Type Ia supernova rate studies from the SDSS-II Supernova Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilday, Benjamin
2008-08-01
The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SNmore » Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.« less
A Study of the Type II-Plateau Supernova SN 2014cx
NASA Astrophysics Data System (ADS)
Flatland, Kelsi; Leonard, Douglas Christopher; Williams, George Grant; Smith, Paul S.; Bilinski, Christopher; Dessart, Luc; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah; Milne, Peter; Smith, Nathan
2015-08-01
The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the initial analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.
A Study of the Type II-Plateau Supernova SN 2014cx
NASA Astrophysics Data System (ADS)
Flatland, Kelsi; Leonard, Douglas C.; Williams, Grant; Smith, Paul S.; Bilinski, Christopher; Gonzalez, Luis; Hoffman, Jennifer L.; Huk, Leah N.; Milne, Peter; Smith, Nathan; Supernova Spectropolarimetry Project
2016-06-01
The type II-plateau (II-P) class of supernova is the most commonly observed type of core-collapse event, and yet the basic characteristics of this class are still being defined (e.g. Pejcha & Prieto 2015). Here we add to the growing sample of type II-P events with well-sampled data from observations of SN 2014cx. SN 2014cx was independently discovered on September 2, 2014 UT by Nakano et al. (2014; CBET 3963) and Holoien et al. (2014; ATEL 6436) in the nearby (d ~ 20.7 Mpc, Tully 1988) SBd galaxy NGC 337. It was classified as a young Type II supernova through spectra taken within a day of discovery at both optical (Nakano et al. 2014) and near-infrared (Morrell et al. 2014; ATEL 6442) wavelengths. Later (Andrews et al. 2015; ATEL 7084), it was photometrically determined to be specifically a type II-P supernova, indicating the core-collapse event of a progenitor that had a large hydrogen envelope (Pejcha & Prieto 2015). We initiated a photometric and spectropolarimetric campaign to follow SN 2014cx; over a five month period following the supernova's discovery, we obtained optical images using the 1-meter telescope at Mount Laguna Observatory as part of the MOunt LAguna SUpernova Survey (MOLASUS), and spectra as part of the SuperNova SpectroPOLarimetry project (SNSPOL). Here we present the analysis of the photometry and spectroscopy obtained as part of this campaign. We acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research was carried out.
Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova
NASA Astrophysics Data System (ADS)
Smartt, Stephen J.; Maund, Justyn R.; Hendry, Margaret A.; Tout, Christopher A.; Gilmore, Gerard F.; Mattila, Seppo; Benn, Chris R.
2004-01-01
We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8+4
UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de
We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) frommore » maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.« less
UBVRIz Light Curves of 51 Type II Supernovae
NASA Astrophysics Data System (ADS)
Galbany, Lluís; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I.; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wishnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P.; Gutiérrez, Claudia P.; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M.; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A.; Mulchaey, John S.; Phillips, Andrew C.; Pizzella, Alessandro; Prosser, Charles F.; Schmidt, Brian P.; Schommer, Robert A.; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A.; Williger, Gerard M.
2016-02-01
We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986-2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.
On relative supernova rates and nucleosynthesis roles
NASA Technical Reports Server (NTRS)
Arnett, W. David; Schramm, David N.; Truran, James W.
1988-01-01
It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.
The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor
NASA Astrophysics Data System (ADS)
Anderson, J. P.; Dessart, L.; Gutiérrez, C. P.; Krühler, T.; Galbany, L.; Jerkstrand, A.; Smartt, S. J.; Contreras, C.; Morrell, N.; Phillips, M. M.; Stritzinger, M. D.; Hsiao, E. Y.; González-Gaitán, S.; Agliozzo, C.; Castellón, S.; Chambers, K. C.; Chen, T.-W.; Flewelling, H.; Gonzalez, C.; Hosseinzadeh, G.; Huber, M.; Fraser, M.; Inserra, C.; Kankare, E.; Mattila, S.; Magnier, E.; Maguire, K.; Lowe, T. B.; Sollerman, J.; Sullivan, M.; Young, D. R.; Valenti, S.
2018-05-01
Red supergiants have been confirmed as the progenitor stars of the majority of hydrogen-rich type II supernovae1. However, while such stars are observed with masses >25 M⊙ (ref. 2), detections of >18 M⊙ progenitors remain elusive1. Red supergiants are also expected to form at all metallicities, but discoveries of explosions from low-metallicity progenitors are scarce. Here, we report observations of the type II supernova, SN 2015bs, for which we infer a progenitor metallicity of ≤0.1 Z⊙ from comparison to photospheric-phase spectral models3, and a zero-age main-sequence mass of 17–25 M⊙ through comparison to nebular-phase spectral models4,5. SN 2015bs displays a normal ‘plateau’ light-curve morphology, and typical spectral properties, implying a red supergiant progenitor. This is the first example of such a high-mass progenitor for a ‘normal’ type II supernova, suggesting a link between high-mass red supergiant explosions and low-metallicity progenitors.
VizieR Online Data Catalog: UBVRIz light curves of 51 Type II supernovae (Galbany+, 2016)
NASA Astrophysics Data System (ADS)
Galbany, L.; Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Maza, J.; de Jaeger, T.; Moraga, T.; Gonzalez-Gaitan, S.; Krisciunas, K.; Morrell, N. I.; Thomas-Osip, J.; Krzeminski, W.; Gonzalez, L.; Antezana, R.; Wishnjewski, M.; McCarthy, P.; Anderson, J. P.; Gutierrez, C. P.; Stritzinger, M.; Folatelli, G.; Anguita, C.; Galaz, G.; Green, E. M.; Impey, C.; Kim, Y.-C.; Kirhakos, S.; Malkan, M. A.; Mulchaey, J. S.; Phillips, A. C.; Pizzella, A.; Prosser, C. F.; Schmidt, B. P.; Schommer, R. A.; Sherry, W.; Strolger, L.-G.; Wells, L. A.; Williger, G. M.
2016-08-01
This paper presents a sample of multi-band, visual-wavelength light curves of 51 type II supernovae (SNe II) observed from 1986 to 2003 in the course of four different surveys: the Cerro Tololo Supernova Survey, the Calan Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernovae Survey (CATS). Near-infrared photometry and optical spectroscopy of this set of SNe II will be published in two companion papers. A list of the SNe II used in this study is presented in Table1. The first object in our list is SN 1986L and it is the only SN observed with photoelectric techniques (by M.M.P and S.K., using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m equipped with a photometer and B and V filters). The remaining SNe were observed using a variety of telescopes equipped with CCD detectors and UBV(RI)KCz filters (see Table5). The magnitudes for the photometric sequences of the 51 SNe II are listed in Table4. In every case, these sequences were derived from observations of Landolt standards (see Appendix D in Hamuy et al. 2001ApJ...558..615H for the definition of the z band and Stritzinger et al. 2002AJ....124.2100S for the description of the z-band standards). Table5 lists the resulting UBVRIz magnitudes for the 51 SNe. (3 data files).
Space Telescope Cluster Supernova Survey: II. The Type Ia Supernova Rate in High-Redshift Galaxy /abs/0809.1648 Constraining Dust and Color Variations of High-z SNe Using NICMOS on the Hubble Space /0804.4142 A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope
The peculiar type II supernova 1993J in M81: Transition to the nebular phase
NASA Technical Reports Server (NTRS)
Filippenko, Alexei V.; Matheson, Thomas; Barth, Aaron J.
1994-01-01
We present optical spectra of the bright, peculiar Type II supernova 1993J in M81 spanning the first 14 months of its existence, revealing its transition to the nebular phase. Unlike the case in normal Type II supernovae, during the first 2-10 months the H-alpha emission line gradually becomes less prominent relative to other features such as (O I) lambda lambda 6300, 6364 and (Ca II) lambda lambda 7291, 7324, as we had predicted based on early-time (tau less than or approximately equal to 2 months) spectra. The nebular spectrum resembles those of the Type Ib/Ic supernovae 1985F and 1987M, although weak H-alpha emission is easily visible even at late times in SN 1993J. At tau = 8 months a close similarity is found with the spectrum of SN 1987K, the only other Type II supernova known to have undergone such a metamorphosis. The emission lines are considerably broader than those of normal Type II supernovae at comparable phases, consistent with the progenitor having lost a majority of its hydrogen envelope prior to exploding. Consequently, there is now little doubt that Type Ib, and probably Type Ic, supernovae result from core collapse in stripped, massive stars; models of the chemical evolution of galaxies in which these subtypes are ascribed to exploding white dwarfs must be appropriately modified. Although all of the emission lines in spectra of SN 1993J fade roughly exponentially for a considerable time, the fading of H-alpha begins to slow down at tau approximately = 8 months, and in the interval tau = 10-14 months its flux is constant, or even slightly rising in the wings of the line. This behavior, together with the box-like shape and great breadth (full width at half maximum (FWHM) approximately = 17 000 km/s) of the line profile, suggests that the H-alpha emission is being produced by the high-velocity outer layer of hydrogen ejecta interacting with circumstellar gas released by the progenitor prior to its explosion. A similar phenomenon has previously been seen at later phases in several Type II supernovae, most notably SN 1980K. Bumps (FWHM approximately = 1000 km/s, amplitude approximately = 20%) in the H-alpha profile are probably indicative of Rayleigh-Taylor instabilities in the cool gas behind the reverse shock. A very narrow component (unresolved, FWHM less than or approximately equal to 200 km/s) of H-alpha at the symmetric velocity of SN 1993J may instead be produced by a superposed H II region, or perhaps by recombination in a large circumstellar shell or ring that was ionized during the first few hours after outburst. In the near future the spectrum of SN 1993J should become increasingly dominated by broad H-alpha emission.
Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.
2015-07-01
Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.
A faint type of supernova from a white dwarf with a helium-rich companion.
Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D
2010-05-20
Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.
An Investigation Of The Metallicity Dependence Of The Sn Type Ii Mn Production
NASA Astrophysics Data System (ADS)
Kim, Yeunjin; Sobeck, J.; Frohlich, C.; Truran, J.
2010-01-01
Element abundance trends over the history of our Galaxy serve as important guides in establishing relative contributions from supernovae of Types Ia and II. In particular, spectroscopic studies have revealed a deficiency of manganese (Mn) relative to the abundances of neighboring iron-peak nuclei in metal-poor stars. However, more recent analyses of the observational data have found a constant Mn/Fe abundance ratio over a wide range of metallicity and hence, contradict these previous findings. In this project, we will study the nucleosynthetic yields of Type II supernovae as a function of metallicity by parameterizing the initial properties of the shock. We will compare our results with the two distinct manganese abundance trends identified above. Once we study the metallicity dependency of Type II yields as reflected in observations at lower metallicities, we will explore the constraints this imposes on Type Ia supernova contributions to Mn in different stellar and galactic populations. We acknowledge the financial support by the National Science Foundation for the Frontier Center Joint Institute for Nuclear Astrophysics (JINA). C.F. acknowledges an Enrico Fermi Fellowship.
Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Truran, James W.
2006-08-01
The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.
A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Ondřej; Prieto, Jose L., E-mail: pejcha@astro.princeton.edu
2015-02-01
We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles resultmore » in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.« less
Spectroscopic classification of ASASSN-17je (=AT 2017ffq) as a Type II Supernova
NASA Astrophysics Data System (ADS)
Rodriguez, Osmar; Prieto, J. L.
2017-07-01
We obtained an optical spectrum (450-760nm) of ASASSN-17je/AT2017ffq (ATel #10571) on 2017 July 15.19 UT with GMOS, mounted on Gemini-South. Using the SNID code (Blondin & Tonry, 2007, ApJ, 666, 1024) we find a good match with a Type II supernova at z=0.014, consistent with the redshift of its host galaxy 2MASX J17401447-5825586.
Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo
NASA Technical Reports Server (NTRS)
Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.
1993-01-01
We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).
Direct Measurement of the Supernova Rate in Starburst Galaxies
NASA Technical Reports Server (NTRS)
Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.
NASA Astrophysics Data System (ADS)
Nagataki, Shigehiro
1999-01-01
We have tried to reproduce the solar system abundances using the nucleosynthesis products of Type Ia and Type II supernovae. In particular, we examined the effects of axisymmetrically deformed explosions in Type II supernovae. 44Ca and 47,48Ti are enhanced considerably in axisymmetrically deformed explosion models because of the active alpha-rich freezeout. The enhancement of nuclei around A=45 is a welcome result since it solves the problem of the nuclei shortage. Moreover, 59Co, 63,65Cu, and 66Zn are enhanced enough to reproduce the solar system abundances. The enhancement of Cu and Zn means the possibility that these nuclei, which have been said to be produced by the slow process, can be synthesized fairly well during the explosive nucleosynthesis. To discuss their origin quantitatively, the position of the mass cut is a very important parameter that is very difficult to determine numerically at present. We also stress that an axisymmetrically deformed explosion of Type II supernovae of the degree that is considered in this analysis is not excluded by the results of calculations of explosive nucleosynthesis, that is, the nucleosynthesis products are not extremely disturbed and the solar system abundances can be reproduced fairly well by the axisymmetrically deformed explosion models. This conclusion will be good for the theory of core collapse including the rotation of an iron core, magnetic field, and axisymmetrically modified neutrino radiation from a rotating protoneutron star, which possibly can cause an axisymmetrically deformed explosion.
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; ...
2018-05-18
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less
OGLE-2014-SN-073 as a fallback accretion powered supernova
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Terreran, Giacomo; Blinnikov, Sergei I.
2018-03-01
We investigate the possibility that the energetic Type II supernova OGLE-2014-SN-073 is powered by a fallback accretion following the failed explosion of a massive star. Taking massive hydrogen-rich supernova progenitor models, we estimate the fallback accretion rate and calculate the light-curve evolution of supernovae powered by the fallback accretion. We find that such fallback accretion powered models can reproduce the overall observational properties of OGLE-2014-SN-073. It may imply that some failed explosions could be observed as energetic supernovae like OGLE-2014-SN-073 instead of faint supernovae as previously proposed.
Binary progenitors of supernovae
NASA Astrophysics Data System (ADS)
Trimble, V.
1984-12-01
Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.
Cosmic Explosions in Three Dimensions
NASA Astrophysics Data System (ADS)
Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig
2011-08-01
Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.
NASA Astrophysics Data System (ADS)
Imamura, James
2008-05-01
Type II Supernovae are produced by the collapse of the cores of massive stars at the ends of their nuclear lifetimes. The basic picture for the outburst mechanism of Type II Supernova explosions is rather secure with only the details of the shock generation and the outburst uncertain. However, broad issues remain concerning our understanding of Type II Supernovae when the less studied, but more general case of rotating and/or magnetic progenitor stars is considered. That rotation and magnetic fields may play large roles in core collapse has been suggested for almost 40 years dating from the discovery that pulsars, the remnants of Type II Supernovae, are strongly magnetic, rapidly rotating neutron stars. This fact has been further reinforced by the discovery of the class of neutron stars with ultra-strong magnetic fields known as Magnetars. The role that rotation plays in core collapse can be appreciated by noting that stable, stationary, degenerate equilibrium configurations are possible only for stars with central density ρc 10^4-10^9 g cm-3 (white dwarf densities) and ρc 10^14-10^15 g cm-3 (neutron star densities). Nonrotating objects with ρc between that of white dwarfs (typical of the densities of the precollapse cores of Type II Supernovae) and neutron stars are unstable to radial collapse because of the low effective γ of their equations-of-state (EOS) (see Shapiro & & Teukolsky 1983). Stars at intermediate ρc may be stabilized against collapse by rapid rotation. This possibility gives rise to what were coined fizzlers by Gold (1974) to describe fizzled core collapses of massive rotating stars through formation of rotation-supported stars with densities intermediate between those of the white dwarf-like precollapse core and a neutron star. Interest in fizzlers waned in the 1980s when it was showed that, although fizzlers could exist, they only occupied a small part of the precollapse core parameter space for cold equations-of-state (EOS). Interest in fizzlers was revived in the late 1990s when it was found that fizzlers could form under a wider range of conditions than had been suggested if hot dense EOSs were considered. Observationally, interest in fizzlers was also driven by the recognition that fizzlers could lead to the generation of gravitational wave emission in Type II Supernovae, emission potentially observable by LIGO, the Laser Interferometer Gravitational Wave Observatory), and other gravitational wave observatories, and that fizzlers could perhaps play roles in the γ-ray burster phenomenon and the formation of strange stars. We review the properties of fizzlers and consider their applications to LIGO, strange stars, and Magnetars.
Nebular Phase Spectra of SNe Ia from the CSP2 Sample
NASA Astrophysics Data System (ADS)
Diamond, Tiara; Carnegie Supernova Project II
2018-06-01
We present a comparison of late-time spectra in the near-infrared for some of the Type Ia supernovae from the Carnegie Supernova Project II. Particular attention is paid to the shape and evolution of several emission features, including the [Fe II] line at 1.6440 μm. We put our findings in context of several explosion scenarios and progenitor systems.
Acquiring information about neutrino parameters by detecting supernova neutrinos
NASA Astrophysics Data System (ADS)
Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin
2010-08-01
We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle θ13, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about θ13 and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.
30 Dor B - A supernova remnant in a star formation region
NASA Technical Reports Server (NTRS)
Chu, You-Hua; Kennicutt, Robert C., Jr.; Schommer, Robert A.; Laff, Joshua
1992-01-01
The supernova remnant 30 Dor B is embedded in an H II region around the OB association LH 99, and has been suggested to be a Crab-type remnant. To determine the spatial extent and kinematic properties of this supernova remnant, long-slit echelle observations were obtained in the H-alpha and forbidden N II lines, along with imaging Fabry-Perot observations in the H-alpha line. It is found that 30 Dor B is partially obscured by a dark cloud with which the supernova remnant also interacts. The size of 30 Dor B is much larger than previously thought, making it much older than the Crab Nebula. If the progenitor of the supernova was formed coevally with LH 99, then it would have been more massive than the O3 members of the OB association.
Slow-speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Astrophysics Data System (ADS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Bloom, Joshua S.; Kulkarni, Shrinivas R.; Laher, Russ R.; Masci, Frank; Ofek, Eran O.; Surace, Jason; Ben-Ami, Sagi; Cao, Yi; Cenko, S. Bradley; Hook, Isobel M.; Jönsson, Jakob; Matheson, Thomas; Sternberg, Assaf; Quimby, Robert M.; Yaron, Ofer
2015-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of Type I (hydrogen-poor) supernovae with low ejecta speeds has grown to include approximately two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 Type I supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover, we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to "SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that the occurrence rate of these transients relative to Type Ia supernovae is 5.6-3.8+22% (90% confidence), lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
2018-03-26
This frame from an animation shows a gigantic star exploding in a "core collapse" supernova. As atoms fuse inside the star, eventually the star can't support its own weight anymore. Gravity makes the star collapse on itself. Core collapse supernovae are called type Ib, Ic, or II depending on the chemical elements present. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22352
SN 2016esw: a luminous Type II supernova observed within the first day after the explosion
NASA Astrophysics Data System (ADS)
de Jaeger, Thomas; Galbany, Lluis; Gutiérrez, Claudia P.; Filippenko, Alexei V.; Zheng, WeiKang; Brink, Thomas G.; Foley, Ryan J.; Sánchez, Sebastian F.; Channa, Sanyum; de Kouchkovsky, Maxime; Halevi, Goni; Kilpatrick, Charles D.; Kumar, Sahana; Molloy, Jeffrey; Pan, Yen-Chen; Ross, Timothy W.; Shivvers, Isaac; Siebert, Matthew R.; Stahl, Benjamin; Stegman, Samantha; Yunus, Sameen
2018-05-01
We present photometry, spectroscopy, and host-galaxy integral-field spectroscopy of the Type II supernova (SN) 2016esw in CGCG 229-009 from the first day after the explosion up to 120 days. Its light-curve shape is similar to that of a typical SN II; however, SN 2016esw is near the high-luminosity end of the SN II distribution, with a peak of M^maxV=-18.36 mag. The V-band light curve exhibits a long recombination phase for a SN II (similar to the long-lived plateau of SN 2004et). Considering the well-known relation between the luminosity and the plateau decline rate, SN 2016esw should have a V-band slope of ˜2.10 mag (100 days)-1; however, SN 2016esw has a substantially flatter plateau with a slope of 1.01 ± 0.26 mag (100 days)-1, perhaps indicating that interacting Type II supernovae are not useful for cosmology. At 19.5 days post-explosion, the spectrum presents a boxy Hα emission line with flat absorption profiles, suggesting interaction between the ejecta and circumstellar matter. Finally, based on the spectral properties, SN 2016esw shows similarities with the luminous and interacting SN 2007pk at early epochs, particularly in terms of observable line features and their evolution.
Type II supernovae as a significant source of interstellar dust.
Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike
2003-07-17
Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.
An updated Type II supernova Hubble diagram
NASA Astrophysics Data System (ADS)
Gall, E. E. E.; Kotak, R.; Leibundgut, B.; Taubenberger, S.; Hillebrandt, W.; Kromer, M.; Burgett, W. S.; Chambers, K.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Smith, K.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.
2018-03-01
We present photometry and spectroscopy of nine Type II-P/L supernovae (SNe) with redshifts in the 0.045 ≲ z ≲ 0.335 range, with a view to re-examining their utility as distance indicators. Specifically, we apply the expanding photosphere method (EPM) and the standardized candle method (SCM) to each target, and find that both methods yield distances that are in reasonable agreement with each other. The current record-holder for the highest-redshift spectroscopically confirmed supernova (SN) II-P is PS1-13bni (z = 0.335-0.012+0.009), and illustrates the promise of Type II SNe as cosmological tools. We updated existing EPM and SCM Hubble diagrams by adding our sample to those previously published. Within the context of Type II SN distance measuring techniques, we investigated two related questions. First, we explored the possibility of utilising spectral lines other than the traditionally used Fe IIλ5169 to infer the photospheric velocity of SN ejecta. Using local well-observed objects, we derive an epoch-dependent relation between the strong Balmer line and Fe IIλ5169 velocities that is applicable 30 to 40 days post-explosion. Motivated in part by the continuum of key observables such as rise time and decline rates exhibited from II-P to II-L SNe, we assessed the possibility of using Hubble-flow Type II-L SNe as distance indicators. These yield similar distances as the Type II-P SNe. Although these initial results are encouraging, a significantly larger sample of SNe II-L would be required to draw definitive conclusions. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15 and A.17 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A25
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; Piro, Anthony L.; Shappee, B. J.; Stritzinger, Maximilian D.; Baltay, C.; Brown, Peter J.; Conseil, Emmanuel; Klotz, Alain; Nugent, Peter E.; Turpin, Damien; Parker, Stu; Rabinowitz, D.; Hsiao, Eric Y.; Morrell, Nidia; Campillay, Abdo; Castellón, Sergio; Corco, Carlos; González, Consuelo; Krisciunas, Kevin; Serón, Jacqueline; Tucker, Brad E.; Walker, E. S.; Baron, E.; Cain, C.; Childress, Michael J.; Folatelli, Gastón; Freedman, Wendy L.; Hamuy, Mario; Hoeflich, P.; Persson, S. E.; Scalzo, Richard; Schmidt, Brian; Suntzeff, Nicholas B.
2018-05-01
We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from ‑12 to +140 days with respect to the epoch of B-band maximum ({t}{B\\max }). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ∼2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred <22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ > 1800 Å) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca II and Si II absorption features, and a nearly constant photospheric velocity of the Si II λ6355 line at ∼12,000 {km} {{{s}}}-1 that began ∼5 days before {t}{B\\max }. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements. This paper includes data gathered with the 6.5 m Magellan Baade Telescope, located at Las Campanas Observatory, Chile.
Light Curves of the Type II-P Supernova SN 2017eaw: The First 200 Days
NASA Astrophysics Data System (ADS)
Tsvetkov, D. Yu.; Shugarov, S. Yu.; Volkov, I. M.; Pavlyuk, N. N.; Vozyakova, O. V.; Shatsky, N. I.; Nikiforova, A. A.; Troitsky, I. S.; Troitskaya, Yu. V.; Baklanov, P. V.
2018-05-01
We present the results of our UBVRI photometry for the type II-P supernova SN 2017eaw in NGC6946 obtained fromMay 14 to December 7, 2017, at several telescopes, including the 2.5-m telescope at the CaucasusHigh-Altitude Observatory of the SAIMSU. The dates andmagnitudes atmaximumlight and the light-curve parameters have been determined. The color evolution, extinction, and peak luminosity of SN 2017eaw are discussed. The results of our preliminary radiation-gasdynamic simulations of its light curves with the STELLA code describe satisfactorily the UBVRI observational data.
Predicted continuum spectra of type II supernovae - LTE results
NASA Technical Reports Server (NTRS)
Shaviv, G.; Wehrse, R.; Wagoner, R. V.
1985-01-01
The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.
On the Explosion Geometry of Red Supergiant Stars
NASA Astrophysics Data System (ADS)
Leonard, Douglas C.; Dessart, L.; Hillier, D.; Pignata, G.
2012-01-01
From progenitor studies, type II-Plateau supernovae (SNe II-P) have been decisively and uniquely determined to arise from isolated red supergiant stars, establishing the most homogeneous --- and well understood --- progenitor class of any type of core-collapse supernova. The precise nature of the mechanism responsible for the stellar explosion, however, remains the subject of considerable debate. A fundamental clue to the nature of the explosion mechanism is explosion geometry: In short, are supernovae round? Because young supernova atmospheres are electron-scattering dominated, their net linear polarization provides a direct probe of early-time supernova geometry, with higher degrees of polarization generally indicating greater departures from spherical symmetry. Here we present spectropolarimetry data for the most well-sampled SN II-P to date, SN 2008bk, and compare (and contrast) the results with those obtained for SN 2004dj, the only other SN II-P for which spectropolarimetry data were obtained with similar fine temporal sampling before, during, and after the fall off of the photometric plateau (Leonard et al. 2006). Both objects are polarized, indicating departures from spherical symmetry, although the timing of the onset -- as well as the persistence -- of the polarization differ between the two objects. Curiously, the detailed spectropolarimetric characteristics of the two objects at the epochs of recorded maximum polarization are extremely similar, feature by feature, suggesting a common cause --- or, at least, geometry. We interpret the data in light of non-Local-Thermodynamic Equilibrium, time-dependent radiative-transfer simulations specifically crafted for SN II-P ejecta. DCL acknowledges support from NSF grant AST-1009571, under which part of this research was carried out. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under observing programs 081.D-0128, 082.D-0151, and 085.D-0391 (PI: Dessart).
NASA Astrophysics Data System (ADS)
Das, Sanskriti; Ray, Alak
2017-12-01
We show how dense, compact, discrete shells of circumstellar gas immediately outside of red supergiants affect the optical light curves of Type II-P/II-L supernovae (SNe), using the example of SN 2013ej. Earlier efforts in the literature had used an artificial circumstellar medium (CSM) stitched to the surface of an evolved star that had not gone through a phase of late-stage heavy mass loss, which, in essence, is the original source of the CSM. In contrast, we allow enhanced mass-loss rate from the modeled star during the 16O and 28Si burning stages and construct the CSM from the resulting mass-loss history in a self-consistent way. Once such evolved pre-SN stars are exploded, we find that the models with early interaction between the shock and the dense CSM reproduce light curves far better than those without that mass loss and, hence, having no nearby dense CSM. The required explosion energy for the progenitors with a dense CSM is reduced by almost a factor of two compared to those without the CSM. Our model, with a more realistic CSM profile and presupernova and explosion parameters, fits observed data much better throughout the rise, plateau, and radioactive tail phases as compared to previous studies. This points to an intermediate class of supernovae between Type II-P/II-L and Type II-n SNe with the characteristics of simultaneous UV and optical peak, slow decline after peak, and a longer plateau.
A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys
NASA Astrophysics Data System (ADS)
de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.
2017-02-01
The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01-0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, I.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).
Observed Type II supernova colours from the Carnegie Supernova Project-I
NASA Astrophysics Data System (ADS)
de Jaeger, T.; Anderson, J. P.; Galbany, L.; González-Gaitán, S.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Contreras, C.; Folatelli, G.; Gutiérrez, C. P.; Hsiao, E. Y.; Morrell, N.; Suntzeff, N. B.; Dessart, L.; Filippenko, A. V.
2018-06-01
We present a study of observed Type II supernova (SN II) colours using optical/near-infrared photometric data from the Carnegie Supernovae Project-I. We analyse four colours (B - V, u - g, g - r, and g - Y) and find that SN II colour curves can be described by two linear regimes during the photospheric phase. The first (s1, colour) is steeper and has a median duration of ˜40 d. The second, shallower slope (s2, colour) lasts until the end of the `plateau' (˜80 d). The two slopes correlate in the sense that steeper initial colour curves also imply steeper colour curves at later phases. As suggested by recent studies, SNe II form a continuous population of objects from the colour point of view as well. We investigate correlations between the observed colours and a range of photometric and spectroscopic parameters including the absolute magnitude, the V-band light-curve slopes, and metal-line strengths. We find that less luminous SNe II appear redder, a trend that we argue is not driven by uncorrected host-galaxy reddening. While there is significant dispersion, we find evidence that redder SNe II (mainly at early epochs) display stronger metal-line equivalent widths. Host-galaxy reddening does not appear to be a dominant parameter, neither driving observed trends nor dominating the dispersion in observed colours. Intrinsic SN II colours are most probably dominated by photospheric temperature differences, with progenitor metallicity possibly playing a minor role. Such temperature differences could be related to differences in progenitor radius, together with the presence or absence of circumstellar material close to the progenitor stars.
Takanashi, N.; Doi, M.; Yasuda, N.; ...
2016-12-06
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takanashi, N.; Doi, M.; Yasuda, N.
We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from themore » SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao
2016-04-20
Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties frommore » the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.« less
Semi-supervised learning for photometric supernova classification
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Homrighausen, Darren; Freeman, Peter E.; Schafer, Chad M.; Poznanski, Dovi
2012-01-01
We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency. A web service for the supernova classification method used in this paper can be found at .
Confined dense circumstellar material surrounding a regular type II supernova
NASA Astrophysics Data System (ADS)
Yaron, O.; Perley, D. A.; Gal-Yam, A.; Groh, J. H.; Horesh, A.; Ofek, E. O.; Kulkarni, S. R.; Sollerman, J.; Fransson, C.; Rubin, A.; Szabo, P.; Sapir, N.; Taddia, F.; Cenko, S. B.; Valenti, S.; Arcavi, I.; Howell, D. A.; Kasliwal, M. M.; Vreeswijk, P. M.; Khazov, D.; Fox, O. D.; Cao, Y.; Gnat, O.; Kelly, P. L.; Nugent, P. E.; Filippenko, A. V.; Laher, R. R.; Wozniak, P. R.; Lee, W. H.; Rebbapragada, U. D.; Maguire, K.; Sullivan, M.; Soumagnac, M. T.
2017-02-01
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, which sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 h after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 h post-explosion) spectra, map the distribution of material in the immediate environment (<~1015 cm) of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10-3 solar masses per year. The complete disappearance of flash-ionized emission lines within the first several days requires that the dense CSM be confined to within <~1015 cm, consistent with radio non-detections at 70-100 days. The observations indicate that iPTF 13dqy was a regular type II supernova; thus, the finding that the probable red supergiant progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.
Blue supergiant progenitors from binary mergers for SN 1987A and other Type II-peculiar supernovae
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2017-11-01
We present results of a systematic and detailed stellar evolution study of binary mergers for blue supergiant (BSG) progenitors of Type II supernovae, particularly for SN 1987A. We are able to reproduce nearly all observational aspects of the progenitor of SN 1987A, Sk -69 °202, such as its position in the HR diagram, the enrichment of helium and nitrogen in the triple-ring nebula and its lifetime before its explosion. We build our evolutionary model based on the merger model of Podsiadlowski et al. (1992), Podsiadlowski et al. (2007) and empirically explore an initial parameter consisting of primary masses, secondary masses and different depths up to which the secondary penetrates the He core during the merger. The evolution of the post-merger star is continued until just before iron-core collapse. Of the 84 pre-supernova models (16 M⊙ - 23 M⊙) computed, the majority of the pre-supernova models are compact, hot BSGs with effective temperature >12 kK and 30 R⊙ - 70 R⊙ of which six match nearly all the observational properties of Sk -69 °202.
Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos
2017-04-01
We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less
NASA Astrophysics Data System (ADS)
Milisavljevic, Dan; Margutti, Raffaella
2018-06-01
What makes a supernova truly "peculiar?" In this review we attempt to address this question by tracing the history of the use of "peculiar" as a descriptor of non-standard supernovae back to the original binary spectroscopic classification of Type I vs. Type II proposed by Minkowski (Publ. Astron. Soc. Pac., 53:224, 1941). A handful of noteworthy examples are highlighted to illustrate a general theme: classes of supernovae that were once thought to be peculiar are later seen as logical branches of standard events. This is not always the case, however, and we discuss ASASSN-15lh as an example of a transient with an origin that remains contentious. We remark on how late-time observations at all wavelengths (radio-through-X-ray) that probe 1) the kinematic and chemical properties of the supernova ejecta and 2) the progenitor star system's mass loss in the terminal phases preceding the explosion, have often been critical in understanding the nature of seemingly unusual events.
NASA Astrophysics Data System (ADS)
Fakhouri, Hannah Kathleen
In Part I we introduce the method and results of the Twin Supernova analysis. This novel approach to Type Ia supernova standardization is currently only possible with spectrophotometric timeseries observations from the Nearby Supernova Factory. As Chapters 1 through 4 will explore, we select an ideal subset of supernovae, find pairs whose features match well in flux at all wavelengths and times, and test their dispersion in brightness. The analysis is completed in a blinded fashion, ensuring that we are not tuning our results. What we find is that twin supernovae do indeed have a small brightness dispersion. Part II shows two additional analyses related to the standardization of Type Ia supernovae. In Chapter 5 we present a check on the results of Bailey et al. [2009]. Literature supernovae with spectra near maximum light were tested to see how well their magnitudes could be standardized using the flux ratio method of Bailey et al [2009]. Chapter 6 shows a study with data from the Nearby Supernova Factory. Using only the spectrophotometric observations near maximum light, we calculate monochromatic Hubble Diagram residuals for each supernova. Those residuals are then corrected using a flux ratio, similar to Bailey et al. [2009] to test the standardization possibilities using only near-maximum observations.
How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.
Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less
How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...
2018-04-19
Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
The Sloan Digital Sky Survey-II: Photometry and Supernova Ia Light Curves from the 2005 Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holtzman, Jon A.; /New Mexico State U.; Marriner, John
2010-08-26
We present ugriz light curves for 146 spectroscopically confirmed or spectroscopically probable Type Ia supernovae from the 2005 season of the SDSS-II Supernova survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that supernova brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique thatmore » demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.« less
NASA Astrophysics Data System (ADS)
Shahbazian, R. K.; Borngen, F.
1984-09-01
A supernova near the galaxy Zw1 16.7+1.57, has been found on the maps of the Palomar Observatory. The eye estimation of photographic and red magnitudes gives: mpg = 18.3, mr = 18.6. The blue colour and the supposed luminosity (Mpg = -17.2) of the object suggest that it is of type II near the maximum.
Minkowski, Rudolph Leo Bernhard (1895-1976)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Born in Strassburg, Germany, worked on atomic spectroscopy at Hamburg and had to flee the Nazi persecution, joined WALTER BAADE on the Mount Wilson Observatory staff, where he began to apply spectroscopy to astronomy. He investigated nebulae, including supernova remnants, especially the Crab nebula. He classified supernovae into Types I and II, leading to their identification as two similar implo...
Late formation of silicon carbide in type II supernovae
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua
2018-01-01
We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119
A unified model of supernova driven by magnetic monopoles
NASA Astrophysics Data System (ADS)
Peng, Qiu-He; Liu, Jing-Jing; Chou, Chih-Kang
2017-12-01
In this paper, we first discuss a series of important but puzzling physical mechanisms concerning the energy source, various kinds of core collapsed supernovae explosion mechanisms during central gravitational collapse in astrophysics. We also discuss the puzzle of possible association of γ -ray burst with gravitational wave perturbation, the heat source for the molten interior of the core of the Earth and finally the puzzling problem of the cooling of white dwarfs. We then make use of the estimations for the space flux of magnetic monopoles (hereafter MMs) and nucleon decay induced by MMs (called the Rubakov-Callen (RC) effect) to obtain the luminosity due to the RC effect. In terms of the formula for this RC luminosity, we present a unified treatment for the heat source of the Earth's core, the energy source for the white dwarf interior, various kinds of core collapsed supernovae (Type II Supernova (SNII), Type Ib Supernova (SNIb), Type Ic Supernova (SNIc), Super luminous supernova (SLSN)), and the production mechanism for γ -ray burst. This unified model can also be used to reasonably explain the possible association of the short γ -ray burst detected by the Fermi γ -ray Burst Monitoring Satellite (GBM) with the LIGO gravitational wave event GW150914 in September 2015.
