects of abuse on brain function. The purpose of this study was to measure neural correlates of memories of childhood abuse in sexually abused women with and without the diagnosis of posttraumatic stress disorder (PTSD). Method Twenty-two women with a history of childhood sexual abuse underwent injection of [15O]H2O, followed by positron emission tomography imaging of the brain while they listened to neutral and traumatic (personalized childhood sexual abuse events) scripts. Brain blood flow during exposure to traumatic and neutral scripts was compared for sexually abused women with and without PTSD. Results Memories of childhood sexual abuse were associated with greater increases in blood flow in portions of anterior prefrontal cortex (superior and middle frontal gyri—areas 6 and 9), posterior cingulate (area 31), and motor cortex in sexually abused women with PTSD than in sexually abused women without PTSD. Abuse memories were associated with alterations in blood flow in medial prefrontal cortex, with decreased blood flow in subcallosal gyrus (area 25), and a failure of activation in anterior cingulate (area 32). There was also decreased blood flow in right hippocampus, fusiform/inferior temporal gyrus, supramarginal gyrus, and visual association cortex in women with PTSD relative to women without PTSD. Conclusions These findings implicate dysfunction of medial prefrontal cortex (subcallosal gyrus and anterior cingulate), hippocampus, and visual association cortex in pathological memories of childhood abuse in women with PTSD. Increased activation in posterior cingulate and motor cortex was seen in women with PTSD. Dysfunction in these brain areas may underlie PTSD symptoms provoked by traumatic reminders in subjects with PTSD. PMID:10553744

  13. The association between cognitive deficits and prefrontal hemodynamic responses during performance of working memory task in patients with schizophrenia.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi

    2016-04-01

    Schizophrenia-associated cognitive deficits are resistant to treatment and thus pose a lifelong burden. The Brief Assessment of Cognition in Schizophrenia (BACS) provides reliable and valid assessments across cognitive domains. However, because the prefrontal functional abnormalities specifically associated with the level of cognitive deficits in schizophrenia have not been examined, we explored this relationship. Patients with schizophrenia (N=87) and matched healthy controls (N=50) participated in the study. Using near-infrared spectroscopy (NIRS), we measured the hemodynamic responses in the prefrontal and superior temporal cortical surface areas during a working memory task. Correlation analyses revealed a relationship between the hemodynamics and the BACS composite and domain scores. Hemodynamic responses of the left dorsolateral prefrontal cortex (DLPFC) and left frontopolar cortex (FPC) in the higher-level-of-cognitive-function schizophrenia group were weaker than the responses of the controls but similar to those of the lower-level-of-cognitive-function schizophrenia group. However, hemodynamic responses in the right DLPFC, bilateral ventrolateral PFC (VLPFC), and right temporal regions decreased with increasing cognitive deficits. In addition, the hemodynamic response correlated positively with the level of cognitive function (BACS composite scores) in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions in schizophrenia. The correlation was driven by all BACS domains. Our results suggest that the linked functional deficits in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions may be related to BACS-measured cognitive impairments in schizophrenia and show that linking the neurocognitive deficits and brain abnormalities can increase our understanding of schizophrenia pathophysiology. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion.

    PubMed

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J

    2007-02-01

    Seeing a speaker's facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the "McGurk illusion", where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at approximately 290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350-400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process.

  15. Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion

    PubMed Central

    Saint-Amour, Dave; De Sanctis, Pierfilippo; Molholm, Sophie; Ritter, Walter; Foxe, John J.

    2006-01-01

    Seeing a speaker’s facial articulatory gestures powerfully affects speech perception, helping us overcome noisy acoustical environments. One particularly dramatic illustration of visual influences on speech perception is the “McGurk illusion”, where dubbing an auditory phoneme onto video of an incongruent articulatory movement can often lead to illusory auditory percepts. This illusion is so strong that even in the absence of any real change in auditory stimulation, it activates the automatic auditory change-detection system, as indexed by the mismatch negativity (MMN) component of the auditory event-related potential (ERP). We investigated the putative left hemispheric dominance of McGurk-MMN using high-density ERPs in an oddball paradigm. Topographic mapping of the initial McGurk-MMN response showed a highly lateralized left hemisphere distribution, beginning at 175 ms. Subsequently, scalp activity was also observed over bilateral fronto-central scalp with a maximal amplitude at ~290 ms, suggesting later recruitment of right temporal cortices. Strong left hemisphere dominance was again observed during the last phase of the McGurk-MMN waveform (350–400 ms). Source analysis indicated bilateral sources in the temporal lobe just posterior to primary auditory cortex. While a single source in the right superior temporal gyrus (STG) accounted for the right hemisphere activity, two separate sources were required, one in the left transverse gyrus and the other in STG, to account for left hemisphere activity. These findings support the notion that visually driven multisensory illusory phonetic percepts produce an auditory-MMN cortical response and that left hemisphere temporal cortex plays a crucial role in this process. PMID:16757004

  16. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    PubMed Central

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  17. A real-world size organization of object responses in occipito-temporal cortex

    PubMed Central

    Konkle, Talia; Oliva, Aude

    2012-01-01

    SUMMARY While there are selective regions of occipito-temporal cortex that respond to faces, letters, and bodies, the large-scale neural organization of most object categories remains unknown. Here we find that object representations can be differentiated along the ventral temporal cortex by their real-world size. In a functional neuroimaging experiment, observers were shown pictures of big and small real-world objects (e.g. table, bathtub; paperclip, cup), presented at the same retinal size. We observed a consistent medial-to-lateral organization of big and small object preferences in the ventral temporal cortex, mirrored along the lateral surface. Regions in the lateral-occipital, infero-temporal, and parahippocampal cortices showed strong peaks of differential real-world size selectivity, and maintained these preferences over changes in retinal size and in mental imagery. These data demonstrate that the real-world size of objects can provide insight into the spatial topography of object representation. PMID:22726840

  18. Working memory network plasticity after anterior temporal lobe resection: a longitudinal functional magnetic resonance imaging study

    PubMed Central

    Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.

    2014-01-01

    Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395

  19. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    PubMed Central

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  20. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach: A fMRI Study.

    PubMed

    Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N

    2016-01-01

    In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.

  1. White matter structures associated with loneliness in young adults

    PubMed Central

    Nakagawa, Seishu; Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    Lonely individuals may exhibit dysfunction, particularly with respect to social empathy and self-efficacy. White matter (WM) structures related to loneliness have not yet been identified. We investigated the association between regional WM density (rWMD) using the UCLA Loneliness Scale in 776 healthy young students aged 18–27 years old. Loneliness scores were negatively correlated with rWMD in eight clusters: the bilateral inferior parietal lobule (IPL), right anterior insula (AI), posterior temporoparietal junction (pTPJ), left posterior superior temporal sulcus (pSTS), dorsomedial prefrontal cortex (dmPFC), and rostrolateral prefrontal cortex (RLPFC). The bilateral IPL, right AI, left pSTS, pTPJ, and RLPFC were strongly associated with Empathy Quotient (EQ), whereas the bilateral IPL, right AI, left pTPJ, and dmPFC were associated with General Self-Efficacy Scale (GSES) score. The neural correlates of loneliness comprise widespread reduction in WMD in areas related to self- and social cognition as well as areas associated with empathy and self-efficacy. PMID:26585372

  2. Functional MRI of the vocalization-processing network in the macaque brain

    PubMed Central

    Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.

