Science.gov

Sample records for supermassive black-hole growth

  1. Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Baker, J. G.; Liu, F. K.

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the Universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift Universe.

  2. Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Loeb, Abraham

    2007-04-01

    Recent data indicates that almost all galaxies possess a supermassive black hole at their center. When gas accretes onto the black hole it heats-up and shines, resulting in the appearance of a bright quasar. The earliest quasars are found to exist only a billion years after the big-bang. I will describe recent observations of both the nearest and the most distant supermassive black holes in the universe. The formation and evolution of the black hole population can be described in the context of popular models for galaxy formation. I will describe the key questions that drive current research on supermassive black holes and present theoretical work on the radiative and hydrodynamic effects that quasars have on their cosmic habitat. Within the coming decade it would be possible to test general relativity by monitoring over time, and possibly even imaging, the polarized emission from hot spots around the black hole in the center of our Galaxy (SgrA*).

  3. The Formation and Growth of the Earliest Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Aird, James; Comastri, Andrea; Topical Panel 2. 1

    2015-09-01

    Understanding how supermassive black holes (BHs) form and grow in the very early (z>6) Universe, when the first stars and galaxies were forming, is one of the major science aims of the Athena mission. The physical processes responsible for the initial formation of these BHs and their early growth via accretion - when they are seen as Active Galactic Nuclei (AGNs) - remain unclear. Large-scale optical/near-infrared imaging surveys have identified a few tens of luminous AGNs at z>6, powered by extremely massive BHs, and place vital constraints on the range of possible formation and growth mechanisms. To make further progress, however, we must identify lower luminosity and obscured AGNs at z>6, which represent the bulk of early BH growth. I will discuss recent measurements that trace the evolution of AGN population out to the highest possible redshifts (z~5-6) using the latest X-ray surveys with Chandra and XMM-Newton. However, Athena will provide the superb sensitivity over a wide field-of-view that is required to identify the earliest (z>6) growing BHs, trace their evolution within the early galaxy population, and determine the physical mechanisms that drive their formation and growth. Achieving these aims represents a major challenge that will push the capabilities of both Athena and supporting ground- and space-based observatories. I will present the prospects for a large Athena survey programme and discuss both the technical and scientific challenges that must be addressed in preparation for the Athena mission.

  4. The growth of supermassive black holes fed by accretion disks

    NASA Astrophysics Data System (ADS)

    Montesinos Armijo, M. A.; de Freitas Pacheco, J. A.

    2011-02-01

    Context. Supermassive black holes are probably present in the centre of the majority of the galaxies. There is consensus that these exotic objects are formed by the growth of seeds either by mass accretion from a circumnuclear disk and/or by coalescences during merger episodes. Aims: The mass fraction of the disk captured by the central object and the related timescale are still open questions, as is how these quantities depend on parameters, such as the initial mass of the disk or the seed, or on the angular momentum transport mechanism. This paper addresses these particular aspects of the accretion disk evolution and the growth of seeds. Methods: The time-dependent hydrodynamic equations were solved numerically for an axisymmetric disk in which the gravitational potential includes contributions from both the central object and the disk itself. The numerical code is based on a Eulerian formalism, using a finite difference method of second-order, according to the Van Leer upwind algorithm on a staggered mesh. Results: The present simulations indicate that seeds capture about a half of the initial disk mass, a result weakly dependent on model parameters. The timescales required for accreting 50% of the disk mass are in the range 130-540 Myr, depending on the adopted parameters. These timescales can explain the presence of bright quasars at z ~ 6.5. Moreover, at the end of the disk evolution, a "torus-like" geometry develops, offering a natural explanation for the presence of these structures in the central regions of AGNs, representing an additional support to the unified model.

  5. New observational constraints on the growth of the first supermassive black holes

    SciTech Connect

    Treister, E.; Schawinski, K.; Volonteri, M.; Natarajan, P.

    2013-12-01

    We constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Ms observations of the Chandra Deep Field-South, we achieve the most restrictive constraints on total black hole growth in the early universe. We estimate an accreted mass density <1000 M {sub ☉} Mpc{sup –3} at z ∼ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black hole growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive—as yet undetected—host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured, and/or due to black hole mergers as opposed to accretion; or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high-redshift seed formation models.

  6. Supermassive Black Hole Growth During The Peak Of Cosmic Star Formation

    NASA Astrophysics Data System (ADS)

    Ross, Nathaniel Robert

    2016-01-01

    Massive galaxies in the nearby universe all show evidence of a central Supermassive Black Hole. The black holes are seen to grow over time by accretion of gas from their host galaxy, a phenomenon referred to as an Active Galactic Nucleus. This process is believed to be fundamental to the observed correlations between black hole mass and properties of the host galaxies. We have a more limited and biased understanding of the growth of supermassive black holes in more 'typical' galaxies at z ˜ 1 -- 2. In this work, we search for Active Galactic Nuclei in a population of star-forming galaxies spanning a mass range of M* ˜ 107 -- 1012 M[special character omitted] at 0.62 < z < 2.39, during the peak of cosmic star formation and massive black hole growth. Our data are drawn from the WFC3 Infrared Spectroscopic Parallels (WISP) survey, for which we designed and implemented a suite of data analysis routines for discovering and measuring star-forming galaxies and active galactic nuclei. We find a sample of 50 active galactic nuclei, identified by their strong, rest-frame optical, emission-line ratios. We find that growing supermassive black holes in low-mass galaxies at z [special character omitted] 1 either make up a greater fraction of their galaxies' masses than those in massive galaxies, or perhaps emit a greater fraction of their energy in [O III].

  7. Supermassive Black Holes and Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  8. The obscuration by dust of most of the growth of supermassive black holes.

    PubMed

    Martínez-Sansigre, Alejo; Rawlings, Steve; Lacy, Mark; Fadda, Dario; Marleau, Francine R; Simpson, Chris; Willott, Chris J; Jarvis, Matt J

    2005-08-04

    Supermassive black holes underwent periods of exponential growth during which we see them as quasars in the distant Universe. The summed emission from these quasars generates the cosmic X-ray background, the spectrum of which has been used to argue that most black-hole growth is obscured. There are clear examples of obscured black-hole growth in the form of 'type-2' quasars, but their numbers are fewer than expected from modelling of the X-ray background. Here we report the direct detection of a population of distant type-2 quasars, which is at least comparable in size to the well-known unobscured type-1 population. We selected objects that have mid-infrared and radio emissions characteristic of quasars, but which are faint at near-infrared and optical wavelengths. We conclude that this population is responsible for most of the black-hole growth in the young Universe and that, throughout cosmic history, black-hole growth occurs in the dusty, gas-rich centres of active galaxies.

  9. Supermassive Black Hole Growth and Merger Rates from Cosmological N-body Simulations

    SciTech Connect

    Micic, Miroslav; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Abel, Tom; /SLAC

    2007-10-29

    Understanding how seed black holes grow into intermediate and supermassive black holes (IMBHs and SMBHs, respectively) has important implications for the duty-cycle of active galactic nuclei (AGN), galaxy evolution, and gravitational wave astronomy. Most studies of the cosmological growth and merger history of black holes have used semianalytic models and have concentrated on SMBH growth in luminous galaxies. Using high resolution cosmological N-body simulations, we track the assembly of black holes over a large range of final masses - from seed black holes to SMBHs - over widely varying dynamical histories. We used the dynamics of dark matter halos to track the evolution of seed black holes in three different gas accretion scenarios. We have found that growth of a Sagittarius A* - size SMBH reaches its maximum mass M{sub SMBH}={approx}10{sup 6}M{sub {circle_dot}} at z{approx}6 through early gaseous accretion episodes, after which it stays at near constant mass. At the same redshift, the duty-cycle of the host AGN ends, hence redshift z=6 marks the transition from an AGN to a starburst galaxy which eventually becomes the Milky Way. By tracking black hole growth as a function of time and mass, we estimate that the IMBH merger rate reaches a maximum of R{sub max}=55 yr{sup -1} at z=11. From IMBH merger rates we calculate N{sub ULX}=7 per Milky Way type galaxy per redshift in redshift range 2 {approx}< z {approx}< 6.

  10. Chaotic Accretion and Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Nixon, Christopher James

    2012-09-01

    The main driver of the work in this thesis is the idea of chaotic accretion in galaxy centres. Most research in this area focuses on orderly or coherent accretion where supermassive black holes or supermassive black hole binaries are fed with gas always possessing the same sense of angular momentum. If instead gas flows in galaxies are chaotic, feeding occurs through randomly oriented depositions of gas. Previous works show that this chaotic mode of feeding can explain some astrophysical phenomena, such as the lack of correlation between host galaxy structure and the direction of jets. It has also been shown that by keeping the black hole spin low this feeding mechanism can grow supermassive black holes from stellar mass seeds. In this thesis I show that it also alleviates the "final parsec problem" by facilitating the merger of two supermassive black holes, and the growth of supermassive black holes through rapid accretion. I also develop the intriguing possibility of breaking a warped disc into two or more distinct planes.

  11. THE SUPERNOVA THAT DESTROYED A PROTOGALAXY: PROMPT CHEMICAL ENRICHMENT AND SUPERMASSIVE BLACK HOLE GROWTH

    SciTech Connect

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L.

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z {approx} 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H{sub 2}, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 10{sup 8} M{sub Sun} and virial temperatures of 10{sup 4} K, these halos began to rapidly cool by atomic lines, perhaps forming 10{sup 4}-10{sup 6} M{sub Sun} Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of {approx}1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.

  12. The Supernova that Destroyed a Protogalaxy: Prompt Chemical Enrichment and Supermassive Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Johnson, Jarrett L.; Smidt, Joseph; Meiksin, Avery; Heger, Alexander; Even, Wesley; Fryer, Chris L.

    2013-09-01

    The first primitive galaxies formed from accretion and mergers by z ~ 15, and were primarily responsible for cosmological reionization and the chemical enrichment of the early cosmos. But a few of these galaxies may have formed in the presence of strong Lyman-Werner UV fluxes that sterilized them of H2, preventing them from forming stars or expelling heavy elements into the intergalactic medium prior to assembly. At masses of 108 M ⊙ and virial temperatures of 104 K, these halos began to rapidly cool by atomic lines, perhaps forming 104-106 M ⊙ Pop III stars and, later, the seeds of supermassive black holes. We have modeled the explosion of a supermassive Pop III star in the dense core of a line-cooled protogalaxy with the ZEUS-MP code. We find that the supernova (SN) expands to a radius of ~1 kpc, briefly engulfing the entire galaxy, but then collapses back into the potential well of the dark matter. Fallback fully mixes the interior of the protogalaxy with metals, igniting a violent starburst and fueling the rapid growth of a massive black hole at its center. The starburst would populate the protogalaxy with stars in greater numbers and at higher metallicities than in more slowly evolving, nearby halos. The SN remnant becomes a strong synchrotron source that can be observed with eVLA and eMERLIN and has a unique signature that easily distinguishes it from less energetic SN remnants. Such explosions, and their attendant starbursts, may well have marked the birthplaces of supermassive black holes on the sky.

  13. Supermassive Black Hole Binaries: The Search Continues

    NASA Astrophysics Data System (ADS)

    Bogdanović, Tamara

    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

  14. SUPERMASSIVE SEEDS FOR SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Johnson, Jarrett L.; Whalen, Daniel J.; Li Hui; Holz, Daniel E.

    2013-07-10

    Recent observations of quasars powered by supermassive black holes (SMBHs) out to z {approx}> 7 constrain both the initial seed masses and the growth of the most massive black holes (BHs) in the early universe. Here we elucidate the implications of the radiative feedback from early generations of stars and from BH accretion for popular models for the formation and growth of seed BHs. We show that by properly accounting for (1) the limited role of mergers in growing seed BHs as inferred from cosmological simulations of early star formation and radiative feedback, (2) the sub-Eddington accretion rates of BHs expected at the earliest times, and (3) the large radiative efficiencies {epsilon} of the most massive BHs inferred from observations of active galactic nuclei at high redshift ({epsilon} {approx}> 0.1), we are led to the conclusion that the initial BH seeds may have been as massive as {approx}> 10{sup 5} M{sub Sun }. This presents a strong challenge to the Population III seed model, which calls for seed masses of {approx}100 M{sub Sun} and, even with constant Eddington-limited accretion, requires {epsilon} {approx}< 0.09 to explain the highest-z SMBHs in today's standard {Lambda}CDM cosmological model. It is, however, consistent with the prediction of the direct collapse scenario of SMBH seed formation, in which a supermassive primordial star forms in a region of the universe with a high molecule-dissociating background radiation field, and collapses directly into a 10{sup 4}-10{sup 6} M{sub Sun} seed BH. These results corroborate recent cosmological simulations and observational campaigns which suggest that these massive BHs were the seeds of a large fraction of the SMBHs residing in the centers of galaxies today.

  15. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-07

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  16. Major galaxy mergers and the growth of supermassive black holes in quasars.

    PubMed

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  17. Formation and Evolution of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Combes, F.

    The correlation between the mass of supermassive black holes in galaxy nuclei and the mass of the galaxy spheroids or bulges (or more precisely their central velocity dispersion), suggests a common formation scenario for galaxies and their central black holes. The growth of bulges and black holes can commonly proceed through external gas accretion or hierarchical mergers, and are both related to starbursts. Internal dynamical processes control and regulate the rate of mass accretion. Self-regulation and feedback are key to the correlation. It is possible that the growth of one component, either BH or bulge, takes over, breaking the correlation, as in Narrow Line Seyfert 1 objects. The formation of supermassive black holes can begin early in the Universe, from the collapse of Population III stars, and then through gas accretion. The active black holes can then play a significant role in the re-ionization of the Universe. The nuclear activity is now frequently invoked as a feedback to star formation in galaxies, and even more spectacularly in cooling flows. The growth of SMBH is certainly self-regulated there. SMBHs perturb their local environment, and the mergers of binary SMBHs help to heat and destroy central stellar cusps. The interpretation of the X-ray background yields important constraints on the history of AGN activity and obscuration, and the census of AGN at low and at high redshifts reveals the downsizing effect, already observed for star formation. History appears quite different for bright QSO and low-luminosity AGN: the first grow rapidly at high z, and their number density decreases then sharply, while the density of low-luminosity objects peaks more recently, and then decreases smoothly.

  18. No supermassive black hole in M33?

    PubMed

    Merritt, D; Ferrarese, L; Joseph, C L

    2001-08-10

    We observed the nucleus of M33, the third-brightest galaxy in the Local Group, with the Space Telescope Imaging Spectrograph at a resolution at least a factor of 10 higher than previously obtained. Rather than the steep rise expected within the radius of gravitational influence of a supermassive black hole, the random stellar velocities showed a decrease within a parsec of the center of the galaxy. The implied upper limit on the mass of the central black hole is only 3000 solar masses, about three orders of magnitude lower than the dynamically inferred mass of any other supermassive black hole. Detecting black holes of only a few thousand solar masses is observationally challenging, but it is critical to establish how supermassive black holes relate to their host galaxies, and which mechanisms influence the formation and evolution of both.

  19. Gravitational Waves From Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    di Girolamo, Tristano

    2016-10-01

    In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.

  20. The growth of typical star-forming galaxies and their supermassive black holes across cosmic time since z ˜ 2

    NASA Astrophysics Data System (ADS)

    Calhau, João; Sobral, David; Stroe, Andra; Best, Philip; Smail, Ian; Lehmer, Bret; Harrison, Chris; Thomson, Alasdair

    2017-01-01

    Understanding galaxy formation and evolution requires studying the interplay between the growth of galaxies and the growth of their black holes across cosmic time. Here, we explore a sample of Hα-selected star-forming galaxies from the High Redshift Emission Line Survey and use the wealth of multiwavelength data in the Cosmic Evolution Survey field (X-rays, far-infrared and radio) to study the relative growth rates between typical galaxies and their central supermassive black holes, from z = 2.23 to z = 0. Typical star-forming galaxies at z ˜ 1-2 have black hole accretion rates (dot{M}_BH) of 0.001-0.01 M⊙ yr-1 and star formation rates (SFRs) of ˜10-40 M⊙ yr-1, and thus grow their stellar mass much quicker than their black hole mass (3.3±0.2 orders of magnitude faster). However, ˜3 per cent of the sample (the sources detected directly in the X-rays) show a significantly quicker growth of the black hole mass (up to 1.5 orders of magnitude quicker growth than the typical sources). dot{M}_BH falls from z = 2.23 to z = 0, with the decline resembling that of SFR density or the typical SFR (SFR*). We find that the average black hole to galaxy growth (dot{M}_BH/SFR) is approximately constant for star-forming galaxies in the last 11 Gyr. The relatively constant dot{M}_BH/SFR suggests that these two quantities evolve equivalently through cosmic time and with practically no delay between the two.

  1. BLACK HOLE MASS ESTIMATES AND RAPID GROWTH OF SUPERMASSIVE BLACK HOLES IN LUMINOUS z ∼ 3.5 QUASARS

    SciTech Connect

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ∼ 3.5 quasars in our sample have black hole masses 1.90 × 10{sup 9} M {sub ☉} ≲ M {sub BH} ≲ 1.37 × 10{sup 10} M {sub ☉}, with a median of ∼5.14 × 10{sup 9} M {sub ☉} and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ∼1.12. Assuming a duty cycle of 1 and a seed black hole mass of 10{sup 4} M {sub ☉}, we show that the z ∼ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  2. Black Hole Mass Estimates and Rapid Growth of Supermassive Black Holes in Luminous z ~ 3.5 Quasars

    NASA Astrophysics Data System (ADS)

    Zuo, Wenwen; Wu, Xue-Bing; Fan, Xiaohui; Green, Richard; Wang, Ran; Bian, Fuyan

    2015-02-01

    We present new near-infrared (IR) observations of the Hβ λ4861 and Mg II λ2798 lines for 32 luminous quasars with 3.2 < z < 3.9 using the Palomar Hale 200 inch telescope and the Large Binocular Telescope. We find that the Mg II FWHM is well correlated with the Hβ FWHM, confirming itself as a good substitute for the Hβ FWHM in the black hole mass estimates. The continuum luminosity at 5100 Å well correlates with the continuum luminosity at 3000 Å and the broad emission line luminosities (Hβ and Mg II). With simultaneous near-IR spectroscopy of the Hβ and Mg II lines to exclude the influences of flux variability, we are able to evaluate the reliability of estimating black hole masses based on the Mg II line for high redshift quasars. With the reliable Hβ line based black hole mass and Eddington ratio estimates, we find that the z ~ 3.5 quasars in our sample have black hole masses 1.90 × 109 M ⊙ <~ M BH <~ 1.37 × 1010 M ⊙, with a median of ~5.14 × 109 M ⊙ and are accreting at Eddington ratios between 0.30 and 3.05, with a median of ~1.12. Assuming a duty cycle of 1 and a seed black hole mass of 104 M ⊙, we show that the z ~ 3.5 quasars in this sample can grow to their estimated black hole masses within the age of the universe at their redshifts.

  3. Making Supermassive Black Holes Spin

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Where does the angular momentum come from that causes supermassive black holes (SMBHs) to spin on their axes and launch powerful jets? A new study of nearby SMBHs may help to answer this question.High-mass SMBHs are thought to form when two galaxies collide and the SMBHs at their centers merge. [NASA/Hubble Heritage Team (STScI)]High- vs. Low-Mass MonstersObservational evidence suggests a dichotomy between low-mass SMBHs (those with 106-7 M) and high-mass ones (those with 108-10 M). High-mass SMBHs are thought to form via the merger of two smaller black holes, and the final black hole is likely spun up by the rotational dynamics of the merger. But what spins up low-mass SMBHs, which are thought to build up very gradually via accretion?A team of scientists led by Jing Wang (National Astronomical Observatories, Chinese Academy of Sciences) have attempted to address this puzzle by examining the properties of the galaxies hosting low-mass SMBHs.A Sample of Neighboring SMBHsWang and collaborators began by constructing a sample of radio-selected nearby Seyfert 2 galaxies: those galaxies in which the stellar population and morphology of the host galaxy are visible to us, instead of being overwhelmed by continuum emission from the galaxys active nucleus.An example of a galaxy with a concentrated, classical bulge (M87; top) and a one with a disk-like pseudo bulge (Triangulum Galaxy; bottom). The authors find that for galaxies hosting low-mass SMBHs, those with more disk-like bulges appear to have more powerful radio jets. [Top: NASA/Hubble Heritage Team (STScI), Bottom: Hewholooks]From this sample, the authors then selected 31 galaxies that have low-mass SMBHs at their centers, as measured using the surrounding stellar dynamics. Wang and collaborators cataloged radio information revealing properties of the powerful jets launched by the SMBHs, and they analyzed the host galaxies properties by modeling their brightness profiles.Spin-Up From Accreting GasBy examining this

  4. Evolution of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Filloux, Charline; de Freitas Pacheco, J. A.; Durier, Fabrice; Silk, Joseph

    2010-05-01

    Cosmological simulations describing both the evolution of supermassive black holes and their host galaxies were performed by using the tree PM-SPH code GADGET-2 (Springel 2005). Physical mechanisms affecting the dynamics and the physical conditions of the gas (ionization and cooling processes, local heating by stars, injection of mechanical energy by supernovae, chemical enrichment) were introduced in the present version of the code (Filloux 2009). Black holes in a state of accretion (AGNs) also inject mechanical energy in the surrounding medium, contributing for quenching the star formation activity. In all simulations a ΛCDM cosmology was adopted (h = 0.7, ΩΛ=0.7, Ωm=0.3, Ωb=0.046 and σ8=0.9). Simulations were performed in a volume with a side of 50h-1 Mpc, starting at z = 50 and through the present time (z = 0). For low and intermediate resolution runs, the initial gas mass particles are respectively 5.35× 108 M⊙ and 3.09×108 M⊙. Black holes (BHs) are represented by collisionless particles and seeds of 100 M⊙ were introduced in density peaks at z = 15, growing either by accretion or coalescence. The accretion rate from the “disk mode” is based on a turbulent viscous thin disk model whereas in the “spherical mode” the rate is given by the Bondi-Hoyle formula. When accreting matter, jets, modeled by conical regions perpendicular to the disk plane, inject kinetic energy into the surrounding medium. Two models were tested: in the first, the injected energy rate is about 10% of the gravitational energy rate released in the accretion process while in the second, the injected energy rate is based on the Blandford & Znajek (1977) mechanism. All simulations give, at z = 0, similar black hole mass function but they overestimate slightly the BH density for masses above ~ 108 M⊙. The resulting BH density in this mass range is affected by feedback processes since they control the amount of gas available for accretion. The present simulations are not

  5. GROWTH OF EARLY SUPERMASSIVE BLACK HOLES AND THE HIGH-REDSHIFT EDDINGTON RATIO DISTRIBUTION

    SciTech Connect

    DeGraf, C.; Di Matteo, T.; Khandai, N.; Croft, R.

    2012-08-10

    Using a new large-scale ({approx} 0.75 Gpc){sup 3} hydrodynamic cosmological simulation, we investigate the growth rate of supermassive black holes (BHs) in the early universe (z {approx}> 4.75). Remarkably we find a clear peak in the typical Eddington ratio ({lambda}) at BH masses of (4-8) Multiplication-Sign 10{sup 7} M{sub Sun} (typically in halos of {approx}7 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 12} M{sub Sun }, close to their shock heating scale), independent of redshift and indicative that most BH growth occurs in the cold-flow-dominated regime. BH growth is enhanced at high-z and by and large regulated by the cosmological evolution of gas density, with {lambda} scaling simply as (1 + z){sup 3}. The peak in {lambda} is caused by the competition between increased gas density available in more massive hosts, and a decrease due to active galactic nucleus feedback that becomes effective above the shock heating halo mass scale and at high BH masses. We show that the distribution of {lambda} among both mass-selected and luminosity-selected samples is approximately lognormal. We combine these findings into a single lognormal fitting formula for the distribution of Eddington ratios as a function of (M{sub BH}, z). This formula can be used in analytic and semianalytic models for evolving BH populations, predicting BH masses of observed quasars, and, in conjunction with the observed distribution of Eddington ratios, can be used to constrain the BH mass function.

  6. Offset Active Galactic Nuclei as Tracers of Galaxy Mergers and Supermassive Black Hole Growth

    NASA Astrophysics Data System (ADS)

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-01

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s-1 < |Δv| < 410 km s-1. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L bol) [erg s-1] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  7. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    SciTech Connect

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  8. Connecting galaxy and supermassive black hole growth during the last 8 billion years

    NASA Astrophysics Data System (ADS)

    Juneau, Stephanie

    It has become increasingly clear that a complete picture of galaxy evolution requires a better understanding of the role of Active Galactic Nuclei (AGN). In particular, they could be responsible for regulating star formation and galaxy growth via feedback processes. There are also competing views about the main modes of stellar growth and supermassive black hole growth in galaxies that need to be resolved. With high infrared luminosities (thus star formation rates) and a frequent occurrence of AGN, galaxies selected in the far-infrared wavebands form an ideal sample to search for a connection between AGN and star formation. The first part of this thesis contains a detailed analysis of the molecular gas properties of nearby infrared luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). We find that the enhanced molecular gas density in the most IR-luminous systems can be explained by major galaxy mergers, and that AGN are more likely to reside in higher-density systems. While the frequent concurrence of AGN and galaxy mergers in ULIRGs was already established, this work provides a coherent framework that explains trends observed with five molecular gas tracers with a broad range of critical densities, and a comparison with simulations that reproduce observed molecular line ratios without invoking AGN-induced chemistry. The second part of the thesis presents an analysis of the AGN content of intermediate redshift galaxies (0.3 < z < 1). However, identifying complete AGN samples at these redshift is challenging because it is difficult to find X-ray weak or absorbed AGN. To alleviate this problem, we developed the Mass-Excitation (MEx) diagram, which is applicable out to redshift of ˜ 1 with existing optical spectra. It improves the overall AGN census by detecting AGN that are missed in even the most sensitive X-ray surveys. The new diagnostic was used to study the concurrence of star formation and AGN in 70 micron-selected galaxies from the Far

  9. The Environmental Impact of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Loeb, A.

    The supermassive black holes observed at the centers of almost all present-day galaxies had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~ 2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z> 10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

  10. Aspects of Supermassive Black Hole Growth in Nearby Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lena, Davide

    Super-massive black holes (SBHs) have long been identified as the engines of active galactic nuclei (AGNs) and are now considered to play a key role in galaxy evolution. In this dissertation I present results from two observational studies conducted on nearby AGNs with the aim of furthering our understanding of SBH growth and their interplay with the host galaxies. The first study is an observational search for SBHs spatially offset from the center of their host galaxies. Such offsets can be considered signatures of gravitational recoil following the coalescence of an SBH binary system (formed in the aftermath of a galaxy merger) due to emission of gravitational waves. The study is based on a photometric analysis of fourteen nearby elliptical galaxies observed with the Hubble Space Telescope. I find that parsec-scale offsets are common. However, while these are individually consistent with residual gravitational recoil oscillations, there is a high probability that larger offsets than those actually observed should have been found in the sample as a whole. There are a number of possible explanations for this result: the galaxy merger rate may be lower than current estimates; SBH-binaries may reach the merger stage with a configuration which minimizes recoil velocities; or the SBH oscillations are more quickly damped than predicted. In the second study I use integral field spectroscopy obtained with the Gemini South telescope to investigate the kinematics of the circum-nuclear ionized gas in two active galaxies: NGC 1386, a Seyfert 2, and NGC 1365, a Seyfert 1. The goal of the study is to investigate outflows in low-luminosity AGNs, and the mechanisms channeling gas (the SBH fuel) from the inner kiloparsec down to a few tens of parsecs from the SBH. I find that the dominant kinematic components can be explained as a combination of rotation in the large-scale galactic disk and compact outflows along the axis of the AGN "radiation cone". However, in the case of NGC

  11. Star formation around supermassive black holes.

    PubMed

    Bonnell, I A; Rice, W K M

    2008-08-22

    The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.

  12. CO-DARK Star Formation and Black Hole Activity in 3C 368 at Z = 1.131: Coeval Growth of Stellar and Supermassive Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Lamarche, C.; Stacey, G.; Brisbin, D.; Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Riechers, D.; Sharon, C. E.; Spoon, H.; Vishwas, A.

    2017-02-01

    We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2–1) and [N ii] 205 μm lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ∼6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2–1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.

  13. Precocious Supermassive Black Holes Challenge Theories

    NASA Astrophysics Data System (ADS)

    2004-11-01

    NASA's Chandra X-ray Observatory has obtained definitive evidence that a distant quasar formed less than a billion years after the Big Bang contains a fully-grown supermassive black hole generating energy at the rate of twenty trillion Suns. The existence of such massive black holes at this early epoch of the Universe challenges theories of the formation of galaxies and supermassive black holes. Astronomers Daniel Schwartz and Shanil Virani of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA observed the quasar, known as SDSSp J1306, which is 12.7 billion light years away. Since the Universe is estimated to be 13.7 billion years old, we see the quasar as it was a billion years after the Big Bang. They found that the distribution of X-rays with energy, or X-ray spectrum, is indistinguishable from that of nearby, older quasars. Likewise, the relative brightness at optical and X-ray wavelengths of SDSSp J1306 was similar to that of the nearby group of quasars. Optical observations suggest that the mass of the black hole is about a billion solar masses. Illustration of Quasar SDSSp J1306 Illustration of Quasar SDSSp J1306 Evidence of another early-epoch supermassive black hole was published previously by a team of scientists from the California Institute of Technology and the United Kingdom using the XMM-Newton X-ray satellite. They observed the quasar SDSSp J1030 at a distance of 12.8 billion light years and found essentially the same result for the X-ray spectrum as the Smithsonian scientists found for SDSSp J1306. Chandra's precise location and spectrum for SDSSp J1306 with nearly the same properties eliminate any lingering uncertainty that precocious supermassive black holes exist. "These two results seem to indicate that the way supermassive black holes produce X-rays has remained essentially the same from a very early date in the Universe," said Schwartz. "This implies that the central black hole engine in a massive galaxy was formed very soon

  14. How to Build a Supermassive Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    NASA astronomer Kim Weaver has got that sinking feeling. You know, it's that unsettling notion you get when you sift through your X-ray data and, to your surprise, find mid-sized black holes sinking toward the center of a galaxy, where they merge with others to form a single supermassive black hole. Could such a thing be true? These would be the largest mergers since America On Line bought Time-Warner, and perhaps even more violent. The process would turn a starburst galaxy inside out, making it more like a quasar host galaxy. Using the Chandra X-Ray Observatory, Weaver saw a hint of this fantastic process in a relatively nearby starburst galaxy named NGC 253 in the constellation Sculptor. She noticed that starburst galaxies - those gems set aglow in a colorful life cycle of hyperactive star birth, death, and renewal - seem to have a higher concentration of mid-mass black holes compared to other galaxies.

  15. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  16. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (i) they grow readily from the remnants of Population III stars and (ii) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  17. Bright vigorous winds as signposts of supermassive black hole birth

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2016-01-01

    The formation of supermassive black holes is still an outstanding question. In the quasi-star scenario, black hole seeds experience an initial super-Eddington growth, that in less than a million years may leave a 104-105 M⊙ black hole at the centre of a protogalaxy at z ˜ 20-10. Super-Eddington accretion, however, may be accompanied by vigorous mass-loss that can limit the amount of mass that reaches the black hole. In this paper, we critically assess the impact of radiative driven winds, launched from the surface of the massive envelopes from which the black hole accretes. Solving the full wind equations coupled with the hydrostatic structure of the envelope, we find mass outflows with rates between a few tens and 104 M⊙ yr-1, mainly powered by advection luminosity within the outflow. We therefore confirm the claim by Dotan et al. that mass losses can severely affect the black hole seed early growth within a quasi-star. In particular, seeds with mass >104 M⊙ can only form within mass reservoirs ≳107 M⊙, unless they are refilled at huge rates (≳100 M⊙ yr-1). This may imply that only very massive haloes (>109 M⊙) at those redshifts can harbour massive seeds. Contrary to previous claims, these winds are expected to be relatively bright (1044-1047 erg s-1), blue (Teff ˜ 8000 K) objects, that while eluding the Hubble Space Telescope, could be observed by the James Webb Space Telescope.

  18. Formation of Supermassive Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Latif, Muhammad A.; Ferrara, Andrea

    2016-10-01

    The detection of quasars at z > 6 unveils the presence of supermassive black holes of a few billion solar masses. The rapid formation process of these extreme objects remains a fascinating and open issue. Such discovery implies that seed black holes must have formed early on, and grown via either rapid accretion or BH/galaxy mergers. In this theoretical review, we discuss in detail various BH seed formation mechanisms and the physical processes at play during their assembly. We discuss the three most popular BH formation scenarios, involving the (i) core-collapse of massive stars, (ii) dynamical evolution of dense nuclear star clusters, (iii) collapse of a protogalactic metal free gas cloud. This article aims at giving a broad introduction and an overview of the most advanced research in the field.

  19. Cold, clumpy accretion onto an active supermassive black hole.

    PubMed

    Tremblay, Grant R; Oonk, J B Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P; Baum, Stefi A; Voit, G Mark; Donahue, Megan; McNamara, Brian R; Davis, Timothy A; McDonald, Michael A; Edge, Alastair C; Clarke, Tracy E; Galván-Madrid, Roberto; Bremer, Malcolm N; Edwards, Louise O V; Fabian, Andrew C; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R; Quillen, Alice C; Urry, C Megan; Sanders, Jeremy S; Wise, Michael W

    2016-06-09

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds--a departure from the 'hot mode' accretion model--although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy's centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing 'shadows' cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  20. Cold, clumpy accretion onto an active supermassive black hole

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.; Edwards, Louise O. V.; Fabian, Andrew C.; Hamer, Stephen; Li, Yuan; Maury, Anaëlle; Russell, Helen R.; Quillen, Alice C.; Urry, C. Megan; Sanders, Jeremy S.; Wise, Michael W.

    2016-06-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecular clouds—a departure from the ‘hot mode’ accretion model—although unambiguous observational support for this prediction remains elusive. Here we report observations that reveal a cold, clumpy accretion flow towards a supermassive black hole fuel reservoir in the nucleus of the Abell 2597 Brightest Cluster Galaxy (BCG), a nearby (redshift z = 0.0821) giant elliptical galaxy surrounded by a dense halo of hot plasma. Under the right conditions, thermal instabilities produce a rain of cold clouds that fall towards the galaxy’s centre, sustaining star formation amid a kiloparsec-scale molecular nebula that is found at its core. The observations show that these cold clouds also fuel black hole accretion, revealing ‘shadows’ cast by the molecular clouds as they move inward at about 300 kilometres per second towards the active supermassive black hole, which serves as a bright backlight. Corroborating evidence from prior observations of warmer atomic gas at extremely high spatial resolution, along with simple arguments based on geometry and probability, indicate that these clouds are within the innermost hundred parsecs of the black hole, and falling closer towards it.

  1. Supermassive Black Hole Mimics Smaller Cousins

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Scientists have caught a supermassive black hole in a distant galaxy in the act of spurting energy into a jet of electrons and magnetic fields four distinct times in the past three years, a celestial take on a Yellowstone geyser. This quasar-like "active" galaxy is essentially a scaled-up model of the so-called microquasars within our Milky Way Galaxy, which are smaller black holes with as much as ten times the mass of the sun. This means that scientists can now use their close-up view of microquasars to develop working models of the most massive and powerful black holes in the universe. Artist's Conception of 3C 120. Scene from an animation of 3C 120. CREDIT: Cosmovision These results -- published in the June 6 issue of Nature -- are the fruit of a three-year monitoring campaign with the National Science Foundation's Very Long Baseline Array (VLBA), a continent-wide radio-telescope system, and NASA's Rossi X-ray Timing Explorer. "This is the first direct, observational evidence of what we had suspected: The jets in active galaxies are powered by disks of hot gas orbiting around supermassive black holes," said Alan Marscher of the Institute for Astrophysical Research at Boston University, who led this international team of astronomers. Active galaxies are distant celestial objects with exceedingly bright cores, often radiating with the brilliance of thousands of ordinary galaxies, fueled by the gravity of a central million- to billion-solar-mass black hole pulling in copious amounts of interstellar gas. Marscher and his colleagues have established the first direct observational link between a supermassive black hole and its jet. The source is an active galaxy named 3C120 about 450 million light-years from Earth. This link has been observed in microquasars, several of which are scattered across the Milky Way Galaxy, but never before in active galaxies, because the scale (distance and time) is so much greater. The jets in galaxy 3C120 are streams of particles

  2. Observational signatures of binary supermassive black holes

    SciTech Connect

    Roedig, Constanze; Krolik, Julian H.; Miller, M. Coleman

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  3. Supermassive black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Gebhardt, Karl

    2001-10-01

    We review the motivation and search for supermassive black holes (BHs) in galaxies. Energetic nuclear activity provides indirect but compelling evidence for BH engines. Ground-based dynamical searches for central dark objects are reviewed in Kormendy & Richstone (1995, ARA&A, 33, 581). Here we provide an update of results from the Hubble Space Telescope (HST). This has greatly accelerated the detection rate. As of 2001 March, dynamical BH detections are available for at least 37 galaxies. The demographics of these objects lead to the following conclusions: (1) BH mass correlates with the luminosity of the bulge component of the host galaxy, albeit with considerable scatter. The median BH mass fraction is 0.13% of the mass of the bulge. (2) BH mass correlates with the mean velocity dispersion of the bulge inside its effective radius, i.e., with how strongly the bulge stars are gravitationally bound to each other. For the best mass determinations, the scatter is consistent with the measurement errors. (3) BH mass correlates with the luminosity of the high-density central component in disk galaxies independent of whether this is a real bulge (a mini-elliptical, believed to form via a merger-induced dissipative collapse and starburst) or a ``pseudobulge'' (believed to form by inward transport of disk material). (4) BH mass does not correlate with the luminosity of galaxy disks. If pure disks contain BHs (and active nuclei imply that some do), then their masses are much smaller than 0.13% of the mass of the disk. We conclude that present observations show no dependence of BH mass on the details of whether BH feeding happens rapidly during a collapse or slowly via secular evolution of the disk. The above results increasingly support the hypothesis that the major events that form a bulge or elliptical galaxy and the main growth phases of its BH-when it shone like a quasar-were the same events. .

  4. Supermassive black holes in local galaxies

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Saglia, Roberto P.

    2007-01-01

    Over the past decade we have learned that probably all ellipticals and bulges of galaxies contain central supermassive black holes (SMBH). SMBH masses correlate well with the luminosities, and in turn the stellar masses of the bulges harboring them, with about 0.15% of the bulge mass being found in the SMBH. Pure disk galaxies, on the other hand, do not, in general, seem to contain SMBHs. Here we review the best cases for SMBH detection in galaxies, discuss methods and associated uncertainties, summarize correlations between SMBH masses and host galaxy properties, and finally address possible future developments. To cite this article: R. Bender, R.P. Saglia, C. R. Physique 8 (2007).

  5. Accretion flows onto supermassive black holes

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    1988-01-01

    The radiative and hydrodynamic properties of an angular momentum-dominated accretion flow onto a supermassive black hole depend largely on the ratio of the accretion rate to the Eddington accretion rate. High values of this ratio favor optically thick flows which produce largely thermal radiation, while optically thin 'two-temperature' flows may be present in systems with small values of this ratio. Observations of some AGN suggest that thermal and nonthermal sources of radiation may be of comparable importance in the 'central engine'. Consideration is given to the possibilities for coexistence of different modes of accretion in a single flow. One intriguing possibility is that runaway pair production may cause an optically thick 'accretion annulus' to form at the center of a two-temperature inflow.

  6. Observing stellar mass and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_⊙) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_⊙) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  7. Binary pairs of supermassive black holes - Formation in merging galaxies

    SciTech Connect

    Valtaoja, L.; Valtonen, M.J.; Byrd, G.G.; Alabama Univ., Tuscaloosa )

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs.

  8. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2017-01-01

    Massive gas-rich galaxy discs at z ˜ 1-3 host massive star-forming clumps with typical baryonic masses in the range 107-108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kiloparsec scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole gigayear around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularized in the disc mid-plane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  9. Dynamical Friction around Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Merritt, David

    2012-01-01

    The density of stars in galactic bulges is often observed to be flat or slowly rising inside the influence radius of the supermassive black hole (SMBH). Attributing the dynamical-friction force to stars moving more slowly than the test body, as is commonly done, is likely to be a poor approximation in such a core since there are no stars moving more slowly than the local circular velocity. We have tested this prediction using large-scale N-body experiments. The rate of orbital decay never drops precisely to zero, because stars moving faster than the test body also contribute to the frictional force. When the contribution from the fast-moving stars is included in the expression for the dynamical-friction force, and the changes induced by the massive body on the stellar distribution are taken into account, Chandrasekhar's theory is found to reproduce the rate of orbital decay remarkably well. However, this rate is still substantially smaller than the rate predicted by Chandrasekhar's formula in its most widely used forms, implying longer timescale for inspiral. Motivated by recent observations that suggest a parsec-scale core around the Galactic center (GC) SMBH, we investigate the evolution of a population of stellar-mass black holes (BHs) as they spiral into the center of the Galaxy. After ~10 Gyr, we find that the density of BHs can remain substantially less than the density in stars at all radii; we conclude that it would be unjustified to assume that the spatial distribution of BHs at the GC is well described by steady-state models. One consequence is that rates of capture of BHs by the SMBH at the Galactic center (extreme-mass-ratio inspirals) may be much lower than in standard models. When capture occurs, inspiraling BHs often reach the gravitational-radiation-dominated regime while on orbits that are still highly eccentric; even after the semimajor axis has decreased to values small enough for detection by space-based interferometers, eccentricities can be

  10. MAGNETICALLY LEVITATING ACCRETION DISKS AROUND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Gaburov, Evghenii; Johansen, Anders; Levin, Yuri

    2012-10-20

    In this paper, we report on the formation of magnetically levitating accretion disks around supermassive black holes (SMBHs). The structure of these disks is calculated by numerically modeling tidal disruption of magnetized interstellar gas clouds. We find that the resulting disks are entirely supported by the pressure of the magnetic fields against the component of gravitational force directed perpendicular to the disks. The magnetic field shows ordered large-scale geometry that remains stable for the duration of our numerical experiments extending over 10% of the disk lifetime. Strong magnetic pressure allows high accretion rate and inhibits disk fragmentation. This in combination with the repeated feeding of magnetized molecular clouds to an SMBH yields a possible solution to the long-standing puzzle of black hole growth in the centers of galaxies.

  11. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    SciTech Connect

    Levine, Robyn Deborah

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  12. Supermassive Black Hole Through a Magnifying Glass

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    What happens when light from a distant quasar powered by a supermassive black hole is bent not only by a foreground galaxy, but also by individual stars within that galaxys nucleus? The neighborhood of the central black hole can be magnified, and we get a close look at the inner regions of its accretion disk!What is Microlensing?Our view of Q2237+0305 is heavily affected by a process called gravitational lensing. As evidenced by the four copies of the quasar in the image above, Q2237+0305 undergoes macrolensing, wherein the gravity of a massive foreground galaxy pulls on the light of a background object, distorting the image into arcs or multiple copies.But Q2237+0305 also undergoes an effect called microlensing. Due to the fortuitous alignment of Q2237+0305 with the nucleus of the foreground galaxy lensing it, stars within the foreground galaxy pass in front of the quasar images. As a star passes, its own gravitational pull also affects the light of the image, causing the image to brighten and/or magnify.How can we tell the difference between intrinsic brightening of Q2237+0305 and brightening due to microlensing? Brightening that occurs in all four images of the quasar is intrinsic. But if the brightening occurs in only one image, it must be caused by microlensing of that image. The timescale of this effect, which depends on how quickly the foreground galaxy moves relative to the background quasar, is on the order of a few hundred days for Q2237+0305.Resolving StructureThe light curve of a microlensed image can reveal information about the structure of the distant object. For this reason, a team of scientists led by Evencio Mediavilla (Institute of Astrophysics of the Canaries, University of La Laguna) has studied the light curves of three independent microlensing events of Q2237+0305 images.Average light curve of the three microlensing events near the peak brightness. The double-peaked structure may be due to light from the innermost region of the quasars

  13. How Supermassive Black Hole Feedback Might Work

    NASA Astrophysics Data System (ADS)

    Donahue, Megan

    2017-01-01

    How black holes regulate their own growth and the growth of their host galaxy is an unsolved problem in galaxy evolution. The problem is particularly acute in the centers of clusters of galaxies, where the largest and most massive galaxies in the universe are found. That is, coincidentally, also where the interaction between the black hole and the surrounding gas is the easiest to study because the gas is sufficiently hot and dense to emit X-rays. The massive central galaxies of clusters of galaxies (BCGs) exhibit striking patterns in their relationships between star formation, radio AGN activity, and the thermodynamic state of the hot, X-ray emitting intracluster gas (ICM) surrounding the galaxies. The AGN jets excavate giant, kpc-scale cavities in the hot gas, in principle, supplying enough heat to the ICM to replace energy lost to radiative cooling. Simulations suggest (by elimination) that AGN feedback must be required to explain the luminosity and colors of these galaxies, but cosmological simulations still struggle with modeling how AGN feedback works in detail. In clusters of galaxies with active AGN and star-forming BCGs, the AGN somehow regulates the gaseous atmosphere to be marginally critical, with a ratio of the cooling time to the free fall time of ~ 5-20. This behavior is also seen in elliptical galaxies, where the feedback is mostly coming from stars. I will discuss the observations that motivated this model. The precipitation model in BCGs is a class of models known as "preventative" feedback, regulated by jets in BCGs. Further, the complex behaviour seen in recent idealized simulations seem to follow emergent patterns predicted by this model, while reproducing the scatter and the time scales inferred from the observations. The link between the thermal instabilities and the depth of the gravitational potential may explain scaling laws such as the black hole mass-velocity dispersion relation, the galaxy mass-metallicity relation and the baryonic

  14. A Nearly Naked Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Darling, Jeremy; Kovalev, Y. Y.; Petrov, L.

    2017-01-01

    During a systematic search for supermassive black holes (SMBHs) not in galactic nuclei, we identified the compact, symmetric radio source B3 1715+425 with an emission-line galaxy offset ≈ 8.5 {kpc} from the nucleus of the brightest cluster galaxy (BCG) in the redshift z = 0.1754 cluster ZwCl 8193. B3 1715+425 is too bright (brightness temperature {T}{{b}}∼ 3× {10}10 {{K}} at observing frequency ν =7.6 {GHz}) and too luminous (1.4 GHz luminosity {L}1.4{GHz}∼ {10}25 {{W}} {{Hz}}-1) to be powered by anything but an SMBH, but its host galaxy is much smaller (∼ 0.9 {kpc}× 0.6 {kpc} full width between half-maximum points) and optically fainter (R-band absolute magnitude {M}{{r}}≈ -18.2) than any other radio galaxy. Its high radial velocity {v}{{r}}≈ 1860 {km} {{{s}}}-1 relative to the BCG, continuous ionized wake extending back to the BCG nucleus, and surrounding debris indicate that the radio galaxy was tidally shredded passing through the BCG core, leaving a nearly naked SMBH fleeing from the BCG with space velocity v≳ 2000 {km} {{{s}}}-1. The radio galaxy has mass M≲ 6× {10}9 {M}ȯ and infrared luminosity {L}{IR}∼ 3× {10}11 {L}ȯ close to its dust Eddington limit, so it is vulnerable to further mass loss from radiative feedback.