LINE IDENTIFICATIONS OF TYPE I SUPERNOVAE: ON THE DETECTION OF Si II FOR THESE HYDROGEN-POOR EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrent, J. T.; Milisavljevic, D.; Soderberg, A. M.
2016-03-20
Here we revisit line identifications of type I supernovae (SNe I) and highlight trace amounts of unburned hydrogen as an important free parameter for the composition of the progenitor. Most one-dimensional stripped-envelope models of supernovae indicate that observed features near 6000–6400 Å in type I spectra are due to more than Si ii λ6355. However, while an interpretation of conspicuous Si ii λ6355 can approximate 6150 Å absorption features for all SNe Ia during the first month of free expansion, similar identifications applied to 6250 Å features of SNe Ib and Ic have not been as successful. When the corresponding synthetic spectra aremore » compared with high-quality timeseries observations, the computed spectra are frequently too blue in wavelength. Some improvement can be achieved with Fe ii lines that contribute redward of 6150 Å; however, the computed spectra either remain too blue or the spectrum only reaches a fair agreement when the rise-time to peak brightness of the model conflicts with observations by a factor of two. This degree of disagreement brings into question the proposed explosion scenario. Similarly, a detection of strong Si ii λ6355 in the spectra of broadlined Ic and super-luminous events of type I/R is less convincing despite numerous model spectra used to show otherwise. Alternatively, we suggest 6000–6400 Å features are possibly influenced by either trace amounts of hydrogen or blueshifted absorption and emission in Hα, the latter being an effect which is frequently observed in the spectra of hydrogen-rich, SNe II.« less
Oxygen Issue in Core Collapse Supernovae
NASA Astrophysics Data System (ADS)
Elmhamdi, A.
2011-06-01
We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.
PTF discovers and follows-up nearby, young, Type II supernova
NASA Astrophysics Data System (ADS)
Kasliwal, M. M.; Quimby, R. M.; Ofek, E. O.; Kulkarni, S. R.; Gal-Yam, A.; Arcavi, I.; Green, Y.; Walker, E.; Mazzali, P.; Nugent, P. E.; Poznanski, D.; Howell, D. A.; Dilday, B.; Fox, D. B.
2010-09-01
On UT 2010 Sep 15.243, the Palomar Transient Factory discovered an optical transient, PTF10vdl at RA(J2000) = 23:05:49.001 and DEC(J2000)=03:31:20.50 near NGC 7483. We obtained Target Of Opportunity spectra with Gemini-S/GMOS (PI Kasliwal) on Sep 16.29. The spectrum was extremely blue (f_nu proportional to nu^4.5) and nearly featureless. We further obtained a spectrum with the TNG/DOLORES (PI Walker) on Sep 17.40 and P-Cygni profiles of four Balmer lines were clearly visible, consistent with the redshift of NGC 7483, suggesting this is a Type II supernova.
PSN J02455988-0734270 in NGC 1084 is a young type II-P SN
NASA Astrophysics Data System (ADS)
Childress, M.; Scalzo, R.; Yuan, F.; Schmidt, B.
2012-08-01
We report the spectroscopic classification of the optical transient PSN J02455988-0734270 in NGC 1084 (disc. 2012-08-11.039 by B. Monard) based on an optical spectrum taken with the Wide Field Spectrograph (WiFeS - Dopita et al., 2007, ApSS, 310, 255) on the ANU 2.3m telescope at Siding Spring Observatory, NSW Australia, using the B3000/R3000 gratings (3600-10000, 1A resolution). The transient spectrum was compared to supernova spectral templates using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) indicating it to be a supernova of type II-P at a very young age, perhaps only a few days after explosion.
New selection effect in statistical investigations of supernova remnants
NASA Astrophysics Data System (ADS)
Allakhverdiev, A. O.; Guseinov, O. Kh.; Kasumov, F. K.
1986-01-01
The influence of H II regions on the parameters of supernova remnants (SNR) is investigated. It has been shown that the projection of such regions on the SNRs leads to: a) local changes of morphological structure of young shell-type SNRs and b) considerable distortions of integral parameters of evolved shell-type SNRs (with D > 10 pc) and plerions, up to their complete undetectability on the background of classical and gigantic H II regions. A new selection effect, in fact, arises from these factors connected with additional limitations made by the real structure of the interstellar medium on the statistical investigations of SNRs. The influence of this effect on the statistical completeness of objects has been estimated.
The Type IIP SN 2005ay: An Extensive Study From UltraViolet To Near-IR
NASA Astrophysics Data System (ADS)
Bufano, F. M.; Turatto, M.; Zampieri, L.; Gal-Yam, A.
2006-08-01
Several supernova types are thought to explode via the gravitational collapse of the core of massive stars at the end of their lifetimes. The great observational diversity has not been fully understood even if it clearly involves the progenitor masses and configurations at the time of explosion. These Supernovae, called Core Collapse Supernovae (CC SNe), are expected to dominate the counts of SNe observed at high redshifts and to be the only observable probe of the first generation stars (Pop III). Recently indicated as reliable distance indicators (Hamuy 02, Pastorello `03), CC SNe are objects of great interest but significantly less studied in comparison with the Termonuclear ones. With the aim to understand better the reasons of the heterogeneous behaviour , we have started an extensive study of the properties of SN II with different observational features (luminosity, velocity, etc..). Here we present the last results on our first observed target, SN2005ay, a Type IIP supernova observed in an extended way from the Ultraviolet wavelengths, provided by the GALEX , to the Optical and near-IR , obtained with IISP (Italian Intensive Supernova Program).
Bolometric Light Curves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, E.
2017-04-01
We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
Bolometric Lightcurves of Peculiar Type II-P Supernovae
NASA Astrophysics Data System (ADS)
Lusk, Jeremy A.; Baron, Edward A.
2017-01-01
We examine the bolometric lightcurves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au and 2009E) which are thought to originate from blue supergiant progenitors using a new python package named SuperBoL. With this code, we calculate SNe lightcurves using three different techniques common in the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the lightcurves calculated by SuperBoL along with previously published lightcurves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction lightcurves largely agree with previously published lightcurves, but with what we believe to be more robust error calculations, with 0.2 ≤ δL/L ≤ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric lightcurves from observed sets of broad-band light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.
NASA Astrophysics Data System (ADS)
Baron, Edward
"Interacting supernovae" are poorly understood astronomical events with great potential for expanding our understanding of how stars evolve and die, and could provide important clues about the early formation of large-scale structures such as galaxies in the universe. Interacting supernovae occur when a star explodes within a dense cloud of material shed from the star in the course of its evolution. The resulting violent interaction between the expanding supernova explosion and the cloud of circumstellar material can lead to an enormously bright visual display --- indeed, many of the brightest supernovae ever recorded are thought to arise from circumstellar interaction. In order to understand the properties of the progenitor star and the details of the circumstellar interaction, there is a need for theoretical models of interacting supernovae. These simulated computer spectra can be directly compared to the spectra observed by telescopes. These models allow us to probe the physical circumstances that underlie the observations. The spectra of interacting supernovae are dominated by strong, narrow emission lines of light elements such as hydrogen and helium. These narrow lines give Type IIn supernovae their designation. Similarly, objects of Type Ian, Ibn, Icn, and IIn are somewhat distinct, but are all defined by the narrow emission lines that result from the interaction of their expanding envelopes with their surroundings. The photosphere in these supernovae is formed in the material accreted during the coasting phase, and most of the luminosity has its origin from the conversion of kinetic explosion energy into luminosity. Both thermonuclear (Type Ia) and core-collapse (Types Ib/Ic and II) supernovae may be the inner engine. In fact, several Type IIn supernovae at early times have later been classified as Type Ia, Type Ib/c, or Type II as their spectra reveal more details about the nature of the central explosion. As a result of the dominance of the interaction, models of interacting supernovae must take into account descriptions of the hydrodynamical, ionization, and light fronts: a full radiation-hydrodynamical problem. The low densities imply strong departures from thermodynamic equilibrium and, thus, demand a non-LTE treatment in the radiative transfer calculation. We propose a collaboration between the University of Oklahoma (OU) and Florida State University (FSU) to calculate hydrodynamical models, light curves, and NLTE spectra of circumstellar interacting supernovae. We will parameterize the explosion of a massive star, study the hydrodynamical impact onto a circumstellar medium and calculate light curves and spectra. Direct comparison with observed supernovae with give us detailed information on the progenitor star, its mass loss history, and the nature of binary stellar evolution. We will calculate explosion models for some of the stellar structures and the ongoing interaction with the circumstellar material using our radiation hydro code HYDRA and NLTE generalized model atmospheres code PHOENIX. We intend to focus on the physics of interacting supernovae, going beyond the regime where self-similar solutions and phenomenological approaches are valid. This will limit the parameter space that needs to be examined, while still allowing for direct comparison with observations. Since many interacting supernovae are extremely bright, they can be seen at the highest redshifts and are good probes of the darkages. These supernovae will be well observed by upcoming NASA mission JWST as well as ground based surveys such as LSST. The tools for this work are in place: FSU PI Peter Hoeflich has been developing and using the hydrodynamic code HYDRA for over two decades and PI Eddie Baron (OU) has been developing the generalized stellar atmosphere code PHOENIX over the same time period. Baron and Hoeflich have a good working relationship and have cross-compared our codes.
Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
NASA Astrophysics Data System (ADS)
Samland, M.; Hensler, G.; Theis, Ch.
1997-02-01
Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
The rise-time of Type II supernovae
NASA Astrophysics Data System (ADS)
González-Gaitán, S.; Tominaga, N.; Molina, J.; Galbany, L.; Bufano, F.; Anderson, J. P.; Gutierrez, C.; Förster, F.; Pignata, G.; Bersten, M.; Howell, D. A.; Sullivan, M.; Carlberg, R.; de Jaeger, T.; Hamuy, M.; Baklanov, P. V.; Blinnikov, S. I.
2015-08-01
We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak & Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.
The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am
NASA Astrophysics Data System (ADS)
Tartaglia, L.; Sand, D. J.; Valenti, S.; Wyatt, S.; Anderson, J. P.; Arcavi, I.; Ashall, C.; Botticella, M. T.; Cartier, R.; Chen, T.-W.; Cikota, A.; Coulter, D.; Della Valle, M.; Foley, R. J.; Gal-Yam, A.; Galbany, L.; Gall, C.; Haislip, J. B.; Harmanen, J.; Hosseinzadeh, G.; Howell, D. A.; Hsiao, E. Y.; Inserra, C.; Jha, S. W.; Kankare, E.; Kilpatrick, C. D.; Kouprianov, V. V.; Kuncarayakti, H.; Maccarone, T. J.; Maguire, K.; Mattila, S.; Mazzali, P. A.; McCully, C.; Melandri, A.; Morrell, N.; Phillips, M. M.; Pignata, G.; Piro, A. L.; Prentice, S.; Reichart, D. E.; Rojas-Bravo, C.; Smartt, S. J.; Smith, K. W.; Sollerman, J.; Stritzinger, M. D.; Sullivan, M.; Taddia, F.; Young, D. R.
2018-01-01
We present our analysis of the Type II supernova DLT16am (SN 2016ija). The object was discovered during the ongoing D< 40 {Mpc} (DLT40) one-day cadence supernova search at r∼ 20.1 {mag} in the “edge-on” nearby (D=20.0+/- 4.0 {Mpc}) galaxy NGC 1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extinguished transient, with E(B-V)=1.95+/- 0.15 {mag}, consistent with a standard extinction law with R V = 3.1 and a bright ({M}V=-18.48+/- 0.77 {mag}) absolute peak magnitude. A comparison of the photometric features with those of large samples of SNe II reveals a fast rise for the derived luminosity and a relatively short plateau phase, with a slope of {S}50V=0.84+/- 0.04 {mag}/50 {days}, consistent with the photometric properties typical of those of fast-declining SNe II. Despite the large uncertainties on the distance and the extinction in the direction of DLT16am, the measured photospheric expansion velocity and the derived absolute V-band magnitude at ∼ 50 {days} after the explosion match the existing luminosity–velocity relation for SNe II. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Deep Recurrent Neural Networks for Supernovae Classification
NASA Astrophysics Data System (ADS)
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Search for neutrinos from core-collapse supernova from the global network of detectors
NASA Astrophysics Data System (ADS)
Habig, Alec; Snews working Group
2010-01-01
The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the ~hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.
NASA Astrophysics Data System (ADS)
Bartel, N.
2009-08-01
We review VLBI observations of supernovae over the last quarter century and discuss the prospect of imaging future supernovae with space VLBI in the context of VSOP-2. From thousands of discovered supernovae, most of them at cosmological distances, ˜50 have been detected at radio wavelengths, most of them in relatively nearby galaxies. All of the radio supernovae are Type II or Ib/c, which originate from the explosion of massive progenitor stars. Of these, 12 were observed with VLBI and four of them, SN 1979C, SN 1986J, SN 1993J, and SN 1987A, could be imaged in detail, the former three with VLBI. In addition, supernovae or young supernova remnants were discovered at radio wavelengths in highly dust-obscured galaxies, such as M82, Arp 299, and Arp 220, and some of them could also be imaged in detail. Four of the supernovae so far observed were sufficiently bright to be detectable with VSOP-2. With VSOP-2 the expansion of supernovae can be monitored and investigated with unsurpassed angular resolution, starting as early as the time of the supernova's transition from its opaque to transparent stage. Such studies can reveal, in a movie, the aftermath of a supernova explosion shortly after shock break out.
Walter Baade, Fritz Zwicky, and Rudolph Minkowski's Early Supernova Research, 1927 - 1973
NASA Astrophysics Data System (ADS)
Osterbrock, D. E.
1999-12-01
Long before he ``discovered" the two stellar populations, Walter Baade was a pioneer in research on supernovae and their remnants. In 1927, while still in Germany, Baade emphasized what he called ``Hauptnovae" (chief novae) as highly luminous, potential distance indicators. He joined the Mount Wilson staff in 1931, bringing the ``secret" of the Schmidt camera with him, and encouraged Fritz Zwicky to carry out a supernova search with one at Palomar. Baade and Zwicky used the term ``supernova" in their 1933 joint paper. Zwicky began a systematic search in 1936, and Baade followed up with the 100-in reflector to derive light curves. He confirmed that Tycho's ``nova" of 1572 and the Crab nebula had been supernovae in our Galaxy. Baade advised N. U. Mayall, at Lick, on his spectroscopic study of the Crab nebula. In 1933, after Hitler came to power, Rudolph Minkowski had to leave Germany. Baade managed to get him a Mount Wilson staff position. Minkowski then did the spectroscopic observations of supernovae, beginning in 1937. Within a few years he and Baade were able to distinguish type I and II supernovae. Baade's further work on supernovae included historical research in Latin, Italian, and German, as well as filter photography. He searched hard for a remnant of SN 1885 in M 31, but never succeeded in finding it. After World War II the Crab nebula was found to be a strong radio source, and Baade and Minkowski used the 200-in to identify other supernova remnants, beginning with Cas A. Baade collaborated closely with Jan Oort and his student, Lo Woltjer, in their studies of the Crab nebula. After Baade retired in 1958, Minkowski continued supernova research for more than a decade; one of his favorite objects was the expanding Cygnus Loop.
Broad-line Type Ic supernova SN 2014ad
NASA Astrophysics Data System (ADS)
Sahu, D. K.; Anupama, G. C.; Chakradhari, N. K.; Srivastav, S.; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi
2018-04-01
We present optical and ultraviolet photometry and low-resolution optical spectroscopy of the broad-line Type Ic supernova SN 2014ad in the galaxy PGC 37625 (Mrk 1309), covering the evolution of the supernova during -5 to +87 d with respect to the date of maximum in the B band. A late-phase spectrum obtained at +340 d is also presented. With an absolute V-band magnitude at peak of MV = -18.86 ± 0.23 mag, SN 2014ad is fainter than supernovae associated with gamma ray bursts (GRBs), and brighter than most of the normal and broad-line Type Ic supernovae without an associated GRB. The spectral evolution indicates that the expansion velocity of the ejecta, as measured using the Si II line, is as high as ˜33 500 km s-1 around maximum, while during the post-maximum phase it settles at ˜15 000 km s-1. The expansion velocity of SN 2014ad is higher than that of all other well-observed broad-line Type Ic supernovae except for the GRB-associated SN 2010bh. The explosion parameters, determined by applying Arnett's analytical light-curve model to the observed bolometric light-curve, indicate that it was an energetic explosion with a kinetic energy of ˜(1 ± 0.3) × 1052 erg and a total ejected mass of ˜(3.3 ± 0.8) M⊙, and that ˜0.24 M⊙ of 56Ni was synthesized in the explosion. The metallicity of the host galaxy near the supernova region is estimated to be ˜0.5 Z⊙.
Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443
NASA Astrophysics Data System (ADS)
Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.
2011-01-01
We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.
A compact circumstellar shell as the source of high-velocity features in SN 2011fe
NASA Astrophysics Data System (ADS)
Mulligan, Brian W.; Wheeler, J. Craig
2018-05-01
High-velocity features (HVFs), especially of Ca II, are frequently seen in Type Ia supernova observed prior to B-band maximum (Bmax). These HVFs evolve in velocity from more than 25 000 km s-1, in the days after first light, to about 18 000 km s-1 near Bmax. To recreate the evolution of the Ca II near-infrared triplet (CaNIR) HVFs in SN 2011fe, we consider the interaction between a model Type Ia supernova and compact circumstellar shells with masses between 0.003 and 0.012 M⊙. We fit the observed CaNIR feature using synthetic spectra generated from the models using SYN++. The CaNIR feature is better explained by the supernova model interacting with a shell than the model without a shell, with a shell of mass 0.005 M⊙ tending to be better fitting than the other shells. The evolution of the optical depth of CaNIR suggests that the ionization state of calcium within the ejecta and shell is not constant. We discuss the method used to measure the observed velocity of CaNIR and other features and conclude that HVFs or other components can be falsely identified. We briefly discuss the possible origin of the shells and the implications for the progenitor system of the supernova.
Confined dense circumstellar material surrounding a regular type II supernova
Yaron, O.; Perley, D. A.; Gal-Yam, A.; ...
2017-02-13
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less
Supernova Photometric Lightcurve Classification
NASA Astrophysics Data System (ADS)
Zaidi, Tayeb; Narayan, Gautham
2016-01-01
This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).
A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls
NASA Astrophysics Data System (ADS)
Dessart, Luc
2018-02-01
Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler-broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and field strength of 7 × 1013 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M⊙, kinetic energy of 1.32 × 1051 erg, 0.077 M⊙ of 56Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of ‑18 mag in the R band, the blue optical color, and the broad H I lines for 600 d. The non-extreme magnetar properties, combined with the standard Type II SN ejecta properties, offer an interesting alternative to the pair-unstable super-massive star model recently proposed, which involves a highly energetic and super-massive ejecta. Hence, such Type II SLSNe may differ from standard Type II SNe exclusively through the influence of a magnetar.
NASA Astrophysics Data System (ADS)
Shukla, Hemant; Bonissent, Alain
2017-04-01
We present the parameterized simulation of an integral-field unit (IFU) slicer spectrograph and its applications in spectroscopic studies, namely, for probing dark energy with type Ia supernovae. The simulation suite is called the fast-slicer IFU simulator (FISim). The data flow of FISim realistically models the optics of the IFU along with the propagation effects, including cosmological, zodiacal, instrumentation and detector effects. FISim simulates the spectrum extraction by computing the error matrix on the extracted spectrum. The applications for Type Ia supernova spectroscopy are used to establish the efficacy of the simulator in exploring the wider parametric space, in order to optimize the science and mission requirements. The input spectral models utilize the observables such as the optical depth and velocity of the Si II absorption feature in the supernova spectrum as the measured parameters for various studies. Using FISim, we introduce a mechanism for preserving the complete state of a system, called the partial p/partial f matrix, which allows for compression, reconstruction and spectrum extraction, we introduce a novel and efficient method for spectrum extraction, called super-optimal spectrum extraction, and we conduct various studies such as the optimal point spread function, optimal resolution, parameter estimation, etc. We demonstrate that for space-based telescopes, the optimal resolution lies in the region near R ˜ 117 for read noise of 1 e- and 7 e- using a 400 km s-1 error threshold on the Si II velocity.
The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela
NASA Technical Reports Server (NTRS)
Chen, Wan; Gehrels, Neil
1999-01-01
We show that (1) the newly discovered supernova remnant (SNR) GROJ0852-4642/RXJ0852.0-4622 was created by a core-collapse supernova of a massive star and (2) the same supernova event that produced the Ti-44 detected by COMPTEL from this source is probably also responsible for a large fraction of the observed Al-26 emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type la supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15 solar mass. Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km/s, as derived naively from X-ray data, a much more energetic supernova is required to have occurred at approximately 250 pc away in a dense environment at the edge of the Gum Nebula. This progenitor has a preferred ejecta mass of less than or equal to 10(Solar Mass), and therefore it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of n(sub H) greater than or equal to 100 cu cm in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL Al-26 emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case in which both Ti-44 and Al-26 are detected from the same young SNR, and together they can be used to select preferred theoretical core-collapse supernova models.
Mapping Calcium Rich Ejecta in Two Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Fesen, Robert
2016-10-01
Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.
Formation of giant H II regions following supernova explosions
NASA Technical Reports Server (NTRS)
Sartori, L.
1971-01-01
The principal optical properties of type I supernovae are summarized. These include the light curve and the spectrum. The spectra consist of broad bands with very little continuum. According to the theory presented, the observed light is principally fluorescence, excited in the medium surrounding the supernova by ultraviolet radiation originating from the explosion. It is proposed that the spectrum that impinges on the fluorescent medium while emission is taking place must fall abruptly across the Lyman edge of He II. Such a filtering action is plausibly provided by a much denser internal region, rich in helium, immediately surrounding the exploding object. This will form a Stromgren sphere during the time the intense UV pulse is passing through it. The dense region also slows down the photons below the edge by Thomson scattering, thereby spreading out the UV pulse in time. Various proposed mechanisms for the production of ionization in the Gum nebula are discussed.
On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind
NASA Astrophysics Data System (ADS)
Cardillo, Martina; Amato, Elena; Blasi, Pasquale
2015-09-01
While from the energetic point of view supernova remnants are viable sources of Galactic cosmic rays (CRs), the issue of whether they can accelerate protons up to a few PeV remains unsolved. Here we discuss particle acceleration at the forward shock of supernovae, and discuss the possibility that the current of escaping particles may excite a non-resonant instability that in turn leads to the formation of resonant modes that confine particles close to the shock, thereby increasing the maximum energy. This mechanism is at work throughout the expansion of the supernova explosion, from the ejecta dominated (ED) phase to the Sedov-Taylor (ST) phase. The transition from one stage to the other reflects in a break in the spectrum of injected particles. Because of their higher explosion rate, we focus our work on type II SNe expanding in the slow, dense wind, produced by the red super-giant progenitor stars. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. The highest energies are reached at even earlier times, when, however, a small fraction of the mass of ejecta has been processed. As a result, the spectrum of accelerated particles shows a break in the slope, at an energy that is the maximum energy (EM) achieved at the beginning of the ST phase. Above this characteristic energy, the spectrum becomes steeper but remains a power law rather than developing an exponential cutoff. An exponential cut is eventually present at much higher energies but it does not have a phenomenological relevance. We show that for parameters typical of type II supernovae, EM for protons can easily reach values in the PeV range, confirming that type II SNRs are the best candidate sources for CRs at the knee. From the point of view of implications of this scenario on the measured particle spectra, we have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any combination of the parameters that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at ∼ 650 TeV, appreciably below the knee in the overall spectrum. On one hand this finding would resolve the problem of reaching very high energies in supernovae, but on the other it would open a critical issue in the transition region between Galactic and extragalactic CRs.
On the nature of hydrogen-rich superluminous supernovae
NASA Astrophysics Data System (ADS)
Inserra, C.; Smartt, S. J.; Gall, E. E. E.; Leloudas, G.; Chen, T.-W.; Schulze, S.; Jerkstrand, A.; Nicholl, M.; Anderson, J. P.; Arcavi, I.; Benetti, S.; Cartier, R. A.; Childress, M.; Della Valle, M.; Flewelling, H.; Fraser, M.; Gal-Yam, A.; Gutiérrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Huber, M.; Kankare, E.; Krühler, T.; Magnier, E. A.; Maguire, K.; McCully, C.; Prajs, S.; Primak, N.; Scalzo, R.; Schmidt, B. P.; Smith, M.; Smith, K. W.; Tucker, B. E.; Valenti, S.; Wilman, M.; Young, D. R.; Yuan, F.
2018-03-01
We present two hydrogen-rich superluminous supernovae (SLSNe): SN2103hx and PS15br. These objects, together with SN2008es, are the only SLSNe showing a distinct, broad H α feature during the photospheric phase; also, they show no sign of strong interaction between fast moving ejecta and circumstellar shells in their early spectra. Despite the fact that the peak luminosity of PS15br is fainter than that of the other two objects, the spectrophotometric evolution is similar to SN2103hx and different from any other supernova in a similar luminosity space. We group all of them as SLSNe II and hence they are distinct from the known class of SLSN IIn. Both transients show a strong, multicomponent H α emission after 200 d past maximum, which we interpret as an indication of the interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to Type II supernovae, although they have much higher luminosity and evolve on slower time-scales. This is qualitatively similar to how SLSNe I compare with normal type Ic, in that the former are brighter and evolve more slowly. We apply a magnetar and an interaction semi-analytical code to fit the light curves of our two objects and SN2008es. The overall observational data set would tend to favour the magnetar, or central engine, model as the source of the peak luminosity, although the clear signature of late-time interaction indicates that interaction can play a role in the luminosity evolution of SLSNe II at some phases.
A giant outburst two years before the core-collapse of a massive star.
Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L
2007-06-14
The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.
Progenitors of low-luminosity Type II-Plateau supernovae
NASA Astrophysics Data System (ADS)
Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli
2018-01-01
The progenitors of low-luminosity Type II-Plateau supernovae (SNe II-P) are believed to be red supergiant (RSG) stars, but there is much disparity in the literature concerning their mass at core collapse and therefore on the main sequence. Here, we model the SN radiation arising from the low-energy explosion of RSG stars of 12, 25 and 27 M⊙ on the main sequence and formed through single star evolution. Despite the narrow range in ejecta kinetic energy (2.5-4.2 × 1050 erg) in our model set, the SN observables from our three models are significantly distinct, reflecting the differences in progenitor structure (e.g. surface radius, H-rich envelope mass and He-core mass). Our higher mass RSG stars give rise to Type II SNe that tend to have bluer colours at early times, a shorter photospheric phase, and a faster declining V-band light curve (LC) more typical of Type II-linear SNe, in conflict with the LC plateau observed for low-luminosity SNe II. The complete fallback of the CO core in the low-energy explosions of our high-mass RSG stars prevents the ejection of any 56Ni (nor any core O or Si), in contrast to low-luminosity SNe II-P, which eject at least 0.001 M⊙ of 56Ni. In contrast to observations, Type II SN models from higher mass RSGs tend to show an H α absorption that remains broad at late times (due to a larger velocity at the base of the H-rich envelope). In agreement with the analyses of pre-explosion photometry, we conclude that low-luminosity SNe II-P likely arise from low-mass rather than high-mass RSG stars.
Mass loss and stellar superwinds
NASA Astrophysics Data System (ADS)
Vink, Jorick S.
2017-09-01
Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
Neutrinos from Choked Jets Accompanied by Type-II Supernovae
NASA Astrophysics Data System (ADS)
He, Hao-Ning; Kusenko, Alexander; Nagataki, Shigehiro; Fan, Yi-Zhong; Wei, Da-Ming
2018-04-01
The origin of the IceCube neutrinos is still an open question. Upper limits from diffuse gamma-ray observations suggest that the neutrino sources are either distant or hidden from gamma-ray observations. It is possible that the neutrinos are produced in jets that are formed in core-collapsing massive stars and fail to break out, the so-called choked jets. We study neutrinos from the jets choked in the hydrogen envelopes of red supergiant stars. Fast photo-meson cooling softens the neutrino spectrum, making it hard to explain the PeV neutrinos observed by IceCube in a one-component scenario, but a two-component model can explain the spectrum. Furthermore, we predict that a newly born jet-driven type-II supernova may be observed to be associated with a neutrino burst detected by IceCube.
The Massive Progenitor of the Type II-linear Supernova 2009kr
NASA Astrophysics Data System (ADS)
Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Boden, Andrew F.; Kasliwal, Mansi M.; Vinkó, József; Cuillandre, Jean-Charles; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Foley, Ryan J.
2010-05-01
We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ~18-24 M sun. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN. Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with generous financial support from the W. M. Keck Foundation.
Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications
DOE R&D Accomplishments Database
Perlmutter, S.; Aldering, G.; Della Valle, M.; Deustua, S.; Ellis, R. S.; Fabbro, S.; Fruchter, A.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I. M.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lidman, C.; McMahon, R. G.; Nugent, P.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.
1997-12-16
The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type la supernovae (SNe la) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3-0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can even distinguish the slowing caused by the gravitational attraction of the universe's mass density {Omega}{sub M} from the effect of a possibly inflationary pressure caused by a cosmological constant {Lambda}. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe la, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.
p-Process Nucleosynthesis inside Supernova-driven Supercritical Accretion Disks
NASA Astrophysics Data System (ADS)
Fujimoto, Shin-ichirou; Hashimoto, Masa-aki; Koike, Osamu; Arai, Kenzo; Matsuba, Ryuichi
2003-03-01
We investigate p-process nucleosynthesis in a supercritical accretion disk around a compact object of 1.4 Msolar, using the self-similar solution of an optically thick advection-dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a newborn compact object. It is found that an appreciable number of p-nuclei are synthesized via the p-process in supernova-driven supercritical accretion disks (SSADs) when the accretion rate m=Mc2/(16LEdd)>105, where LEdd is the Eddington luminosity. Abundance profiles of p-nuclei ejected from SSADs have features similar to those of the oxygen/neon layers in Type II supernovae when the abundance of the fallback gas far from the compact object is that of the oxygen/neon layers in the progenitor. The overall abundance profile is in agreement with that of the solar system. Some p-nuclei, such as Mo, Ru, Sn, and La, are underproduced in the SSADs as in Type II supernovae. If the fallback gas is mixed with a small fraction of protons through Rayleigh-Taylor instability during the explosion, significant amounts of 92Mo are produced inside the SSADs. Isotopes 96Ru and 138La are also produced when the fallback gas contains abundant protons, although the overall abundance profile of p-nuclei is rather different from that of the solar system. The p-process nucleosynthesis in SSADs contributes to the chemical evolution of p-nuclei, in particular 92Mo, if several percent of the fallback matter are ejected via jets and/or winds.
On the association between core-collapse supernovae and H ii regions
NASA Astrophysics Data System (ADS)
Crowther, Paul A.
2013-01-01
Previous studies of the location of core-collapse supernovae (ccSNe) in their host galaxies have variously claimed an association with H ii regions; no association or an association only with hydrogen-deficient ccSNe. Here, we examine the immediate environments of 39 ccSNe whose positions are well known in nearby (≤15 Mpc), low-inclination (≤65°) hosts using mostly archival, continuum-subtracted Hα ground-based imaging. We find that 11 out of 29 hydrogen-rich ccSNe are spatially associated with H ii regions (38 ± 11 per cent), versus 7 out of 10 hydrogen-poor ccSNe (70 ± 26 per cent). Similar results from Anderson et al. led to an interpretation that the progenitors of Type Ib/c ccSNe are more massive than those of Type II ccSNe. Here, we quantify the luminosities of H ii region either coincident with or nearby to the ccSNe. Characteristic nebulae are long-lived (˜20 Myr) giant H ii regions rather than short-lived (˜4 Myr) isolated, compact H ii regions. Therefore, the absence of an H ii region from most Type II ccSNe merely reflects the longer lifetime of stars with ⪉12 M⊙ than giant H ii regions. Conversely, the association of an H ii region with most Type Ib/c ccSNe is due to the shorter lifetime of stars with >12 M⊙ stars than the duty cycle of giant H ii regions. Therefore, we conclude that the observed association between certain ccSNe and H ii provides only weak constraints upon their progenitor masses. Nevertheless, we do favour lower mass progenitors for two Type Ib/c ccSNe that lack associated nebular emission, a host cluster or a nearby giant H ii region. Finally, we also reconsider the association between long gamma-ray bursts and the peak continuum light from their (mostly) dwarf hosts, and conclude that this is suggestive of very high mass progenitors, in common with previous studies.
NASA Technical Reports Server (NTRS)
Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.
2014-01-01
We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.
NASA Astrophysics Data System (ADS)
Guo, Rachel; Xie, Justin Long; Kirby, Evan N.
2017-01-01
Through the fusion of nucleons to produce elements heavier than hydrogen and helium, stellar nucleosynthesis produces most of the elements in the universe. Such is the case in a supernova explosion, which creates most of the elements on the periodic table—including iron-peak elements, atomic numbers 21 through 30—through nucleosynthesis and ejects them into the interstellar medium. In this study, we determine the best theoretical supernova model appropriate for the stars in the dwarf spheroidal galaxies Sculptor, Fornax, Ursa Minor, and Leo II by calculating the abundances of iron-peak elements in these stars. To determine iron-peak elemental abundances, we compare synthesized spectra with observed spectra from medium-resolution spectroscopy and determine the best-fitting spectrum by way of a chi-squared minimization. Through inspecting the relationship between the iron-peak element abundances and the abundance of iron itself and by comparing them to previously hypothesized supernova model theories, we discover that the near-Chandrasekhar mass “n1” model, as predicted by Seitenzahl et al., most accurately represents the trends and patterns within our data, presenting new insight into Type Ia supernovae mechanisms within the Milky Way and beyond.
The Influence of Host Galaxies in Type Ia Supernova Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We studymore » the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.« less
The Influence of Host Galaxies in Type Ia Supernova Cosmology
NASA Astrophysics Data System (ADS)
Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.
2017-10-01
We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.
Type II supernovae in low luminosity host galaxies
NASA Astrophysics Data System (ADS)
Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.
2018-06-01
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.
2010-01-01
We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that amore » single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.« less
NASA Technical Reports Server (NTRS)
Hughes, John P.; Hayashi, Ichizo; Helfand, David; Hwang, Una; Itoh, Masayuki; Kirshner, Robert; Koyama, Katsuji; Markert, Thomas; Tsunemi, Hiroshi; Woo, Jonathan
1995-01-01
We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K alpha emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based on these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.
The direct identification of core-collapse supernova progenitors.
Van Dyk, Schuyler D
2017-10-28
To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
Near-Infrared Spectra of Type Ia Supernovae
NASA Technical Reports Server (NTRS)
Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.
2003-01-01
We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or merger models. Differences in the spectra of the individual SNe Ia demonstrate the variety of these events.
The Type Ia supernova 1989B in NGC 3627 (M66)
NASA Technical Reports Server (NTRS)
Wells, Lisa A.; Phillips, M. M.; Suntzeff, Nicholas B.; Heathcote, S. R.; Hamuy, Mario; Navarrete, M.; Fernandez, M.; Weller, W. G.; Schommer, R. A.; Kirshner, Robert P.
1994-01-01
We report extensive optical photometry and spectroscopy of the Type Ia supernova 1989B. Maximum light in B occurred approximately seven days after discovery on JD 2447565.3 +/- 1.0 (1989 February 7.8 +/- 1.0) at a magnitude of 12.34 +/- 0.05. The UBV light curves of this supernova were very similar to those of other well observed Type Ia events such as SN 1981B and SN 1980N. From a comparison of the UBVRIJHK photometry, we derive an extinction for SN 1989B of E(B-V) = 0.37 +/- 0.03 mags relative to the unobscured Type Ia SN 1980N. The properties of the dust responsible for the reddening of SN 1989B appear to have been similar to those of normal dust in the Milky Way. In particular, we find no evidence for an unusually low value of the ratio of the total to selective absorption. We derive a distance modulus of delta mu(sub 0) = -1.62 +/- 0.03 mag relative to the Type Ia SN 1980N. We present optical spectra which provide essentially continuous coverage of the spectral evolution of SN 1989B over the first month following B maximum. These data show the transition from the maximum-light spectrum, in which lines of elements such as Ca, Si, S, Mg, and O are most prominent, to the Fe-dominated spectrum observed a few weeks after maximum. This transition occurred quite smoothly over a two-week period following B maximum. Comparison of the spectra of SN 1989B with data for two other well observed Type Ia supernovae -- 1981B and 1986G -- reveals subtle differences in the relative strengths of the S II and Si II absorption lines at maximum light. However, these differences disappeared within a week or so after maximum with the onset of the Fe-dominated phase.