    2015-01-01

    Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546

  3. Word and picture matching: a PET study of semantic category effects.

    PubMed

    Perani, D; Schnur, T; Tettamanti, M; Gorno-Tempini, M; Cappa, S F; Fazio, F

    1999-03-01

    We report two positron emission tomography (PET) studies of cerebral activation during picture and word matching tasks, in which we compared directly the processing of stimuli belonging to different semantic categories (animate and inanimate) in the visual (pictures) and verbal (words) modality. In the first experiment, brain activation was measured in eleven healthy adults during a same/different matching task for textures, meaningless shapes and pictures of animals and artefacts (tools). Activations for meaningless shapes when compared to visual texture discrimination were localized in the left occipital and inferior temporal cortex. Animal picture identification, either in the comparison with meaningless shapes and in the direct comparison with non-living pictures, involved primarily activation of occipital regions, namely the lingual gyrus bilaterally and the left fusiform gyrus. For artefact picture identification, in the same comparison with meaningless shape-baseline and in the direct comparison with living pictures, all activations were left hemispheric, through the dorsolateral frontal (Ba 44/6 and 45) and temporal (Ba 21, 20) cortex. In the second experiment, brain activation was measured in eight healthy adults during a same/different matching task for visually presented words referring to animals and manipulable objects (tools); the baseline was a pseudoword discrimination task. When compared with the tool condition, the animal condition activated posterior left hemispheric areas, namely the fusiform (Ba 37) and the inferior occipital gyrus (Ba 18). The right superior parietal lobule (Ba 7) and the left thalamus were also activated. The reverse comparison (tools vs animals) showed left hemispheric activations in the middle temporal gyrus (Ba 21) and precuneus (Ba 7), as well as bilateral activation in the occipital regions. These results are compatible with different brain networks subserving the identification of living and non-living entities; in particular, they indicate a crucial role of the left fusiform gyrus in the processing of animate entities and of the left middle temporal gyrus for tools, both from words and pictures. The activation of other areas, such as the dorsolateral frontal cortex, appears to be specific for the semantic access of tools only from pictures.

  4. Multisensory speech perception without the left superior temporal sulcus.

    PubMed

    Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S

    2012-09-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Multisensory Speech Perception Without the Left Superior Temporal Sulcus

    PubMed Central

    Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.

    2012-01-01

    Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292

  6. Emulating the Visual Receptive Field Properties of MST Neurons with a Template Model of Heading Estimation

    NASA Technical Reports Server (NTRS)

    Perrone, John A.; Stone, Leland S.

    1997-01-01

    We have previously proposed a computational neural-network model by which the complex patterns of retinal image motion generated during locomotion (optic flow) can be processed by specialized detectors acting as templates for specific instances of self-motion. The detectors in this template model respond to global optic flow by sampling image motion over a large portion of the visual field through networks of local motion sensors with properties similar to neurons found in the middle temporal (MT) area of primate extrastriate visual cortex. The model detectors were designed to extract self-translation (heading), self-rotation, as well as the scene layout (relative distances) ahead of a moving observer, and are arranged in cortical-like heading maps to perform this function. Heading estimation from optic flow has been postulated by some to be implemented within the medial superior temporal (MST) area. Others have questioned whether MST neurons can fulfill this role because some of their receptive-field properties appear inconsistent with a role in heading estimation. To resolve this issue, we systematically compared MST single-unit responses with the outputs of model detectors under matched stimulus conditions. We found that the basic physiological properties of MST neurons can be explained by the template model. We conclude that MST neurons are well suited to support heading estimation and that the template model provides an explicit set of testable hypotheses which can guide future exploration of MST and adjacent areas within the primate superior temporal sulcus.

  7. Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.

    PubMed

    Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M

    2003-05-13

    Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.

  8. An fMRI Study of the Neural Systems Involved in Visually Cued Auditory Top-Down Spatial and Temporal Attention

    PubMed Central

    Li, Chunlin; Chen, Kewei; Han, Hongbin; Chui, Dehua; Wu, Jinglong

    2012-01-01

    Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen. PMID:23166800

  9. Lateralization for dynamic facial expressions in human superior temporal sulcus.

    PubMed

    De Winter, François-Laurent; Zhu, Qi; Van den Stock, Jan; Nelissen, Koen; Peeters, Ronald; de Gelder, Beatrice; Vanduffel, Wim; Vandenbulcke, Mathieu

    2015-02-01

    Most face processing studies in humans show stronger activation in the right compared to the left hemisphere. Evidence is largely based on studies with static stimuli focusing on the fusiform face area (FFA). Hence, the pattern of lateralization for dynamic faces is less clear. Furthermore, it is unclear whether this property is common to human and non-human primates due to predisposing processing strategies in the right hemisphere or that alternatively left sided specialization for language in humans could be the driving force behind this phenomenon. We aimed to address both issues by studying lateralization for dynamic facial expressions in monkeys and humans. Therefore, we conducted an event-related fMRI experiment in three macaques and twenty right handed humans. We presented human and monkey dynamic facial expressions (chewing and fear) as well as scrambled versions to both species. We studied lateralization in independently defined face-responsive and face-selective regions by calculating a weighted lateralization index (LIwm) using a bootstrapping method. In order to examine if lateralization in humans is related to language, we performed a separate fMRI experiment in ten human volunteers including a 'speech' expression (one syllable non-word) and its scrambled version. Both within face-responsive and selective regions, we found consistent lateralization for dynamic faces (chewing and fear) versus scrambled versions in the right human posterior superior temporal sulcus (pSTS), but not in FFA nor in ventral temporal cortex. Conversely, in monkeys no consistent pattern of lateralization for dynamic facial expressions was observed. Finally, LIwms based on the contrast between different types of dynamic facial expressions (relative to scrambled versions) revealed left-sided lateralization in human pSTS for speech-related expressions compared to chewing and emotional expressions. To conclude, we found consistent laterality effects in human posterior STS but not in visual cortex of monkeys. Based on our results, it is tempting to speculate that lateralization for dynamic face processing in humans may be driven by left-hemispheric language specialization which may not have been present yet in the common ancestor of human and macaque monkeys. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Regional reduction in cortical blood flow among cognitively impaired adults with relapsing-remitting multiple sclerosis patients

    PubMed Central

    Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.