  15. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  16. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    PubMed

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  17. Merging a Pair of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    When galaxies merge, the supermassive black holes (SMBHs) at the galaxies centers are thought to coalesce, forming a new, larger black hole. But can this merger process take place on timescales short enough that we could actually observe it? Results from a new simulation suggests that it can!When Galaxies CollideThese stills demonstrate the time evolution of the galaxy merger after the beginning of the authors simulation (starting from z=3.6). The red and blue dots mark the positions of the SMBHs. [Adapted from Khan et al. 2016]At present, its not well understood how the merger of two SMBHs proceeds from the merger of their host galaxies. Whats more, there are concerns about whether the SMBHs can coalesce on reasonable timescales; in many simulations and models, the inspiral of these behemoths stalls out when they are about a parsec apart, in whats known as the final parsec problem.Why are these mergers poorly understood? Modeling them from the initial interactions of the host galaxies all the way down to the final coalescence of their SMBHs in a burst of gravitational waves is notoriously complicated, due to the enormous range of scales and different processes that must be accounted for.But in a recent study, a team of scientists led by Fazeel Khan (Institute of Space Technology in Pakistan) has presented a simulation that successfully manages to track the entire merger making it the first multi-scale simulation to model the complete evolution of an SMBH binary that forms within a cosmological galaxy merger.Stages of aSimulationKhan and collaborators tackled the challenges of this simulation by using a multi-tiered approach.Beginning with the output of a cosmological hydrodynamical simulation, the authors select a merger of two typical massive galaxies at z=3.6 and use this as the starting point for their simulation. They increase the resolution and add in two supermassive black holes, one at the center of each galaxy.They then continue to evolve the galaxies

  18. The early growth of the first black holes

    DOE PAGES

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur atmore » super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.« less

  19. The early growth of the first black holes

    SciTech Connect

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-04

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Lastly, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  20. The Early Growth of the First Black Holes

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  1. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    PubMed

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  2. ALMA Explores How Supermassive Black Holes Talk to Their Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole

  3. Coevolution of Supermassive Black Holes and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Hiner, Kyle Devon

    The role of black holes in galaxy evolution has come under intense scrutiny since it was discovered that every galaxy in the local universe contains a supermassive black hole (SMBH) at its nucleus. The existence of scaling relations between the SMBH and its host galaxy show that their presence is not coincidental, but rather that SMBHs and their hosts have a shared evolution. The nature of this coevolution is still debated with some proposing it to be a natural result of hierarchical merging models, while others invoke SMBH feedback mechanisms that couple BH growth with that of the host galaxy. In this dissertation, I examine different regimes of SMBH activity and host galaxy properties. I investigate a sample of post-starburst galaxies to gain insight into the morphological and spectrophotometric evolution of galaxies through galaxy interactions and mergers. I plot detailed comparisons of the galaxy kinematics as measured from different stellar populations. I also investigate post-starburst galaxies that simultaneously host an AGN. I develop a technique to study the properties of both the host galaxy and the SMBH in these objects, directly investigating the scaling relation between the two. I describe analysis performed on red quasars in another study that directly probes the scaling relations in the non-local universe. Lastly, I conduct SED fitting of quasars to illuminate the differences between two major spectral types, and investigate host galaxy properties including star formation. All of these projects focus on the relationship between the SMBH and host galaxy. I show that a range of galaxy interactions can lead to black hole growth and are part of galaxy evolution over cosmic time.

  4. Supermassive black holes formed by direct collapse of inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Suyama, Teruaki; Yokoyama, Jun'ichi

    2016-11-01

    We propose a mechanism of producing a new type of primordial perturbations that collapse to primordial black holes, whose mass can be as large as necessary for them to grow to the supermassive black holes observed at high redshifts, without contradicting Cosmic Background Explorer/Far Infrared Absolute Spectrophotometer (COBE/FIRAS) upper limits on cosmic microwave background (CMB) spectral distortions. In our model, the observable Universe consists of two kinds of many small patches which experienced different expansion histories during inflation. Primordial perturbations large enough to form primordial black holes are realized on patches that experienced more Hubble expansion than the others. By making these patches the minor component, the rarity of supermassive black holes can be explained. On the other hand, most regions of the Universe experienced the standard history and, hence, only have standard almost-scale-invariant adiabatic perturbations confirmed by observations of CMB or large-scale structures of the Universe. Thus, our mechanism can evade the constraint from the nondetection of the CMB distortion set by the COBE/FIRAS measurement. Our model predicts the existence of supermassive black holes even at redshifts much higher than those observed. Hence, our model can be tested by future observations peeking into the higher-redshift Universe.

  5. Prospects for Measuring Supermassive Black Hole Masses with TMT

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.; Barton, Elizabeth J.; Simard, Luc; Larkin, James E.; Moore, Anna M.; Wang, Lianqi; Ellerbroek, Brent

    2014-07-01

    The next generation of giant-segmented mirror telescopes will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope and the adaptive optics assisted integral- field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm) to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ˜10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. I will present simulations across a spectrum of black hole masses and galaxy types to show the ability of IRIS and TMT to quantitatively explore the demographics of black holes in the universe. I will discuss how these observations will enable our study of the origin of the MBH - galaxy velocity dispersion and MBH - galaxy luminosity relationships, and the evolution of black holes through cosmic time.

  6. On the Supermassive Black Hole-Galaxy Coevolution

    NASA Astrophysics Data System (ADS)

    Hegde, Sahil; Zhang, Shawn; Rodriguez, Aldo; Primack, Joel R.

    2017-01-01

    In recent years, a major focus of astronomy has been the study of the effects of supermassive black holes (SMBH) on their host galaxies. Recent results have found strong correlations between SMBH mass and host galaxy properties, most notably in the bulge velocity dispersion and galaxy stellar mass. We utilize these relations along with a novel convolution method to construct number density models of different galaxy properties. Using these models, we compare two fundamental methods for constructing a black hole mass function (BHMF) with the M⊙-σ and M⊙-M* relations. With these methods, we estimate the redshift evolution of the BHMF and, based on that, compare mass growth histories of central black holes and their host galaxies. Additionally, we utilize a data compilation of over 500 galaxies with individual measurements of galaxy properties (BH mass, stellar velocity dispersion, stellar mass, etc.) and classify galaxies by their morphologies in order to shed light on the controversial Shankar et al. (2016) argument that observations are biased in favor of massive SMBHs. We find that such a bias has little impact on the SMBH-galaxy relations.We conclude that the galaxy sample is a fair representation of the local universe and argue that our BH number density and scaling relations can be employed in the future to constrain relevant mechanisms for galaxy formation. We emphasize that this is the most comprehensive and accurate study of SMBH-galaxy coevolution as of now. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  7. Can Direct Collapse Black Holes Launch Gamma-Ray Bursts and Grow to Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tatsuya; Nakauchi, Daisuke; Ioka, Kunihito; Heger, Alexander; Nakamura, Takashi

    2015-09-01

    The existence of black holes (BHs) of mass ˜ {10}9 {M}⊙ at z≳ 6 is a big puzzle in astrophysics because even optimistic estimates of the accretion time are insufficient for stellar-mass BHs of ˜ 10 {M}⊙ to grow into such supermassive BHs. A resolution of this puzzle might be the direct collapse of supermassive stars with mass M˜ {10}5 {M}⊙ into massive seed BHs. We find that if a jet is launched from the accretion disk around the central BH, the jet can break out of the star because of the structure of the radiation-pressure-dominated envelope. Such ultralong gamma-ray bursts with duration of ˜ {10}4-106 s and flux of 10-11-10-8 erg s-1 cm-2 could be detectable by Swift. We estimate an event rate of ≲ 1 {{yr}}-1. The total explosion energy is ≳1055-{10}56 {erg}. The resulting negative feedback delays the growth of the remnant BH by about 70 {Myr} or evacuates the host galaxy completely.

  8. Black hole growth and AGN feedback under clumpy accretion

    NASA Astrophysics Data System (ADS)

    DeGraf, C.; Dekel, A.; Gabor, J.; Bournaud, F.

    2017-04-01

    High-resolution simulations of supermassive black holes in isolated galaxies have suggested the importance of short (∼10 Myr) episodes of rapid accretion caused by interactions between the black hole and massive dense clouds within the host. Accretion of such clouds could potentially provide the dominant source for black hole growth in high-z galaxies, but it remains unresolved in cosmological simulations. Using a stochastic subgrid model calibrated by high-resolution isolated galaxy simulations, we investigate the impact that variability in black hole accretion rates has on black hole growth and the evolution of the host galaxy. We find this clumpy accretion to more efficiently fuel high-redshift black hole growth. This increased mass allows for more rapid accretion even in the absence of high-density clumps, compounding the effect and resulting in substantially faster overall black hole growth. This increased growth allows the black hole to efficiently evacuate gas from the central region of the galaxy, driving strong winds up to ∼2500 km s-1, producing outflows ∼10 × stronger than the smooth accretion case, suppressing the inflow of gas on to the host galaxy, and suppressing the star formation within the galaxy by as much as a factor of 2. This suggests that the proper incorporation of variability is a key factor in the co-evolution between black holes and their hosts.

  9. Formation of discs around super-massive black hole binaries

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Cuadra, Jorge; Sesana, Alberto

    2016-02-01

    We model numerically the evolution of 104 M ⊙ turbulent molecular clouds in near-radial infall onto 106 M ⊙, equal-mass supermassive black hole binaries, using a modified version of the SPH code gadget-3. We investigate the different gas structures formed depending on the relative inclination between the binary and the cloud orbits. Our first results indicate that an aligned orbit produces mini-discs around each black hole, almost aligned with the binary; a perpendicular orbit produces misaligned mini-discs; and a counter-aligned orbit produces a circumbinary, counter-rotating ring.

  10. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  11. Confirming the First Supermassive Black Hole in a Dwarf Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Reines, Amy

    2011-10-01

    In the modern universe, supermassive black holes lie at the heart of most, if not all, galaxies with bulges. However, the birth and growth of the first "seed" black holes, back in the earlier universe, is observationally unconstrained. Reines et al. {2011} have recently discovered a candidate million-solar mass black hole in the bulgeless dwarf starburst galaxy Henize 2-10, offering the first opportunity to study a growing black hole in a nearby galaxy much like those in the infant universe. The case for an accreting black hole in Henize 2-10 is strong {e.g. co-spatial non-thermal radio and hard X-ray point sources}, but not watertight. Our proposal aims to confirm {or refute} the presence of this candidate black hole using STIS optical spectroscopy to trace the kinematics and ionization conditions in its immediate vicinity. Existing HST observations show a marginally resolved H-alpha knot coincident with the radio and X-ray point source, so our primary aim is to detect a compact rotating disk of ionized gas, directly yielding a black hole mass. Our secondary aim is to find evidence for AGN-related emission line signatures at the location of the H-alpha knot, and possibly along a narrow jet-like filament. Confirming the presence of a supermassive black hole in Henize 2-10 with these HST observations has immediate implications for our understanding of the birth and early evolution of the first black holes in the high-redshift universe.

  12. The Galactic Tango: The Elegant Dance of Galaxies and their Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Li, Yuexing; Zhu, Qirong

    2015-01-01

    For well over a decade, it has been known that a supermassive black hole resides in the center of almost every galaxy, and that these black holes strongly correlate with the stellar velocity dispersion (the MBH-σ correlation) and stellar mass (the MBH-Mhost correlation) of their hosts. The origins of these correlations, however, have yet to be determined. To explore the interplay between black holes and galaxies, we have utilized a sample of nearby spiral and elliptical galaxies as well as a sample of AGN in the redshift range z = 0-3. By examining galaxy properties such as mass, kinematics, and growth history, we have determined that these two correlations have distinct origins: the MBH-σ relation may be the result of virial equilibrium, whereas the MBH-Mhost relation may be the result of self-regulated black hole growth and star formation in galaxies. These results confirm the predictions of our previous theoretical model.

  13. Dynamically important magnetic fields near accreting supermassive black holes.

    PubMed

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  14. Improved Constraints to the Local Supermassive Black Hole Occupation Fraction

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Gallo, Elena; Miller, Brendan P.

    2017-01-01

    The occupation fraction of supermassive black holes (SMBHs) in local dwarf galaxies is thought to be related to the formation mechanism of the first black holes in the early Universe. Light black hole seeds, such as Pop III star remnants, are likely to result in a significantly higher occupation fraction compared to heavy seeds (~104 solar mass) arising from the global collapse of massive gas clouds. Chandra observations of nearby dwarf galaxies can push the detection threshold for SMBH activity down to the lowest observable Eddington ratios. This, folded with analytical prescriptions for the intrinsic occupation fraction across the mass spectrum, yields an observational constraints to the SMBH occupation fraction in the dwarf galaxy regime. Building on previous work by Miller et al. (2015), here we analyze a sample of ~240 early-type galaxies (D < 30 Mpc) with archival Chandra coverage, and report on our improved constraints to the local SMBH occupation fraction.

  15. A candidate sub-parsec supermassive binary black hole system.

    PubMed

    Boroson, Todd A; Lauer, Tod R

    2009-03-05

    The role of mergers in producing galaxies, together with the finding that most large galaxies harbour black holes in their nuclei, implies that binary supermassive black hole systems should be common. Here we report that the quasar SDSS J153636.22+044127.0 is a plausible example of such a system. This quasar shows two broad-line emission systems, separated in velocity by 3,500 km s(-1). A third system of unresolved absorption lines has an intermediate velocity. These characteristics are unique among known quasars. We interpret this object as a binary system of two black holes, having masses of 10(7.3) and 10(8.9) solar masses separated by approximately 0.1 parsec with an orbital period of approximately 100 years.

  16. Physical Processes in the Vicinity of a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Do, Tuan

    2010-08-01

    The Galactic center offers us an opportunity to study the environment around a supermassive black hole at a level of detail not possible in other galactic nuclei. This potential has been greatly expanded by the implementation of laser guide star adaptive optics and integral field spectroscopy on large ground-based telescopes. This thesis takes advantage of these technologies to address the nature of the variable near-infrared emission from the black hole as well as test theories of the equilibrium configuration of a star cluster with a supermassive black hole at its center. First, we present the results of near-infrared (2 and 3 micron) monitoring of Sgr A*-IR with 1 min time sampling. Sgr A*-IR was observed continuously for up to three hours on each of seven nights, between 2005 July and 2007 August. Sgr A*-IR is detectable at all times and is continuously variable, with a median observed 2 micron flux density of 0.192 mJy, corresponding to 16.3 magnitude at K^'. These observations allow us to investigate Nyquist sampled periods ranging from about 2 minutes to an hour. Using Monte Carlo simulations, we find that the variability of Sgr A* in this data set is consistent with models based on correlated noise with power spectra having frequency dependent power law slopes between 2.0 to 3.0, consistent with those reported for AGN light curves. Of particular interest are periods of ˜ 20 min, corresponding to a quasi-periodic signal claimed based upon previous near-infrared observations and interpreted as the orbit of a `hot spot' at or near the last stable orbit of a spinning black hole. We find no significant periodicity at any time scale probed in these new observations for periodic signals. This study is sensitive to periodic signals with amplitudes greater than 20% of the maximum amplitude of the underlying red noise component for light curves with duration greater than ˜ 2 hours at a 98% confidence limit. Second, we report on the structure of the nuclear star

  17. Black hole evolution - I. Supernova-regulated black hole growth

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Volonteri, Marta; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2015-09-01

    The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, and also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 1012 M⊙ halo at z = 2, which is the progenitor of a group of galaxies at z = 0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z > 3.5, efficient feedback from SNe forbids the formation of a settled disc as well as the accumulation of dense cold gas in the vicinity of the BH and starves the central compact object. As the galaxy and its halo accumulate mass, they become able to confine the nuclear inflows provided by major mergers and the BH grows at a sustained near-to-Eddington accretion rate. We argue that this mechanism should be ubiquitous amongst low-mass galaxies, corresponding to galaxies with a stellar mass below ≲ 109 M⊙ in our simulations.

  18. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    NASA Astrophysics Data System (ADS)

    Fiacconi, Davide; Rossi, Elena M.

    2017-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳104-5 M⊙), created by the rapid accumulation (≳0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a `quasi-star'). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitatively matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M_{⊙} × (black hole mass/100 M_{⊙})^{0.82} have highly sub-Keplerian gas motion in their core, preventing gas circularization outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲104 yr before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  19. Never Before Seen: Two Supermassive Black Holes in Same Galaxy

    NASA Astrophysics Data System (ADS)

    2002-11-01

    For the first time, scientists have proof two supermassive black holes exist together in the same galaxy, thanks to data from NASA's Chandra X-ray Observatory. These black holes are orbiting each other and will merge several hundred million years from now, to create an even larger black hole resulting in a catastrophic event that will unleash intense radiation and gravitational waves. The Chandra image reveals that the nucleus of an extraordinarily bright galaxy, known as NGC 6240, contains not one, but two giant black holes, actively accreting material from their surroundings. This discovery shows that massive black holes can grow through mergers in the centers of galaxies, and that these enigmatic events will be detectable with future space-borne gravitational wave observatories. "The breakthrough came with Chandra's ability to clearly distinguish the two nuclei, and measure the details of the X-radiation from each nucleus," said Guenther Hasinger, of the Max Planck Institute for Extraterrestrial Physics in Germany, a coauthor of an upcoming Astrophysical Journal Letters paper describing the research. "These cosmic fingerprints revealed features characteristic of supermassive black holes -- an excess of high-energy photons from gas swirling around a black hole, and X-rays from fluorescing iron atoms in gas near black holes," he said. Previous X-ray observatories had shown that the central region produces X-rays, while radio, infrared and optical observations had detected two bright nuclei, but the nature of this region remained a mystery. Astronomers did not know the location of the X-ray source, or the nature of the two bright nuclei. "With Chandra, we hoped to determine which one, if either, of the nuclei was an active supermassive black hole," said Stefanie Komossa, also of the Max Planck Institute, lead author of the paper on NGC 6240. "Much to our surprise, we found that both were active black holes!" At a distance of about 400 million light years, NGC 6240

  20. ALIGNMENT OF SUPERMASSIVE BLACK HOLE BINARY ORBITS AND SPINS

    SciTech Connect

    Miller, M. Coleman; Krolik, Julian H.

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from {approx}1 pc to {approx}10{sup -3}-10{sup -2} pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time {approx}few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor {approx}(m{sub 1}/m{sub 2}){sup 1/2} > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  1. THE SPIN OF THE SUPERMASSIVE BLACK HOLE IN NGC 3783

    SciTech Connect

    Brenneman, L. W.; Reynolds, C. S.; Trippe, M.; Mushotzky, R. F.; Nowak, M. A.; Reis, R. C.; Fabian, A. C.; Iwasawa, K.; Lee, J. C.; Miller, J. M.; Volonteri, M.; Nandra, K.

    2011-08-01

    The Suzaku AGN Spin Survey is designed to determine the supermassive black hole spin in six nearby active galactic nuclei (AGNs) via deep Suzaku stares, thereby giving us our first glimpse of the local black hole spin distribution. Here, we present an analysis of the first target to be studied under the auspices of this Key Project, the Seyfert galaxy NGC 3783. Despite complexity in the spectrum arising from a multi-component warm absorber, we detect and study relativistic reflection from the inner accretion disk. Assuming that the X-ray reflection is from the surface of a flat disk around a Kerr black hole, and that no X-ray reflection occurs within the general relativistic radius of marginal stability, we determine a lower limit on the black hole spin of a {>=} 0.88 (99% confidence). We examine the robustness of this result to the assumption of the analysis and present a brief discussion of spin-related selection biases that might affect flux-limited samples of AGNs.

  2. Alignment of Supermassive Black Hole Binary Orbits and Spins

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Krolik, Julian H.

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to ~10-3-10-2 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time ~few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m 1/m 2)1/2 > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  3. Physics of Coevolution of Galaxies and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-08-01

    A new physically based model for coevolution of galaxies and supermassive black holes (SMBHs) is presented. The evolutionary track starts with an event that triggers a significant starburst in the central region of a galaxy. In this model, the main SMBH growth takes place in the post-starburst phase, fueled by recycled gas from inner bulge stars in a self-regulated fashion on a timescale that is substantially longer than 100 Myr and at a diminishing Eddington ratio with time. We argue that the SMBH cannot gorge itself during the starburst phase, despite the abundant supply of cold gas, because star formation (SF) is a preferred mode of gas consumption over accretion to the central SMBH in such an environment. We also show that feedback from SF is at least as strong as that from an active galactic nucleus (AGN); thus, if SF is in need of being quenched, AGN feedback generally does not play the primary role. The predicted relation between SMBH mass and bulge mass/velocity dispersion is consistent with observations. A clear prediction is that early-type galaxy hosts of high-Eddington-rate AGNs are expected to be light blue to green in optical color, gradually evolving to the red sequences with decreasing AGN luminosity. A suite of falsifiable predictions and implications with respect to relationships between various types of galaxies, AGNs, and others are made. For those where comparisons to extant observations are possible, the model appears to be in good standing.

  4. PHYSICS OF COEVOLUTION OF GALAXIES AND SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Cen Renyue

    2012-08-10

    A new physically based model for coevolution of galaxies and supermassive black holes (SMBHs) is presented. The evolutionary track starts with an event that triggers a significant starburst in the central region of a galaxy. In this model, the main SMBH growth takes place in the post-starburst phase, fueled by recycled gas from inner bulge stars in a self-regulated fashion on a timescale that is substantially longer than 100 Myr and at a diminishing Eddington ratio with time. We argue that the SMBH cannot gorge itself during the starburst phase, despite the abundant supply of cold gas, because star formation (SF) is a preferred mode of gas consumption over accretion to the central SMBH in such an environment. We also show that feedback from SF is at least as strong as that from an active galactic nucleus (AGN); thus, if SF is in need of being quenched, AGN feedback generally does not play the primary role. The predicted relation between SMBH mass and bulge mass/velocity dispersion is consistent with observations. A clear prediction is that early-type galaxy hosts of high-Eddington-rate AGNs are expected to be light blue to green in optical color, gradually evolving to the red sequences with decreasing AGN luminosity. A suite of falsifiable predictions and implications with respect to relationships between various types of galaxies, AGNs, and others are made. For those where comparisons to extant observations are possible, the model appears to be in good standing.

  5. Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Chartas, G.; Krawczynski, H.; Zalesky, L.; Kochanek, C. S.; Dai, X.; Morgan, C. W.; Mosquera, A.

    2017-03-01

    We present a promising new technique, the g-distribution method, for measuring the inclination angle (i), the innermost stable circular orbit (ISCO), and the spin of a supermassive black hole. The g-distribution method uses measurements of the energy shifts in the relativistic iron line emitted by the accretion disk of a supermassive black hole due to microlensing by stars in a foreground galaxy relative to the g-distribution shifts predicted from microlensing caustic calculations. We apply the method to the gravitationally lensed quasars RX J1131–1231 (z s = 0.658, z l = 0.295), QJ 0158–4325 (z s = 1.294, z l = 0.317), and SDSS 1004+4112 (z s = 1.734, z l = 0.68). For RX J1131‑1231, our initial results indicate that r ISCO ≲ 8.5 gravitational radii (r g) and i ≳ 55° (99% confidence level). We detect two shifted Fe lines in several observations, as predicted in our numerical simulations of caustic crossings. The current ΔE distribution of RX J1131–1231 is sparsely sampled, but further X-ray monitoring of RX J1131–1231 and other lensed quasars will provide improved constraints on the inclination angles, ISCO radii, and spins of the black holes of distant quasars.

  6. In Search Of Tiny Giants: Finding Supermassive Black Holes In Low Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Tanner Berger, Dillon; Satyapal, Shobita; Abel, Nick; Blecha, Laura; Mushotzky, Richard; Reynolds, Christopher

    2017-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) with a mass of up to 1 billion times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency since the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth efficiency of SMBH seeds, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass galaxies, the SMBHs will likely be less massive. As the black hole masses decreases, the Schwartzchild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation field therefore changes with black hole mass, potentially affecting the optical spectroscopic signatures generally associated with AGNs. In this work, we investigate the effect of black hole mass on the emission line spectrum from AGNs.

  7. Imaging Compact Supermassive Binary Black Holes with Very Long Baseline Interferometry

    DTIC Science & Technology

    2007-01-01

    International Astronomical Union doi:10.1017/S174392130700511X Imaging compact supermassive binary black holes with Very Long Baseline Interferometry G. B. Taylor...University, Stanford, CA 94305 USA email: gbtaylor@unm.edu Abstract.We report on the discovery of a supermassive binary black - hole (SBBH) system in... Black hole physics – gravitational waves – galaxies: active – radio continuum: galaxies 1. Introduction Given that most galaxies harbor supermassive

  8. Magnetorotatioal Collapse of Supermassive Stars: Black Hole Formation and Jets

    NASA Astrophysics Data System (ADS)

    Sun, Lunan; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart

    2017-01-01

    We perform magnetohydrodynamic simulations in full general relativity of the collapse of radially unstable, uniformly rotating, massive stars to black holes. The stars spin at the mass-shedding limit, account for magnetic fields and obey a Γ = 4/3 EOS. The calculations lift the restriction of axisymmetry imposed in previous simulations. Our simulations model the direct collapse of supermassive stars to supermassive BHs (>=104M⊙) at high cosmological redshifts, which may explain the appearance of supermassive BHs and quasars by z 7. They also crudely model the collapse of massive Pop III stars to massive BHs, which could power some of the long gamma-ray bursts observed by FERMI and SWIFT at z 6-8. We analyze the properties of the electromagnetic and gravitational wave signatures of these events and discuss the detectability of such multimessenger sources.

  9. Astrophysics of Super-Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  10. Forming supermassive black holes by accreting dark and baryon matter

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Shen, Yue; Lou, Yu-Qing; Zhang, Shuangnan

    2006-01-01

    Given a large-scale mixture of self-interacting dark matter (SIDM) particles and baryon matter distributed in the early Universe, we advance here a two-phase accretion scenario for forming supermassive black holes (SMBHs) with masses around ~109Msolar at high redshifts z(>~6). The first phase is conceived to involve a rapid quasi-spherical and quasi-steady Bondi accretion of mainly SIDM particles embedded with baryon matter on to seed black holes (BHs) created at redshifts z<~ 30 by the first generation of massive Population III stars; this earlier phase rapidly gives birth to significantly enlarged seed BH masses of during z~ 20-15, where σ0 is the cross-section per unit mass of SIDM particles and Cs is the velocity dispersion in the SIDM halo referred to as an effective `sound speed'. The second phase of BH mass growth is envisaged to proceed primarily via baryon accretion, eventually leading to SMBH masses of MBH~ 109Msolar such SMBHs may form either by z~ 6 for a sustained accretion at the Eddington limit or later at lower z for sub-Eddington mean accretion rates. In between these two phases, there is a transitional yet sustained diffusively limited accretion of SIDM particles which in an eventual steady state would be much lower than the accretion rates of the two main phases. We intend to account for the reported detections of a few SMBHs at early epochs, e.g. Sloan Digital Sky Survey (SDSS) 1148+5251 and so forth, without necessarily resorting to either super-Eddington baryon accretion or very frequent BH merging processes. Only extremely massive dark SIDM haloes associated with rare peaks of density fluctuations in the early Universe may harbour such early SMBHs or quasars. Observational consequences are discussed. During the final stage of accumulating a SMBH mass, violent feedback in circumnuclear environs of a galactic nucleus leads to the central bulge formation and gives rise to the familiar empirical MBH-σb correlation inferred for nearby normal

  11. The Direct Collapse of Supermassive Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2016-10-01

    The direct collapse model of supermassive black hole seed formation requires that thegas cools predominantly via atomic hydrogen. To this end we simulate the effect of ananisotropic radiation source on the collapse of a halo at high redshift. The radiationsource is placed at a distance of 3 kpc (physical) from the collapsing object and is setto emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiationemitted from the high redshift source is followed self-consistently using ray tracingtechniques. Due to self-shielding, a small amount of H2 is able to form at the verycenter of the collapsing halo even under very strong LW radiation. Furthermore, we find thata radiation source, emitting < 1054 (~103 J21) photons per second isrequired to cause the collapse of a clump of M ~ 105 M⊙. The resultingaccretion rate onto the collapsing object is ~ 0.25 M⊙ yr-1.Our results display significant differences, compared to the isotropic radiation field case,in terms of H2 fraction at an equivalent radius. These differences will significantly effectthe dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, thefinal mass of the collapsing object is found to be M ~ 105 M⊙. This is consistentwith predictions for the formation of a supermassive star or quasi-star leading to asupermassive black hole.

  12. Hi Observations of the Supermassive Binary Black Hole System in 0402+379

    DTIC Science & Technology

    2009-05-20

    Printed in the U.S.A. H i OBSERVATIONS OF THE SUPERMASSIVE BINARY BLACK HOLE SYSTEM IN 0402+379 C. Rodriguez1, G. B. Taylor1,5, R. T. Zavala2, Y. M...April 30 ABSTRACT We have recently discovered a supermassive binary black hole system with a projected separation between the two black holes of 7.3 pc in...the radio galaxy 0402+379 (Rodriguez et al. 2006). This is the most compact supermassive binary black hole pair yet imaged by more than two orders of

  13. Supermassive black holes: Coevolution (or not) of black holes and host galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-07-01

    Supermassive black holes (BHs) have been found in 75 galaxies by observing spatially resolved dynamics. The Hubble Space Telescope (HST) revolutionized BH work by advancing the subject from its `proof of concept' phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH masses M • and the velocity dispersions σ of stars in the host galaxy bulge components at radii where the stars mostly feel each other and not the BH. Together with correlations between M • and bulge luminosity, with the `missing light' that defines galaxy cores, and with numbers of globular clusters, this has led to the conclusion that BHs and bulges coevolve by regulating each other's growth. This simple picture with one set of correlations for all galaxies dominated BH work in the past decade. New results are now replacing the above, simple story with a richer and more plausible picture in which BHs correlate differently with different kinds of galaxy components. BHs with masses of 105-106 M ⊙ live in some bulgeless galaxies. So classical (merger-built) bulges are not necessary equipment for BH formation. On the other hand, while they live in galaxy disks, BHs do not correlate with galaxy disks or with disk-grown pseudobulges. They also have no special correlation with dark matter halos beyond the fact that halo gravity controls galaxy formation. This leads to the suggestion that there are two modes of BH feeding, (1) local, secular and episodic feeding of small BHs in largely bulgeless galaxies that involves too little energy feedback to drive BH-host-galaxy coevolution and (2) global feeding in major galaxy mergers that rapidly grows giant BHs in short-duration events whose energy feedback does affect galaxy formation. After these quasar-like phases, maintenance-mode BH feedback into hot, X-ray-emitting gas continues to have a primarily negative effect in preventing late-time star formation when cold gas or gas-rich galaxies

  14. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could

  15. Circularization of tidally disrupted stars around spinning supermassive black holes

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Stone, Nicholas; Loeb, Abraham

    2016-10-01

    We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing 3D smoothed particle hydrodynamic simulations with post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disc. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The circularization time-scale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. Since the stellar debris is optically thick and its photon diffusion time is likely longer than the time-scale of shock heating, our inefficient cooling scenario is more generally applicable in eccentric tidal disruption events (TDEs). However, in parabolic TDEs for MBH ≳ 2 × 106 M⊙, the spin-sensitive behaviour associated with efficient cooling may be realized.

  16. Tidal disruption events from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Armitage, Philip J.; Nixon, Chris; Begelman, Mitchell C.

    2017-03-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries (106 M⊙), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces a significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall morphology of the debris is greatly altered by the presence of the second black hole, and the accretion rate histories display a wide range of behaviours, including order of magnitude dips and excesses relative to control simulations that include only one black hole. Complex evolution typically persists for many orbital periods of the binary. We find evidence for power in the accretion curves on time-scales related to the binary orbital period, though there is no exact periodicity. We discuss our results in the context of future wide-field surveys, and comment on the prospects of identifying and characterizing the subset of events occurring in nuclei with binary SMBHs.

  17. Constraining Supermassive Black Hole Binary Dynamics Using Pulsar Timing Data

    NASA Astrophysics Data System (ADS)

    Ellis, Justin

    2015-08-01

    Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency gravitational waves (GWs) in the near future. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) and they will most likely form in an ensemble creating a stochastic GW background with the possibility of a few nearby/massive sources that will be individually resolvable. In this talk we present upper limits on the strength of the isotropic stochastic background of gravitational waves using the new 9-year North American NanoHertz Observatory for Gravitational Waves (NANOGrav) data release. Using several published models for merger rate of SMBHBs we place meaningful constraints on the transition frequency at which environmental factors such as stellar hardening and circumbinary interactions become comparable to the energy loss due to GW emission.

  18. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2012-03-01

    We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion

  19. Cosmic string loops as the seeds of super-massive black holes

    SciTech Connect

    Bramberger, Sebastian F.; Brandenberger, Robert H.; Jreidini, Paul; Quintin, Jerome E-mail: rhb@physics.mcgill.ca E-mail: jquintin@physics.mcgill.ca

    2015-06-01

    Recent discoveries of super-massive black holes at high redshifts indicate a possible tension with the standard ΛCDM paradigm of early universe cosmology which has difficulties in explaining the origin of the required nonlinear compact seeds which trigger the formation of these super-massive black holes. Here we show that cosmic string loops which result from a scaling solution of strings formed during a phase transition in the very early universe lead to an additional source of compact seeds. The number density of string-induced seeds dominates at high redshifts and can help trigger the formation of the observed super-massive black holes.

  20. Suppression of star formation in early-type galaxies by feedback from supermassive black holes.

    PubMed

    Schawinski, Kevin; Khochfar, Sadegh; Kaviraj, Sugata; Yi, Sukyoung K; Boselli, Alessandro; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter G; Martin, D Chris; Morrissey, Patrick; Neff, Susan; Schiminovich, David; Seibert, Mark; Small, Todd; Wyder, Ted K; Bianchi, Luciana; Donas, Jose; Heckman, Tim; Lee, Young-Wook; Madore, Barry; Milliard, Bruno; Rich, R Michael; Szalay, Alex

    2006-08-24

    Detailed high-resolution observations of the innermost regions of nearby galaxies have revealed the presence of supermassive black holes. These black holes may interact with their host galaxies by means of 'feedback' in the form of energy and material jets; this feedback affects the evolution of the host and gives rise to observed relations between the black hole and the host. Here we report observations of the ultraviolet emissions of massive early-type galaxies. We derive an empirical relation for a critical black-hole mass (as a function of velocity dispersion) above which the outflows from these black holes suppress star formation in their hosts by heating and expelling all available cold gas. Supermassive black holes are negligible in mass compared to their hosts but nevertheless seem to play a critical role in the star formation history of galaxies.

  1. Gravitational waves from supermassive stars collapsing to a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Sekiguchi, Yuichiro; Uchida, Haruki; Umeda, Hideyuki

    2016-07-01

    We derive the gravitational waveform from the collapse of a rapidly rotating supermassive star (SMS) core leading directly to a seed of a supermassive black hole (SMBH) in axisymmetric numerical-relativity simulations. We find that the peak strain amplitude of gravitational waves emitted during the black hole formation is ≈5 ×10-21 at the frequency f ≈5 mHz for an event at the cosmological redshift z =3 , if the collapsing SMS core is in the hydrogen-burning phase. Such gravitational waves will be detectable by space laser interferometric detectors like eLISA with signal-to-noise ratio ≈10 , if the sensitivity is as high as LISA for f =1 - 10 mHz . The detection of the gravitational wave signal will provide a potential opportunity for testing the direct-collapse scenario for the formation of a seed of SMBHs.

  2. Cosmological evolution of supermassive black holes and AGN: a synthesis model for accretion and feedback .

    NASA Astrophysics Data System (ADS)

    Merloni, A.

    The growth of supermassive black holes (SMBH) through accretion is accompanied by the release of enormous amounts of energy which can either be radiated away, as happens in quasars, advected into the black hole, or disposed of in kinetic form through powerful jets, as is observed, for example, in radio galaxies. Here, I will present new constraints on the evolution of the SMBH mass function and Eddington ratio distribution, obtained from a study of AGN luminosity functions aimed at accounting for both radiative and kinetic energy output of AGN in a systematic way. First, I discuss how a refined Soltan argument leads to joint constraints on the mass-weighted average spin of SMBH and of the total mass density of high redshift (z˜ 5) and ``wandering'' black holes. Then, I will show how to describe the ``downsizing'' trend observed in the AGN population in terms of cosmological evolution of physical quantities (black hole mass, accretion rate, radiative and kinetic energy output). Finally, the redshift evolution of the AGN kinetic feedback will be briefly discussed and compared with the radiative output of the evolving SMBH population, thus providing a robust physical framework for phenomenological models of AGN feedback within structure formation.

  3. Is There a Size Limit for Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Supermassive black holes (SMBHs) lurk in the centers of galaxies, and weve measured their masses to range from hundreds of thousands to ten billion solar masses. But is there a maximum mass that these monsters are limited to?Observed MaximumSince the era when the first SMBHs formed, enough time has passed for them to potentially grow to monstrous size, assuming a sufficient supply of fuel.Instead, however, we observe that SMBHs in the centers of the largest local-universe galaxies max out at a top mass of a few times 1010 solar masses. Even more intriguingly, this limit appears to be redshift-independent: we see the same maximum mass of a few 1010 solar masses for SMBHs fueling the brightest of quasars at redshifts up to z~7.Accretion rate (solid) and star formation rate (dashed) vs. radius in a star-forming accretion disk, for several different values of black-hole mass. Though accretion rates start out very high at large radius, they drop to just a few solar masses per year at small radii, because much of the gas is lost to star formation in the disk. [Inayoshi Haiman 2016]So why dont we see any giants larger than around 10 billion solar masses, regardless of where we look? Two astronomers from Columbia University, Kohei Inayoshi (Simons Fellow) and Zoltn Haiman, suggest that there is a limiting mass for SMBHs thats set by small-scale physical processes, rather than large processes like galaxy evolution, star formation history, or background cosmology.Challenges for AccretionGrowing an SMBH thats more massive than 1010 solar masses requires gas to be quickly funneled from the outer regions of the galaxy (hundreds of light-years out), through the large accretion disk that surrounds the black hole, and into the nuclear region (light-year scales): the gas must be brought in at rates as high as 1,000 solar masses per year.Modeling this process, Inayoshi and Haiman demonstrate that at such high rates, the majority of the gas instead gets stuck in the disk, causing

  4. Constraining supermassive black hole evolution through the continuity equation

    NASA Astrophysics Data System (ADS)

    Tucci, Marco; Volonteri, Marta

    2017-03-01

    The population of supermassive black holes (SMBHs) is split between those that are quiescent, such as those seen in local galaxies including the Milky Way, and those that are active, resulting in quasars and active galactic nuclei (AGN). Outside our neighborhood, all the information we have on SMBHs is derived from quasars and AGN, giving us a partial view. We study the evolution of the SMBH population, total and active, by the continuity equation, backwards in time from z = 0 to z = 4. Type-1 and type-2 AGN are differentiated in our model on the basis of their respective Eddington ratio distributions, chosen on the basis of observational estimates. The duty cycle is obtained by matching the luminosity function of quasars, and the average radiative efficiency is the only free parameter in the model. For higher radiative efficiencies (≳ 0.07), a large fraction of the SMBH population, most of them quiescent, must already be in place by z = 4. For lower radiative efficiencies ( 0.05), the duty cycle increases with the redshift and the SMBH population evolves dramatically from z = 4 onwards. The mass function of active SMBHs does not depend on the choice of the radiative efficiency or of the local SMBH mass function, but it is mainly determined by the quasar luminosity function once the Eddington ratio distribution is fixed. Only direct measurement of the total black-hole mass function at redshifts z ≳ 2 could break these degeneracies, offering important constraints on the average radiative efficiency. Focusing on type-1 AGN, for which observational estimates of the mass function and Eddington ratio distribution exist at various redshifts, models with lower radiative efficiencies better reproduce the high-mass end of the mass function at high z, but tend to over-predict it at low z, and vice-versa for models with higher radiative efficiencies.

  5. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  6. Recoiling Supermassive Black Holes: a search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Marconi, Alessandro; Axon, David; Capetti, Alessandro; Merritt, David; Batcheldor, Daniel

    2015-01-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed HST archival images of 14 nearby core ellipticals, finding evidence for small (<=10 pc) displacements between the AGN (locating the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. 2010. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few Gyr. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kpc-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  7. Recoiling Supermassive Black Holes: A Search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, D.; Robinson, A.; Marconi, A.; Axon, D. J.; Capetti, A.; Merritt, D.; Batcheldor, D.

    2014-11-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (lsim 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  8. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  9. Effects of supermassive binary black holes on gravitational lenses

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mao, Shude; Gao, Liang; Loeb, Abraham; di Stefano, R.

    2012-01-01

    Recent observations indicate that many, if not all, galaxies host massive central black holes (BHs). In this paper, we explore the influence of supermassive binary black holes (SMBBHs) on their actions as gravitational lenses. When lenses are modelled as singular isothermal ellipsoids, binary BHs change the critical curves and caustics differently as a function of distance. Each BH can in principle create at least one additional image, which, if observed, provides evidence of BHs. By studying how SMBBHs affect the cumulative distribution of magnification for images created by BHs, we find that the cross-section for at least one such additional image to have a magnification larger than 10-5 is comparable to the cross-section for producing multiple images in singular isothermal lenses. Such additional images may be detectable with high-resolution and large dynamic range maps of multiply imaged systems from future facilities, such as the Square Kilometre Array. The probability of detecting at least one image (two images) with magnification above 10-3 is ˜0.2fBH (˜0.05fBH) in a multiply imaged lens system, where fBH is the fraction of galaxies housing binary BHs. We also study the effects of SMBBHs on the core images when galaxies have shallower central density profiles (modelled as non-singular isothermal ellipsoids). We find that the cross-section of the usually faint core images is further suppressed by SMBBHs. Thus, their presence should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.

  10. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    PubMed

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  11. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Ho, Luis C.

    2013-08-01

    Supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics. The Hubble Space Telescope revolutionized BH research by advancing the subject from its proof-of-concept phase into quantitative studies of BH demographics. Most influential was the discovery of a tight correlation between BH mass [Formula: see text] and the velocity dispersion σ of the bulge component of the host galaxy. Together with similar correlations with bulge luminosity and mass, this led to the widespread belief that BHs and bulges coevolve by regulating each other's growth. Conclusions based on one set of correlations from [Formula: see text] in brightest cluster ellipticals to [Formula: see text] in the smallest galaxies dominated BH work for more than a decade. New results are now replacing this simple story with a richer and more plausible picture in which BHs correlate differently with different galaxy components. A reasonable aim is to use this progress to refine our understanding of BH-galaxy coevolution. BHs with masses of 105-106M⊙ are found in many bulgeless galaxies. Therefore, classical (elliptical-galaxy-like) bulges are not necessary for BH formation. On the other hand, although they live in galaxy disks, BHs do not correlate with galaxy disks. Also, any [Formula: see text] correlations with the properties of disk-grown pseudobulges and dark matter halos are weak enough to imply no close coevolution. The above and other correlations of host-galaxy parameters with each other and with [Formula: see text] suggest that there are four regimes of BH feedback. (1) Local, secular, episodic, and stochastic feeding of small BHs in largely bulgeless galaxies involves too little energy to result in coevolution. (2) Global feeding in major, wet galaxy mergers rapidly grows giant BHs in short-duration, quasar-like events whose energy feedback does affect galaxy evolution. The resulting hosts are classical bulges and coreless

  12. Radio Telescopes Provide Key Clue on Black Hole Growth

    NASA Astrophysics Data System (ADS)

    2007-01-01

    -understood processes involving a spinning disk of material being drawn toward the black hole at the disk's center. "An outflow from a black hole can regulate its growth by pushing back on material being drawn toward it. This is an important aspect of black hole development. Our observations offer new and unique information on how this process works for intermediate-mass black holes," Ho said. "Intermediate-mass black holes may have been the starting points for the supermassive black holes that we now see throughout the Universe. By studying this contemporary analog to those earlier objects, we hope to learn how the less-massive ones grew into the more-massive ones," Wrobel explained. The black hole in NGC 4395 was added to a small number of known intermediate-mass black holes in 2005, when a research team led by Brad Peterson of the Ohio State University calculated its mass based on ultraviolet observations. Other ultraviolet and X-ray observations gave tantalizing hints that material might be flowing outward from the black hole. "Fortunately, this object also is detectable by radio telescopes, so we could use very high precision radio observing techniques to make extremely detailed images," Wrobel said. Wrobel and Ho used a technique called Very Long Baseline Interferometry (VLBI), in which multiple radio-telescope antennas are used together to simulate a much larger "virtual telescope," providing extremely great resolving power, or ability to see fine detail. The astronomers used all of NRAO's telescopes in their coordinated VLBI array, including the continent-wide Very Long Baseline Array (VLBA), the 27-antenna Very Large Array (VLA) in New Mexico, and the giant Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The combination of antennas spread far apart as well as the large amount of signal-collecting area in this system allowed the scientists to make a detailed image of the faint radio emission caused by fast-moving electrons in the suspected outflow from the black

  13. Astronomers Dissect a Supermassive Black Hole with Natural Magnifying Glasses

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Combining a double natural "magnifying glass" with the power of ESO's Very Large Telescope, astronomers have scrutinised the inner parts of the disc around a supermassive black hole 10 billion light-years away. They were able to study the disc with a level of detail a thousand times better than that of the best telescopes in the world, providing the first observational confirmation of the prevalent theoretical models of such discs. Omega Centauri ESO PR Photo 47a/08 The Einstein Cross The team of astronomers from Europe and the US studied the "Einstein Cross", a famous cosmic mirage. This cross-shaped configuration consists of four images of a single very distant source. The multiple images are a result of gravitational lensing by a foreground galaxy, an effect that was predicted by Albert Einstein as a consequence of his theory of general relativity. The light source in the Einstein Cross is a quasar approximately ten billion light-years away, whereas the foreground lensing galaxy is ten times closer. The light from the quasar is bent in its path and magnified by the gravitational field of the lensing galaxy. This magnification effect, known as "macrolensing", in which a galaxy plays the role of a cosmic magnifying glass or a natural telescope, proves very useful in astronomy as it allows us to observe distant objects that would otherwise be too faint to explore using currently available telescopes. "The combination of this natural magnification with the use of a big telescope provides us with the sharpest details ever obtained," explains Frédéric Courbin, leader of the programme studying the Einstein Cross with ESO's Very Large Telescope. In addition to macrolensing by the galaxy, stars in the lensing galaxy act as secondary lenses to produce an additional magnification. This secondary magnification is based on the same principle as macrolensing, but on a smaller scale, and since stars are much smaller than galaxies, is known as "microlensing". As the stars are

  14. Gravitational waves from binary supermassive black holes in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David

    2017-01-01

    Pulsar timing arrays (PTAs) will eventually detect the gravitational wave (GW) background produced by a cosmological population of binary supermassive black hole (SBHs). In this talk, I review the ways in which the formation and evolution of the binary population determine the amplitude and form of the GW spectrum. A major source of systematic uncertainty is the mass function of SBHs; in the past, SBH masses have often been overestimated, and the number of SBHs with trustworthy mass estimates is still very small. The presence of gas and stars around the binaries accelerates the evolution at large separations, reducing the amplitude of the GW spectrum at low frequencies. I will highlight two recent developments in our theoretical understanding of binary evolution. (1) Slight departures from axi-symmetry in a galaxy imply a sustained supply of stars to the very center, thus overcoming the “final-parsec problem”. (2) In the generic case of a rotating nucleus, the plane of the binary’s orbit evolves predictably toward alignment with the symmetry plane of the nucleus; the binary’s eccentricity also evolves in tandem with the orientation, sometimes reaching values close to one. These processes should leave distinct imprints on the stochastic GW spectrum, and have important implications for the likelihood of GW detection in the near future.