Mass loss and stellar superwinds.
Vink, Jorick S
2017-10-28
Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
SN 1994I in M51 and the nature of type Ibc supernovae
NASA Technical Reports Server (NTRS)
Wheeler, J. C.; Harkness, R. P.; Clocchiatti, A.; Benetti, S.; Brotherton, M. S.; Depoy, D. L.; Elias, J.
1994-01-01
Early spectra of SN 1994I in M51 (NGC 5194) are presented along with arguments that is a member of the class of helium-poor Type Ic supernovae. The issue of H and He in the spectra of Type Ib and Ic events is reexamined with the conclusion that Type Ib eject substantially less H than even transition events like SN 1993J and that Type Ic eject substantially less He than Type Ib and their optical spectra are consistent with no H or He. Type Ic show and absorption of the Si II lambda 6355 blend that characterizes Type Ia. This feature requires only a solar abundance of Si. Some Type Ic show an absorption that is probably C II lambda 6580. IR spectra are presented of SN 1990W which show the line of He I lambda 10830. The strength of this feature and the rather slow decay of the late time light curve suggest that this event could be better classified as a Type Ib. Even if trace abundances of H are present in Type Ib and of He in Type Ic the spectral differences still imply a distinctly different evolution for the progenitors of Type Ib from Type Ic and events like SN 1993J.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.C.; Aldering, G.; Antilogus, P.
2006-10-12
We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,includingmore » depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.« less
NASA Astrophysics Data System (ADS)
Maguire, K.; Sim, S. A.; Shingles, L.; Spyromilio, J.; Jerkstrand, A.; Sullivan, M.; Chen, T.-W.; Cartier, R.; Dimitriadis, G.; Frohmaier, C.; Galbany, L.; Gutiérrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Rudy, R.; Sollerman, J.
2018-03-01
The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of the underlying physics of their explosions. We investigate the late-time optical and near-infrared spectra of seven SNe Ia obtained at the VLT with XShooter at >200 d after explosion. At these epochs, the inner Fe-rich ejecta can be studied. We use a line-fitting analysis to determine the relative line fluxes, velocity shifts, and line widths of prominent features contributing to the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni II] emission lines in the ˜7000-7500 Å region of the spectrum, we find that the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation explosion models, as well as sub-Chandrasekhar mass explosions that have metallicity values above solar. The mean measured Ni/Fe abundance of our sample is consistent with the solar value. The more highly ionised [Co III] emission lines are found to be more centrally located in the ejecta and have broader lines than the [Fe II] and [Ni II] features. Our analysis also strengthens previous results that SNe Ia with higher Si II velocities at maximum light preferentially display blueshifted [Fe II] 7155 Å lines at late times. Our combined results lead us to speculate that the majority of normal SN Ia explosions produce ejecta distributions that deviate significantly from spherical symmetry.
The past, present and future supernova threat to Earth's biosphere
NASA Astrophysics Data System (ADS)
Beech, Martin
2011-12-01
A brief review of the threat posed to Earth's biosphere via near-by supernova detonations is presented. The expected radiation dosage, cosmic ray flux and expanding blast wave collision effects are considered, and it is argued that a typical supernova must be closer than ˜10-pc before any appreciable and potentially harmful atmosphere/biosphere effects are likely to occur. In contrast, the critical distance for Gamma-ray bursts is of order 1-kpc. In spite of the high energy effects potentially involved, the geological record provides no clear-cut evidence for any historic supernova induced mass extinctions and/or strong climate change episodes. This, however, is mostly a reflection of their being numerous possible (terrestrial and astronomical) forcing mechanisms acting upon the biosphere and the difficulty of distinguishing between competing scenarios. Key to resolving this situation, it is suggested, is the development of supernova specific extinction and climate change linked ecological models. Moving to the future, we estimate that over the remaining lifetime of the biosphere (˜2 Gyr) the Earth might experience 1 GRB and 20 supernova detonations within their respective harmful threat ranges. There are currently at least 12 potential pre-supernova systems within 1-kpc of the Sun. Of these systems IK Pegasi is the closest Type Ia pre-supernova candidate and Betelgeuse is the closest potential Type II supernova candidate. We review in some detail the past, present and future behavior of these two systems. Developing a detailed evolutionary model we find that IK Pegasi will likely not detonate until some 1.9 billion years hence, and that it affords absolutely no threat to Earth's biosphere. Betelgeuse is the closest, reasonably well understood, pre-supernova candidate to the Sun at the present epoch, and may undergo detonation any time within the next several million years. The stand-off distance of Betelgeuse at the time of its detonation is estimated to fall between 150 and 300-pc—again, affording no possible threat to Earth's biosphere. Temporally, the next most likely, close, potential Type Ic supernova to the Sun is the Wolf-Rayet star within the γ 2 Velorum binary system located at least 260-pc away. It is suggested that evidence relating to large-scale astroengineering projects might fruitfully be looked for in those regions located within 10 to 30-pc of any pre-supernova candidate system.
NASA Astrophysics Data System (ADS)
Roederer, Ian
2017-08-01
The copper (Cu, Z = 29) and zinc (Zn, Z = 30) abundances found in late-type stars provide critical constraints on models that predict the yields of massive star supernovae, hypernovae, Type Ia supernovae, and AGB stars, which are essential ingredients in Galactic chemical evolution models. Furthermore, Zn is commonly used to compare the abundance of iron-group elements in the gas phase in high-redshift DLA systems with metallicities in Local Group stars. It is thus important that the observational Cu and Zn abundances in stars are correct. My proposed archive study will address this issue by using archive STIS spectra of 14 stars to provide the first systematic observational tests of non-LTE calculations of Cu and Zn line formation in late-type stars. The non-LTE calculations predict that all LTE [Cu/Fe] abundance ratios presently found in the literature are systematically lower than the true ratios found in stars. The non-LTE calculations for Zn predict that the LTE values in the literature may be systematically overestimated in low-metallicity stars. The LTE abundances of Cu and Zn are derived from Cu I and Zn I lines. The key advance enabled by the use of NUV spectra is the detection of several lines of Cu II and Zn II, which cannot be detected in the optical or infrared. Cu II and Zn II are largely immune to non-LTE effects in the atmospheres of late-type stars. The metallicities of the 14 stars with NUV spectra span -2.6 < [Fe/H] < -0.1, which covers the range of most Cu and Zn abundances reported in the literature. The proposed study will allow me to test the non-LTE calculations and calibrate the stellar abundances.
A Search for High-Energy Gamma-Rays from Supernova SN1987A.
NASA Astrophysics Data System (ADS)
Waldron, Liam Edwin
1992-01-01
The Australian Defence Force Academy (ADFA) balloon -borne gamma-ray astronomy telescope was flown successfully from Alice Springs Australia twice during 1987 and 1988 (flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50 to 500 MeV, from Supernova SN1987A in the Large Magellanic Cloud. The two flights corresponded to day 55 and day 407 respectively of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati Italy, and sensitive to the 10 to 250 KeV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma-rays astrophysical environments and their relation to supernovae and cosmic-rays. A description is then given of the main features of the gamma-ray telescope and its principle of operation, the most important part of the telescope being a spark-chamber used to determine the direction of arrival of incident gamma-rays. Data obtained during each flight was recorded as spark-chamber tacks on photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, are given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from Supernova SN1987A of 2.2 times 10^ {-5} photons cm^{ -2} s^{-1} and 3.4 times 10^{-5} photons cm^{-2} s^ {-1} were obtained for days 55 and 407 of remnant evolution respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with Supernova SN1987A being an atypical Type-II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type -II supernovae.
The CHilean Automatic Supernova sEarch (CHASE)
NASA Astrophysics Data System (ADS)
Pignata, G.; Maza, J.; Hamuy, M.; Antezana, R.; Gonzales, L.
2009-05-01
One of the most important challenges in modern cosmology will be to figure out the origin of the dark energy, to measure its equation of state and the time rate with which it changes (described by parameters w and w'). The measurement of these parameters will require high levels of accuracy in the Supernova (SN) Type Ia distances and various sources of systematic error such as reddening corrections and possible evolution in the SNcharacteristics which could couple with redshift and mimic the cosmological signal of interest. Fortunately, these concerns can be fully addressed through the comprehensive study of SNe in the local (z < 0.05) universe. Although Type II plateau SNe are not as luminous as SNe Ia, they afford two important, independent routes to cosmological distances using the Expanding Photosphere Method and the Standardized Candle Method. To assess the performance of these techniques a nearby sample of Type II SNe is necessary. With the purpose of addressing these issues the Millennium Center for Supernova Studies (MCSS) is teaming up with the Carnegie Supernova Project (CSP) to carry out an optical and near infrared (photometry, spectroscopy and polarimetry) follow up of nearby SNe. Unfortunately, the majority of the SNe observed by the MCSS and the CSP are discovered by searches carried out from the northern hemisphere. This entails a number of observational difficulties, in particular, it reduces the number of SNe for which the follow-up starts at very early epochs. The aim of the CHASE project is to remove this search bias by discovering young Southern SNe that will be extensively observed by the MCSS and the CSP. In the first nine-months of operation, CHASE has discovered two SNe: SN007oc (CBET 1114) and SN007pl (CBET 1130), thus demonstrating the feasibility of the survey.
The Supernova Early Warning System (SNEWS)
NASA Astrophysics Data System (ADS)
Habig, A.; SNEWS Collaboration
2005-05-01
SNEWS is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type-II Supernova. This project exploits the ˜hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert. SNEWS is currently operational and ready, and this poster presents the procedures in use. SNEWS work is supported by NSF collaborative grant #0302166.
Positron Survival in Type II Supernovae
1989-05-01
the fewer number of decays depositing energy within the supernova. The rate of this cooling is unknown because it is uncertain whether a pulsar was...details of the radial mixing may yield more precise results but they should not negate my final result. 50 0. LO ’) C u -4S Cu CdU in~~ in0oi 4l cu CV (U...START OF SHELL LO ***.**A***.. for (z=0; z< 14.5; z=z+1.O) ttl= 0; inikdazsity = shell(z]lOI; dshlsum - shejzllhJ/51; fprinzf(point.* Shell numbe
NASA Astrophysics Data System (ADS)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; Pellin, Michael J.; Rost, Detlef; Savina, Michael R.; Jadhav, Manavi; Kelly, Christopher H.; Gyngard, Frank; Hoppe, Peter; Dauphas, Nicolas
2018-01-01
We used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grains was fortuitous, because only ∼1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. While one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo R.; Vogt, Frédéric P. A.; Terry, Jason P.; Ghavamian, Parviz; Dopita, Michael A.; Ruiter, Ashley J.; Sukhbold, Tuguldur
2018-02-01
We study the optical emission from heavy element ejecta in the oxygen-rich young supernova remnant 1E 0102.2–7219 (1E 0102) in the Small Magellanic Cloud. We have used the Multi-Unit Spectroscopic Explorer optical integral field spectrograph at the Very Large Telescope on Cerro Paranal and the wide field spectrograph (WiFeS) at the ANU 2.3 m telescope at Siding Spring Observatory to obtain deep observations of 1E 0102. Our observations cover the entire extent of the remnant from below 3500 Å to 9350 Å. Our observations unambiguously reveal the presence of fast-moving ejecta emitting in [S II], [S III], [Ar III], and [Cl II]. The sulfur-rich ejecta appear more asymmetrically distributed compared to oxygen or neon, a product of carbon burning. In addition to the forbidden line emission from products of oxygen burning (S, Ar, Cl), we have also discovered Hα and Hβ emission from several knots of low surface brightness, fast-moving ejecta. The presence of fast-moving hydrogen points toward a progenitor that had not entirely shed its hydrogen envelope prior to the supernova. The explosion that gave rise to 1E 0102 is therefore commensurate with a Type IIb supernova.
The expanding photosphere method applied to SN 1992am AT cz = 14 600 km/s
NASA Technical Reports Server (NTRS)
Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, Jose; Filippenko, Alexei V.; Ho, Luis C.; Matheson, Thomas
1994-01-01
We present photometry and spectroscopy of Supernova (SN) 1992am for five months following its discovery by the Calan Cerro-Tololo Inter-American Observatory (CTIO) SN search. These data show SN 1992am to be type II-P, displaying hydrogen in its spectrum and the typical shoulder in its light curve. The photometric data and the distance from our own analysis are used to construct the supernova's bolometric light curve. Using the bolometric light curve, we estimate SN 1992am ejected approximately 0.30 solar mass of Ni-56, an amount four times larger than that of other well studied SNe II. SN 1992am's; host galaxy lies at a redshift of cz = 14 600 km s(exp -1), making it one of the most distant SNe II discovered, and an important application of the Expanding Photsphere Method. Since z = 0.05 is large enough for redshift-dependent effects to matter, we develop the technique to derive luminosity distances with the Expanding Photosphere Method at any redshift, and apply this method to SN 1992am. The derived distance, D = 180(sub -25) (sup +30) Mpc, is independent of all other rungs in the extragalactic distance ladder. The redshift of SN 1992am's host galaxy is sufficiently large that uncertainties due to perturbations in the smooth Hubble flow should be smaller than 10%. The Hubble ratio derived from the distance and redshift of this single object is H(sub 0) = 81(sub -15) (sup +17) km s(exp -1) Mpc(exp -1). In the future, with more of these distant objects, we hope to establish an independent and statistically robust estimate of H(sub 0) based solely on type II supernovae.
ASPHERICITY, INTERACTION, AND DUST IN THE TYPE II-P/II-L SUPERNOVA 2013EJ IN MESSIER 74
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauerhan, Jon C.; Graham, Melissa L.; Filippenko, Alexei V.
2017-01-10
SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multiepoch spectropolarimetry of SN 2013ej during the first 107 days and deep optical spectroscopy and ultraviolet through infrared photometry past ∼800 days. SN 2013ej exhibitsmore » the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy show that asymmetric CSM interaction is ongoing, and the morphology of broad H α emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase. Finally, our latest space-based optical imaging confirms that the late interaction-powered light curve dropped below the stellar progenitor level, confirming the RSG star’s association with the explosion.« less
The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase
NASA Astrophysics Data System (ADS)
Terreran, G.; Jerkstrand, A.; Benetti, S.; Smartt, S. J.; Ochner, P.; Tomasella, L.; Howell, D. A.; Morales-Garoffolo, A.; Harutyunyan, A.; Kankare, E.; Arcavi, I.; Cappellaro, E.; Elias-Rosa, N.; Hosseinzadeh, G.; Kangas, T.; Pastorello, A.; Tartaglia, L.; Turatto, M.; Valenti, S.; Wiggins, P.; Yuan, F.
2016-10-01
We present multiband ultraviolet, optical, and near-infrared photometry, along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission lines of the high ionization species He II/N IV/C IV during the first 2-3 d after explosion, traces of a metal-rich circumstellar material (CSM) probably due to pre-explosion mass-loss events. These disappear by day 9 and the spectral evolution then continues matching that of normal Type II SNe. The post-maximum light curve declines at a rate typical of Type II-L class. The extensive photometric coverage tracks the drop from the photospheric stage and constrains the radioactive tail, with a steeper decline rate than that expected from the 56Co decay if γ-rays are fully trapped by the ejecta. We report the appearance of an unusual feature on the blue side of H α after 100 d, which evolves to appear as a flat spectral feature linking H α and the [O I] doublet. This may be due to interaction of the ejecta with a strongly asymmetric, and possibly bipolar CSM. Finally, we report two deep spectra at ˜190 and 340 d after explosion, the latter being arguably one of the latest spectra for a Type II-L SN. By modelling the spectral region around the [Ca II], we find a supersolar Ni/Fe production. The strength of the [O I] λλ6300,6363 doublet, compared with synthetic nebular spectra, suggests a progenitor with a zero-age main-sequence mass between 15 and 19 M⊙.
How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablativemore » flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.« less
How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Whalen, Daniel J.; Wollenberg, Katharina M. J.; Glover, Simon C. O.; Klessen, Ralf S.
2017-08-01
Metals from Population III (Pop III) supernovae led to the formation of less massive Pop II stars in the early universe, altering the course of evolution of primeval galaxies and cosmological reionization. There are a variety of scenarios in which heavy elements from the first supernovae were taken up into second-generation stars, but cosmological simulations only model them on the largest scales. We present small-scale, high-resolution simulations of the chemical enrichment of a primordial halo by a nearby supernova after partial evaporation by the progenitor star. We find that ejecta from the explosion crash into and mix violently with ablative flows driven off the halo by the star, creating dense, enriched clumps capable of collapsing into Pop II stars. Metals may mix less efficiently with the partially exposed core of the halo, so it might form either Pop III or Pop II stars. Both Pop II and III stars may thus form after the collision if the ejecta do not strip all the gas from the halo. The partial evaporation of the halo prior to the explosion is crucial to its later enrichment by the supernova.
Bolometric Luminosities of Peculiar Type II-P Supernovae: Observational and Theoretical Approaches
NASA Astrophysics Data System (ADS)
Lusk, Jeremy Alexander
2018-01-01
In the three decades since the explosion of SN 1987A, only a handful of other supernovae have been detected which are also thought to originate from blue supergiant progenitors. In this study, we use the five best observed of these supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E) to examine the bolometric properties of the class through observations and theoretical models. Several techniques for taking photometric observations and inferring bolometric luminosities have been used in the literature. Our newly-improved python package SuperBoL implements many of these techniques. The challenge remains that the true bolometric luminosity of the supernova cannot be directly observed. We must turn to theoretical models in order to examine the validity of the different observationally-based techniques. In this work, we make use of the NLTE generalized atmosphere code PHOENIX to produce synthetic spectra of known luminosity which match the observed supernova spectra. Synthetic photometry of these models is then used as input to SuperBoL to test the different observationally-based bolometric luminosity techniques.
Slow-Speed Supernovae from the Palomar Transient Factory: Two Channels
NASA Technical Reports Server (NTRS)
White, Christopher J.; Kasliwal, Mansi M.; Nugent, Peter E.; Gal-Yam, Avishay; Howell, D. Andrew; Sullivan, Mark; Goobar, Ariel; Piro, Anthony L.; Kulkarni, Shrinivas R.; Bloom, Joshua S.;
2014-01-01
Since the discovery of the unusual prototype SN 2002cx, the eponymous class of low-velocity, hydrogen-poor supernovae has grown to include at most another two dozen members identified from several heterogeneous surveys, in some cases ambiguously. Here we present the results of a systematic study of 1077 hydrogen-poor supernovae discovered by the Palomar Transient Factory, leading to nine new members of this peculiar class. Moreover we find there are two distinct subclasses based on their spectroscopic, photometric, and host galaxy properties: The "SN 2002cx-like" supernovae tend to be in later-type or more irregular hosts, have more varied and generally dimmer luminosities, have longer rise times, and lack a Ti II trough when compared to the \\SN 2002es-like" supernovae. None of our objects show helium, and we counter a previous claim of two such events. We also find that these transients comprise 5.6+17 -3:7% (90% confidence) of all SNe Ia, lower compared to earlier estimates. Combining our objects with the literature sample, we propose that these subclasses have two distinct physical origins.
VizieR Online Data Catalog: Berkeley supernova Ia program. II. (Silverman+, 2012)
NASA Astrophysics Data System (ADS)
Silverman, J. M.; Kong, J. J.; Filippenko, A. V.
2013-08-01
In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z<0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. (J/MNRAS/425/1789). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. (10 data files).
Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Quimby, Robert M.; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul M.; Yan, Lin; Bloom, Joshua S.; Cenko, S. Bradley; Cooke, Jeff; Ellis, Richard; Filippenko, Alexei V.; Kasliwal, Mansi M.; Kleiser, Io K. W.; Kulkarni, Shrinivas R.; Matheson, Thomas; Nugent, Peter E.; Pan, Yen-Chen; Silverman, Jeffrey M.; Sternberg, Assaf; Sullivan, Mark; Yaron, Ofer
2018-03-01
Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. We demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral properties of SLSNe-I at different spectral phases. We find that Mn II most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.
Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
Quimby, Robert M.; Cia, Annalisa De; Gal-Yam, Avishay; ...
2018-02-27
Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. Here, we demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral propertiesmore » of SLSNe-I at different spectral phases. We find that Mn ii most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.« less
Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quimby, Robert M.; Cia, Annalisa De; Gal-Yam, Avishay
Most Type I superluminous supernovae (SLSNe-I) reported to date have been identified by their high peak luminosities and spectra lacking obvious signs of hydrogen. Here, we demonstrate that these events can be distinguished from normal-luminosity SNe (including Type Ic events) solely from their spectra over a wide range of light-curve phases. We use this distinction to select 19 SLSNe-I and four possible SLSNe-I from the Palomar Transient Factory archive (including seven previously published objects). We present 127 new spectra of these objects and combine these with 39 previously published spectra, and we use these to discuss the average spectral propertiesmore » of SLSNe-I at different spectral phases. We find that Mn ii most probably contributes to the ultraviolet spectral features after maximum light, and we give a detailed study of the O II features that often characterize the early-time optical spectra of SLSNe-I. We discuss the velocity distribution of O II, finding that for some SLSNe-I this can be confined to a narrow range compared to relatively large systematic velocity shifts. Mg II and Fe II favor higher velocities than O II and C II, and we briefly discuss how this may constrain power-source models. We tentatively group objects by how well they match either SN 2011ke or PTF12dam and discuss the possibility that physically distinct events may have been previously grouped together under the SLSN-I label.« less
NASA Astrophysics Data System (ADS)
Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan
2017-03-01
In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}⊙ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ˜3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ˜30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. In this study, we performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SNmore » 2016coj is a spectroscopically normal SN Ia, but the velocity of Si ii λ6355 around peak brightness (~12,600 kms -1) is a bit higher than that of typical normal SNe. The Si ii λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (M B≈ -18.9 ± 0.2 mag), and it reaches a B-band maximum ~16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na i D absorption lines in our low- and high-resolution spectra. Finally, the spectropolarimetric data exhibit weak polarization in the continuum, but the Si ii line polarization is quite strong (~0.9% ± 0.1%) at peak brightness.« less
Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj
NASA Astrophysics Data System (ADS)
Zheng, WeiKang; Filippenko, Alexei V.; Mauerhan, Jon; Graham, Melissa L.; Yuk, Heechan; Hosseinzadeh, Griffin; Silverman, Jeffrey M.; Rui, Liming; Arbour, Ron; Foley, Ryan J.; Abolfathi, Bela; Abramson, Louis E.; Arcavi, Iair; Barth, Aaron J.; Bennert, Vardha N.; Brandel, Andrew P.; Cooper, Michael C.; Cosens, Maren; Fillingham, Sean P.; Fulton, Benjamin J.; Halevi, Goni; Howell, D. Andrew; Hsyu, Tiffany; Kelly, Patrick L.; Kumar, Sahana; Li, Linyi; Li, Wenxiong; Malkan, Matthew A.; Manzano-King, Christina; McCully, Curtis; Nugent, Peter E.; Pan, Yen-Chen; Pei, Liuyi; Scott, Bryan; Sexton, Remington Oliver; Shivvers, Isaac; Stahl, Benjamin; Treu, Tommaso; Valenti, Stefano; Vogler, H. Alexander; Walsh, Jonelle L.; Wang, Xiaofeng
2017-05-01
The Type Ia supernova (SN Ia) 2016coj in NGC 4125 (redshift z = 0.00452 ± 0.00006) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before B-band maximum). Our first detection (prediscovery) is merely 0.6 ± 0.5 days after the FFLT, making SN 2016coj one of the earliest known detections of an SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but the velocity of Si II λ6355 around peak brightness (˜12,600 {km} {{{s}}}-1) is a bit higher than that of typical normal SNe. The Si II λ6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity ({M}B≈ -18.9+/- 0.2 mag), and it reaches a B-band maximum ˜16.0 days after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na I D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the Si II line polarization is quite strong (˜0.9% ± 0.1%) at peak brightness.
The Type II Supernova Mechanism
NASA Astrophysics Data System (ADS)
Bruenn, Stephen W.
1996-05-01
Supernova 1987A has confirmed the basic core collapse paradigm for Type-II supernovae by the detection of electron antineutrinos in the Kamiokande II and IMB experiments several hours prior to the first optical sighting. Furthermore, the evidence of large-scale mixing and overturn in the debris of SN1987A indicates that hydrodynamic instabilities occurred early on in the evolution of the remnant and have played a crucial role in the explosion mechanism itself. Despite these important clues, and many years of theoretical and numerical investigation of increasing sophistication, the core collapse explosion mechanism is still not well understood. I review the status of the currently favored scenario, which is the transfer of energy from hot material at small radii to cooler material in the region further out behind the stalled shock by a combination of neutrino flow and hydrodynamic instabilities. The nature and role of these hydrodynamic instabilities is explored in detail on the basis of linear perturbation analyses and multidimensional hydrodynamic simulations. Neutrino flow is shown to have an inhibiting effect on convection in the region immediately below the neutrinosphere. Farther in, material is likely to be semiconvective for several hundred milliseconds, but stable thereafter. Convection in the neutrino heated-layer outside the neutrinosphere and below the shock front is found to help but by no means guarantee and explosion. General relativistic effects are shown to be deleterious for neutrino heated explosions. The role of the progenitor structure is discussed on the basis of two distinct but representative examples. Finally, the importance of several neutrino processes not incorporated in current calculations is assessed.
Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Supernova 2010ev: A reddened high velocity gradient type Ia supernova
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.
2016-05-01
Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si IIλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe II]λ7155 and [Ni II]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).
A Search for High-Energy Gamma Rays from Supernova 1987A
NASA Astrophysics Data System (ADS)
Waldron, Liam Edwin
1993-01-01
The Australian Defense Force Academy (ADFA) balloon-borne gamma-ray astronomy telescope was flown successfully from Alice Springs, Australia, twice during 1987 and 1988 (Flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50-500 MeV, from Supernova 1987A in the Large Magellanic Cloud. The two flights correspond to day 55 and 407, respectively, of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati, Italy, and sensitive to the 10-250 keV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma rays in astrophysical environments and their relation to supernovae and cosmic rays. A description is then given of main features of the gamma-ray telescope and its principles of operation, the most important part of the telescope being a spark chamber used to determine the direction of arrival of incident gamma rays. Data obtained during each flight were recorded as spark-chamber tracks on the photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, is given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from SN 1987A of 2.2 and 3.4 X 10^-5 photons cm^-2s^-1 were obtained for days 55 and 407 of remnant evolution, respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with SN 1987A being an atypical Type II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type II supernovae. (SECTION: Dissertation Abstracts)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...
2017-05-10
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.
Here, we used CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis of small samples, to analyze strontium, zirconium, and barium isotopes in 22 presolar silicon carbide grains. Twenty of the grains showed detectable strontium and barium, but none of the grains had enough zirconium to be detected with CHILI. Nine grains were excluded from further consideration since they showed very little signals (<1000 counts) for strontium as well as for barium. Among the 11 remaining grains, we found three X grains. The discovery of three supernova grains among only 22 grainsmore » was fortuitous, because only ~1% of presolar silicon carbide grains are type X, but was confirmed by silicon isotopic measurements of grain residues with NanoSIMS. And while one of the X grains showed strontium and barium isotope patterns expected for supernova grains, the two other supernova grains have 87Sr/86Sr < 0.5, values never observed in any natural sample before. From their silicon isotope ratios, the latter two grains can be classified as X2 grains, while the former grain belongs to the more common X1 group. The differences of these grains in strontium and barium isotopic composition constrain their individual formation conditions in Type II supernovae.« less
Bonanza: An extremely large dust grain from a supernova
NASA Astrophysics Data System (ADS)
Gyngard, Frank; Jadhav, Manavi; Nittler, Larry R.; Stroud, Rhonda M.; Zinner, Ernst
2018-01-01
We report the morphology, microstructure, and isotopic composition of the largest SiC stardust grain known to have condensed from a supernova. The 25-μm diameter grain, termed Bonanza, was found in an acid-resistant residue of the Murchison meteorite. Grains of such large size have neither been observed around supernovae nor predicted to form in stellar environments. The large size of Bonanza has allowed the measurement of the isotopic composition of more elements in it than any other previous presolar grain, including: Li, B, C, N, Mg, Al, Si, S, Ca, Ti, Fe, and Ni. Bonanza exhibits large isotopic anomalies in the elements C, N, Mg, Si, Ca, Ti, Fe, and Ni typical of an astrophysical origin in ejecta of a Type II core-collapse supernova and comparable to those previously observed for other presolar SiC grains of type X. Additionally, we extracted multiple focused ion beam lift-out sections from different regions of the grain. Our transmission electron microscopy demonstrates that the crystalline order varies at the micrometer scale, and includes rare, higher order polytype domains (e.g., 15 R). Analyses with STEM-EDS show Bonanza contains a heterogeneous distribution of subgrains with sizes ranging from <10 nm to >100 nm of Ti(N, C); Fe, Ni-rich grains with variable Fe:Ni; and (Al, Mg)N. Bonanza also has the highest ever inferred initial 26Al/27Al ratio, consistent with its supernova origin. This unique grain affords us the largest expanse of data, both microstructurally and isotopically, to compare with detailed calculations of nucleosynthesis and dust condensation in supernovae.
Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies
NASA Astrophysics Data System (ADS)
Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.
2018-05-01
The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.
Type Ia supernovae: explosions and progenitors
NASA Astrophysics Data System (ADS)
Kerzendorf, Wolfgang Eitel
2011-08-01
Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than 1.38 Msun). This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.
Rapidly Rising Transients in the Supernova - Superluminous Supernova Gap
NASA Technical Reports Server (NTRS)
Arcavi, Iair; Wolf, William M.; Howell, D. Andrew; Bildsten, Lars; Leloudas, Giorgos; Hardin, Delphine; Prajs, Szymon; Perley, Daniel A.; Svirski, Gilad; Cenko, S. Bradley
2016-01-01
We present observations of four rapidly rising (t(sub rise) approximately equals 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M(sub peak) approximately equals -20) - one discovered and followed by the PalomarTransient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad H alpha emission, but an unusual absorption feature, which can be interpreted as either high velocity H alpha (though deeper than in previously known cases) or Si II (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a Type 1.5 SN scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.
The Interstellar 7Li/6Li Ratio in the Diffuse Gas Near IC 443
NASA Astrophysics Data System (ADS)
Ritchey, A. M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.
2010-11-01
Supernova remnants are believed to be the primary acceleration sites of Galactic cosmic rays (GCR), which are essential to gas-phase interstellar chemistry since they are a major source of ionization in both diffuse and dense environments. The interaction of accelerated particles with interstellar gas will also synthesize isotopes of the light elements Li, Be, and B through the spallation of CNO nuclei (producing all stable LiBeB isotopes) and through α+α fusion (yielding 6Li and 7Li, only). Type II supernovae may provide an additional source of 7Li and 11B during core collapse through neutrino-induced spallation in the He and C shells of the progenitor star (the ν-process). However, direct observational evidence for light element synthesis resulting from cosmic-ray or neutrino-induced spallation is rare. Here, we examine 7Li/6Li isotope ratios along four lines of sight through the supernova remnant IC 443 using observations of the Li I λ6707 doublet made with the Hobby-Eberly Telescope (HET) at McDonald Observatory. The 7Li/6Li ratio in the general interstellar medium is expected to be similar to the ratio of ~12 that characterizes solar system material. A local enhancement in the cosmic-ray flux will act to lower 7Li/6Li, yielding a ratio of ~2 when cosmic rays dominate Li synthesis. Gamma-ray emission from IC 443 provides strong evidence for the interaction of cosmic rays accelerated by the remnant with the ambient atomic and molecular gas. Yet this material has also been contaminated by the ejecta of a Type II supernova, which should be enriched in 7Li. We are seeking 7Li/6Li ratios that are either higher than the solar system ratio as a result of the ν-process or lower due to cosmic-ray spallation. Since the fine structure separation of the Li I doublet is comparable to the isotope shift (~7 km s-1) and each fine structure line is further split into hyperfine components, the velocity structure along the line of sight must be carefully constrained if meaningful 7Li/6Li ratios are to be determined. In our analysis, the strongest components seen in K I and CH are used to synthesize the complex Li I profiles. We will discuss the implications of our results on 7Li/6Li (and Li/K) ratios in the context of Li production by Type II supernovae.
HET LRS2 Observations of Halpha in Old Hydrogen-deficient Supernovae
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig Craig; Pooley, David A.; Vinko, Jozsef; Szalai, Tamas; Marion, Howie H.; Sand, David J.; McQueen, Phillip; Silverman, Jeffrey M.
2017-06-01
For 3 years, we have been using narrow-band filters with the DIAFI imager on the HJS 2.7 m telescope to search for evidence that hydrogen-deficient supernovae undergo delayed collision with previously ejected circumstellar material and associated excitation of Halpha (see abstract by Pooley et al.). A powerful method to determine whether detected Halpha flux is from an HII region or a supernova is to obtain spectra; broad lines (> 1000 km/s) will be a certain indicator of a supernova. We have observed about 20 events that ranged in age from about 1000 days to nearly 80 years for which we have detected Halpha in the vicinity of the supernova. So far, only SN 2014C showed the broad H that is concrete evidence of ongoing circumstellar interaction. One interesting aspect revealed by the spectra is that we often pick up the two [N II] lines that typically accompany H in H II regions. Our spectra of SN 2008ha did not show these [N II] lines. The absence of the [N II] lines might be a clue to circumstellar interaction in conditions where the shock had slowed to a point where the H is not detectably broadened.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2016-10-01
Supernovae (SNe) have a profound effect on galaxies, and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 9100 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 13 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass (8 to 20 Msun) red supergiants, although more cases are needed. Additionally, evidence is accumulating that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, 20, 21, 22, and 23 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on two supernovae (SN 2016adj and SN 2016bkv) with our Cycle 23 program. We therefore propose to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect during Cycle 24, through ToO observations using WFC3/UVIS.
NASA Astrophysics Data System (ADS)
Huang, F.; Wang, X.-F.; Hosseinzadeh, G.; Brown, P. J.; Mo, J.; Zhang, J.-J.; Zhang, K.-C.; Zhang, T.-M.; Howell, D.-A.; Arcavi, I.; McCully, C.; Valenti, S.; Rui, L.-M.; Song, H.; Xiang, D.-F.; Li, W.-X.; Lin, H.; Wang, L.-F.
2018-04-01
We present extensive ultraviolet (UV) and optical photometry, as well as dense optical spectroscopy, for type II Plateau (IIP) supernova SN 2016X that exploded in the nearby (˜15 Mpc) spiral galaxy UGC 08041. The observations span the period from 2 to 180 d after the explosion; in particular, the Swift UV data probably captured the signature of shock breakout associated with the explosion of SN 2016X. It shows very strong UV emission during the first week after explosion, with a contribution of ˜20-30 per cent to the bolometric luminosity (versus ≲15 per cent for normal SNe IIP). Moreover, we found that this supernova has an unusually long rise time of about 12.6 ± 0.5 d in the R band (versus ˜7.0 d for typical SNe IIP). The optical light curves and spectral evolution are quite similar to the fast-declining type IIP object SN 2013ej, except that SN 2016X has a relatively brighter tail. Based on the evolution of photospheric temperature as inferred from the Swift data in the early phase, we derive that the progenitor of SN 2016X has a radius of about 930 ± 70 R⊙. This large-size star is expected to be a red supergiant star with an initial mass of ≳19-20 M⊙ based on the mass-radius relation of the Galactic red supergiants, and it represents one of the most largest and massive progenitors found for SNe IIP.