    2015-01-01

    Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799

  11. Multimodal lexical processing in auditory cortex is literacy skill dependent.

    PubMed

    McNorgan, Chris; Awati, Neha; Desroches, Amy S; Booth, James R

    2014-09-01

    Literacy is a uniquely human cross-modal cognitive process wherein visual orthographic representations become associated with auditory phonological representations through experience. Developmental studies provide insight into how experience-dependent changes in brain organization influence phonological processing as a function of literacy. Previous investigations show a synchrony-dependent influence of letter presentation on individual phoneme processing in superior temporal sulcus; others demonstrate recruitment of primary and associative auditory cortex during cross-modal processing. We sought to determine whether brain regions supporting phonological processing of larger lexical units (monosyllabic words) over larger time windows is sensitive to cross-modal information, and whether such effects are literacy dependent. Twenty-two children (age 8-14 years) made rhyming judgments for sequentially presented word and pseudoword pairs presented either unimodally (auditory- or visual-only) or cross-modally (audiovisual). Regression analyses examined the relationship between literacy and congruency effects (overlapping orthography and phonology vs. overlapping phonology-only). We extend previous findings by showing that higher literacy is correlated with greater congruency effects in auditory cortex (i.e., planum temporale) only for cross-modal processing. These skill effects were specific to known words and occurred over a large time window, suggesting that multimodal integration in posterior auditory cortex is critical for fluent reading. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Is evaluation of humorous stimuli associated with frontal cortex morphology? A pilot study using facial micro-movement analysis and MRI.

    PubMed

    Juckel, Georg; Mergl, Roland; Brüne, Martin; Villeneuve, Isabelle; Frodl, Thomas; Schmitt, Gisela; Zetzsche, Thomas; Born, Christine; Hahn, Klaus; Reiser, Maximilian; Möller, Hans-Jürgen; Bär, Karl-Jürgen; Hegerl, Ulrich; Meisenzahl, Eva Maria

    2011-05-01

    Humour involves the ability to detect incongruous ideas violating social rules and norms. Accordingly, humour requires a complex array of cognitive skills for which intact frontal lobe functioning is critical. Here, we sought to examine the association of facial expression during an emotion inducing experiment with frontal cortex morphology in healthy subjects. Thirty-one healthy male subjects (mean age: 30.8±8.9 years; all right-handers) watching a humorous movie ("Mr. Bean") were investigated. Markers fixed at certain points of the face emitting high-frequency ultrasonic signals allowed direct measurement of facial movements with high spatial-temporal resolution. Magnetic resonance images of the frontal cortex were obtained with a 1.5-T Magnetom using a coronar T2- and protondensity-weighted Dual-Echo-Sequence and a 3D-magnetization-prepared rapid gradient echo (MPRAGE) sequence. Volumetric analysis was performed using BRAINS. Frontal cortex volume was partly associated with slower speed of "laughing" movements of the eyes ("genuine" or Duchenne smile). Specifically, grey matter volume was associated with longer emotional reaction time ipsilaterally, even when controlled for age and daily alcohol intake. These results lend support to the hypothesis that superior cognitive evaluation of humorous stimuli - mediated by larger prefrontal grey and white matter volume - leads to a measurable reduction of speed of emotional expressivity in normal adults. Copyright © 2010 Elsevier Srl. All rights reserved.

  13. Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis.

    PubMed

    Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok

    2018-04-01

    Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional network.

  14. Neural Correlates of the Use of Psychological Distancing to Regulate Responses to Negative Social Cues: A Study of Patients with Borderline Personality Disorder

    PubMed Central

    Koenigsberg, Harold W.; Fan, Jin; Ochsner, Kevin; Liu, Xun; Guise, Kevin G.; Pizzarello, Scott; Dorantes, Christine; Guerreri, Stephanie; Tecuta, Lucia; Goodman, Marianne; New, Antonia; Siever, Larry J

    2009-01-01

    Background Emotional instability is a defining feature of borderline personality disorder (BPD), yet little is understood about its underlying neural correlates. One possible contributing factor to emotional instability is a failure to adequately employ adaptive cognitive regulatory strategies such as psychological distancing. Method To determine whether there are differences in neural dynamics underlying this control strategy, between BPD patients and healthy volunteers (HC’s), BOLD fMRI signals were acquired as 18 BPD and 16 HC subjects distanced from or simply looked at negative and neutral pictures depicting social interactions. Contrasts in signal between distance and look condition were compared between groups to identify commonalities and differences in regional activation. Results BPD patients show a different pattern of activation compared to HC subjects when looking at negative vs. neutral pictures. When distancing vs. looking at negative pictures, both groups showed decreased negative affect in rating and increased activation of the dorsolateral prefrontal cortex, areas near/along the intraparietal sulcus (IPS), ventrolateral prefrontal cortex and posterior cingulate/precuneus regions. However, the BPD group showed less BOLD signal change in dorsal anterior cingulate cortex and IPS, less deactivation in the amygdala and greater activation in the superior temporal sulcus and superior frontal gyrus. Conclusion BPD and HC subjects display different neural dynamics while passively viewing social emotional stimuli. In addition, BPD patients do not engage the cognitive control regions to the extent that HC’s do when employing a distancing strategy to regulate emotional reactions, which may be a factor contributing to the affective instability of BPD. PMID:19651401

  15. Centrality of prefrontal and motor preparation cortices to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies.

    PubMed

    Polyanska, Liliana; Critchley, Hugo D; Rae, Charlotte L

    2017-01-01

    Tourette Syndrome (TS) is a neurodevelopmental condition characterized by chronic multiple tics, which are experienced as compulsive and 'unwilled'. Patients with TS can differ markedly in the frequency, severity, and bodily distribution of tics. Moreover, there are high comorbidity rates with attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), anxiety disorders, and depression. This complex clinical profile may account for apparent variability of findings across neuroimaging studies that connect neural function to cognitive and motor behavior in TS. Here we crystalized information from neuroimaging regarding the functional circuitry of TS, and furthermore, tested specifically for neural determinants of tic severity, by applying activation likelihood estimation (ALE) meta-analyses to neuroimaging (activation) studies of TS. Fourteen task-based studies (13 fMRI and one H2O-PET) met rigorous inclusion criteria. These studies, encompassing 25 experiments and 651 participants, tested for differences between TS participants and healthy controls across cognitive, motor, perceptual and somatosensory domains. Relative to controls, TS participants showed distributed differences in the activation of prefrontal (inferior, middle, and superior frontal gyri), anterior cingulate, and motor preparation cortices (lateral premotor cortex and supplementary motor area; SMA). Differences also extended into sensory (somatosensory cortex and the lingual gyrus; V4); and temporo-parietal association cortices (posterior superior temporal sulcus, supramarginal gyrus, and retrosplenial cortex). Within TS participants, tic severity (reported using the Yale Global Tic Severity Scale; YGTSS) selectively correlated with engagement of SMA, precentral gyrus, and middle frontal gyrus across tasks. The dispersed involvement of multiple cortical regions with differences in functional reactivity may account for heterogeneity in the symptomatic expression of TS and its comorbidities. More specifically for tics and tic severity, the findings reinforce previously proposed contributions of premotor and lateral prefrontal cortices to tic expression.