  15. Accretion and Feedback from Supermassive Black Holes in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Bogdanovic, Tamara; Park, KwangHo

    2017-01-01

    A significant fraction of galaxy clusters, namely the cool-core clusters, exhibit a dip in their central temperature profiles, with radiative cooling times much shorter than the Hubble time. Unchecked, radiative cooling of this magnitude is expected to cause the accumulation of cold gas at the cluster center that leads to star formation rates 100-1000 times higher than those inferred by observations. This discrepancy suggests the existence of active heating mechanisms that counteract the overcooling in cluster centers. The dominant mechanism has now been widely recognized as the mechanical feedback from the radio-loud active galactic nuclei. However, recent observations find substantial amounts of cold gas in a number of cool-core clusters, as well as evidence that some clusters host quasars in their central dominant galaxies, raising concerns about the significance of radiative feedback in such systems. Motivated by these findings we use 3D radiation hydrodynamic simulations to explore the joint role of the radio- and quasar-mode feedback in the accretion and feedback cycle of supermassive black holes in cool-core clusters.

  16. The interaction between supermassive black holes and globular clusters

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Arca-Sedda, Manuel; Capuzzo-Dolcetta, Roberto

    2016-02-01

    Almost all galaxies along the Hubble sequence host a compact massive object (CMO) in their center. The CMO can be either a supermassive black hole (SMBH) or a very dense stellar cluster, also known as nuclear star cluster (NSC). Generally, heavier galaxies (mass >~ 1011 M⊙) host a central SMBH while lighter show a central NSC. Intermediate mass hosts, instead, contain both a NSC and a SMBH. One possible formation mechanisms of a NSC relies on the dry-merger (migratory) scenario, in which globular clusters (GCs) decay toward the center of the host galaxy and merge. In this framework, the absence of NSCs in high-mass galaxies can be imputed to destruction of the infalling GCs by the intense tidal field of the central SMBH. In this work, we report preliminary results of N-body simulations performed using our high-resolution, direct, code HiGPUs, to investigate the effects of a central SMBH on a single GC orbiting around it. By varying either the mass of the SMBH and the mass of the host galaxy, we derived an upper limit to the mass of the central SMBH, and thus to the mass of the host, above which the formation of a NSC is suppressed.

  17. Supermassive Black Hole Masses and Global Properties of Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Castillo, Y. S.; Funes, J. G.; Díaz, R. J.

    2006-06-01

    Different scaling laws are known for the mass of supermassive black holes (M_{BH}): M_{BH}-σ M_{BH}-M_{Bulge}; M_{BH}-M_{DM}. We have reviewed these correlations for 17 disk galaxies and tried to find any correlation between M_{BH} and other disk properties (HI and H_2 masses, far infrared luminosity, star formation rate, etc.). The sample was taken from Marconi and Hunt (2003). For these galaxies we have done a search in the literature for the following properties: A) in the nucleus: star formation rates, and luminosities in Hα ; B) in the bulge: luminosity in B-band; C) in the disk: HI and H_2 total masses, total luminosities in X-ray, B band and far infrared, and total star formation rate. In this work we present the compiled data from the literature and the plots of M_{BH} against galaxy HI total mass, M_{BH} against galaxy H_2 total mass, and M_{BH} against disk blue luminosity. We did not find any evident correlation between the M_{BH} and the properties of the disk.

  18. Toward Precision Supermassive Black Hole Masses Using Megamaser Disks

    NASA Astrophysics Data System (ADS)

    van den Bosch, Remco C. E.; Greene, Jenny E.; Braatz, James A.; Constantin, Anca; Kuo, Cheng-Yu

    2016-03-01

    Megamaser disks provide the most precise and accurate extragalactic supermassive black hole (BH) masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the BH and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive BHs that have direct BH mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical BH mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km s-1 and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (≳ {10}8 {M}⊙ ) BHs at a low Eddington ratio. Given the power of maser disks for probing BH accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.

  19. The coevolution of galaxies and supermassive black holes: a local perspective.

    PubMed

    Heckman, Timothy M; Kauffmann, Guinevere

    2011-07-08

    One of the most fascinating discoveries in the past decade was that galaxies typically contain a centrally located black hole with a mass that is millions or even billions of times that of the Sun. There is now compelling evidence that we cannot understand how galaxies formed and evolved without understanding the life cycles of these supermassive black holes (and vice versa). We summarize the current understanding of this coevolution of galaxies and supermassive black holes (based largely on observations of the local, present-day universe) and describe prospects for the future.

  20. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    PubMed

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.

  1. Concurrent Supermassive Black Hole and Galazy Growth: Linking Environment and Nuclear Activity in Zeta Equals 2.23 H Alpha Emitters

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Lucy, A. B.; Alexander, D. M.; Best, P. N.; Geach, J. E.; Harrison, C. M.; Hornschemeier, A. E.; Matsuda, Y.; Mullaney, J. R.; Smail, Ian; Sobral, D.; Swinbank, A. M.

    2013-01-01

    We present results from an approximately equal 100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15 × 15 arcmin square region. Narrow-band imaging in the near-IR (within the K band) revealed that the structure contains an additional overdensity of 22 z = 2.23 H alpha-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs (22 within the Chandra field of view). Our Chandra observations reveal that three HAEs in addition to the four QSOs harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of approximately equal (8-60) × 10(exp 43) erg s(exp-1) and X-ray spectral slopes consistent with unobscured active galactic nucleus (AGN). Using a large comparison sample of 210 z = 2.23 HAEs in the Chandra-COSMOS field (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of approximately equal 2 times over the field), and after excluding optically-selected QSOs, we find that the AGN fraction is a factor of approximately equal 3.5(+3.8/ -2.2) times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250micrometers, we respectively estimate mean SMBH accretion rates ( M(BH)) and star formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked X-ray luminosity is QSO-like (L(2-10 keV) approximately equal [6-10] × 10(exp 43) erg s(exp -1)), and the implied M(BH)/SFR approximately equal (1.6-3.2) × 10(exp -3) is broadly consistent with the local M(BH)/Stellar Mass relation and z approximately equal 2 X-ray selected AGN. In contrast, the C-COSMOS HAEs are on average an order of magnitude less X-ray luminous and have M(BH)/SFR approximately

  2. Formation and coalescence of cosmological supermassive-black-hole binaries in supermassive-star collapse.

    PubMed

    Reisswig, C; Ott, C D; Abdikamalov, E; Haas, R; Mösta, P; Schnetter, E

    2013-10-11

    We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z is approximately equal or > to 10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 10(4)-10(6)M[symbol: see text]. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ~10% of the initial mass.

  3. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-11-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  4. Modified evolution of stellar binaries from supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Yi-Han; Yuan, Ye-Fei

    2017-04-01

    The evolution of main-sequence binaries resided in the galactic centre is influenced a lot by the central supermassive black hole (SMBH). Due to this perturbation, the stars in a dense environment are likely to experience mergers or collisions through secular or non-secular interactions. In this work, we study the dynamics of the stellar binaries at galactic centre, perturbed by another distant SMBH. Geometrically, such a four-body system is supposed to be decomposed into the inner triple (SMBH-star-star) and the outer triple (SMBH-stellar binary-SMBH). We survey the parameter space and determine the criteria analytically for the stellar mergers and the tidal disruption events (TDEs). For a relative distant and equal masses SMBH binary, the stars have more opportunities to merge as a result from the Lidov-Kozai (LK) oscillations in the inner triple. With a sample of tight stellar binaries, our numerical experiments reveal that a significant fraction of the binaries, ∼70 per cent, experience merger eventually. Whereas the majority of the stellar TDEs are likely to occur at a close periapses to the SMBH, induced by the outer Kozai effect. The tidal disruptions are found numerically as many as ∼10 per cent for a close SMBH binary that is enhanced significantly than the one without the external SMBH. These effects require the outer perturber to have an inclined orbit (≥40°) relatively to the inner orbital plane and may lead to a burst of the extremely astronomical events associated with the detection of the SMBH binary.

  5. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    NASA Astrophysics Data System (ADS)

    Rasskazov, Alexander; Merritt, David

    2017-03-01

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f, defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  6. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    PubMed

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  7. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  8. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    PubMed

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  9. Evolution of Supermassive Black Hole Binaries in Merging Galaxies and Evidence for Potential Sub-parsec Binaries

    NASA Astrophysics Data System (ADS)

    Barrows, Robert Scott; Galaxy Evolution Survey, Arkansas; Lacy, C. H. S.; Kennefick, D.; Kennefick, J.; Seigar, M.

    2010-01-01

    As a result of galactic mergers, a significant number of supermassive black holes are expected to be in binary systems and at various stages in their orbital evolution. During galactic mergers, matter in the form of gas and stars is available for the black holes to accrete, providing fuel for black hole growth and a potential mechanism for the onset of a quasar phase. To better understand how supermassive black holes and their active phases evolve over time, the Arkansas Galaxy Evolution Survey (AGES) team is studying binary black hole systems at a range of separations, r. We have examined the scarce number of binary systems (10,000 > r > 1,000 pc) to infer information about their individual masses, the amount of gas and dust in the nuclear regions, the accretion rates of the individual nuclei, and the estimated timescale for dynamical friction to reduce the black holes’ separation to parsec scales. We have compared these results to those from theoretical calculations. Furthermore, we have visually examined the spectra of SDSS quasars for "unusual” double-peaked emitters looking for evidence of binary orbital motion at separations of < 1 pc. If found, such close binaries will have measurable orbital periods and will provide important information about the environments of quasars in the final stages of a merger. In addition, they will be excellent sources for gravitational wave emission for future space-based detectors such as LISA.

  10. Constraining the cosmic evolution of supermassive black holes with statistical quasar samples

    NASA Astrophysics Data System (ADS)

    Shen, Yue

    One of the fundamental questions in cosmology is how galaxies with different physical properties form and evolve across cosmic time. Supermassive black holes (SMBHs), believed to reside in the center of almost every massive galaxy, not only tell part of the story of galaxy formation, but may also influence the formation and evolution of the galaxy during their coevolution, as inferred from several correlations between the black hole mass and bulge properties observed in the local universe. Facilitated by modern dedicated surveys in different wavelength bands, the study of SMBHs has now entered an era of statistical investigations. In this thesis I study the statistical properties of optically-selected quasars, the luminous counterparts of SMBHs, across a wide redshift range (0.5 [Special characters omitted.] z [Special characters omitted.] 5), using large spectroscopic samples from the Sloan Digital Sky Survey (SDSS). The first two chapters deal with the spatial clustering properties of quasars, with focuses on the high redshift (z [Special characters omitted.] 3) population (chapter 1), and on the dependence of clustering on physical properties of quasars such as luminosity, color, etc. (chapter 2). These clustering analyses, which become available only very recently, provide valuable information about the occupations of quasars within dark matter halos, and have important implications for the growth and evolution of SMBHs within the standard hierarchical structure formation paradigm. The third chapter presents black hole mass estimates and Eddington ratios of quasars measured from their optical spectra, based on the virial black hole mass estimators. Some comparisons between different virial estimators and potential biases are also discussed in chapter 3. In the final chapter, I present a simple, observationally motivated framework for the cosmic growth and evolution of SMBHs. Adopting the merger hypothesis of quasar triggering mechanism and halo merger rate from

  11. RELATION BETWEEN GLOBULAR CLUSTERS AND SUPERMASSIVE BLACK HOLES IN ELLIPTICALS AS A MANIFESTATION OF THE BLACK HOLE FUNDAMENTAL PLANE

    SciTech Connect

    Snyder, Gregory F.; Hernquist, Lars; Hopkins, Philip F.

    2011-02-10

    We analyze the relation between the mass of the central supermassive black hole (M{sub BH}) and the number of globular clusters (N{sub GC}) in elliptical galaxies and bulges as a ramification of the black hole fundamental plane, the theoretically predicted and observed multi-variable correlation between M{sub BH} and bulge binding energy. Although the tightness of the M{sub BH}-N{sub GC} correlation suggests an unlikely causal link between supermassive black holes and globular clusters (GCs), such a correspondence can exhibit small scatter even if the physical relationship is indirect. We show that the relatively small scatter of the M{sub BH}-N{sub GC} relation owes to the mutual residual correlation of M{sub BH} and N{sub GC} with stellar mass when the velocity dispersion is held fixed. Thus, present observations lend evidence for feedback-regulated models in which the bulge binding energy is most important; they do not necessarily imply any 'special' connection between GCs and M{sub BH}. This raises the question of why N{sub GC} traces the formation of ellipticals and bulges sufficiently well to be correlated with binding energy.

  12. The Supermassive Black Hole Mass Function in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kennefick, Julia D.; Berrier, J. C.; Kennefick, D.; Davis, B. L.; Seigar, M.; Shields, D.; Barrows, R. S.; Lacy, C. H.; Hughes, J. A.; Galaxy Evolution Survey, Arkansas

    2013-01-01

    The AGES group is exploring a number of techniques to study the relationship between central SMBH black hole mass and spiral arm morphology in disk galaxies. We have developed a new technique which permits us to reliably and accurately measure pitch angle based upon a 2DFFT algorithm. We have then compared pitch angles to directly measured black hole masses in local galaxies and demonstrated a strong correlation between them. Using the relation thus established we have developed a pitch angle distribution function of a statistically complete volume limited sample of nearby galaxies and developed a central black hole mass function for nearby spiral galaxies.

  13. Black Holes Lead Galaxy Growth, New Research Shows

    NASA Astrophysics Data System (ADS)

    2009-01-01

    Astronomers may have solved a cosmic chicken-and-egg problem -- the question of which formed first in the early Universe -- galaxies or the supermassive black holes seen at their cores. "It looks like the black holes came first. The evidence is piling up," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO). Carilli outlined the conclusions from recent research done by an international team studying conditions in the first billion years of the Universe's history in a lecture presented to the American Astronomical Society's meeting in Long Beach, California. Gas in Distant Galaxy VLA image (right) of gas in young galaxy seen as it was when the Universe was only 870 million years old. CREDIT: NRAO/AUI/NSF, SDSS Full-size JPEG, 323 KB PDF file, 180 KB Galaxy image, no annotation, JPEG 21 KB Earlier studies of galaxies and their central black holes in the nearby Universe revealed an intriguing linkage between the masses of the black holes and of the central "bulges" of stars and gas in the galaxies. The ratio of the black hole and the bulge mass is nearly the same for a wide range of galactic sizes and ages. For central black holes from a few million to many billions of times the mass of our Sun, the black hole's mass is about one one-thousandth of the mass of the surrounding galactic bulge. "This constant ratio indicates that the black hole and the bulge affect each others' growth in some sort of interactive relationship," said Dominik Riechers, of Caltech. "The big question has been whether one grows before the other or if they grow together, maintaining their mass ratio throughout the entire process." In the past few years, scientists have used the National Science Foundation's Very Large Array radio telescope and the Plateau de Bure Interferometer in France to peer far back in the 13.7 billion-year history of the Universe, to the dawn of the first galaxies. "We finally have been able to measure black-hole and bulge masses in several galaxies seen

  14. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  15. Black holes.

    PubMed

    Brügmann, B; Ghez, A M; Greiner, J

    2001-09-11

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  16. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  17. A Good Hard Look at Growing Supermassive Black Holes in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Brandt, W. Niel; Chandra Deep Fields Team

    2017-01-01

    Sensitive cosmic X-ray surveys with the Chandra, XMM-Newton, and now NuSTAR observatories have revolutionized our ability to find and study distant active galactic nuclei (AGNs), the main sites of supermassive black hole growth in the Universe. I will describe some of the resulting discoveries about the demographics, physics, and ecology of distant AGNs with an emphasis on the deepest Chandra surveys, the Chandra Deep Fields. Some specific topics covered will include (1) robust X-ray spectral and variability characterization of the AGNs producing most of cosmic accretion power; (2) the demographics of AGNs in the first galaxies as revealed by direct detection and stacking; (3) AGN/galaxy interactions as investigated via the host properties of X-ray AGNs; and (4) the cosmic balance of power between supermassive black holes and stars. I will also briefly describe other remarkable discoveries coming from the deepest X-ray surveys; e.g., measurements of the evolving X-ray binary populations of normal and starburst galaxies. I will end by discussing some key outstanding questions and new observations and missions aiming to answer them.

  18. Understanding the build-up of supermassive black holes and galaxies

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    One of the main open questions in modern Astrophysics is understanding the coupled growth of supermassive black holes by accretion and their host galaxies via star formation, from their peak at redshifts z~ 1-4 to the present time. The generic scenario proposed involves an early phase of intense black hole growth that takes place behind large obscuring columns of inflowing dust and gas clouds. It is postulated that this is followed by a blow-out stage during which some form of AGN feedback controls the fate of the interstellar medium and hence, the evolution of the galaxy. X-rays are essential for testing this scenario as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. X-ray spectral analysis can identify the smoking gun evidence of heavily obscured black hole growth (e.g. intense iron Kalpha line). It therefore provides the most robust method for compiling clean samples of deeply shrouded AGN with well-defined selection functions and unbiased determinations of their intrinsic properties (accretion luminosity, obscuring column). X-rays are also the best window for studying in detail AGN feedback. This process ultimately originates in the innermost regions close to the supermassive black hole and is dominated, in terms of energy and mass flux, by highly ionisedmaterial that remains invisible at other wavelengths. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z~1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, Xray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena observatory will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe

  19. Testing scenarios of primordial black holes being the seeds of supermassive black holes by ultracompact minihalos and CMB μ distortions

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Nakama, Tomohiro; Suyama, Teruaki

    2014-10-01

    Supermassive black holes and intermediate mass black holes are believed to exist in the Universe. There is no established astrophysical explanation for their origin, and considerations have been made in the literature that those massive black holes (MBHs) may be primordial black holes (PBHs), black holes which are formed in the early universe (well before the matter-radiation equality) due to the direct collapse of primordial overdensities. This paper aims at discussing the possibility of excluding the PBH scenario as the origin of the MBHs. We first revisit the constraints on PBHs obtained from the cosmic microwave background (CMB) distortion that the seed density perturbation causes. By adopting a recent computation of the CMB distortion sourced by the seed density perturbation and the stronger constraint on the CMB distortion set by the COBE/FIRAS experiment used in the literature, we find that PBHs in the mass range 6×104 M⊙-5×1013 M⊙ are excluded. Since PBHs lighter than 6×104 M⊙ are not excluded from the nonobservation of the CMB distortion, we propose a new method which can potentially exclude smaller PBHs as well. Based on the observation that large density perturbations required to create PBHs also result in the copious production of ultracompact minihalos (UCMHs), compact dark matter halos formed at around the recombination, we show that weakly interacting massive particles (WIMPs) as dark matter annihilate efficiently inside UCMHs to yield cosmic rays far exceeding the observed flux. Our bound gives severe restriction on the compatibility between the particle physics models for WIMPs and the PBH scenario as the explanation of MBHs.

  20. Probing the spacetime around supermassive black holes with ejected plasma blobs

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2015-05-01

    Millimeter-wavelength very-long-baseline-interferometry observations of the supermassive black holes in Sgr A* and M87 by the Event Horizon Telescope could potentially trace the dynamics of ejected plasma blobs in real time. We demonstrate that the trajectory and tidal stretching of these blobs can be used to test general relativity and set new constraints on the mass and spin of these black holes.

  1. Particle acceleration and curvature TeV emission by rotating, supermassive black holes

    PubMed

    Levinson

    2000-07-31

    It is shown that particles accelerating near the event horizon of a spinning supermassive black hole that is threaded by externally supported magnetic field lines suffer severe curvature losses that limit the maximum energy they can attain to values well below that imposed by the maximum voltage drop induced by the black hole dynamo. It is further shown that the dominant fraction of the rotational energy extracted from the black hole is radiated in the TeV band. The implications for vacuum breakdown and the observational consequences are discussed.

  2. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  3. UNLEASHING POSITIVE FEEDBACK: LINKING THE RATES OF STAR FORMATION, SUPERMASSIVE BLACK HOLE ACCRETION, AND OUTFLOWS IN DISTANT GALAXIES

    SciTech Connect

    Silk, Joseph

    2013-08-01

    Pressure-regulated star formation is a simple variant on the usual supernova-regulated star formation efficiency that controls the global star formation rate as a function of cold gas content in star-forming galaxies, and accounts for the Schmidt-Kennicutt law in both nearby and distant galaxies. Inclusion of active galactic nucleus (AGN) induced pressure, by jets and/or winds that flow back onto a gas-rich disk, can lead, under some circumstances, to significantly enhanced star formation rates, especially at high redshift and most likely followed by the more widely accepted phase of star formation quenching. Simple expressions are derived that relate supermassive black hole growth, star formation, and outflow rates. The ratios of black hole to spheroid mass and of both black hole accretion and outflow rates to star formation rate are predicted as a function of time. I suggest various tests of the AGN-triggered star formation hypothesis.

  4. Eötvös experiments with supermassive black holes

    NASA Astrophysics Data System (ADS)

    Asvathaman, Asha; Heyl, Jeremy S.; Hui, Lam

    2017-03-01

    By examining the locations of central black holes in two elliptical galaxies, M32 and M87, we derive constraints on the violation of the strong equivalence principle for purely gravitational objects, i.e. black holes, of less than about two-thirds, ηN < 0.68 from the gravitational interaction of M87 with its neighbours in the Virgo cluster. Although M32 appears to be a good candidate for this technique, the high concentration of stars near its centre substantially weakens the constraints. On the other hand, if a central black hole is found in NGC 205 or one of the other satellite ellipticals of M31, substantially better constraints could be obtained. In all cases, the constraints could improve dramatically with better astrometry.

  5. High-energy signatures of binary systems of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Romero, G. E.; Vila, G. S.; Pérez, D.

    2016-04-01

    Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims: We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods: We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also compute the opacity to the gamma rays produced in the jet by photon annihilation with the disk radiation and take into account the effects of the anisotropy of the target photon field as seen from the jet. Results: We find that the excess of low-energy photons radiated by the perturbed disk causes an increment in the external Compton emission from the jet in the X-ray band, and a deep absorption feature at energies of tens of TeVs for some sets of parameters. According to our results, observations with Cherenkov telescopes might help in the identification of supermassive black hole binaries, especially those black hole binaries that host primaries from tens to hundreds of million of solar masses.

  6. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  7. Coevolution of Supermassive Black Holes and Galaxies across cosmic times

    NASA Astrophysics Data System (ADS)

    Aversa, Rossella

    2015-10-01

    Understanding how supermassive black holes (SMBHs) and galaxies coevolve within their host dark matter (DM) halos is a fundamental issue in astrophysics. This thesis is aimed to shed light on this topic. As a first step, we employ the recent wide samples of far-infrared (FIR) selected galaxies followed-up in X-rays, and of X-ray/optically selected active galactic nuclei (AGNs) followed-up in the FIR band, along with the classic data on AGN and stellar luminosity functions at redshift z & 1.5, to probe different stages in the coevolution of SMBHs and their host galaxies. The results of this analysis indicate the following scenario: (i) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium, at an almost constant rate, over a timescale . 0.5 - 1 Gyr, and then abruptly declines due to quasar feedback; (ii) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions, at a rate proportional to the star formation, and is temporarily stored into a massive reservoir/proto-torus, wherefrom it can be promptly accreted; (iii) the black hole (BH) grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit (L/LEdd . 4), particularly at the highest redshifts; (iv) the ensuing energy feedback from massive BHs, at its maximum, exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (v) afterwards, if the gas stored in the reservoir is enough, a phase of supply-limited accretion follows, whose rate exponentially declines with a timescale of ∼3 e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of starforming, strongly lensed galaxies in the (sub-)mm band with ALMA, and in the X-ray band with Chandra and the next generation of X-ray instruments. According to the scenario described

  8. Comparison of black hole growth in galaxy mergers with GASOLINE and RAMSES

    NASA Astrophysics Data System (ADS)

    Gabor, Jared M.; Capelo, Pedro R.; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas

    2016-07-01

    Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We compare simulations of black hole growth in galaxy mergers with two codes: the smoothed particle hydrodynamics code GASOLINE, and the adaptive mesh refinement code RAMSES. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of subgrid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they fly by within 10 kpc at the first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star formation. We also note quantitative discrepancies that are model dependent: our RAMSES simulations show less star formation and black hole growth, and a smoother gas distribution with larger clumps and filaments than our GASOLINE simulations. We attribute these differences primarily to the subgrid models for black hole fueling, feedback, and gas thermodynamics. The main conclusion is that differences exist quantitatively between codes, and this should be kept in mind when making comparisons with observations. However, both codes capture the same dynamical behaviors in terms of triggering black hole accretion, star formation, and black hole dynamics, which is reassuring.

  9. Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution.

    PubMed

    Shannon, R M; Ravi, V; Coles, W A; Hobbs, G; Keith, M J; Manchester, R N; Wyithe, J S B; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Khoo, J; Levin, Y; Osłowski, S; Sarkissian, J M; van Straten, W; Verbiest, J P W; Wang, J-B

    2013-10-18

    The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density (Ω(GW)) with 95% confidence to be Ω(GW)(H0/73 kilometers per second per megaparsec)(2) < 1.3 × 10(-9) (where H0 is the Hubble constant) at a frequency of 2.8 nanohertz, which is approximately a factor of 6 more stringent than previous limits. We compare our limit to models of the SMBH population and find inconsistencies at confidence levels between 46 and 91%. For example, the standard galaxy formation model implemented in the Millennium Simulation Project is inconsistent with our limit with 50% probability.

  10. Observational evidence for a connection between supermassive black holes and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Buyle, Pieter; Hau, George K. T.; Dejonghe, Herwig

    2003-06-01

    We present new velocity dispersion measurements of a sample of 12 spiral galaxies for which extended rotation curves are available. These data are used to refine a recently discovered correlation between the circular velocity and the central velocity dispersion of spiral galaxies. We find a slightly steeper slope for our larger sample, confirm the negligible intrinsic scatter on this correlation and find a striking agreement with the corresponding relation for elliptical galaxies. We combine this correlation with the well-known MBH-σ relation to obtain a tight correlation between the circular velocities of galaxies and the masses of the supermassive black holes they host. This correlation is the observational evidence for an intimate link between dark matter haloes and supermassive black holes. Apart from being an important ingredient for theoretical models of galaxy formation and evolution, the relation between MBH and circular velocity can serve as a practical tool to estimate black hole masses in spiral galaxies.

  11. The Equations of Motion of Compact Binaries in the Neighborhood of Supermassive Black Hole

    SciTech Connect

    Gorbatsievich, Alexander; Bobrik, Alexey

    2010-03-24

    By the use of Einstein-Infeld-Hoffmann method, the equations of motion of a binary star system in the field of a supermassive black hole are derived. In spite of the fact that the motion of a binary system as a whole can be relativistic or even ultra-relativistic with respect to the supermassive black hole, it is shown, that under the assumption of non-relativistic relative motion of the stars in binary system, the motion of the binary system as a whole satisfies the Mathisson-Papapetrou equations with additional terms depending on quadrupole moments. Exemplary case of ultrarelativistic motion of a binary neutron star in the vicinity of non-rotating black hole is considered. It it shown that the motion of binary's center of mass may considerably differ from geodesic motion.

  12. THE FORMATION OF SUPERMASSIVE BLACK HOLES FROM LOW-MASS POP III SEEDS

    SciTech Connect

    Whalen, Daniel J.; Fryer, Chris L.

    2012-09-01

    The existence of 10{sup 9} M{sub Sun} black holes (BHs) in massive galaxies by z {approx} 7 is one of the great unsolved mysteries in cosmological structure formation. One theory argues that they originate from the BHs of Pop III stars at z {approx} 20 and then accrete at the Eddington limit down to the epoch of reionization, which requires that they have constant access to rich supplies of fuel. Because early numerical simulations suggested that Pop III stars were {approx}>100 M{sub Sun }, the supermassive black hole (SMBH) seeds considered up to now were 100-300 M{sub Sun }. However, there is a growing numerical and observational consensus that some Pop III stars were tens of solar masses, not hundreds, and that 20-40 M{sub Sun} BHs may have been much more plentiful at high redshift. However, we find that natal kicks imparted to 20-40 M{sub Sun} Pop III BHs during formation eject them from their halos and hence their fuel supply, precluding them from Eddington-limit growth. Consequently, SMBHs are far less likely to form from low-mass Pop III stars than from very massive ones.

  13. Evolution of binary supermassive black holes via chain regularization.

    PubMed

    Szell, Andras; Merritt, David; Mikkola, Seppo

    2005-06-01

    A chain regularization method is combined with special purpose computer hardware to study the evolution of massive black hole binaries at the centers of galaxies. Preliminary results with up to N = 0.26 x 10(6) particles are presented. The decay rate of the binary is shown to decrease with increasing N, as expected on the basis of theoretical arguments. The eccentricity of the binary remains small.

  14. Accretion Onto Supermassive Black Holes: Observational Signals from 3-Dimensional Disk Models

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.; Miller, Warner A.

    2003-01-01

    Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.

  15. Simulating the growth of Intermediate Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Ferrara, Andrea

    2015-03-01

    Theoretical models predict that a population of intermediate-mass black holes (IMBHs) of mass M• ≈ 104-5 M⊙ might form at high (z ≳ 10) redshift by different processes. Such objects would represent the seeds out of which z ≳ 6 supermassive black holes grow. We numerically investigate the radiation-hydrodynamic evolution governing the growth of such seeds via accretion of primordial gas within their parent dark matter halo of virial temperature Tvir ˜ 104 K. We find that the accretion on to a direct collapse black hole of initial mass M0 = 105 M⊙ occurs at an average rate dot{M}_{•} ≃ 1.35 dot{M}_Edd ˜eq 0.1 M_{{⊙} yr^{-1}}, is intermittent (duty cycle ≲ 50 per cent) and lasts ≈142 Myr; the system emits on average at super-Eddington luminosities, progressively becoming more luminous as the density of the inner mass shells, directly feeding the central object, increases. Finally, when ≈90 per cent of the gas mass has been accreted (in spite of an average super-Eddington emission) on to the black hole, whose final mass is ˜7 × 106 M⊙, the remaining gas is ejected from the halo due to a powerful radiation burst releasing a peak luminosity Lpeak ˜ 3 × 1045 erg s-1. The IMBH is Compton-thick during most of the evolution, reaching a column density NH ˜ 1025 cm-2 in the late stages of the simulation. We briefly discuss the observational implications of the model.

  16. Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Wright, S. A.; Barton, E. J.; Barth, A. J.; Simard, L.; Larkin, J. E.; Moore, A.

    2013-01-01

    The next generation of giant-segmented mirror telescopes (> 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS. These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument, to determine the expected signal-to-noise of a range of possible targets spanning intermediate mass black holes of ~10^4 M⊙ to the most massive black holes known today of >10^10 M⊙. We find that future integral-field spectrographs will be able to observe Milky Way-mass black holes out the distance of the Virgo cluster, and will allow us to observe many more brightest-cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at different spectral resolutions and plate scales. We find that a spectral resolution of ~8000 will be necessary to measure the masses of IMBHs. We find by using the SDSS DR7 catalog of galaxies that over 4000 massive black holes will be observable at distances between 0.005 < z < 0.3 with the estimated sensitivity and angular resolution of TMT. These observations will provide the most accurate dynamical mass measurements of black holes to enable the study of their demography, address the origin of the M_bh-σ and M_bh - L relationships, and the origins and evolution of black holes through cosmic time.

  17. Era of Galaxy and Black Hole Growth Spurt Discovered

    NASA Astrophysics Data System (ADS)

    2005-04-01

    Distant galaxies undergoing intense bursts of star formation have been shown by NASA's Chandra X-ray Observatory to be fertile growing grounds for the largest black holes in the Universe. Collisions between galaxies in the early Universe may be the ultimate cause for both the accelerated star formation and black hole growth. By combining the deepest X-ray image ever obtained with submillimeter and optical observations, an international team of scientists has found evidence that some extremely luminous adolescent galaxies and their central black holes underwent a phenomenal spurt of growth more than 10 billion years ago. This concurrent black hole and galaxy growth spurt is only seen in these galaxies and may have set the stage for the birth of quasars - distant galaxies that contain the largest and most active black holes in the Universe. Simulation of a Galaxy Collision Simulation of a Galaxy Collision "The extreme distances of these galaxies allow us to look back in time, and take a snapshot of how today's largest galaxies looked when they were producing most of their stars and growing black holes," said David Alexander of the University of Cambridge, UK, and lead author of a paper in the April 7, 2005 issue of Nature that describes this work. The galaxies studied by Alexander and his colleagues are known as submillimeter galaxies, so-called because they were originally identified by the James Clerk Maxwell submillimeter telescope (JCMT) on Mauna Kea in Hawaii. The submillimeter observations along with optical data from Keck indicate these galaxies had an unusually large amount of gas. The gas in each galaxy was forming into stars at a rate of about one per day, or 100 times the present rate in the Milky Way galaxy. The Chandra X-ray data show that the supermassive black holes in the galaxies were also growing at the same time. Chandra X-ray Image of CDFN Chandra X-ray Image of CDFN These galaxies are very faint and it is only with the deepest observations of the

  18. Lense-Thirring precession around supermassive black holes during tidal disruption events

    NASA Astrophysics Data System (ADS)

    Franchini, Alessia; Lodato, Giuseppe; Facchini, Stefano

    2016-01-01

    A tidal disruption event occurs when a star wanders close enough to a black hole to be disrupted by its tidal force. The debris of a tidally disrupted star are expected to form an accretion disc around the supermassive black hole. The light curves of these events sometimes show a quasi-periodic modulation of the flux that can be associated with the precession of the accretion disc due to the Lense-Thirring (`frame-dragging') effect. Since the initial star orbit is in general inclined with respect to the black hole spin, this misalignment combined with the Lense-Thirring effect leads to a warp in the disc. In this paper, we provide a simple model of the system composed by a thick and narrow accretion disc surrounding a spinning supermassive black hole, with the aim to: (a) compute the expected precession period as a function of the system parameters, (b) discuss the conditions that have to be satisfied in order to have rigid precession, (c) investigate the alignment process, highlighting how different mechanisms play a role leading the disc and the black hole angular momenta into alignment.

  19. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    SciTech Connect

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  20. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    NASA Astrophysics Data System (ADS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  1. A simple model for black hole growth

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Weigel, Anna K. K.; Caplar, Neven; Wong, Ivy

    2017-01-01

    We present a simple phenomenological model for black hole growth in the z~0 universe. We show that nuclear activity can be described by two separate, mass-independent Eddington Ratio Distribution Functions (ERDFs) operating in blue and red galaxies, respectively. Our forward-modeling approach constrains these two ERDFs by comparing to the observed X-ray and radio luminosity functions. Alternative ERDFs with mass-dependence, such as those expected from AGN-driven mass-quenching of galaxies, are ruled out. We discuss the implications of this model and outline potential applications

  2. Gas disks and supermassive black holes in nearby radio galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob

    2004-12-01

    We present a detailed analysis of a set of medium- resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission-line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets. For each galaxy nucleus we present spectroscopic data in the region of hydrogen-alpha and the kinematics derived therefrom. We find in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by inclusion of a broad emission-line component. These broad components have a mean velocity dispersion of 1349 kilometers per second (with a standard deviation of 345 kilometers per second) and are redshifted from the narrow-line components (assuming an origin in hydrogen-alpha) by 486 kilometers per second (with a standard deviation of 443 kilometers per second). We generated model velocity profiles including no black hole, a one hundred million solar mass black hole and a nine hundred million solar mass black hole. We compared the predicted profiles to the observed velocity profiles from the above spectra, finding kinematic signatures compatible with black holes greater than one hundred million solar masses in 53% of the sample. We suspect that hydrodynamic flow of the gas is a significant factor in the nucleus of NGC 2329. We found hints of jet-disk interaction in 24% of the sample nuclei and signs of twists or warps in 19%. Twenty-four percent of the velocity profiles show signs of multiple kinematic components. We suggest that the gas disks in these galaxies are generally not well-settled systems. We characterize the kinematic state of the nuclear gas through three weighted mean parameters, and find that again the disks appear not to be well-settled. We show evidence of a connection between the stellar and gas velocity

  3. A close-pair binary in a distant triple supermassive black hole system.

    PubMed

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-03

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  4. A supermassive black hole in an ultra-compact dwarf galaxy.

    PubMed

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  5. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares.

    PubMed

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-21

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  6. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Loeb, Abraham

    2016-10-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade.

  7. A Supermassive Black Hole in the Seyfert 1 Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, C. A.; Peterson, B. M.

    2004-01-01

    Updated analysis techniques and recalibrated archival monitoring data for the Seyfert 1 galaxy NGC 3783 indicated the presence of a supermassive black hole in this galaxy. Using UV data from the International Ultraviolet Explorer satellite and ground-based optical spectra, we have measured more precise emission line reverberation in response to continuum variations. The stratification of the broad line region (BLR) suggested by our results, combined with estimates of the line velocity widths, is consistent with a gravitationally-dominated BLR and allows us to derive a mass for the central black hole.

  8. Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

    PubMed Central

    Hayasaki, Kimitake; Loeb, Abraham

    2016-01-01

    Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black holes. The accretion light curve is modulated over the binary orbital period owing to relativistic beaming. This periodic signal allows to detect the decay of the binary orbit due to gravitational wave emission by observing two tidal disruption events that are separated by more than a decade. PMID:27767188

  9. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  10. Prospects for measuring supermassive black hole masses with future extremely large telescopes

    SciTech Connect

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.; Barton, Elizabeth J.; Simard, Luc; Larkin, James E.; Moore, Anna M.; Wang, Lianqi; Ellerbroek, Brent

    2014-04-01

    The next generation of giant-segmented mirror telescopes (>20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm) to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ∼10{sup 4} M {sub ☉} to the most massive black holes known today of >10{sup 10} M {sub ☉}. We find that IRIS will be able to observe Milky Way mass black holes out the distance of the Virgo Cluster, and will allow us to observe many more of the brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of ∼8000 will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in Sloan Digital Sky Survey DR7, we find that over 10{sup 5} massive black holes will be observable at distances between 0.005 < z < 0.18 with the estimated sensitivity and angular resolution provided by access to Z-band (0.9 μm) spectroscopy from IRIS and the TMT adaptive optics system. These observations will provide the most accurate dynamical measurements of black hole masses to

  11. Prospects for Measuring Supermassive Black Hole Masses with Future Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Wright, Shelley A.; Barth, Aaron J.; Barton, Elizabeth J.; Simard, Luc; Larkin, James E.; Moore, Anna M.; Wang, Lianqi; Ellerbroek, Brent

    2014-04-01

    The next generation of giant-segmented mirror telescopes (>20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understanding of the origin and evolution of supermassive black holes by enabling more precise black hole mass measurements in a mass range that is unreachable today. We present simulations and predictions of the observations of nuclei that will be made with the Thirty Meter Telescope (TMT) and the adaptive optics assisted integral-field spectrograph IRIS, which is capable of diffraction-limited spectroscopy from Z band (0.9 μm) to K band (2.2 μm). These simulations, for the first time, use realistic values for the sky, telescope, adaptive optics system, and instrument to determine the expected signal-to-noise ratio of a range of possible targets spanning intermediate mass black holes of ~104 M ⊙ to the most massive black holes known today of >1010 M ⊙. We find that IRIS will be able to observe Milky Way mass black holes out the distance of the Virgo Cluster, and will allow us to observe many more of the brightest cluster galaxies where the most massive black holes are thought to reside. We also evaluate how well the kinematic moments of the velocity distributions can be constrained at the different spectral resolutions and plate scales designed for IRIS. We find that a spectral resolution of ~8000 will be necessary to measure the masses of intermediate mass black holes. By simulating the observations of galaxies found in Sloan Digital Sky Survey DR7, we find that over 105 massive black holes will be observable at distances between 0.005 < z < 0.18 with the estimated sensitivity and angular resolution provided by access to Z-band (0.9 μm) spectroscopy from IRIS and the TMT adaptive optics system. These observations will provide the most accurate dynamical measurements of black hole masses to enable the study of the

  12. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    SciTech Connect

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C.; Marziani, P.; Shapovalova, A. I.; Borka Jovanovic, V.; Borka, D.; Sulentic, J.

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  13. The Role of Nuclear Star Clusters in Enhancing Supermassive Black Hole Feeding Rates During Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Debuhr, J.; Ma, C.-P.

    2015-04-01

    During galaxy mergers the gas falls to the center, triggers star formation, and feeds the rapid growth of supermassive black holes (SMBHs). SMBHs respond to this fueling by supplying energy back to the ambient gas. Numerical studies suggest that this feedback is necessary to explain why the properties of SMBHs and the formation of bulges are closely related. This intimate link between the SMBH’s mass and the large scale dynamics and luminosity of the host has proven to be a difficult issue to tackle with simulations due to the inability to resolve all the relevant length scales simultaneously. In this paper we simulate SMBH growth at high-resolution with FLASH, accounting for the gravitational focusing effects of nuclear star clusters (NSCs), which appear to be ubiquitous in galactic nuclei. In the simulations, the NSC core is resolved by a minimum cell size of about 0.001 pc or approximately 10-3 of the cluster’s radius. We discuss the conditions required for effective gas funneling to occur, which are mainly dominated by a relationship between NSC velocity dispersion and the local sound speed, and provide a sub-grid prescription for the augmentation of central SMBH accretion rates in the presence of NSCs. For the conditions expected to persist in the centers of merging galaxies, the resultant large central gas densities in NSCs should produce drastically enhanced embedded SMBH accretion rates—up to an order of magnitude increase can be achieved for gas properties resembling those in large-scale galaxy merger simulations. This will naturally result in faster black hole growth rates and higher luminosities than predicted by the commonly used Bondi-Hoyle-Lyttleton accretion formalism.

  14. THE ROLE OF NUCLEAR STAR CLUSTERS IN ENHANCING SUPERMASSIVE BLACK HOLE FEEDING RATES DURING GALAXY MERGERS

    SciTech Connect

    Naiman, J. P.; Ramirez-Ruiz, E.; Debuhr, J.; Ma, C.-P.

    2015-04-20

    During galaxy mergers the gas falls to the center, triggers star formation, and feeds the rapid growth of supermassive black holes (SMBHs). SMBHs respond to this fueling by supplying energy back to the ambient gas. Numerical studies suggest that this feedback is necessary to explain why the properties of SMBHs and the formation of bulges are closely related. This intimate link between the SMBH’s mass and the large scale dynamics and luminosity of the host has proven to be a difficult issue to tackle with simulations due to the inability to resolve all the relevant length scales simultaneously. In this paper we simulate SMBH growth at high-resolution with FLASH, accounting for the gravitational focusing effects of nuclear star clusters (NSCs), which appear to be ubiquitous in galactic nuclei. In the simulations, the NSC core is resolved by a minimum cell size of about 0.001 pc or approximately 10{sup −3} of the cluster’s radius. We discuss the conditions required for effective gas funneling to occur, which are mainly dominated by a relationship between NSC velocity dispersion and the local sound speed, and provide a sub-grid prescription for the augmentation of central SMBH accretion rates in the presence of NSCs. For the conditions expected to persist in the centers of merging galaxies, the resultant large central gas densities in NSCs should produce drastically enhanced embedded SMBH accretion rates—up to an order of magnitude increase can be achieved for gas properties resembling those in large-scale galaxy merger simulations. This will naturally result in faster black hole growth rates and higher luminosities than predicted by the commonly used Bondi–Hoyle–Lyttleton accretion formalism.

  15. Tidal disruptions by supermassive black holes - Hydrodynamic evolution of stars on a Schwarzschild background

    NASA Technical Reports Server (NTRS)

    Laguna, Pablo; Miller, Warner A.; Zurek, Wojciech H.; Davies, Melvyn B.