On the Possibility of Fast Radio Bursts from Inside Supernovae: The Case of SN 1986J
NASA Astrophysics Data System (ADS)
Bietenholz, Michael F.; Bartel, Norbert
2017-12-01
We discuss the possibility of obtaining fast radio bursts (FRBs) from the interior of supernovae, in particular SN 1986J. Young neutron stars are involved in many of the possible scenarios for the origin of FRBs, and it has been suggested that the high dispersion measures observed in FRBs might be produced by the ionized material in the ejecta of associated supernovae. Using VLA and VLBI measurements of the Type IIn SN 1986J, which has a central compact component not seen in other supernovae, we can directly observe for the first time radio signals, which originate in the interior of a young (∼30 year old) supernova. We show that at an age of 30 years, any FRB signal at ∼1 GHz would still be largely absorbed by the ejecta. By the time the ejecta have expanded so that a 1 GHz signal would be visible, the internal dispersion measure due to the SN ejecta would be below the values typically seen for FRBs. The high dispersion measures seen for the FRBs detected so far could of course be due to propagation through the intergalactic medium provided that the FRBs are at distances much larger than that of SN 1986J, which is 10 Mpc. We conclude that if FRBs originate in Type II SNe/SNRs, they would likely not become visible until 60 ∼ 200 years after the SN explosion.
A Peculiar Subclass of Type Ia Supernovae a.k.a. Type Iax
NASA Astrophysics Data System (ADS)
Singh, Mridweeka; Misra, Kuntal; Sahu, Devendra Kumar; Dastidar, Raya; Gangopadhyay, Anjasha; Bose, Subhash; Srivastav, Shubham; Anapuma, Gadiyara Chakrapani; Chakradhari, Nand Kumar; Kumar, Brajesh; Kumar, Brijesh; Pandey, Shashi Bhushan
2018-04-01
We present optical photometric (upto ˜ 410 days since Bmax) and spectroscopic (upto ˜ 235 days since Bmax) observations of a type Iax supernova SN 2014dt located in M61. The broad band light curves follow a linear decline up to ˜ 100 days after which a significant flattening is seen in the late-time (beyond 150 days) light curves of SN 2014dt. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of MB˜ -18.12±0.04 with ?m15˜ 1.35±0.06 mag. The earliest spectrum at ˜ 23 days is dominated by FeII and CoII lines with the absence of the Si II 6150 Å line. Using the peak bolometric luminosity we estimate a 56Ni mass of 0.14 M⊙ in the case of SN 2005hk and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of 56Ni would have been synthesized in the explosion of SN 2014dt. There are several explosion scenarios proposed for these peculiar events. Being one of the brightest and closest SN! , SN 2014dt is an ideal candidate for long term monitoring. Late phase observations are very essential to understand the progenitor system and the actual explosion scenario for these events.
SN 1991bg - A type Ia supernova with a difference
NASA Technical Reports Server (NTRS)
Leibundgut, Bruno; Kirshner, Robert P.; Phillips, Mark M.; Wells, Lisa A.; Suntzeff, N. B.; Hamuy, Mario; Schommer, R. A.; Walker, A. R.; Gonzalez, L.; Ugarte, P.
1993-01-01
While SN 1991bg is an unusual type Ia SN in such a feature as the brief duration of the photospheric phase, which ended only two weeks after maximum, it shares with other Ia SNs strong Si II and Ca II lines near maximum light. In addition, the light and color curve slopes are almost identical with the templates at late times. The spectral evolution of SN 1991bg is also unique but not unrecognizable; nevertheless, the peculiarities associated with this event complicate the fundamental question as to whether the Ia SNs make good standard candles.
DISCOVERY OF FIVE CANDIDATE ANALOGS FOR η CARINAE IN NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Rubab; Adams, Scott M.; Stanek, K. Z.
The late-stage evolution of very massive stars such as η Carinae may be dominated by episodic mass ejections that may later lead to Type II superluminous supernova (SLSN-II; e.g., SN 2006gy). However, as long as η Car is one of a kind, it is nearly impossible to quantitatively evaluate these possibilities. Here, we announce the discovery of five objects in the nearby (∼4–8 Mpc) massive star-forming galaxies M51, M83, M101, and NGC 6946 that have optical through mid-infrared (mid-IR) photometric properties consistent with the hitherto unique η Car. The Spitzer mid-IR spectral energy distributions of these L{sub bol} ≃ 3–8 × 10{sup 6} L{submore » ⊙} objects rise steeply in the 3.6–8 μm bands and then turn over between 8 and 24 μm, indicating the presence of warm (∼400–600 K) circumstellar dust. Their optical counterparts in HST images are ∼1.5–2 dex fainter than their mid-IR peaks and require the presence of ∼5–10 M{sub ⊙} of obscuring material. Our finding implies that the rate of η Car–like events is a fraction f = 0.094 (0.040 < f < 0.21 at 90% confidence) of the core-collapse supernova (ccSN) rate. If there is only one eruption mechanism and Type II superluminous supernovae are due to ccSNe occurring inside these dense shells, then the ejection mechanism is likely associated with the onset of carbon burning (∼10{sup 3}–10{sup 4} years), which is also consistent with the apparent ages of massive Galactic shells.« less
No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv
NASA Astrophysics Data System (ADS)
Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter
2017-12-01
Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}< 3× {10}-4× {(R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.
VizieR Online Data Catalog: Redshifts of 65 CANDELS supernovae (Rodney+, 2014)
NASA Astrophysics Data System (ADS)
Rodney, S. A.; Riess, A. G.; Strolger, L.-G.; Dahlen, T.; Graur, O.; Casertano, S.; Dickinson, M. E.; Ferguson, H. C.; Garnavich, P.; Hayden, B.; Jha, S. W.; Jones, D. O.; Kirshner, R. P.; Koekemoer, A. M.; McCully, C.; Mobasher, B.; Patel, B.; Weiner, B. J.; Cenko, S. B.; Clubb, K. I.; Cooper, M.; Filippenko, A. V.; Frederiksen, T. F.; Hjorth, J.; Leibundgut, B.; Matheson, T.; Nayyeri, H.; Penner, K.; Trump, J.; Silverman, J. M.; U, V.; Azalee Bostroem, K.; Challis, P.; Rajan, A.; Wolff, S.; Faber, S. M.; Grogin, N. A.; Kocevski, D.
2015-01-01
In this paper we present a measurement of the Type Ia supernova explosion rate as a function of redshift (SNR(z)) from a sample of 65 supernovae discovered in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) supernova program. This supernova survey is a joint operation of two Hubble Space Telescope (HST) Multi-Cycle Treasury (MCT) programs: CANDELS (PIs: Faber and Ferguson; Grogin et al., 2011ApJS..197...35G; Koekemoer et al., 2011ApJS..197...36K), and the Cluster Lensing and Supernovae search with Hubble (CLASH; PI: Postman; Postman et al. 2012, cat. J/ApJS/199/25). The supernova discovery and follow-up for both programs were allocated to the HST MCT supernova program (PI: Riess). The results presented here are based on the full five fields and ~0.25deg2 of the CANDELS program, observed from 2010 to 2013. A companion paper presents the SN Ia rates from the CLASH sample (Graur et al., 2014ApJ...783...28G). A composite analysis that combines the CANDELS+CLASH supernova sample and revisits past HST surveys will be presented in a future paper. The three-year CANDELS program was designed to probe galaxy evolution out to z~8 with deep infrared and optical imaging of five well-studied extragalactic fields: GOODS-S, GOODS-N (the Great Observatories Origins Deep Survey South and North; Giavalisco et al. 2004, cat. II/261), COSMOS (the Cosmic Evolution Survey, Scoville et al., 2007ApJS..172....1S; Koekemoer et al., 2007ApJS..172..196K), UDS (the UKIDSS Ultra Deep Survey; Lawrence et al. 2007, cat. II/314; Cirasuolo et al., 2007MNRAS.380..585C), EGS (the Extended Groth Strip; Davis et al. 2007, cat. III/248). As described fully in Grogin et al. (2011ApJS..197...35G), the CANDELS program includes both "wide" and "deep" fields. The wide component of CANDELS comprises the COSMOS, UDS, and EGS fields, plus one-third of the GOODS-S field and one half of the GOODS-N field--a total survey area of 730 arcmin2. The "deep" component of CANDELS came from the central 67arcmin2 of each of the GOODS-S and GOODS-N fields. The CANDELS fields analyzed in this work are described in Table 1. (6 data files).
VizieR Online Data Catalog: SNe type II from CSP-I, SDSS-II, and SNLS (de Jaeger+, 2017)
NASA Astrophysics Data System (ADS)
de Jaeger, T.; Gonzalez-Gaitan, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutierrez, C. P.; Hook, I. M.; Howell, D. A.; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.
2017-10-01
The CSP-I (Carnegie Supernova Project-I) had guaranteed access to ~300 nights per year between 2004 and 2009 on the Swope 1m and du Pont 2.5m telescopes at the Las Campanas Observatory (LCO). This observation time allowed the CSP-I to obtain optical-band light curves for 67 SNe II. From the CSP-I sample, we remove six outliers. The SDSS-II SN Survey operated for three years, from 2005 September to 2007 November. Using the 2.5m telescope at the Apache Point Observatory in New Mexico. This survey observed about 80 spectroscopically confirmed core-collapse SNe but the main driver of this project was the study of SNe Ia, involving the acquisition of only one or two spectra per SNe II. The total SDSS-II SN sample is composed of 16 spectroscopically confirmed SNe II. The SNLS (Supernova Legacy Survey) was designed to discover SNe and to obtain photometric follow-up using the MegaCam imager on the 3.6m Canada-France-Hawaii Telescope. The observation strategy consisted of obtaining images of the same field every four nights over five years (between 2003 and 2008); thus, in total more than 470 nights were allocated to this project. The total SNLS sample is composed of 28 SNeII. See section 2 for further explanations on the data sample. (1 data file).
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2012-10-01
Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the Nobel-recognized discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 5900 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 7 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Additionally, we have identified the possibly yellow supergiant progenitors of two likely Type II-Linear SNe. Also, one case indicates that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycles 16 and 17 we had great success with our approved ToO programs. We therefore propose to build on that success by determining the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect to occur during Cycle 20, through ToO observations using WFC3/UVIS.
Ultraviolet Detection of the Binary Companion to the Type IIb SN 2001ig
NASA Astrophysics Data System (ADS)
Ryder, Stuart D.; Van Dyk, Schuyler D.; Fox, Ori D.; Zapartas, Emmanouil; de Mink, Selma E.; Smith, Nathan; Brunsden, Emily; Azalee Bostroem, K.; Filippenko, Alexei V.; Shivvers, Isaac; Zheng, WeiKang
2018-03-01
We present HST/WFC3 ultraviolet imaging in the F275W and F336W bands of the Type IIb SN 2001ig at an age of more than 14 years. A clear point source is detected at the site of the explosion, with m F275W = 25.39 ± 0.10 and m F336W = 25.88 ± 0.13 mag. Despite weak constraints on both the distance to the host galaxy NGC 7424 and the line-of-sight reddening to the supernova, this source matches the characteristics of an early B-type main-sequence star with 19,000 < T eff < 22,000 K and {log}({L}bol}/{L}ȯ )=3.92+/- 0.14. A BPASS v2.1 binary evolution model, with primary and secondary masses of 13 M ⊙ and 9 M ⊙, respectively, is found to simultaneously resemble, in the Hertzsprung–Russell diagram, both the observed location of this surviving companion, and the primary star evolutionary endpoints for other Type IIb supernovae. This same model exhibits highly variable late-stage mass loss, as expected from the behavior of the radio light curves. A Gemini/GMOS optical spectrum at an age of 6 years reveals a narrow He II λ4686 emission line, indicative of continuing interaction with a dense circumstellar medium at large radii from the progenitor. We review our findings on SN 2001ig in the context of binary evolution channels for stripped-envelope supernovae. Owing to the uncrowded nature of its environment in the ultraviolet, this study of SN 2001ig represents one of the cleanest detections to date of a surviving binary companion to a Type IIb supernova.
White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution
NASA Technical Reports Server (NTRS)
Nomoto, K.
1980-01-01
Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.
Ultraviolet Spectroscopy of Supernovae: The First Two Years of Swift Observations
NASA Technical Reports Server (NTRS)
Immler, Stefan
2008-01-01
We present the entire sample of ultraviolet (1JV) spectra of supernovae (SNe) obtained with the Ultraviolet/Optical Telescope (UVOT) on board the Swift satellite during the first 2 years of observations (2005/2006). A total of 31 UV-grism and 22 V-grism spectra of 9 supernovae (SNe) have been collected. of which 6 are thermonuclear (type Ia) and 3 core collapse (type Ibc/II) SNe. All the spectra have been obtained during the photospheric phase. After a comparison of the spectra of our sample with those in the literature (SNe 1992A. 1990N and 1999em). we confirm some degree of diversity in the UV emission of Type Ia SNe and a greater homogeneity in the Type I1 Plateau SN sample. Signatures of interaction between the ejecta and the circumstellar environment have been found in the UV spectrum of SN 2006jc, the only SN Type Ib/c for which UVOT grism data are available. Currently, Swift LJVOT is the best suited instrument for early SN studies in the UV due to its fast response and flexible scheduling capabilities. However. in order to increase the quality of the data and significantly improve our understanding of the lJV properties of SNe and to fully maximize the scientific potential of UVOT grism observations. a larger investment in obsening time and longer exposures are needed.
Identification of the feature that causes the I-band secondary maximum of a Type Ia supernova
NASA Astrophysics Data System (ADS)
Jack, D.; Baron, E.; Hauschildt, P. H.
2015-06-01
We obtained a time series of spectra covering the secondary maximum in the I band of the bright Type Ia supernova 2014J in M82 with the TIGRE telescope. Comparing the observations with theoretical models calculated with the time dependent extension of the PHOENIX code, we identify the feature that causes the secondary maximum in the I-band light curve. Fe II 3d6(3D)4s-3d6(5D)4p and similar high-excitation transitions produce a blended feature at ˜7500 Å, which causes the rise of the light curve towards the secondary maximum. The series of observed spectra of SN 2014J and archival data of SN 2011fe confirm this conclusion. We further studied the plateau phase of the R-band light curve of SN 2014J and searched for features which contribute to the flux. The theoretical models do not clearly indicate a new feature that may cause the R-band plateau phase. However, Co II features in the range of 6500-7000 Å and the Fe II feature of the I band are clearly seen in the theoretical spectra, but do not appear to provide all of the flux necessary for the R-band plateau.
NASA Astrophysics Data System (ADS)
Leibundgut, B.; Sullivan, M.
2018-03-01
The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.
Super-luminous Type II supernovae powered by magnetars
NASA Astrophysics Data System (ADS)
Dessart, Luc; Audit, Edouard
2018-05-01
Magnetar power is believed to be at the origin of numerous super-luminous supernovae (SNe) of Type Ic, arising from compact, hydrogen-deficient, Wolf-Rayet type stars. Here, we investigate the properties that magnetar power would have on standard-energy SNe associated with 15-20 M⊙ supergiant stars, either red (RSG; extended) or blue (BSG; more compact). We have used a combination of Eulerian gray radiation-hydrodynamics and non-LTE steady-state radiative transfer to study their dynamical, photometric, and spectroscopic properties. Adopting magnetar fields of 1, 3.5, 7 × 1014 G and rotational energies of 0.4, 1, and 3 × 1051 erg, we produce bolometric light curves with a broad maximum covering 50-150 d and a magnitude of 1043-1044 erg s-1. The spectra at maximum light are analogous to those of standard SNe II-P but bluer. Although the magnetar energy is channelled in equal proportion between SN kinetic energy and SN luminosity, the latter may be boosted by a factor of 10-100 compared to a standard SN II. This influence breaks the observed relation between brightness and ejecta expansion rate of standard Type II SNe. Magnetar energy injection also delays recombination and may even cause re-ionization, with a reversal in photospheric temperature and velocity. Depositing the magnetar energy in a narrow mass shell at the ejecta base leads to the formation of a dense shell at a few 1000 km s-1, which causes a light-curve bump at the end of the photospheric phase. Depositing this energy over a broad range of mass in the inner ejecta, to mimic the effect of multi-dimensional fluid instabilities, prevents the formation of a dense shell and produces an earlier-rising and smoother light curve. The magnetar influence on the SN radiation is generally not visible prior to 20-30 d, during which one may discern a BSG from a RSG progenitor. We propose a magnetar model for the super-luminous Type II SN OGLE-SN14-073.
The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.
Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo
2008-08-29
The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation
NASA Astrophysics Data System (ADS)
Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.
2018-03-01
We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.
The early evolution of giant H II regions formed by supernova explosions
NASA Technical Reports Server (NTRS)
Kafatos, M. C.
1971-01-01
The evolution of a giant H II region, which cools after an initial ionization, is discussed. The discussion is applied to the Vela X and Tycho supernovae. Other giant H II regions might not be as easily detectable as the Vela X region. The Tycho region may be just detectable in the O(II) or O(III) optical lines or as a hole in the 21-cm emission line profiles, as is suggested in the data. These giant H II regions last appreciably longer than the continuum radio sources within them.
Time-varying sodium absorption in the Type Ia supernova 2013gh
Ferretti, Raphael; Amanullah, R.; Goobar, A.; ...
2016-07-18
Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all ofmore » which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. In this paper, we have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 10 19 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. Finally, the nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.« less
A luminous, blue progenitor system for the type Iax supernova 2012Z
NASA Astrophysics Data System (ADS)
McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Bildsten, Lars; Fong, Wen-Fai; Kirshner, Robert P.; Marion, G. H.; Riess, Adam G.; Stritzinger, Maximilian D.
2014-08-01
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are `less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
A luminous, blue progenitor system for the type Iax supernova 2012Z.
McCully, Curtis; Jha, Saurabh W; Foley, Ryan J; Bildsten, Lars; Fong, Wen-fai; Kirshner, Robert P; Marion, G H; Riess, Adam G; Stritzinger, Maximilian D
2014-08-07
Type Iax supernovae are stellar explosions that are spectroscopically similar to some type Ia supernovae at the time of maximum light emission, except with lower ejecta velocities. They are also distinguished by lower luminosities. At late times, their spectroscopic properties diverge from those of other supernovae, but their composition (dominated by iron-group and intermediate-mass elements) suggests a physical connection to normal type Ia supernovae. Supernovae of type Iax are not rare; they occur at a rate between 5 and 30 per cent of the normal type Ia rate. The leading models for type Iax supernovae are thermonuclear explosions of accreting carbon-oxygen white dwarfs that do not completely unbind the star, implying that they are 'less successful' versions of normal type Ia supernovae, where complete stellar disruption is observed. Here we report the detection of the luminous, blue progenitor system of the type Iax SN 2012Z in deep pre-explosion imaging. The progenitor system's luminosity, colours, environment and similarity to the progenitor of the Galactic helium nova V445 Puppis suggest that SN 2012Z was the explosion of a white dwarf accreting material from a helium-star companion. Observations over the next few years, after SN 2012Z has faded, will either confirm this hypothesis or perhaps show that this supernova was actually the explosive death of a massive star.
NASA Astrophysics Data System (ADS)
Zhang, Jujia; Yu, Xiaoguang; Wang, Xiaofeng
2017-12-01
We obtained an optical spectrum (range 340-900 nm) of SN 2017ixg (ATLAS17nrq), discovered by ATLAS and TNTS, on UT Dec. 15.6 2017 with the Li-Jiang 2.4 m telescope (LJT + YFOSC) at Li-Jiang Observatory of Yunnan Observatories (YNAO).
The quest for blue supergiants : The evolution of the progenitor of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Magnetar-powered Supernovae in Two Dimensions. II. Broad-line Supernovae Ic
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Moriya, Takashi J.; Woosley, Stan; Sukhbold, Tuguldur; Whalen, Daniel J.; Suwa, Yudai; Bromm, Volker
2017-04-01
Nascent neutron stars (NSs) with millisecond periods and magnetic fields in excess of 1016 Gauss can drive highly energetic and asymmetric explosions known as magnetar-powered supernovae. These exotic explosions are one theoretical interpretation for supernovae Ic-BL, which are sometimes associated with long gamma-ray bursts. Twisted magnetic field lines extract the rotational energy of the NS and release it as a disk wind or a jet with energies greater than 1052 erg over ˜20 s. What fraction of the energy of the central engine go into the wind and the jet remain unclear. We have performed two-dimensional hydrodynamical simulations of magnetar-powered supernovae (SNe) driven by disk winds and jets with the CASTRO code to investigate the effect of the central engine on nucleosynthetic yields, mixing, and light curves. We find that these explosions synthesize less than 0.05 {M}⊙ of {}56{Ni} and that this mass is not very sensitive to central engine type. The morphology of the explosion can provide a powerful diagnostic of the properties of the central engine. In the absence of a circumstellar medium, these events are not very luminous, with peak bolometric magnitudes of {M}b˜ -16.5 due to low {}56{Ni} production.
The Search for Lensed Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-01-01
Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and Lawrence Berkeley National Laboratory have a plan. In a recent publication, Daniel Goldstein and Peter Nugent propose the following clever procedure to apply to data from transient surveys:From the data, select only the supernova candidates that appear to be hosted by quiescent elliptical galaxies.Use the host galaxies photometric redshifts to calculate absolute magnitudes for the supernovae in this sample.Select from this only the supernovae above the maximum absolute magnitude expected for Type Ia supernovae.Supernovae selected in this way are likely tricking us: their apparent hosts are probably not their hosts at all! Instead, the supernova is likely behind the galaxy, and the galaxy is just lensing its light. Using this strategy therefore allows us to select supernova candidates that are most likely to be distant, gravitationally lensed Type Ia supernovae.Redshift distribution of the multiply-imaged Type Ia supernovae the authors estimate will be detectable by ZTF and LSST in their respective 3- and 10-year survey durations. [Goldstein Nugent 2017]A convenient aspect of Goldstein and Nugents technique is that we dont need to be able to resolve the lensed multiple images for discovery. This is useful, because ground-based optical surveys dont have the resolution to see the separate images yet theyll still be useful for discovering multiply-imaged supernovae.Future ProspectsHow useful? Goldstein and Nugent use Monte Carlo simulations to estimate how many multiply-imaged Type Ia supernovae will be discoverable with future survey projects. They find that theZwicky Transient Facility (ZTF), which will begin operating this year, should be able to find up to 10 using this technique in a 3-year search. The Large Synoptic Survey Telescope (LSST), which should start operating in 2022, will be able to find around 500 multiply-imaged Type Ia supernovae in a 10-year survey.CitationDaniel A. Goldstein and Peter E. Nugent 2017 ApJL 834 L5. doi:10.3847/2041-8213/834/1/L5
Study of the influence of Type Ia supernovae environment on the Hubble diagram
NASA Astrophysics Data System (ADS)
Henne, Vincent
2016-06-01
The observational cosmology with distant Type Ia supernovae as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this report we investigated SNe Ia environment, studying the impact of the nature of their host galaxies and their distance to the host galactic center on the Hubble diagram fitting. The supernovae used in the analysis were extracted from Joint-Light-curves-Analysis compilation of high-redshift and nearby supernovae. The analysis are based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. No conclusive correlation between SN Ia light curve parameters and galocentric distance were identified. Concerning the host morphology, we showed that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch mainly exploded in elliptical and lenticular galaxies. The studies show that into old star population and low dust environment, supernovae are fainter. We did not find any significant correlation between Type Ia supernovae color and host morphology. We confirm that supernova properties depend on their environment and propose to incorporate a host galaxy term into the Hubble diagram fit in the future cosmological analysis.
Low-z Type Ia Supernova Calibration
NASA Astrophysics Data System (ADS)
Hamuy, Mario
The discovery of acceleration and dark energy in 1998 arguably constitutes one of the most revolutionary discoveries in astrophysics in recent years. This paradigm shift was possible thanks to one of the most traditional cosmological tests: the redshift-distance relation between galaxies. This discovery was based on a differential measurement of the expansion rate of the universe: the current one provided by nearby (low-z) type Ia supernovae and the one in the past measured from distant (high-z) supernovae. This paper focuses on the first part of this journey: the calibration of the type Ia supernova luminosities and the local expansion rate of the universe, which was made possible thanks to the introduction of digital CCD (charge-coupled device) digital photometry. The new technology permitted us in the early 1990s to convert supernovae as precise tools to measure extragalactic distances through two key surveys: (1) the "Tololo Supernova Program" which made possible the critical discovery of the "peak luminosity-decline rate" relation for type Ia supernovae, the key underlying idea today behind precise cosmology from supernovae, and (2) the Calán/Tololo project which provided the low - z type Ia supernova sample for the discovery of acceleration.
An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.
Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J
2003-08-07
Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion.
The ASAS-SN Bright Supernova Catalog – II. 2015
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...
2017-01-16
Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
The ASAS-SN Bright Supernova Catalog – II. 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.
Here, this paper presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalogue, we also present redshifts and near-ultraviolet through infrared magnitudes for all supernova host galaxies in both samples. Combined with our previous catalogue, this work comprises a complete catalogue of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is themore » second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
Probing Late-Stage Stellar Evolution through Robotic Follow-Up of Nearby Supernovae
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin
2018-01-01
Many of the remaining uncertainties in stellar evolution can be addressed through immediate and long-term photometry and spectroscopy of supernovae. The early light curves of thermonuclear supernovae can contain information about the nature of the binary companion to the exploding white dwarf. Spectra of core-collapse supernovae can reveal material lost by massive stars in their final months to years. Thanks to a revolution in technology—robotic telescopes, high-speed internet, machine learning—we can now routinely discover supernovae within days of explosion and obtain well-sampled follow-up data for months and years. Here I present three major results from the Global Supernova Project at Las Cumbres Observatory that take advantage of these technological advances. (1) SN 2017cbv is a Type Ia supernova discovered within a day of explosion. Early photometry shows a bump in the U-band relative to previously observed Type Ia light curves, possibly indicating the presence of a nondegenerate binary companion. (2) SN 2016bkv is a low-luminosity Type IIP supernova also caught very young. Narrow emission lines in the earliest spectra indicate interaction between the ejecta and a dense shell of circumstellar material, previously observed only in the brightest Type IIP supernovae. (3) Type Ibn supernovae are a rare class that interact with hydrogen-free circumstellar material. An analysis of the largest-yet sample of this class has found that their light curves are much more homogeneous and faster-evolving than their hydrogen-rich counterparts, Type IIn supernovae, but that their maximum-light spectra are more diverse.
Simulation turbulenter Konvektion in Supernova-Explosionen massereicher Sterne.
NASA Astrophysics Data System (ADS)
Janka, H.-T.; Müller, E.; Ruffert, M.
Contents: 1. Das Projekt: Numerische Simulation von Typ-II-Supernovae. 2. Die numerischen Verfahren. 3. Die Visualisierung von dreidimensionalen Datensätzen. 4. Die Ergebnisse: Einblick in explodierende Sterne.
Finding Distances to Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region affects the luminosity of the supernova.Determining DistancesThe authors find that there are indeed differences in peak supernova luminosity based on metallicity of the local environment. Their observations support a trend in which more metal-rich galaxies host less luminous supernovae, whereas lower-metallicity galaxies host supernovae with greater luminosities consistent with theoretical predictions.This observational confirmation suggests that the metallicity of the progenitor may well play a role in peak supernova luminosity and, as a result, the distances at which we estimate they exploded. This systematic effect can, however, be easily corrected for in the distance-estimate procedure.As the number of known supernovae is expected to drastically increase with the start of future large surveys such as the Large Synoptic Survey Telescope (LSST) or the Dark Energy Survey (DES), supernova distance measurements will soon be dominated by systematic errors rather than statistical ones. Correctly accounting for effects such as this apparent metallicity-dependence of supernovae continues to be important for accurately determining distances using Type Ia supernovae as indicators.CitationManuel E. Moreno-Raya et al 2016 ApJ 818 L19. doi:10.3847/2041-8205/818/1/L19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu
2014-12-20
We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocitymore » (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.« less
Spectroscopic Classification of SN 2018bek as a Young Type II Supernova
NASA Astrophysics Data System (ADS)
Xiang, Danfeng; Wang, Xiaofeng; Zhang, Kaicheng; Li, Wenxiong; DerKacy, James; Baron, Eddie; Brink, Thomas; Zheng, Weikang; Filippenko, Alex; Lin, Han; Rui, Liming; Hu, Lei; Hu, Maokai; Zhang, Tianmeng; Zhang, Jujia
2018-05-01
We obtained a few optical spectra of SN 2018bek,discovered by Jaroslaw Grzegorzek,on UT May 05-09 2018 with the 3.5m telescope (+Dual Imaging Spectrograph) at the Apache Point Observatory, the 2.16-m telescope(+BFOSC) at Xinglong Observatory of NAOC, and the Lick 3.0-m telescope (+Kast) at Lick Observatory.
Light curves of 213 Type Ia supernovae from the Essence survey
Narayan, G.; Rest, A.; Tucker, B. E.; ...
2016-05-06
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
Light curves of 213 Type Ia supernovae from the Essence survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, G.; Rest, A.; Tucker, B. E.
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
NASA Astrophysics Data System (ADS)
Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina
2001-01-01
Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.
Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J
2006-09-21
The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.
Spectroscopic identification of SNe 2004ds and SN 2004dt
NASA Astrophysics Data System (ADS)
Gal-Yam, Avishay
2004-08-01
A. Gal-Yam, D. Fox and S. Kulkarni, California Institute of Technology, report on red spectra (range 550-780 nm) obtained by Kulkarni and Fox on Aug. 13.5 UT at the 10-m Keck I telescope (+ LRIS). The spectrum of of SN 2004ds (IAUC #8386), shows a broad, well-developed P-Cyg H_alpha line and suggests that this is a type II supernova. The spectrum of SN 2004dt (IAUC #8386), shows the distinctive Si II 6100 absorption trough around 6100 Angstrom, indicating this is a young SN Ia.
Origin of the main r-process elements
NASA Astrophysics Data System (ADS)
Otsuki, K.; Truran, J.; Wiescher, M.; Gorres, J.; Mathews, G.; Frekers, D.; Mengoni, A.; Bartlett, A.; Tostevin, J.
2006-07-01
The r-process is supposed to be a primary process which assembles heavy nuclei from a photo-dissociated nucleon gas. Hence, the reaction flow through light elements can be important as a constraint on the conditions for the r-process. We have studied the impact of di-neutron capture and the neutron-capture of light (Z<10) elements on r-process nucleosynthesis in three different environments: neutrino-driven winds in Type II supernovae; the prompt explosion of low mass supernovae; and neutron star mergers. Although the effect of di-neutron capture is not significant for the neutrino-driven wind model or low-mass supernovae, it becomes significant in the neutron-star merger model. The neutron-capture of light elements, which has been studied extensively for neutrino-driven wind models, also impacts the other two models. We show that it may be possible to identify the astrophysical site for the main r-process if the nuclear physics uncertainties in current r-process calculations could be reduced.
Supernovae as seen by off-center observers in a local void
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomqvist, Michael; Mörtsell, Edvard, E-mail: michaelb@astro.su.se, E-mail: edvard@fysik.su.se
2010-05-01
Inhomogeneous universe models have been proposed as an alternative explanation for the apparent acceleration of the cosmic expansion that does not require dark energy. In the simplest class of inhomogeneous models, we live within a large, spherically symmetric void. Several studies have shown that such a model can be made consistent with many observations, in particular the redshift-luminosity distance relation for type Ia supernovae, provided that the void is of Gpc size and that we live close to the center. Such a scenario challenges the Copernican principle that we do not occupy a special place in the universe. We usemore » the first-year Sloan Digital Sky Survey-II supernova search data set as well as the Constitution supernova data set to put constraints on the observer position in void models, using the fact that off-center observers will observe an anisotropic universe. We first show that a spherically symmetric void can give good fits to the supernova data for an on-center observer, but that the two data sets prefer very different voids. We then continue to show that the observer can be displaced at least fifteen percent of the void scale radius from the center and still give an acceptable fit to the supernova data. When combined with the observed dipole anisotropy of the cosmic microwave background however, we find that the data compells the observer to be located within about one percent of the void scale radius. Based on these results, we conclude that considerable fine-tuning of our position within the void is needed to fit the supernova data, strongly disfavouring the model from a Copernican principle point of view.« less
Lensed Type Ia supernovae as probes of cluster mass models
SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters
SN2005da: A Spectroscopic and Photometric Analysis of a Peculiar Type Ic Supernova
NASA Astrophysics Data System (ADS)
Williamson, Jacob
2017-12-01
Core collapse supernovae are an important class of objects in stellar evolution research as they are the final life stage of high mass stars. Supernovae in general are classified into several spectral types; this paper explores SN 2005da, classified as a Type Ic, meaning it lacks hydrogen and helium lines. The supernova was originally classified as a broad-lined Type Ic (Type Ic-BL), with expansion velocities near maximum light greater than or approximately equal to 15000 km/s. However, some of the elements present in the spectrum, namely carbon and oxygen, have narrower lines (FWHM approximately equal to 2300 km/s) than other elements, indicating an interaction with a previously ejected envelope. The supernova is also found to have a decay time, with a change in magnitude over 15 days following maximum light of about 1.4 magnitudes, that is significantly faster than typical Type Ic or Ic-BL. This is more akin to a rarer object type known as a Type Ibn, although it lacks the characteristic narrow helium lines of this type. Therefore, SN 2005da appears to be unlike known examples of Type Ic supernovae.
THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krisciunas, Kevin; Gooding, Samuel D.; Li Weidong, E-mail: krisciunas@physics.tamu.edu, E-mail: sam.gooding86@gmail.com, E-mail: weidong@astro.berkeley.edu
2011-09-15
We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s{sup -1}, while Si III and S II showed velocities of 9000 km s{sup -1}. There is also evidence for some unburned carbon at 12,000 km s{sup -1}. SN 2001ay exhibited a decline-rate parameter of {Delta}m{sub 15}(B) = 0.68 {+-} 0.05 mag; this and the B-band photometry at t {approx}> +25 day past maximum make it the most slowlymore » declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M{sub B} = -19.19 and M{sub V} = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2{sigma} level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied {sup 56}Ni yield was (0.58 {+-} 0.15)/{alpha} M{sub sun}, with {alpha} = L{sub max}/E{sub Ni} probably in the range 1.0-1.2. The {sup 56}Ni yield is comparable to that of many Type Ia SNe. The 'normal' {sup 56}Ni yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of {gamma} rays in the inner regions.« less
Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble improvement in the efficiency of finding SNe compared to an HST field survey and a factor of three improvement
Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae
NASA Astrophysics Data System (ADS)
Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano
2018-05-01
Recent modeling of hydrogen-rich Type II supernova (SN II) light curves suggests the presence of dense circumstellar material (CSM) surrounding the exploding progenitor stars. This has important implications for the activity and structure of massive stars near the end of their lives. Since previous work focused on just a few events, here we expand to a larger sample of 20 well-observed SNe II. For each event we are able to constrain the progenitor zero-age main-sequence (ZAMS) mass, explosion energy, and the mass and radial extent of the dense CSM. We then study the distribution of each of these properties across the full sample of SNe. The inferred ZAMS masses are found to be largely consistent with a Salpeter distribution with minimum and maximum masses of 10.4 and 22.9 M ⊙, respectively. We also compare the individual ZAMS masses we measure with specific SNe II that have pre-explosion imaging to check their consistency. Our masses are generally comparable to or higher than the pre-explosion imaging masses, potentially helping ease the red supergiant problem. The explosion energies vary from (0.1–1.3) × 1051 erg, and for ∼70% of the SNe we obtain CSM masses in the range between 0.18 and 0.83 M ⊙. We see a potential correlation between the CSM mass and explosion energy, which suggests that pre-explosion activity has a strong impact on the structure of the star. This may be important to take into account in future studies of the ability of the neutrino mechanism to explode stars. We also see a possible correlation between the CSM radial extent and ZAMS mass, which could be related to the time with respect to explosion when the CSM is first generated.
The initial masses of the red supergiant progenitors to Type II supernovae
NASA Astrophysics Data System (ADS)
Davies, Ben; Beasor, Emma R.
2018-02-01
There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.
Supernova Explosions Stay In Shape
NASA Astrophysics Data System (ADS)
2009-12-01
At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Time-varying sodium absorption in the Type Ia supernova 2013gh
NASA Astrophysics Data System (ADS)
Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P. M.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.
2016-07-01
Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims: To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods: We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results: Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions: Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A40
"Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woosley, Stan; Kasen, Dan
2017-05-10
Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.
RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcavi, Iair; Howell, D. Andrew; Wolf, William M.
2016-03-01
We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formallymore » classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.« less
A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Jaeger, T.; González-Gaitán, S.; Galbany, L.
2015-12-20
We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our goldenmore » sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.« less
VLA radio upper limit on Type IIn Supernova 2008S
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-02-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed type IIn supernova SN 2008S (CBET 1234) with the Very Large Array (VLA) on 2008, February 10.62 UT. We do not detect any radio emission at the supernova position (CBET 1234). The flux density at the supernova position is -62 +/- 36 uJy.