  16. Cultural constraints on brain development: evidence from a developmental study of visual word processing in mandarin chinese.

    PubMed

    Cao, Fan; Lee, Rebecca; Shu, Hua; Yang, Yanhui; Xu, Guoqing; Li, Kuncheng; Booth, James R

    2010-05-01

    Developmental differences in phonological and orthographic processing in Chinese were examined in 9 year olds, 11 year olds, and adults using functional magnetic resonance imaging. Rhyming and spelling judgments were made to 2-character words presented sequentially in the visual modality. The spelling task showed greater activation than the rhyming task in right superior parietal lobule and right inferior temporal gyrus, and there were developmental increases across tasks bilaterally in these regions in addition to bilateral occipital cortex, suggesting increased involvement over age on visuo-orthographic analysis. The rhyming task showed greater activation than the spelling task in left superior temporal gyrus and there were developmental decreases across tasks in this region, suggesting reduced involvement over age on phonological representations. The rhyming and spelling tasks included words with conflicting orthographic and phonological information (i.e., rhyming words spelled differently or nonrhyming words spelled similarly) or nonconflicting information. There was a developmental increase in the difference between conflicting and nonconflicting words in left inferior parietal lobule, suggesting greater engagement of systems for mapping between orthographic and phonological representations. Finally, there were developmental increases across tasks in an anterior (Broadman area [BA] 45, 46) and posterior (BA 9) left inferior frontal gyrus, suggesting greater reliance on controlled retrieval and selection of posterior lexical representations.

  17. Neural substrates related to auditory working memory comparisons in dyslexia: An fMRI study

    PubMed Central

    CONWAY, TIM; HEILMAN, KENNETH M.; GOPINATH, KAUNDINYA; PECK, KYUNG; BAUER, RUSSELL; BRIGGS, RICHARD W.; TORGESEN, JOSEPH K.; CROSSON, BRUCE

    2010-01-01

    Adult readers with developmental phonological dyslexia exhibit significant difficulty comparing pseudowords and pure tones in auditory working memory (AWM). This suggests deficient AWM skills for adults diagnosed with dyslexia. Despite behavioral differences, it is unknown whether neural substrates of AWM differ between adults diagnosed with dyslexia and normal readers. Prior neuroimaging of adults diagnosed with dyslexia and normal readers, and post-mortem findings of neural structural anomalies in adults diagnosed with dyslexia support the hypothesis of atypical neural activity in temporoparietal and inferior frontal regions during AWM tasks in adults diagnosed with dyslexia. We used fMRI during two binaural AWM tasks (pseudowords or pure tones comparisons) in adults diagnosed with dyslexia (n = 11) and normal readers (n = 11). For both AWM tasks, adults diagnosed with dyslexia exhibited greater activity in left posterior superior temporal (BA 22) and inferior parietal regions (BA 40) than normal readers. Comparing neural activity between groups and between stimuli contrasts (pseudowords vs. tones), adults diagnosed with dyslexia showed greater primary auditory cortex activity (BA 42; tones > pseudowords) than normal readers. Thus, greater activity in primary auditory, posterior superior temporal, and inferior parietal cortices during linguistic and non-linguistic AWM tasks for adults diagnosed with dyslexia compared to normal readers indicate differences in neural substrates of AWM comparison tasks. PMID:18577292

  18. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.

    PubMed

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.

  19. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    PubMed Central

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. PMID:26139105

  20. Differentiating maturational and training influences on fMRI activation during music processing.

    PubMed

    Ellis, Robert J; Norton, Andrea C; Overy, Katie; Winner, Ellen; Alsop, David C; Schlaug, Gottfried

    2012-04-15

    Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Judgments of auditory-visual affective congruence in adolescents with and without autism: a pilot study of a new task using fMRI.

    PubMed

    Loveland, Katherine A; Steinberg, Joel L; Pearson, Deborah A; Mansour, Rosleen; Reddoch, Stacy

    2008-10-01

    One of the most widely reported developmental deficits associated with autism is difficulty perceiving and expressing emotion appropriately. Brain activation associated with performance on a new task, the Emotional Congruence Task, requires judging affective congruence of facial expression and voice, compared with their sex congruence. Participants in this pilot study were adolescents with normal IQ (n = 5) and autism or without (n = 4) autism. In the emotional congruence condition, as compared to the sex congruence of voice and face, controls had significantly more activation than the Autism group in the orbitofrontal cortex, the superior temporal, parahippocampal, and posterior cingulate gyri and occipital regions. Unlike controls, the Autism group did not have significantly greater prefrontal activation during the emotional congruence condition, but did during the sex congruence condition. Results indicate the Emotional Congruence Task can be used successfully to assess brain activation and behavior associated with integration of auditory and visual information for emotion. While the numbers in the groups are small, the results suggest that brain activity while performing the Emotional Congruence Task differed between adolescents with and without autism in fronto-limbic areas and in the superior temporal region. These findings must be confirmed using larger samples of participants.

  2. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  3. Age-related changes in brain activation associated with dimensional shifts of attention: an fMRI study.

    PubMed

    Morton, J Bruce; Bosma, Rachael; Ansari, Daniel

    2009-05-15

    Brain activation associated with dimensional shifts of attention was measured in 14 children and 13 adults using 4 T fMRI. Across all participants, dimensional shifting was associated with activity in a distributed frontoparietal network, including superior parietal cortex, dorsolateral prefrontal cortex, inferior frontal junction, and the pre-supplementary motor region. There were also age-related differences in brain activity, with children but not adults showing an effect of dimension shifting in the right superior frontal sulcus, and adults but not children showing an effect of dimension shifting in the left superior parietal cortex and the right thalamus. These differences were likely not attributable to behavioral differences as children and adults performed comparably. Implications for neurodevelopmental accounts of shifting are discussed.

  4. Development and neurophysiology of mentalizing.

    PubMed Central

    Frith, Uta; Frith, Christopher D

    2003-01-01

    The mentalizing (theory of mind) system of the brain is probably in operation from ca. 18 months of age, allowing implicit attribution of intentions and other mental states. Between the ages of 4 and 6 years explicit mentalizing becomes possible, and from this age children are able to explain the misleading reasons that have given rise to a false belief. Neuroimaging studies of mentalizing have so far only been carried out in adults. They reveal a system with three components consistently activated during both implicit and explicit mentalizing tasks: medial prefrontal cortex (MPFC), temporal poles and posterior superior temporal sulcus (STS). The functions of these components can be elucidated, to some extent, from their role in other tasks used in neuroimaging studies. Thus, the MPFC region is probably the basis of the decoupling mechanism that distinguishes mental state representations from physical state representations; the STS region is probably the basis of the detection of agency, and the temporal poles might be involved in access to social knowledge in the form of scripts. The activation of these components in concert appears to be critical to mentalizing. PMID:12689373

  5. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys.