    1993-01-01

    We present a three-dimensional numerical study of tidal disruption of a main-sequence star by a supermassive black hole. The simulations include general relativistic effects which are important in this regime. We analyze stars in a marginally bound orbit around the black hole with pericentric separation of a few Schwarzschild radii. We show that during a close passage, as a result of relativistic effects analogous to the perihelion shift, the trajectories of the debris of the star fan out into a crescent-like shape centered on the black hole. We also discuss the increase of the central density of the star as it approaches pericentric distance, the fraction of the debris accreted by the hole, its accretion rate, the distribution of debris orbits bound to the hole, and the velocity of unbound ejected material. We compare these results with the disruption of the star by a Newtonian point mass.

  16. Spin and mass of the supermassive black hole in the Galactic Center

    SciTech Connect

    Dokuchaev, V. I.

    2015-12-15

    A new method for exact determination of the masses and spins of black holes from the observations of quasi-periodic oscillations is discussed. The detected signal from the hot clumps in the accretion plasma must contain modulations with two characteristic frequencies: the frequency of rotation of the black hole event horizon and the frequency of the latitudinal precession of the clump’s orbit. Application of the method of two characteristic frequencies for interpretation of the observed quasi-periodic oscillations from the supermassive black hole in the Galactic center in the X-rays and in the near IR region yields the most exact, for the present, values of the mass and the spin (Kerr parameter) of the Sgr A* black hole: M = (4.2 ± 0.2) × 10{sup 6}M{sub ⊙} and a = 0.65 ± 0.05. The observed quasi-periodic oscillations with a period of about 11.5 min are identified as the black hole event horizon rotation period and those with a period of about 19 min are identified as the latitudinal oscillation period of the hot spot orbits in the accretion disk.

  17. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.

    PubMed

    Doeleman, Sheperd S; Weintroub, Jonathan; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C-J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-09-04

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

  18. On the location of the supermassive black hole in CTA 102

    NASA Astrophysics Data System (ADS)

    Fromm, Christian M.; Perucho, Manel; Ros, Eduardo; Savolainen, Tuomas; Zensus, J. Anton

    2015-04-01

    Context. Relativistic jets in active galactic nuclei are one of the most powerful phenomena in the Universe. They form in the surroundings of the supermassive black holes as a by-product of accretion onto the central black hole in active galaxies. The flow in the jets propagates at velocities close to the speed of light. The distance between the first part of the jet that is visible in radio images (core) and the black hole is still a matter of debate. Aims: Only very-long-baseline interferometry observations resolve the innermost compact regions of the radio jet. These observations can access the jet base, and by combining data at different wavelenghts, address the physical parameters of the outflow from its emission. Methods: We have performed an accurate analysis of the frequency-dependent shift of the VLBI core location for a multi-wavelength set of images of the blazar CTA 102 including data from 6 cm down to 3 mm. Results: The measure of the position of the central black hole, with mass ~108.93M⊙, in the blazar CTA 102 reveals a distance of ~8 × 104 gravitational radii to the 86 GHz core, in agreement with similar measures obtained for other blazars and distant radio galaxies, and in contrast with recent results for the case of nearby radio galaxies, which show distances between the black hole and the radio core that can be two orders of magnitude smaller.

  19. Resolving the Bondi Accretion Flow toward the Supermassive Black Hole of NGC 3115 with Chandra

    NASA Astrophysics Data System (ADS)

    Wong, Ka-Wah; Irwin, J.; Million, E.; Yukita, M.; Mathews, W.; Bregman, J.

    2011-09-01

    Gas undergoing Bondi accretion on to a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observation show has a very massive SMBH. Our observations show that the gas temperature rises toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. The data support that the Bondi radius is at least about 4-5 arcsec (188-235 pc), suggesting a supermassive blackhole of two billion solar masses that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power law index of 1.03, and we will discuss the interpretations of the results.

  20. Anisotropic velocity distributions in M87 - Is a supermassive black hole necessary

    NASA Technical Reports Server (NTRS)

    Duncan, M. J.; Wheeler, J. C.

    1980-01-01

    A collisionless distribution of stars with an anisotropic velocity distribution is considered as a model for the cores of spherical galaxies. The first moment of the corresponding Boltzmann equation is integrated to give the resulting density and velocity dispersion profiles. These distributions plus a central point source of light give a good fit to the data from recent observations of M87 without requiring a supermassive central object. This model requires one less fitting parameter than published models incorporating a central black hole. The same model with no point source of light also provides a good fit to the normal E1 galaxy NGC 3379. The success of this model in describing the cores of both M87 and NGC 3379 suggests that a supermassive black hole is not necessary in either.

  1. The shortest-known-period star orbiting our Galaxy's supermassive black hole.

    PubMed

    Meyer, L; Ghez, A M; Schödel, R; Yelda, S; Boehle, A; Lu, J R; Do, T; Morris, M R; Becklin, E E; Matthews, K

    2012-10-05

    Stars with short orbital periods at the center of our Galaxy offer a powerful probe of a supermassive black hole. Over the past 17 years, the W. M. Keck Observatory has been used to image the galactic center at the highest angular resolution possible today. By adding to this data set and advancing methodologies, we have detected S0-102, a star orbiting our Galaxy's supermassive black hole with a period of just 11.5 years. S0-102 doubles the number of known stars with full phase coverage and periods of less than 20 years. It thereby provides the opportunity, with future measurements, to resolve degeneracies in the parameters describing the central gravitational potential and to test Einstein's theory of general relativity in an unexplored regime.

  2. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  3. Spin properties of supermassive black holes with powerful outflows

    NASA Astrophysics Data System (ADS)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  4. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Best, Philip N.

    2014-08-01

    We summarize what large surveys of the contemporary Universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies with their central supermassive black holes. We present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations. The radiative-mode AGNs are associated with black holes (BHs) that produce radiant energy powered by accretion at rates in excess of ˜1% of the Eddington limit. They are primarily associated with less massive BHs growing in high-density pseudobulges at a rate sufficient to produce the total mass budget in these BHs in ˜10 Gyr. The circumnuclear environment contains high-density cold gas and associated star formation. Major mergers are not the primary mechanism for transporting this gas inward; secular processes appear dominant. Stellar feedback is generic in these objects, and strong AGN feedback is seen only in the most powerful AGNs. In jet-mode AGNs the bulk of energetic output takes the form of collimated outflows (jets). These AGNs are associated with the more massive BHs in more massive (classical) bulges and elliptical galaxies. Neither the accretion onto these BHs nor star formation in their host bulge is significant today. These AGNs are probably fueled by the accretion of slowly cooling hot gas that is limited by the feedback/heating provided by AGN radio sources. Surveys of the high-redshift Universe paint a similar picture. Noting that the volume-averaged ratio of star formation to BH growth has remained broadly constant over the past 10 Gyrs, we argue that the processes that linked the cosmic evolution of galaxies and BHs are still at play today.

  5. Supermassive black holes from collapsing dark matter Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Das Gupta, Patrick; Thareja, Eklavya

    2017-02-01

    The discovery of active galactic nuclei at redshifts ≳ 6 suggests that supermassive black holes (SMBHs) formed early on. Growth of the remnants of population III stars by accretion of matter, both baryonic as well as collisionless dark matter (DM), leading up to formation of SMBHs is a very slow process. Therefore, such models encounter difficulties in explaining quasars detected at z≳ 6 . Furthermore, massive particles making up collisionless DM have not only so far eluded experimental detection but they also do not satisfactorily explain gravitational structures on small scales. In recent years, there has been a surge in research activities concerning cosmological structure formation that involve coherent, ultra-light bosons in a dark fluid-like or fuzzy cold DM state. In this paper, we study collapse of such ultra-light bosonic halo DM that is in a Bose–Einstein condensate (BEC) phase to give rise to SMBHs on dynamical time scales. Time evolution of such self-gravitating BECs is examined using the Gross–Pitaevskii equation in the framework of time-dependent variational method. Comprised of identical dark bosons of mass m, BECs can collapse to form black holes of mass M eff on time scales  ∼108 yrs provided m~{{M}\\text{eff}}≳ 0.64~mPl2 . In particular, ultra-light dark bosons of mass ∼ {{10}-20}~\\text{eV} can lead to SMBHs with mass ≳ {{10}10}~{{M}ȯ} at z≈ 6 . Recently observed radio-galaxies in the ELAIS-N1 deep field with aligned jets can also possibly be explained if vortices of a rotating cluster size BEC collapse to form spinning SMBHs with angular momentum J≲ 3.6~{{n}W}\\frac{G{{M}2}}{c} , where n W and M are the winding number and mass of a vortex, respectively.

  6. MASSES OF NEARBY SUPERMASSIVE BLACK HOLES WITH VERY LONG BASELINE INTERFEROMETRY

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios; Marrone, Daniel P.; Oezel, Feryal; Gillessen, Stefan; Doeleman, Sheperd S.; Fish, Vincent L.

    2012-10-10

    Dynamical mass measurements to date have allowed determinations of the mass M and the distance D of a number of nearby supermassive black holes. In the case of Sgr A*, these measurements are limited by a strong correlation between the mass and distance scaling roughly as M {approx} D {sup 2}. Future very long baseline interferometric (VLBI) observations will image a bright and narrow ring surrounding the shadow of a supermassive black hole, if its accretion flow is optically thin. In this paper, we explore the prospects of reducing the correlation between mass and distance with the combination of dynamical measurements and VLBI imaging of the ring of Sgr A*. We estimate the signal-to-noise ratio of near-future VLBI arrays that consist of five to six stations, and we simulate measurements of the mass and distance of Sgr A* using the expected size of the ring image and existing stellar ephemerides. We demonstrate that, in this best-case scenario, VLBI observations at 1 mm can improve the error on the mass by a factor of about two compared to the results from the monitoring of stellar orbits alone. We identify the additional sources of uncertainty that such imaging observations have to take into account. In addition, we calculate the angular diameters of the bright rings of other nearby supermassive black holes and identify the optimal targets besides Sgr A* that could be imaged by a ground-based VLBI array or future space-VLBI missions allowing for refined mass measurements.

  7. Shaping the relation between the mass of supermassive black holes and the velocity dispersion of galactic bulges

    NASA Astrophysics Data System (ADS)

    Chan, M. H.

    2013-05-01

    I use the fact that the radiation emitted by the accretion disk of supermassive black hole can heat up the surrounding gas in the protogalaxy to achieve hydrostatic equilibrium during the galaxy formation. The correlation between the black hole mass M BH and velocity dispersion σ thus naturally arises. The result generally agrees with empirical fittings from observational data, even with M BH ≤106 M ⊙. This model provides a clear picture on how the properties of the galactic supermassive black holes are connected with the kinetic properties of the galactic bulges.

  8. COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. II. EVIDENCE FOR DOWNSIZING OF SPIN EVOLUTION

    SciTech Connect

    Li Yanrong; Wang Jianmin; Ho, Luis C. E-mail: wangjm@mail.ihep.ac.cn

    2012-04-20

    The spin is an important but poorly constrained parameter for describing supermassive black holes (SMBHs). Using the continuity equation of SMBH number density, we explicitly obtain the mass-dependent cosmological evolution of the radiative efficiency for accretion, which serves as a proxy for SMBH spin. Our calculations make use of the SMBH mass function of active and inactive galaxies (derived in the first paper of this series), the bolometric luminosity function of active galactic nuclei (AGNs), corrected for the contribution from Compton-thick sources, and the observed Eddington ratio distribution. We find that the radiative efficiency generally increases with increasing black hole mass at high redshifts (z {approx}> 1), roughly as {eta}{proportional_to}M{sup 0.5}{sub .}, while the trend reverses at lower redshifts, such that the highest efficiencies are attained by the lowest mass black holes. Black holes with M{sub .} {approx}> 10{sup 8.5} M{sub Sun} maintain radiative efficiencies as high as {eta} Almost-Equal-To 0.3-0.4 at high redshifts, near the maximum for rapidly spinning systems, but their efficiencies drop dramatically (by an order of magnitude) by z Almost-Equal-To 0. The pattern for lower mass holes is somewhat more complicated but qualitatively similar. Assuming that the standard accretion disk model applies, we suggest that the accretion history of SMBHs and their accompanying spins evolves in two distinct regimes: an early phase of prolonged accretion, plausibly driven by major mergers, during which the black hole spins up, then switching to a period of random, episodic accretion, governed by minor mergers and internal secular processes, during which the hole spins down. The transition epoch depends on mass, mirroring other evidence for 'cosmic downsizing' in the AGN population; it occurs at z Almost-Equal-To 2 for high-mass black holes and somewhat later, at z Almost-Equal-To 1, for lower mass systems.

  9. DISCOVERY OF AN H{alpha} EMITTING DISK AROUND THE SUPERMASSIVE BLACK HOLE OF M31

    SciTech Connect

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V.

    2013-01-10

    Due to its proximity, the mass of the supermassive black hole in the nucleus of the Andromeda galaxy (M31), the most massive black hole in the Local Group of galaxies, has been measured by several methods involving the kinematics of a stellar disk which surrounds it. We report here the discovery of an eccentric H{alpha} emitting disk around the black hole at the center of M31 and show how modeling this disk can provide an independent determination of the mass of the black hole. Our model implies a mass of 5.0{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 7} M{sub Sun} for the central black hole, consistent with the average of determinations by methods involving stellar dynamics, and compatible (at 1{sigma} level) with measurements obtained from the most detailed models of the stellar disk around the central black hole. This value is also consistent with the M-{sigma} relation. In order to make a comparison, we applied our simulation on the stellar kinematics in the nucleus of M31 and concluded that the parameters obtained for the stellar disk are not formally compatible with the parameters obtained for the H{alpha} emitting disk. This result suggests that the stellar and the H{alpha} emitting disks are intrinsically different from each other. A plausible explanation is that the H{alpha} emission is associated with a gaseous disk. This hypothesis is supported by the detection of traces of weaker nebular lines in the nuclear region of M31. However, we cannot exclude the possibility that the H{alpha} emission is, at least partially, generated by stars.

  10. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-07-10

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9{sup +3.8}{sub -2.3}% and 1.9% {+-} 0.6%, respectively, which significantly exceed the typical observed ratio of {approx}0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are Almost-Equal-To 5.1{sigma} and Almost-Equal-To 3.4{sigma} outliers from the M{sub .}-M{sub bulge} scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which {approx}> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  11. A new way to measure supermassive black hole spin in accretion disc-dominated active galaxies

    NASA Astrophysics Data System (ADS)

    Done, Chris; Jin, C.; Middleton, M.; Ward, Martin

    2013-09-01

    We show that disc continuum fitting can be used to constrain black hole spin in a subclass of narrow-line Seyfert 1 (NLS1) active galactic nuclei as their low mass and high mass accretion rate means that the disc peaks at energies just below the soft X-ray bandpass. We apply the technique to the NLS1 PG1244+026, where the optical/UV/X-ray spectrum is consistent with being dominated by a standard disc component. This gives a best estimate for black hole spin which is low, with a firm upper limit of a* <0.86. This contrasts with the recent X-ray determinations of (close to) maximal black hole spin in other NLS1 based on relativistic smearing of the iron profile. While our data on PG1244+026 do not have sufficient statistics at high energy to give a good measure of black hole spin from the iron line profile, cosmological simulations predict that black holes with similar masses have similar growth histories and so should have similar spins. This suggests that there is a problem either in our understanding of disc spectra, or/and X-ray reflection or/and the evolution of black hole spin.

  12. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    PubMed

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  13. Off The Beaten Path: Modeling the Dynamics of Supermassive Black Holes in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Tremmel, Michael J.; Governato, Fabio; Volonteri, Marta; Quinn, Thomas R.

    2015-01-01

    Cosmological simulations are an essential tool to understand the co-evolution of supermassive black holes (SMBHs) and their host galaxies. However, the limited resolution of these simulations presents unique challenges to successfully modeling black hole dynamics. We present a novel, physically motivated method for improving the dynamics of black holes in cosmological simulations, by accounting for the unresolved dynamical friction that SMBHs feel from stars and dark matter. We show how this approach, which naturally scales with resolution, is a major step forward compared to more commonly used 'advection' models that often assume SMBHs sink very rapidly toward the center of their host galaxies. Here, we demonstrate that our method is able to prevent numerical heating of SMBHs while allowing for realistic dynamics.Our implementation will allow us to more realistically model SMBH dynamics, accretion, and mergers in cosmological simulations, giving us the ability to better understand how SMBHs grow with their host galaxies. This also provides an opportunity for more detailed studies of SMBHs in dwarf galaxies, which can give crucial insight into constraining black hole seed formation models.

  14. COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. I. MASS FUNCTION AT 0 < z {approx}< 2

    SciTech Connect

    Li Yanrong; Wang Jianmin; Ho, Luis C. E-mail: wangjm@mail.ihep.ac.cn

    2011-11-20

    We present the mass function of supermassive black holes (SMBHs) over the redshift range z = 0-2, using the latest deep luminosity and mass functions of field galaxies to constrain the masses of their spheroids, which we relate to SMBH mass through the empirical correlation between SMBH and spheroid mass (the M{sub .}-M{sub sph} relation). In addition to luminosity fading of the stellar content of the spheroids, we carefully consider the variation of the bulge-to-total luminosity ratio of the galaxy populations and the M{sub .}/M{sub sph} ratio, which, according to numerous recent studies, evolves rapidly with redshift. The SMBH mass functions derived from the galaxy luminosity and mass functions show very good agreement, both in shape and in normalization. The resultant SMBH mass function and integrated mass density for the local epoch (z Almost-Equal-To 0) match well those derived independently by other studies. Consistent with other evidence for cosmic downsizing, the upper end of the mass function remains roughly constant since z Almost-Equal-To 2, while the space density of lower mass black holes undergoes strong evolution. We carefully assess the impact of various sources of uncertainties on our calculations. A companion paper uses the mass function derived in this work to determine the radiative efficiency of black hole accretion and constraints that can be imposed on the cosmological evolution of black hole spin.

  15. HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?

    SciTech Connect

    Volonteri, Marta; Gueltekin, Kayhan; Natarajan, Priyamvada

    2011-08-20

    In this paper, we examine whether the properties of central black holes in galactic nuclei correlate with their host dark matter halos. We analyze the entire sample of galaxies where black hole mass, velocity dispersion {sigma}, and asymptotic circular velocity V{sub c} have all been measured. We fit M{sub BH}-{sigma} and M{sub BH}-V{sub c} to a power law, and find that in both relationships the scatter and slope are similar. This model-independent analysis suggests that although the black hole masses are not uniquely determined by dark matter halo mass, when considered for the current sample as a whole, the M{sub BH}-V{sub c} correlation may be as strong (or as weak) as M{sub BH}-{sigma}. Although the data are sparse, there appears to be more scatter in the correlation for both {sigma} and V{sub c} at the low-mass end. This is not unexpected given our current understanding of galaxy and black hole assembly. In fact, there are several compelling reasons that account for this: (1) supermassive black hole (SMBH) formation is likely less efficient in low-mass galaxies with large angular momentum content, (2) SMBH growth is less efficient in low-mass disk galaxies that have not experienced major mergers, and (3) dynamical effects, such as gravitational recoil, increase scatter preferentially at the low-mass end. Therefore, the recent observational claim of the absence of central SMBHs in bulgeless, low-mass galaxies, or deviations from the correlations defined by high-mass black holes in large galaxies today is, in fact, predicated by current models of black hole growth. We show how this arises as a direct consequence of the coupling between dark matter halos and central black holes at the earliest epochs.

  16. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    DOE PAGES

    Erwin, Peter; Gadotti, Dimitri Alexei

    2012-01-01

    Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that whileMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NSC / M ⋆ ,  tot for NSCs in spirals (at least those with Hubble typesc and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ ,  bul ofMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for bothMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier thanbc appear to host systematically more massive NSCs than do typesc and later.« less

  17. Sensitive Spitzer Photometry of Supermassive Black Holes at the Final Stage of Adolescence

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Netzer, Hagai; Mor, Rivay; Trakhtenbrot, Benny

    2011-05-01

    We propose to obtain sensitive Spitzer snapshot observations of a unique sample of 35 Sloan Digital Sky Survey quasars at redshift 4.8 for which we obtained reliable, Mg II-based determinations of the supermassive black hole (SMBH) mass and normalized accretion rate (L/L_Edd). These quasars appear to mark the final stage of SMBH `adolescence' in the history of the Universe as their SMBHs are significantly less massive and their L/L_Edd values are significantly higher with respect to their counterparts at lower redshifts. Our observations will provide both 1) deep coverage of the fields around these quasars which will be utilized as crucial priors for our approved Herschel/SPIRE observations of these sources, and 2) coverage of the rest-frame optical SEDs of these fast accreting quasars. The results will maximize our ability to measure the star-formation rate in the host galaxies of these quasars using Herschel. We will thus be able to investigate correlations between SMBH growth and star-forming activity in the early Universe. The Spitzer photometry will also provide invaluable information about the shape of the rest-frame optical continuum in these quasars which will be used to search for extreme disk properties that may be signatures of the remarkably high accretion rates in these sources.

  18. Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events

    NASA Astrophysics Data System (ADS)

    Komossa, S.; Zensus, J. A.

    2016-02-01

    The capture and disruption of stars by supermassive black holes (SMBHs), and the formation and coalescence of binaries, are inevitable consequences of the presence of SMBHs at the cores of galaxies. Pairs of active galactic nuclei (AGN) and binary SMBHs are important stages in the evolution of galaxy mergers, and an intense search for these systems is currently ongoing. In the early and advanced stages of galaxy merging, observations of the triggering of accretion onto one or both BHs inform us about feedback processes and BH growth. Identification of the compact binary SMBHs at parsec and sub-parsec scales provides us with important constraints on the interaction processes that govern the shrinkage of the binary beyond the ``final parsec''. Coalescing binary SMBHs are among the most powerful sources of gravitational waves (GWs) in the universe. Stellar tidal disruption events (TDEs) appear as luminous, transient, accretion flares when part of the stellar material is accreted by the SMBH. About 30 events have been identified by multi-wavelength observations by now, and they will be detected in the thousands in future ground-based or space-based transient surveys. The study of TDEs provides us with a variety of new astrophysical tools and applications, related to fundamental physics or astrophysics. Here, we provide a review of the current status of observations of SMBH pairs and binaries, and TDEs, and discuss astrophysical implications.

  19. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  20. Formation of dark matter tori around supermassive black holes via the eccentric Kozai-Lidov mechanism

    SciTech Connect

    Naoz, Smadar; Silk, Joseph

    2014-11-10

    We explore the effects of long-term secular perturbations on the distribution of dark matter particles around supermassive black hole (BH) binaries. We show that in the hierarchical (in separation) three-body problem, one of the BHs and a dark matter particle form an inner binary. Gravitational perturbations from the BH companion, on a much wider orbit, can cause the dark matter particle to reach extremely high eccentricities and even get accreted onto the BH by what is known as the eccentric Kozai-Lidov (EKL) mechanism. We show that this may produce a torus-like configuration for the dark matter distribution around the less massive member of the BH binary. We first consider an intermediate BH (IMBH) in the vicinity of our galactic center, which may be a relic of a past minor merger. We show that if the IMBH is close enough (i.e., near the stellar disk) the EKL mechanism is very efficient in exciting the eccentricity of dark matter particles in near-polar configurations to extremely high values where they are accreted by the IMBH. We show that this mechanism is even more effective if the central BH grows in mass, where we have assumed adiabatic growth. Because near-polar configurations are disrupted, a torus-like shape is formed. We also show that this behavior is also likely to be relevant for supermassive BH binaries. We suggest that if the BHs are spinning, the accreted dark matter particles may linger in the ergosphere, and thereby generate self-annihilations and produce an indirect signature of potential interest.

  1. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations.

    PubMed

    Ueda, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find "obscured" AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions.

  2. The Supermassive Black Hole Mass - Pitch Angle Relation in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel; Berrier, J. C.; Kennefick, J. D.; Seigar, M.; Davis, B. L.; Barrows, R. S.; Shields, D.; Lacy, C. H.

    2013-01-01

    We present new and improved evidence for a strong correlation, with low scatter, between supermassive black hole mass and spiral arm pitch angle in disk galaxies. Such a correlation could be a useful tool for developing a SMBH mass function for both local and distant galaxies, because other host galaxy features which correlate with black hole mass either require expensive spectroscopy (as in the M-sigma relation) or work less well for spiral than for other galaxies because of the need to disentangle the bulge component from the disk and bar components (Bulge luminosity or Sersic index). A late-type SMBH mass function derived from pitch angle measurements could complement nicely early-type mass functions derived from these other measurements, especially because the late-type mass function has so far received less attention than the early-type mass function.

  3. Cosmological evolution of supermassive black holes in galactic centers unveiled by hard X-ray observations

    PubMed Central

    UEDA, Yoshihiro

    2015-01-01

    We review the current understanding of the cosmological evolution of supermassive black holes in galactic centers elucidated by X-ray surveys of active galactic nuclei (AGNs). Hard X-ray observations at energies above 2 keV are the most efficient and complete tools to find “obscured” AGNs, which are dominant populations among all AGNs. Combinations of surveys with various flux limits and survey area have enabled us to determine the space number density and obscuration properties of AGNs as a function of luminosity and redshift. The results have essentially solved the origin of the X-ray background in the energy band below ∼10 keV. The downsizing (or anti-hierarchical) evolution that more luminous AGNs have the space-density peak at higher redshifts has been discovered, challenging theories of galaxy and black hole formation. Finally, we summarize unresolved issues on AGN evolution and prospects for future X-ray missions. PMID:25971656

  4. Jet-launching structure resolved near the supermassive black hole in M87.

    PubMed

    Doeleman, Sheperd S; Fish, Vincent L; Schenck, David E; Beaudoin, Christopher; Blundell, Ray; Bower, Geoffrey C; Broderick, Avery E; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lonsdale, Colin; Marrone, Daniel P; Moran, James M; Oyama, Tomoaki; Plambeck, Richard; Primiani, Rurik A; Rogers, Alan E E; Smythe, Daniel L; SooHoo, Jason; Strittmatter, Peter; Tilanus, Remo P J; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Ziurys, Lucy M

    2012-10-19

    Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by the accretion of matter onto supermassive black holes. Although the measured width profiles of such jets on large scales agree with theories of magnetic collimation, the predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations, at a wavelength of 1.3 millimeters, of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 ± 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.

  5. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    PubMed

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  6. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    SciTech Connect

    Mayer, L.; Kazantzidis, S.; Madau, P.; Colpi, M.; Quinn, T.; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  7. Supermassive Black Holes in the Hierarchical Universe: A General Framework and Observational Tests

    NASA Astrophysics Data System (ADS)

    Shen, Yue

    2009-10-01

    We present a simple framework for the growth and evolution of supermassive black holes (SMBHs) in the hierarchical structure formation paradigm, adopting the general idea that quasar activity is triggered in major mergers. In our model, black hole accretion is triggered during major mergers (mass ratio gsim0.3) of host dark matter halos. The successive evolution of quasar luminosities follows a universal light-curve (LC) form during which the growth of the SMBH is modeled self-consistently: an initial exponential growth at a constant Eddington ratio of order unity until it reaches the peak luminosity, followed by a power-law decay. Assuming that the peak luminosity correlates with the post-merger halo mass, we convolve the LC with the triggering rate of quasar activity to predict the quasar luminosity function (LF). Our model reproduces the observed LF at 0.5 < z < 4.5 for the full luminosity ranges probed by current optical and X-ray surveys. At z < 0.5, our model underestimates the LF at L bol < 1045 erg s-1, allowing room for the active galactic nuclei (AGNs) activity triggered by secular processes instead of major mergers. At z > 4.5, in order to reproduce the observed quasar abundance, the typical quasar hosts must shift to lower mass halos, and/or minor mergers can also trigger quasar activity. Our model reproduces both the observed redshift evolution and luminosity dependence of the linear bias of quasar/AGN clustering. Due to the scatter between instantaneous luminosity and halo mass, quasar/AGN clustering weakly depends on luminosity at low-to-intermediate luminosities; but the linear bias rises rapidly with luminosity at the high luminosity end and at high redshift. In our model, the Eddington ratio distribution is roughly lognormal, which broadens and shifts to lower mean values from high luminosity quasars (L bol gsim 1046 erg s-1) to low-luminosity AGNs (L bol lsim 1045 erg s-1), in good agreement with observations. The model predicts that the vast

  8. SUPERMASSIVE BLACK HOLES IN THE HIERARCHICAL UNIVERSE: A GENERAL FRAMEWORK AND OBSERVATIONAL TESTS

    SciTech Connect

    Shen Yue

    2009-10-10

    We present a simple framework for the growth and evolution of supermassive black holes (SMBHs) in the hierarchical structure formation paradigm, adopting the general idea that quasar activity is triggered in major mergers. In our model, black hole accretion is triggered during major mergers (mass ratio approx>0.3) of host dark matter halos. The successive evolution of quasar luminosities follows a universal light-curve (LC) form during which the growth of the SMBH is modeled self-consistently: an initial exponential growth at a constant Eddington ratio of order unity until it reaches the peak luminosity, followed by a power-law decay. Assuming that the peak luminosity correlates with the post-merger halo mass, we convolve the LC with the triggering rate of quasar activity to predict the quasar luminosity function (LF). Our model reproduces the observed LF at 0.5 < z < 4.5 for the full luminosity ranges probed by current optical and X-ray surveys. At z < 0.5, our model underestimates the LF at L {sub bol} < 10{sup 45} erg s{sup -1}, allowing room for the active galactic nuclei (AGNs) activity triggered by secular processes instead of major mergers. At z > 4.5, in order to reproduce the observed quasar abundance, the typical quasar hosts must shift to lower mass halos, and/or minor mergers can also trigger quasar activity. Our model reproduces both the observed redshift evolution and luminosity dependence of the linear bias of quasar/AGN clustering. Due to the scatter between instantaneous luminosity and halo mass, quasar/AGN clustering weakly depends on luminosity at low-to-intermediate luminosities; but the linear bias rises rapidly with luminosity at the high luminosity end and at high redshift. In our model, the Eddington ratio distribution is roughly lognormal, which broadens and shifts to lower mean values from high luminosity quasars (L {sub bol} approx> 10{sup 46} erg s{sup -1}) to low-luminosity AGNs (L {sub bol} approx< 10{sup 45} erg s{sup -1}), in good

  9. SONGLINES FROM DIRECT COLLAPSE SEED BLACK HOLES: EFFECTS OF X-RAYS ON BLACK HOLE GROWTH AND STELLAR POPULATIONS

    SciTech Connect

    Aykutalp, Aycin; Wise, John H.; Spaans, Marco; Meijerink, Rowin

    2014-12-20

    In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution and is a key ingredient in the assembly of galaxies. To investigate the origin of SMBHs, we perform cosmological simulations that target the direct collapse black hole seed formation scenario in the presence of two different strong Lyman-Werner (LW) background fields. These simulations include the X-ray irradiation from a central massive black hole (MBH), H{sub 2} self-shielding, and stellar feedback from metal-free and metal-enriched stars. We find in both simulations that local X-ray feedback induces metal-free star formation ∼0.5 Myr after the MBH forms. The MBH accretion rate reaches a maximum of 10{sup –3} M {sub ☉} yr{sup –1} in both simulations. However, the duty cycle differs and is derived to be 6% and 50% for the high and low LW cases, respectively. The MBH in the high LW case grows only ∼6% in 100 Myr compared to 16% in the low LW case. We find that the maximum accretion rate is determined by the local gas thermodynamics, whereas the duty cycle is determined by the large-scale gas dynamics and gas reservoir. We conclude that radiative feedback from the central MBH plays an important role in star formation in the nuclear regions and stifling initial MBH growth relative to the typical Eddington rate argument, and that initial MBH growth might be affected by the local LW radiation field.

  10. Orbital motion in the radio galaxy 3C 66B: evidence for a supermassive black hole binary.

    PubMed

    Sudou, Hiroshi; Iguchi, Satoru; Murata, Yasuhiro; Taniguchi, Yoshiaki

    2003-05-23

    Supermassive black hole binaries may exist in the centers of active galactic nuclei such as quasars and radio galaxies, and mergers between galaxies may result in the formation of supermassive binaries during the course of galactic evolution. Using the very-long-baseline interferometer, we imaged the radio galaxy 3C 66B at radio frequencies and found that the unresolved radio core of 3C 66B shows well-defined elliptical motions with a period of 1.05 +/- 0.03 years, which provides a direct detection of a supermassive black hole binary.

  11. Action growth for AdS black holes

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Ruan, Shan-Ming; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-09-01

    Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  12. Watching a supermassive black hole eat -- Sgr A* and cloud G2

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Becklin, Eric; Carey, Sean; Ghez, Andrea; Hora, Joseph; Huang, Jiasheng; Ingalls, James; Meyer, Leo; Morris, Mark; Smith, Howard; Wang, Zhong; Witzel, Gunther; Willner, Steven

    2013-10-01

    The Galactic center supermassive black hole is a fluctuating source of electromagnetic radiation derived from its accretion flow. For the past decade, the black hole's ingestion has been modest, but in the near future, its accretion rate and luminosity are expected to surge as the cloud G2 swings by and feeds Sgr A* with a helping of fresh gas. We propose to monitor Sgr A* with Spitzer/IRAC at a wavelength of 4.5 microns as the elevated accretion episode proceeds. Near-infrared wavelengths are where the black hole's emission has been best characterized in the past, and IRAC observations will complement planned observations with other observatories at X-ray, radio, and submillimeter wavelengths. The variability of Sgr A* is a random red-noise process, but the limited duration of continuous ground-based observations (<6 hr) has prevented direct measurement of the correlation timescale. This timescale corresponds to a thermal or viscous timescale associated with the inner radius of the accretion disk, and knowing it is critical for the black hole accretion physics. IRAC offers the unique capability to observe in the infrared for 24 hours continuously at each epoch and to observe during the critical winter months when no ground-based observatories will be able to carry out infrared or submm observations. Our plan is to observe at seven epochs spread over a 14-month interval, including initial observations before the G2 periapsis. This will let us follow the initial stages of what is expected to be an extended accretion episode. Although Sgr A* lies in a crowded field, the sensitivity and the known, stable point spread function of IRAC will allow us recover all variability information on time scales longer than about 20 minutes (and perhaps shorter). The IRAC observations will at last reveal the correlation time of the variation and whether it changes during the accretion episode, yielding new information about black hole accretion disk physics.

  13. THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SERSIC AND CORE-SERSIC GALAXIES

    SciTech Connect

    Scott, Nicholas; Graham, Alister W; Schombert, James

    2013-05-01

    We have examined the relationship between supermassive black hole mass (M{sub BH}) and the stellar mass of the host spheroid (M{sub sph,*}) for a sample of 75 nearby galaxies. To derive the spheroid stellar masses we used improved Two Micron All Sky Survey K{sub s}-band photometry from the ARCHANGEL photometry pipeline. Dividing our sample into core-Sersic and Sersic galaxies, we find that they are described by very different M{sub BH}-M{sub sph,*} relations. For core-Sersic galaxies-which are typically massive and luminous, with M{sub BH} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }-we find M{sub BH}{proportional_to} M{sub sph,*}{sup 0.97{+-}0.14}, consistent with other literature relations. However, for the Sersic galaxies-with typically lower masses, M{sub sph,*} {approx}< 3 Multiplication-Sign 10{sup 10} M{sub Sun }-we find M{sub BH}{proportional_to}M{sub sph,*}{sup 2.22{+-}0.58}, a dramatically steeper slope that differs by more than 2 standard deviations. This relation confirms that, for Sersic galaxies, M{sub BH} is not a constant fraction of M{sub sph,*}. Sersic galaxies can grow via the accretion of gas which fuels both star formation and the central black hole, as well as through merging. Their black hole grows significantly more rapidly than their host spheroid, prior to growth by dry merging events that produce core-Sersic galaxies, where the black hole and spheroid grow in lockstep. We have additionally compared our Sersic M{sub BH}-M{sub sph,*} relation with the corresponding relation for nuclear star clusters, confirming that the two classes of central massive object follow significantly different scaling relations.

  14. Bulgeless Galaxies Hosting 107 M⊙ AGN in Galaxy Zoo: The Growth of Black Holes via Secular Processes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, C. J.; Schawinski, K.; Moran, E. C.; Han, A.; Kaviraj, S.; Masters, K. L.; Urry, C. M.; Willett, K.; Bamford, S. P.; Nichol, R.

    2013-01-01

    The growth of supermassive black holes (SMBHs) appears to proceed via multiple pathways including mergers and secular processes, but these are difficult to disentangle for most galaxies given their complex evolutionary histories. In order to understand the effects of secular galaxy evolution on black hole growth, we require a sample of active galactic nuclei (AGN) in galaxies with a calm formation history free of significant mergers, a population that heretofore has been difficult to locate. Here we present a sample of 13 AGN in massive galaxies lacking the classical bulges believed inevitably to result from mergers; they also either lack or have extremely small pseudobulges, meaning they have had very calm accretion histories. This is the largest sample to date of massive, bulgeless AGN host galaxies selected without any direct restriction on the SMBH mass. The broad-line objects in the sample have black hole masses of 106-7 M⊙ Eddington arguments imply similar masses for the rest of the sample, meaning these black holes have grown substantially in the absence of mergers or other bulge-building processes such as violent disk instabilities. The black hole masses are systematically higher than expected from established bulge-black hole relations. However, these systems may be consistent with the correlation between black hole mass and total stellar mass. We discuss these results in the context of other studies and consider the implication that the details of stellar galaxy evolution and dynamics may not be fundamental to the co-evolution of galaxies and black holes.

  15. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    NASA Astrophysics Data System (ADS)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection. National Science Foundation PIRE program.

  16. The Effect of Supermassive Black Hole Binary Environments on Time to Detection for the Stochastic Background

    NASA Astrophysics Data System (ADS)

    Vigeland, Sarah; Siemens, Xavier

    2017-01-01

    Pulsar timing arrays (PTAs) are sensitive to the gravitational wave (GW) stochastic background produced by supermassive black hole binaries (SMBHBs). Environmental effects such as gas and stars accelerate the evolution of SMBHBs and may deplete the stochastic background at low frequencies. How much this effects the sensitivity of PTAs to the stochastic background depends on the astrophysical mechanism and where the binary's evolution transitions from being driven by environmental effects to driven by GW emission. We will discuss how these issues impact our observing strategy and estimated time-to-detection.

  17. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole.

  18. Further Evidence for a Supermassive Black Hole Mass-Pitch Angle Relation

    NASA Astrophysics Data System (ADS)

    Berrier, Joel C.; Davis, Benjamin L.; Kennefick, Daniel; Kennefick, Julia D.; Seigar, Marc S.; Barrows, Robert Scott; Hartley, Matthew; Shields, Doug; Bentz, Misty C.; Lacy, Claud H. S.

    2013-06-01

    We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M BH of a disk galaxy's nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log (M/M ⊙) = (8.21 ± 0.16) - (0.062 ± 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.

  19. ON THE HYDRODYNAMIC INTERPLAY BETWEEN A YOUNG NUCLEAR STARBURST AND A CENTRAL SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Hueyotl-Zahuantitla, Filiberto; Tenorio-Tagle, Guillermo; Silich, Sergiy; Wuensch, Richard; Palous, Jan

    2010-06-10

    We present one-dimensional numerical simulations, which consider the effects of radiative cooling and gravity on the hydrodynamics of the matter reinserted by stellar winds and supernovae within young nuclear starbursts (NSBs) with a central supermassive black hole (SMBH). The simulations confirm our previous semi-analytic results for low-energetic starbursts, evolving in a quasi-adiabatic regime, and extend them to more powerful starbursts evolving in the catastrophic cooling regime. The simulations show a bimodal hydrodynamic solution in all cases. They present a quasi-stationary accretion flow onto the black hole, defined by the matter reinserted by massive stars within the stagnation volume and a stationary starburst wind, driven by the high thermal pressure acquired in the region between the stagnation and the starburst radii. In the catastrophic cooling regime, the stagnation radius rapidly approaches the surface of the starburst region, as one considers more massive starbursts. This leads to larger accretion rates onto the SMBH and concurrently to powerful winds able to inhibit interstellar matter from approaching the NSB. Our self-consistent model thus establishes a direct physical link between the SMBH accretion rate and the nuclear star formation activity of the host galaxy and provides a good upper limit to the accretion rate onto the central black hole.

  20. Further evidence for a supermassive black hole mass-pitch angle relation

    SciTech Connect

    Berrier, Joel C.; Kennefick, Daniel; Kennefick, Julia D.; Hartley, Matthew; Lacy, Claud H. S.; Davis, Benjamin L.; Barrows, Robert Scott; Shields, Doug; Seigar, Marc S.; Bentz, Misty C.

    2013-06-01

    We present new and stronger evidence for a previously reported relationship between galactic spiral arm pitch angle P (a measure of the tightness of spiral structure) and the mass M {sub BH} of a disk galaxy's nuclear supermassive black hole (SMBH). We use an improved method to accurately measure the spiral arm pitch angle in disk galaxies to generate quantitative data on this morphological feature for 34 galaxies with directly measured black hole masses. We find a relation of log (M/M {sub ☉}) = (8.21 ± 0.16) – (0.062 ± 0.009)P. This method is compared with other means of estimating black hole mass to determine its effectiveness and usefulness relative to other existing relations. We argue that such a relationship is predicted by leading theories of spiral structure in disk galaxies, including the density wave theory. We propose this relationship as a tool for estimating SMBH masses in disk galaxies. This tool is potentially superior when compared to other methods for this class of galaxy and has the advantage of being unambiguously measurable from imaging data alone.

  1. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  2. A gas cloud on its way towards the supermassive black hole at the Galactic Centre.

    PubMed

    Gillessen, S; Genzel, R; Fritz, T K; Quataert, E; Alig, C; Burkert, A; Cuadra, J; Eisenhauer, F; Pfuhl, O; Dodds-Eden, K; Gammie, C F; Ott, T

    2011-12-14

    Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ∼3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the supermassive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.

  3. Disk Assembly and the M BH-σ e Relation of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Debattista, Victor P.; Kazantzidis, Stelios; van den Bosch, Frank C.

    2013-03-01

    Recent Hubble Space Telescope observations have revealed that a majority of active galactic nuclei (AGNs) at z ~ 1-3 are resident in isolated disk galaxies, contrary to the usual expectation that AGNs are triggered by mergers. Here we develop a new test of the cosmic evolution of supermassive black holes (SMBHs) in disk galaxies by considering the local population of SMBHs. We show that substantial SMBH growth in spiral galaxies is required as disks assemble. SMBHs exhibit a tight relation between their mass and the velocity dispersion of the spheroid within which they reside, the M •-σ e relation. In disk galaxies the bulge is the spheroid of interest. We explore the evolution of the M •-σ e relation when bulges form together with SMBHs on the M •-σ e relation and then slowly re-form a disk around them. The formation of the disk compresses the bulge, raising its σ e . We present evidence for such compression in the form of larger velocity dispersion of classical bulges compared with elliptical galaxies at the same mass. This compression leads to an offset in the M •-σ e relation if it is not accompanied by an increased M •. We quantify the expected offset based on photometric data and show that, on average, SMBHs must grow by ~50%-65% just to remain on the M •-σ e relation. We find no significant offset in the M •-σ e relations of classical bulges and of ellipticals, implying that SMBHs have been growing along with disks. Our simulations demonstrate that SMBH growth is necessary for the local population of disk galaxies to have remained on the M •-σ e relation.

  4. Dark-matter haloes and the M-σ relation for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Larkin, Adam C.; McLaughlin, Dean E.

    2016-10-01

    We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.

  5. Supermassive Black Holes in Bulgeless and Dwarf Galaxies: A Multi-Wavelength Investigation

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan J.

    Supermassive black holes (SMBHs) are now understood to reside at the centers of nearly all major galaxies in the Universe. From studies of high-redshift quasars, we understand that SMBHs formed very early in the Universe's history, and well-studied correlations between other properties of galaxies, such as their morphologies, star formation rate, and merger history, with their central SMBH shows that SMBHs played a key role in the evolution of galaxies. The fact that the post-Big Bang Universe was extremely uniform and homogeneous presents a major mystery: How did SMBHs millions to billions of times as massive as the Sun form in such a short time? Given the theoretical limit at which a black hole can accrete material, it is not plausible that SMBHs could have formed through the conventional route: the end stage of the lifecycle of a massive star. Rather, there are two major theories for the formation of SMBHs, each with its own prediction for the black hole mass distribution and occupation fraction in the local Universe. Understanding this mass distribution and occupation fraction is therefore imperative to understanding the formation of SMBHs, the quasars that reveal their presence in the early Universe, and ultimately the evolution of galaxies to the present day. While large SMBHs in major, bulge-dominated galaxies are relatively easy to detect and characterize, this population of SMBHs is understood to have been built up largely through black hole merger events that erase any information about the progenitor black holes' masses. We must therefore search for SMBHs in late-type, bulgeless, and dwarf galaxies, which are much more likely to have had a relatively quiet, merger-free history, in order to glimpse the properties of the `seed' black holes that led to the buildup of SMBHs during the earliest epoch of the Universe. In this thesis, I will discuss my contributions to the understanding of this question, as well as what questions remain to be answered and the

  6. Supermassive Black Holes and their Host Spheroids III. The Mbh-nsph Correlation

    NASA Astrophysics Data System (ADS)

    Savorgnan, Giulia A. D.

    2016-04-01

    The Sérsic {R}1/n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH. The {M}{BH}{--}{n}{sph} correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph: the {L}{sph}{--}{n}{sph} and the {M}{BH}{--}{L}{sph}. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant {M}{BH}{--}{n}{sph} correlation. With the aim of re-investigating the {M}{BH}{--}{n}{sph} and other black hole mass scaling relations, we performed a detailed (i.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer. In this paper, the third of this series, we present an analysis of the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{n}{sph} diagrams. While early-type (elliptical+lenticular) and late-type (spiral) galaxies split into two separate relations in the {L}{sph}{--}{n}{sph} and {M}{BH}{--}{L}{sph} diagrams, they reunite into a single {M}{BH}\\propto {n}{sph}3.39+/- 0.15 sequence with relatively small intrinsic scatter (ε ≃ 0.25 {dex}). The black hole mass appears to be closely related to the spheroid central concentration of stars, which mirrors the inner gradient of the spheroid gravitational potential.