A common explosion mechanism for type Ia supernovae.
Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang
2007-02-09
Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graur, Or; Bianco, Federica B.; Huang, Shan
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties.more » The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.« less
NASA Astrophysics Data System (ADS)
Graur, Or; Bianco, Federica B.; Huang, Shan; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Eldridge, J. J.
2017-03-01
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, I.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.
Supernova Dust at Sub-micrometer Scales
NASA Astrophysics Data System (ADS)
Nittler, Larry; Stroud, R. M.
2006-06-01
Meteorites contain nanometer to micrometer stardust grains, which formed in pre-solar generations of stars and exhibit large isotopic anomalies that reflect the nuclear processes that occurred in their individual parent stars [1]. Supernovae of Type II have been identified as the sources of much of the stardust, including grains of SiC, Si3N4, graphite and Mg2SiO4. Although, the isotopic compositions of many elements in these grains point unambiguously to supernova nucleosynthesis processes [2], the data require extensive and heterogeneous mixing of disparate nuclear burning zones. A recent study found that individual 200 nm TiC sub-grains within a 12 micron supernova graphite grain have uniform Ti isotopic composition but a range of O isotopic ratios [3]. New microanalysis techniques allow us to correlate the physical microstructures of supernova grains with isotopic composition, e.g., SiC and Si3N4, providing a sub-micron view of condensation processes in supernova ejecta. Results on two SiC grains indicate that micron-sized SiC grains from supernovae consist of assemblages of smaller crystallites with some evidence of radiation and/or shock processing. This is in strong contrast to SiC grains from AGB stars, which are typically single euhedral crystals [4]. The Si, C and N isotopic compositions of the grains are highly uniform, in contrast to the model of [5], which predicts strong isotopic gradients in supernova-derived SiC grains.This work is supported by NASA.[1] Clayton D. D. and Nittler L. R. (2004) ARAA, 42, 39-78.[2] Nittler L. R., et al. (1996) ApJ, 462, L31-34.[3] Stadermann F. J., et al. (2005) GCA, 69, 177-188.[4] Daulton T. L., et al. (2002) Science, 296, 1852-1855.[5] Deneault E. A.-N., et al. (2003) ApJ, 594, 312-325.
NASA Technical Reports Server (NTRS)
Rank, David M.; Temi, Pasquale; Bregman, Jesse D.; Dunham, Edward W.; Harker, David
1995-01-01
Narrow band images of M82 at wavelengths of 6.63 microns (NiII) and 6.8 microns (continuum) are discussed in terms of new evidence for supernova activity in the nuclear region of the M82 starburst galaxy. Data were recorded using a 128x128 Si:Ga array in an infrared camera on the KAO Southern Expedition in April '94.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, E. N., E-mail: alexeyev@ms2.inr.ac.r
A possible explanation of the time correlations between the data from underground detectors (Baksan telescope, LSD, IMB, Kamiokande II) and from the Rome and Maryland gravitational-wave antennas obtained during the Supernova 1987A explosion is proposed. It is shown that the synchronization of the events recorded by various underground facilities could be produced by gravitational radiation from the Supernova.
The first ten years of Swift supernovae
NASA Astrophysics Data System (ADS)
Brown, Peter J.; Roming, Peter W. A.; Milne, Peter A.
2015-09-01
The Swift Gamma Ray Burst Explorer has proven to be an incredible platform for studying the multiwavelength properties of supernova explosions. In its first ten years, Swift has observed over three hundred supernovae. The ultraviolet observations reveal a complex diversity of behavior across supernova types and classes. Even amongst the standard candle type Ia supernovae, ultraviolet observations reveal distinct groups. When the UVOT data is combined with higher redshift optical data, the relative populations of these groups appear to change with redshift. Among core-collapse supernovae, Swift discovered the shock breakout of two supernovae and the Swift data show a diversity in the cooling phase of the shock breakout of supernovae discovered from the ground and promptly followed up with Swift. Swift observations have resulted in an incredible dataset of UV and X-ray data for comparison with high-redshift supernova observations and theoretical models. Swift's supernova program has the potential to dramatically improve our understanding of stellar life and death as well as the history of our universe.
Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models
NASA Astrophysics Data System (ADS)
Bulla, Mattia
2017-02-01
Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does provide a clear distinction. In particular, we find that one model is too strongly asymmetric and produces polarisation levels that are too high and clearly inconsistent with those detected for the bulk of Type Ia supernovae. Polarisation signals - and their time evolution - extracted for the remaining two models are instead in good agreement with the currently available spectropolarimetry data. Providing a powerful way to connect hydrodynamic explosion models to observed data, the study presented in this thesis is an important step towards a better understanding of Type Ia supernovae from a synthesis of theory and observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, D. F.; Salzano, V.; Capozziello, S.
We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Resultsmore » show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.« less
NASA Astrophysics Data System (ADS)
Gouravajhala, S.; Guinan, E. F.; Strolger, L.; Gott, A.
2012-06-01
(Abstract only) We report on the preliminary multi-wavelength photometry and spectroscopy of SN 2011fe, a bright, new Type-Ia supernova (SN Ia) that occurred in the spiral galaxy M101 (Pinwheel Galaxy). One of the closest and brightest SN Ia in the last forty years, the supernova was discovered on August 24, 2011, by the Palomar Transient Factory during the star's initial rapid rise (Nugent et al. 2011). SN Iae occur in binary systems in which a degenerate white dwarf component accretes mass from its companion star (or undergoes a merger with another white dwarf), overcomes the Chandrasekhar limit, and deflagrates in a spectacular explosion. The peak brightnesses of most SN Iae are remarkably similar. This allows SN Iae to be used as accurate cosmic distance indicators and thus they are crucial to understanding cosmology, dark energy, and inflation. SN 2011fe is being extensively observed over a wide range of wavelengths by both amateur and professional astronomers (including several AAVSO members). The UBVRI photometric observations discussed here are being carried out with the 1.3-meter Robotically Controlled Telescope (RCT) located at Kitt Peak National Observatory. The RCT data show a peak apparent magnitude of mV (max) ~ +10.0 mag, in agreement with other measures. Using the M 101 distance modulus of (mV - MV)0 = 29.04 (~21 million LY) as determined by Shappee and Stanek (2011), and assuming interstellar reddening of AV = 0.03 (from E(B-V) = 0.008) toward the objects in SN 2011fe's neighborhood, we estimate the absolute magnitude in the V band of SN 2011fe to be MV = -19.07 mag, which appears to be slightly under-luminous than the SN Iae average of
Do supernovae of type 1 paly a role in cosmic-ray production?
NASA Technical Reports Server (NTRS)
Shapiro, M. M.
1985-01-01
A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.
Finding the First Cosmic Explosions. II. Core-collapse Supernovae
NASA Astrophysics Data System (ADS)
Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.; Stiavelli, Massimo; Heger, Alexander; Holz, Daniel E.
2013-05-01
Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M ⊙ in addition to 50-500 M ⊙. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15-40 M ⊙ Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z ~ 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.
The role of fission in Supernovae r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant
2001-10-01
The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).
New prospects for detecting high-energy neutrinos from nearby supernovae
NASA Astrophysics Data System (ADS)
Murase, Kohta
2018-04-01
Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.
Resolving neutrino mass hierarchy from supernova (anti)neutrino-nucleus reactions
NASA Astrophysics Data System (ADS)
Vale, Deni; Paar, Nils
2015-10-01
Recently a hybrid method has been introduced to determine neutrino mass hierarchy by simultaneous measurements of detector responses induced by antineutrino and neutrino fluxes from accretion and cooling phase of type II supernova. The (anti)neutrino-nucleus cross sections for 12C, 16O, 56Fe and 208Pb are calculated in the framework of relativistic nuclear energy density functional and weak interaction Hamiltonian, while the cross sections for inelastic scattering on free protons in mineral oil and water, p (v¯e,e+)n are obtained using heavy-baryon chiral perturbation theory. The simulations of (anti)neutrino fluxes emitted from a proto-neutron star in a core-collapse supernova include collective and Mikheyev-Smirnov-Wolfenstein effects inside star. It is shown that simultaneous use of ve/v¯e detectors with different target material allow to determine the neutrino mass hierarchy from the ratios of ve/v¯e induced particle emissions. The hybrid method favors detectors with heavier target nuclei (208Pb) for the neutrino sector, while for antineutrinos the use of free protons in mineral oil and water is more appropriate.
Discovery of the Most Distant Supernovae and the Quest for {Omega}
DOE R&D Accomplishments Database
Goldhaber, G.; Perlmutter, S.; Gabi, S.; Goobar, A.; Kim, A.; Kim, M.; Pain, R.; Pennypacker, C.; Small, I.; Boyle, B.
1994-05-01
A search for cosmological supernovae has discovered a number of a type Ia supernovae. In particular, one at z = 0.458 is the most distant supernovae yet observed. There is strong evidence from measurements of nearby type Ia supernovae that they can be considered as "standard candles". The authors plan to use these supernovae to measure the deceleration in the general expansion of the universe. The aim of their experiment is to try and observe and measure about 30 such distant supernovae in order to obtain a measurement of the deceleration parameter q{sub o} which is related to {Omega}. Here {Omega} is the ratio of the density of the universe to the critical density, and they expect a measurement with an accuracy of about 30%.
NASA Astrophysics Data System (ADS)
Miller, A. A.; Cao, Y.; Piro, A. L.; Blagorodnova, N.; Bue, B. D.; Cenko, S. B.; Dhawan, S.; Ferretti, R.; Fox, O. D.; Fremling, C.; Goobar, A.; Howell, D. A.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Lunnan, R.; Masci, F. J.; McCully, C.; Nugent, P. E.; Sollerman, J.; Taddia, F.; Kulkarni, S. R.
2018-01-01
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15{+/- }0.070.15 days before our first detection. In the ∼24 hr after discovery, iPTF 16abc rose by ∼2 mag, featuring a near-linear rise in flux for ≳ 3 days. Early spectra show strong C II absorption, which disappears after ∼7 days. Unlike the extensively observed Type Ia SN 2011fe, the {(B-V)}0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.
Molecular gas in supernova local environments unveiled by EDGE
NASA Astrophysics Data System (ADS)
Galbany, L.; Mora, L.; González-Gaitán, S.; Bolatto, A.; Dannerbauer, H.; López-Sánchez, Á. R.; Maeda, K.; Pérez, S.; Pérez-Torres, M. A.; Sánchez, S. F.; Wong, T.; Badenes, C.; Blitz, L.; Marino, R. A.; Utomo, D.; Van de Ven, G.
2017-06-01
CO observations allow estimation of the gas content of molecular clouds, which trace the reservoir of cold gas fuelling star formation, as well as determination of extinction via H2 column density, N(H2). Here, we study millimetric and optical properties at 26 supernovae (SNe) locations of different types in a sample of 23 nearby galaxies, by combining molecular 12C16O (J = 1 → 0) resolved maps from the Extragalactic Database for Galaxy Evolution (EDGE) survey and optical Integral Field Spectroscopy (IFS) from the Calar Alto Legacy Integral Field Area (CALIFA) survey. We found an even clearer separation between type II and type Ibc SNe in terms of molecular gas than is found in the optical using Hα emission as a proxy for the current star formation (SF) rate, which reinforces the fact that SNe Ibc are more associated with SF environments. While AV at SN locations is similar for SNe II and SNe Ibc and higher than for SNe Ia, N(H2) is significantly higher for SNe Ibc than for SNe II and Ia. When compared with alternative extinction estimations made directly from SN photometry and spectroscopy, we find that our SNe Ibc also have redder colour excess, but showed standard Na I D absorption pseudo-equivalent widths (˜1 Å). In some cases, we find no extinction when IT is estimated from the environment but high amounts of extinction when measured from SN observations, which suggests that circumstellar material or dust sublimation may be playing a role. This work serves as a benchmark for future studies combining last-generation millimetre and optical IFS instruments to reveal the local environmental properties of extragalactic SNe.
The Fate of Exploding White Dwarfs
NASA Astrophysics Data System (ADS)
Fisher, Robert
2018-01-01
Type Ia supernovae play an important role as standardizable candles for cosmology, providing one of the most important probes into the nature of dark energy. Yet, the nature of the stellar progenitors which give rise to Type Ia supernovae remains elusive. For decades, the leading model explaining Type Ia supernovae properties consisted of a white dwarf accreting to near the Chandrasekhar mass, in the single-degenerate channel. More recently, a variety of lines of evidence point instead towards merging binary white dwarfs, in the double-degenerate channel, as the progenitors of most Type Ia supernovae. In this talk, I will focus upon recent advances at the interface between observation and theory which will help crack the Type Ia progenitor problem. In particular, I will present new insights obtained from recent multidimensional numerical simulations of both the double-degenerate and single-degenerate channels which I have undertaken with my students and collaborators. I will discuss how new models and observations will help elucidate the long-standing mystery of Type supernovae.
THE UNUSUAL TEMPORAL AND SPECTRAL EVOLUTION OF THE TYPE IIn SUPERNOVA 2011ht
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roming, P. W. A.; Bayless, A. J.; Pritchard, T. A.
2012-06-01
We present very early UV to optical photometric and spectroscopic observations of the peculiar Type IIn supernova (SN) 2011ht in UGC 5460. The UV observations of the rise to peak are only the second ever recorded for a Type IIn SN and are by far the most complete. The SN, first classified as an SN impostor, slowly rose to a peak of M{sub V} {approx} -17 in {approx}55 days. In contrast to the {approx}2 mag increase in the v-band light curve from the first observation until peak, the UV flux increased by >7 mag. The optical spectra are dominated bymore » strong, Balmer emission with narrow peaks (FWHM {approx} 600 km s{sup -1}), very broad asymmetric wings (FWHM {approx} 4200 km s{sup -1}), and blueshifted absorption ({approx}300 km s{sup -1}) superposed on a strong blue continuum. The UV spectra are dominated by Fe II, Mg II, Si II, and Si III absorption lines broadened by {approx}1500 km s{sup -1}. Merged X-ray observations reveal a L{sub 0.2-10} = (1.0 {+-} 0.2) Multiplication-Sign 10{sup 39} erg s{sup -1}. Some properties of SN 2011ht are similar to SN impostors, while others are comparable to Type IIn SNe. Early spectra showed features typical of luminous blue variables at maximum and during giant eruptions. However, the broad emission profiles coupled with the strong UV flux have not been observed in previous SN impostors. The absolute magnitude and energetics ({approx}2.5 Multiplication-Sign 10{sup 49} erg in the first 112 days) are reminiscent of normal Type IIn SN, but the spectra are of a dense wind. We suggest that the mechanism for creating this unusual profile could be a shock interacting with a shell of material that was ejected a year before the discovery of the SN.« less
Type II Supernova Spectral Diversity. II. Spectroscopic and Photometric Correlations
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; González-Gaitan, Santiago; Galbany, Lluis; Dessart, Luc; Stritzinger, Maximilian D.; Phillips, Mark M.; Morrell, Nidia; Folatelli, Gastón
2017-11-01
We present an analysis of observed trends and correlations between a large range of spectral and photometric parameters of more than 100 type II supernovae (SNe II), during the photospheric phase. We define a common epoch for all SNe of 50 days post-explosion, where the majority of the sample is likely to be under similar physical conditions. Several correlation matrices are produced to search for interesting trends between more than 30 distinct light-curve and spectral properties that characterize the diversity of SNe II. Overall, SNe with higher expansion velocities are brighter, have more rapidly declining light curves, shorter plateau durations, and higher 56Ni masses. Using a larger sample than previous studies, we argue that “Pd”—the plateau duration from the transition of the initial to “plateau” decline rates to the end of the “plateau”—is a better indicator of the hydrogen envelope mass than the traditionally used optically thick phase duration (OPTd: explosion epoch to end of plateau). This argument is supported by the fact that Pd also correlates with s 3, the light-curve decline rate at late times: lower Pd values correlate with larger s 3 decline rates. Large s 3 decline rates are likely related to lower envelope masses, which enables gamma-ray escape. We also find a significant anticorrelation between Pd and s 2 (the plateau decline rate), confirming the long standing hypothesis that faster declining SNe II (SNe IIL) are the result of explosions with lower hydrogen envelope masses and therefore have shorter Pd values. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS- 2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).
NASA Astrophysics Data System (ADS)
Gutiérrez, Claudia P.; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; González-Gaitan, Santiago; Stritzinger, Maximilian D.; Phillips, Mark M.; Galbany, Lluis; Folatelli, Gastón; Dessart, Luc; Contreras, Carlos; Della Valle, Massimo; Freedman, Wendy L.; Hsiao, Eric Y.; Krisciunas, Kevin; Madore, Barry F.; Maza, José; Suntzeff, Nicholas B.; Prieto, Jose Luis; González, Luis; Cappellaro, Enrico; Navarrete, Mauricio; Pizzella, Alessandro; Ruiz, Maria T.; Smith, R. Chris; Turatto, Massimo
2017-11-01
We present 888 visual-wavelength spectra of 122 nearby type II supernovae (SNe II) obtained between 1986 and 2009, and ranging between 3 and 363 days post-explosion. In this first paper, we outline our observations and data reduction techniques, together with a characterization based on the spectral diversity of SNe II. A statistical analysis of the spectral matching technique is discussed as an alternative to nondetection constraints for estimating SN explosion epochs. The time evolution of spectral lines is presented and analyzed in terms of how this differs for SNe of different photometric, spectral, and environmental properties: velocities, pseudo-equivalent widths, decline rates, magnitudes, time durations, and environment metallicity. Our sample displays a large range in ejecta expansion velocities, from ˜9600 to ˜1500 km s-1 at 50 days post-explosion with a median {{{H}}}α value of 7300 km s-1. This is most likely explained through differing explosion energies. Significant diversity is also observed in the absolute strength of spectral lines, characterized through their pseudo-equivalent widths. This implies significant diversity in both temperature evolution (linked to progenitor radius) and progenitor metallicity between different SNe II. Around 60% of our sample shows an extra absorption component on the blue side of the {{{H}}}α P-Cygni profile (“Cachito” feature) between 7 and 120 days since explosion. Studying the nature of Cachito, we conclude that these features at early times (before ˜35 days) are associated with Si II λ 6355, while past the middle of the plateau phase they are related to high velocity (HV) features of hydrogen lines. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programs 076.A-0156, 078.D-0048, 080.A-0516, and 082.A-0526).
Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models
NASA Astrophysics Data System (ADS)
Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja
2016-03-01
During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of < E/M> =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
Type II supernova energetics and comparison of light curves to shock-cooling models
Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; ...
2016-03-16
During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, withmore » $$\\gt 5$$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 10 51 erg/(10 $${M}_{\\odot }$$), and have a mean energy per unit mass of $$\\langle E/M\\rangle =0.85\\times {10}^{51}$$ erg/(10 $${M}_{\\odot }$$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ($${\\rm{\\Delta }}{m}_{15}$$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.« less
Type II Supernova Energetics and Comparison of Light Curves to Shock-Cooling Models
NASA Technical Reports Server (NTRS)
Rubin, Adam; Gal-Yam, Avishay; Cia, Annalisa De; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Cenko, S. Bradley
2016-01-01
During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with greater than 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 13 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of EM = (0.2-20) x 10(exp 51) erg/(10 M stellar mass), and have a mean energy per unit mass of E/ M = 0.85 x 10(exp 51) erg(10 stellar mass), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of Ni-56 produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (Delta m(sub15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
NASA Astrophysics Data System (ADS)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.
2018-03-01
We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...
2018-03-16
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2013-10-01
Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6100 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 9 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Additionally, evidence is growing that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycles 16 and 17 we had great success with our approved ToO programs. As of this proposal deadline, we had not yet triggered our Cycle 20 program. We therefore propose to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect to occur during Cycle 21, through ToO observations using WFC3/UVIS.
An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.
Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay
2005-05-27
Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.
NASA Astrophysics Data System (ADS)
Ruiz-Rocha, Krystal; Montes, Gabriela; Ramirez-Ruiz, Enrico
2017-01-01
Studies of galaxy evolution and formation through simulations and observations have yielded valuable insight into the life of stars. Abundance gradients, in particular, provide useful information about the element assembly history in the Milky Way. To study these gradients we use data from a simulation titled Eris which has been constructed with the goal of reproducing the properties of the Milky Way, to find the gradients of stars located in the disk that have been enriched by Supernovae and Neutron Star Mergers. We compare these gradients to the observations acquired from looking at Cepheids and field stars in the disk of our Milky Way. We also aim to understand whether radial metallicity gradients can be used to differentiate between Neutron Star Merger versus Type II Supernovae enrichment.
A relativistic type Ibc supernova without a detected gamma-ray burst.
Soderberg, A M; Chakraborti, S; Pignata, G; Chevalier, R A; Chandra, P; Ray, A; Wieringa, M H; Copete, A; Chaplin, V; Connaughton, V; Barthelmy, S D; Bietenholz, M F; Chugai, N; Stritzinger, M D; Hamuy, M; Fransson, C; Fox, O; Levesque, E M; Grindlay, J E; Challis, P; Foley, R J; Kirshner, R P; Milne, P A; Torres, M A P
2010-01-28
Long duration gamma-ray bursts (GRBs) mark the explosive death of some massive stars and are a rare sub-class of type Ibc supernovae. They are distinguished by the production of an energetic and collimated relativistic outflow powered by a central engine (an accreting black hole or neutron star). Observationally, this outflow is manifested in the pulse of gamma-rays and a long-lived radio afterglow. Until now, central-engine-driven supernovae have been discovered exclusively through their gamma-ray emission, yet it is expected that a larger population goes undetected because of limited satellite sensitivity or beaming of the collimated emission away from our line of sight. In this framework, the recovery of undetected GRBs may be possible through radio searches for type Ibc supernovae with relativistic outflows. Here we report the discovery of luminous radio emission from the seemingly ordinary type Ibc SN 2009bb, which requires a substantial relativistic outflow powered by a central engine. A comparison with our radio survey of type Ibc supernovae reveals that the fraction harbouring central engines is low, about one per cent, measured independently from, but consistent with, the inferred rate of nearby GRBs. Independently, a second mildly relativistic supernova has been reported.
Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR)
NASA Astrophysics Data System (ADS)
Peters, Christina; Malz, Alex; Hlozek, Renée
2018-01-01
The Bayesian Estimation Applied to Multiple Species (BEAMS) framework employs probabilistic supernova type classifications to do photometric SN cosmology. This work extends BEAMS to replace high-confidence spectroscopic redshifts with photometric redshift probability density functions, a capability that will be essential in the era the Large Synoptic Survey Telescope and other next-generation photometric surveys where it will not be possible to perform spectroscopic follow up on every SN. We present the Supernova Cosmology Inference with Probabilistic Photometric Redshifts (SCIPPR) Bayesian hierarchical model for constraining the cosmological parameters from photometric lightcurves and host galaxy photometry, which includes selection effects and is extensible to uncertainty in the redshift-dependent supernova type proportions. We create a pair of realistic mock catalogs of joint posteriors over supernova type, redshift, and distance modulus informed by photometric supernova lightcurves and over redshift from simulated host galaxy photometry. We perform inference under our model to obtain a joint posterior probability distribution over the cosmological parameters and compare our results with other methods, namely: a spectroscopic subset, a subset of high probability photometrically classified supernovae, and reducing the photometric redshift probability to a single measurement and error bar.
The Distant Type Ia Supernova Rate
DOE R&D Accomplishments Database
Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.
2002-05-28
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.
Detection of the gravitational lens magnifying a type Ia supernova.
Quimby, Robert M; Oguri, Masamune; More, Anupreeta; More, Surhud; Moriya, Takashi J; Werner, Marcus C; Tanaka, Masayuki; Folatelli, Gaston; Bersten, Melina C; Maeda, Keiichi; Nomoto, Ken'ichi
2014-04-25
Objects of known brightness, like type Ia supernovae (SNIa), can be used to measure distances. If a massive object warps spacetime to form multiple images of a background SNIa, a direct test of cosmic expansion is also possible. However, these lensing events must first be distinguished from other rare phenomena. Recently, a supernova was found to shine much brighter than normal for its distance, which resulted in a debate: Was it a new type of superluminous supernova or a normal SNIa magnified by a hidden gravitational lens? Here, we report that a spectrum obtained after the supernova faded away shows the presence of a foreground galaxy-the first found to strongly magnify a SNIa. We discuss how more lensed SNIa can be found than previously predicted.
An optical supernova associated with the X-ray flash XRF 060218.
Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R
2006-08-31
Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.
NASA Astrophysics Data System (ADS)
Fischer, John Arthur
For 70 years, the physics community operated under the assumption that the expansion of the Universe must be slowing due to gravitational attraction. Then, in 1998, two teams of scientists used Type Ia supernovae to discover that cosmic expansion was actually acceler- ating due to a mysterious "dark energy." As a result, Type Ia supernovae have become the most cosmologically important transient events in the last 20 years, with a large amount of effort going into their discovery as well as understanding their progenitor systems. One such probe for understanding Type Ia supernovae is to use rate measurements to de- termine the time delay between star formation and supernova explosion. For the last 30 years, the discovery of individual Type Ia supernova events has been accelerating. How- ever, those discoveries were happening in time-domain surveys that probed only a portion of the redshift range where expansion was impacted by dark energy. The Dark Energy Survey (DES) is the first project in the "next generation" of time-domain surveys that will discovery thousands of Type Ia supernovae out to a redshift of 1.2 (where dark energy be- comes subdominant) and DES will have better systematic uncertainties over that redshift range than any survey to date. In order to gauge the discovery effectiveness of this survey, we will use the first season's 469 photometrically typed supernovee and compare it with simulations in order to update the full survey Type Ia projections from 3500 to 2250. We will then use 165 of the 469 supernovae out to a redshift of 0.6 to measure the supernovae rate both as a function of comoving volume and of the star formation rate as it evolves with redshift. We find the most statistically significant prompt fraction of any survey to date (with a 3.9? prompt fraction detection). We will also reinforce the already existing tension in the measurement of the delayed fraction between high (z > 1.2) and low red- shift rate measurements, where we find no significant evidence of a delayed fraction at all in our photometric sample.
Shedding light on the Type Ia supernova extinction puzzle: dust location found
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Dhawan, S.
2018-06-01
The colour evolution of reddened Type Ia supernovae can place strong constraints on the location of dust and help address the question of whether the observed extinction stems from the interstellar medium or from circumstellar material surrounding the progenitor. Here we analyse BV photometry of 48 reddened Type Ia supernovae from the literature and estimate the dust location from their B - V colour evolution. We find a time-variable colour excess E(B - V) for 15 supernovae in our sample and constrain dust to distances between 0.013 and 45 pc (4 × 1016 - 1020 cm). For the remaining supernovae, we obtain a constant E(B - V) evolution and place lower limits on the dust distance from the explosion. In all the 48 supernovae, the inferred dust location is compatible with an interstellar origin for the extinction. This is corroborated by the observation that supernovae with relatively nearby dust (≲ 1 pc) are located close to the center of their host galaxy, in high-density dusty regions where interactions between the supernova radiation and interstellar clouds close by are likely to occur. For supernovae showing time-variable E(B - V), we identify a potential preference for low RV values, unusually strong sodium absorption and blue-shifted and time-variable absorption features. Within the interstellar framework, this brings evidence to a proposed scenario where cloud-cloud collisions induced by the supernova radiation pressure can shift the grain size distribution to smaller values and enhance the abundance of sodium in the gaseous phase.
VLA radio upper limit on Type IIn Supernova 2007rt
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-01-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2007rt (CBET 1148) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 12.55 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1148). The flux density at the supernova position is 9 ± 27 uJy.
NASA Technical Reports Server (NTRS)
Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.
2014-01-01
We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.
An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.
Schaefer, Bradley E; Pagnotta, Ashley
2012-01-11
A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schulyer
2017-08-01
Supernovae (SNe) have a profound effect on galaxies and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 10000 classified SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the trends from 15 detections for Type II-Plateau SNe appear to be red supergiant progenitors of relatively low mass (8 to 17 Msun) - although this upper mass limit still requires testing - and warmer, envelope-stripped supergiant progenitors for 5 Type IIb SNe. Additionally, evidence is accumulating that some Type II-narrow SNe may arise from exploding stars in a luminous blue variable phase. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with gamma-ray bursts, still remains ambiguous. Furthermore, we continue in the embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In Cycles 16, 17, and 20 through 24 we have had great success with our approved ToO programs. As of this proposal deadline, we have already triggered on SN 2016jbu with our Cycle 24 program. We therefore propose to continue this project in Cycles 25 and 26, to determine the identities of the progenitors of 8 SNe within about 20 Mpc through ToO observations using WFC3/UVIS.
NASA Technical Reports Server (NTRS)
Hughes, John P.
1999-01-01
We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K(alpha) emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based an these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.
Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project
Taddia, Francesco; Sollerman, J.; Fremling, C.; ...
2016-03-09
Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters.more » We also study the metallicity of their environments. Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R ⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R ⊙ (PTF09gpn) and 300 R ⊙ (SN 2004em). Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (~300 R ⊙, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of 56Ni in the explosion. Lastly, low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaron, O.; Perley, D. A.; Gal-Yam, A.
With the advent of new wide-field, high-cadence optical transient surveys, our understanding of the diversity of core-collapse supernovae has grown tremendously in the last decade. However, the pre-supernova evolution of massive stars, that sets the physical backdrop to these violent events, is theoretically not well understood and difficult to probe observationally. Here we report the discovery of the supernova iPTF 13dqy = SN 2013fs a mere ~3 hr after explosion. Our rapid follow-up observations, which include multiwavelength photometry and extremely early (beginning at ~6 hr post-explosion) spectra, map the distribution of material in the immediate environment (≲ 10 15 cm)more » of the exploding star and establish that it was surrounded by circumstellar material (CSM) that was ejected during the final ~1 yr prior to explosion at a high rate, around 10 -3 solar masses per year. The complete disappearance of flash-ionised emission lines within the first several days requires that the dense CSM be confined to within ≲10 15 cm, consistent with radio non-detections at 70–100 days. The observations indicate that iPTF 13dqy was a regular Type II SN; thus, the finding that the probable red supergiant (RSG) progenitor of this common explosion ejected material at a highly elevated rate just prior to its demise suggests that pre-supernova instabilities may be common among exploding massive stars.« less
The evolution of temperature and bolometric luminosity in Type II supernovae
NASA Astrophysics Data System (ADS)
Faran, T.; Nakar, E.; Poznanski, D.
2018-01-01
In this work, we present a uniform analysis of the temperature evolution and bolometric luminosity of a sample of 29 Type II supernovae (SNe), by fitting a blackbody model to their multiband photometry. Our sample includes only SNe with high quality multiband data and relatively well-sampled time coverage. Most of the SNe in our sample were detected less than a week after explosion so their light curves cover the evolution both before and after recombination starts playing a role. We use this sample to study the signature of hydrogen recombination, which is expected to appear once the observed temperature drops to ≈7000 K. Theory predicts that before recombination starts affecting the light curve, both the luminosity and the temperature should drop relatively fast, following a power law in time. Once the recombination front reaches inner parts of the outflow, it sets the observed temperature to be nearly constant, and slows the decline of the luminosity (or even leads to a re-brightening). We compare our data to analytic studies and find strong evidence for the signature of recombination. We also find that the onset of the optical plateau in a given filter, is effectively the time at which the blackbody peak reaches the central wavelength of the filter, as it cools, and it does not correspond to the time at which recombination starts affecting the emission.
How supernovae became the basis of observational cosmology
NASA Astrophysics Data System (ADS)
Pruzhinskaya, Maria Victorovna; Lisakov, Sergey Mikhailovich
2016-12-01
This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology - the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii.
Barbary, K.; Aldering, G.; Amanullah, R.; ...
2011-12-28
Here we report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 ± 1 cluster SNe Ia, we determine an SN Ia rate of 0.50 +0.23 -0.19 (stat) +0.10 -0.09 (sys) h 2 70 SNuB (SNuB ≡ 10 -12 SNe L -1 ⊙,B yr -1). In units of stellar mass, this translates to 0.36 + 0.16 -0.13 (stat) +0.07 -0.06 (sys) h 2 70 SNuMmore » (SNuM ≡ 10 -12 SNe M –1 ⊙ yr –1). This represents a factor of ≈ 5 ± 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: Ψ(t)∝t s . Under the approximation of a single-burst cluster formation redshift of zf = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = –1.41 +0.47 –0.40, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the "double degenerate" scenario and inconsistent with some models for the "single degenerate" scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.« less
Far-infrared spectrophotometry of SN 1987A - Days 265 and 267
NASA Technical Reports Server (NTRS)
Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.
1989-01-01
The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.
Effects of Pop III to PopII transition on the lowest metallicity stars in dwarf galaxies
NASA Astrophysics Data System (ADS)
Zhang, Yimiao; Keres, Dusan; FIRE Team
2018-01-01
We examine the effects of the enrichments from Population III (Pop III) stars on the formation and properties of the first generation of the Population II (Pop II) stars. Pop III stars begin to transition towards Pop II stars when the metals dispersed in Pop III supernovae pollute the nearby gas. However, details of this transition are still largely unknown. We use dwarf galaxy simulations from the Feedback In Realistic Environments (FIRE) project to identify the star-forming gas that is likely to be pre-enriched by Pop III supernovae and follow the stars that form in such gas. This pre-enrichment will leave the signature in the lowest metallicity stars that can be used to better constrain the details of the Pop III-to-Pop II transition.
Metallicity from Type II supernovae from the (i)PTF
Taddia, F.; Moquist, P.; Sollerman, J.; ...
2016-03-01
Type IIP supernovae (SNe IIP) have recently been proposed as metallicity (Z) probes. The spectral models of Dessart et al. (2014, MNRAS, 440, 1856) showed that the pseudo-equivalent width of Fe ii λ5018 (pEW 5018) during the plateau phase depends on the primordial Z, but there was a paucity of SNe IIP exhibiting pEW 5018 that were compatible with Z < 0.4 Z ⊙. This lack might be due to some physical property of the SN II population or to the fact that those SNe have been discovered in luminous, metal-rich targeted galaxies. In this paper, we use SN IImore » observations from the untargeted (intermediate) Palomar Transient Factory [(i)PTF] survey, aiming to investigate the pEW 5018 distribution of this SN population and, in particular, to look for the presence of SNe II at lower Z. We perform pEW 5018 measurements on the spectra of a sample of 39 (i)PTF SNe II, selected to have well-constrained explosion epochs and light-curve properties. Based on the comparison with the pEW 5018 spectral models, we subgrouped our SNe into four Z bins from Z ≈ 0.1 Z ⊙ up to Z ≈ 2 Z ⊙. We also independently investigated the Z of the hosts by using their absolute magnitudes and colors and, in a few cases, using strong-line diagnostics from spectra. We searched for possible correlations between SN observables, such as their peak magnitudes and the Z inferred from pEW 5018. We found 11 events with pEW 5018 that were small enough to indicate Z ≈ 0.1 Z ⊙. The trend of pEW 5018 with Z matches the Z estimates obtained from the host-galaxy photometry, although the significance of the correlation is weak. Finally, we also found that SNe with brighter peak magnitudes have smaller pEW 5018 and occur at lower Z.« less
Persistent C II absorption in the normal type Ia supernova 2002fk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartier, Régis; Zelaya, Paula; Hamuy, Mario
2014-07-01
We present well-sampled UBVRIJHK photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from –4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at 11,000 km s{sup –1} and persisting until 8 days past maximum light with a velocity of ∼9000 km s{sup –1}. SN 2002fk is characterized by a small velocity gradient of v-dot {sub Si} {sub II}=26 km s{sup –1} day{sup –1}, possibly caused by an off-center explosion withmore » the ignition region oriented toward the observer. The connection between the viewing angle of an off-center explosion and the presence of C II in the early-time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first H {sub 0} value based on near-infrared (near-IR) measurements of a Type Ia supernova (SN) between 63.0 ± 0.8 (±3.4 systematic) and 66.7 ± 1.0 (±3.5 systematic) km s{sup –1} Mpc{sup –1}, depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6%-9%) H {sub 0} values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of H {sub 0}.« less
Metallicity Gradients in the Intracluster Gas of Abell 496
NASA Astrophysics Data System (ADS)
Dupke, Renato A.; White, Raymond E., III
2000-07-01
Analysis of spatially resolved ASCA spectra of the intracluster gas in Abell 496 confirms there are mild metal abundance enhancements near the center, as previously found in a joint analysis of spectra from Ginga Large Area Counter and Einstein solid state spectrometer. Simultaneous analysis of spectra from all ASCA instruments (SIS+GIS) shows that the iron abundance is 0.36+/-0.03 solar 3'-12' from the center of the cluster and rises ~50% to 0.53+/-0.04 solar within the central 2'. The F-test shows that this abundance gradient is significant at the more than 99.99% level. Nickel and sulfur abundances are also centrally enhanced. We use a variety of elemental abundance ratios to assess the relative contribution of Type Ia supernovae (SNe Ia) and Type II supernovae (SNe II) to the metal enrichment of the intracluster gas. We find spatial gradients in several abundance ratios, indicating that the fraction of iron from SNe Ia increases toward the cluster center, with SNe Ia accounting for ~50% of the iron mass 3'-12' from the center and ~70% within 2'. The increased proportion of SN Ia ejecta at the center is such that the central iron abundance enhancement can be attributed wholly to SNe Ia; we find no significant gradient in SN II ejecta. These spatial gradients in the proportion of SN Ia/II ejecta imply that the dominant metal enrichment mechanism near the center is different than in the outer parts of the cluster. We show that the central abundance enhancement is unlikely to be due to ram pressure stripping of gas from cluster galaxies or to secularly accumulated stellar mass loss within the central cD. We suggest that the additional SN Ia ejecta near the center is the vestige of a secondary SN Ia-driven wind from the cD (following a more energetic protogalactic SN II-driven wind phase), which was partially smothered in the cD due to its location at the cluster center.