    PubMed

    Poremba, Amy; Mishkin, Mortimer

    2007-07-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left-hemisphere "dominance" during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole "dominance" appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys.

  6. Exploring the extent and function of higher-order auditory cortex in rhesus monkeys

    PubMed Central

    Mishkin, Mortimer

    2009-01-01

    Just as cortical visual processing continues far beyond the boundaries of early visual areas, so too does cortical auditory processing continue far beyond the limits of early auditory areas. In passively listening rhesus monkeys examined with metabolic mapping techniques, cortical areas reactive to auditory stimulation were found to include the entire length of the superior temporal gyrus (STG) as well as several other regions within the temporal, parietal, and frontal lobes. Comparison of these widespread activations with those from an analogous study in vision supports the notion that audition, like vision, is served by several cortical processing streams, each specialized for analyzing a different aspect of sensory input, such as stimulus quality, location, or motion. Exploration with different classes of acoustic stimuli demonstrated that most portions of STG show greater activation on the right than on the left regardless of stimulus class. However, there is a striking shift to left hemisphere “dominance” during passive listening to species-specific vocalizations, though this reverse asymmetry is observed only in the region of temporal pole. The mechanism for this left temporal pole “dominance” appears to be suppression of the right temporal pole by the left hemisphere, as demonstrated by a comparison of the results in normal monkeys with those in split-brain monkeys. PMID:17321703

  7. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy.

    PubMed

    Bonilha, Leonardo; Jensen, Jens H; Baker, Nathaniel; Breedlove, Jesse; Nesland, Travis; Lin, Jack J; Drane, Daniel L; Saindane, Amit M; Binder, Jeffrey R; Kuzniecky, Ruben I

    2015-05-05

    We examined whether individual neuronal architecture obtained from the brain connectome can be used to estimate the surgical success of anterior temporal lobectomy (ATL) in patients with temporal lobe epilepsy (TLE). We retrospectively studied 35 consecutive patients with TLE who underwent ATL. The structural brain connectome was reconstructed from all patients using presurgical diffusion MRI. Network links in patients were standardized as Z scores based on connectomes reconstructed from healthy controls. The topography of abnormalities in linkwise elements of the connectome was assessed on subnetworks linking ipsilateral temporal with extratemporal regions. Predictive models were constructed based on the individual prevalence of linkwise Z scores >2 and based on presurgical clinical data. Patients were more likely to achieve postsurgical seizure freedom if they exhibited fewer abnormalities within a subnetwork composed of the ipsilateral hippocampus, amygdala, thalamus, superior frontal region, lateral temporal gyri, insula, orbitofrontal cortex, cingulate, and lateral occipital gyrus. Seizure-free surgical outcome was predicted by neural architecture alone with 90% specificity (83% accuracy), and by neural architecture combined with clinical data with 94% specificity (88% accuracy). Individual variations in connectome topography, combined with presurgical clinical data, may be used as biomarkers to better estimate surgical outcomes in patients with TLE. © 2015 American Academy of Neurology.

  8. Selective involvement of superior frontal cortex during working memory for shapes.

    PubMed

    Yee, Lydia T S; Roe, Katherine; Courtney, Susan M

    2010-01-01

    A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.

  9. Acute cortical deafness in a child with MELAS syndrome.

    PubMed

    Pittet, Marie P; Idan, Roni B; Kern, Ilse; Guinand, Nils; Van, Hélène Cao; Toso, Seema; Fluss, Joël

    2016-05-01

    Auditory impairment in mitochondrial disorders are usually due to peripheral sensorineural dysfunction. Central deafness is only rarely reported. We report here an 11-year-old boy with MELAS syndrome who presented with subacute deafness after waking up from sleep. Peripheral hearing loss was rapidly excluded. A brain MRI documented bilateral stroke-like lesions predominantly affecting the superior temporal lobe, including the primary auditory cortex, confirming the central nature of deafness. Slow recovery was observed in the following weeks. This case serves to illustrate the numerous challenges caused by MELAS and the unusual occurrence of acute cortical deafness, that to our knowledge has not be described so far in a child in this setting.

  10. Perirhinal cortex and temporal lobe epilepsy

    PubMed Central

    Biagini, Giuseppe; D'Antuono, Margherita; Benini, Ruba; de Guzman, Philip; Longo, Daniela; Avoli, Massimo

    2013-01-01

    The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus. PMID:24009554

  11. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.

    PubMed

    Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan

    2018-02-01

    It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cortical activation patterns correlate with speech understanding after cochlear implantation

    PubMed Central

    Olds, Cristen; Pollonini, Luca; Abaya, Homer; Larky, Jannine; Loy, Megan; Bortfeld, Heather; Beauchamp, Michael S.; Oghalai, John S.

    2015-01-01

    Objectives Cochlear implants are a standard therapy for deafness, yet the ability of implanted patients to understand speech varies widely. To better understand this variability in outcomes, we used functional near-infrared spectroscopy (fNIRS) to image activity within regions of the auditory cortex and compare the results to behavioral measures of speech perception. Design We studied 32 deaf adults hearing through cochlear implants and 35 normal-hearing controls. We used fNIRS to measure responses within the lateral temporal lobe and the superior temporal gyrus to speech stimuli of varying intelligibility. The speech stimuli included normal speech, channelized speech (vocoded into 20 frequency bands), and scrambled speech (the 20 frequency bands were shuffled in random order). We also used environmental sounds as a control stimulus. Behavioral measures consisted of the Speech Reception Threshold, CNC words, and AzBio Sentence tests measured in quiet. Results Both control and implanted participants with good speech perception exhibited greater cortical activations to natural speech than to unintelligible speech. In contrast, implanted participants with poor speech perception had large, indistinguishable cortical activations to all stimuli. The ratio of cortical activation to normal speech to that of scrambled speech directly correlated with the CNC Words and AzBio Sentences scores. This pattern of cortical activation was not correlated with auditory threshold, age, side of implantation, or time after implantation. Turning off the implant reduced cortical activations in all implanted participants. Conclusions Together, these data indicate that the responses we measured within the lateral temporal lobe and the superior temporal gyrus correlate with behavioral measures of speech perception, demonstrating a neural basis for the variability in speech understanding outcomes after cochlear implantation. PMID:26709749

  13. Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.

    PubMed

    Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A

    2014-09-01

    Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of obesity in middle age.

  14. Resting-state regional homogeneity as a biological marker for patients with Internet gaming disorder: A comparison with patients with alcohol use disorder and healthy controls.