  7. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    SciTech Connect

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org

    2012-10-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t {sup -5/3} decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of {approx}10{sup 8} M{sub Sun }. At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  8. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    PubMed

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  9. Supermassive black hole formation at high redshifts via direct collapse in a cosmological context

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Hwan; Shlosman, Isaac; Begelman, Mitchell C.

    2015-07-01

    We study the early stage of the formation of seed supermassive black holes via direct collapse in dark matter (DM) haloes, in the cosmological context. We perform high-resolution zoom-in simulations of such collapse at high z. Using the adaptive mesh refinement code ENZO, we resolve the formation and growth of a DM halo, until its virial temperature reaches ˜104 K, atomic cooling turns on, and collapse ensues. We demonstrate that direct collapse proceeds in two stages, although they are not well separated. The first stage is triggered by the onset of atomic cooling, and leads to rapidly increasing accretion rate with radius, from dot{M}˜ 0.1 M_{⊙} yr^{-1} at the halo virial radius to few M⊙ yr-1, around the scale radius Rs ˜ 30 pc of the NFW DM density profile. The second stage of the collapse commences when the gas density takes precedence over the DM density. This is associated with the gas decoupling from the DM gravitational potential. The ensuing collapse approximates that of an isothermal sphere with dot{M}{(r)}˜ const. We confirm that the gas loses its angular momentum through non-axisymmetric perturbations and gravitational torques, to overcome the centrifugal barrier. During the course of the collapse, this angular momentum transfer process happens on nearly all spatial scales, and the angular momentum vector of the gas varies with position and time. Collapsing gas also exhibits supersonic turbulent motions which suppress gas fragmentation, and are characterized by density PDF consisting of a lognormal part and a high-density power-law tail.

  10. Supermassive black hole seed formation at high redshifts: long-term evolution of the direct collapse

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac; Choi, Jun-Hwan; Begelman, Mitchell C.; Nagamine, Kentaro

    2016-02-01

    We use cosmological adaptive mesh refinement code ENZO zoom-in simulations to study the long-term evolution of the collapsing gas within dark matter haloes at z. This direct collapse process is a leading candidate for rapid formation of supermassive black hole (SMBH) seeds. To circumvent the Courant condition at small radii, we apply the sink particle method, focusing on evolution on scales ˜0.01-10 pc. The collapse proceeds in two stages, with the secondary runaway happening within the central 10 pc. The sink particles form when the collapsing gas requires additional refinement of the grid size at the highest refinement level. Their growth is negligible with the sole exception of the central seed which grows dramatically to Mseed ˜ 2 × 106 M⊙ in ˜2 Myr, confirming the feasibility of this path to the SMBH. The variability of angular momentum in the accreted gas results in the formation of two misaligned discs. Both discs lie within the Roche limit of the central seed. While the inner disc is geometrically thin and weakly asymmetric, the outer disc flares due to turbulent motions as a result of the massive inflow along a pair of penetrating filaments. The filamentary inflow determines the dominant Fourier modes in this disc - these modes have a non-self-gravitational origin. We do not confirm that m = 1 is a dominant mode that drives the inflow in the presence of a central massive object. The overall configuration appears to be generic, and is expected to form when the central seed becomes sufficiently massive.

  11. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches

    NASA Astrophysics Data System (ADS)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  12. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    PubMed

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  13. Direct probe of the inner accretion flow around the supermassive black hole in NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.; Costantini, E.; De Marco, B.; Svoboda, J.; Motta, S. E.; Proga, D.; Saxton, R.; Ferrigno, C.; Longinotti, A. L.; Miniutti, G.; Grupe, D.; Mathur, S.; Shappee, B. J.; Prieto, J. L.; Stanek, K.

    2017-01-01

    Aims: NGC 2617 is a nearby (z 0.01) active galaxy that recently switched from being a Seyfert 1.8 to be a Seyfert 1.0. At the same time, it underwent a strong increase of X-ray flux by one order of magnitude with respect to archival measurements. We characterise the X-ray spectral and timing properties of NGC 2617 with the aim of studying the physics of a changing-look active galactic nucleus (AGN). Methods: We performed a comprehensive timing and spectral analysis of two XMM-Newton pointed observations spaced by one month, complemented by archival quasi-simultaneous INTEGRAL observations. Results: We found that, to the first order, NGC 2617 looks like a type 1 AGN in the X-ray band and, with the addition of a modest reflection component, its continuum can be modelled well either with a power law plus a phenomenological blackbody, a partially covered power law, or a double Comptonisation model. Independent of the continuum adopted, in all three cases a column density of a few 1023 cm-2 of neutral gas covering 20-40% of the continuum source is required by the data. Most interestingly, absorption structures due to highly ionised iron have been detected in both observations with a redshift of about 0.1c with respect to the systemic redshift of the host galaxy. Conclusions: The redshifted absorber can be ascribed to a failed wind/aborted jets component, to gravitational redshift effects, and/or to matter directly falling towards the central supermassive black hole. In either case, we are probing the innermost accretion flow around the central supermassive black hole of NGC 2617 and might be even watching matter in a direct inflow towards the black hole itself.

  14. INTERACTION OF RECOILING SUPERMASSIVE BLACK HOLES WITH STARS IN GALACTIC NUCLEI

    SciTech Connect

    Li Shuo; Liu, F. K.; Berczik, Peter; Spurzem, Rainer; Chen Xian E-mail: fkliu@bac.pku.edu.cn

    2012-03-20

    Supermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. The coalescence of the SMBHBs is a distinct source of gravitational wave (GW) radiation. The detections of the strong GW radiation and their possible electromagnetic counterparts are essential. Numerical relativity suggests that the post-merger supermassive black hole (SMBH) gets a kick velocity up to 4000 km s{sup -1} due to the anisotropic GW radiations. Here, we investigate the dynamical coevolution and interaction of the recoiling SMBHs and their galactic stellar environments with one million direct N-body simulations including the stellar tidal disruption by the recoiling SMBHs. Our results show that the accretion of disrupted stars does not significantly affect the SMBH dynamical evolution. We investigate the stellar tidal disruption rates as a function of the dynamical evolution of oscillating SMBHs in the galactic nuclei. Our simulations show that most stellar tidal disruptions are contributed by the unbound stars and occur when the oscillating SMBHs pass through the galactic center. The averaged disruption rate is {approx}10{sup -6} M{sub Sun} yr{sup -1}, which is about an order of magnitude lower than that by a stationary SMBH at similar galactic nuclei. Our results also show that a bound star cluster is around the oscillating SMBH of about {approx}0.7% the black hole mass. In addition, we discover a massive cloud of unbound stars following the oscillating SMBH. We also investigate the dependence of the results on the SMBH masses and density slopes of the galactic nuclei.

  15. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    SciTech Connect

    Hayasaki, K.; Sohn, B.W.; Jung, T.; Zhao, G.; Okazaki, A.T.; Naito, T. E-mail: bwsohn@kasi.re.kr E-mail: thjung@kasi.re.kr E-mail: tsuguya@ygu.ac.jp

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  16. INTERRUPTION OF TIDAL-DISRUPTION FLARES BY SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Liu, F. K.; Li, S.; Chen Xian E-mail: lis@bac.pku.edu.c

    2009-11-20

    Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing LAMBDA cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nuclei is essential in identifying the binaries in observations from the IR band through optical to X-ray. Recently, the flares in optical, UV, and X-ray caused by supermassive black holes (SMBHs) tidally disrupting nearby stars have been successfully used to observationally probe single SMBHs in normal galaxies. In this Letter, we investigate the accretion of the gaseous debris of a tidally disrupted star by a SMBHB. Using both stability analysis of three-body systems and numerical scattering experiments, we show that the accretion of stellar debris gas, which initially decays with time propor tot {sup -5/3}, would stop at a time T{sub tr} approx = etaT{sub b}. Here, eta approx 0.25 and T{sub b} is the orbital period of the SMBHB. After a period of interruption, the accretion recurs discretely at time T{sub r} approx = xi{sub b}, where xi approx 1. Both eta and xi sensitively depend on the orbital parameters of the tidally disrupted star at the tidal radius and the orbit eccentricity of SMBHB. The interrupted accretion of the stellar debris gas gives rise to an interrupted tidal flare, which could be used to identify SMBHBs in non-active galaxies in the upcoming transient surveys.

  17. X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION

    SciTech Connect

    Miller, Brendan P.; Gallo, Elena; Baldassare, Vivienne; Greene, Jenny E.; Kelly, Brandon C.; Treu, Tommaso; Woo, Jong-Hak

    2015-01-20

    Distinct seed formation mechanisms are imprinted upon the fraction of dwarf galaxies currently containing a central supermassive black hole. Seeding by Population III remnants is expected to produce a higher occupation fraction than is generated with direct gas collapse precursors. Chandra observations of nearby early-type galaxies can directly detect even low-level supermassive black hole activity, and the active fraction immediately provides a firm lower limit to the occupation fraction. Here, we use the volume-limited AMUSE surveys of ∼200 optically selected early-type galaxies to characterize simultaneously, for the first time, the occupation fraction and the scaling of L {sub X} with M {sub star}, accounting for intrinsic scatter, measurement uncertainties, and X-ray limits. For early-type galaxies with M {sub star} < 10{sup 10} M {sub ☉}, we obtain a lower limit to the occupation fraction of >20% (at 95% confidence), but full occupation cannot be excluded. The preferred dependence of log L {sub X} upon log M {sub star} has a slope of ∼0.7-0.8, consistent with the ''downsizing'' trend previously identified from the AMUSE data set, and a uniform Eddington efficiency is disfavored at ∼2σ. We provide guidelines for the future precision with which these parameters may be refined with larger or more sensitive samples.

  18. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Baker, John G.; Van Meter, James R.; Coleman Miller, M.; Reynolds, Christopher S.

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  19. Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean

    2015-04-01

    The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.

  20. X-Ray Constraints on the Local Supermassive Black Hole Occupation Fraction

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Greene, Jenny E.; Kelly, Brandon C.; Treu, Tommaso; Woo, Jong-Hak; Baldassare, Vivienne

    2015-01-01

    Distinct seed formation mechanisms are imprinted upon the fraction of dwarf galaxies currently containing a central supermassive black hole. Seeding by Population III remnants is expected to produce a higher occupation fraction than is generated with direct gas collapse precursors. Chandra observations of nearby early-type galaxies can directly detect even low-level supermassive black hole activity, and the active fraction immediately provides a firm lower limit to the occupation fraction. Here, we use the volume-limited AMUSE surveys of ~200 optically selected early-type galaxies to characterize simultaneously, for the first time, the occupation fraction and the scaling of L X with M star, accounting for intrinsic scatter, measurement uncertainties, and X-ray limits. For early-type galaxies with M star < 1010 M ⊙, we obtain a lower limit to the occupation fraction of >20% (at 95% confidence), but full occupation cannot be excluded. The preferred dependence of log L X upon log M star has a slope of ~0.7-0.8, consistent with the "downsizing" trend previously identified from the AMUSE data set, and a uniform Eddington efficiency is disfavored at ~2σ. We provide guidelines for the future precision with which these parameters may be refined with larger or more sensitive samples.

  1. CO-EVOLUTION OF SUPERMASSIVE BLACK HOLE AND HOST GALAXY FROM z {approx} 1 TO z = 0

    SciTech Connect

    Kiuchi, Gaku; Ohta, Kouji; Akiyama, Masayuki

    2009-05-01

    Stellar masses of bulges in hosts of active galactic nuclei (AGNs) and black hole masses in the AGNs are derived at z = 0.5-1.15 to study evolution of the black hole-to-bulge mass relation. In order to derive bulge stellar masses, we use a sample of type-2 AGNs to avoid the bright nuclear light. 34 type-2 AGNs are selected from the spectroscopically identified X-ray sources in the Chandra Deep Field South. We use optical images from the Hubble Space Telescope, and near- and mid-infrared photometry from the Very Large Telescope and the Spitzer Space Telescope. The bulge components are derived by fitting the two-dimensional surface brightness model consisting of a bulge and a disk component to the optical images. We derive stellar masses (M {sub bulge}) and star formation rates (SFRs) of the bulge components by spectral energy distribution fitting. The derived M {sub bulge} ranges over 10{sup 9}-10{sup 11} M {sub sun}, and the estimated SFR is 0.01-100 M {sub sun} yr{sup -1}. Masses of supermassive black holes (SMBHs; M {sub .}) and black hole accretion rates (BHARs) are estimated with the absorption-corrected X-ray luminosities in the 2-10 keV band under an assumption of the constant Eddington ratio of 0.1 and the constant energy conversion factor of 0.1. Resulting black hole masses and BHARs range over 10{sup 5.5}-10{sup 8} M {sub sun} and 0.001-1 M {sub sun} yr{sup -1}, respectively. For luminous AGNs, the estimated M {sub .}/M {sub bulge} ratio is {approx}4 x 10{sup -4} in the median, which is lower than that for local galaxies and for type-2 AGNs at z {approx} 0.2. However, these differences are within uncertainty and are not significant. This can imply that SMBHs and their host galaxies are evolving almost holding the constant M {sub .}/M {sub bulge} ratio from z {approx} 1.0 to 0 in a cosmological timescale. Meanwhile, the estimated BHAR/SFR ratio is about 60 times larger than the M {sub .}/M {sub bulge} ratio in the median value. This indicates that growths

  2. A Strongly Magnetized Pulsar within the Grasp of the Milky Way's Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Rea, N.; Esposito, P.; Pons, J. A.; Turolla, R.; Torres, D. F.; Israel, G. L.; Possenti, A.; Burgay, M.; Viganò, D.; Papitto, A.; Perna, R.; Stella, L.; Ponti, G.; Baganoff, F. K.; Haggard, D.; Camero-Arranz, A.; Zane, S.; Minter, A.; Mereghetti, S.; Tiengo, A.; Schödel, R.; Feroci, M.; Mignani, R.; Götz, D.

    2013-10-01

    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and \\dot{P} = 6.61(4)\\times 10^{-12} s s-1), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm-3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (~90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

  3. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    NASA Astrophysics Data System (ADS)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (i.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  4. The supermassive black hole and double nucleus of the core elliptical NGC 5419

    NASA Astrophysics Data System (ADS)

    Mazzalay, Ximena; Thomas, Jens; Saglia, Roberto P.; Wegner, Gary A.; Bender, Ralf; Erwin, Peter; Fabricius, Maximilian H.; Rusli, Stephanie P.

    2016-11-01

    We obtained adaptive-optics assisted SINFONI observations of the central regions of the giant elliptical galaxy NGC 5419 with a spatial resolution of 0.2 arcsec (≈55 pc). NGC 5419 has a large depleted stellar core with a radius of 1.58 arcsec (430 pc). HST and SINFONI images show a point source located at the galaxy's photocentre, which is likely associated with the low-luminosity AGN previously detected in NGC 5419. Both the HST and SINFONI images also show a second nucleus, off-centred by 0.25 arcsec (≈70 pc). Outside of the central double nucleus, we measure an almost constant velocity dispersion of σ ˜ 350 km s-1. In the region where the double nucleus is located, the dispersion rises steeply to a peak value of ˜420 km s-1. In addition to the SINFONI data, we also obtained stellar kinematics at larger radii from the South African Large Telescope. While NGC 5419 shows low rotation (v < 50 km s-1), the central regions (inside ˜4 rb) clearly rotate in the opposite direction to the galaxy's outer parts. We use orbit-based dynamical models to measure the black hole mass of NGC 5419 from the kinematical data outside of the double nuclear structure. The models imply M_BH=7.2^{+2.7}_{-1.9} × 10^9 M⊙. The enhanced velocity dispersion in the region of the double nucleus suggests that NGC 5419 possibly hosts two supermassive black holes at its centre, separated by only ≈70 pc. Yet our measured MBH is consistent with the black hole mass expected from the size of the galaxy's depleted stellar core. This suggests, that systematic uncertainties in MBH related to the secondary nucleus are small.

  5. A STRONGLY MAGNETIZED PULSAR WITHIN THE GRASP OF THE MILKY WAY'S SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Rea, N.; Torres, D. F.; Papitto, A.; Camero-Arranz, A.; Esposito, P.; Mereghetti, S.; Tiengo, A.; Pons, J. A.; Viganò, D.; Turolla, R.; Israel, G. L.; Stella, L.; Possenti, A.; Burgay, M.; Perna, R.; Ponti, G.; Baganoff, F. K.; Haggard, D.; Zane, S.; Minter, A.; and others

    2013-10-01

    The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A*. Young, massive stars within 0.5 pc of Sgr A* are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A*'s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4 ± 0.3 arcsec from Sgr A*, and refine the source spin period and its derivative (P = 3.7635537(2) s and P-dot = 6.61(4)×10{sup -12} s s{sup –1}), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm{sup –3}, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07-2 pc from Sgr A*. Simulations of its possible motion around Sgr A* show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.

  6. Do Circumnuclear Dense Gas Disks Drive Mass Accretion onto Supermassive Black Holes?

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Kawakatu, Nozomu; Kohno, Kotaro

    2016-08-01

    We present a positive correlation between the mass of dense molecular gas ({M}{{dense}}) of ˜100 pc scale circumnuclear disks (CNDs) and the black hole mass accretion rate ({\\dot{M}}{{BH}}) in a total of 10 Seyfert galaxies, based on data compiled from the literature and an archive (median aperture θ med = 220 pc). A typical {M}{{dense}} of CNDs is 107-8 {M}⊙ , estimated from the luminosity of the dense gas tracer, the HCN(1-0) emission line. Because dense molecular gas is the site of star formation, this correlation is virtually equivalent to the one between the nuclear star-formation rate and {\\dot{M}}{{BH}} revealed previously. Moreover, the {M}{{dense}}{--}{\\dot{M}}{{BH}} correlation was tighter for CND-scale gas than for the gas on kiloparsec or larger scales. This indicates that CNDs likely play an important role in fueling black holes, whereas greater than kiloparesec scale gas does not. To demonstrate a possible approach for studying the CND-scale accretion process with the Atacama Large Millimeter/submillimeter Array, we used a mass accretion model where angular momentum loss due to supernova explosions is vital. Based on the model prediction, we suggest that only the partial fraction of the mass accreted from the CND ({\\dot{M}}{{acc}}) is consumed as {\\dot{M}}{{BH}}. However, {\\dot{M}}{{acc}} agrees well with the total nuclear mass flow rate (i.e., {\\dot{M}}{{BH}} + outflow rate). Although these results are still tentative with large uncertainties, they support the view that star formation in CNDs can drive mass accretion onto supermassive black holes in Seyfert galaxies.

  7. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  8. THE M {sub BH}-L {sub SPHEROID} RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES

    SciTech Connect

    Graham, Alister W.; Scott, Nicholas

    2013-02-20

    From a sample of 72 galaxies with reliable supermassive black hole masses M {sub bh}, we derive the M {sub bh}-(host spheroid luminosity, L) relation for (1) the subsample of 24 core-Sersic galaxies with partially depleted cores, and (2) the remaining subsample of 48 Sersic galaxies. Using K{sub s} -band Two Micron All Sky Survey data, we find the near-linear relation M {sub bh}{proportional_to}L {sup 1.10{+-}0.20} {sub K{sub s}} for the core-Sersic spheroids thought to be built in additive dry merger events, while we find the relation M {sub bh}{proportional_to}L {sup 2.73{+-}0.55}{sub K{sub s}} for the Sersic spheroids built from gas-rich processes. After converting literature B-band disk galaxy magnitudes into inclination- and dust-corrected bulge magnitudes, via a useful new equation presented herein, we obtain a similar result. Unlike with the M {sub bh}-(velocity dispersion) diagram, which is also updated here using the same galaxy sample, it remains unknown whether barred and non-barred Sersic galaxies are offset from each other in the M {sub bh}-L diagram. While black hole feedback has typically been invoked to explain what was previously thought to be a nearly constant M {sub bh}/M {sub Spheroid} mass ratio of {approx}0.2%, we advocate that the near-linear M {sub bh}-L and M {sub bh}-M {sub Spheroid} relations observed at high masses may have instead arisen largely from the additive dry merging of galaxies. We argue that feedback results in a dramatically different scaling relation, such that black hole mass scales roughly quadratically with the spheroid mass in Sersic galaxies. We therefore introduce a revised cold-gas 'quasar' mode feeding equation for semi-analytical models to reflect what we dub the quadratic growth of black holes in Sersic galaxies built amidst gas-rich processes. Finally, we use our new Sersic M {sub bh}-L equations to predict the masses of candidate intermediate mass black holes in almost 50 low-luminosity spheroids containing

  9. Constraining the properties of the proposed supermassive black hole system in 3C66B: limits from pulsar timing

    NASA Technical Reports Server (NTRS)

    Jenet, F. A.; Lommen, A.; Larson, S. L.; Wen, L.

    2003-01-01

    Data from long term timing observations of the radio pulsar PSR B1855+09 have been searched for the signature of Gravitational waves (G-waves) emitted by the proposed supermassive binary black hole system in 3C66B.

  10. A PROBABLE MILLI-PARSEC SUPERMASSIVE BINARY BLACK HOLE IN THE NEAREST QUASAR MRK 231

    SciTech Connect

    Yan, Chang-Shuo; Lu, Youjun; Dai, Xinyu; Yu, Qingjuan

    2015-08-10

    Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ∼590 AU and an orbital period of ∼1.2 years. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at λ ∼ 4000–2500 Å is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs and accretion flows onto them. Our result also demonstrates a new method to find sub-parsec scale BBHs by searching for deficits in the optical-to-UV continuum among the spectra of quasars.

  11. Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Niemeyer, J. C.; Schleicher, D. R. G.

    2014-06-01

    Baryonic streaming motions produced prior to the epoch of recombination became supersonic during the cosmic dark ages. Various studies suggest that such streaming velocities change the halo statistics and also influence the formation of Population III stars. In this study, we aim to explore the impact of streaming velocities on the formation of supermassive black holes at z>10 via the direct collapse scenario. To accomplish this goal, we perform cosmological large eddy simulations for two haloes of a few times 107M⊙ with initial streaming velocities of 3, 6 and 9 km s-1. These massive primordial haloes illuminated by the strong Lyman-Werner flux are the potential cradles for the formation of direct collapse seed black holes. To study the evolution for longer times, we employ sink particles and track the accretion for 10 000 years. Our findings show that higher streaming velocities increase the circular velocities from about 14 to 16 km s-1. They also delay the collapse of haloes for a few million years, but do not have any significant impact on the halo properties such as turbulent energy, radial velocity, density and accretion rates. Sink particles of about ˜105M⊙ are formed at the end of our simulations and no clear distribution of sink masses is observed in the presence of streaming motions. It is further found that the impact of streaming velocities is less severe in massive haloes compared to the minihaloes as reported in the previous studies.

  12. Supermassive Black Hole Binary Evolution in Axisymmetric Galaxies: The Final Parsec Problem is Not a Problem

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas

    2013-08-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone—this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  13. A highly magnetized twin-jet base pinpoints a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Baczko, A.-K.; Schulz, R.; Kadler, M.; Ros, E.; Perucho, M.; Krichbaum, T. P.; Böck, M.; Bremer, M.; Grossberger, C.; Lindqvist, M.; Lobanov, A. P.; Mannheim, K.; Martí-Vidal, I.; Müller, C.; Wilms, J.; Zensus, J. A.

    2016-09-01

    Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC 1052, to launch these jets. This requires magnetic fields on the order of 103G to 104G. We imaged the vicinity of the SMBH of the AGN NGC 1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and ~ 8.3 × 104 G consistent with Blandford & Znajek models. The VLBI images shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A47

  14. Constraints on supermassive black hole spins from observations of active galaxy jets

    NASA Astrophysics Data System (ADS)

    Kun, E.; Wiita, P. J.; Gergely, L. Á.; Keresztes, Z.; Gopal-Krishna; Biermann, P. L.

    2013-11-01

    We discuss the origin of the low-energy cutoff, or LEC, seen in the radio spectra of many extragalactic jets and relate this to the spin of the supermassive black holes that presumably power them. Pion decay via proton-proton collisions is a possible mechanism to supply a secondary positron population with a low energy limit. We expect that pion production would occur in advection dominated accretion flows or ADAFs. In radiatively inefficient ADAFs the heat energy of the accreting gas is unable to radiate in less than the accretion time and the particle temperature could be high enough so that thermal protons can yield such pion production. Strong starbursts are another option for the injection of a truncated particle population into the jet. The role of both mechanisms is discussed with respect to the black hole spin estimate. The energy demanded to produce the pion decay process involves a minimum threshold for kinetic energy of the interacting protons. Therefore the mean proton speed in the flow can determine whether a LEC is generated. In ADAFs the random velocity of the protons can exceed the minimum speed limit of pion production around the jet launching region in the innermost part of the flow. Finally we summarize the additional work needed to put the model assumptions on a more rigorous basis.

  15. Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Wandel, Amri

    2000-01-01

    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. la the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r(sup -l/2) correlation between distance and line width and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert I galaxy NGC 4051 and find that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission line region clouds.

  16. SUPERMASSIVE BLACK HOLE BINARY EVOLUTION IN AXISYMMETRIC GALAXIES: THE FINAL PARSEC PROBLEM IS NOT A PROBLEM

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter; Just, Andreas E-mail: just@ari.uni-heidelberg.de E-mail: k.holley@vanderbilt.edu

    2013-08-20

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone-this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  17. UPDATED MASS SCALING RELATIONS FOR NUCLEAR STAR CLUSTERS AND A COMPARISON TO SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Scott, Nicholas; Graham, Alister W.

    2013-02-15

    We investigate whether or not nuclear star clusters and supermassive black holes (SMBHs) follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object (CMO). We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M {sub NC}, correlates most tightly with the host galaxy's velocity dispersion: log M {sub NC} = (2.11 {+-} 0.31)log ({sigma}/54) + (6.63 {+-} 0.09), but has a slope dramatically shallower than the relation defined by SMBHs. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular, M {sub NC}{proportional_to}M {sup 0.55{+-}0.15} {sub Gal,dyn}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and SMBHs do not form a single family of CMOs.

  18. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    PubMed

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

  19. Supermassive Black Hole Mass and Spiral Galaxy Pitch Angle at Intermediate to High Redshift

    NASA Astrophysics Data System (ADS)

    Hughes, John A.; Barrows, R. S.; Berrier, J. C.; Davis, B. L.; Kennefick, D.; Kennefick, J. D.; Lacy, C. H. S.; Seigar, M. S.; Shields, D. W.; Zoldak, K. A.

    2012-01-01

    A possible correlation between spiral galaxy pitch angle (P) and the mass of the central supermassive black hole (SMBH) of the galaxy (M) was reported (Seigar et al. 2008) from a sample of 27 nearby galaxies. Here we investigate the extension of this result to intermediate and high redshifts. We have selected AGN showing spiral structure in their host galaxies from the GOODS fields and from a sample of AGN with reverberation mapping SMBH mass estimates. After careful measure of the pitch angle of these galaxies, we compare the mass found from the M-P relation to that reported from reverberation mapping or estimated from their MgII profiles. By extending the sample to higher redshift, we demonstrate how the M-P relationship can be used to estimate the mass of SMBHs in the center of galaxies with imaging data alone, a useful tool in the study of galaxy evolution.

  20. MULTIPLE TIDAL DISRUPTIONS AS AN INDICATOR OF BINARY SUPERMASSIVE BLACK HOLE SYSTEMS

    SciTech Connect

    Wegg, Christopher; Nate Bode, J.

    2011-09-01

    We find that the majority of systems hosting multiple tidal disruptions (TDs) are likely to contain hard binary supermassive black hole (SMBH) systems, and also show that the rates of these repeated events are high enough to be detected by the Large Synoptic Survey Telescope (LSST) over its lifetime. Therefore, these multiple TD events provide a novel method for identifying SMBH binary systems with parsec to subparsec separations. The rates of TDs are investigated using simulations of non-interacting stars initially orbiting a primary SMBH and the potential of the model stellar cusp. The stars are then evolved forward in time and perturbed by a secondary SMBH inspiraling from the edge of the cusp to its stalling radius. We find with conservative magnitude estimates that the next-generation transient survey LSST should detect multiple TDs in approximately three galaxies over five years of observation, though less conservative estimates could increase this rate by an order of magnitude.

  1. Precessing supermassive black hole binaries and dark energy measurements with LISA

    SciTech Connect

    Stavridis, Adamantios; Arun, K. G.; Will, Clifford M.

    2009-09-15

    Spin induced precessional modulations of gravitational wave signals from supermassive black hole binaries can improve the estimation of luminosity distance to the source by space based gravitational wave missions like the Laser Interferometer Space Antenna (LISA). We study how this impacts the ability of LISA to do cosmology, specifically, to measure the dark energy equation of state (EOS) parameter w. Using the {lambda}CDM model of cosmology, we show that observations of precessing binaries with mass ratio 10 ratio 1 by LISA, combined with a redshift measurement, can improve the determination of w up to an order of magnitude with respect to the nonprecessing case depending on the total mass and the redshift.

  2. Milky Way Supermassive Black Hole: Dynamical Feeding from the Circumnuclear Environment

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Hsieh, Pei-Ying; Ho, Paul T. P.; Su, Yu-Nung; Wright, Melvyn; Sun, Ai-Lei; Minh, Young Chol

    2012-09-01

    The supermassive black hole (SMBH), Sgr A*, at the Galactic center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5 and 4 pc radii. The irregular and clumpy structures of the CND suggest dynamical evolution and episodic feeding of gas toward the central SMBH. New sensitive data from the Submillimeter Array and Green Bank Telescope reveal several >5-10 pc scale molecular arms, which either directly connect to the CND or may penetrate inside the CND. The CND appears to be the convergence of the innermost parts of large-scale gas streamers, which are responding to the central gravitational potential well. Rather than being a quasi-stationary structure, the CND may be dynamically evolving, incorporating inflow via streamers, and feeding gas toward the center.

  3. MILKY WAY SUPERMASSIVE BLACK HOLE: DYNAMICAL FEEDING FROM THE CIRCUMNUCLEAR ENVIRONMENT

    SciTech Connect

    Liu, Hauyu Baobab; Hsieh, Pei-Ying; Ho, Paul T. P.; Su, Yu-Nung; Wright, Melvyn; Sun, Ai-Lei; Minh, Young Chol

    2012-09-10

    The supermassive black hole (SMBH), Sgr A*, at the Galactic center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5 and 4 pc radii. The irregular and clumpy structures of the CND suggest dynamical evolution and episodic feeding of gas toward the central SMBH. New sensitive data from the Submillimeter Array and Green Bank Telescope reveal several >5-10 pc scale molecular arms, which either directly connect to the CND or may penetrate inside the CND. The CND appears to be the convergence of the innermost parts of large-scale gas streamers, which are responding to the central gravitational potential well. Rather than being a quasi-stationary structure, the CND may be dynamically evolving, incorporating inflow via streamers, and feeding gas toward the center.

  4. Origin of the Correlations Between Supermassive Black Holes and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sherman, Sydney; Li, Y.; Zhu, Q.

    2013-01-01

    It has been well established from observations that suppermassive black holes in nearby elliptical galaxies correlate tightly with the stellar velocity dispersion (the M - σ relation) and mass (the MBH - Mhost relation) of their host spheroids. However, the origin of these correlations remains ambiguous. Here, we compile a sample of observed galaxies with different properties (e.g., mass, type, kinematics, growth history, etc.) and examine the dependence of the above correlations on these parameters. We find that galaxies that satisfy the M - σ correlation appear to have reached virial equilibrium, as indicated by the ratio between kinetic energy and gravitational potential, 2K/U ~ 1. Furthermore, the ratio of black hole accretion rate to star formation rate remains nearly constant, AR /SFR ~ 10-3, over a wide range of galaxy mass from redshift z=0 - 2. These results confirm our previous theoretical model that the observed correlations have different origins: the M - σ relation may be the result of virial equilibrium, while MBH - Mhost relation may be the result of self-regulated star formation and black hole growth in galaxies.

  5. Dependence of the Spin of Supermassive Black Holes on the Eddington Factor for Accretion Disks in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Buliga, S. D.; Gnedin, Yu. N.; Mikhailov, A. G.; Natsvlishvili, T. M.

    2016-12-01

    An equation relating the spin of supermassive black holes (SMBH) to the Eddington factor, i.e., the ratio of the bolometric and Eddington luminosities for accretion disks in active galactic nuclei (AGN), is presented. This equation also depends on the relationship between the magnetic field pressure and the flux of accreted matter at the radius of the event horizon for a black hole. When the pressures of the magnetic field and of the accreted matter are equal, there is a direct relationship between the spin of the black hole and the Eddington factor. Based on available data on the bolometric luminosity and mass of black holes, it is possible to determine the spin of a black hole. The spins of the central SMBH are given for a number of AGN. The proposed method can also be used to determine the ratio of the magnetic field pressure and the pressure of the accreted gas at the event horizon of SMBH for AGN for which the spin of the black hole has been determined reliably.

  6. Cosmic black-hole hair growth and quasar OJ287

    SciTech Connect

    Horbatsch, M.W.; Burgess, C.P. E-mail: cburgess@perimeterinstitute.ca

    2012-05-01

    An old result (astro-ph/9905303) by Jacobson implies that a black hole with Schwarzschild radius r{sub s} acquires scalar hair, Q∝r{sub s}{sup 2}μ, when the (canonically normalized) scalar field in question is slowly time-dependent far from the black hole, ∂{sub t}φ ≅ μM{sub p} with μr{sub s} << 1 time-independent. Such a time dependence could arise in scalar-tensor theories either from cosmological evolution, or due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couples to matter. We argue that Jacobson's Miracle Hair-Growth Formula{sup ©} implies, in particular, that an orbiting pair of black holes can radiate dipole radiation, provided only that the two black holes have different masses. Quasar OJ287, situated at redshift z ≅ 0.306, has been argued to be a double black-hole binary system of this type, whose orbital decay recently has been indirectly measured and found to agree with the predictions of General Relativity to within 6%. We argue that the absence of observable scalar dipole radiation in this system yields the remarkable bound |μ| < (16 days){sup −1} on the instantaneous time derivative at this redshift (as opposed to constraining an average field difference, Δφ, over cosmological times), provided only that the scalar is light enough to be radiated — i.e. m∼<10{sup −23} eV — independent of how the scalar couples to matter. This can also be interpreted as constraining (in a more model-dependent way) the binary's motion relative to any spatial variation of the scalar field within its immediate vicinity within its host galaxy.

  7. The Formation of Galaxies and Supermassive Black Holes: Insights and Puzzles

    NASA Astrophysics Data System (ADS)

    Somerville, Rachel S.

    2014-01-01

    Galaxies exist at a nexus of physical scales, molded by physics ranging from the “small” scales of star formation and accretion onto nuclear black holes, up to the very large scales of the cosmic web. It is this special property that makes galaxies so fascinating and so challenging to study, both observationally and theoretically. The past two decades have seen enormous progress in our understanding of how galaxies form and evolve. We have surveyed slices of the sky at many wavelengths, and built sophisticated models and simulations that attempt to capture the complex array of physics that influences galaxy evolution. We are only now coming into possession of large samples of galaxies for which we can study the internal structure as well as the large scale environment in detail, from the epoch of ‘cosmic high noon’ ( 2) to the present. At the same time, numerical simulations set within a cosmological framework have only recently succeeded in building galaxies with realistic internal structures. It has been known for several years that galaxies are growing in mass and radius, experiencing morphological transformation, and ‘downsizing’ their star formation activity over cosmic time. Now, new observations are painting a picture in which the internal structure of galaxies (size and morphology) is intimately linked with their star formation activity and formation history. There are hints that the co-evolution of supermassive black holes with their host galaxies may be the driving force behind these correlations - but this remains controversial. While cosmological simulations set within the hierarchical formation scenario of Cold Dark Matter currently offer a plausible story for interpreting these observations, many puzzles remain. I will review recent insights gleaned from deep multi-wavelength surveys and state-of-the-art theoretical models and simulations, as well as highlight the open questions and challenges for the future.

  8. Kinematically Identified Recoiling Supermassive Black Hole Candidates in SDSS QSOs with z > 0.25

    NASA Astrophysics Data System (ADS)

    Kim, D.-C.; Evans, A. S.; Stierwalt, S.; Privon, G. C.

    2016-06-01

    We have performed a spectral decomposition to search for recoiling supermassive black holes (rSMBHs) in Sloan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with z < 0.25. Out of 1271 QSOs, we have identified 26 rSMBH candidates that are recoiling toward us. The projected recoil velocities range from -76 to -307 km s-1 with a mean of -149 ± 58 km s-1. Most of the rSMBH candidates are hosted by gas-rich luminous infrared galaxies (LIRGs)/ultra-luminous infrared galaxies (ULIRGs), but only 23% of them show signs of tidal features, which suggests that a majority of them are advanced mergers. We find that the black hole masses M BH of the rSMBH candidates are on average ˜5 times smaller than those of their stationary counterparts and cause a scatter in the {M}{BH}-{σ }\\ast relation. The Eddington ratios of all of the rSMBH candidates are larger than 0.1, with a mean of 0.52 ± 0.27, suggesting that they are actively accreting mass. Velocity shifts in high-excitation coronal lines suggest that the rSMBH candidates are recoiling with an average velocity of about -265 km s-1. The electron density in the narrow line region of the H ii rSMBH candidates is about 1/10 of that in active galactic nucleus (AGN) rSMBH candidates, probably because the AGN in the former was more spatially offset than that in the latter. The estimated spatial offsets between the rSMBH candidate and the center of the host galaxy range from 0.″21 to 1.″97 and need to be confirmed spatially with high-resolution adaptive optics imaging observations.

  9. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    SciTech Connect

    Ju, Wenhua; Greene, Jenny E.; Rafikov, Roman R.; Bickerton, Steven J.; Badenes, Carles

    2013-11-01

    Supermassive black hole (SMBH) binaries are expected in a ΛCDM cosmology given that most (if not all) massive galaxies contain a massive black hole (BH) at their center. So far, however, direct evidence for such binaries has been elusive. We use cross-correlation to search for temporal velocity shifts in the Mg II broad emission lines of 0.36 < z < 2 quasars with multiple observations in the Sloan Digital Sky Survey. For ∼10{sup 9} M{sub ☉} BHs in SMBH binaries, we are sensitive to velocity drifts for binary separations of ∼0.1 pc with orbital periods of ∼100 yr. We find seven candidate sub-parsec-scale binaries with velocity shifts >3.4σ ∼ 280 km s{sup –1}, where σ is our systematic error. Comparing the detectability of SMBH binaries with the number of candidates (N ≤ 7), we can rule out that most 10{sup 9} M{sub ☉} BHs exist in ∼0.03-0.2 pc scale binaries, in a scenario where binaries stall at sub-parsec scales for a Hubble time. We further constrain that ≤16% (one-third) of quasars host SMBH binaries after considering gas-assisted sub-parsec evolution of SMBH binaries, although this result is very sensitive to the assumed size of the broad line region. We estimate the detectability of SMBH binaries with ongoing or next-generation surveys (e.g., Baryon Oscillation Spectroscopic Survey, Subaru Prime Focus Spectrograph), taking into account the evolution of the sub-parsec binary in circumbinary gas disks. These future observations will provide longer time baselines for searches similar to ours and may in turn constrain the evolutionary scenarios of SMBH binaries.

  10. RESOLVING THE BONDI ACCRETION FLOW TOWARD THE SUPERMASSIVE BLACK HOLE OF NGC 3115 WITH CHANDRA

    SciTech Connect

    Wong, Ka-Wah; Irwin, Jimmy A.; Yukita, Mihoko; Million, Evan T.; Mathews, William G.

    2011-07-20

    Gas undergoing Bondi accretion onto a supermassive black hole (SMBH) becomes hotter toward smaller radii. We searched for this signature with a Chandra observation of the hot gas in NGC 3115, which optical observations show has a very massive SMBH. Our analysis suggests that we are resolving, for the first time, the accretion flow within the Bondi radius of an SMBH. We show that the temperature is rising toward the galaxy center as expected in all accretion models in which the black hole is gravitationally capturing the ambient gas. There is no hard central point source that could cause such an apparent rise in temperature. The data support that the Bondi radius is at about 4''-5'' (188-235 pc), suggesting an SMBH of 2 x 10{sup 9} M{sub sun} that is consistent with the upper end of the optical results. The density profile within the Bondi radius has a power-law index of 1.03{sup +0.23}{sub -0.21}, which is consistent with gas in transition from the ambient medium and the accretion flow. The accretion rate at the Bondi radius is determined to be M-dot{sub B} = 2.2x10{sup -2} M{sub sun} yr{sup -1}. Thus, the accretion luminosity with 10% radiative efficiency at the Bondi radius (10{sup 44} erg s{sup -1}) is about six orders of magnitude higher than the upper limit of the X-ray luminosity of the nucleus.

  11. The evolving corona and evidence for jet launching from the supermassive black hole in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, Daniel; Gallo, Luigi C.

    2015-01-01

    Through detailed analysis of the X-rays that are reflected from the accretion disc, it is possible to probe structures right down to the innermost stable circular orbit and event horizon around the supermassive black holes in AGN. By measuring the illumination pattern of the accretion disc, along with reverberation time lags between variability in the X-ray continuum and reflection, unprecedented detail of the geometry and spatial extent of the corona that produces the X-ray continuum has emerged when the observed data are combined with insight gained from general relativistic ray tracing simulations.We conducted detailed analysis of both the X-ray continuum and its reflection from the accretion disc in the narrow line Seyfert 1 galaxy Markarian 335, over observations spanning nearly a decade to measure the underlying changes in the structure of the X-ray emitting corona that gave rise to more than an order of magnitude variation in luminosity.Underlying this long timescale variability lies much more complex patterns of behaviour on short timescales. We are, for the first time, able to observe and measure the changes in the structure of the corona that give rise to transient phenomena including a flare in the X-ray emission seen during a low flux state by Suzaku in July 2013. This flaring event was found to mark a reconfiguration of the corona while there is evidence that the flare itself was cased by an aborted jet-launching event. More recently, detailed analysis of a NuSTAR target of opportunity observation is letting us understand the sudden increase in X-ray flux by a factor of 15 in Markarian 335 seen in September 2014.These observations allow us to trace, from observations, the evolution of the X-ray emitting corona that gives rise to not only the extreme variability seen in the X-ray emission from AGN, but also the processes by which jets and other outflow are launched from the extreme environments around black holes. This gives us important insight into

  12. ENHANCED ACCRETION RATES OF STARS ON SUPERMASSIVE BLACK HOLES BY STAR-DISK INTERACTIONS IN GALACTIC NUCLEI

    SciTech Connect

    Just, Andreas; Yurin, Denis; Makukov, Maxim; Berczik, Peter; Omarov, Chingis; Spurzem, Rainer; Vilkoviskij, Emmanuil Y.

    2012-10-10

    We investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole (SMBH) and a central accretion disk (AD). The dissipative force acting on stars in the disk leads to an enhanced mass flow toward the SMBH and to an asymmetry in the phase space distribution due to the rotating AD. The AD is considered as a stationary Keplerian rotating disk, which is vertically extended in order to employ a fully self-consistent treatment of stellar dynamics including the dissipative force originating from star-gas ram pressure effects. The stellar system is treated with a direct high-accuracy N-body integration code. A star-by-star representation, desirable in N-body simulations, cannot be extended to real particle numbers yet. Hence, we carefully discuss the scaling behavior of our model with regard to particle number and tidal accretion radius. The main idea is to find a family of models for which the ratio of two-body relaxation time and dissipation time (for kinetic energy of stellar orbits) is constant, which then allows us to extrapolate our results to real parameters of galactic nuclei. Our model is derived from basic physical principles and as such it provides insight into the role of physical processes in galactic nuclei, but it should be regarded as a first step toward more realistic and more comprehensive simulations. Nevertheless, the following conclusions appear to be robust: the star accretion rate onto the AD and subsequently onto the SMBH is enhanced by a significant factor compared to purely stellar dynamical systems neglecting the disk. This process leads to enhanced fueling of central disks in active galactic nuclei (AGNs) and to an enhanced rate of tidal stellar disruptions. Such disruptions may produce electromagnetic counterparts in the form of observable X-ray flares. Our models improve predictions for their rates in quiescent galactic nuclei. We do not yet model direct stellar collisions in the gravitational potential

  13. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre.

    PubMed

    Baganoff, F K; Bautz, M W; Brandt, W N; Chartas, G; Feigelson, E D; Garmire, G P; Maeda, Y; Morris, M; Ricker, G R; Townsley, L K; Walter, F

    2001-09-06

    The nuclei of most galaxies are now believed to harbour supermassive black holes. The motions of stars in the central few light years of our Milky Way Galaxy indicate the presence of a dark object with a mass of about 2.6 x 106 solar masses (refs 2, 3). This object is spatially coincident with the compact radio source Sagittarius A* (Sgr A*) at the dynamical centre of the Galaxy, and the radio emission is thought to be powered by the gravitational potential energy released by matter as it accretes onto a supermassive black hole. Sgr A* is, however, much fainter than expected at all wavelengths, especially in X-rays, which has cast some doubt on this model. The first strong evidence for X-ray emission was found only recently. Here we report the discovery of rapid X-ray flaring from the direction of Sgr A*, which, together with the previously reported steady X-ray emission, provides compelling evidence that the emission is coming from the accretion of gas onto a supermassive black hole at the Galactic Centre.

  14. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.

  15. Confined-exotic-matter wormholes with no gluing effects—Imaging supermassive wormholes and black holes

    NASA Astrophysics Data System (ADS)

    Azreg-Aïnou, Mustapha

    2015-07-01

    We classify wormholes endowed with redshift effects and finite mass into three types. Type I wormholes have their radial pressure dying out faster, as one moves away from the throat, than any other component of the stress-energy and thus violate the least the local energy conditions. In type II (resp. III) wormholes the radial and transverse pressures are asymptotically proportional and die out faster (resp. slower) than the energy density. We introduce a novel and generalizable method for deriving, with no cutoff in the stress-energy or gluing, a class of each of the three wormhole types. We focus on type I wormholes and construct different asymptotically flat solutions with finite, upper- and lower-bounded, mass M. It is observed that the radial pressure is negative, and the null energy condition is violated, only inside a narrow layer, adjacent to the throat, of relative spacial extent epsilon. Reducing the relative size of the layer, without harming the condition of traversability, yields an inverse square law of epsilon versus M for supermassive wormholes. We show that the diameter of the shadow of this type I supermassive wormhole overlaps with that of the black hole candidate at the center of the Milky Way and that the recent derivation, using the up-to-date millimeter-wavelength very long baseline interferometry made in Astrophys. J. {795} (2014) 134 [\\arXivid{1409.4690}], remains inconclusive. We show that redshift-free wormholes, with positive energy density, have one of their barotropic equations of state in the phantom regime (at least in the region adjacent to the throat), have their stress energy tensor traceless, and are anisotropic. They are all type III wormholes having their variable equations of state approaching 1 and -1 at spatial infinity. We also introduce a new approach for deriving new redshift-free wormholes.