Estimating dust distances to Type Ia supernovae from colour excess time evolution
NASA Astrophysics Data System (ADS)
Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.
2018-01-01
We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.
Core-collapse SNe of type IIP and their progenitors: The case study of PNV J01315945+3328458
NASA Astrophysics Data System (ADS)
Dastidar, Raya; Kumar, Brijesh; Sahu, Devendra Kumar; Misra, Kuntal; Singh, Mridweeka; Gangopadhyay, Anjasha; Anapuma, Gadiyara Chakrapani; Pandey, Shashi Bhushan
2018-04-01
The type II supernovae (SNe) are hydrogen-rich cosmic explosions resulting from the collapse of massive stars. The impetus of studying individual events arises from its cosmological importance and the diverse understanding of the evolution and explosion mechanism of such events. In this work, we present the preliminary photometric and spectroscopic analysis of a recent type IIP explosion, PNV J01315945+3328458 in the galaxy NGC 582. While the initial phases of these energetic events are bright enough to be observed with the 1-2m class telescopes, the supernovae fade below the detection limit of these telescopes in the nebular phase. In addition, the class of sub-luminous events with Mv ˜ -15 or the events occurring at higher redshift, fade below the detection limit of these telescopes very early in their evolution. Large aperture telescopes like the newly installed 3.6m Devasthal Optical Telescope (DOT) will ensure a longer coverage of such events and also to probe deeper into the Universe. With the 3.6m telescope installed in Devasthal (DOT), we plan to study the progenitor environment of CCSNe to infer the metallicity at the explosion site.
The distant type Ia supernova rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pain, R.; Fabbro, S.; Sullivan, M.
2002-05-20
We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1more » supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.« less
The Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-12-01
An automated search for supernovae in late spiral galaxies has been established at Perth Observatory, Western Australia. This automated search uses three low-cost PC-clone computers, a liquid nitrogen cooled CCD camera built locally, and a 61-cm telescope automated for the search. The images are all analysed automatically in real-time by routines in Perth Vista, the image processing system ported to the PC architecture for the search system. The telescope control software written for the project, Teljoy, maintains open-loop position accuracy better than 30" of arc after hundreds of jumps over an entire night. Total capital cost to establish and run this supernova search over the seven years of development and operation was around US$30,000. To date, the system has discovered a total of 6 confirmed supernovae, made an independent detection of a seventh, and detected one unconfirmed event assumed to be a supernova. The various software and hardware components of the search system are described in detail, the analysis of the first three years of data is discussed, and results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units', expressed in supernovae per 10^10 solar blue luminosity galaxy per century. These values are for a Hubble constant of 75 km/s per Mpc, and scale as (H0/75)^2. The small number of discoveries has left large statistical uncertainties, but our strategy of frequent observations has reduced systematic errors - altering detection threshold or peak supernova luminosity by +/- 0.5 mag changes estimated rates by only around 20%. Similarly, adoption of different light curve templates for Type Ia and Type IIP supernovae has a minimal effect on the final statistics (2% and 4% change, respectively).
Gamma ray constraints on the Galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.
1991-01-01
We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.
Gamma ray constraints on the galactic supernova rate
NASA Technical Reports Server (NTRS)
Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.
1992-01-01
Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.
Initial statistics from the Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-08-01
The Perth Automated Supernova Search uses the 61-cm PLAT (Perth Lowell Automated Telescope) at Perth Observatory, Western Australia. Since 1993 January 1, five confirmed supernovae have been found by the search. The analysis of the first three years of data is discussed, and preliminary results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units'. These values are for a Hubble constant of 75 km per sec per Mpc.
Supernova 1987A in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Kafatos, Minas; Michalitsianos, Andrew G.
2006-11-01
Foreword; Acknowledgements; Workshop participants; 1. Images and spectrograms of Sanduleak - 69º202, the SN 1987a progenitor N. R. Walborn; 2. The progenitor of SN 1987A G. Sonneborn; 3. Another supernova with a blue progenitor C. M. Gaskell and W. C. Keel; 4. Optical and infrared observations of SN 1987A from Cerro Tololo Inter-American Observatory M. M. Phillips; 5. SN 1987A: observational results obtained at ESO I. J. Danziger, P. Bouchet, R. A. E. Fosbury, C. Gouiffes, L. B. Lucy, A. F. M. Moorwood, E. Oliva and F. Rufener; 6. Observations of SN 1987A at the South African Astronomical Observatory (SAAO) M. W. Feast; 7. Observations of SN 1987A at the Anglo-Australian Telescope W. J. Couch; 8. Linear polarimetric study of SN 1987A A. Clocchiatti, M. Méndez, O. Benvenuto, C. Feinstein, H. Marraco, B. García and N. Morrell; 9. Infrared spectroscopy of SN 1987A from the NASA Kuiper Airborne Observatory H. P. Larson, S. Drapatz, M. J. Mumma and H. A. Weaver; 10. Radio observations of SN 1987A N. Bartel et al.; 11. Ultraviolet observations of SN 1987A: clues to mass loss R. P. Kirshner; 12. On the energetics of SN 1987A N. Panagia; 13. On the nature and apparent uniqueness of SN 1987A A. V. Filippenko; 14. A comparison of the SN 1987A light curve with other type II supernovae, and the detectability of similar supernovae M. F. Schmitz and C. M. Gaskell; 15. P-Cygni features and photospheric velocities L. Bildsten and J. C. L. Wang; 16. The Neutrino burst from SN 1987A detected in the Mont Blanc LSD experiment M. Aglietta et al.; 17. Toward observational neutrino astrophysics M. Koshiba; 18. The discovery of neutrinos from SN 1987A with the IMB detector J. Matthews; 19. Peering into the abyss: the neutrinos from SN 1987A A. Burrows; 20. Phenomenological analysis of neutrino emission from SN 1987A J. N. Bahcall, D. N. Spergel and W. H. Press; 21. Mass determination of neutrinos H. Y. Chiu; 22. Neutrino transport in a type II supernova D. C. Ellison, P. M. Giovanoni and S. W. Bruenn; 23. Neutrino masses from SN 1987A J. Franklin; 24. Supernova neutrinos and their oscillations T. K. Kuo and J. T. Pantaleone; 25. Neutrinos from SN 1987A and cooling of the nascent neutron star D. Q. Lamb, F. Melia and T. J. Loredo; 26. Neutrino Energetics of SN 1987A J. M. Lattimer and A. Yahil; 27. Neutrino emission from cooling neutron stars E. S. Myra, J. M. Lattimer and A. Yahil; 28. Statistical analysis of the time structure of the neutrinos from SN 1987A P. J. Schinder and S. A. Bludman; 29. Neutrino properties from observations of SN 1987A A. Dar; 30. SN 1987A and companion C. Papaliolios, M. Karovska, P. Nisenson, and C. Standley; 31. Supernovae light echoes B. E. Schaefer; 32. A real light echo: Nova Persei 1901 J. E. Felten; 33. IR speckle- interferometry of SN 1987A A. A. Chalabaev, C. Perrier and J. M. Mariotti; 34. Infrared opportunities for Supernova 1987A E. Dwek; 35. The UV interstellar spectrum and environment of SN 1987A F. C. Bruhweiler; 36. The interstellar spectrum of SN 1987A in the ultraviolet J. C. Blades, J. M. Wheatley, N. Panagia, M. Grewing, M. Pettini and W. Wamsteker; 37. The structure and spectrum of SN 1987A J. C. Wheeler, R. P. Harkness, and Z. Barkat; 38. Supernova 1987A: constraints on the theoretical model K. Nomoto and T. Shigeyama; 39. Supernova 1987A: a model and its predictions S. E. Woosley; 40. SN 1987A: circumstellar and interstellar interaction R. A. Chevalier; 41. Theoretical models of Supernova 1987A W. D. Arnett; 42. Evolution of the stellar progenitor of Supernova 1987A J. W. Truran and A. Weiss; 43.Modelling the atmosphere of SN 1987A L. B. Lucy; 44. SN 1987A: a stripped asymptotic- branch giant in a binary system P. C. Joss, Ph. Podsiadlowski, J. J. L. Hsu and S. Rappaport; 45. Pulsar formation and the fall back mass fraction S. A. Colgate; 46. An unusual hard X-ray source in the region of SN 19
Detection of circumstellar material in a normal type Ia supernova.
Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M
2007-08-17
Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.
OGLE14-073 - a promising pair-instability supernova candidate
NASA Astrophysics Data System (ADS)
Kozyreva, Alexandra; Kromer, Markus; Noebauer, Ulrich M.; Hirschi, Raphael
2018-05-01
The recently discovered bright type II supernova OGLE14-073 evolved very slowly. The light curve rose to maximum for 90 days from discovery and then declined at a rate compatible with the radioactive decay of 56Co. In this study, we show that a pair-instability supernova is a plausible mechanism for this event. We calculate explosion models and light curves with the radiation hydrodynamics code STELLA starting from two MZAMS = 150 M⊙, Z=0.001 progenitors. We obtain satisfactory fits to OGLE14-073 broadband light curves by including additional 56Ni in the centre of the models and mixing hydrogen down into the inner layers of the ejecta to a radial mass coordinate of 10 M⊙. The extra 56Ni required points to a slightly more massive progenitor star. The mixing of hydrogen could be due to large scale mixing during the explosion. We also present synthetic spectra for our models simulated with the Monte Carlo radiative transfer code ARTIS. The synthetic spectra reproduce the main features of the observed spectra of OGLE14-073. We conclude that OGLE14-073 is one of the most promising candidates for a pair-instability explosion.
Explosions of Thorne-Żytkow objects
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.
2018-03-01
We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.
Galacti chemical evolution: Hygrogen through zinc
NASA Technical Reports Server (NTRS)
Timmes, F. X.; Woosley, S. E.; Weaver, Thomas A.
1995-01-01
Using the output from a grid of 60 Type II supernova models (Woosley & Weaver 1995) of varying mass (11 approx. less than (M/solar mass) approx. less than 40) and metallicity (0, 10(exp -4), 0.01, and 1 solar metallicity), the chemical evolution of 76 stable isotopes, from hydrogen to zinc, is calculated. The chemical evolution calculation employs a simple dynamical model for the Galaxy (infall with a 4 Gyr e-folding timescale onto a exponential dsk and 1/r(exp 2) bulge), and standard evolution parameters, such as a Salpeter initial mass function and a quadratic Schmidt star formation rate. The theoretical results are compared in detail with observed stellar abundances in stars with metallicities in the range -3.0 approx. less than (Fe/H) approx. less than 0.0 dex. While our discussion focuses on the solar neighborhood where there are the most observations, the supernova rates, an intrinsically Galactic quality, are also discussed.
The Carnegie Supernova Project: The Low-Redshift Survey
NASA Astrophysics Data System (ADS)
Hamuy, Mario; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Persson, S. E.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Murphy, D. C.; Madore, Barry F.; Wyatt, P.; Maza, José; Filippenko, Alexei V.; Li, Weidong; Pinto, P. A.
2006-01-01
Supernovae are essential to understanding the chemical evolution of the universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a 5 year program that began in 2004 September, we expect to obtain high-precision u'g'r'i'BVYJHKs light curves and optical spectrophotometry for about 250 supernovae of all types. In this paper we provide a detailed description of the CSP survey observing and data reduction methodology. In addition, we present preliminary photometry and spectra obtained for a few representative supernovae during the first observing campaign.
FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.
2013-05-01
Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M{sub Sun} in addition to 50-500 M{sub Sun }. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. Wemore » present numerical simulations of 15-40 M{sub Sun} Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z {approx} 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.« less
Constraining the Origin and Heating Mechanism of Dust in Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori; Skrutskie, Michael; Chevalier, Roger; Moseley, Samuel Harvey
2011-05-01
More than any other supernova subclass, Type IIn supernovae tend to exhibit late-time (>100 days) infrared emission from warm dust. Identifying the origin and heating mechanism of the dust provides an important probe of the supernova explosion, circumstellar environment, and progenitor system. Yet mid-infrared observations, which span the peak of the thermal emission, are rare. Two years ago, we executed a warm Spitzer survey (P60122) of sixty-eight Type IIn events from the past ten years. The survey uncovered nine supernovae with unreported late-time infrared excesses, in some cases more than 5 years post-explosion. From this single epoch of data, and ground-based optical data, we have determined the likely origin of the mid-infrared emission to be pre-existing dust that is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, we noticed an emerging trend suggests these supernovae ``turn off'' at ~1000-2000 days post-discovery once the forward shock overruns the dust shell. Now is the ideal time to build upon this work with a second epoch of observations, which will be necessary to constrain our models. If we catch even a single supernova turning off between the first and second epochs of observation, we will be able to both measure the size of the circumstellar dust shell and characterize of the supernova progenitor system. We can obtain all the necessary data in only 9.3 hours of observation. Our team has extensive experience in infrared supernovae observations. We have already published two papers on one Type IIn supernovae (SN 2005ip) and authored two successful proposal for Spitzer observations of this subclass. This is an ideal application for the Spitzer warm mission, as the 3.6 and 4.5 micron bands span the peak of the thermal emission and provide the necessary constraints on the dust temperature, mass, and luminosity.
Dust in Supernovae and Supernova Remnants II: Processing and Survival
NASA Astrophysics Data System (ADS)
Micelotta, E. R.; Matsuura, M.; Sarangi, A.
2018-03-01
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.
Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae
NASA Technical Reports Server (NTRS)
DiStefano, R.
1996-01-01
In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.
A hybrid type Ia supernova with an early flash triggered by helium-shell detonation
NASA Astrophysics Data System (ADS)
Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'Ichi; Yasuda, Naoki; Jha, Saurabh W.; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D.; Mazzali, Paolo A.; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J.; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi
2017-10-01
Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models—the helium-ignition branch—does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.
A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.
Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi
2017-10-04
Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.
The Data Release of the Sloan Digital Sky Survey-II Supernova Survey
NASA Astrophysics Data System (ADS)
Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen
2018-06-01
This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.
Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts
NASA Astrophysics Data System (ADS)
Blondin, Stéphane; Dessart, Luc; Leibundgut, Bruno; Branch, David; Höflich, Peter; Tonry, John L.; Matheson, Thomas; Foley, Ryan J.; Chornock, Ryan; Filippenko, Alexei V.; Sollerman, Jesper; Spyromilio, Jason; Kirshner, Robert P.; Wood-Vasey, W. Michael; Clocchiatti, Alejandro; Aguilera, Claudio; Barris, Brian; Becker, Andrew C.; Challis, Peter; Covarrubias, Ricardo; Davis, Tamara M.; Garnavich, Peter; Hicken, Malcolm; Jha, Saurabh; Krisciunas, Kevin; Li, Weidong; Miceli, Anthony; Miknaitis, Gajus; Pignata, Giuliano; Prieto, Jose Luis; Rest, Armin; Riess, Adam G.; Salvo, Maria Elena; Schmidt, Brian P.; Smith, R. Chris; Stubbs, Christopher W.; Suntzeff, Nicholas B.
2006-03-01
Using archival data of low-redshift (z<0.01 Center for Astrophysics and SUSPECT databases) Type Ia supernovae (SNe Ia) and recent observations of high-redshift (0.16
NASA Astrophysics Data System (ADS)
Kumar, Brajesh
2014-11-01
Massive stars are the progenitors of the most energetic explosions in the Universe such as core-collapse supernovae (CCSNe) and gamma ray bursts. During their life time they follow various evolutionary phases (e.g. supergiant, luminous blue variable and Wolf-Rayet). They strongly influence their environments through their energetic ionization radiation and powerful stellar winds. Furthermore, the formation of low and intermediate-mass stars are also being regulated by them. The Carina nebula region, which hosts a large population of massive stars and several young star clusters, provides an ideal target for studying the feedback of massive stars. In this thesis, we investigated a wide field (32' × 31') region located in the west of the Carina nebula and centered on the massive binary WR 22. For our study, we used new optical photometry (UBVRI H-alpha), along with some low resolution spectroscopy, archival near infra-red (2MASS), and X-ray (Chandra, XMM-Newton) data. We estimated several parameters such as reddening, reddening law, etc. and also identified young stellar objects located in the region under study (Kumar et al., 2014b). Among the various types of CCSNe, Type IIb are recognized with their typical observational properties. Some of them show clear indication of double peaks in their light curves. The spectral features of these SNe show a transition between Type II and Type Ib/c events at early and later epochs, respectively. It has been noticed that the occurrence of these events is not common in volume limited surveys. In this thesis we have studied the properties of the light curve and spectral evolution of the Type IIb supernova 2011fu. The observational properties of this object show resemblance to those of SN 1993J with a possible signature of the adiabatic cooling phase (Kumar et al., 2013). When light passes through the expanding ejecta of the SNe, it retains information about the orientation of the ejected layers. In general, CCSNe exhibit a significant level of polarization during various phases of their evolution at different wavelengths. We have investigated the broad band polarimetric properties of a Type II plateau SN 2012aw and compared it with other well studied CCSNe of similar kinds (Kumar et al., 2014a). In the framework of the present thesis, we have also contributed to the development of the 4m International Liquid Mirror Telescope (ILMT) project which is a joint collaborative effort among different universities and research institutes in Belgium, India, Canada and Poland. We performed various experiments including the spin casting of the primary mirror, optical quality tests of the mercury surface, mylar film experiments, etc. The possible scientific capabilities and future contributions of this telescope are also discussed. We propose our plans to identify the transients (specially supernovae) with the ILMT and their further follow-up scheme. The installation of the ILMT will start very soon at the Devasthal observatory, ARIES Nainital, India.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2015-10-01
Supernovae (SNe) have a profound effect on galaxies, and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6400 IAU-designated SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, we have learned that Type II-Plateau SNe appear to primarily arise from relatively low mass (8 to 20 Msun) red supergiants, leaving a puzzle as to what is happening to more massive stars. Additionally, evidence is accumulating that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are being used for precision cosmology. In previous Cycles we have had great success with our approved ToO programs. As of this proposal deadline, we have had one trigger (SN 2014dt) completed so far and one pending (SN 2015G) with our Cycle 22 program. The compelling scientific questions lead us to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect during Cycle 23, through ToO observations using WFC3/UVIS.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2014-10-01
Supernovae (SNe) have a profound effect on galaxies, and have been used as precise cosmological probes, resulting in the Nobel-distinguished discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with over 6300 IAU-designated SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting line of study, the emerging trend from 9 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass (8 to 20 Msun) red supergiants, although more cases are needed. Additionally, evidence is growing that the progenitors of Type II-narrow SNe may be related to luminous blue variables. However, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycles 16, 17, and 20 we had great success with our approved ToO programs. As of this proposal deadline, we have had one trigger (SN 2014G) so far with our Cycle 21 program. We therefore propose to continue this project to determine the identities of the progenitors of 4 SNe within, generally, about 20 Mpc, which we expect to occur during Cycle 22, through ToO observations using WFC3/UVIS.
Spectral Classification of PSN J15381795+2544173
NASA Astrophysics Data System (ADS)
Silverman, J. M.; Cohen, D. P.; Filippenko, A. V.
2012-06-01
We report that inspection of a noisy CCD spectrum (range 340-1000 nm), obtained on June 27.3 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that PSN J15381795+2544173 (ATEL 4200) is a Type Ia supernova (SN Ia). After removal of the host-galaxy recession velocity of 26,952 km/s (Sloan Digital Sky Survey Data Release 6), we find the absorption minimum of the Si II 635.5-nm line to be blueshifted by about 11,700 km/s.
Analytic Approximation of Carbon Condensation Issues in Type ii Supernovae
NASA Astrophysics Data System (ADS)
Clayton, Donald D.
2013-01-01
I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if 56Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel & Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.
SALT spectroscopic classification of SN 2017erp as a type-Ia supernova well before maximum light
NASA Astrophysics Data System (ADS)
Jha, S. W.; Camacho, Y.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Skelton, R.
2017-06-01
We obtained SALT (+RSS) spectroscopy of SN 2017erp (discovered by K. Itagaki) on 2017 Jun 13.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017erp is a type-Ia supernova before maximum light.
Early Observations of the Type Ia Supernova iPTF 16abc
NASA Astrophysics Data System (ADS)
Miller, Adam; iPTF Collaboration
2018-01-01
Early observations of Type Ia supernovae (SNe) provide a unique probe of their progenitor systems and explosion physics. Here, we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN only occurred 0.15 +0.15-0.07 d before our first detection. In the ~24 hr after discovery, iPTF 16abc rose by ~2 mag, following a near-linear rise in flux for ~3 d. Strong C II absorption is detected in the early spectra of iPTF 16abc, before disappearing after ~7 d. Unlike the extensively-observed Type Ia SN 2011fe, the (B-V)_0 colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling, or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including: (i) the rapid, near-linear rise, (ii) the non-evolving blue colors, and (iii) the strong absorption from ionized carbon, are the result of either vigorous mixing of radioactive-Ni in the SN ejecta, or ejecta interaction with diffuse material, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.
Type IIP supernova light curves affected by the acceleration of red supergiant winds
NASA Astrophysics Data System (ADS)
Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.
2018-05-01
We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.
Supernovae, supernebulae, and nucleosynthesis
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig; Harkness, Robert P.; Barkat, Zalman; Swartz, Douglas
1986-10-01
Supernova atmosphere calculations continue to show that variants of previously calculated carbon-deflagration models provide a good representation of the maximum light spectra of classical type Ia supernovae including the ultraviolet deficit. Careful consideration of the conditions leading to central thermonuclear runaway of degenerate carbon shows that runaway can, however, lead to detonation and direct conflict with observations. As witnessed by the spectra of type Ib supernovae, massive stars are expected to be the primary source of oxygen. Estimates of the absolute production of oxygen in massive stars suggest that if all stars more massive than ≡12 M_sun; explode as supernovae, oxygen would be overproduced in the solar neighborhood, an effect exacerbated by the recent increase in the reaction rate for 12C(α, γ)16O.
Investigating the Origin of the Supernova Remnant W49B
NASA Astrophysics Data System (ADS)
Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.
2018-01-01
W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu
2014-06-10
A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less
NASA Astrophysics Data System (ADS)
Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Clayton, Geoffrey C.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Wesson, Roger; Andrews, Jennifer E.; Ercolano, Barbara; Welch, Douglas
2012-01-01
We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days ~300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate 56Ni masses for our targets (0.5-14 × 10-2 M ⊙) from the bolometric light curve of each of days ~150-300 using SN 1987A as a standard (7.5 × 10-2 M ⊙). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm-3) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (~1 cm-3). We analyze the sample as a whole in the context of physical properties derived in prior work. The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 × 10-2, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The dust mass does not appear to be correlated with progenitor mass.
Left Behind: A Bound Remnant from a White Dwarf Supernova?
NASA Astrophysics Data System (ADS)
Jha, Saurabh
2017-08-01
Type Ia supernovae (SN Ia) have enormous importance to cosmology and astrophysics, but their progenitors and explosion mechanisms are not understood in detail. Recently, observations and theoretical models have suggested that not all thermonuclear white-dwarf supernova explosions are normal SN Ia. In particular, type Iax supernovae (peculiar cousins to SN Ia), are thought to be exploding white dwarfs that are not completely disrupted, leaving behind a bound remnant. In deep and serendipitous HST pre-explosion data, we have discovered a luminous, blue progenitor system for the type Iax SN 2012Z in NGC 1309, which we interpret as a helium-star donor to the exploding white dwarf. HST observations of SN 2012Z in 2016, when the supernova light was expected to have faded away, still show a source at the location, as expected in our model where the pre-explosion flux was coming from the companion. However, the 2016 data also show a surprise: an excess flux compared to the progenitor system. Our proposed observations here will help unravel the mystery of that excess flux: is it from the bound ex-white dwarf remnant? Or is it from the shocked companion star that has been bombarded by supernova ejecta? Either of these possibilities would provide key new evidence as to the nature of these white dwarf supernovae.
Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.
2014-05-02
An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we performmore » a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.« less
Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin; Sand, David J.; Valenti, Stefano; Brown, Peter; Howell, D. Andrew; McCully, Curtis; Kasen, Daniel; Arcavi, Iair; Azalee Bostroem, K.; Tartaglia, Leonardo; Hsiao, Eric Y.; Davis, Scott; Shahbandeh, Melissa; Stritzinger, Maximilian D.
2017-08-01
We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R ⊙ from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C II λ6580) absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.
Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis
We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B , and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R {sub ☉} from the explodingmore » white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C ii λ 6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.« less
Miller, A. A.; Cao, Y.; Piro, A. L.; ...
2018-01-11
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. A.; Cao, Y.; Piro, A. L.
Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is when the SN could have first been detected by our survey, occurred onlymore » $$0.15\\pm_{0.07}^{0.15}$$ days before our first detection. In the $$\\sim$$24 hr after discovery, iPTF 16abc rose by $$\\sim$$2 mag, featuring a near-linear rise in flux for $$\\gtrsim$$3 days. Early spectra show strong C II absorption, which disappears after $$\\sim$$7 days. Unlike the extensivelyobserved SN Ia SN 2011fe, the $$(B-V)_0$$ colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive 56Ni in the SN ejecta, or a combination of the two. Finally, in the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.« less
A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst.
Greiner, Jochen; Mazzali, Paolo A; Kann, D Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E, Felipe; Rossi, Andrea; Klose, Sylvio; Taubenberger, Stefan; Knust, Fabian; Afonso, Paulo M J; Ashall, Chris; Bolmer, Jan; Delvaux, Corentin; Diehl, Roland; Elliott, Jonathan; Filgas, Robert; Fynbo, Johan P U; Graham, John F; Guelbenzu, Ana Nicuesa; Kobayashi, Shiho; Leloudas, Giorgos; Savaglio, Sandra; Schady, Patricia; Schmidl, Sebastian; Schweyer, Tassilo; Sudilovsky, Vladimir; Tanga, Mohit; Updike, Adria C; van Eerten, Hendrik; Varela, Karla
2015-07-09
A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2009-07-01
Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with nearly 4000 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting new line of study, the emerging trend from 5 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Nonetheless, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. In Cycle 16 we have triggered on the Type Ic SN 2007gr and Type IIb SN 2008ax so far. We propose to determine the identities of the progenitors of 4 SNe within 17 Mpc, which we expect to occur during Cycle 17, through ToO observations using ACS/HRC.
The ASAS-SN bright supernova catalogue - III. 2016
NASA Astrophysics Data System (ADS)
Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Bose, S.; Beacom, J. F.; Bersier, D.; Chen, Ping; Chomiuk, L.; Falco, E.; Godoy-Rivera, D.; Morrell, N.; Pojmanski, G.; Shields, J. V.; Strader, J.; Stritzinger, M. D.; Thompson, Todd A.; Woźniak, P. R.; Bock, G.; Cacella, P.; Conseil, E.; Cruz, I.; Fernandez, J. M.; Kiyota, S.; Koff, R. A.; Krannich, G.; Marples, P.; Masi, G.; Monard, L. A. G.; Nicholls, B.; Nicolas, J.; Post, R. S.; Stone, G.; Wiethoff, W. S.
2017-11-01
This catalogue summarizes information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (mpeak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al. This is the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, J. L.; Knapp, G. R.; Rest, A.
We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrummore » at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.« less
NASA Astrophysics Data System (ADS)
Rubin, Adam; Gal-Yam, Avishay
2017-10-01
Modern transient surveys have begun discovering and following supernovae (SNe) shortly after first light—providing systematic measurements of the rise of Type II SNe. We explore how analytic models of early shock-cooling emission from core-collapse SNe can constrain the progenitor’s radius, explosion velocity, and local host extinction. We simulate synthetic photometry in several realistic observing scenarios; assuming the models describe the typical explosions well, we find that ultraviolet observations can constrain the progenitor’s radius to a statistical uncertainty of ±10%-15%, with a systematic uncertainty of ±20%. With these observations the local host extinction (A V ) can be constrained to a factor of two and the shock velocity to ±5% with a systematic uncertainty of ±10%. We also reanalyze the SN light curves presented by Garnavich et al. (2016) and find that KSN 2011a can be fit by a blue supergiant model with a progenitor radius of {R}s< 7.7+8.8({stat})+1.9({sys}) {R}⊙ , while KSN 2011d can be fit with a red supergiant model with a progenitor radius of {R}s={111}-21({stat)-1({sys})}+89({stat)+49({sys})} {R}⊙ . Our results do not agree with those of Garnavich et al. Moreover, we re-evaluate their claims and find that there is no statistically significant evidence for a shock-breakout flare in the light curve of KSN 2011d.
The Type IIb Supernova 2013df and its Cool Supergiant Progenitor
NASA Technical Reports Server (NTRS)
VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.;
2014-01-01
We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.
NASA Technical Reports Server (NTRS)
Boisseau, John R.; Wheeler, J. Craig
1991-01-01
Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.
Spectroscopic classification of AT 2017cfd as a young Type Ia supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.
2017-03-01
We report the spectroscopic observation of AT 2017cfd, a transient discovered by the Lick Observatory Supernova Search (LOSS) on 2017-03-16. A spectrum (range 3700-9300 Angstroms), taken with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by Steve Odewahn on 2017-03-18.16 UT, is similar to that of a Type Ia supernova before maximum light.
-Chuan Pan, Companions in Type Ia SNe Remnants 2015-03 Daniel Kasen, Type Ia SNe Models 2014-06 Marisa March, DES Supernovae 2014-06 David Chamulak, Supernova Explosion Models 2011-04 Gene Byrd 2010-04 Liz
Nucleosynthesis of Iron-Peak Elements in Type-Ia Supernovae
NASA Astrophysics Data System (ADS)
Leung, Shing-Chi; Nomoto, Ken'ichi
The observed features of typical Type Ia supernovae are well-modeled as the explosions of carbon-oxygen white dwarfs both near Chandrasekhar mass and sub-Chandrasekhar mass. However, observations in the last decade have shown that Type Ia supernovae exhibit a wide diversity, which implies models for wider range of parameters are necessary. Based on the hydrodynamics code we developed, we carry out a parameter study of Chandrasekhar mass models for Type Ia supernovae. We conduct a series of two-dimensional hydrodynamics simulations of the explosion phase using the turbulent flame model with the deflagration-detonation-transition (DDT). To reconstruct the nucleosynthesis history, we use the particle tracer scheme. We examine the role of model parameters by examining their influences on the final product of nucleosynthesis. The parameters include the initial density, metallicity, initial flame structure, detonation criteria and so on. We show that the observed chemical evolution of galaxies can help constrain these model parameters.
Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B
NASA Technical Reports Server (NTRS)
Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David
1995-01-01
We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.
NASA Astrophysics Data System (ADS)
Jang, In Sung; Hatt, Dylan; Beaton, Rachael L.; Lee, Myung Gyoon; Freedman, Wendy L.; Madore, Barry F.; Hoyt, Taylor J.; Monson, Andrew J.; Rich, Jeffrey A.; Scowcroft, Victoria; Seibert, Mark
2018-01-01
The Carnegie–Chicago Hubble Program (CCHP) seeks to anchor the distance scale of Type Ia supernovae via the Tip of the Red Giant Branch (TRGB) method. Based on deep Hubble Space Telescope ACS/WFC imaging, we present an analysis of the TRGB for the metal-poor halo of NGC 1365, a giant spiral galaxy in the Fornax cluster that was host to the Type Ia supernova SN 2012fr. We have measured the extinction-corrected TRGB magnitude of NGC 1365 to be F814W = 27.34 ± 0.03stat ± 0.04sys mag. In advance of future direct calibration by Gaia, we adopt a provisional I-band TRGB luminosity set at the Large Magellanic Cloud and find a true distance modulus μ 0 = 31.29 ± 0.04stat ± 0.06sys mag or D = 18.1 ± 0.3stat ± 0.5sys Mpc. This measurement is in excellent agreement with recent Cepheid-based distances to NGC 1365 and reveals no significant difference in the distances derived from stars of Populations I and II for this galaxy. We revisit the error budget for the CCHP path to the Hubble constant based on the analysis presented here, i.e., that for one of the most distant Type Ia supernova hosts within our Program, and find that a 2.5% measurement is feasible with the current sample of galaxies and TRGB absolute calibration. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13691.
NASA Technical Reports Server (NTRS)
Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.;
2016-01-01
Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (< or =10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.
Type II Supernova Light Curves and Spectra from the CfA
NASA Astrophysics Data System (ADS)
Hicken, Malcolm; Friedman, Andrew S.; Blondin, Stephane; Challis, Peter; Berlind, Perry; Calkins, Mike; Esquerdo, Gil; Matheson, Thomas; Modjaz, Maryam; Rest, Armin; Kirshner, Robert P.
2017-11-01
We present multiband photometry of 60 spectroscopically confirmed supernovae (SNe): 39 SNe II/IIP, 19 IIn, 1 IIb, and 1 that was originally classified as a IIn but later as a Ibn. Of these, 46 have only optical photometry, 6 have only near-infrared (NIR) photometry, and 8 have both optical and NIR. The median redshift of the sample is 0.016. We also present 195 optical spectra for 48 of the 60 SN. There are 26 optical and 2 NIR light curves of SNe II/IIP with redshifts z> 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2 m and 1.3 m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the u\\prime {UBVRIr}\\prime I\\prime {{JHK}}s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5 m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with select samples from the literature: two-thirds of our star sequences have average V offsets within ±0.02 mag and roughly three-quarters of our light curves have average differences within ±0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.
THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blondin, S.; Matheson, T.; Kirshner, R. P.
2012-05-15
We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia asmore » a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SNe Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B - V color of SNe Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.« less
The ASAS-SN bright supernova catalogue – III. 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
The ASAS-SN bright supernova catalogue – III. 2016
Holoien, T. W. -S.; Brown, J. S.; Stanek, K. Z.; ...
2017-08-18
In this catalogue we summarize information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) and all other bright (m peak ≤ 17), spectroscopically confirmed supernovae discovered in 2016. We then gather the near-infrared through ultraviolet magnitudes of all host galaxies and the offsets of the supernovae from the centres of their hosts from public data bases. We illustrate the results using a sample that now totals 668 supernovae discovered since 2014 May 1, including the supernovae from our previous catalogues, with type distributions closely matching those of the ideal magnitude limited sample from Li et al.more » This is then the third of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.« less
Simulating the detection and classification of high-redshift supernovae with HARMONI on the ELT
NASA Astrophysics Data System (ADS)
Bounissou, S.; Thatte, N.; Zieleniewski, S.; Houghton, R. C. W.; Tecza, M.; Hook, I.; Neichel, B.; Fusco, T.
2018-02-01
We present detailed simulations of integral field spectroscopic observations of a supernova in a host galaxy at z ˜ 3, as observed by the HARMONI spectrograph on the Extremely Large Telescope, asssisted by laser tomographic adaptive optics. The goal of the simulations, using the HSIM simulation tool, is to determine whether HARMONI can discern the supernova Type from spectral features in the supernova spectrum. We find that in a 3 hour observation, covering the near-infrared H and K bands, at a spectral resolving power of ˜3000, and using the 20×20 mas spaxel scale, we can classify supernova Type Ia and their redshift robustly up to 80 days past maximum light (20 days in the supernova rest frame). We show that HARMONI will provide spectra at z ˜ 3 that are of comparable (or better) quality to the best spectra we can currently obtain at z ˜ 1, thus allowing studies of cosmic expansion rates to be pushed to substantially higher redshifts.