    PubMed

    Kim, Heejung; Kim, Yu Kyeong; Gwak, Ah Reum; Lim, Jae-A; Lee, Jun-Young; Jung, Hee Yeon; Sohn, Bo Kyung; Choi, Sam-Wook; Kim, Dai Jin; Choi, Jung-Seok

    2015-07-03

    Internet gaming disorder (IGD) shares core clinical features with other addictive disorders, such as gambling disorder and substance use disorder. Designation of IGD as a formal disorder requires elucidation of its neurobiological features and comparison of these with those of other addictive disorders. The aims of the present study were to identify the neurobiological features of the resting-state brain of patients with IGD, alcohol use disorder (AUD), and healthy controls, and to examine brain regions related to the clinical characteristics of IGD. Functional magnetic resonance imaging was performed on 16 subjects with IGD, 14 subjects with AUD, and 15 healthy controls during the resting-state. We computed regional homogeneity (ReHo) measures to identify intrinsic local connectivity and to explore associations with clinical status and impulsivity. We found significantly increased ReHo in the posterior cingulate cortex (PCC) of the IGD and AUD groups, and decreased ReHo in the right superior temporal gyrus (STG) of those with IGD, compared with the AUD and HC groups. We also found decreased ReHo in the anterior cingulate cortex of patients with AUD. Scores on Internet addiction severity were positively correlated with ReHo in the medial frontal cortex, precuneus/PCC, and left inferior temporal cortex (ITC) among those with IGD. Furthermore, impulsivity scores were negatively correlated with that in the left ITC in individuals with IGD. Our results provide evidence of distinctive functional changes in the resting-state of patients with IGD and demonstrate that increased ReHo in the PCC may be a common neurobiological feature of IGD and AUD and that reduced ReHo in the STG may be a candidate neurobiological marker for IGD, differentiating individuals with this disorder from those with AUD and healthy controls. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Altered Amygdala Resting-State Functional Connectivity in Maintenance Hemodialysis End-Stage Renal Disease Patients with Depressive Mood.

    PubMed

    Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang

    2017-04-01

    The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.

  16. Acute LSD effects on response inhibition neural networks.

    PubMed

    Schmidt, A; Müller, F; Lenz, C; Dolder, P C; Schmid, Y; Zanchi, D; Lang, U E; Liechti, M E; Borgwardt, S

    2017-10-02

    Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations. In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire. Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery. Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.

  17. Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.

    PubMed

    Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo

    2016-04-01

    The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  19. Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific.

    PubMed

    Stigliani, Anthony; Weiner, Kevin S; Grill-Spector, Kalanit

    2015-09-09

    Prevailing hierarchical models propose that temporal processing capacity--the amount of information that a brain region processes in a unit time--decreases at higher stages in the ventral stream regardless of domain. However, it is unknown if temporal processing capacities are domain general or domain specific in human high-level visual cortex. Using a novel fMRI paradigm, we measured temporal capacities of functional regions in high-level visual cortex. Contrary to hierarchical models, our data reveal domain-specific processing capacities as follows: (1) regions processing information from different domains have differential temporal capacities within each stage of the visual hierarchy and (2) domain-specific regions display the same temporal capacity regardless of their position in the processing hierarchy. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. Notably, domain-specific temporal processing capacities are not apparent in V1 and have perceptual implications. Behavioral testing revealed that the encoding capacity of body images is higher than that of characters, faces, and places, and there is a correspondence between peak encoding rates and cortical capacities for characters and bodies. The present evidence supports a model in which the natural statistics of temporal information in the visual world may affect domain-specific temporal processing and encoding capacities. These findings suggest that the functional organization of high-level visual cortex may be constrained by temporal characteristics of stimuli in the natural world, and this temporal capacity is a characteristic of domain-specific networks in high-level visual cortex. Significance statement: Visual stimuli bombard us at different rates every day. For example, words and scenes are typically stationary and vary at slow rates. In contrast, bodies are dynamic and typically change at faster rates. Using a novel fMRI paradigm, we measured temporal processing capacities of functional regions in human high-level visual cortex. Contrary to prevailing theories, we find that different regions have different processing capacities, which have behavioral implications. In general, character-selective regions have the lowest capacity, face- and place-selective regions have an intermediate capacity, and body-selective regions have the highest capacity. These results suggest that temporal processing capacity is a characteristic of domain-specific networks in high-level visual cortex and contributes to the segregation of cortical regions. Copyright © 2015 the authors 0270-6474/15/3512412-13$15.00/0.

  20. Distinct cortical codes and temporal dynamics for conscious and unconscious percepts

    PubMed Central

    Salti, Moti; Monto, Simo; Charles, Lucie; King, Jean-Remi; Parkkonen, Lauri; Dehaene, Stanislas

    2015-01-01

    The neural correlates of consciousness are typically sought by comparing the overall brain responses to perceived and unperceived stimuli. However, this comparison may be contaminated by non-specific attention, alerting, performance, and reporting confounds. Here, we pursue a novel approach, tracking the neuronal coding of consciously and unconsciously perceived contents while keeping behavior identical (blindsight). EEG and MEG were recorded while participants reported the spatial location and visibility of a briefly presented target. Multivariate pattern analysis demonstrated that considerable information about spatial location traverses the cortex on blindsight trials, but that starting ≈270 ms post-onset, information unique to consciously perceived stimuli, emerges in superior parietal and superior frontal regions. Conscious access appears characterized by the entry of the perceived stimulus into a series of additional brain processes, each restricted in time, while the failure of conscious access results in the breaking of this chain and a subsequent slow decay of the lingering unconscious activity. DOI: http://dx.doi.org/10.7554/eLife.05652.001 PMID:25997100

  1. Pathways for smiling, disgust and fear recognition in blindsight patients.

    PubMed

    Gerbella, Marzio; Caruana, Fausto; Rizzolatti, Giacomo

    2017-08-31

    The aim of the present review is to discuss the localization of circuits that allow recognition of emotional facial expressions in blindsight patients. Because recognition of facial expressions is function of different centers, and their localization is not always clear, we decided to discuss here three emotional facial expression - smiling, disgust, and fear - whose anatomical localization in the pregenual sector of the anterior cingulate cortex (pACC), anterior insula (AI), and amygdala, respectively, is well established. We examined, then, the possible pathways that may convey affective visual information to these centers following lesions of V1. We concluded that the pathway leading to pACC, AI, and amygdala involves the deep layers of the superior colliculus, the medial pulvinar, and the superior temporal sulcus region. We suggest that this visual pathway provides an image of the observed affective faces, which, although deteriorated, is sufficient to determine some overt behavior, but not to provide conscious experience of the presented stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Atypical neural substrates of Embedded Figures Task performance in children with Autism Spectrum Disorder.