  16. Confined-exotic-matter wormholes with no gluing effects—Imaging supermassive wormholes and black holes

    SciTech Connect

    Azreg-Aïnou, Mustapha

    2015-07-01

    We classify wormholes endowed with redshift effects and finite mass into three types. Type I wormholes have their radial pressure dying out faster, as one moves away from the throat, than any other component of the stress-energy and thus violate the least the local energy conditions. In type II (resp. III) wormholes the radial and transverse pressures are asymptotically proportional and die out faster (resp. slower) than the energy density. We introduce a novel and generalizable method for deriving, with no cutoff in the stress-energy or gluing, a class of each of the three wormhole types. We focus on type I wormholes and construct different asymptotically flat solutions with finite, upper- and lower-bounded, mass M. It is observed that the radial pressure is negative, and the null energy condition is violated, only inside a narrow layer, adjacent to the throat, of relative spacial extent ε. Reducing the relative size of the layer, without harming the condition of traversability, yields an inverse square law of ε versus M for supermassive wormholes. We show that the diameter of the shadow of this type I supermassive wormhole overlaps with that of the black hole candidate at the center of the Milky Way and that the recent derivation, using the up-to-date millimeter-wavelength very long baseline interferometry made in Astrophys. J. (795) (2014) 134 [\\arXivid(1409.4690)], remains inconclusive. We show that redshift-free wormholes, with positive energy density, have one of their barotropic equations of state in the phantom regime (at least in the region adjacent to the throat), have their stress energy tensor traceless, and are anisotropic. They are all type III wormholes having their variable equations of state approaching 1 and −1 at spatial infinity. We also introduce a new approach for deriving new redshift-free wormholes.

  17. XMM-Newton reveals matter accreting onto the central supermassive black hole of NGC 2617

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-06-01

    NGC 2617 (z=0.042) underwent a strong broad-band outburst during 2013/14, concurrently switching from being a Seyfert 1.8 to be a Seyfert 1.0 sometimes during the previous 10 years. Thanks to the combination of the large effective area and the good spectral resolution of the EPIC-pn onboard XMM-Newton, striking insights about the very inner accretion flow of this AGN have been revealed. In particular, persistent Fe K absorption redshifted by ˜ 35,000 km/s was solidly detected in two observations spaced by one month: a highly ionised flow of mass toward the central supermassive black hole of NGC 2617 has started to be traced. So far NGC 2617 is a quasi-unique observational example: what are the perspectives of enlarging these studies in the future? Thanks to current large and prolonged optical surveys like the SDSS/BOSS, many "optically changing-look AGN" like NGC 2617 are being discovered month after month: XMM-Newton has the ideal instruments to perform a proper X-ray study of such objects in the near future. I will assess the impact of XMM-Newton on studying the dynamics of the inner accretion flow in AGN in a systematic way and in synergy with near- and mid-future X-ray instruments such as (ASTRO-H)Hitomi and ATHENA.

  18. A population of short-period variable quasars from PTF as supermassive black hole binary candidates

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A. M.; Graham, M. J.; Bellm, E. C.; Laher, R. R.; Márka, S.

    2016-12-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circum-binary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35 383 spectroscopically confirmed quasars in the photometric data base of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modelling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey. Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q ≡ M2/M1 ≈ 0.01.

  19. Can supermassive black holes influence the evolution of their host galaxies?

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Cappi, M.; Reeves, J.; Braito, V.; Veilleux, S.; Reynolds, C.; Lobban, A.

    2016-06-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in an ultraluminous infrared galaxy and its connection with a large-scale molecular outflow observed in the IR with Herschel, suggesting a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, suggest that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes, to investigate the possible acceleration mechanisms and dynamics of these winds. XMM-Newton provided a fundamental contribution to these studies and it will still provide the highest effective area in the critical Fe K band of the spectrum until the launch of Athena. Very important improvements are expected from the high energy resolution of the Hitomi X-ray Observatory.

  20. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  1. Inward Bound---The Search For Supermassive Black Holes In Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Richstone, Douglas

    Dynamical searches reveal central dark objects with masses $\\sim 10^6$to $10^{9.5}$ \\msun in the Galaxy, \\m31, \\mm32, M87, NGC 3115, NGC 3377, NGC 4258, and NGC 4594. Indirect arguments suggest but do not prove that these are supermassive black holes (BHs) like those postulated as quasar engines. This paper reviews dynamical search techniques, the robustness of the evidence, and BH demographics. Stellar-dynamical evidence is generally more robust than gas-dynamical evidence (gas velocities can be nongravitational), but gas measurements reach closer to the Schwarzschild radius, and in NGC 4258 they show a Keplerian rotation curve. A statistical survey finds BHs in $\\sim 20\\%$ of nearby E--Sbc galaxies, consistent with predictions based on quasar energetics. BH masses are proportional to the mass of the bulge component. Most candidates are inactive; in some cases, the abundance of fuel is not easily reconciled with BH starvation. Flashes caused by the accretion of individual stars may provide a test of the BH picture.

  2. A CHANDRA SURVEY OF SUPERMASSIVE BLACK HOLES WITH DYNAMICAL MASS MEASUREMENTS

    SciTech Connect

    Gueltekin, Kayhan; Miller, Jon M.; Richstone, Douglas O.; Cackett, Edward M.; Di Matteo, Tiziana; Markoff, Sera

    2012-04-20

    We present Chandra observations of 12 galaxies that contain supermassive black holes (SMBHs) with dynamical mass measurements. Each galaxy was observed for 30 ks and resulted in a total of 68 point-source detections in the target galaxies including SMBH sources, ultraluminous X-ray sources (ULXs), and extragalactic X-ray binaries. Based on our fits of the X-ray spectra, we report fluxes, luminosities, Eddington ratios, and slope of the power-law spectrum. Normalized to the Eddington luminosity, the 2-10 keV band X-ray luminosities of the SMBH sources range from 10{sup -8} to 10{sup -6}, and the power-law slopes are centered at {approx}2 with a slight trend toward steeper (softer) slopes at smaller Eddington fractions, implying a change in the physical processes responsible for their emission at low accretion rates. We find 20 ULX candidates, of which 6 are likely (>90% chance) to be true ULXs. The most promising ULX candidate has an isotropic luminosity in the 0.3-10 keV band of 1.0{sup +0.6}{sub -0.3} Multiplication-Sign 10{sup 40} erg s{sup -1}.

  3. Fast coalescence of post-Newtonian Supermassive Black Hole Binaries in real galaxies

    NASA Astrophysics Data System (ADS)

    Sobolenko, M.; Berczik, P.; Spurzem, R.; Kupi, G.

    2017-01-01

    We present the results of theoretical modeling of supermassive black hole binary (SMBHB) mergers using direct 2-body simulations with a Hermite integration scheme. The BH's gravitational interaction is described based on the post-Newtonian (PN terms) approximation up to the 3.5PN terms. We carry out a large set of runs using a parametric description of SMBHB orbits. The final time of the SMBHs gravitational coalescence is parametrized as a function of initial eccentricity e_{0} and mass ratio q of the binary. We carry out detailed tests of our coding. We tested our PN terms against the analytic prescription described in te{Peters1963, Peters1964}. The gravitational radiation polarization amplitudes h_{+} and h_× from the SMBHBs merging process are also analyzed. Based on our numerical work we estimate the expected merging time for a list of selected potential SDSS SMBHBs. Our results show that the merging time is a strong function of the assumed initial eccentricities and fall within the range of thousands years.

  4. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Greene, Jenny E.; Ju, Wenhua; Rafikov, Roman R.; Ruan, John J.; Schneider, Donald P.

    2017-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg ii emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al., using Sloan Digital Sky Survey spectra with an additional epoch of data that lengthens the typical baseline to ∼10 yr. We find variations in the line of sight velocity shifts over 10 yr that are comparable to the shifts observed over 1–2 yr, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with eight-year median time baselines, from which we would expect to see velocity shifts >1000 {km} {{{s}}}-1 from sub-parsec binaries. We find only one object with an outlying velocity of 448 {km} {{{s}}}-1, indicating—based on our modeling—that ≲1% (the value varies with different assumptions) of SMBHs that are active as quasars reside in binaries with ∼0.1 pc separations. Binaries either sweep rapidly through these small separations or stall at larger radii.

  5. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  6. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    PubMed

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  7. Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Blackwell, James H., Jr.

    1990-01-01

    The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.

  8. NEW EVIDENCE FOR HIGH ACTIVITY OF THE SUPERMASSIVE BLACK HOLE IN OUR GALAXY

    SciTech Connect

    Nobukawa, M.; Ryu, S. G.; Tsuru, T. G.; Koyama, K.

    2011-10-01

    Prominent K-shell emission lines of neutral iron (hereafter Fe I-K lines) and hard-continuum X-rays from molecular clouds (MCs) in the Sagittarius B (Sgr B) region were found in two separate Suzaku observations in 2005 and 2009. The X-ray flux of the Fe I-K lines decreased in correlation with the hard-continuum flux by a factor of 0.4-0.5 in four years, which is almost equal to the light traveling across the MCs. The rapid and correlated time variability, the equivalent width of the Fe I-K lines, and the K edge absorption depth of Fe I are consistently explained by 'X-ray echoes' due to the fluorescent and Thomson scattering of an X-ray flare from an external source. The required flux of the X-ray flare depends on the distance to the MCs and its time duration. Even for a case with a minimum distance, the flux is larger than those of the brightest Galactic X-ray sources. Based on these facts, we conclude that the supermassive black hole Sgr A* exhibited a large flare a few hundred years ago with a luminosity of more than 4 x 10{sup 39} erg s{sup -1}. The 'X-ray echo' from Sgr B, located a few hundred light-years from Sgr A*, has now reached the Earth.

  9. OGLE16aaa - a signature of a hungry supermassive black hole

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Łukasz; Zieliński, M.; Kostrzewa-Rutkowska, Z.; Hamanowicz, A.; Jonker, P. G.; Arcavi, I.; Guillochon, J.; Brown, P. J.; Kozłowski, S.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Mróz, P.; Ulaczyk, K.; Pawlak, M.; Rybicki, K. A.; Greiner, J.; Krühler, T.; Bolmer, J.; Smartt, S. J.; Maguire, K.; Smith, K.

    2017-02-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the Optical Gravitational Lensing Experiment (OGLE-IV) survey, located in the centre of a galaxy at redshift z = 0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV tidal disruption events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line active galactic nucleus, which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as `changing-look quasars', if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bias in TDE selection, thus affecting TDE-rate estimations.

  10. Modelling the cosmological co-evolution of supermassive black holes and galaxies

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bonoli, S.; Branchini, E.; Moscardini, L.; Springel, V.; White, S. D. M.

    2008-10-01

    We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation. This model, described in detail by Croton et al. and De Lucia and Blaizot, introduces a `radio mode' feedback from AGN at the centre of X-ray emitting atmospheres in galaxy groups and clusters. We investigate how well this model can reproduce the physical properties of BHs and AGN. We analyse the scaling relations, the fundamental plane and the mass function of BHs, and compare them with the most recent observational data. Moreover, we extend the semi-analytic model to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. While we find for the most part a very good agreement between predicted and observed BH properties, the semi-analytic model underestimates the number density of luminous AGN at high redshifts, independently of the adopted Eddington factor and accretion efficiency. However, an agreement with the observations is possible within the framework of our model, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts.

  11. Coevolution of supermassive black holes and circumnuclear dense molecular gas disk in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    2015-09-01

    The energy emitted by an active galactic nucleus (AGN) is commonly ascribed to mass accretion onto a supermassive black hole (SMBH). However, the physics of angular momentum transfer at r < 100 pc from the SMBH is still unclear. Interestingly, recent high resolution IR observations suggest a possible connection between a circumnuclear (i.e., < 100 pc scale) star formation rate and a mass accretion rate onto a SMBH (e.g., Esquej et al. 2014). But to study such a tentative AGN-starburst connection in detail, it is also necessary to investigate properties of circumnuclear molecular gas, because such gas is the site of massive star formation, and also be the fuel for AGNs. Therefore, we compiled interferometric data of the 100 pc scale circumnuclear molecular gas disk (CND) in nearby Seyfert galaxies, and found a (tentative) correlation between (1) a ratio of the mass of the CND and the mass of the SMBH and (2) a mass accretion rate onto the SMBH. The mass of the CND is estimated by using HCN(1-0) emission line, which is a typical tracer of dense molecular gas (unlike J=1-0 CO). This correlation can be expected in a turbulent disk

  12. Supermassive Black Holes, AGN Feedback, and Hot X-ray Coronae in Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Forman, William R.; Anderson, Michael E.; Churazov, Eugene; Nulsen, Paul; Jones, Christine; Kraft, Ralph P.

    2016-06-01

    We present the analysis of a sample of more than 200 nearby, early type galaxies observed with the Chandra X-ray Observatory. We exclude resolved point sources, and model the emission from both unresolved X-ray binaries and CVs and ABs to derive the residual thermal emission from the hot atmosphere around each galaxy. We compute the X-ray luminosity of the central supermassive black hole (SMBH). Using galaxy velocity dispersion (or stellar mass) as a proxy for SMBH mass, we derive the Eddington ratios for these low luminosity AGN. We present the X-ray luminosity and gas temperature of the hot coronae as a function of stellar mass (a proxy for dark matter halo mass) and central velocity dispersion to look for anomalously X-ray bright gaseous coronae and to determine the stellar (or halo) mass, below which galactic winds may be important. For hot coronae with X-ray cavities, we derive the "mechanical" power of SMBHs and compare these to their radiative luminosities.

  13. The connection between the formation of galaxies and that of their central supermassive black holes.

    PubMed

    Haehnelt, Martin G

    2005-03-15

    Massive black holes appear to be an essential ingredient of massive galactic bulges but little is known yet to what extent massive black holes reside in dwarf galaxies and globular clusters. Massive black holes most likely grow by a mixture of merging and accretion of gas in their hierarchically merging host galaxies. While the hierarchical merging of dark matter structures extends to sub-galactic scales and very high redshift, it is uncertain if the same is true for the build-up of massive black holes. I discuss here some of the relevant problems and open questions.

  14. Supermassive black holes and central star clusters: Connection with the host galaxy kinematics and color

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Cherepashchuk, A. M.

    2013-11-01

    The relationship between the masses of the central, supermassive black holes ( M bh) and of the nuclear star clusters ( M nc) of disk galaxies with various parameters galaxies are considered: the rotational velocity at R = 2 kpc V (2), the maximum rotational velocity V max, the indicative dynamical mass M 25, the integrated mass of the stellar population M *, and the integrated color index B-V. The rotational velocities andmasses of the central objects were taken from the literature. Themass M nc correlatesmore closely with the kinematic parameters and the disk mass than M bh, including with the velocity V max, which is closely related to the virial mass of the dark halo. On average, lenticular galaxies are characterized by higher masses M bh compared to other types of galaxies with similar characteristics. The dependence of the blackhole mass on the color index is bimodal: galaxies of the red group (red-sequence) with B-V >0.6-0.7 which are mostly early-type galaxies with weak star formation, differ appreciably from blue galaxies, which have higher values of M nc and M bh. At the dependences we consider between the masses of the central objects and the parameters of the host galaxies (except for the dependence of M bh on the central velocity dispersion), the red-group galaxies have systematically higher M bh values, even when the host-galaxy parameters are similar. In contrast, in the case of nuclear star clusters, the blue and red galaxies form unified sequences. The results agree with scenarios in which most red-group galaxies form as a result of the partial or complete loss of interstellar gas in a stage of high nuclear activity in galaxies whose central black-hole masses exceed 106-107 M ⊙ (depending on the mass of the galaxy itself). The bulk of disk galaxies with M bh > 107 M ⊙ are lenticular galaxies (types S0, E/S0) whose disks are practically devoid of gas.

  15. Possibility of catastrophic black hole growth in the warped brane-world scenario at the LHC

    SciTech Connect

    Casadio, Roberto; Fabi, Sergio; Harms, Benjamin

    2009-10-15

    In this paper, we present the results of our analysis of the growth and decay of black holes possibly produced at the Large Hadron Collider, based on our previous study of black holes in the context of the warped brane-world scenario. The black hole mass accretion and decay is obtained as a function of time, and the maximum black hole mass are obtained as a function of a critical mass parameter. The latter occurs in our expression for the luminosity and is related to the size of extra-dimensional corrections to Newton's law. Based on this analysis, we argue against the possibility of catastrophic black hole growth at the LHC.

  16. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    SciTech Connect

    Guo, Fulai

    2014-12-20

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M{sub ∗}/R{sub eff}{sup 1.5} is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be M{sub bh}{sup 1.6}M{sub ∗}/R{sub eff}{sup 1.5}, which may be tested in future observational studies.

  17. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  18. Gravitational torque-driven black hole growth and feedback in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Davé, Romeel; Faucher-Giguère, Claude-André; Özel, Feryal; Hopkins, Philip F.

    2017-01-01

    We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. Our sub-grid accretion model captures the key scalings governing angular momentum transport by gravitational torques from galactic scales down to parsec scales, while our kinetic feedback implementation enables the injection of outflows with properties chosen to match observed nuclear outflows (star formation-driven winds are not included to isolate the effects of black hole feedback). We show that `quasar mode' feedback can have a large impact on the thermal properties of the intergalactic medium and the growth of galaxies and massive black holes for kinetic feedback efficiencies as low as 0.1 per cent relative to the bolometric luminosity. None the less, our simulations indicate that the black hole-host scaling relations are only weakly dependent on the effects of black hole feedback on galactic scales, since black hole feedback suppresses the growth of galaxies and massive black holes by a similar amount. In contrast, the rate at which gravitational torques feed the central black hole relative to the host galaxy star formation rate governs the slope and normalization of the black hole-host correlations. Our results suggest that a common gas supply regulated by gravitational torques is the primary driver of the observed co-evolution of black holes and galaxies.

  19. Constraints on the Nature of CID-42: Recoil Kick or Supermassive Black Hole Pair?

    NASA Technical Reports Server (NTRS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2012-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. An apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsecscale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity approximately greater than 1300 km s(exp -1). Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk approximately greater than 2000 km s(exp -1)). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton-thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially-resolved spectra that can pinpoint the origin of the broad and narrow line features will be critical for determining the nature of this unique source.

  20. Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Bauer, F. E.; Treister, E.; Schawinski, K.; Privon, G. C.; Blecha, L.; Arevalo, P.; Armus, L.; Harrison, F.; Ho, L. C.; Iwasawa, K.; Sanders, D. B.; Stern, D.

    2017-01-01

    Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion onto supermassive black holes (SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local Luminous and Ultra-luminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. We find that the fraction of Compton-thick (CT, N_ H≥ 10^{24} cm^{-2}) AGN in late merger galaxies is higher (f_ CT=65^{+12}_{-13}%) than in local hard X-ray selected AGN (f CT = 27 ± 4%), and that obscuration reaches its maximum when the nuclei of the two merging galaxies are at a projected distance of D12 ≃ 0.4 - 10.8 kiloparsecs (f_ CT=77_{-17}^{+13}%). We also find that all AGN of our sample in late merger galaxies have N_ H> 10^{23} cm^{-2}, which implies that the obscuring material covers 95^{+4}_{-8}% of the X-ray source. These observations show that the material is most effectively funnelled from the galactic scale to the inner tens of parsecs during the late stages of galaxy mergers, and that the close environment of SMBHs in advanced mergers is richer in gas and dust with respect to that of SMBHs in isolated galaxies, and cannot be explained by the classical AGN unification model in which the torus is responsible for the obscuration.

  1. PHYSICS OF THE GALACTIC CENTER CLOUD G2, ON ITS WAY TOWARD THE SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Burkert, A.; Schartmann, M.; Alig, C.; Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.

    2012-05-01

    We investigate the origin, structure, and evolution of the small gas cloud G2, which is on an orbit almost straight into the Galactic central supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion zone of Sgr A*, requiring gas temperatures and densities that agree well with models of captured shock-heated stellar winds. Its mass is equal to the critical mass below which cold clumps would be destroyed quickly by evaporation. Its mass is also constrained by the fact that at apocenter its sound crossing timescale was equal to its infall timescale. Our numerical simulations show that the observed structure and evolution of G2 can be well reproduced if it forms in pressure equilibrium with its surroundings in 1995 at a distance from the SMBH of 7.6 Multiplication-Sign 10{sup 16} cm. If the cloud had formed at apocenter in the 'clockwise' stellar disk as expected from its orbit, it would be torn into a very elongated spaghetti-like filament by 2011, which is not observed. This problem can be solved if G2 is the head of a larger, shell-like structure that formed at apocenter. Our numerical simulations show that this scenario explains not only G2's observed kinematical and geometrical properties but also the Br{gamma} observations of a low surface brightness gas tail that trails the cloud. In 2013, while passing the SMBH, G2 will break up into a string of droplets that within the next 30 years will mix with the surrounding hot gas and trigger cycles of active galactic nucleus activity.

  2. ENHANCED OFF-CENTER STELLAR TIDAL DISRUPTIONS BY SUPERMASSIVE BLACK HOLES IN MERGING GALAXIES

    SciTech Connect

    Liu, F. K.; Chen, Xian E-mail: chenxian@pku.edu.cn

    2013-04-10

    Off-center stellar tidal disruption flares have been suggested to be a powerful probe of recoiling supermassive black holes (SMBHs) out of galactic centers due to anisotropic gravitational wave radiations. However, off-center tidal flares can also be produced by SMBHs in merging galaxies. In this paper, we computed the tidal flare rates by dual SMBHs in two merging galaxies before the SMBHs become self-gravitationally bounded. We employ an analytical model to calculate the tidal loss-cone feeding rates for both SMBHs, taking into account two-body relaxation of stars, tidal perturbations by the companion galaxy, and chaotic stellar orbits in triaxial gravitational potential. We show that for typical SMBHs with masses 10{sup 7} M{sub Sun }, the loss-cone feeding rates are enhanced by mergers up to {Gamma} {approx} 10{sup -2} yr{sup -1}, about two orders of magnitude higher than those by single SMBHs in isolated galaxies and about four orders of magnitude higher than those by recoiling SMBHs. The enhancements are mainly due to tidal perturbations by the companion galaxy. We suggest that off-center tidal flares are overwhelmed by those from merging galaxies, making the identification of recoiling SMBHs challenging. Based on the calculated rates, we estimate the relative contributions of tidal flare events by single, binary, and dual SMBH systems during cosmic time. Our calculations show that the off-center tidal disruption flares by un-bound SMBHs in merging galaxies contribute a fraction comparable to that by single SMBHs in isolated galaxies. We conclude that off-center tidal disruptions are powerful tracers of the merging history of galaxies and SMBHs.

  3. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    NASA Astrophysics Data System (ADS)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  4. Constraints on the nature of CID-42: recoil kick or supermassive black hole pair?

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Civano, Francesca; Elvis, Martin; Loeb, Abraham

    2013-01-01

    The galaxy CXOC J100043.1+020637, also known as CID-42, is a highly unusual object. As an apparent galaxy merger remnant, it displays signatures of both an inspiraling, kiloparsec-scale active galactic nucleus (AGN) pair and of a recoiling AGN with a kick velocity of ≳ 1300 km s-1. Among recoiling AGN candidates, CID-42 alone has both spatial offsets (in optical and X-ray bands) and spectroscopic offsets. In order to constrain the relative likelihood of both scenarios, we develop models using hydrodynamic galaxy merger simulations coupled with radiative transfer calculations. Our gas-rich, major merger models are generally well matched to the galactic morphology and to the inferred stellar mass and star formation rate. We show that a recoiling supermassive black hole (SMBH) in CID-42 should be observable as an AGN at the time of observation. However, in order for the recoiling AGN to produce narrow-line emission, it must be observed shortly after the kick while it still inhabits a dense gaseous region, implying a large total kick velocity (vk ≳ 2000 km s-1). For the dual AGN scenario, an unusually large broad-line offset is required, and the best match to the observed morphology requires a galaxy that is less luminous than CID-42. Further, the lack of X-ray emission from one of the two optical nuclei is not easily attributed to an intrinsically quiescent SMBH or to a Compton thick galactic environment. While the current data do not allow either the recoiling or the dual AGN scenario for CID-42 to be excluded, our models highlight the most relevant parameters for distinguishing these possibilities with future observations. In particular, high-quality, spatially resolved spectra that can pinpoint the origin of the broad-line and narrow-line features will be critical for determining the nature of this unique source.

  5. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Rafikov, Roman R.

    2013-09-10

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F{sub J}. If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F{sub J} (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10{sup -4} - 10{sup -2} pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis-it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit.

  6. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  7. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    SciTech Connect

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura; Shankar, Francesco

    2014-01-01

    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  8. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    SciTech Connect

    Läsker, Ronald; Van de Ven, Glenn; Ferrarese, Laura

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.

  9. SUPERMASSIVE BLACK HOLES IN A STAR-FORMING GASEOUS CIRCUMNUCLEAR DISK

    SciTech Connect

    Del Valle, L.; Escala, A.; Molina, J.; Maureira-Fredes, C.; Amaro-Seoane, P.; Cuadra, J.

    2015-09-20

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 10{sup 7} years.

  10. Effects of high-energy particles on accretion flows onto a supermassive black hole

    SciTech Connect

    Kimura, Shigeo S.; Takahara, Fumio; Toma, Kenji

    2014-08-20

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10{sup −4} M-dot c{sup 2} to 10{sup −2} M-dot c{sup 2}, where M-dot is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  11. Recurring flares from supermassive black hole binaries: implications for tidal disruption candidates and OJ 287

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.

    2013-09-01

    I discuss the possibility that accreting supermassive black hole (SMBH) binaries with sub-parsec separations produce periodically recurring luminous outbursts that interrupt periods of relative quiescence. This hypothesis is motivated by two characteristics found generically in simulations of binaries embedded in prograde accretion discs: (i) the formation of a central, low-density cavity around the binary and (ii) the leakage of gas into this cavity, occurring once per orbit via discrete streams on nearly radial trajectories. The first feature would reduce the emergent optical/UV flux of the system relative to active galactic nuclei powered by a single SMBH, while the second can trigger quasi-periodic fluctuations in luminosity. I argue that the quasi-periodic accretion signature may be much more dramatic than previously thought, because the infalling gas streams can strongly shock-heat via self-collision and tidal compression, thereby enhancing viscous accretion. Any optically thick gas that is circularized about either SMBH can accrete before the next pair of streams is deposited, fuelling transient, luminous flares that recur every orbit. Due to the diminished flux in between accretion episodes, such cavity-accretion flares could plausibly be mistaken for the tidal disruptions of stars in quiescent nuclei. The flares could be distinguished from tidal disruption events if their quasi-periodic recurrence is observed, or if they are produced by very massive (≳109 M⊙) SMBHs that cannot disrupt solar-type stars. They may be discovered serendipitously in surveys such as LSST or eROSITA. I present a heuristic toy model as a proof of concept for the production of cavity-accretion flares, and generate mock light curves and spectra. I also apply the model to the active galaxy OJ 287, whose production of quasi-periodic pairs of optical flares has long fuelled speculation that it hosts an SMBH binary.

  12. Hunting a wandering supermassive black hole in the M31 halo hermitage

    SciTech Connect

    Miki, Yohei; Mori, Masao; Kawaguchi, Toshihiro; Saito, Yuriko

    2014-03-10

    In the hierarchical structure formation scenario, galaxies enlarge through multiple merging events with less massive galaxies. In addition, the Magorrian relation indicates that almost all galaxies are occupied by a central supermassive black hole (SMBH) of mass 10{sup –3} times the mass of its spheroidal component. Consequently, SMBHs are expected to wander in the halos of their host galaxies following a galaxy collision, although evidence of this activity is currently lacking. We investigate a current plausible location of an SMBH wandering in the halo of the Andromeda galaxy (M31). According to theoretical studies of N-body simulations, some of the many substructures in the M31 halo are remnants of a minor merger occurring about 1 Gyr ago. First, to evaluate the possible parameter space of the infalling orbit of the progenitor, we perform numerous parameter studies using a graphics processing unit cluster. To reduce uncertainties in the predicted position of the expected SMBH, we then calculate the time evolution of the SMBH in the progenitor dwarf galaxy from N-body simulations using the plausible parameter sets. Our results show that the SMBH lies within the halo (∼20-50 kpc from the M31 center), closer to the Milky Way than the M31 disk. Furthermore, the predicted current positions of the SMBH were restricted to an observational field of 0.°6 × 0.°7 in the northeast region of the M31 halo. We also discuss the origin of the infalling orbit of the satellite galaxy and its relationships with the recently discovered vast thin disk plane of satellite galaxies around M31.

  13. Supermassive Black Holes in a Star-forming Gaseous Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    del Valle, L.; Escala, A.; Maureira-Fredes, C.; Molina, J.; Cuadra, J.; Amaro-Seoane, P.

    2015-09-01

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 107 years.

  14. Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu; Menou, Kristen; Haiman, Zoltán.

    2012-02-01

    Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z≲ 1.5) compact supermassive (M≳ 109 M⊙) black hole (SMBH) binaries with orbital periods of ˜0.1-10 yr. Identifying the electromagnetic (EM) counterparts of these sources would provide confirmation of putative direct detections of GWs, present a rare opportunity to study the environments of compact SMBH binaries and could enable the use of these sources as standard sirens for cosmology. Here we consider the feasibility of such an EM identification. We show that because the host galaxies of resolved PTA sources are expected to be exceptionally massive and rare, it should be possible to find unique hosts of resolved sources out to z≈ 0.2. At higher redshifts, the PTA error boxes are larger, and may contain as many as ˜100 massive-galaxy interlopers. The number of candidates, however, remains tractable for follow-up searches in upcoming wide-field EM surveys. We develop a toy model to characterize the dynamics and the thermal emission from a geometrically thin gaseous disc accreting on to a PTA-source SMBH binary. Our model predicts that at optical and infrared frequencies, the source should appear similar to a typical luminous active galactic nucleus (AGN). However, owing to the evacuation of the accretion flow by the binary's tidal torques, the source might have an unusually low soft X-ray luminosity and weak ultraviolet (UV) and broad optical emission lines, as compared to an AGN powered by a single SMBH with the same total mass. For sources at z˜ 1, the decrement in the rest-frame UV should be observable as an extremely red optical colour. These properties would make the PTA sources stand out among optically luminous AGN, and could allow their unique identification. Our results also suggest that accreting compact SMBH binaries may be included among the observed population of optically bright, X-ray-dim AGN.

  15. Physics of the Galactic Center Cloud G2, on Its Way toward the Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Schartmann, M.; Alig, C.; Gillessen, S.; Genzel, R.; Fritz, T. K.; Eisenhauer, F.

    2012-05-01

    We investigate the origin, structure, and evolution of the small gas cloud G2, which is on an orbit almost straight into the Galactic central supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion zone of Sgr A*, requiring gas temperatures and densities that agree well with models of captured shock-heated stellar winds. Its mass is equal to the critical mass below which cold clumps would be destroyed quickly by evaporation. Its mass is also constrained by the fact that at apocenter its sound crossing timescale was equal to its infall timescale. Our numerical simulations show that the observed structure and evolution of G2 can be well reproduced if it forms in pressure equilibrium with its surroundings in 1995 at a distance from the SMBH of 7.6 × 1016 cm. If the cloud had formed at apocenter in the "clockwise" stellar disk as expected from its orbit, it would be torn into a very elongated spaghetti-like filament by 2011, which is not observed. This problem can be solved if G2 is the head of a larger, shell-like structure that formed at apocenter. Our numerical simulations show that this scenario explains not only G2's observed kinematical and geometrical properties but also the Brγ observations of a low surface brightness gas tail that trails the cloud. In 2013, while passing the SMBH, G2 will break up into a string of droplets that within the next 30 years will mix with the surrounding hot gas and trigger cycles of active galactic nucleus activity.

  16. Is there a kicked supermassive black hole in E1821+643?

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2013-10-01

    The formation of binary supermassive black holes {BBH} in galaxy centers appears to be an inevitable consequence of hierarchical structure formation. General Relativity predicts that, when a BBH coalesces, the merged SMBH recoils with a velocity that may reach several 1000 km/s. The luminous quasar E1821+643 is one of only 3 SMBH recoil candidates that have been identified via Doppler shifting of emission lines from the retained gas. This case is unique in that the Doppler shift is seen in both direct and scattered light, allowing us to infer a relative velocity of 2100 km/s between the quasar nucleus and host galaxy. By itself, this does not exclude alternative models such as a BBH or anisotropic wind, but follow-up spectroastrometric measurements reveal a relative displacement between the nucleus and the gas emitting the [OIII]4959,5007 lines that is consistent with the recoil hypothesis. The apparent displacement, however, could also be due to an asymmetric circum-nuclear distribution of the [OIII] emission. In order to distinguishbetween these two possibilities we propose ACS/WFC ramp filter imaging in [OIII] to map the distribution of narrow-line emission on sub-arcsecond scales. The observations will also allow us to study the relationship between the narrow-line gas and the arcsecond-scale radio source, which has morphological features that may relate to precession in a BBH system, or a "spin-flip" following coalescence. With this modest investment of HST time we will take a key step in establishing the nature of the E1821+643 system, which may ultimately yield direct observational evidence for BBH coalescence and high velocity gravitational recoils.

  17. The Starburst in the Abell 1835 Cluster Central Galaxy: A Case Study of Galaxy Formation Regulated by an Outburst from a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Rafferty, D. A.; Bîrzan, L.; Steiner, J.; Wise, M. W.; Nulsen, P. E. J.; Carilli, C. L.; Ryan, R.; Sharma, M.

    2006-09-01

    We present an analysis of the starburst in the Abell 1835 cluster's cD galaxy. The dense gas surrounding the galaxy is radiating X-rays at a rate of ~1045 ergs s-1, which is consistent with a cooling rate of ~1000-2000 Msolar yr-1. However, Chandra and XMM-Newton observations found less than 200 Msolar yr-1 of cooling below ~2 keV, a level that is consistent with the cD's current star formation rate of 100-180 Msolar yr-1. One or more heating agents (feedback) must then be replenishing the remaining radiative losses. Supernova explosions and thermal conduction are unable to do so. However, the active galactic nucleus (AGN) is pumping ~=1.4×1045 ergs s-1into the hot gas, which is enough power to offset most of the radiative cooling losses. The AGN jet power exceeds the radio synchrotron power by ~4000 times, making this one of the most radiatively inefficient radio sources known. The jet power implies that the supermassive black hole has accreted at a mean rate of ~0.3 Msolar yr-1 over the last 40 Myr or so, which is a small fraction of the Eddington accretion rate for a ~109 Msolar black hole. The ratio of black hole growth rate by accretion to bulge growth by star formation is consistent with the slope of the (Magorrian) relationship between bulge and central black hole mass in nearby quiescent galaxies. The starburst follows the Schmidt-Kennicutt parameterizations, indicating that the local environment is not substantially altering the IMF and other conditions leading to the onset of star formation. The consistency between net cooling, heating (feedback), and the cooling sink (star formation) in this system resolves the primary objection to traditional cooling flow models.

  18. Subaru and e-Merlin observations of NGC 3718. Diaries of a supermassive black hole recoil?

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Dierkes, J.; Eckart, A.; Nishiyama, S.; Britzen, S.; García-Marín, M.; Horrobin, M.; Muxlow, T.; Zensus, J. A.

    2015-08-01

    photometric and spectroscopic characteristics. These characteristics combined with the observed spatial NIR and radio emission offsets, the relative redshift between the broad and the narrow Hα line, the limited star formation activity, and AGN feedback strongly imply the existence of a supermassive black hole recoil. Finally, we discuss a possible interpretation that could naturally incorporate all these findings into one physically consistent picture. Appendices are available in electronic form at http://www.aanda.orgBased on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. Small Seed Black Hole Growth in Various Accretion Regimes

    NASA Astrophysics Data System (ADS)

    Gerling-Dunsmore, Hannalore J.; Hopkins, Philip F.

    2016-03-01

    Observational evidence indicates a population of super massive black holes (SMBHs) (~109 -1010M⊙) formed within 1 Gyr after the Big Bang. One proposed means of SMBH formation is accretion onto small seed black holes (BHs) (~ 100M⊙). However, the existence of SMBHs within 1 Gyr requires rapid growth, but conventional models of accretion fail to grow the seed BHs quickly enough. Super Eddington accretion (Ṁ >ṀEddington) may aid in improving growth efficiency. We study small seed BH growth via accretion in 3D, using the magneto-hydrodynamics+gravity code GIZMO. In particular, we consider a BH in a high density turbulent star-forming cloud, and ask whether or not the BH can capture sufficient gas to grow rapidly. We consider both Eddington-limited and super Eddington regimes, and resolve physics on scales from 0.1 pc to 1 kpc while including detailed models for stellar feedback physics, including stellar winds, supernovae, radiation pressure, and photo-ionization. We present results on the viability of different small seed BHs growing into SMBH candidates.

  20. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE

    SciTech Connect

    Bosch, Remco C. E. van den; Yıldırım, Akin; Gebhardt, Karl; Walsh, Jonelle L.; Gültekin, Kayhan

    2015-05-15

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby–Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns.

  1. Science with the space-based interferometer eLISA: Supermassive black hole binaries

    NASA Astrophysics Data System (ADS)

    Klein, Antoine; Barausse, Enrico; Sesana, Alberto; Petiteau, Antoine; Berti, Emanuele; Babak, Stanislav; Gair, Jonathan; Aoudia, Sofiane; Hinder, Ian; Ohme, Frank; Wardell, Barry

    2016-01-01

    We compare the science capabilities of different eLISA mission designs, including four-link (two-arm) and six-link (three-arm) configurations with different arm lengths, low-frequency noise sensitivities and mission durations. For each of these configurations we consider a few representative massive black hole formation scenarios. These scenarios are chosen to explore two physical mechanisms that greatly affect eLISA rates, namely (i) black hole seeding, and (ii) the delays between the merger of two galaxies and the merger of the black holes hosted by those galaxies. We assess the eLISA parameter estimation accuracy using a Fisher matrix analysis with spin-precessing, inspiral-only waveforms. We quantify the information present in the merger and ringdown by rescaling the inspiral-only Fisher matrix estimates using the signal-to-noise ratio from nonprecessing inspiral-merger-ringdown phenomenological waveforms, and from a reduced set of precessing numerical relativity/post-Newtonian hybrid waveforms. We find that all of the eLISA configurations considered in our study should detect some massive black hole binaries. However, configurations with six links and better low-frequency noise will provide much more information on the origin of black holes at high redshifts and on their accretion history, and they may allow the identification of electromagnetic counterparts to massive black hole mergers.

  2. Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes.

    PubMed

    Kocsis, Bence; Loeb, Abraham

    2008-07-25

    Mergers of supermassive black hole binaries release peak power of up to approximately 10(57) erg s(-1) in gravitational waves (GWs). As the GWs propagate through ambient gas, they induce shear and a small fraction of their power is dissipated through viscosity. The dissipated heat appears as electromagnetic (EM) radiation, providing a prompt EM counterpart to the GW signal. For thin accretion disks, the GW heating rate exceeds the accretion power at distances farther than approximately 10(3) Schwarzschild radii, independently of the accretion rate and viscosity coefficient.

  3. Are X-ray emitting coronae around supermassive black holes outflowing?

    SciTech Connect

    Liu, Teng; Wang, Jun-Xian; Yang, Huan; Zhu, Fei-Fan; Zhou, You-Yuan E-mail: jxw@ustc.edu.cn

    2014-03-10

    Hard X-ray emission in radio-quiet active galactic nuclei (AGNs) is believed to be produced via inverse Compton scattering by hot and compact coronae near the supermassive black hole. However, the origin and physical properties of the coronae, including geometry, kinematics, and dynamics, remain poorly known. In this work, taking [O IV] 25.89 μm emission line as an isotropic indicator of AGNs' intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We compile a sample of 130 Compton-thin Seyfert galaxies with both [O IV] 25.89 μm line luminosities measured with the Spitzer Infrared Spectrometer and X-ray spectra observed by XMM-Newton, Chandra, Suzaku, or Swift. Known radio-loud sources are excluded. We fit the X-ray spectra to obtain the absorption-corrected 2-10 keV continuum luminosities. We find that Seyfert 1 galaxies are intrinsically brighter in intrinsic 2-10 keV emission by a factor of 2.8{sub −0.4}{sup +0.5} (2.2{sub −0.3}{sup +0.9} in Swift Burst Alert Telescope 14-195 keV emission), compared with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference in X-ray emission between the two populations is thus unlikely to be due to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ∼0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. Other consequences of outflowing coronae are also discussed.

  4. MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

    SciTech Connect

    Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo; Just, Andreas; Berczik, Peter; Spurzem, Rainer

    2012-04-20

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on the so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric

  5. Properties of galaxies around AGNs with the most massive supermassive black holes revealed by clustering analysis

    NASA Astrophysics Data System (ADS)

    Shirasaki, Yuji; Komiya, Yutaka; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2016-04-01

    We present results of the clustering analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1.0, which was performed to investigate the properties of galaxies associated with the AGNs and reveal the nature of the fueling mechanism of supermassive black holes (SMBHs). We used 8059 AGNs/quasi-stellar objects (QSOs) for which virial masses of individual SMBHs were measured, and divided them into four mass groups.Cross-correlation analysis was performed to reconfirm our previous result that cross-correlation length increases with SMBH mass MBH; we obtained consistent results. A linear bias of AGN for each mass group was measured as 1.47 for MBH = 107.5-108.2 M⊙ and 3.08 for MBH = 109-1010 M⊙. The averaged color and luminosity distributions of galaxies around the AGNs/QSOs were also derived for each mass group. The galaxy color Dopt-IR was estimated from a spectral energy distribution (SED) constructed from a catalog derived by merging the Sloan Digital Sky Survey (SDSS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) catalogs. The distributions of color and luminosity were derived by a subtraction method, which does not require redshift information of galaxies. The main results of this work are as follows. (1) A linear bias increases by a factor of two from the lower-mass group to the highest-mass group. (2) The environment around AGNs with the most massive SMBHs (MBH > 109 M⊙) is dominated by red sequence galaxies. (3) Marginal indication of decline in luminosity function at dimmer side of MIR > -19.5 is found for galaxies around AGNs with MBH = 108.2-109 M⊙ and nearest redshift group (z = 0.1-0.3). These results indicate that AGNs with the most massive SMBHs reside in haloes where a large fraction of galaxies have been transited to the red sequence. The accretion of hot halo gas as well as recycled gas from evolving stars can be one of the plausible mechanisms to fuel the SMBHs above ˜ 109 M⊙.

  6. Model for coeval growth of bulges and their seed black holes in presence of radiative feedback

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Bogdanovic, Tamara; Wise, John

    2017-01-01

    The discovery of billion solar mass accreting black holes at high redshift poses a great challenge for the modeling of the seed black hole (BH) formation and growth. Radiation-hydrodynamic simulations represent a crucial test of plausible scenarios by providing estimated growth rates for the seeds in the intermediate-mass black hole range. Previous works show that radiative feedback from black holes suppresses the cold gas accretion rate dramatically, making it difficult to explain the rapid growth of seed black holes. We however find that the fueling rate of black holes embedded in bulges can increase with the bulge-to-BH mass ratio when the bulge mass is greater than the critical value of ˜106 M⊙. The critical bulge mass is independent of the central black hole mass, thus the growth rate of light seeds (< 102 M⊙) and heavy seed black holes (> 105 M⊙) exhibits distinct dependencies on the bulge-to-BH mass ratio. Our results imply that heavy seeds, that may form via direct collapse, can grow efficiently and coevally with the host galaxies despite radiative feedback whereas the growth of light seeds is stunted. We present the results of an extended semi-analytic model based on the radiation-hydrodynamic simulations, which follows the coeval growth of black holes and their bulges.

  7. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.

    PubMed

    Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B

    2003-10-30

    Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.

  8. Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope

    SciTech Connect

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor; Broderick, Avery E.; Baron, Fabien; Monnier, John D.

    2014-06-20

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole 'shadow', a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (∼2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.

  9. A Search for Molecular Gas in the Nucleus of M87 and Implications for the Fueling of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Beuther, Henrik; Walter, Fabian; Blackman, Eric G.

    2008-12-01

    Supermassive black holes in giant elliptical galaxies are remarkably faint given their expected accretion rates. This motivates models of radiatively inefficient accretion due to either ion-electron thermal decoupling, generation of outflows that inhibit accretion, or settling of gas to a gravitationally unstable disk that forms stars in preference to feeding the black hole. The latter model predicts the presence of cold molecular gas in a thin disk around the black hole. Here we report Submillimeter Array observations of the nucleus of the giant elliptical galaxy M87 that probe 230 GHz continuum and CO (J = 2-1) line emission. Continuum emission is detected from the nucleus and several knots in the jet, including one that has been undergoing flaring behavior. We estimate a conservative upper limit on the mass of molecular gas within ~100 pc and ±400 km s-1 line-of-sight velocity of the central black hole of ~8 × 106 M⊙, which includes an allowance for possible systematic errors associated with subtraction of the continuum. Ignoring such errors, we have a 3 σ sensitivity to ~3 × 106 M⊙. In fact, the continuum-subtracted spectrum shows weak emission features extending up to 4 σ above the rms dispersion of the line-free channels. These may be artifacts of the continuum subtraction process. Alternatively, if they are interpreted as CO emission, then the implied molecular gas mass is ~5 × 106 M⊙ spread out over a velocity range of 700 km s-1. These constraints on molecular gas mass are close to the predictions of the model of self-gravitating, star-forming accretion disks fed by Bondi accretion (Tan & Blackman 2005).

  10. Imaging the Supermassive Black Hole Shadow and Jet Base of M87 with the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Lu, Ru-Sen; Broderick, Avery E.; Baron, Fabien; Monnier, John D.; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor

    2014-06-01

    The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole "shadow," a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (~2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.