An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
Gilfanov, Marat; Bogdán, Akos
2010-02-18
There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.
The Stellar Origins of Supernovae
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2007-07-01
Supernovae {SNe} have a profound effect on galaxies, and have been used recently as precise cosmological probes, resulting in the discovery of the accelerating Universe. They are clearly very important events deserving of intense study. Yet, even with nearly 4000 known SNe, we know relatively little about the stars which give rise to these powerful explosions. The main limitation has been the lack of spatial resolution in pre-SN imaging data. However, since 1999 our team has been at the vanguard of directly identifying SN progenitor stars in HST images. From this exciting new line of study, the emerging trend from 5 detections for Type II-Plateau SNe is that their progenitors appear to be relatively low mass {8 to 20 Msun} red supergiants, although more cases are needed. Nonetheless, the nature of the progenitors of Type Ib/c SNe, a subset of which are associated with the amazing gamma-ray bursts, remains ambiguous. Furthermore, we remain in the continually embarrassing situation that we still do not yet know which progenitor systems explode as Type Ia SNe, which are currently being used for precision cosmology. We propose to confirm the identities of the progenitors of 4 SNe within 17 Mpc, which we expect to occur during Cycle 16, through ToO observations using WFPC2/PC.
0935+05 Supernova 1995D in NGC 2962
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
1995-02-01
Reiki Kushida of Yatsugatake South Base Observatory discovers 0935+05 Supernova 1995D in NGC 2962. Magnitude 14.0. Position RA 09h 40m 54.79s DEC +5° 08' 26.6" (2000). Nova AQL 95 confirmed spectroscopically "as a slow 'FE II'-class nova in its post-maximum phase of development. Requests continue to monitor 1436-63 Nova Cir 95.
NASA Astrophysics Data System (ADS)
Krisciunas, Kevin; Contreras, Carlos; Burns, Christopher R.; Phillips, M. M.; Stritzinger, Maximilian D.; Morrell, Nidia; Hamuy, Mario; Anais, Jorge; Boldt, Luis; Busta, Luis; Campillay, Abdo; Castellón, Sergio; Folatelli, Gastón; Freedman, Wendy L.; González, Consuelo; Hsiao, Eric Y.; Krzeminski, Wojtek; Persson, Sven Eric; Roth, Miguel; Salgado, Francisco; Serón, Jacqueline; Suntzeff, Nicholas B.; Torres, Simón; Filippenko, Alexei V.; Li, Weidong; Madore, Barry F.; DePoy, D. L.; Marshall, Jennifer L.; Rheault, Jean-Philippe; Villanueva, Steven
2017-11-01
We present final natural-system optical (ugriBV) and near-infrared (YJH) photometry of 134 supernovae (SNe) with probable white dwarf progenitors that were observed in 2004-2009 as part of the first stage of the Carnegie Supernova Project (CSP-I). The sample consists of 123 Type Ia SNe, 5 Type Iax SNe, 2 super-Chandrasekhar SN candidates, 2 Type Ia SNe interacting with circumstellar matter, and 2 SN 2006bt-like events. The redshifts of the objects range from z=0.0037 to 0.0835; the median redshift is 0.0241. For 120 (90%) of these SNe, near-infrared photometry was obtained. Average optical extinction coefficients and color terms are derived and demonstrated to be stable during the five CSP-I observing campaigns. Measurements of the CSP-I near-infrared bandpasses are also described, and near-infrared color terms are estimated through synthetic photometry of stellar atmosphere models. Optical and near-infrared magnitudes of local sequences of tertiary standard stars for each supernova are given, and a new calibration of Y-band magnitudes of the Persson et al. standards in the CSP-I natural system is presented.
A Hubble Diagram from Type II Supernovae Based Solely on Photometry: The Photometric Color Method
NASA Astrophysics Data System (ADS)
de Jaeger, T.; González-Gaitán, S.; Anderson, J. P.; Galbany, L.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Gutiérrez, C. P.; Bolt, L.; Burns, C. R.; Campillay, A.; Castellón, S.; Contreras, C.; Folatelli, G.; Freedman, W. L.; Hsiao, E. Y.; Krisciunas, K.; Krzeminski, W.; Kuncarayakti, H.; Morrell, N.; Olivares E., F.; Persson, S. E.; Suntzeff, N.
2015-12-01
We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V - i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile, and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).
VizieR Online Data Catalog: Lick Observatory Supernova Search (LOSS) revisited (Graur+, 2017)
NASA Astrophysics Data System (ADS)
Graur, O.; Bianco, F. B.; Huang, S.; Modjaz, M.; Shivvers, I.; Filippenko, A. V.; Li, W.; Eldridge, J. J.
2017-10-01
Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998-2008 by the Lick Observatory Supernova Search (LOSS; see Leaman+, 2011, J/MNRAS/412/1419) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIb, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey (SDSS) and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE SN and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality-that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works. (7 data files).
Kepler Supernova Remnant: A View from Hubble Space Telescope
2004-10-06
This image represents a view of NASA Kepler supernova remnant taken in X-rays, visible light, and infrared radiation, indicating that the bubble of gas that makes up the supernova remnant appears different in various types of light. http://photojournal.jpl.nasa.gov/catalog/PIA06909
Gamma-ray line diagnostics of supernova explosions - SN2014J and Cas A
NASA Astrophysics Data System (ADS)
Siegert, Thomas
2018-01-01
Gamma-rays from nuclear de-excitation of newly procuced isotopes during supernovae (SNe) provide a unique window to the explosion mechanisms. SNe interiors are accessible only by γ-rays as they are energetic enough to penetrate the SN cloud. Both thermonuclear explosions (type Ia) and core-collapse SNe (CCSN, type II) are key producers of heavy elements in the Universe. In SNe Ia, a white dwarf (WD) is disrupted by ignition from inside or by triggering the explosive event from outside, producing major amounts of 56Ni. Type II SNe are powered by the gravitational collapse of a massive star, having burnt all its nuclear fuel. In this work, we present a diagnostic study of γ-ray lines from SN2014J and Cassiopeia A (Cas A). INTEGRAL observed SN2014J for several months and for the first time, it was possible to measure the characteristic lines from the 56Ni-decay chain in a SN Ia event. Surprisingly, 56Ni was seen only 20 days after the explosion which indicates that some 56Ni must be located outside the WD and not deeply embedded. We provide a 56Co γ-ray line light curve and estimate a visible 56Ni mass of 0.5 M⨀ from a comparison to 1D model light curves. Cas A observations have been revisited and we detect both, the characteristic hard X-ray line from the decay of 44Ti at 78 keV, and the subsequent γ-ray line from the decay of 44Sc at 1157 keV in one coherent data set. Expansion velocities in the range of 2000 - 5000 km s-1 and an initially synthesised 44Ti mass of 1.37 × 10-4 M⨀ are found.
SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Fang; Wang, Xiaofeng; Chen, Juncheng
2015-07-01
We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar tomore » that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.« less
A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.
2017-06-01
When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .
False-color images from observations by the Supernova Cosmology Project of one of the two most dista
NASA Technical Reports Server (NTRS)
2002-01-01
TFalse-color images from observations by the Supernova Cosmology Project of one of the two most distant spectroscopically confirmed supernova. From the left: the first two images, from the Cerro Tololo Interamerican Observatory 4-meter telescope, show a small region of sky just before and just after the the appearance of a type-Ia supernova that exploded when the universe was about half its present age. The third image shows the same supernova as observed with the Hubble Space Telescope. This much sharper picture allows a much better measurement of the apparent brightness and hence the distance of this supernova. Because their intrinsic brightness is predictable, such supernovae help to determine the deceleration, and so the eventual fate, of the universe. Credit: Perlmutter et al., The Supernova Cosmology Project
VLA radio upper limit on a Type IIn SN 2008B
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2008-01-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed a Type IIn supernova SN 2008B (CBET 1194) with the Very Large Array (VLA) in the 8.46 GHz band on 2008, January 23.5 UT. The observations were taken for total duration of one hour in the VLA B-configuration. We do not detect any radio emission at the supernova position (CBET 1194). The flux density at the supernova position is 60 ± 28 uJy.
Spectroscopic Classification of SN 2017ghm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Wang, X.; Li, W.; Li, Z.; Xiang, D.; Rui, L.; Lin, H.; Xu, Z.; Li, B.; Zhao, H.; Wang, L.; Tan, H.; Zhang, J.
2017-09-01
An optical spectrum (range 360-680 nm) of SN 2017ghm (=PTSS-17uyml), discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), was obtained with the new "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Rostopchin on 2017 Aug 31.17 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2.3 mag) around maximum light.
The mystery of a supposed massive star exploding in a brightest cluster galaxy
NASA Astrophysics Data System (ADS)
Hosseinzadeh, Griffin
2017-08-01
Most of the diversity of core-collapse supernovae results from late-stage mass loss by their progenitor stars. Supernovae that interact with circumstellar material (CSM) are a particularly good probe of these last stages of stellar evolution. Type Ibn supernovae are a rare and poorly understood class of hydrogen-poor explosions that show signs of interaction with helium-rich CSM. The leading hypothesis is that they are explosions of very massive Wolf-Rayet stars in which the supernova ejecta excites material previously lost by stellar winds. These massive stars have very short lifetimes, and therefore should only found in actively star-forming galaxies. However, PS1-12sk is a Type Ibn supernova found on the outskirts of a giant elliptical galaxy. As this is extraordinary unlikely, we propose to obtain deep UV images of the host environment of PS1-12sk in order to map nearby star formation and/or find a potential unseen star-forming host. If star formation is detected, its amount and location will provide deep insights into the progenitor picture for the poorly-understood Type Ibn class. If star formation is still not detected, these observations would challenge the well-accepted hypothesis that these are core-collapse supernovae at all.
The binary progenitor of Tycho Brahe's 1572 supernova.
Ruiz-Lapuente, Pilar; Comeron, Fernando; Méndez, Javier; Canal, Ramon; Smartt, Stephen J; Filippenko, Alexei V; Kurucz, Robert L; Chornock, Ryan; Foley, Ryan J; Stanishev, Vallery; Ibata, Rodrigo
2004-10-28
The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.
Ultra-Bright Optical Transients Are Linked With Type Ic Supernovae
2010-11-20
Station, Flagstaff, AZ 86001, USA Received 2010 August 16; accepted 2010 September 9; published 2010 October 25 ABSTRACT Recent searches by unbiased...wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search ...supernova searches (e.g., the Texas Supernova Search ) or all-sky surveys, such as the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the
Astronomy in Denver: The polarization evolution of the luminous Type Ib SN 2012au
NASA Astrophysics Data System (ADS)
Hoffman, Jennifer L.; DeKlotz, Sophia; Cooper, Kevin; Slay, Hannah; Williams, George Grant; Supernova Spectropolarimetry Project (SNSPOL)
2018-06-01
We present an analysis of the spectropolarimetric behavior of the Type Ib SN 2012au over the first 315 days of its evolution. Our data were obtained by the Supernova Spectropolarimetry Project using the CCD Imaging/Spectropolarimeter (SPOL) at the 61" Kuiper, the 90" Bok, and the 6.5-m MMT telescopes. SN 2012au was a very energetic, luminous, and slowly evolving event that may represent an intermediate case between normal core-collapse supernovae and the enigmatic superluminous supernovae. Strong, time-variable line polarization signatures, particularly in the He Il λ5876 line, support previous hypotheses of an asymmetric explosion and allow us to trace detailed structures within the supernova ejecta as they change over time. We compare the polarimetric evolution of the continuum and emission lines in SN 2012au and compare its behavior with that of other bright and polarimetrically variable supernovae.
Massive stars in their death throes.
Eldridge, John J
2008-12-13
The study of the stars that explode as supernovae used to be a forensic study, working backwards from the remnants of the star. This changed in 1987 when the first progenitor star was identified in pre-explosion images. Currently, there are eight detected progenitors with another 21 non-detections, for which only a limit on the pre-explosion luminosity can be placed. This new avenue of supernova research has led to many interesting conclusions, most importantly that the progenitors of the most common supernovae, type IIP, are red supergiants, as theory has long predicted. However, no progenitors have been detected thus far for the hydrogen-free type Ib/c supernovae, which, given the expected progenitors, is an unlikely result. Also, observations have begun to show evidence that luminous blue variables, which are among the most massive stars, may directly explode as supernovae. These results contradict the current stellar evolution theory. This suggests that we may need to update our understanding.
Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Merger)
2018-03-26
This frame from an animation shows the merger of two white dwarfs. A white dwarf is an extremely dense remnant of a star that can no longer burn nuclear fuel at its core. This is another way that a "type Ia" supernova occurs. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22353
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
Neutral Hydrogen Radio Propperties of ASAS-SN Supernovae Hosts
NASA Astrophysics Data System (ADS)
Ross, Timothy W.; Salter, Chris; Ghosh, Tapasi; Minchin, Robert; Jones, Kristen; All-Sky Automated Survey for Supernovae (ASAS-SN)
2018-01-01
We compiled properties of the galaxies containing recent supernovae. The galaxies were observed in the Hydrogen 21-cm region using the Arecibo 305-m Radio Telescope, and the supernovae were found by the All-Sky Automated Survey for Supernovae (ASAS-SN) project. We were able to detect the neutral hydrogen hyperfine transition in 50 new galaxies to date, and retrieved information on 52 host galaxies with previous detections. Including archival detections, the detection rates of Type CC SNe was 96.9%, that of Type Ia was 76.3%, while no Tidal Disruption Events (TDEs) had detections. In all we calculated the integrated HI flux of 102 host galaxies in the Arecibo sky. With the integrated HI flux we calculated mass values. The median HI mass, log [MHI/(h‑2C M⊙)], with h =.73, for all SN host galaxies was 9.47±0.02, with the median for Type Ia hosts being 9.55±0.02 and the median for Type CC being 9.30±0.02.
The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves
NASA Astrophysics Data System (ADS)
Taddia, F.; Stritzinger, M. D.; Bersten, M.; Baron, E.; Burns, C.; Contreras, C.; Holmbo, S.; Hsiao, E. Y.; Morrell, N.; Phillips, M. M.; Sollerman, J.; Suntzeff, N. B.
2018-02-01
Stripped-envelope (SE) supernovae (SNe) include H-poor (Type IIb), H-free (Type Ib), and He-free (Type Ic) events thought to be associated with the deaths of massive stars. The exact nature of their progenitors is a matter of debate with several lines of evidence pointing towards intermediate mass (Minit< 20 M⊙) stars in binary systems, while in other cases they may be linked to single massive Wolf-Rayet stars. Here we present the analysis of the light curves of 34 SE SNe published by the Carnegie Supernova Project (CSP-I) that are unparalleled in terms of photometric accuracy and wavelength range. Light-curve parameters are estimated through the fits of an analytical function and trends are searched for among the resulting fit parameters. Detailed inspection of the dataset suggests a tentative correlation between the peak absolute B-band magnitude and Δm15(B), while the post maximum light curves reveals a correlation between the late-time linear slope and Δm15. Making use of the full set of optical and near-IR photometry, combined with robust host-galaxy extinction corrections, comprehensive bolometric light curves are constructed and compared to both analytic and hydrodynamical models. This analysis finds consistent results among the two different modeling techniques and from the hydrodynamical models we obtained ejecta masses of 1.1-6.2M⊙, 56Ni masses of 0.03-0.35M⊙, and explosion energies (excluding two SNe Ic-BL) of 0.25-3.0 × 1051 erg. Our analysis indicates that adopting κ = 0.07 cm2 g-1 as the mean opacity serves to be a suitable assumption when comparing Arnett-model results to those obtained from hydrodynamical calculations. We also find that adopting He I and O I line velocities to infer the expansion velocity in He-rich and He-poor SNe, respectively, provides ejecta masses relatively similar to those obtained by using the Fe II line velocities, although the use of Fe II as a diagnostic does imply higher explosion energies. The inferred range of ejecta masses are compatible with intermediate mass (MZAMS ≤ 20M⊙) progenitor stars in binary systems for the majority of SE SNe. Furthermore, our hydrodynamical modeling of the bolometric light curves suggests a significant fraction of the sample may have experienced significant mixing of 56Ni, particularly in the case of SNe Ic. Based on observations collected at Las Campanas Observatory.Bolometric light curve tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A136
NASA Technical Reports Server (NTRS)
Mustel, E. R.
1979-01-01
The type 1 supernova discovered late in 1966 in NGC 3198 has broad minima in its spectrum break down into a number of significantly narrower absorption bands. The broad minima of tau, sigma and mu, which usually show no details in the spectra of type supernovas, contain a number of narrow absorption bands. The reality of most of these absorption bands is demonstrated by comparison of recordings of spectra of the supernova presented for two moments in time. These minima (particularly of tau and mu,) are a result of blending of several broad absorption bands. The minimum of tau should be a blend of intensive and very broad Fe absorption lines, in which the lower level is metastable. The wavelengths of these line are: 5169, 5198, 5235, 5276, 5317, 5363A.
NASA Technical Reports Server (NTRS)
Shklovskiy, I. S.
1980-01-01
The nature of type 1 supernovae (SN 1) is discussed through a comparison of observational evidence and theoretical perspectives relating to both type 1 and 2 supernovae. In particular two hypotheses relating to SN 1 phenomenon are examined: the first proposing that SN 1 are components of binary systems in which, at a comparatively late stage of evolution, overflow of the mass occurs; the second considers pre-SN 1 to be recently evolved stars with a mass greater than 1.4 solar mass (white dwarfs). In addition, an explanation of the reduced frequency of flares of SN 1 in spiral galaxies as related to that in elliptical galaxies is presented.
On the progenitors of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Livio, Mario; Mazzali, Paolo
2018-03-01
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious difficulties, if taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
The VLT Measures the Shape of a Type Ia Supernova
NASA Astrophysics Data System (ADS)
2003-08-01
First Polarimetric Detection of Explosion Asymmetry has Cosmological Implications Summary An international team of astronomers [2] has performed new and very detailed observations of a supernova in a distant galaxy with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile). They show for the first time that a particular type of supernova, caused by the explosion of a "white dwarf", a dense star with a mass around that of the Sun, is asymmetric during the initial phases of expansion . The significance of this observation is much larger than may seem at a first glance . This particular kind of supernova, designated "Type Ia", plays a very important role in the current attempts to map the Universe. It has for long been assumed that Type Ia supernovae all have the same intrinsic brightness , earning them a nickname as "standard candles". If so, differences in the observed brightness between individual supernovae of this type simply reflect their different distances. This, and the fact that the peak brightness of these supernovae rivals that of their parent galaxy, has allowed to measure distances of even very remote galaxies . Some apparent discrepancies that were recently found have led to the discovery of cosmic acceleration . However, this first clearcut observation of explosion asymmetry in a Type Ia supernova means that the exact brightness of such an object will depend on the angle from which it is seen. Since this angle is unknown for any particular supernova, this obviously introduces an amount of uncertainty into this kind of basic distance measurements in the Universe which must be taken into account in the future. Fortunately, the VLT data also show that if you wait a little - which in observational terms makes it possible to look deeper into the expanding fireball - then it becomes more spherical. Distance determinations of supernovae that are performed at this later stage will therefore be more accurate. PR Photo 24a/03 : Spiral galaxy NGC 1448 and SN 2001el (DSS and NTT/EMMI). PR Photo 24b/03 : Optical spectrum of SN 2001el and fractional polarisation (VLT/FORS) Supernova explosions and cosmic distances During Type Ia supernova events, remnants of stars with an initial mass of up to a few times that of the Sun (so-called "white dwarf stars") explode, leaving nothing behind but a rapidly expanding cloud of "stardust". Type Ia supernovae are apparently quite similar to one another. This provides them a very useful role as "standard candles" that can be used to measure cosmic distances. Their peak brightness rivals that of their parent galaxy, hence qualifying them as prime cosmic yardsticks. Astronomers have exploited this fortunate circumstance to study the expansion history of our Universe. They recently arrived at the fundamental conclusion that the Universe is expanding at an accelerating rate, cf. ESO PR 21/98, December 1998 (see also the Supernova Acceleration Probe web page). The explosion of a white dwarf star In the most widely accepted models of Type Ia supernovae the pre-explosion white dwarf star orbits a solar-like companion star, completing a revolution every few hours. Due to the close interaction, the companion star continuously loses mass, part of which is picked up (in astronomical terminology: "accreted") by the white dwarf. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive. However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event. An extremely hot fireball is seen that often outshines the host galaxy. The shape of the explosion Although all supernovae of Type Ia have quite similar properties, it has never been clear until now how similar such an event would appear to observers who view it from different directions. All eggs look similar and indistinguishable from each other when viewed from the same angle, but the side view (oval) is obviously different from the end view (round). And indeed, if Type Ia supernova explosions were asymmetric, they would shine with different brightness in different directions. Observations of different supernovae - seen under different angles - could therefore not be directly compared. Not knowing these angles, however, the astronomers would then infer incorrect distances and the precision of this fundamental method for gauging the structure of the Universe would be in question. Polarimetry to the rescue A simple calculation shows that even to the eagle eyes of the VLT Interferometer (VLTI), all supernovae at cosmological distances will appear as unresolved points of light; they are simply too far. But there is another way to determine the angle at which a particular supernova is viewed: polarimetry is the name of the trick! Polarimetry works as follows: light is composed of electromagnetic waves (or photons) which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation . If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. " Even for quite noticable asymmetries, however, the polarisation is very small and barely exceeds the level of one percent ", says Dietrich Baade, ESO astronomer and a member of the team that performed the observations. " Measuring them requires an instrument that is very sensitive and very stable . " The VLT observation of SN 2001el in NGC 1448 ESO PR Photo 24a/03 ESO PR Photo 24a/03 [Preview - JPEG: 620 x 400 pix - 156k [Normal - JPEG: 1240 x 800 pix - 396k] ESO PR Photo 24b/03 ESO PR Photo 24b/03 [Preview - JPEG: 400 x 524 pix - 104k [Normal - JPEG: 800 x 1047 pix - 240k] Captions : PR Photo 24a/03 shows the spiral galaxy NGC 1448, as seen in an archive image from the Digital Sky Survey (Courtesy of STScI) and as seen close to the brightness maximum of the supernova using EMMI on the NTT. SN 2001el is marked by the arrow. The field measures 4.5 x 4.5 arcmin 2 ; North is up and east is right. PR Photo 24b/03 illustrates the optical spectrum of SN 2001el in NGC 1448 (upper panel). The middle and lower panels show the corresponding fractional polarisations. They measure the different numbers of photons oscillating in perpendicular directions; they are directly related to the geometry of the supernova. The shaded area indicates the spectral signatures of high-velocity matter in the expanding envelope. The measurement in faint and distant light sources of differences at a level of less than one percent is a considerable observational challenge. "However, the ESO Very Large Telescope (VLT) offers the precision, the light collecting power, as well as the specialized instrumentation required for such a demanding polarimetric observation" , explains Dietrich Baade . "But this project would not have been possible without the VLT being operated in service mode. It is indeed impossible to predict when a supernova will explode and we need to be ready all the time. Only service mode allows observations at short notice. Some years ago, it was a farsighted and courageous decision by ESO's directorate to put so much emphasis on Service Mode. And it was the team of competent and devoted ESO astronomers on Paranal who made this concept a practical success" , he adds. The astronomers [1] used the VLT multi-mode FORS1 instrument to observe SN 2001el , a Type Ia supernova that was discovered in September 2001 in the galaxy NGC 1448, cf. PR Photo 24a/03 at a distance of 60 million light-years. Observations obtained about a week before this supernova reached maximum brightness around October 2 revealed polarisation at levels of 0.2-0.3% ( PR Photo 24b/03 ). Near maximum light and up to two weeks thereafter, the polarisation was still measurable. Six weeks after maximum, the polarisation had dropped below detectability. This is the first time ever that a normal Type Ia supernova has been found to exhibit such clear-cut evidence of asymmetry . Looking deeper into the supernova Immediately following the supernova explosion, most of the expelled matter moves at velocities around 10,000 km/sec. During this expansion, the outermost layers become progressively more transparent. With time one can thus look deeper and deeper into the supernova. The polarisation measured in SN 2001el therefore provides evidence that the outermost parts of the supernova (which are first seen) are significantly asymmetric . Later, when the VLT observations "penetrate" deeper towards the heart of the supernova, the explosion geometry is increasingly more symmetric. If modeled in terms of a flattened spheroidal shape, the measured polarisation in SN 2001el implies a minor-to-major axis ratio of around 0.9 before maximum brightness is reached and a spherically symmetric geometry from about one week after this maximum and onward. Cosmological implications One of the key parameters on which Type Ia distance estimates are based is the optical brightness at maximum. The measured asphericity at this moment would introduce an absolute brightness uncertainty (dispersion) of about 10% if no correction were made for the viewing angle (which is not known). While Type Ia supernovae are by far the best standard candles for measuring cosmological distances, and hence for investigating the so-called dark energy, a small measurement uncertainty persists. " The asymmetry we have measured in SN 2001el is large enough to explain a large part of this intrinsic uncertainty ", says Lifan Wang, the leader of the team. " If all Type Ia supernovae are like this, it would account for a lot of the dispersion in brightness measurements. They may be even more uniform than we thought ." Reducing the dispersion in brightness measurements could of course also be attained by increasing significantly the number of supernovae we observe, but given that these measurements demand the largest and most expensive telescopes in the world, like the VLT, this is not the most efficient method. Thus, if the brightness measured a week or two after maximum was used instead, the sphericity would then have been restored and there would be no systematic errors from the unknown viewing angle. By this slight change in observational procedure, Type Ia supernovae could become even more reliable cosmic yardsticks. Theoretical implications The present detection of polarised spectral features strongly suggests that, to understand the underlying physics, the theoretical modelling of Type Ia supernovae events will have to be done in all three dimensions with more accuracy than is presently done. In fact, the available, highly complex hydrodynamic calculations have so far not been able to reproduce the structures exposed by SN 2001el. More information The results presented in this press release have been been described in a research paper in "Astrophysical Journal" ("Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova" by Lifan Wang and co-authors, Volume 591, p. 1110).
zBEAMS: a unified solution for supernova cosmology with redshift uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.
Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination inmore » the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.« less
Calculating Galactic Distances Through Supernova Light Curve Analysis (Abstract)
NASA Astrophysics Data System (ADS)
Glanzer, J.
2018-06-01
(Abstract only) The purpose of this project is to experimentally determine the distance to the galaxy M101 by using data that were taken on the type Ia supernova SN 2011fe at the Paul P. Feder Observatory. Type Ia supernovae are useful for determining distances in astronomy because they all have roughly the same luminosity at the peak of their outburst. Comparing the apparent magnitude to the absolute magnitude allows a measurement of the distance. The absolute magnitude is estimated in two ways: using an empirical relationship from the literature between the rate of decline and the absolute magnitude, and using sncosmo, a PYTHON package used for supernova light curve analysis that fits model light curves to the photometric data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, William J.; Raskin, Cody; Owen, J. Michael
2016-12-10
Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing anglesmore » and companion masses.« less
NASA Astrophysics Data System (ADS)
Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.
2017-08-01
Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV
Constraints on the explosion mechanism and progenitors of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dessart, Luc; Blondin, Stéphane; Hillier, D. John; Khokhlov, Alexei
2014-06-01
Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant colour. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in colour to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow Si II 6355 Å line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colours and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive-decay heating. Furthermore, PDDEL models show short-lived C II lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multidimensional effects, varying configurations for such `pulsations' offer a source of spectral diversity amongst Type Ia supernovae (SNe Ia). PDDEL and DDC models also provide one explanation for low- and high-velocity-gradient SNe Ia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khazov, D.; Yaron, O.; Gal-Yam, A.
Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These eventsmore » constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.« less
Khazov, Daniel; Yaron, O.; Gal-Yam, A.; ...
2016-02-02
Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M R = -17.6 mag, significantly brighter than average SNe II.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khazov, Daniel; Yaron, O.; Gal-Yam, A.
Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M R = -17.6 mag, significantly brighter than average SNe II.« less
Variable Sodium Absorption in a Low-extinction Type Ia Supernova
NASA Astrophysics Data System (ADS)
Simon, Joshua D.; Gal-Yam, Avishay; Gnat, Orly; Quimby, Robert M.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Blondin, Stephane; Li, Weidong; Filippenko, Alexei V.; Wheeler, J. Craig; Kirshner, Robert P.; Patat, Ferdinando; Nugent, Peter; Foley, Ryan J.; Vogt, Steven S.; Butler, R. Paul; Peek, Kathryn M. G.; Rosolowsky, Erik; Herczeg, Gregory J.; Sauer, Daniel N.; Mazzali, Paolo A.
2009-09-01
Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby-Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na I D absorption lines strengthened significantly with time, indicating a total column density increase of ~2.5 × 1012 cm-2. The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (E B - V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (107 cm-3) cloud or clouds of gas located ~0.1 pc (3 × 1017 cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow Hα emission associated with the SN, which will require deep imaging and spectroscopy at late times to confirm. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.
Nearby Type Ia Supernova Follow-up at the Thacher Observatory
NASA Astrophysics Data System (ADS)
Swift, Jonathan; O'Neill, Katie; Kilpatrick, Charles; Foley, Ryan
2018-06-01
Type Ia supernovae (SN Ia) provide an effective way to study the expansion of the universe through analyses of their photometry and spectroscopy. The interpretation of high-redshift SN Ia is dependent on accurate characterization of nearby, low-redshift targets. To help build up samples of nearby SN Ia, the Thacher Observatory has begun a photometric follow-up program in 4 photometric bands. Here we present the observations and analysis of multi-band photometry for several recent supernovae as well as FLOYDS spectra from the Las Cumbres Observatory.
Manganese in Dwarf Galaxies as a Probe of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
De Los Reyes, Mithi; Kirby, Evan N.
2018-06-01
Despite the importance of thermonuclear or Type Ia supernovae (SNe) as standard candles in astrophysics, the physical mechanisms behind Type Ia SNe are still poorly constrained. Theoretically, the nucleosynthetic yields from Type Ia SNe can distinguish among different models of Type Ia explosions. For example, neutron-rich elements such as manganese (Mn) are sensitive probes of the physics of Type Ia SNe because their abundances are correlated to the density of the progenitor white dwarf. Since dwarf galaxies' chemical evolution is dominated by Type Ia SNe at late times, Type Ia nucleosynthetic yields can be indirectly inferred from stellar abundances in dwarf galaxies. However, previous measurements of Mn in dwarf galaxies are too incomplete to draw definitive conclusions on the Type Ia explosion mechanism. In this work, we therefore use medium-resolution stellar spectroscopy from Keck/DEIMOS to measure Mn abundances in red giants in several Milky Way satellite galaxies. We report average Type Ia Mn yields computed from these abundances, and we discuss the implications for Type Ia supernova physics.
Solar abundance ratios of the iron-peak elements in the Perseus cluster.
2017-11-23
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.
Solar abundance ratios of the iron-peak elements in the Perseus cluster
Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; ...
2017-11-13
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less
Solar abundance ratios of the iron-peak elements in the Perseus cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie
The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2–6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature ofmore » type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, highresolution spectroscopy is required for an accurate determination of the abundances of these elements. Here in this paper we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.« less
The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miknaitis, Gajus; Pignata, G.; Rest, A.
We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on usingmore » reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).« less
VizieR Online Data Catalog: Asiago Supernova Catalogue (Version 2008-Mar)
NASA Astrophysics Data System (ADS)
Barbon, R.; Buondi, V.; Cappellaro, E.; Turatto, M.
2008-02-01
This catalogue supersedes the previous version by Barbon et al. (1999A&AS..139..531B, Cat. II/227), and contains data about the supernovae observed since 1895 and their parent galaxies until the beginning of 2008. In addition to the list of newly discovered SNe, the literature has been searched for new information on past SNe as well. The data for the parent galaxies have also been homogenized. (1 data file).
NASA Astrophysics Data System (ADS)
Conley, A.; Goldhaber, G.; Wang, L.; Aldering, G.; Amanullah, R.; Commins, E. D.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kim, A. G.; Knop, R. A.; Kowalski, M.; Kuznetsova, N.; Lidman, C.; Nobili, S.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Strovink, M.; Thomas, R. C.; Wood-Vasey, W. M.; Supernova Cosmology Project
2006-06-01
We present measurements of Ωm and ΩΛ from a blind analysis of 21 high-redshift supernovae using a new technique (CMAGIC) for fitting the multicolor light curves of Type Ia supernovae, first introduced by Wang and coworkers. CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross-check of previous supernova cosmology results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating universe and agree with a flat universe within 1.7 σ, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same supernovae, finding that CMAGIC favors more acceleration at the 1.6 σ level, including systematics and the correlation between the two measurements. A fit for w assuming a flat universe yields a value that is consistent with a cosmological constant within 1.2 σ.
Light Curve and Spectral Evolution of Type IIb Supernovae
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, Andrea; Sahu, Devendra Kumar; Singh, Mridweeka; Dastidar, raya; Anapuma, Gadiyara Chakrapani; Kumar, Brijesh; Pandey, Shashi Bhushan
2018-04-01
Stripped-Envelope Supernovae constitute the sub-class of core-collapse supernovae that strip off their outer hydrogen envelope due to high stellar winds or due to interaction with a binary companion where mass transfer occurs as a result of Roche lobe overflow. We present here the photometric and spectroscopic analysis of a member of this class : SN 2015as classified as a type IIb supernova. Light curve features are similar to those of SN 2011fu while spectroscopic features are quite similar to those of SN 2008ax and SN 2011dh. Early epoch spectra have been modelled with SYN++ which indicates a photospheric velocity of 8500 km sec-1 and temperature of 6500K. Spectroscopic lines show transitioning from H to He features confirming it to be a type IIb supernova. Prominent oxygen and calcium emission features are indicative of the asymmetry of the ejecta. We also estimate the signal to noise ratio of the 3.6m telescope data. This telescope is located at ARIES, Devasthal, Nainital at an altitude of 2450m. We also show the comparison plots of spectra taken with a 2m and 4m class telescopes to enlighten the importance of spectral features displayed by bigger diameter telescopes.
Hubble Solves Mystery on Source of Supernova in Nearby Galaxy
2017-12-08
NASA image release January 11, 2012 Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts. Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit. To read more go to: www.nasa.gov/mission_pages/hubble/science/supernova-sourc... Image Credit: NASA, ESA, CXC, SAO, the Hubble Heritage Team (STScI/AURA), and J. Hughes (Rutgers University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Measuring the velocity field from type Ia supernovae in an LSST-like sky survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odderskov, Io; Hannestad, Steen, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk
2017-01-01
In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with nomore » information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ{sub 8}. This makes the peculiar velocity power spectrum from type Ia supernovae a promising new observable, which deserves further attention.« less
Atomic and molecular supernovae
NASA Technical Reports Server (NTRS)
Liu, Weihong
1997-01-01
Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.
Search for Type Ia supernova NUV-optical subclasses
NASA Astrophysics Data System (ADS)
Cinabro, David; Scolnic, Daniel; Kessler, Richard; Li, Ashley; Miller, Jake
2017-04-01
In response to a recently reported observation of evidence for two classes of Type Ia supernovae (SNe Ia) distinguished by their brightness in the rest-frame near-ultraviolet (NUV), we search for the phenomenon in publicly available light-curve data. We use the SNANA supernova analysis package to simulate SN Ia light curves in the Sloan Digital Sky Survey (SDSS) Supernova Search and the Supernova Legacy Survey (SNLS) with a model of two distinct ultraviolet classes of SNe Ia and a conventional model with a single broad distribution of SN-Ia ultraviolet brightnesses. We compare simulated distributions of rest-frame colours with these two models to those observed in 158 SNe Ia in the SDSS and SNLS data. The SNLS sample of 99 SNe Ia is in clearly better agreement with a model with one class of SN Ia light curves and shows no evidence for distinct NUV sub-classes. The SDSS sample of 59 SNe Ia with poorer colour resolution does not distinguish between the two models.
Creation of a Unified Set of Core-Collapse Supernovae for Training of Photometric Classifiers
NASA Astrophysics Data System (ADS)
D'Arcy Kenworthy, William; Scolnic, Daniel; Kessler, Richard
2017-01-01
One of the key tasks for future supernova cosmology analyses is to photometrically distinguish type Ia supernovae (SNe) from their core collapse (CC) counterparts. In order to train programs for this purpose, it is necessary to train on a large number of core-collapse SNe. However, there are only a handful used for current programs. We plan to use the large amount of CC lightcurves available on the Open Supernova Catalog (OSC). Since this data is scraped from many different surveys, it is given in a number of photometric systems with different calibration and filters. We therefore created a program to fit smooth lightcurves (as a function of time) to photometric observations of arbitrary SNe. The Supercal method is then used to translate the smoothed lightcurves to a single photometric system. We can thus compile a training set of 782 supernovae, of which 127 are not type Ia. These smoothed lightcurves are also being contributed upstream to the OSC as derived data.