    PubMed

    Lee, Philip S; Foss-Feig, Jennifer; Henderson, Joshua G; Kenworthy, Lauren E; Gilotty, Lisa; Gaillard, William D; Vaidya, Chandan J

    2007-10-15

    Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorder (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7- to 12-year-old ASD children and age- and IQ-matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, medial and dorsal premotor regions whereas ASD children only activated the dorsal premotor region. In parietal and occipital cortices, activation was bilateral in control children but unilateral (left superior parietal and right occipital) in ASD children. Further, extensive bilateral ventral temporal activation was observed in control, but not ASD children. ASD children performed the EFT at the same level as controls but with reduced cortical involvement, suggesting that disembedded visual processing is accomplished parsimoniously by ASD relative to typically developing brains.

  3. Bilateral frontal activation associated with cutaneous stimulation of elixir field: an FMRI study.

    PubMed

    Chan, Agnes S; Cheung, Mei-Chun; Chan, Yu Leung; Yeung, David K W; Lam, Wan

    2006-01-01

    Elixir Field, or Dan Tian, is the area where energy is stored and nourished in the body according to traditional Chinese medicine (TCM). Although Dan Tian stimulation is a major concept in Qigong healing and has been practiced for thousands of years, and while there are some recent empirical evidence of its effect, its neurophysiological basis remains unknown. We used functional magnetic resonance imaging (fMRI) to study brain activations associated with external stimulation of the lower Elixir Field in ten normal subjects, and compared the results with the stimulation of their right hands. While right-hand stimulation resulted in left postcentral gyrus activation, stimulation of the lower Elixir Field resulted in bilateral activations including the medial and superior frontal gyrus, middle and superior temporal gyrus, thalamus, insula, and cingulate gyrus. These findings suggest that stimulation of the Elixir Field is not only associated with activation of the sensory motor cortex but also with cortical regions that mediate planning, attention, and memory.

  4. Atypical white-matter microstructure in congenitally deaf adults: A region of interest and tractography study using diffusion-tensor imaging.

    PubMed

    Karns, Christina M; Stevens, Courtney; Dow, Mark W; Schorr, Emily M; Neville, Helen J

    2017-01-01

    Considerable research documents the cross-modal reorganization of auditory cortices as a consequence of congenital deafness, with remapped functions that include visual and somatosensory processing of both linguistic and nonlinguistic information. Structural changes accompany this cross-modal neuroplasticity, but precisely which specific structural changes accompany congenital and early deafness and whether there are group differences in hemispheric asymmetries remain to be established. Here, we used diffusion tensor imaging (DTI) to examine microstructural white matter changes accompanying cross-modal reorganization in 23 deaf adults who were genetically, profoundly, and congenitally deaf, having learned sign language from infancy with 26 hearing controls who participated in our previous fMRI studies of cross-modal neuroplasticity. In contrast to prior literature using a whole-brain approach, we introduce a semiautomatic method for demarcating auditory regions in which regions of interest (ROIs) are defined on the normalized white matter skeleton for all participants, projected into each participants native space, and manually constrained to anatomical boundaries. White-matter ROIs were left and right Heschl's gyrus (HG), left and right anterior superior temporal gyrus (aSTG), left and right posterior superior temporal gyrus (pSTG), as well as one tractography-defined region in the splenium of the corpus callosum connecting homologous left and right superior temporal regions (pCC). Within these regions, we measured fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and white-matter volume. Congenitally deaf adults had reduced FA and volume in white matter structures underlying bilateral HG, aSTG, pSTG, and reduced FA in pCC. In HG and pCC, this reduction in FA corresponded with increased RD, but differences in aSTG and pSTG could not be localized to alterations in RD or AD. Direct statistical tests of hemispheric asymmetries in these differences indicated the most prominent effects in pSTG, where the largest differences between groups occurred in the right hemisphere. Other regions did not show significant hemispheric asymmetries in group differences. Taken together, these results indicate that atypical white matter microstructure and reduced volume underlies regions of superior temporal primary and association auditory cortex and introduce a robust method for quantifying volumetric and white matter microstructural differences that can be applied to future studies of special populations. Published by Elsevier B.V.

  5. Brain activity related to working memory for temporal order and object information.

    PubMed

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion

    PubMed Central

    Bellgowan, Patrick S.F.; Bergamino, Maurizio; Ling, Josef M.; Mayer, Andrew R.

    2016-01-01

    Abstract Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p < 0.01). Contrary to our hypothesis, no differences in fractional anisotropy were observed between our groups (p > 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = −0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = −0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes. PMID:26061068

  7. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion.

    PubMed

    Meier, Timothy B; Bellgowan, Patrick S F; Bergamino, Maurizio; Ling, Josef M; Mayer, Andrew R

    2016-02-15

    Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p < 0.01). Contrary to our hypothesis, no differences in fractional anisotropy were observed between our groups (p > 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes.

  8. Topography of acute stroke in a sample of 439 right brain damaged patients.

    PubMed

    Sperber, Christoph; Karnath, Hans-Otto

    2016-01-01

    Knowledge of the typical lesion topography and volumetry is important for clinical stroke diagnosis as well as for anatomo-behavioral lesion mapping analyses. Here we used modern lesion analysis techniques to examine the naturally occurring lesion patterns caused by ischemic and by hemorrhagic infarcts in a large, representative acute stroke patient sample. Acute MR and CT imaging of 439 consecutively admitted right-hemispheric stroke patients from a well-defined catchment area suffering from ischemia (n = 367) or hemorrhage (n = 72) were normalized and mapped in reference to stereotaxic anatomical atlases. For ischemic infarcts, highest frequencies of stroke were observed in the insula, putamen, operculum and superior temporal cortex, as well as the inferior and superior occipito-frontal fascicles, superior longitudinal fascicle, uncinate fascicle, and the acoustic radiation. The maximum overlay of hemorrhages was located more posteriorly and more medially, involving posterior areas of the insula, Heschl's gyrus, and putamen. Lesion size was largest in frontal and anterior areas and lowest in subcortical and posterior areas. The large and unbiased sample of stroke patients used in the present study accumulated the different sub-patterns to identify the global topographic and volumetric pattern of right hemisphere stroke in humans.

  9. Activity in Face-Responsive Brain Regions is Modulated by Invisible, Attended Faces: Evidence from Masked Priming

    PubMed Central

    Eger, Evelyn; Dolan, Raymond; Henson, Richard N.