  11. A milliparsec supermassive black hole binary candidate in the galaxy SDSS J120136.02+300305.5

    SciTech Connect

    Liu, F. K.; Li, Shuo; Komossa, S.

    2014-05-10

    Galaxy mergers play a key role in the evolution of galaxies and the growth of their central supermassive black holes (SMBHs). A search for (active) SMBH binaries (SMBHBs) at the centers of the merger remnants is currently ongoing. Perhaps the greatest challenge is to identify the inactive SMBHBs, which might be the most abundant, but are also the most difficult to identify. Liu et al. predicted characteristic drops in the light curves of tidal disruption events (TDEs), caused by the presence of a secondary SMBH. Here, we apply that model to the light curve of the optically inactive galaxy SDSS J120136.02+300305.5, which was identified as a candidate TDE with XMM-Newton. We show that the deep dips in its evolving X-ray light curve can be well explained by the presence of a SMBHB at its core. A SMBHB model with a mass of the primary of M {sub BH} = 10{sup 7} M {sub ☉}, a mass ratio q ≅ 0.08, and a semi-major axis a {sub b} ≅ 0.6 mpc is in good agreement with the observations. Given that primary mass, introducing an orbital eccentricity is needed, with e {sub b} ≅ 0.3. Alternatively, a lower mass primary of M {sub BH} = 10{sup 6} M {sub ☉} in a circular orbit fits the light curve well. Tight binaries like this one, which have already overcome the 'final parsec problem', are prime sources of gravitational wave radiation once the two SMBHs coalesce. Future transient surveys, which will detect TDEs in large numbers, will place tight constraints on the SMBHB fraction in otherwise non-active galaxies.

  12. ALMA FOLLOWS STREAMING OF DENSE GAS DOWN TO 40 pc FROM THE SUPERMASSIVE BLACK HOLE IN NGC 1097

    SciTech Connect

    Fathi, Kambiz; Pinol-Ferrer, Nuria; Lundgren, Andreas A.; Wiklind, Tommy; Kohno, Kotaro; Izumi, Takuma; Martin, Sergio; Espada, Daniel; Hatziminaoglou, Evanthia; Imanishi, Masatoshi; Krips, Melanie; Matsushita, Satoki; Meier, David S.; Nakai, Naomasa; Sheth, Kartik; Turner, Jean; Van de Ven, Glenn

    2013-06-20

    We present a kinematic analysis of the dense molecular gas in the central 200 pc of the nearby galaxy NGC 1097, based on Cycle 0 observations with the Atacama Large Millimeter/submillimeter Array (ALMA). We use the HCN(4-3) line to trace the densest interstellar molecular gas (n{sub H{sub 2}}{approx}10{sup 8} cm{sup -3}), and quantify its kinematics, and estimate an inflow rate for the molecular gas. We find a striking similarity between the ALMA kinematic data and the analytic spiral inflow model that we have previously constructed based on ionized gas velocity fields on larger scales. We are able to follow dense gas streaming down to 40 pc distance from the supermassive black hole in this Seyfert 1 galaxy. In order to fulfill marginal stability, we deduce that the dense gas is confined to a very thin disk, and we derive a dense gas inflow rate of 0.09 M{sub Sun} yr{sup -1} at 40 pc radius. Combined with previous values from the H{alpha} and CO gas, we calculate a combined molecular and ionized gas inflow rate of {approx}0.2 M{sub Sun} yr{sup -1} at 40 pc distance from the central supermassive black hole of NGC 1097.

  13. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    PubMed

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-08

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.

  14. NASA's Chandra Finds Black Holes Are "Green"

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  15. Understanding the build-up of supermassive black holes and galaxies at the heyday of the Universe

    NASA Astrophysics Data System (ADS)

    Carrera, Francisco

    Open questions that relate to our current understanding of black hole growth and its relation to the build-up of galaxies include: what are the physical conditions (e.g. fuelling mode, triggering mechanism) that initiate major black hole accretion events; what is the nature of AGN feedback and whether it plays a significant role in the evolution of galaxies. X-rays are essential for addressing these points as they uniquely probe AGN at both the early heavily obscured stage and the later blow-out phase. The most important epoch for investigating the relation between AGN and galaxies is the redshift range z˜ 1-4, when most black holes and stars we see in the present-day Universe were put in place. Unfortunately, exhaustive efforts with current high-energy telescopes only scrape the tip of the iceberg of the most obscured AGN population. Moreover, X-ray studies of the incidence, nature and energetics of AGN feedback are limited to the local Universe. The Athena mission concept will provide the technological leap required for a breakthrough in our understanding of AGN and galaxy evolution at the heyday of the Universe. Its high throughput will allow the systematic study of AGN feedback to z˜ 4 via the identification and measurement of blue-shifted X-ray absorption lines with Athena/X-IFU. The excellent survey and spectral capabilities of Athena/WFI (effective area, angular resolution, field of view) will complete the census of black hole growth by yielding samples of up to 100 times larger than is currently possible of the most heavily obscured, including Compton thick, AGN to redshifts z˜ 3. The demographics of this population relative to their hosts is fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  16. Secular evolution of very eccentric, inclined orbits around a supermassive rotating black hole

    NASA Astrophysics Data System (ADS)

    Will, Clifford; Maitra, Matthew

    2017-01-01

    We analyze the secular evolution of the highly eccentric, inclined orbit of a star or black hole in the field of a rotating massive Kerr black hole. Such orbits, with 1 - e ranging from 10-2 to 10-6 may be the end result of a process of stellar interactions in a dense nuclear star cluster surrounding the black hole, leading to extreme-mass ratio inspirals (EMRIs). The calculations are done in post-Newtonian (PN) theory, through 3PN order in the conservative sector, including spin-orbit, quadrupolar and (spin)2 terms from the Kerr geometry, and through 4.5PN order, including 4PN spin-orbit contributions, in the radiation reaction sector. We also incorporate an accurate criterion for capture of the body by the rotating black hole for arbitrary inclinations. For a range of initial values of the body's semi-major axis, eccentricity and inclination, we determine the time and number of orbits until plunge and the final orbital eccentricity. We also estimate the gravitational-wave frequency and energy flux at the final plunge, as a function of the orbital inclination. Supported in part by the National Science Foundation PHY 13-06069 & PHY 16-00188.

  17. NASA Observatory Confirms Black Hole Limits

    NASA Astrophysics Data System (ADS)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  18. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  19. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Garcia, M.

    2003-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitates this study by funding related travel, computer equipment, and partial salary for a post-doc.

  20. The Nearest Black Holes

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    The goal of this program is to study black holes, both in our Galaxy and in nearby galaxies. We aim to study both 'stellar mass' x-ray binaries containing black holes (both in our Galaxy and in nearby galaxies), and super-massive black holes in nearby galaxies. This program facilitate this study by funding related travel, computer equipment, and partial salary for a post-doc.

  1. Erratic Black Hole Regulates Itself

    NASA Astrophysics Data System (ADS)

    2009-03-01

    't entirely understand, the other one gets the upper hand." GRS 1915+105 Chandra X-ray Image of GRS 1915+105 The latest Chandra results also show that the wind and the jet carry about the same amount of matter away from the black hole. This is evidence that the black hole is somehow regulating its accretion rate, which may be related to the toggling between mass expulsion via either a jet or a wind from the accretion disk. Self-regulation is a common topic when discussing supermassive black holes, but this is the first clear evidence for it in stellar-mass black holes. "It is exciting that we may be on the track of explaining two mysteries at the same time: how black hole jets can be shut down and also how black holes regulate their growth," said co-author Julia Lee, assistant professor in the Astronomy department at the Harvard-Smithsonian Center for Astrophysics. "Maybe black holes can regulate themselves better than the financial markets!" Although micro-quasars and quasars differ in mass by factors of millions, they should show a similarity in behavior when their very different physical scales are taken into account. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Jet Power and Black Hole Assortment Revealed in New Chandra Image Celebrate the International Year of Astronomy Ghost Remains After Black Hole Eruption "If quasars and micro-quasars behave very differently, then we have a big problem to figure out why, because gravity treats them the same," said Neilsen. "So, our result is actually very reassuring, because it's one more link between these different types of black holes." The timescale for changes in behavior of a black hole should vary in proportion to the mass. For example, an hour-long timescale for changes in GRS 1915 would correspond to about 10,000 years for a supermassive black hole that weighs a billion times the mass of the Sun. "We cannot hope to explore at this level of detail in any single supermassive black hole

  2. First Results from the 7 Ms Chandra Deep Field-South Survey: A Good Hard Look at Growing Supermassive Black Holes in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Brandt, William; Chandra Deep Fields Team

    2017-01-01

    Sensitive cosmic X-ray surveys with the Chandra, XMM-Newton, and now NuSTAR observatories have revolutionized our ability to find and study distant active galactic nuclei (AGNs), the main sites of supermassive black hole growth in the Universe. I will describe some recent discoveries about the demographics, physics, and ecology of distant AGNs coming from the deepest Chandra survey to date, the 7 Ms Chandra Deep Field-South. Some specific topics covered will include (1) robust X-ray spectral and variability characterization of the AGNs producing most of cosmic accretion power; (2) the demographics of AGNs in the first galaxies as revealed by direct detection and stacking; and (3) AGN/galaxy interactions as investigated via the host properties of X-ray AGNs. I will also briefly describe other remarkable discoveries coming from this survey; e.g., measurements of the evolving X-ray binary populations of normal and starburst galaxies.

  3. Constraint on the quadrupole moment of super-massive black hole candidates from the estimate of the mean radiative efficiency of AGN

    SciTech Connect

    Bambi, Cosimo

    2011-05-15

    The supermassive objects at the center of many galaxies are commonly thought to be black holes. In 4-dimensional general relativity, a black hole is completely specified by its mass M and by its spin angular momentum J. All the higher multipole moments of the gravitational field depend in a very specific way on these two parameters. For instance, the mass quadrupole moment is Q=-J{sup 2}/M. If we can estimate M, J, and Q for the supermassive objects in galactic nuclei, we overconstrain the theory and we can test the black hole hypothesis. While there are many works studying how this can be done with future observations, in this paper a constraint on the quadrupole moment of these objects is obtained by using the current estimate of the mean radiative efficiency of AGN. In terms of the anomalous quadrupole moment q, the bound is -2.01

  4. Seeds to monsters: tracing the growth of black holes in the universe

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada

    2014-05-01

    An overview of our current knowledge of black seed formation models following their growth history over cosmic time is presented. Both light seed formation channels remnants of the first stars and the more massive direct collapse seed formation scenarios are outlined. In particular, the focus is on the implications of these various scenarios and what these initial conditions imply for the highest redshift black holes, the local black hole population, the highest mass black holes at each epoch and the low mass end of the black hole mass function all of which are currently observed. The goal is to present a broad and comprehensive picture of the current status; the open questions and challenges faced by black hole growth models in matching current observational data and the prospects for future observations that will help discriminate between competing models.

  5. Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Haiman, Zoltán; Mesinger, Andrei; Wyithe, J. Stuart B.

    2008-12-01

    The earliest generation of stars and black holes must have established an early `Lyman-Werner' background (LWB) at high redshift, prior to the epoch of reionization. Because of the long mean free path of photons with energies hν < 13.6eV, the LWB was nearly uniform. However, some variation in the LWB is expected due to the discrete nature of the sources, and their highly clustered spatial distribution. In this paper, we compute the probability distribution function (PDF) of the LW flux that irradiates dark matter (DM) haloes collapsing at high redshift (z ~ 10). Our model accounts for (i) the clustering of DM haloes, (ii) Poisson fluctuations in the number of corresponding star-forming galaxies and (iii) scatter in the LW luminosity produced by haloes of a given mass (calibrated using local observations). We find that >99 per cent of the DM haloes are illuminated by an LW flux within a factor of 2 of the global mean value. However, a small fraction, ~10-8 to 10-6, of DM haloes with virial temperatures Tvir >~ 104 K have a close luminous neighbour within <~10 kpc, and are exposed to an LW flux exceeding the global mean by a factor of >20, or to J21,LW > 103 (in units of 10-21 erg s-1 Hz-1 sr-1 cm-2). This large LW flux can photodissociate H2 molecules in the gas collapsing due to atomic cooling in these haloes, and prevent its further cooling and fragmentation. Such close halo pairs therefore provide possible sites in which primordial gas clouds collapse directly into massive black holes (MBH ~ 104-6Msolar), and subsequently grow into supermassive (MBH >~ 109Msolar) black holes by z ~ 6.

  6. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  7. A rapidly spinning supermassive black hole at the centre of NGC 1365.

    PubMed

    Risaliti, G; Harrison, F A; Madsen, K K; Walton, D J; Boggs, S E; Christensen, F E; Craig, W W; Grefenstette, B W; Hailey, C J; Nardini, E; Stern, Daniel; Zhang, W W

    2013-02-28

    Broad X-ray emission lines from neutral and partially ionized iron observed in active galaxies have been interpreted as fluorescence produced by the reflection of hard X-rays off the inner edge of an accretion disk. In this model, line broadening and distortion result from rapid rotation and relativistic effects near the black hole, the line shape being sensitive to its spin. Alternative models in which the distortions result from absorption by intervening structures provide an equally good description of the data, and there has been no general agreement on which is correct. Recent claims that the black hole (2 × 10(6) solar masses) at the centre of the galaxy NGC 1365 is rotating at close to its maximum possible speed rest on the assumption of relativistic reflection. Here we report X-ray observations of NGC 1365 that reveal the relativistic disk features through broadened Fe-line emission and an associated Compton scattering excess of 10-30 kiloelectronvolts. Using temporal and spectral analyses, we disentangle continuum changes due to time-variable absorption from reflection, which we find arises from a region within 2.5 gravitational radii of the rapidly spinning black hole. Absorption-dominated models that do not include relativistic disk reflection can be ruled out both statistically and on physical grounds.

  8. A Particular Appetite: Cosmological Hydrodynamic Simulations of Preferential Accretion in the Supermassive Black Holes of Milky Way Size Galaxies

    NASA Astrophysics Data System (ADS)

    Sanchez, Natalie; Bellovary, Jillian M.; Holley-Bockelmann, Kelly

    2016-01-01

    With the use of cosmological hydrodynamic simulations of Milky Way-type galaxies, we identify the preferential source of gas that is accreted by the supermassive black holes (SMBHs) they host. We examine simulations of two Milky Way analogs, each distinguished by a differing merger history. One galaxy is characterized by several major mergers and the other has a more quiescent history. By examining and comparing these two galaxies, which have a similar structure at z=0, we asses the importance of merger history on black hole accretion. This study is an extension of Bellovary et. al. 2013, which studied accretion onto SMBHs in massive, high redshift galaxies. Bellovary found that the fraction of gas accreted by the galaxy was proportional to that which was accreted by its SMBH. Contrary to Bellovary's previous results, we found that though the gas accreted by a quiescent galaxy will mirror the accretion of its central SMBH, a galaxy that is characterized by an active merger history will have a SMBH that preferentially accretes gas gained through mergers. We move forward by examining the angular momentum of the gas accreted by these Milky Way-type galaxies to better understand the mechanisms fueling their central SMBH.

  9. Precession of Fast S0 Stars in the Vicinity of Supermassive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Klimkov, K. S.

    2015-09-01

    We elaborate the model of the influence of the diffuse dark matter, invisible stars or stellar mass black holes on the motion of the observed fast moving S0 stars [1-4] around the supermassive black hole SgrA* in the Galactic center with a mass MBH = 4×10^6 Full-size image (<1 K). We will call all this invisible mass as a dark matter. The additional mass perturbs the elliptical orbits of the S0 mass resulting in the so called Newtonian precession of the elliptical orbits. The major aim of our research is the fitting of the published dates on the observed orbital positions of the S0 stars by the theoretically modeling orbit with a power-law profile of the additional (dark matter) mass. Nowadays the observational data provide only the upper limit on the additional mass. In the nearest years the observations of the S0 stars may provide the real weighing of the dark matter inside the orbits of these S0 stars in the Galactic center. This method is a very perspective for the elucidation of the formation and evolution of the dark matter in the Galactic nucleus.

  10. Disruption of a red giant star by a supermassive black hole and the case of PS1-10jh

    SciTech Connect

    Bogdanović, Tamara; Cheng, Roseanne M.; Amaro-Seoane, Pau E-mail: rcheng@gatech.edu

    2014-06-20

    The development of a new generation of theoretical models for tidal disruptions is timely, as increasingly diverse events are being captured in surveys of the transient sky. Recently, Gezari et al. reported a discovery of a new class of tidal disruption events: the disruption of a helium-rich stellar core, thought to be a remnant of a red giant (RG) star. Motivated by this discovery and in anticipation of others, we consider tidal interaction of an RG star with a supermassive black hole (SMBH) which leads to the stripping of the stellar envelope and subsequent inspiral of the compact core toward the black hole. Once the stellar envelope is removed the inspiral of the core is driven by tidal heating as well as the emission of gravitational radiation until the core either falls into the SMBH or is tidally disrupted. In the case of the tidal disruption candidate PS1-10jh, we find that there is a set of orbital solutions at high eccentricities in which the tidally stripped hydrogen envelope is accreted by the SMBH before the helium core is disrupted. This places the RG core in a portion of parameter space where strong tidal heating can lift the degeneracy of the compact remnant and disrupt it before it reaches the tidal radius. We consider how this sequence of events explains the puzzling absence of the hydrogen emission lines from the spectrum of PS1-10jh and gives rise to its other observational features.

  11. Diagnostic Power of Broad Emission Line Profiles in Searches for Binary Supermassive Black Holes: Comparison of Models with Observations

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai; Bogdanovic, Tamara; Eracleous, Michael; Runnoe, Jessie C.; Sigurdsson, Steinn

    2017-01-01

    Motivated by observational searches for sub-parsec supermassive black hole binaries (SBHBs) we develop a semi-analytic model to describe the spectral emission line signatures of these systems. We are particularly interested in modeling the profiles of the broad emission lines, which have been used as a tool to search for SBHBs. The goal of this work is to test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this context, we model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk that forms a common envelope about a gravitationally bound binary. Our first generation model shows that emission line profiles tend to have different statistical properties depending on the semi-major axis, mass ratio, eccentricity of the binary, and the alignment of the triple-disk system, and can in principle be used to constrain the statistical distribution of these parameters. We present the results of a second generation model, which improves upon the treatment of radiative transfer by taking into account the effect of line-driven winds on the properties of the model emission line profiles. This improvement allows a preliminary comparison of the model profiles with the observed SBHB candidates and AGN population in general.

  12. Acceleration of Dominant Supermassive Black Hole Singularities Serving as the Catalyst of Dark Energy in the Formation of Universes

    NASA Astrophysics Data System (ADS)

    Wilson, John

    2013-04-01

    Cosmological process analysis is used to develop the singularity acceleration hypothesis which is based on nine universe formation axioms. Singularity acceleration universe formation is a cyclic process analogous to a branching universe having the following seven phases reoccurring in each daughter universe: 1. A phase transition big bang that forms a new universe 2. Expansion of the new universe and its structure 3. Dispersion of its mass and increasing entropy 4. Isolation of its galaxy clusters and supercluster complexes beyond event horizons 5. Many separate consolidations of all forms of matter, forces, and energy within these supercluster complexes into dominant supermassive black hole gravitational singularities 6. The resulting acceleration of singularities warping space to the speed of light 7. The independent separation of each of these singularities from the universe causing a big bang phase transition and producing all forms of matter, forces, and energy in a new universe.

  13. Active galaxies. A fast and long-lived outflow from the supermassive black hole in NGC 5548.

    PubMed

    Kaastra, J S; Kriss, G A; Cappi, M; Mehdipour, M; Petrucci, P-O; Steenbrugge, K C; Arav, N; Behar, E; Bianchi, S; Boissay, R; Branduardi-Raymont, G; Chamberlain, C; Costantini, E; Ely, J C; Ebrero, J; Di Gesu, L; Harrison, F A; Kaspi, S; Malzac, J; De Marco, B; Matt, G; Nandra, K; Paltani, S; Person, R; Peterson, B M; Pinto, C; Ponti, G; Pozo Nuñez, F; De Rosa, A; Seta, H; Ursini, F; de Vries, C P; Walton, D J; Whewell, M

    2014-07-04

    Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

  14. Supermassive black hole binary environments: Effects on the scaling laws and time to detection for the stochastic background

    NASA Astrophysics Data System (ADS)

    Vigeland, S. J.; Siemens, X.

    2016-12-01

    One of the primary gravitational wave (GW) sources for pulsar timing arrays (PTAs) is the stochastic background formed by supermassive black holes binaries (SMBHBs). In this paper, we investigate how the environments of SMBHBs effect the sensitivity of PTAs by deriving scaling laws for the signal-to-noise ratio (SNR) of the optimal cross-correlation statistic. The presence of gas and stars around SMBHBs accelerates the merger at large distances, depleting the GW stochastic background at low frequencies. We show that environmental interactions may delay detection by a few years or more, depending on the PTA configuration and the frequency at which the dynamical evolution transitions from being dominated by environmental effects to GW dominated.

  15. Structural Transition in the NGC 6251 Jet: an Interplay with the Supermassive Black Hole and Its Host Galaxy

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping

    2016-12-01

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1-2) × 105 times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  16. Statistical Challenges in fitting stellar orbits around the super-massive black hole at the Galactic center

    NASA Astrophysics Data System (ADS)

    Martinez, Gregory D.; Kosmo, Kelly; Hees, Aurelien; Ahn, Joseph; Ghez, Andrea

    2017-01-01

    Over two decades of astrometric and radial velocity data of short period stars at the Galactic center has the potential to provide unprecedented tests of General Relativity and insight into the astrophysics of the super-massive black hole. Fundamental to this is understanding the underlying statistical issues of fitting stellar orbits. Unintended prior effects can obscure actual physical effects from General Relativity and underlying extended mass distribution. At the heart of this is dealing with large parameter spaces inherent to multi-star fitting and ensuring acceptable coverage properties of the resulting confidence intervals in the Bayesian framework. This proceeding will detail some of the UCLA group's analysis and work in addressing these statistical issues.

  17. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Alexander, D. M.

    2015-01-01

    We review results from cosmic X-ray surveys of active galactic nuclei (AGNs) over the past years that have dramatically improved our understanding of growing supermassive black holes in the distant universe. First, we discuss the utility of such surveys for AGN investigations and the capabilities of the missions making these surveys, emphasizing Chandra, XMM-Newton, and NuSTAR. Second, we briefly describe the main cosmic X-ray surveys, the essential roles of complementary multiwavelength data, and how AGNs are selected from these surveys. We then review key results from these surveys on the AGN population and its evolution ("demographics"), the physical processes operating in AGNs ("physics"), and the interactions between AGNs and their environments ("ecology"). We conclude by describing some significant unresolved questions and prospects for advancing the field.

  18. Torque-limited Growth of Massive Black Holes in Galaxies across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Özel, Feryal; Davé, Romeel; Katz, Neal; Kollmeier, Juna A.; Oppenheimer, Benjamin D.

    2015-02-01

    We combine cosmological hydrodynamic simulations with analytic models to evaluate the role of galaxy-scale gravitational torques on the evolution of massive black holes at the centers of star-forming galaxies. We confirm and extend our earlier results to show that torque-limited growth yields black holes and host galaxies evolving on average along the M BH-M bulge relation from early times down to z = 0 and that convergence onto the scaling relation occurs independent of the initial conditions and with no need for mass averaging through mergers or additional self-regulation processes. Smooth accretion dominates the long-term evolution, with black hole mergers with mass ratios gsim 1:5 representing typically a small fraction of the total growth. Winds from the accretion disk are required to eject significant mass to suppress black hole growth, but there is no need for coupling this wind to galactic-scale gas to regulate black holes in a nonlinear feedback loop. Torque-limited growth yields a close-to-linear < \\dot{M}_BH > \\propto star formation rate (SFR) relation for the black hole accretion rate averaged over galaxy evolution timescales. However, the SFR-AGN connection has significant scatter owing to strong variability of black hole accretion at all resolved timescales. Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as λMSvprop(1 + z)1.9, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs. Our results offer an attractive scenario consistent with available observations in which cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term co-evolution of black holes and star-forming galaxies.

  19. The Merger-Free Co-Evolution of Galaxies and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Smethurst, Rebecca Jane; Lintott, Chris; Galaxy Zoo Team

    2016-06-01

    Calm, "secular" accretion and evolutionary processes, once thought to be relegated to the sidelines of galaxy evolution, are now understood to play a significant role in the buildup of stellar mass in galaxies. Most galaxies are formed and evolve via a mix of secular-driven evolution and more violent processes like strong disk instabilities and galaxy mergers; this makes isolating the effects of secular evolution in galaxies very difficult. Massive pure disk galaxies, lacking the classical or "pseudo" bulge components that arise naturally from mergers and disk instabilities (respectively), are a unique opportunity to study galaxy evolution in the absence of violent processes. Previous studies have disagreed on whether the black hole-galaxy mass correlation is driven by galaxy-galaxy interactions or something more fundamental. Here we present new evidence using a statistically significant sample of AGN hosted in bulgeless disk galaxies at z < 0.2 to constrain black hole-galaxy co-evolution in the absence of mergers.

  20. An ordinary supermassive black hole at the Galactic Center: pro and contra

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    2016-07-01

    Now there are two basic observational techniques to investigate a gravitational potential at the Galactic Center, namely, a) monitoring the orbits of bright stars near the Galactic Center to reconstruct a gravitational potential; b) measuring a size and a shape of shadows around black hole giving an alternative possibility to evaluate black hole parameters in mm-band with VLBI-technique. At the moment one can use a small relativistic correction approach for stellar orbit analysis (however, in the future the approximation will not be not precise enough due to enormous progress of observational facilities) while now for smallest structure analysis in VLBI observations one really needs a strong gravitational field approximation. We discuss results of observations, their conventional interpretations, tensions between observations and models and possible hints for a new physics from the observational data and tensions between observations and interpretations. We will discuss an opportunity to use a Schwarzschild metric for data interpretation or we have to use more exotic models such as Yukawa potential, Reissner -- Nordstrom or Schwarzschild -- de-Sitter metrics for better fits.

  1. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    PubMed

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-15

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.

  2. The XMM-Newton spectrum of a candidate recoiling supermassive black hole: An elusive inverted P-Cygni profile

    SciTech Connect

    Lanzuisi, G.; Civano, F.; Marchesi, S.; Hickox, R.; Comastri, A.; Cappelluti, N.; Costantini, E.; Elvis, M.; Fruscione, A.; Mainieri, V.; Jahnke, K.; Komossa, S.; Piconcelli, E.; Vignali, C.; Brusa, M.

    2013-11-20

    We present a detailed spectral analysis of new XMM-Newton data of the source CXOC J100043.1+020637, also known as CID-42, detected in the COSMOS survey at z = 0.359. Previous works suggested that CID-42 is a candidate recoiling supermassive black hole (SMBH) showing also an inverted P-Cygni profile in the X-ray spectra at ∼6 keV (rest) with an iron emission line plus a redshifted absorption line (detected at 3σ in previous XMM-Newton and Chandra observations). Detailed analysis of the absorption line suggested the presence of ionized material flowing into the black hole at high velocity. In the new long XMM-Newton observation, while the overall spectral shape remains constant, the continuum 2-10 keV flux decrease of ∼20% with respect to previous observation and the absorption line is undetected. The upper limit on the intensity of the absorption line is EW < 162 eV. Extensive Monte Carlo simulations show that the nondetection of the line is solely due to variation in the properties of the inflowing material, in agreement with the transient nature of these features, and that the intensity of the line is lower than the previously measured with a probability of 98.8%. In the scenario of CID-42 as a recoiling SMBH, the absorption line can be interpreted as being due to an inflow of gas with variable density that is located in the proximity of the SMBH and recoiling with it. New monitoring observations will be requested to further characterize this line.

  3. DIRECT FORMATION OF SUPERMASSIVE BLACK HOLES IN METAL-ENRICHED GAS AT THE HEART OF HIGH-REDSHIFT GALAXY MERGERS

    SciTech Connect

    Mayer, Lucio; Fiacconi, Davide; Bonoli, Silvia; Quinn, Thomas; Roškar, Rok; Shen, Sijing; Wadsley, James

    2015-09-01

    We present novel 3D multi-scale smoothed particle hydrodynamics (SPH) simulations of gas-rich galaxy mergers between the most massive galaxies at z ∼ 8–10, designed to scrutinize the direct collapse formation scenario for massive black hole seeds proposed in Mayer et al. The simulations achieve a resolution of 0.1 pc, and include both metallicity-dependent optically thin cooling and a model for thermal balance at high optical depth. We consider different formulations of the SPH hydrodynamical equations, including thermal and metal diffusion. When the two merging galaxy cores collide, gas infall produces a compact, optically thick nuclear disk with densities exceeding 10{sup −10} g cm{sup 3}. The disk rapidly accretes higher angular momentum gas from its surroundings reaching ∼5 pc and a mass of ≳10{sup 9} M{sub ⊙} in only a few 10{sup 4} years. Outside ≳2 pc it fragments into massive clumps. Instead, supersonic turbulence prevents fragmentation in the inner parsec region, which remains warm (∼3000–6000 K) and develops strong non-axisymmetric modes that cause prominent radial gas inflows (>10{sup 4} M{sub ⊙} yr{sup −1}), forming an ultra-dense massive disky core. Angular momentum transport by non-axisymmetric modes should continue below our spatial resolution limit, quickly turning the disky core into a supermassive protostar which can collapse directly into a massive black hole of mass 10{sup 8}–10{sup 9} M{sub ⊙} via the relativistic radial instability. Such a “cold direct collapse” explains naturally the early emergence of high-z QSOs. Its telltale signature would be a burst of gravitational waves in the frequency range of 10{sup −4}–10{sup −1} Hz, possibly detectable by the planned eLISA interferometer.

  4. The Relation between Globular Cluster Systems and Supermassive Black Holes in Spiral Galaxies: The Case Study of NGC 4258

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen

    2017-02-01

    We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada–France–Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{i}\\prime ) versus ({i}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.

  5. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  6. A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Stern, Daniel; Drake, Andrew J.; Mahabal, Ashish A.; Donalek, Ciro; Glikman, Eilat; Larson, Steve; Christensen, Eric

    2015-10-01

    Hierarchical assembly models predict a population of supermassive black hole (SMBH) binaries. These are not resolvable by direct imaging but may be detectable via periodic variability (or nanohertz frequency gravitational waves). Following our detection of a 5.2-year periodic signal in the quasar PG 1302-102, we present a novel analysis of the optical variability of 243 500 known spectroscopically confirmed quasars using data from the Catalina Real-time Transient Survey (CRTS) to look for close (<0.1 pc) SMBH systems. Looking for a strong Keplerian periodic signal with at least 1.5 cycles over a baseline of nine years, we find a sample of 111 candidate objects. This is in conservative agreement with theoretical predictions from models of binary SMBH populations. Simulated data sets, assuming stochastic variability, also produce no equivalent candidates implying a low likelihood of spurious detections. The periodicity seen is likely attributable to either jet precession, warped accretion discs or periodic accretion associated with a close SMBH binary system. We also consider how other SMBH binary candidates in the literature appear in CRTS data and show that none of these are equivalent to the identified objects. Finally, the distribution of objects found is consistent with that expected from a gravitational-wave-driven population. This implies that circumbinary gas is present at small orbital radii and is being perturbed by the black holes. None of the sources is expected to merge within at least the next century. This study opens a new unique window to study a population of close SMBH binaries that must exist according to our current understanding of galaxy and SMBH evolution.

  7. The coevolution of supermassive black holes and galaxies at z [ge] 1: Galaxy morphology, gravitational lensing, and quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Peng, Chien Yi

    Supermassive black holes are ubiquitous in nearby galaxies. The strong correlations between black hole masses and their host galaxy bulges suggest they are intimately connected. To understand their coevolution we study quasars where both quantities can be probed out to high redshifts. To overcome the well known obstacles in studying quasar hosts at z > 1, we study 28 gravitationally lensed host galaxies, located at 1 <= z s <= 4.5, which are stretched out into arcs and Einstein rings. Applying two new algorithms, GALFIT and LENSFIT, to images obtained in the HST NICMOS F160W filter, we clearly resolve the host galaxies. Many have evidences of multiple components, interaction, offset galaxy components, or bulges and disks. The host galaxies at z > 1 are mostly brighter than [Special characters omitted.] galaxies today, but would become fainter than [Special characters omitted.] today after accounting for passive evolution. Furthermore, they have modest sizes ( R e < 6 kpc), and the profiles of the hosts are roughly equally split between bulge dominated and disk dominated. Due to these evidences, the quasar hosts may not be fully evolved early-type galaxies undergoing passive evolution if they evolve into [Special characters omitted.] galaxies today. Moreover, comparing the hosts of radio-loud quasars and radio-quiet quasars, there is not a significant difference in their luminosities. Finally, we study the bulge luminosities ( L bulge ) and black hole masses ( [Special characters omitted.] ) at z [approximate] 1 and z [approximate] 2, finding that the hosts at z > 2 already lie near the same L bulge vs. [Special characters omitted.] relationship as for z = 0 normal galaxies . Accounting for an early-type galaxy evolution, they would fade below the relationship at present day. Therefore, the hosts at z [approximate] 2 must undergo a stellar mass buildup by a factor of 3-5, if they evolve into early-type galaxies. This implies their [Special characters omitted

  8. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    SciTech Connect

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo

    2014-06-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  9. Formation of Supermassive Black Holes in Galactic Bulges: A Rotating Collapse Model Consistent with the M(sub BH-sigma) Relation

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Graff, David S.; Mbonye, Manasse; Richstone, Douglas O.

    2003-01-01

    Motivated by the observed correlation between black hole masses M(sub BH) and the velocity dispersion sigma of host galaxies, we develop a theoretical model of black hole formation in galactic bulges (this paper generalizes an earlier ApJ Letter). The model assumes an initial state specified by a uniform rotation rate OMEGA and a density distribution of the form rho = a(sup 2)(sub eff)per2piGR(sup 2)(so that a(sub eff)is an effective transport speed). The black hole mass is determined when the centrifugal radius of the collapse flow exceeds the capture radius of the central black hole (for Schwarzschild geometry). This model reproduces the observed correlation between the estimated black hole masses and the velocity dispersions of galactic bulges, i.e., M(sub BH) approximately equal to 10(sup 8) solar mass(sigma per 200 kilometers per second)(sup 4) where sigma = the square root of 2a(sub eff). To obtain this normalization, the rotation rate OMEGA approximately equal to 2 x 10(exp -15) rad per second. The model also defines a bulge mass scale M(sub B). If we identify the scale M(sub B) with the bulge mass, the model determines the ratio mu(sub B) of black hole mass to the host mass: mu(sub B) approximately equal to 0.0024(sigma per 200 kilometer per second), again in reasonable agreement with observed values. In this scenario, supermassive black holes form quickly (in approximately 10(exp 5) yr) and are born rapidly rotating (with a per M approximately 0.9). This paper also shown how these results depend on the assumed initial conditions; the most important quantity is the initial distribution of specific angular momentum in the precollapse state.

  10. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    SciTech Connect

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  11. Orbital kinematics of edge-on bars with and without supermassive black holes

    NASA Astrophysics Data System (ADS)

    Abbott, Caleb; Valluri, Monica; Shen, Juntai; Debattista, Victor P.

    2016-01-01

    Observations of external disk galaxies with bars frequently show boxy or peanut shaped bulges, which have a distinct X-shaped structure when the system is viewed edge-on. Such features are also well documented in N-body simulations, where they arise from the buckling of the bar. The precise nature of the orbits that create this structure is still uncertain. Some studies argue that the bulge/X-shape structure is formed and supported by resonant 2:1 "banana" orbit family, while other argue that they arise from 5:3 "brezel" orbits. Here we examine a set of N-body models of a barred disk galaxy (with and without a central black hole). We generate 2-D maps of projected kinematics both for specific orbit families as well as the full simulation of the bars at different orientations. By examining the line-of-sight velocities, velocity dispersions and 3rd and 4th Gauss-Hermite polynomials we attempt to deduce the type of orbits most likely to produce the X-shaped features. We also generate mock kinematics for the Milky Way bar and predict the kinematical features associated with the X-shape that will be observed with upcoming stellar surveys.

  12. Magnetohydrodynamic Accretion Around Supermassive Black Holes : Short-Length Disc for Stronger Field

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata

    2016-07-01

    Thin accretion flow, i.e., geometrically thin accretion disc was first studied by Shakura and Sunyaev. Relativistic fluid flows around a black hole produce enormous energy on the cost of permanent lost of the gravitational potential due to the fall into a infinitely sloped gravitational well or to be specific, into a space time singularity. This energy is actually observed in different wavelengths and we specify the source as Active Galactic Nuclei, quasars, Gamma-ray burst sources etc. Eventually, two popular kind of accretion disc models are there. The first one is advection dominated, known as geometrically thin optically thick accretion disc. The other is geometrically thick but optically thin as it does not capture photons inside! The jets formed by accretion phenomena are still not well explained. Size of the accretion disc, power of the jets can be powered by magnetic fields generated by the ionized particles of the accretion flow. We show the exact dependency of the disc size upon the magnetic field present along with the quantity of the central gravitating mass.

  13. CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION

    SciTech Connect

    Kelly, Brandon C.; Hernquist, Lars; Siemiginowska, Aneta; Vestergaard, Marianne; Fan Xiaohui; Hopkins, Philip

    2010-08-20

    We present an estimate of the black hole mass function of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS). We find evidence for 'cosmic downsizing' of black holes in BLQSOs, where the peak in their number density shifts to higher redshift with increasing black hole mass. The cosmic mass density for black holes seen as BLQSOs peaks at z {approx} 2. We estimate the completeness of the SDSS as a function of the black hole mass and Eddington ratio, and find that at z > 1 it is highly incomplete at M {sub BH} {approx}< 10{sup 9} M {sub sun} and L/L{sub Edd} {approx}< 0.5. We estimate a lower limit on the lifetime of a single BLQSO phase to be t {sub BL} > 150 {+-} 15 Myr for black holes at z = 1 with a mass of M {sub BH} = 10{sup 9} M{sub sun}, and we constrain the maximum mass of a black hole in a BLQSO to be {approx}3 x 10{sup 10} M{sub sun}. Our estimated distribution of BLQSO Eddington ratios peaks at L/L {sub Edd} {approx} 0.05 and has a dispersion of {approx}0.4 dex, implying that most BLQSOs are not radiating at or near the Eddington limit; however, the location of the peak is subject to considerable uncertainty. The steep increase in number density of BLQSOs toward lower Eddington ratios is expected if the BLQSO accretion rate monotonically decays with time. Furthermore, our estimated lifetime and Eddington ratio distributions imply that the majority of the most massive black holes spend a significant amount of time growing in an earlier obscured phase, a conclusion which is independent of the unknown obscured fraction. These results are consistent with models for self-regulated black hole growth, at least for massive systems at z > 1, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas, halting the accretion flow.

  14. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks

    NASA Astrophysics Data System (ADS)

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-01

    Observations of H2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 × 1010 and 61 × 1010 M sun pc-3. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 × 107 and 6.5 × 107 M sun, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σsstarf relation. The M-σsstarf relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  15. Dusty Star Forming Galaxies and Supermassive Black Holes at High Redshifts: In- Situ Coevolution

    NASA Astrophysics Data System (ADS)

    Mancuso, Claudia

    2016-10-01

    exploited our SFR functions with relations between SFR and radio (synchrotron and free-free) emission. Our results show that the deepest SKA1- MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys. We finally provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences (MS) of star-forming galaxies and active galactic nuclei at high redshift z ≥ 1. We achieve this goal in a model-independent way by exploiting the redshift-dependent SFR functions, and the deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and active galactic nucleus (AGN) bolometric luminosity functions at different redshifts via, again, the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data strongly support a scenario of in situ coevolution for star formation and black hole accretion, envisaging these as local, time coordinated processes.

  16. Forming supermassive black hole seeds under the influence of a nearby anisotropic multifrequency source.

    PubMed

    Regan, John A; Johansson, Peter H; Wise, John H

    2016-07-01

    The photodissociation of H2 by a nearby anisotropic source of radiation is seen as a critical component in creating an environment in which a direct collapse black hole may form. Employing radiative transfer we model the effect of multifrequency (0.76-60 eV) radiation on a collapsing halo at high redshift. We vary both the shape of the spectrum which emits the radiation and the distance to the emitting galaxy. We use blackbody spectra with temperatures of T = 10(4) K and 10(5) K and a realistic stellar spectrum. We find that an optimal zone exists between 1 and 4 kpc from the emitting galaxy. If the halo resides too close to the emitting galaxy the photoionizing radiation creates a large H ii region which effectively disrupts the collapsing halo, too far from the source and the radiation flux drops below the level of the expected background and the H2 fraction remains too high. When the emitting galaxy is initially placed between 1 and 2 kpc from the collapsing halo, with a spectral shape consistent with a star-forming high-redshift galaxy, then a large central core forms. The mass of the central core is between 5000 and 10 000 M⊙ at a temperature of approximately 1000 K. This core is however surrounded by a reservoir of hotter gas at approximately 8000 K, which leads to mass inflow rates of the order of ∼0.1 M⊙ yr(-1).

  17. High-velocity OH megamasers in IRAS 20100-4156: evidence for a supermassive black hole

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, L.; Allison, J. R.; Green, J. A.; Bannister, K. W.; Chippendale, A.; Edwards, P. G.; Heywood, I.; Hotan, A. W.; Lenc, E.; Marvil, J.; McConnell, D.; Phillips, C. J.; Sault, R. J.; Serra, P.; Stevens, J.; Voronkov, M.; Whiting, M.

    2016-08-01

    We report the discovery of new, high-velocity narrow-line components of the OH megamaser in IRAS 20100-4156. Results from the Australian Square Kilometre Array Pathfinder (ASKAP)'s Boolardy Engineering Test Array (BETA) and the Australia Telescope Compact Array (ATCA) provide two independent measurements of the OH megamaser spectrum. We found evidence for OH megamaser clumps at -409 and -562 km s-1 (blue-shifted) from the systemic velocity of the galaxy, in addition to the lines previously known. The presence of such high velocities in the molecular emission from IRAS 20100-4156 could be explained by a ˜50 pc molecular ring enclosing a ˜3.8 billion solar mass black hole. We also discuss two alternatives, i.e. that the narrow-line masers are dynamically coupled to the wind driven by the active galactic nucleus or they are associated with two separate galactic nuclei. The comparison between the BETA and ATCA spectra provides another scientific verification of ASKAP's BETA. Our data, combined with previous measurements of the source enabled us to study the variability of the source over a 26 yr period. The flux density of the brightest OH maser components has reduced by more than a factor of 2 between 1988 and 2015, whereas a secondary narrow-line component has more than doubled in the same time. Plans for high-resolution very long baseline interferometry follow-up of this source are discussed, as are prospects for discovering new OH megamasers during the ASKAP early science programme.

  18. Supermassive black holes (SMBH) at work: M87, a case study of the effects of SMBH outbursts

    NASA Astrophysics Data System (ADS)

    Forman, William; Churazov, Eugene; Jones, Christine; Vikhlinin, Alexey

    2015-03-01

    Supermassive black holes (SMBHs) play key roles in galaxy and cluster evolution. This is most clearly seen in the ``fossil record'' that is imprinted in the gas rich atmospheres of early type galaxies, groups, and clusters by powerful SMBH outbursts. From a detailed X-ray study of M87, we present the properties of a typical SMBH outburst, its evolution, and the energy partition between shocks and the enthalpy of the gas cavities inflated by the SMBH. About 12 Myr ago, the SMBH in M87 inflated a cavity of relativistic plasma which is still centered near the galaxy nucleus. This outburst drove a shock into the surrounding gas. For M87, we show that the outburst duration is a few Myr and that about 50% of the total energy (5 × 1057 ergs) resides in the bubble inflated by the jet from the SMBH, that 25% of the outburst energy is deposited directly into the ambient atmosphere by the shock, and that 25% of the outburst energy is lost from the radiatively bright core as the weak shock moves to large radii. We conclude by describing a future X-ray mission, SMART-X, with < 1'' angular resolution that would allow us to study the evolution of SMBHs and the hot, X-ray emitting atmospheres from high redshifts to the present for M87-like systems.

  19. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.

    2015-09-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.

  20. The M {sub BH} versus M {sub G}σ{sup 2} relation and the accretion of supermassive black holes

    SciTech Connect

    Feoli, A.

    2014-03-20

    We propose a possible scenario that can explain the physical processes underlying the relation log{sub 10}(M {sub BH}) = b + mlog{sub 10}(M {sub G}σ{sup 2}/c {sup 2}) between the mass M {sub BH} of supermassive black holes, growing in the center of many galaxies, and the kinetic energy of the corresponding bulges (M {sub G} being the bulge mass and σ the velocity dispersion). In a series of papers, this scaling law proved to be very useful to describe the evolution of galaxies thanks to its close similarity to the Hertzsprung-Russell diagram. Studying the relation with different samples of galaxies, we have generally found a slope that can vary between two extremal theoretical possibilities, m = 3/4 and m = 1. We will try to describe a possible scenario compatible with the second one. Finally, we also examine a case of a relation that is linear, not in kinetic energy, but in momentum parameter.

  1. What X-ray polarimetry can teach us about the central supermassive black hole of the Milky Way galaxy

    NASA Astrophysics Data System (ADS)

    Marin, Frédéric; Karas, Vladimir; Muleri, Fabio; Soffitta, Paolo; Kunneriath, Devaky

    2016-07-01

    Was Sgr A*, the central supermassive black hole of our own Galaxy, a low luminosity AGN in the past? Despite numerous attempts with spectroscopic and timing analyses, the question remains opened as the origin of irradiation and fluorescence of the 6.4 keV bright giant molecular clouds surrounding Sgr A* is still debated. A possible interpretation, based on Compton scattering processes, implies that the high X-ray luminosity of the nebulae arise from reprocessing of a past outburst of Sgr A*. If true, the reflection nebulae should show strong scattering-induced polarization signatures. Detecting such imprints requires opening a new observational window: X-ray polarimetry. In this presentation, I will summarize the results from past and present polarimetric simulations of the Galactic Center in order to show how a future X-ray polarimeter equipped with imaging detectors, such as XIPE (ESA M4) or IXPE (NASA-SMEX), could prove or rejected the hypothesis of the past active phase of Sgr A*.