    2009-01-01

    It is often assumed that neural activity in face-responsive regions of primate cortex correlates with conscious perception of faces. However, whether such activity occurs without awareness is still debated. Using functional magnetic resonance imaging (fMRI) in conjunction with a novel masked face priming paradigm, we observed neural modulations that could not be attributed to perceptual awareness. More specifically, we found reduced activity in several classic face-processing regions, including the “fusiform face area,” “occipital face area,” and superior temporal sulcus, when a face was preceded by a briefly flashed image of the same face, relative to a different face, even when 2 images of the same face differed. Importantly, unlike most previous studies, which have minimized awareness by using conditions of inattention, the present results occurred when the stimuli (the primes) were attended. By contrast, when primes were perceived consciously, in a long-lag priming paradigm, we found repetition-related activity increases in additional frontal and parietal regions. These data not only demonstrate that fMRI activity in face-responsive regions can be modulated independently of perceptual awareness, but also document where such subliminal face-processing occurs (i.e., restricted to face-responsive regions of occipital and temporal cortex) and to what extent (i.e., independent of the specific image). PMID:18400791

  10. Multineuronal vectorization is more efficient than time-segmental vectorization for information extraction from neuronal activities in the inferior temporal cortex.

    PubMed

    Kaneko, Hidekazu; Tamura, Hiroshi; Tate, Shunta; Kawashima, Takahiro; Suzuki, Shinya S; Fujita, Ichiro

    2010-08-01

    In order for patients with disabilities to control assistive devices with their own neural activity, multineuronal spike trains must be efficiently decoded because only limited computational resources can be used to generate prosthetic control signals in portable real-time applications. In this study, we compare the abilities of two vectorizing procedures (multineuronal and time-segmental) to extract information from spike trains during the same total neuron-seconds. In the multineuronal vectorizing procedure, we defined a response vector whose components represented the spike counts of one to five neurons. In the time-segmental vectorizing procedure, a response vector consisted of components representing a neuron's spike counts for one to five time-segment(s) of a response period of 1 s. Spike trains were recorded from neurons in the inferior temporal cortex of monkeys presented with visual stimuli. We examined whether the amount of information of the visual stimuli carried by these neurons differed between the two vectorizing procedures. The amount of information calculated with the multineuronal vectorizing procedure, but not the time-segmental vectorizing procedure, significantly increased with the dimensions of the response vector. We conclude that the multineuronal vectorizing procedure is superior to the time-segmental vectorizing procedure in efficiently extracting information from neuronal signals. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Patterns of brain activity during a semantic task differentiate normal aging from early Alzheimer's disease.

    PubMed

    McGeown, William Jonathan; Shanks, Michael Fraser; Forbes-McKay, Katrina Elaine; Venneri, Annalena

    2009-09-30

    In a study of the effects of normal and pathological aging on semantic-related brain activity, 29 patients with Alzheimer's disease (AD) and 19 controls subjects (10 young and 9 older controls) performed a version of the Pyramids and Palm Trees Test that had been adapted for use during functional magnetic resonance imaging (fMRI). Young and older controls activated the left inferior and middle frontal gyri, precuneus and superior parietal lobule. Right frontal and left temporal cortices were activated only in the young. The AD group activated only the left prefrontal and cingulate cortex. Separate analyses of high- and low-performing AD subgroups showed a similar pattern of activation in the left frontal lobe, although activiation was more widespread in low performers. High performers significantly deactivated anterior midline frontal structures, however, while low performers did not. When the older adult and AD groups were combined, there was a significant positive correlation between left frontal and parietal activation and Mini-Mental State Examination (MMSE) score (covarying for age), suggesting a disease effect. A significant negative correlation between activation in the left temporal cortex and age (covarying for MMSE score) reflected a possible age effect. These differential effects suggest that semantic activation paradigms might aid diagnosis in those cases for whom conventional assessments lack the necessary sensitivity to detect subtle changes.

  12. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations.

    PubMed

    Horacek, Jiri; Brunovsky, Martin; Novak, Tomas; Skrdlantova, Lucie; Klirova, Monika; Bubenikova-Valesova, Vera; Krajca, Vladimir; Tislerova, Barbora; Kopecek, Milan; Spaniel, Filip; Mohr, Pavel; Höschl, Cyril

    2007-01-01

    Auditory hallucinations are characteristic symptoms of schizophrenia with high clinical importance. It was repeatedly reported that low frequency (

  13. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.

  14. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    PubMed Central

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  15. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction.

    PubMed

    Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-10-24

    The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P <0.05, AlphaSim corrected. Pearson's correlation was performed to investigate the correlations between the Chen Internet Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.

  16. Structural and functional connectivity changes in the brain associated with shyness but not with social anxiety.

    PubMed

    Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong

    2013-01-01

    Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.

  17. Cortical thickness correlates of minor neurological signs in patients with first episode psychosis.

    PubMed

    Ciufolini, Simone; Ponteduro, Maria Francesca; Reis-Marques, Tiago; Taylor, Heather; Mondelli, Valeria; Pariante, Carmine M; Bonaccorso, Stefania; Chan, Raymond; Simmons, Andy; David, Anthony; Di Forti, Marta; Murray, Robin M; Dazzan, Paola

    2018-05-18

    Neurological soft signs (NSS) are subtle abnormalities of motor and sensory function that are present in the absence of localized brain pathological lesions. In psychoses they have been consistently associated with a distinct pattern of cortical and subcortical brain structural alterations at the level of the heteromodal cortex and basal ganglia. However, a more specific and accurate evaluation of the cytoarchitecture of the cortical mantle could further advance our understanding of the neurobiological substrate of psychosis. We investigated the relationship between brain structure and NSS in a sample of 66 patients at their first episode of psychosis. We used the Neurological Evaluation Scale for neurological assessment and high-resolution MRI and Freesurfer to explore cortical thickness and surface area. Higher rates of NSS were associated with a reduction of cortical thickness in the precentral and postcentral gyri, inferior-parietal, superior temporal, and fusiform gyri. Higher rates of NSS were also associated with smaller surface areas of superior temporal gyrus and frontal regions (including middle frontal, superior and orbito-frontal gyri). Finally, more sensory integration signs were also associated with larger surface area of the latero-occipital region. We conclude that the presence of NSS in psychosis is associated with distinct but widespread changes in cortical thickness and surface area, in areas crucial for sensory-motor integration and for the fluid execution of movement. Studying these morphological correlates with advanced neuroimaging techniques can continue to improve our knowledge on the neurobiological substrate of these important functional correlates of psychosis. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.

    PubMed

    Giraud, Anne Lise; Truy, Eric

    2002-01-01

    Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.

  19. Association of Optic Radiation Integrity with Cortical Thickness in Children with Anisometropic Amblyopia.

    PubMed

    Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong

    2016-02-01

    Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.

  20. [The participation of the projection areas of the temporal cortex in the sensory support of certain forms of cognitive processes].

    PubMed

    Mukhin, E I; Orlova, E I; Teriaeva, N B; Mukhina, Iu K; Nabieva, T N

    1993-01-01

    In neuropsychophysiological and biochemical experiments was studied the role of the temporal cortex of the cat (AI, AII) in mnemonic, perceptive, gnostic functions, praxis, and the higher cognitive processes. The participation of the temporal fields in the mechanisms forming the gnostic imagery activity was shown.

Top