  2. Relative growth of black holes and the stellar components of galaxies

    NASA Astrophysics Data System (ADS)

    Menci, N.; Fiore, F.; Bongiorno, A.; Lamastra, A.

    2016-10-01

    Recent observations indicate that the mass of supermassive black holes (SMBHs) correlate differently with different galaxy stellar components. Comparing such observations with the results of "ab initio" galaxy formation models can provide insight on the mechanisms leading to the growth of SMBHs. Here we use a state-of-the-art semi-analytic model of galaxy formation to investigate the correlation of the different galaxy stellar components with the mass of the central SMBH. The stellar mass in the disc, in the bulge, and in the pseudo-bulge of galaxies is related to quiescent star formation, to galaxy interactions, and to the loss of angular momentum following disc instabilities, respectively. Consistently with recent findings, we find that while the predicted bulge masses are tightly correlated with the SMBH masses, the correlation between the latter and the galactic discs shows a much larger scatter, in particular when bulgeless galaxies are considered. In addition, we obtain that the predicted masses of pseudo-bulges shows little or no-correlation with the masses of SMBHs. We track the histories of merging, star formation, and SMBH accretion to investigate the physical processes at the origin of such findings within the context of cosmological models of galaxy formation. Finally, we discuss the effects of variations of our assumed fiducial model on the results.

  3. Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Bernardi, Mariangela; Sheth, Ravi K.; Ferrarese, Laura; Graham, Alister W.; Savorgnan, Giulia; Allevato, Viola; Marconi, Alessandro; Läsker, Ronald; Lapi, Andrea

    2016-08-01

    We compare the set of local galaxies having dynamically measured black holes with a large, unbiased sample of galaxies extracted from the Sloan Digital Sky Survey. We confirm earlier work showing that the majority of black hole hosts have significantly higher velocity dispersions σ than local galaxies of similar stellar mass. We use Monte Carlo simulations to illustrate the effect on black hole scaling relations if this bias arises from the requirement that the black hole sphere of influence must be resolved to measure black hole masses with spatially resolved kinematics. We find that this selection effect artificially increases the normalization of the Mbh-σ relation by a factor of at least ˜3; the bias for the Mbh-Mstar relation is even larger. Our Monte Carlo simulations and analysis of the residuals from scaling relations both indicate that σ is more fundamental than Mstar or effective radius. In particular, the Mbh-Mstar relation is mostly a consequence of the Mbh-σ and σ-Mstar relations, and is heavily biased by up to a factor of 50 at small masses. This helps resolve the discrepancy between dynamically based black hole-galaxy scaling relations versus those of active galaxies. Our simulations also disfavour broad distributions of black hole masses at fixed σ. Correcting for this bias suggests that the calibration factor used to estimate black hole masses in active galaxies should be reduced to values of fvir ˜ 1. Black hole mass densities should also be proportionally smaller, perhaps implying significantly higher radiative efficiencies/black hole spins. Reducing black hole masses also reduces the gravitational wave signal expected from black hole mergers.

  4. A CROSS-CORRELATION ANALYSIS OF ACTIVE GALACTIC NUCLEI AND GALAXIES USING VIRTUAL OBSERVATORY: DEPENDENCE ON VIRIAL MASS OF SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Komiya, Yutaka; Shirasaki, Yuji; Ohishi, Masatoshi; Mizumoto, Yoshihiko

    2013-09-20

    We present results of the cross-correlation analysis between active galactic nuclei (AGNs) and galaxies at redshift 0.1-1. We obtain data of ∼10, 000 Sloan Digital Sky Survey AGNs in which their virial masses with a supermassive black hole (SMBH) were estimated. The UKIDSS galaxy samples around the AGNs were obtained using the virtual observatory. The scale length of AGN-galaxy cross-correlation for all of the samples is measured to be r{sub 0}= 5.8{sup +0.8}{sub -0.6} h{sup -1} Mpc (for the fixed slope parameter γ = 1.8). We also derived a dependence of r{sub 0} on the BH mass, M{sub BH}, and found an indication of an increasing trend of r{sub 0} at M{sub BH} > 10{sup 8} M{sub ☉}. It is suggested that the growth of SMBHs is mainly driven by interactions with the surrounding environment for M{sub BH} > 10{sup 8} M{sub ☉}. On the other hand, at M{sub BH} ∼< 10{sup 8} M{sub ☉}, we did not find the BH mass dependence. This would imply that for less massive BHs, the mass growth process can be different from that for massive BHs.

  5. ON THE COMPLEMENTARITY OF PULSAR TIMING AND SPACE LASER INTERFEROMETRY FOR THE INDIVIDUAL DETECTION OF SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Spallicci, Alessandro D. A. M.

    2013-02-20

    Gravitational waves coming from supermassive black hole binaries (SMBHBs) are targeted by both the Pulsar Timing Array (PTA) and Space Laser Interferometry (SLI). The possibility of a single SMBHB being tracked first by PTA, through inspiral, and later by SLI, up to merger and ring-down, has been previously suggested. Although the bounding parameters are drawn by the current PTA or the upcoming Square Kilometer Array (SKA), and by the New Gravitational Observatory (NGO), derived from the Laser Interferometer Space Antenna (LISA), this paper also addresses sequential detection beyond specific project constraints. We consider PTA-SKA, which is sensitive from 10{sup -9} to p Multiplication-Sign 10{sup -7} Hz (p = 4, 8), and SLI, which operates from s Multiplication-Sign 10{sup -5} up to 1 Hz (s = 1, 3). An SMBHB in the range of 2 Multiplication-Sign 10{sup 8}-2 Multiplication-Sign 10{sup 9} M {sub Sun} (the masses are normalized to a (1 + z) factor, the redshift lying between z = 0.2 and z = 1.5) moves from the PTA-SKA to the SLI band over a period ranging from two months to fifty years. By combining three supermassive black hole (SMBH)-host relations with three accretion prescriptions, nine astrophysical scenarios are formed. They are then related to three levels of pulsar timing residuals (50, 5, 1 ns), generating 27 cases. For residuals of 1 ns, sequential detection probability will never be better than 4.7 Multiplication-Sign 10{sup -4} yr{sup -2} or 3.3 Multiplication-Sign 10{sup -6} yr{sup -2} (per year to merger and per year of survey), according to the best and worst astrophysical scenarios, respectively; put differently this means one sequential detection every 46 or 550 years for an equivalent maximum time to merger and duration of the survey. The chances of sequential detection are further reduced by increasing values of the s parameter (they vanish for s = 10) and of the SLI noise, and by decreasing values of the remnant spin. The spread in the predictions

  6. Characterizing ``Radio Mode'' AGN Outbursts: the Recent 12 Myr History of the Supermassive Black Hole in M87

    NASA Astrophysics Data System (ADS)

    Forman, William R.; Churazov, Eugene; Jones, Christine; Heinz, Sebastian; Kraft, Ralph P.; Vikhlinin, Alexey

    2016-01-01

    M87, the bright active galaxy dominating the core of the Virgo cluster, is ideal for studying the interaction of a supermassive black hole with a gas rich environment. We combine results from a deep Chandra observation with a simple shock model to derive the properties of the outburst that created the 13 kpc shock previously reported around M87. The principal constraints for the model are 1) the observed temperature and density profiles, 2) the measured Mach number (about 1.2) and radius of the 13 kpc shock, 3) the observed size of the inner cavity (~3 kpc) that serves as the piston to drive the shock, and 4) the absence of a hot, low density plasma surrounding the central cavity. Qualitatively, the absence of a hot, low density (shocked) region surrounding the inner radio lobes (the piston), requires a "slowly" expanding piston and "long" duration outburst rather than a Sedov-like outburst. Quantitatively, a roughly 5 x 1057 ergs outburst that began about 12 Myr ago and lasted about 2 Myr matches all the constraints. In the context of the model, ~20% of the energy is carried by the shock as it expands to large radii while ~80% of the outburst energy is available to heat the core gas. For an outburst repetition rate of about 12 Myrs (the outburst age), 80% of the outburst energy is sufficient to balance radiative cooling. We discuss the outburst history of M87 as chronicled in its radio and X-ray images and the implications of these outbursts for heating gas rich environments.

  7. A reduced orbital period for the supermassive black hole binary candidate in the quasar PG 1302-102?

    NASA Astrophysics Data System (ADS)

    D'Orazio, D. J.; Haiman, Z.; Duffell, P.; Farris, B. D.; MacFadyen, A. I.

    2015-09-01

    Graham et al. have detected a 5.2 yr periodic optical variability of the quasar PG 1302-102 at redshift z = 0.3, which they interpret as the redshifted orbital period (1 + z)tbin of a putative supermassive black hole binary (SMBHB). Here, we consider the implications of a 3-8 times shorter orbital period, suggested by hydrodynamical simulations of circumbinary discs (CBDs) with nearly equal-mass SMBHBs (q ≡ M2/M1 ≳ 0.3). With the corresponding 2-4 times tighter binary separation, PG 1302 would be undergoing gravitational wave dominated inspiral, and serve as a proof that the BHs can be fuelled and produce bright emission even in this late stage of the merger. The expected fraction of binaries with the shorter tbin, among bright quasars, would be reduced by one to two orders of magnitude, compared to the 5.2 yr period, in better agreement with the rarity of candidates reported by Graham et al. Finally, shorter periods would imply higher binary speeds, possibly imprinting periodicity on the light curves from relativistic beaming, as well as measurable relativistic effects on the Fe K α line. The CBD model predicts additional periodic variability on time-scales of tbin and ≈0.5tbin, as well as periodic variation of broad line widths and offsets relative to the narrow lines, which are consistent with the observations. Future observations will be able to test these predictions and hence the binary+CBD hypothesis for PG 1302.

  8. EXTENDED SUBMILLIMETER EMISSION OF THE GALACTIC CENTER AND NEAR-INFRARED/SUBMILLIMETER VARIABILITY OF ITS SUPERMASSIVE BLACK HOLE

    SciTech Connect

    Garcia-Marin, M.; Eckart, A.; Witzel, G.; Bremer, M.; Kunneriath, D.; Sabha, N.; Straubmeier, C.; Weiss, A.; Zamaninasab, M.; Morris, M. R.; Schoedel, R.; Nishiyama, S.; Baganoff, F.; Karas, V.; Dovciak, M.; Duschl, W. J.; Moultaka, J.; Najarro, F.; Muzic, K.; Vogel, S. N.

    2011-09-10

    The innermost tens of parsecs of our Galaxy are characterized by the presence of molecular cloud complexes surrounding Sgr A*, the radiative counterpart of the supermassive black hole ({approx}4 x 10{sup 6} M{sub sun}) at the Galactic center. We seek to distinguish the different physical mechanisms that dominate the molecular clouds at the Galactic center, with special emphasis on the circumnuclear disk (CND). We also want to study the energy flow and model the variable emission of Sgr A*. Our study is based on NIR and submillimeter (sub-mm) observations. Using sub-mm maps, we describe the complex morphology of the molecular clouds and the circumnuclear disk, along with their masses (of order 10{sup 5}-10{sup 6} M{sub sun}), and derive also the temperature and spectral index maps of the regions under study. We conclude that the average temperature of the dust is 14 {+-} 4 K. The spectral index map shows that the 20 and 50 km s{sup -1} clouds are dominated by dust emission. Comparatively, in the CND and its surroundings the spectral indices decrease toward Sgr A* and range between about 1 and -0.6. These values are mostly explained with a combination of dust, synchrotron, and free-free emission in different ratios. The presence of non-thermal emission also accounts for the apparent low temperatures derived in these areas, indicating their unreliability. The Sgr A* light curves show significant flux density excursions in both the NIR and sub-mm domains. We have defined a classification system to account for the NIR variability of Sgr A*. Also, we have modeled on the NIR/sub-mm events. From our modeling results we can infer a sub-mm emission delay with respect to the NIR; we argue that the delay is due to the adiabatic expansion of the synchrotron source components.

  9. The gloriuos past of the supermassive black hole at the galactic center unveiled with XMM and Integral

    NASA Astrophysics Data System (ADS)

    Goldwurm, Andrea; Ponti, Gabriele; Terrier, Regis; Belanger, Guillaume; Trap, Guillaume

    The 8 year XMM-Newton monitoring of the Galactic Centre, along with Integral long surveys and coupled to several correlated multiwavelength (MWL)campaigns, has provided crucial mea-surements of the present and past activity of Sgr A*, the supermassive black hole (SMBH) at the galactic center. With the MWL studies of the hour-long Sgr A* X-ray, infrared and sub-mm flares, we were able to set important new constraints on the emission mechanism and on the physical conditions of the emitting plasma close to the SMBH horizon during these events. With the long term surveys we discovered the decrease over the years of the hard X-ray emis-sion from the Sgr B2 giant molecular cloud and a superluminal propagation of the neutral iron Kα emission at 6.4 keV line through the molecular clouds (MC) located close, in projection, to Sgr A*. These variabilities and spectral measurements trace the recent history of Sgr A*, since they are likely due to reflection and fluorescence excitation of cold molecular material by high-energy radiation emitted by the central SMBH in the past. The MC emission vari-ations, besides to exclude alternative models for the 6.4 keV line emission based on particles interactions, can indeed be explained assuming that Sgr A* underwent a single outburst that rose its luminosity at a level of 1039 erg s-1 (106 times higher than its present luminosity but still 10-5 times its Eddington limit) about 400 year ago, stayed luminous till about 100 years ago and then decayed to the present level of very weak activity. These results allow us for the first time to more precisely compare Sgr A* to the AGN behavior because they show that Sgr A* activity was, only 100 years back, comparable to the one of the typical quiescence state of low-luminosity AGNs.

  10. Super-Eddington growth of the first black holes

    NASA Astrophysics Data System (ADS)

    Pezzulli, Edwige; Valiante, Rosa; Schneider, Raffaella

    2016-05-01

    The assembly of the first super massive black holes (SMBHs) at z ≳ 6 is still a subject of intense debate. If black holes (BHs) grow at their Eddington rate, they must start from ≳104 M⊙ seeds formed by the direct collapse of gas. Here, we explore the alternative scenario where ˜100 M⊙ BH remnants of the first stars grow at super-Eddington rate via radiatively inefficient slim accretion discs. We use an improved version of the cosmological, data-constrained semi-analytic model GAMETE/QSODUST, where we follow the evolution of nuclear BHs and gas cooling, disc and bulge formation of their host galaxies. Adopting SDSS J1148+5251 (J1148) at z = 6.4 as a prototype of luminous z ≳ 6 quasars, we find that ˜80 per cent of its SMBH mass is grown by super-Eddington accretion, which can be sustained down to z ˜ 10 in dense, gas-rich environments. The average BH mass at z ˜ 20 is MBH ≳ 104 M⊙, comparable to that of direct collapse BHs. At z = 6.4 the AGN-driven mass outflow rate is consistent with the observations and the BH-to-bulge mass ratio is compatible with the local scaling relation. However, the stellar mass in the central 2.5 kpc is closer to the value inferred from CO observations. Finally, ˜20 per cent of J1148 progenitors at z = 7.1 have BH luminosities and masses comparable to ULAS J1120+0641, suggesting that this quasar may be one of the progenitors of J1148.

  11. THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS

    SciTech Connect

    Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E.

    2011-01-20

    Observations of H{sub 2}O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central {approx}0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 x 10{sup 10} and 61 x 10{sup 10} M{sub sun} pc{sup -3}. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 x 10{sup 7} and 6.5 x 10{sup 7} M{sub sun}, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-{sigma}{sub *} relation. The M-{sigma}{sub *} relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

  12. And All the Rest (Primordial, Intermediate, and Orphan Black Holes)

    NASA Astrophysics Data System (ADS)

    Miller, Cole

    2004-05-01

    Black holes, though exotic and mathematically beautiful, are notoriously difficult to detect because they emit no light of their own and hence can be seen only by their influence on nearby stars and gas. It is therefore probable that the observed stellar-mass and supermassive black holes are only the tip of the iceberg. In addition to the expected undetectable population of solitary black holes, there may be new classes of black holes yet to be discovered. For example, there is growing evidence for an intermediate-mass category of black holes that are too massive to form from solitary stars in the current universe, yet are less massive than the black holes in the centers of galaxies and are not located in environments where growth from gas accretion is significant. An even more intriguing prospect is that in the very early universe a population of primordial black holes could have formed. Although there are currently only limits to such a population, if they formed prior to big bang nucleosynthesis then there is a slim but nonzero chance that primordial black holes are the primary components of dark matter, which would imply that black holes are the dominant form of matter in the universe. We will discuss these scenarios in the context of structure formation and stellar dynamics, and consider future electromagnetic and gravitational wave observations that could yield further insight.

  13. FORCE-FEEDING BLACK HOLES

    SciTech Connect

    Begelman, Mitchell C.

    2012-04-10

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ({sup h}yperaccretion{sup )}. This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few percent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees kelvin, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion {sigma} of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and {sigma} that resembles the empirical M{sub BH}-{sigma} relation.

  14. HST WFC3/IR OBSERVATIONS OF ACTIVE GALACTIC NUCLEUS HOST GALAXIES AT z {approx} 2: SUPERMASSIVE BLACK HOLES GROW IN DISK GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Treister, Ezequiel; Cardamone, Carolin N.; Simmons, Brooke; Yi, Sukyoung K.

    2011-02-01

    We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5 < z < 3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGNs are X-ray-selected from the Chandra Deep Field South and have typical luminosities of 10{sup 42} erg s{sup -1}black holes in this luminosity and redshift range account for a substantial fraction of the total space density and black hole mass growth over cosmic time; they thus represent an important mode of black hole growth in the universe. We find that the majority ({approx}80%) of the host galaxies of these AGNs have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z {approx} 2 and z {approx} 0.05.

  15. Chandra Catches "Piranha" Black Holes

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  16. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  17. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  18. Wavelength dependence of polarization and physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Piotrovich, M. Yu.; Gnedin, Yu. N.; Buliga, S. D.; Natsvlishvili, T. M.

    2014-08-01

    Analysis of the wavelength dependence of the polarization of radiation from active galactic nuclei (AGNs) is shown to allow the main physical mechanisms of magnetic field generation in accretion disks around supermassive black holes in these objects to be determined. These main processes include the generation of magnetic fields as a result of the equality between the magnetic and radiation pressures or as a result of the equality between the magnetic and gas pressures. In several cases, the wavelength dependence of polarization is shown to be explained, provided that the Shakura-Sunyaev viscosity parameter depends on the accretion-disk radius.

  19. Cosmological evolution of supermassive black holes in the centres of galaxies

    NASA Astrophysics Data System (ADS)

    Kapinska, Anna D.

    2012-06-01

    Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large scale structure. Their jets inject a significant amount of energy into the surrounding medium, hence they can provide useful information in the study of the density and evolution of the intergalactic and intracluster medium. The jet activity is also believed to regulate the growth of massive galaxies via the AGN feedback. In this thesis I explore the intrinsic and extrinsic physical properties of the population of Fanaroff-Riley II (FR II) objects, i.e. their kinetic luminosities, lifetimes, and central densities of their environments. In particular, the radio and kinetic luminosity functions of these powerful radio sources are investigated using the complete, flux limited radio catalogues of 3CRR and BRL. I construct multidimensional Monte Carlo simulations using semi-analytical models of FR II source time evolution to create artificial samples of radio galaxies. Unlike previous studies, I compare radio luminosity functions found with both the observed and simulated data to explore the best-fitting fundamental source parameters. The Monte Carlo method presented here allows one to: (i) set better limits on the predicted fundamental parameters of which confidence intervals estimated over broad ranges are presented, and (ii) generate the most plausible underlying parent populations of these radio sources. Moreover, I allow the source physical properties to co-evolve with redshift, and I find that all the investigated parameters most likely undergo cosmological evolution; however these parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. Furthermore, since it has been suggested that low luminosity FR IIs may be distinct from their powerful equivalents, I attempt to investigate fundamental properties of a sample of low redshift, low

  20. The Population of Viscosity- and Gravitational Wave-driven Supermassive Black Hole Binaries Among Luminous Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Haiman, Zoltán; Kocsis, Bence; Menou, Kristen

    2009-08-01

    Supermassive black hole binaries (SMBHBs) in galactic nuclei are thought to be a common by-product of major galaxy mergers. We use simple disk models for the circumbinary gas and for the binary-disk interaction to follow the orbital decay of SMBHBs with a range of total masses (M) and mass ratios (q), through physically distinct regions of the disk, until gravitational waves (GWs) take over their evolution. Prior to the GW-driven phase, the viscous decay is generically in the stalled "secondary-dominated" regime. SMBHBs spend a non-negligible fraction of a fiducial time of 107 yr at orbital periods between days lsimt orblsim yr, and we argue that they may be sufficiently common to be detectable, provided they are luminous during these stages. A dedicated optical or X-ray survey could identify coalescing SMBHBs statistically, as a population of periodically variable quasars, whose abundance obeys the scaling N var vprop t α var within a range of periods around t var~ tens of weeks. SMBHBs with M lsim 107 M sun, with 0.5 lsim α lsim 1.5, would probe the physics of viscous orbital decay, whereas the detection of a population of higher-mass binaries, with α = 8/3, would confirm that their decay is driven by GWs. The lowest-mass SMBHBs (M lsim 105-6 M sun) enter the GW-driven regime at short orbital periods, when they are already in the frequency band of the Laser Interferometric Space Antenna (LISA). While viscous processes are negligible in the last few years of coalescence, they could reduce the amplitude of any unresolved background due to near-stationary LISA sources. We discuss modest constraints on the SMBHB population already available from existing data, and the sensitivity and sky coverage requirements for a detection in future surveys. SMBHBs may also be identified from velocity shifts in their spectra; we discuss the expected abundance of SMBHBs as a function of their orbital velocity.

  1. Extended Submillimeter Emission of the Galactic Center and Near-infrared/submillimeter Variability of Its Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    García-Marín, M.; Eckart, A.; Weiss, A.; Witzel, G.; Bremer, M.; Zamaninasab, M.; Morris, M. R.; Schödel, R.; Kunneriath, D.; Nishiyama, S.; Baganoff, F.; Dovčiak, M.; Sabha, N.; Duschl, W. J.; Moultaka, J.; Karas, V.; Najarro, F.; Mužić, K.; Straubmeier, C.; Vogel, S. N.; Krips, M.; Wiesemeyer, H.

    2011-09-01

    The innermost tens of parsecs of our Galaxy are characterized by the presence of molecular cloud complexes surrounding Sgr A*, the radiative counterpart of the supermassive black hole (~4 × 106 M sun) at the Galactic center. We seek to distinguish the different physical mechanisms that dominate the molecular clouds at the Galactic center, with special emphasis on the circumnuclear disk (CND). We also want to study the energy flow and model the variable emission of Sgr A*. Our study is based on NIR and submillimeter (sub-mm) observations. Using sub-mm maps, we describe the complex morphology of the molecular clouds and the circumnuclear disk, along with their masses (of order 105-106 M sun), and derive also the temperature and spectral index maps of the regions under study. We conclude that the average temperature of the dust is 14 ± 4 K. The spectral index map shows that the 20 and 50 km s-1 clouds are dominated by dust emission. Comparatively, in the CND and its surroundings the spectral indices decrease toward Sgr A* and range between about 1 and -0.6. These values are mostly explained with a combination of dust, synchrotron, and free-free emission in different ratios. The presence of non-thermal emission also accounts for the apparent low temperatures derived in these areas, indicating their unreliability. The Sgr A* light curves show significant flux density excursions in both the NIR and sub-mm domains. We have defined a classification system to account for the NIR variability of Sgr A*. Also, we have modeled on the NIR/sub-mm events. From our modeling results we can infer a sub-mm emission delay with respect to the NIR; we argue that the delay is due to the adiabatic expansion of the synchrotron source components. Based on observations made with ESO APEX and VLT telescopes under programme 081.B-0648(B). Based also on SCUBA/JCMT archive data, project M98AU64.

  2. Black Hole Mass Determination Using X-ray Data

    NASA Astrophysics Data System (ADS)

    Jang, Insuk

    Supermassive black holes are located at the center of basically every galaxy and their mass appears to be tightly correlated with several galaxy properties, suggesting that black hole and galaxy growths are linked together. Determining the mass of black holes provides crucial information on the galaxy evolution and indeed significant progress has been achieved thanks to optically-based methods. However, since these methods are limited by several factors including absorption and galaxy contamination, it is important to develop and test alternative methods that use different energy bands to constrain the black hole mass. In a recent work we demonstrated that a novel X-ray scaling method, originally introduced for stellar mass black holes, can be reliably extended to estimate the mass of highly-accreting supermassive black holes. Here we investigate the limits of applicability of this method to low-accreting black holes, using a control sample of low-luminosity active galactic nuclei with good-quality X-ray data and with dynamically measured black hole masses. We find the threshold value of the accretion rate for which the X-ray scaling method can still be used. Below this threshold, we provide a simple recipe to constrain the black hole mass based on the inverse correlation between X-ray spectral properties and accretion rate, which was found in several low-accreting black holes and confirmed by our sample. Then, we extend the X-ray scaling method to ultraluminous X-ray sources (ULXs), which are off-nuclear, point-like X-ray sources, whose nature is still debated. Their high X-ray brightness can be equally well explained by stellar mass black holes accreting at extreme rates or by intermediate mass black holes accreting at regular rates, therefore, constraining their mass may shed light on one of the outstanding questions of high energy astrophysics. Currently, no direct optically-based methods can dynamically determine the mass of ULXs, making X-ray methods the only

  3. SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

    SciTech Connect

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Grady, Sean; Guillochon, James

    2013-11-10

    Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and 'spoon-feed' material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes M{sub bh} ∼> 10{sup 7} M{sub ☉}. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

  4. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way.

    PubMed

    Schödel, R; Ott, T; Genzel, R; Hofmann, R; Lehnert, M; Eckart, A; Mouawad, N; Alexander, T; Reid, M J; Lenzen, R; Hartung, M; Lacombe, F; Rouan, D; Gendron, E; Rousset, G; Lagrange, A-M; Brandner, W; Ageorges, N; Lidman, C; Moorwood, A F M; Spyromilio, J; Hubin, N; Menten, K M

    2002-10-17

    Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

  5. Ring Around the Black Hole

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Regardless of size, black holes easily acquire accretion disks. Supermassive black holes can feast on the bountiful interstellar gas in galactic nuclei. Small black holes formed from collapsing stars often belong to binary systems in which a bulging companion star can spill some of its gas into the black hole s reach. In the chaotic mess of the accretion disk, atoms collide with one another. Swirling plasma reaches speeds upward of 10% that of light and glows brightly in many wavebands, particularly in X-rays. Gas gets blown back by a wind of radiation from the inner disk. New material enters the disks from different directions.

  6. An Accretion Model for the Growth of Black Hole in Quasars

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability and the dormant quasars are the system in the lower branch. The disk is assumed to evolve as ADIOS configuration in the lower branch. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole 2 x 10(exp 6) solar masses similar to those found in spiral galaxies today is needed to produce a black hole with a final mass 2 x 10(exp 8) solar masses.

  7. Can emission line profiles from perturbed accretion disks mimic those from the broad line region of a black hole in a supermassive binary?

    NASA Astrophysics Data System (ADS)

    Brown, Stephanie Meghan; Eracleous, Michael; Runnoe, Jessie C.; Bogdanovic, Tamara; Sigurdsson, Steinn; Boroson, Todd A.; Halpern, Jules P.

    2016-01-01

    Both observations and simulations from the last decade suggest a link between the evolution of galaxies and their central supermassive black holes. An important ingredient in these evolutionary models is galactic interaction and mergers. Consequently, we expect to see dual active galactic nuclei at the early stages of an interaction and close, bound binary black holes after the parent galaxies have merged. While binary active galactic nuclei have been detected at large separations, it has proven difficult to detect close, bound binaries. Our team has been carrying out an observing campaign to find binary black holes with sub-parsec separations. Thus, we have been studying a sample of 88 quasars from the Sloan Digital Sky Survey whose broad Hβ lines are offset from their nominal wavelength by a few thousand km/s. These offsets suggest orbital motion of one of the black holes and the gas that is bound to it. In this work, we play devil's advocate by exploring an alternative interpretation of the broad emission lines. We ask whether lines formed in a perturbed, non-axisymmetric disks can have profiles similar to those observed. Two categories of non-axisymmetric disks are explored - one with a prominent spiral arm and one that is elliptical. To make the model as general as possible, the radial emissivity of the disk was allowed to have a broken power-law profile. For certain combinations of model parameters, these models can match the observed profile shapes. A subset of these model parameters can mimic the sinusoidal procession of the peak velocity we would expect to see in a binary system on an observable time scale. However, the predominate, observed statistical trend between the Pearson Skewness and the peak position is not reproduced; instead, other trends are predicted by the models that we do not observe.

  8. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  9. Gravitational waves from individual supermassive black hole binaries in circular orbits: limits from the North American nanohertz observatory for gravitational waves

    SciTech Connect

    Arzoumanian, Z.; Brazier, A.; Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T.; Burke-Spolaor, S.; Chamberlin, S. J.; Ellis, J. A.; Demorest, P. B.; Deng, X.; Koop, M.; Ferdman, R. D.; Kaspi, V. M.; Garver-Daniels, N.; Lorimer, D. R.; Jenet, F.; Jones, G.; Lazio, T. J. W.; Lommen, A. N.; Collaboration: NANOGrav Collaboration; and others

    2014-10-20

    We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h {sub 0} ≲ 3.0 × 10{sup –14} at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that d{sub L} ≳ 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10{sup 10} M {sub ☉}. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ∼four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.

  10. A RAPIDLY SPINNING BLACK HOLE POWERS THE EINSTEIN CROSS

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.; Reis, Rubens C.; Walton, Dominic J.

    2014-09-01

    Observations over the past 20 yr have revealed a strong relationship between the properties of the supermassive black hole lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local universe. Herein, we present the results of an analysis of ∼0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the {sup E}instein-cross{sup )}, lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a{sub ∗}=0.74{sub −0.03}{sup +0.06} at the 90% confidence level. Placing a lower limit on the spin, we find a {sub *} ≥ 0.65 (4σ). The high value of the spin for the ∼10{sup 9} M {sub ☉} black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.

  11. A Rapidly Spinning Black Hole Powers the Einstein Cross

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark T.; Walton, Dominic J.; Miller, Jon M.; Reis, Rubens C.

    2014-09-01

    Observations over the past 20 yr have revealed a strong relationship between the properties of the supermassive black hole lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local universe. Herein, we present the results of an analysis of ~0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the "Einstein-cross"), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a_* = 0.74^{+0.06}_{-0.03} at the 90% confidence level. Placing a lower limit on the spin, we find a * >= 0.65 (4σ). The high value of the spin for the ~109 M ⊙ black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date.

  12. Black holes in the milky way galaxy.

    PubMed

    Filippenko, A V

    1999-08-31

    Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.

  13. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign

    NASA Astrophysics Data System (ADS)

    Du, Pu; Hu, Chen; Lu, Kai-Xing; Wang, Fang; Qiu, Jie; Li, Yan-Rong; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Wang, Jian-Min; SEAMBH Collaboration

    2014-02-01

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6^{+1.7}_{-2.9}, 6.4^{+0.8}_{-2.2} and 11.4^{+2.9}_{-1.9} days, respectively. The corresponding BH masses are (8.3_{-3.2}^{+2.6})\\times 10^6\\,M_{\\odot }, (3.4_{-1.2}^{+0.5})\\times 10^6\\,M_{\\odot }, and (7.5_{-4.1}^{+4.3})\\times 10^6\\,M_{\\odot }, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  14. CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION

    SciTech Connect

    Shen, Yue; Liu, Xin; Loeb, Abraham; Tremaine, Scott

    2013-09-20

    We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{sub BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close

  15. The role of stellar relaxation in the formation and evolution of the first massive black holes

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Khochfar, Sadegh

    2016-04-01

    We present calculations on the formation of massive black holes of 105 M⊙ at z > 6, which can be the seeds of supermassive black holes at z ≳ 6. Under the assumption of compact star cluster formation in merging galaxies, star clusters in haloes of ˜ 108-109 M⊙ can undergo rapid core collapse, leading to the formation of very massive stars (VMSs) of ˜ 1000 M⊙ that collapse directly into black holes with similar masses. Star clusters in haloes of ≳ 109 M⊙ experience Type II supernovae before the formation of VMSs, due to long core-collapse time-scales. We also model the subsequent growth of black holes via accretion of residual stars in clusters. Two-body relaxation refills the loss cones of stellar orbits efficiently at larger radii and resonant relaxation at small radii is the main driver for accretion of stars on to black holes. As a result, more than 90 percent of stars in the initial cluster are swallowed by the central black holes before z = 6. Using dark matter merger trees, we derive black hole mass functions at z = 6-20. The mass function ranges from 103-105 M⊙ at z ≲ 15. Major merging of galaxies of ≳ 4 × 108 M⊙ at z ˜ 20 leads successfully to the formation of ≳ 105 M⊙ black holes by z ≳ 10, which could be the potential seeds of supermassive black holes seen today.

  16. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  17. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart

    2017-02-01

    Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.

  18. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-Driven Regime

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    Supermassive black hole binaries (SMBHBs) should be an inevitable consequence of the hierarchical growth of massive galaxies through mergers and the strongest sirens of gravitational waves (GWs) in the cosmos. Yet, their direct detection has remained elusive due to the compact (sub-parsec) orbital separations of gravitationally bound SMBHBs. Here we exploit a theoretically predicted signature of SMBHBs in the time domain. We have begun a systematic search for SMBHB candidates in the Pan-STARRS1 Medium Deep Survey (MDS) and reported our first significant detection of such a candidate from our pilot study of MD09 in Liu et al. (2015). Our candidate PSO J334.2028+01.4075 has a detected period of 542 days, varying persistently over the available baseline. From its archival spectrum, we estimated the black hole mass of the z = 2.06 quasar to be ~1010 M⊙. The inferred ~7 R s binary separation therefore puts this candidate in the regime of GW-dominated orbital decay, opening up the exciting possibility of finding GW sources detectable by pulsar timing arrays (PTAs) in a wide-field optical synoptic survey.

  19. A dust-parallax distance of 19 megaparsecs to the supermassive black hole in NGC 4151.

    PubMed

    Hönig, Sebastian F; Watson, Darach; Kishimoto, Makoto; Hjorth, Jens

    2014-11-27

    The active galaxy NGC 4151 has a crucial role as one of only two active galactic nuclei for which black hole mass measurements based on emission line reverberation mapping can be calibrated against other dynamical techniques. Unfortunately, effective calibration requires accurate knowledge of the distance to NGC 4151, which is not at present available. Recently reported distances range from 4 to 29 megaparsecs. Strong peculiar motions make a redshift-based distance very uncertain, and the geometry of the galaxy and its nucleus prohibit accurate measurements using other techniques. Here we report a dust-parallax distance to NGC 4151 of 19.0(+2.4)(-2.6) megaparsecs. The measurement is based on an adaptation of a geometric method that uses the emission line regions of active galaxies. Because these regions are too small to be imaged with present technology, we use instead the ratio of the physical and angular sizes of the more extended hot-dust emission as determined from time delays and infrared interferometry. This distance leads to an approximately 1.4-fold increase in the dynamical black hole mass, implying a corresponding correction to emission line reverberation masses of black holes if they are calibrated against the two objects with additional dynamical masses.

  20. EVIDENCE FOR THREE ACCRETING BLACK HOLES IN A GALAXY AT z {approx} 1.35: A SNAPSHOT OF RECENTLY FORMED BLACK HOLE SEEDS?

    SciTech Connect

    Schawinski, Kevin; Urry, Meg; Treister, Ezequiel; Simmons, Brooke; Natarajan, Priyamvada; Glikman, Eilat

    2011-12-20

    One of the key open questions in cosmology today pertains to understanding when, where, and how supermassive black holes form. While it is clear that mergers likely play a significant role in the growth cycles of black holes, the issue of how supermassive black holes form, and how galaxies grow around them, still needs to be addressed. Here, we present Hubble Space Telescope Wide Field Camera 3/IR grism observations of a clumpy galaxy at z = 1.35, with evidence for 10{sup 6}-10{sup 7} M{sub Sun} rapidly growing black holes in separate sub-components of the host galaxy. These black holes could have been brought into close proximity as a consequence of a rare multiple galaxy merger or they could have formed in situ. Such holes would eventually merge into a central black hole as the stellar clumps/components presumably coalesce to form a galaxy bulge. If we are witnessing the in situ formation of multiple black holes, their properties can inform seed formation models and raise the possibility that massive black holes can continue to emerge in star-forming galaxies as late as z = 1.35 (4.8 Gyr after the big bang).

  1. Black holes and the multiverse

    SciTech Connect

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun E-mail: vilenkin@cosmos.phy.tufts.edu

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  2. The Growth of Central Black Hole and the Ionization Instability of Quasar Disk

    NASA Technical Reports Server (NTRS)

    Lu, Ye; Cheng, K. S.; Zhang, S. N.

    2003-01-01

    A possible accretion model associated with the ionization instability of quasar disks is proposed to address the growth of the central black hole harbored in the host galaxy. The evolution of quasars in cosmic time is assumed to change from a highly active state to a quiescent state triggered by the S-shaped ionization instability of the quasar accretion disk. For a given external mass transfer rate supplied by the quasar host galaxy, ionization instability can modify accretion rate in the disk and separates the accretion flows of the disk into three different phases, like a S-shape. We suggest that the bright quasars observed today are those quasars with disks in the upper branch of S-shaped instability, and the faint or 'dormant' quasars are simply the system in the lower branch. The middle branch is the transition state which is unstable. We assume the quasar disk evolves according to the advection-dominated inflow-outflow solutions (ADIOS) configuration in the stable lower branch of S-shaped instability, and Eddington accretion rate is used to constrain the accretion rate in each phase. The mass ratio between black hole and its host galactic bulge is a nature consequence of ADIOS. Our model also demonstrates that a seed black hole (BH) similar to those found in spiral galaxies today is needed to produce a BH with a final mass 2 x 10(exp 8) solar mases.

  3. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, Jia; Halpern, Jules P.; Eracleous, Michael

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  4. Supermassive black holes with high accretion rates in active galactic nuclei. I. First results from a new reverberation mapping campaign

    SciTech Connect

    Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Wang, Jian-Min; Lu, Kai-Xing; Wang, Fang; Bai, Jin-Ming; Kaspi, Shai; Netzer, Hagai; Collaboration: SEAMBH collaboration

    2014-02-10

    We report first results from a large project to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). Such objects may be different from other AGNs in being powered by slim accretion disks and showing saturated accretion luminosities, but both are not yet fully understood. The results are part of a large reverberation mapping (RM) campaign using the 2.4 m Shangri-La telescope at the Yunnan Observatory in China. The goals are to investigate the gas distribution near the BH and the properties of the central accretion disks, to measure BH mass and Eddington ratios, and to test the feasibility of using such objects as a new type of cosmological candles. The paper presents results for three objects, Mrk 335, Mrk 142, and IRAS F12397+3333, with Hβ time lags relative to the 5100 Å continuum of 10.6{sub −2.9}{sup +1.7}, 6.4{sub −2.2}{sup +0.8} and 11.4{sub −1.9}{sup +2.9} days, respectively. The corresponding BH masses are (8.3{sub −3.2}{sup +2.6})×10{sup 6} M{sub ⊙}, (3.4{sub −1.2}{sup +0.5})×10{sup 6} M{sub ⊙}, and (7.5{sub −4.1}{sup +4.3})×10{sup 6} M{sub ⊙}, and the lower limits on the Eddington ratios are 0.6, 2.3, and 4.6 for the minimal radiative efficiency of 0.038. Mrk 142 and IRAS F12397+333 (extinction corrected) clearly deviate from the currently known relation between Hβ lag and continuum luminosity. The three Eddington ratios are beyond the values expected in thin accretion disks and two of them are the largest measured so far among objects with RM-based BH masses. We briefly discuss implications for slim disks, BH growth, and cosmology.

  5. Following Black Hole Scaling Relations through Gas-rich Mergers

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; U, Vivian; Max, Claire E.; Sanders, David B.; Armus, Lee; Holden, Bradford; Mieda, Etsuko; Wright, Shelley A.; Larkin, James E.

    2015-04-01

    We present black hole mass measurements from kinematic modeling of high-spatial resolution integral field spectroscopy of the inner regions of nine nearby (ultra-)luminous infrared galaxies in a variety of merger stages. These observations were taken with OSIRIS and laser guide star adaptive optics on the Keck I and Keck II telescopes, and reveal gas and stellar kinematics inside the spheres of influence of these supermassive black holes. We find that this sample of black holes are overmassive (˜107-9 {{M}}) compared to the expected values based on black hole scaling relations, and suggest that the major epoch of black hole growth occurs in early stages of a merger, as opposed to during a final episode of quasar-mode feedback. The black hole masses presented are the dynamical masses enclosed in ˜25 pc, and could include gas which is gravitationally bound to the black hole but has not yet lost sufficient angular momentum to be accreted. If present, this gas could in principle eventually fuel active galactic nucleus feedback or be itself blown out from the system.

  6. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  7. Life Inside Black Holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  8. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong; Netzer, Hagai; Kaspi, Shai; Bai, Jin-Ming; Wang, Fang; Lu, Kai-Xing; Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  9. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    SciTech Connect

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil; Coppi, Paolo; Cardamone, Carolin N.; Bamford, Steven P.; Treister, Ezequiel; Lintott, Chris J.; Kaviraj, Sugata; Sarzi, Marc; Keel, William C.; Masters, Karen L.; Nichol, Robert C.; Thomas, Daniel; Ross, Nicholas P.; Andreescu, Dan; Murray, Phil; Raddick, M. Jordan; Szalay, Alex S.; Slosar, Anze

    2010-03-01

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram and their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.

  10. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  11. THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES

    SciTech Connect

    De Colle, Fabio; Guillochon, James; Naiman, Jill; Ramirez-Ruiz, Enrico E-mail: jfg@ucolick.org E-mail: enrico@ucolick.org

    2012-12-01

    We examine the consequences of a model in which relativistic jets can be triggered in quiescent massive black holes when a geometrically thick and hot accretion disk forms as a result of the tidal disruption of a star. To estimate the power, thrust, and lifetime of the jet, we use the mass accretion history onto the black hole as calculated by detailed hydrodynamic simulations of the tidal disruption of stars. We go on to determine the states of the interstellar medium in various types of quiescent galactic nuclei, and describe how this external matter can affect jets propagating through it. We use this information, together with a two-dimensional hydrodynamic model of the structure of the relativistic flow, to study the dynamics of the jet, the propagation of which is regulated by the density stratification of the environment and by its injection history. The breaking of symmetry involved in transitioning from one to two dimensions is crucial and leads to qualitatively new phenomena. At early times, as the jet power increases, the high pressure of the cocoon collimates the jet, increasing its shock velocity as compared to that of spherical models. We show that small velocity gradients, induced near or at the source, steepen into internal shocks and provide a source of free energy for particle acceleration and radiation along the jet's channel. The jets terminate at a working surface where they interact strongly with the surrounding medium through a combination of shock waves and instabilities; a continuous flow of relativistic fluid emanating from the nucleus supplies this region with mass, momentum, and energy. Information about the t {sup -5/3} decrease in power supply propagates within the jet at the internal sound speed. As a result, the internal energy at the jet head continues to accumulate until long after the peak feeding rate is reached. An appreciable time delay is thus expected between peaks in the short-wavelength radiation emanating near the jet

  12. Relativistic orbits around spinning supermassive black holes: Secular evolution to 4.5 post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.; Maitra, Matthew

    2017-03-01

    We derive the secular evolution of the orbital elements of a stellar-mass object orbiting a spinning massive black hole. We use the post-Newtonian (PN) approximation in harmonic coordinates, with test-body equations of motion for the conservative dynamics that are valid through 3PN order, including spin-orbit, quadrupole and (spin) 2 effects, and with radiation-reaction contributions linear in the mass of the body that are valid through 4.5PN order, including the 4PN damping effects of spin-orbit coupling. The evolution equations for the osculating orbit elements are iterated to high PN orders using a two-time-scale approach and averaging over orbital time scales. We derive a criterion for terminating the orbit when its Carter constant drops below a critical value, whereupon the body plunges across the event horizon at the next closest approach. The results are valid for arbitrary eccentricities and arbitrary inclinations. We then analyze numerically the orbits of objects injected into high-eccentricity orbits via interactions within a surrounding star cluster, obtaining the number of orbits and the elapsed time between injection and plunge, and the residual orbital eccentricity at plunge as a function of inclination. We derive an analytic approximation for the time to plunge in terms of initial orbital variables. We show that, if the black hole is spinning rapidly, the flux of gravitational radiation during the final orbit before plunge may be suppressed by as much as 3 orders of magnitude if the orbit is retrograde on the equatorial plane compared to its prograde counterpart.

  13. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Sethi, Shiv; Loeb, Abraham

    2016-03-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, {M}{BH} = 104-106{M}⊙ black hole. In this paper we show that large H i column densities of primordial gas at T˜ {10}4 K with low molecular abundance—which represent key aspects of the DCBH scenario—provide optimal conditions for the pumping of the 2p-level of atomic hydrogen by trapped Lyα photons. This Lyα pumping mechanism gives rise to an inverted level population of the 2{s}1/2-2{p}3/2 transition, and therefore also gives rise to stimulated fine structure emission at λ =3.04 {cm} (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of ˜ {10}5, above which the maser saturates. Hyperfine splitting of the 3 cm transition gives rise to a characteristic broad (FWHM ˜ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ˜1-10 mas, which translates to a flux of ˜0.3-3 μJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line could provide direct evidence for the DCBH scenario.

  14. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Yu; Liu, Ruo-Yu

    2016-04-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that the high flux of neutrinos at ˜30 TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended, optically thick envelope around the black hole, which results from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutrinos via interaction with the surrounding dense photons. All three TDE jets discovered so far are not detected by Fermi/LAT, suggesting that GeV-TeV gamma rays are absorbed in these jets. The cumulative neutrino flux from TDE jets can account for the neutrino flux observed by IceCube at PeV energies and may also account for the higher flux at ˜30 TeV if less powerful, choked jets are present in the majority of TDEs.

  15. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-08

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is pr