Pre-supernova outbursts via wave heating in massive stars - II. Hydrogen-poor stars
NASA Astrophysics Data System (ADS)
Fuller, Jim; Ro, Stephen
2018-05-01
Pre-supernova (SN) outbursts from massive stars may be driven by hydrodynamical wave energy emerging from the core of the progenitor star during late nuclear-burning phases. Here, we examine the effects of wave heating in stars containing little or no hydrogen, i.e. progenitors of Type IIb/Ib SNe. Because there is no massive hydrogen envelope, wave energy is thermalized near the stellar surface where the overlying atmospheric mass is small but the optical depth is large. Wave energy can thus unbind this material, driving an optically thick, super-Eddington wind. Using 1D hydrodynamic MESA simulations of ˜5 M⊙ He stars, we find that wave heating can drive pre-SN outbursts composed of a dense wind whose mass-loss rate can exceed ˜0.1 M⊙ yr-1. The wind terminal velocities are a few 100 km s-1, and outburst luminosities can reach ˜106 L⊙. Wave-driven outbursts may be linked with observed or inferred pre-SN outbursts of Type Ibn/transitional/transformational SNe, and pre-SN wave-driven mass loss is a good candidate to produce these types of SNe. However, we also show that non-linear wave breaking in the core of the star may prevent such outbursts in stars with thick convective helium-burning shells. Hence, only a limited subset of SN progenitors is likely to experience wave-driven pre-SN outbursts.
Spectroscopic Classification of ASASSN-15rm as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Halevi, G.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-10-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of ASASSN-15rm (ATel #8192), obtained on Oct. 20.50 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations
NASA Astrophysics Data System (ADS)
Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.
2018-02-01
The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig
1992-01-01
Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.
Spectral flux from low-density photospheres - Numerical results
NASA Technical Reports Server (NTRS)
Hershkowitz, S.; Linder, E.; Wagoner, R. V.
1986-01-01
Radiative transfer through sharp, quasi-static atmospheres whose opacity is dominated by hydrogen is considered at densities low enough that scattering usually dominates absorption and radiative excitations usually dominate collisional excitations. Numerical results for the continuum spectral flux are obtained for effective temperatures T(e) = 6000-16,000 K and scale heights Delta-R = 10 to the 10th - 10 to the 14th cm. Spectra are significantly different than if LTE level populations were assumed. Comparison with observations of the Type II supernova 1980k tends to increase the value of the Hubble constant previously obtained by the Baade (1926) method.
Discovery and Spectroscopic Classification of DLT18q/AT2018aoz as a young type Ia Supernova
NASA Astrophysics Data System (ADS)
Sand, D.; Valenti, S.; Wyatt, S.; Bostroem, K. A.; Reichart, D. E.; Haislip, J. B.; Kouprianov, V.
2018-04-01
We report the discovery and classification of DLT18q/AT 2018aoz. The supernova was found on 2018 April 02.1 (UT) at r 15.1 mag during the ongoing D < 40 Mpc (DLT40) supernova search, using data from the PROMPT5 0.41m telescope located at CTIO.
Spectroscopic Classification of SN2016igr as a Normal Type Ia Supernova
NASA Astrophysics Data System (ADS)
Bostroem, K. A.; Valenti, S.; Tartaglia, L.
2016-12-01
We report that a CCD spectrum (range 350-1050 nm) of SN2016igr was obtained on Dec 1, 5.95 UT, with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J.
Supernova shock breakout from a red supergiant.
Schawinski, Kevin; Justham, Stephen; Wolf, Christian; Podsiadlowski, Philipp; Sullivan, Mark; Steenbrugge, Katrien C; Bell, Tony; Röser, Hermann-Josef; Walker, Emma S; Astier, Pierre; Balam, Dave; Balland, Christophe; Carlberg, Ray; Conley, Alex; Fouchez, Dominique; Guy, Julien; Hardin, Delphine; Hook, Isobel; Howell, D Andrew; Pain, Reynald; Perrett, Kathy; Pritchet, Chris; Regnault, Nicolas; Yi, Sukyoung K
2008-07-11
Massive stars undergo a violent death when the supply of nuclear fuel in their cores is exhausted, resulting in a catastrophic "core-collapse" supernova. Such events are usually only detected at least a few days after the star has exploded. Observations of the supernova SNLS-04D2dc with the Galaxy Evolution Explorer space telescope reveal a radiative precursor from the supernova shock before the shock reached the surface of the star and show the initial expansion of the star at the beginning of the explosion. Theoretical models of the ultraviolet light curve confirm that the progenitor was a red supergiant, as expected for this type of supernova. These observations provide a way to probe the physics of core-collapse supernovae and the internal structures of their progenitor stars.
Supernovae and cosmology with future European facilities.
Hook, I M
2013-06-13
Prospects for future supernova surveys are discussed, focusing on the European Space Agency's Euclid mission and the European Extremely Large Telescope (E-ELT), both expected to be in operation around the turn of the decade. Euclid is a 1.2 m space survey telescope that will operate at visible and near-infrared wavelengths, and has the potential to find and obtain multi-band lightcurves for thousands of distant supernovae. The E-ELT is a planned, general-purpose ground-based, 40-m-class optical-infrared telescope with adaptive optics built in, which will be capable of obtaining spectra of type Ia supernovae to redshifts of at least four. The contribution to supernova cosmology with these facilities will be discussed in the context of other future supernova programmes such as those proposed for DES, JWST, LSST and WFIRST.
Strong near-infrared carbon in the Type Ia supernova iPTF13ebh
Hsiao, E. Y.; Burns, C. R.; Contreras, C.; ...
2015-05-22
We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less
Hubble Monitors Supernova In Nearby Galaxy M82
2014-02-26
This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our sun, or a giant star. Astronomers using a ground-based telescope discovered the explosion on January 21, 2014. This Hubble photograph was taken on January 31, as the supernova approached its peak brightness. The Hubble data are expected to help astronomers refine distance measurements to Type Ia supernovae. In addition, the observations could yield insights into what kind of stars were involved in the explosion. Hubble’s ultraviolet-light sensitivity will allow astronomers to probe the environment around the site of the supernova explosion and in the interstellar medium of the host galaxy. Because of their consistent peak brightness, Type Ia supernovae are among the best tools to measure distances in the universe. They were fundamental to the 1998 discovery of the mysterious acceleration of the expanding universe. A hypothesized repulsive force, called dark energy, is thought to cause the acceleration. Among the other major NASA space-based observatories used in the M82 viewing campaign are Spitzer Space Telescope, Chandra X-ray Observatory, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Gamma-ray Space Telescope, Swift Gamma Ray Burst Explorer, and the Stratospheric Observatory for Infrared Astronomy (SOFIA). Image Credit: NASA, ESA, A. Goobar (Stockholm University), and the Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Supernova Cosmology in the Big Data Era
NASA Astrophysics Data System (ADS)
Kessler, Richard
Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.
Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae
NASA Astrophysics Data System (ADS)
Aguilera-Dena, David R.; Langer, Norbert; Moriya, Takashi J.; Schootemeijer, Abel
2018-05-01
We model the late evolution and mass loss history of rapidly rotating Wolf–Rayet stars in the mass range 5 M ⊙…100 M ⊙). We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower-mass models lead to core spins in the range suggested for magnetar-driven superluminous supernovae. Our higher-mass models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up and centrifugally driven mass loss at rates of up to {10}-2 {M}ȯ {yr}}-1 in the last years to decades before core collapse. Because the angular momentum transport in our lower-mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼10 M ⊙ as well as for the most massive engine-driven explosions with ejecta masses above ∼30 M ⊙. Signs of such interaction should be observable at early epochs of the supernova explosion; they may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.
Possible Progenitor of Special Supernova Type Detected
NASA Astrophysics Data System (ADS)
2008-04-01
Using data from NASA's Chandra X-ray Observatory, scientists have reported the possible detection of a binary star system that was later destroyed in a supernova explosion. The new method they used provides great future promise for finding the detailed origin of these important cosmic events. In an article appearing in the February 14th issue of the journal Nature, Rasmus Voss of the Max Planck Institute for Extraterrestrial Physics in Germany and Gijs Nelemans of Radboud University in the Netherlands searched Chandra images for evidence of a much sought after, but as yet unobserved binary system - one that was about to go supernova. Near the position of a recently detected supernova, they discovered an object in Chandra images taken more than four years before the explosion. Optical image of SN 2007on Optical image of SN 2007on The supernova, known as SN 2007on, was identified as a Type Ia supernova. Astronomers generally agree that Type Ia supernovas are produced by the explosion of a white dwarf star in a binary star system. However, the exact configuration and trigger for the explosion is unclear. Is the explosion caused by a collision between two white dwarfs, or because a white dwarf became unstable by pulling too much material off a companion star? Answering such questions is a high priority because Type Ia supernovas are major sources of iron in the Universe. Also, because of their nearly uniform intrinsic brightness, Type Ia supernova are used as important tools by scientists to study the nature of dark energy and other cosmological issues. People Who Read This Also Read... Oldest Known Objects Are Surprisingly Immature Black Holes Have Simple Feeding Habits Discovery of Most Recent Supernova in Our Galaxy Geriatric Pulsar Still Kicking "Right now these supernovas are used as black boxes to measure distances and derive the rate of expansion of the universe," said Nelemans. "What we're trying to do is look inside the box." If the supernova explosion is caused by material being pulled off a companion star onto the white dwarf, fusion of this material on the surface of the star should heat the star and produce a strong source of X-radiation prior to the explosion. Once the supernova explosion occurs, the white dwarf is expected to be completely destroyed and then would be undetectable in X-rays. In the merger scenario, the intensity of X-ray emission prior to the explosion is expected to be much weaker. Based on the detection of a fairly strong X-ray source at approximately the position of SN 2007on 4 years before the explosion, Voss and Nelemans conclude that the data support the scenario where matter is pulled off a companion star. The small number of X-ray sources in the field implies that there is only a small chance of an unrelated source being so close by coincidence. Also, the X-ray source has similar properties to those expected for fusion on a white dwarf, unlike most X-ray sources in the sky. However, in follow-up studies, Voss, Nelemans and colleagues Gijs Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.) and Cees Bassa (McGill University, Canada) used higher-quality optical images to better determine the supernova's position. This work, which is not yet published, shows a small, but significant difference in the measured positions of the supernova and the X-ray source, suggesting the source may not be the progenitor. Follow-up Chandra observations hint that the X-ray object has disappeared, but further observations are needed to finally decide whether the source was the progenitor or not. The team is also applying this new method to other supernovas and has high hopes that they will eventually succeed in identifying the elusive cause of at least some of these explosions. "We're very excited about opening up a new way of studying supernovas, even though we're not sure that we've seen this particular stellar bomb before it exploded," said Gijs Roelofs. "We're very confident that we'll learn a lot more about these important supernovas in the future." Voss agrees that, even if the X-ray source is not found to be the progenitor of SN 2007on, the hunt is worth the effort. "Finding the progenitor to one of these Type Ia supernovas is a great chase in astronomy right now," he said. "These supernovas are great tools for studying dark energy, but if we knew more about how they form they might become even better tools." Rasmus Voss receives support from the Excellence Cluster Universe in Garching, Germany. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass
SN 1991T - Gamma-Ray Observatory's first supernova?
NASA Technical Reports Server (NTRS)
Burrows, Adam; Shankar, Anurag; Van Riper, Kenneth A.
1991-01-01
Consideration is given to the explosion of the Type Ia supernova SN 1991T in the nearby galaxy NGC 4527 detected in gamma-ray lines by the recently launched GRO. The dominant gamma-line and continuum features of the new 'delayed detonation' model FDEFA1 are calculated and compared to those for standard deflagration models W7 and cdtg7. It is shown that there are many useful hard photon discriminants of the Type Ia explosion mechanism that can, in principle, be detected by the OSSE and COMPTEL instruments on the GRO. Either SN 1991T, if bright enough, or one of the several Type Ia supernovae expected to be within the GRO's range during its active life, may make it possible to settle the detonation/deflagration debate, verify the generic thermonuclear white dwarf model of Type Ia explosions, and calibrate the Type Ia B(max)/847 keV line flux ratio.
Supernova Fallback onto Magnetars and Propeller-powered Supernovae
NASA Astrophysics Data System (ADS)
Piro, Anthony L.; Ott, Christian D.
2011-08-01
We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields (~1015 G) and short spin periods (~1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B <~ 5 × 1014 G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for ≈50-200 s until it collapses to a black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the "propeller regime" and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least ≈0.3 M sun, so we expect magnetars born within these types of environments to be more massive than the 1.4 M sun typically associated with neutron stars. The propeller mechanism converts the ~1052 erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first ~10-30 s. For a small ~5 M sun hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities ~(1-3) × 104 km s-1 and may appear as a broad-lined Type Ib/c supernova. For a large >~ 10 M sun hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of >~ 1043 erg s-1 lasting for a timescale of ~60-80 days.
Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties
NASA Astrophysics Data System (ADS)
De La Rosa, Janie
2016-06-01
Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.
NASA Astrophysics Data System (ADS)
Dessart, Luc; Hillier, D. John
2015-02-01
We present non-LTE (non-Local-Thermodynamic-Equilibrium) time-dependent radiative transfer simulations for ejecta produced by the detonation of a helium shell at the surface of a low-mass carbon/oxygen white dwarf (WD). This mechanism is one possible origin for supernovae (SNe) with faint and fast-decaying light curves, such as .Ia SNe and Ca-rich transients. Our initial ejecta conditions at 1 d are given by the 0.18 B explosion model COp45HEp2 of Waldman et al. The 0.2 M⊙ ejecta initially contains 0.11 M⊙ of He, 0.03 M⊙ of Ca, and 0.03 M⊙ of Ti. We obtain an ˜ 5 d rise to a bolometric maximum of 3.59 × 1041 erg s-1, primarily powered by 48V decay. Multi-band light curves show distinct morphologies, with a rise to maximum magnitude (-14.3 to -16.7 mag) that varies between 3 to 9 d from the U to the K bands. Near-IR light curves show no secondary maximum. Because of the presence of both He I and Si II lines at early times we obtain a hybrid Type Ia/Ib classification. During the photospheric phase line blanketing is caused primarily by Ti II. At nebular times, the spectra show strong Ca II lines in the optical (but no [O I] 6300-6364 Å emission), and Ti II in the near-IR. Overall, these results match qualitatively the very disparate properties of .Ia SNe and Ca-rich transients. Although the strong Ti II blanketing and red colours that we predict are rarely observed, they are seen, for example, in OGLE-2013- SN-079. Furthermore, we obtain a faster light-curve evolution than, for example, PTF10iuv, indicating an ejecta mass >0.2 M⊙. An alternate scenario may be the merger of two WDs, one or both composed of He.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, S.; Aldering, G.; Antilogus, P.
The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagrammore » (relative distance vs. redshift) and a description of some analyses using this rich dataset.« less
After the Explosion: Investigating Supernova Sites
2015-03-26
A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.
The cosmic gamma-ray background from Type Ia supernovae
NASA Technical Reports Server (NTRS)
The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.
1993-01-01
We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.
Radiation Transport in Type IA Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, R
1999-11-16
It has been said more than once that the critical link between explosion models and observations is the ability to accurately simulate cooling and radiation transport in the expanding ejecta of Type Ia supernovae. It is perhaps frustrating to some of the theorists who study explosion mechanisms, and to some of the observers too, that more definitive conclusions have not been reached about the agreement, or lack thereof, between various Type Ia supernova models and the data. Although claims of superlative accuracy in transport simulations are sometimes made, I will argue here that there are outstanding issues of critical importancemore » and in need of addressing before radiation transport calculations are accurate enough to discriminate between subtly different explosion models.« less
NASA Astrophysics Data System (ADS)
Wang, L. J.; Cano, Z.; Wang, S. Q.; Zheng, W. K.; Liu, L. D.; Deng, J. S.; Yu, H.; Dai, Z. G.; Han, Y. H.; Xu, D.; Qiu, Y. L.; Wei, J. Y.; Li, B.; Song, L. M.
2017-12-01
Broad-lined type Ic supernovae (SNe Ic-BL) are a subclass of rare core-collapse SNe whose energy source is debated in the literature. Recently, a series of investigations on SNe Ic-BL with the magnetar (plus 56Ni) model were carried out. Evidence for magnetar formation was found for the well-observed SNe Ic-BL 1998bw and 2002ap. In this paper, we systematically study a large sample of SNe Ic-BL not associated with gamma-ray bursts (GRBs). We use photospheric velocity data determined in a homogeneous way. We find that the magnetar+56Ni model provides a good description of the light curves and velocity evolution of our sample of SNe Ic-BL, although some SNe (not all) can also be described by the pure-magnetar model or by the two-component pure-56Ni model (three out of 12 are unlikely to be explained by two-component model). In the magnetar+56Ni model, the amount of 56Ni required to explain their luminosity is significantly reduced, and the derived initial explosion energy is, in general, in accordance with neutrino heating. Some correlations between different physical parameters are evaluated, and their implications regarding magnetic field amplification and the total energy reservoir are discussed.
Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler
2013-10-01
Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.
SN 2015as: a low-luminosity Type IIb supernova without an early light-curve peak
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anjasha; Misra, Kuntal; Pastorello, A.; Sahu, D. K.; Tomasella, L.; Tartaglia, L.; Singh, Mridweeka; Dastidar, Raya; Srivastav, S.; Ochner, P.; Brown, Peter J.; Anupama, G. C.; Benetti, S.; Cappellaro, E.; Kumar, Brajesh; Kumar, Brijesh; Pandey, S. B.
2018-05-01
We present results of the photometric (from 3 to 509 d post-explosion) and spectroscopic (up to 230 d post-explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The (B - V) colour evolution of SN 2015as closely resemble those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the B-band maximum about 22 d after the explosion, at an absolute magnitude of -16.82 ± 0.18 mag. At ˜75 d after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P Cygni features due to He I lines appear at around 30 d after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN 2015as, we estimate a 56Ni mass of ˜0.08 M⊙ and ejecta mass of 1.1-2.2 M⊙, which are similar to the values inferred for SN 2008ax. The quasi-bolometric analytical light-curve modelling suggests that the progenitor of SN 2015as has a modest mass (˜0.1 M⊙), a nearly compact (˜0.05 × 1013 cm) H envelope on top of a dense, compact (˜2 × 1011 cm) and a more massive (˜1.2 M⊙) He core. The analysis of the nebular phase spectra indicates that ˜0.44 M⊙ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main-sequence progenitor mass of ˜15 M⊙ or a Wolf-Rayet star of 20 M⊙.
NASA Astrophysics Data System (ADS)
Mandel, Kaisey; Kirshner, R. P.; Narayan, G.; Wood-Vasey, W. M.; Friedman, A. S.; Hicken, M.
2010-01-01
I have constructed a comprehensive statistical model for Type Ia supernova light curves spanning optical through near infrared data simultaneously. The near infrared light curves are found to be excellent standard candles (sigma(MH) = 0.11 +/- 0.03 mag) that are less vulnerable to systematic error from dust extinction, a major confounding factor for cosmological studies. A hierarchical statistical framework incorporates coherently multiple sources of randomness and uncertainty, including photometric error, intrinsic supernova light curve variations and correlations, dust extinction and reddening, peculiar velocity dispersion and distances, for probabilistic inference with Type Ia SN light curves. Inferences are drawn from the full probability density over individual supernovae and the SN Ia and dust populations, conditioned on a dataset of SN Ia light curves and redshifts. To compute probabilistic inferences with hierarchical models, I have developed BayeSN, a Markov Chain Monte Carlo algorithm based on Gibbs sampling. This code explores and samples the global probability density of parameters describing individual supernovae and the population. I have applied this hierarchical model to optical and near infrared data of over 100 nearby Type Ia SN from PAIRITEL, the CfA3 sample, and the literature. Using this statistical model, I find that SN with optical and NIR data have a smaller residual scatter in the Hubble diagram than SN with only optical data. The continued study of Type Ia SN in the near infrared will be important for improving their utility as precise and accurate cosmological distance indicators.
Marginal evidence for cosmic acceleration from Type Ia supernovae
NASA Astrophysics Data System (ADS)
Nielsen, J. T.; Guffanti, A.; Sarkar, S.
2016-10-01
The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
Metcalf, R Benton; Silk, Joseph
2007-02-16
We use the distribution, and particularly the skewness, of high redshift type Ia supernovae brightnesses relative to the low redshift sample to constrain the density of macroscopic compact objects (MCOs) in the Universe. The supernova data favor dark matter made of microscopic particles (such as the lightest supersymmetric partner) over MCOs with masses between 10(-2)Mo and 10(10)Mo at 89% confidence. Future data will greatly improve this limit. Combined with other constraints, MCOs larger than one-tenth the mass of Earth (approximately 10(-7)Mo) can be eliminated as the sole constituent of dark matter.
Marginal evidence for cosmic acceleration from Type Ia supernovae
Nielsen, J. T.; Guffanti, A.; Sarkar, S.
2016-01-01
The ‘standard’ model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present — as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these ‘standardisable candles’ indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion. PMID:27767125
Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.
2015-11-01
We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.
Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.
2015-11-01
We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.
A fast-evolving luminous transient discovered by K2/Kepler
NASA Astrophysics Data System (ADS)
Rest, A.; Garnavich, P. M.; Khatami, D.; Kasen, D.; Tucker, B. E.; Shaya, E. J.; Olling, R. P.; Mushotzky, R.; Zenteno, A.; Margheim, S.; Strampelli, G.; James, D.; Smith, R. C.; Förster, F.; Villar, V. A.
2018-04-01
For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified1-5. These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.
A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind
NASA Technical Reports Server (NTRS)
Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.;
2014-01-01
The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.
Fermi Large Area Telescope Detection of Supernova Remnant RCW 86
NASA Astrophysics Data System (ADS)
Yuan, Qiang; Huang, Xiaoyuan; Liu, Siming; Zhang, Bing
2014-04-01
Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV γ-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ~5.1σ. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, Γ ~ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy γ-rays. The very hard GeV γ-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the γ-rays. The γ-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
Goobar, A.; Amanullah, R.; Kulkarni, S. R.; ...
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy.We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply closemore » alignment between the lines of sight to the supernova and to the lens. In conclusion, the relative magnifications of the four images provide evidence for substructures in the lensing galaxy.« less
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova.
Goobar, A; Amanullah, R; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mörtsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy. Copyright © 2017, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck
1994-01-01
The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.
NASA Astrophysics Data System (ADS)
Kameswara Rao, N.; Lambert, David L.; Reddy, Arumalla B. S.; Gupta, Ranjan; Muneer, S.; Singh, Harinder P.
2017-05-01
In a survey conducted between 2011 and 2012 of interstellar Na I D line profiles in the direction of the Vela supernova remnant (SNR), a few lines of sight showed dramatic changes in low-velocity absorption components with respect to profiles from 1993 to 1994 reported by Cha & Sembach. Three stars - HD 63578, HD 68217 and HD 76161 - showed large decrease in strength over the 1993-2012 interval. HD 68217 and HD 76161 are associated with the Vela SNR whereas HD 63578 is associated with γ2 Velorum wind bubble. Here, we present high spectral resolution observations of Ca II K lines obtained with the Southern African Large Telescope towards these three stars along with simultaneous observations of Na I D lines. These new spectra confirm that the Na D interstellar absorption weakened drastically between 1993-1994 and 2011-2012 but show for the first time that the Ca II K line is unchanged between 1993-1994 and 2015. This remarkable contrast between the behaviour of Na D and Ca II K absorption lines is a puzzle concerning gas presumably affected by the outflow from the SNR and the wind from γ2 Velorum.
Kelly, Patrick L; Rodney, Steven A; Treu, Tommaso; Foley, Ryan J; Brammer, Gabriel; Schmidt, Kasper B; Zitrin, Adi; Sonnenfeld, Alessandro; Strolger, Louis-Gregory; Graur, Or; Filippenko, Alexei V; Jha, Saurabh W; Riess, Adam G; Bradac, Marusa; Weiner, Benjamin J; Scolnic, Daniel; Malkan, Matthew A; von der Linden, Anja; Trenti, Michele; Hjorth, Jens; Gavazzi, Raphael; Fontana, Adriano; Merten, Julian C; McCully, Curtis; Jones, Tucker; Postman, Marc; Dressler, Alan; Patel, Brandon; Cenko, S Bradley; Graham, Melissa L; Tucker, Bradley E
2015-03-06
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z = 0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The cluster's gravitational potential also creates multiple images of the z = 1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses. Copyright © 2015, American Association for the Advancement of Science.
Design, characterization, and sensitivity of the supernova trigger system at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin
2016-02-01
Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.
Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.
Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J
2011-12-14
Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.
Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix
NASA Astrophysics Data System (ADS)
Van Rossum, Daniel R; Wollaeger, Ryan T
2014-08-01
The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.
NASA Astrophysics Data System (ADS)
Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter
2018-04-01
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.
Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy
NASA Astrophysics Data System (ADS)
Suzuki, Akihiro; Maeda, Keiichi
2018-01-01
Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.
NASA Astrophysics Data System (ADS)
Huber, Mark; Scolnic, D.; Riess, A. G.; Tonry, J. L.; Rodney, S. A.; Rest, A.; Stubbs, C. W.
2010-01-01
The extensive application of the SuperNovAe Cross-Correlation (SNACC) filters developed by Scolnic et al. (2009) for follow-up identification and redshift of type Ia supernovae in current and upcoming supernovae surveys will itself produce a unique imaging survey. We will present a collection of simulated and actual sources from the initial observing run using the new 4-band SNACC filters with Suprime-Cam on the Subaru telescope to explore the extra potential of this unique data set.
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Spectroscopic mapping of the physical properties of supernova remnant N 49
NASA Astrophysics Data System (ADS)
Pauletti, D.; Copetti, M. V. F.
2016-10-01
Context. Physical conditions inside a supernova remnant can vary significantly between different positions. However, typical observational data of supernova remnants are integrated data or contemplate specific portions of the remnant. Aims: We study the spatial variation in the physical properties of the N 49 supernova remnant based on a spectroscopic mapping of the whole nebula. Methods: Long-slit spectra were obtained with the slit (~4' × 1.03″) aligned along the east-west direction from 29 different positions spaced by 2″ in declination. A total of 3248 1D spectra were extracted from sections of 2″ of the 2D spectra. More than 60 emission lines in the range 3550 Å to 8920 Å were measured in these spectra. Maps of the fluxes and of intensity ratios of these emission lines were built with a spatial resolution of 2″ × 2″. Results: An electron density map has been obtained using the [S II] λ6716 /λ6731 line ratio. Values vary from ~500 cm-3 at the northeast region to more than 3500 cm-3 at the southeast border. We calculated the electron temperature using line ratio sensors for the ions S+, O++, O+, and N+. Values are about 3.6 × 104 K for the O++ sensor and about 1.1 × 104 K for other sensors. The Hα/Hβ ratio map presents a ring structure with higher values that may result from collisional excitation of hydrogen. We detected an area with high values of [N II] λ6583/Hα extending from the remnant center to its northeastern border, which may be indicating an overabundance of nitrogen in the area due to contamination by the progenitor star. We found a radial dependence in many line intensity ratio maps. We observed an increase toward the remnant borders of the intensity ratio of any two lines in which the numerator comes before in the sequence [O III] λ5007, [O III] λ4363, [Ar III] λ7136, [Ne III] λ3869, [O II] λ7325, [O II] λ3727, He II λ4686, Hβ λ4861, [N II] λ6583, He I λ6678, [S II] λ6731, [S II] λ6716, [O I] λ6300, [Ca II] λ7291, Ca II λ3934, and [N I] λ5199. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).Maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A10
Do Supernovae Make or Kill Pulsars?
NASA Astrophysics Data System (ADS)
Geppert, U.; Page, D.; Zannias, T.
1998-12-01
The effect of post core-collapse accretion on the magnetic field (MF) of a new born neutron star (NS) is considered. If this accretion is hypercritical than any initially in the NS matter frozen in MF will be submerged beneath the accreted matter. If the accreted matter is non magnetized, NS produced by SN in which hypercritical accretion occured are born with weak surface MF. This mechanism may contribute to the deficit of observed PSR in SNR and may also explain the discrepancy between the estimated PSR birthrate and type Ib + II SN rates. The dependence of the re-diffusion of the submerged MF on the fall-back accretion is discussed too.
Spectroscopic classification of SN 2017hro with NOT
NASA Astrophysics Data System (ADS)
Babooram, C.; Jormanainen, J.; Wagner, S.; Wierda, F.; Kuncarayakti, H.; Fedorets, G.; Dyrbye, S.
2017-11-01
We report the spectroscopic classification of supernova SN 2017hro (ATLAS17mwv) in host galaxy 2MASX J22161573+4003267. The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.6 nm) on 2017-11-01.8 UT. Survey Name | IAU Name | Discovery (UT) | Discovery mag | Observation (UT) | Redshift | Type | Phase | Notes ATLAS17mwv | SN 2017hro | 2017-10-28.3 | 18.765 | 2017-11-01.8 | 0.015 | II | around maximum | (1) (1) SN redshift is obtained from host emission lines and consistent with that derived from the SN spectrum.
Difference in Dwarf Galaxy Surface Brightness Profiles as a Function of Environment
NASA Astrophysics Data System (ADS)
Lee, Youngdae; Park, Hong Soo; Kim, Sang Chul; Moon, Dae-Sik; Lee, Jae-Joon; Kim, Dong-Jin; Cha, Sang-Mok
2018-05-01
We investigate surface brightness profiles (SBPs) of dwarf galaxies in field, group, and cluster environments. With deep BV I images from the Korea Microlensing Telescope Network Supernova Program, SBPs of 38 dwarfs in the NGC 2784 group are fitted by a single-exponential or double-exponential model. We find that 53% of the dwarfs are fitted with single-exponential profiles (“Type I”), while 47% of the dwarfs show double-exponential profiles; 37% of all dwarfs have smaller sizes for the outer part than the inner part (“Type II”), while 10% have a larger outer than inner part (“Type III”). We compare these results with those in the field and in the Virgo cluster, where the SBP types of 102 field dwarfs are compiled from a previous study and the SBP types of 375 cluster dwarfs are measured using SDSS r-band images. As a result, the distributions of SBP types are different in the three environments. Common SBP types for the field, the NGC 2784 group, and the Virgo cluster are Type II, Type I and II, and Type I and III profiles, respectively. After comparing the sizes of dwarfs in different environments, we suggest that since the sizes of some dwarfs are changed due to environmental effects, SBP types are capable of being transformed and the distributions of SBP types in the three environments are different. We discuss possible environmental mechanisms for the transformation of SBP types. Based on data collected at KMTNet Telescopes and SDSS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, X.; Liang, Y. C.; Chen, X. Y.
We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) ormore » absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.« less
NASA Astrophysics Data System (ADS)
Ganot, Noam; Gal-Yam, Avishay; Ofek, Eran. O.; Sagiv, Ilan; Waxman, Eli; Lapid, Ofer; Kulkarni, Shrinivas R.; Ben-Ami, Sagi; Kasliwal, Mansi M.; The ULTRASAT Science Team; Chelouche, Doron; Rafter, Stephen; Behar, Ehud; Laor, Ari; Poznanski, Dovi; Nakar, Ehud; Maoz, Dan; Trakhtenbrot, Benny; WTTH Consortium, The; Neill, James D.; Barlow, Thomas A.; Martin, Christofer D.; Gezari, Suvi; the GALEX Science Team; Arcavi, Iair; Bloom, Joshua S.; Nugent, Peter E.; Sullivan, Mark; Palomar Transient Factory, The
2016-03-01
The radius and surface composition of an exploding massive star, as well as the explosion energy per unit mass, can be measured using early UV observations of core-collapse supernovae (SNe). We present the first results from a simultaneous GALEX/PTF search for early ultraviolet (UV) emission from SNe. Six SNe II and one Type II superluminous SN (SLSN-II) are clearly detected in the GALEX near-UV (NUV) data. We compare our detection rate with theoretical estimates based on early, shock-cooling UV light curves calculated from models that fit existing Swift and GALEX observations well, combined with volumetric SN rates. We find that our observations are in good agreement with calculated rates assuming that red supergiants (RSGs) explode with fiducial radii of 500 R ⊙, explosion energies of 1051 erg, and ejecta masses of 10 M ⊙. Exploding blue supergiants and Wolf-Rayet stars are poorly constrained. We describe how such observations can be used to derive the progenitor radius, surface composition, and explosion energy per unit mass of such SN events, and we demonstrate why UV observations are critical for such measurements. We use the fiducial RSG parameters to estimate the detection rate of SNe during the shock-cooling phase (<1 day after explosion) for several ground-based surveys (PTF, ZTF, and LSST). We show that the proposed wide-field UV explorer ULTRASAT mission is expected to find >85 SNe per year (˜0.5 SN per deg2), independent of host galaxy extinction, down to an NUV detection limit of 21.5 mag AB. Our pilot GALEX/PTF project thus convincingly demonstrates that a dedicated, systematic SN survey at the NUV band is a compelling method to study how massive stars end their life.
A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.
Chan; Onaka
2000-04-10
We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.
AMEGO as a supernova alarm: alert, probe and diagnosis of Type Ia explosions
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Wang, Xilu
2017-08-01
A Type Ia supernova (SNIa) could go entirely unnoticed in the Milky Way and nearby starburst galaxies, due to the large optical and near-IR extinction in the dusty environment, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit γ-ray lines from 56Ni → 56Co → 56Fe radioactive decay, spanning 158 keV to 2.6 MeV. The Galaxy and nearby starbursts are optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. The All-Sky Medium Energy Gamma-ray Observatory (AMEGO) will monitor the entire sky every 3 hours from ~200 keV to >10 GeV. Most of the SNIa gamma-ray lines are squarely within the AMEGO energy range. Thus AMEGO will be an ideal SNIa monitor and early warning system. We will show that the supernova signal is expected to emerge as distinct from the AMEGO background within days after the explosion in the SN2014J shell model. The early stage observations of SNIa will allow us to explore the progenitor types and the nucleosynthesis of SNIa. Moreover, with the excellent line sensitivity, AMEGO will be able to detect the SNIa at a rate of a few events per year and will obtain enough gamma-ray observations over the mission lifetimes (~10 SNIa) to sample the SNIa. The high SNIa detection rate will also enable the precise measurement of the 56Ni mass generated during the Type Ia explosion, which will help us test the cosmic distance calibration and probe the cosmic acceleration.
Classification of PSN J12015272-1852183 as a young type Ic SN
NASA Astrophysics Data System (ADS)
Harutyunyan, A.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Tomasella, L.; Ochner, P.; Turatto, M.
2013-06-01
We report the spectroscopic classification (range 335-785 nm; resolution 1.5 nm) of PSN J12015272-1852183 discovered by the CHASE project on June 22.12 UT. The spectrogram obtained on June 23.88 UT with the TNG Telescope (+Dolores), shows that this is a type-Ic supernova. A good match is found with the type-Ic supernova 1994I (Millard et al 1999, ApJ 527, 746) at about six days before maximum light.
Toward an efficient Photometric Supernova Classifier
NASA Astrophysics Data System (ADS)
McClain, Bradley
2018-01-01
The Sloan Digital Sky Survey Supernova Survey (SDSS) discovered more than 1,000 Type Ia Supernovae, yet less than half of these have spectroscopic measurements. As wide-field imaging telescopes such as The Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) discover more supernovae, the need for accurate and computationally cheap photometric classifiers increases. My goal is to use a photometric classification algorithm based on Sncosmo, a python library for supernova cosmology analysis, to reclassify previously identified Hubble SN and other non-spectroscopically confirmed surveys. My results will be compared to other photometric classifiers such as PSNID and STARDUST. In the near future, I expect to have the algorithm validated with simulated data, optimized for efficiency, and applied with high performance computing to real data.
An earlier explosion date for the Crab Nebula supernova
NASA Astrophysics Data System (ADS)
Abt, Helmut A.; Fountain, John W.
2018-04-01
The Chinese first reported the Crab Nebula supernova on 1054 July 5. Ecclesiastical documents from the near east reported it in April and May of 1054. More than 33 petroglyphs made by Native Americans in the US and Mexico are consistent with sightings both before and after conjunction with the Sun on 1054 May 27. We found a petroglyph showing the new star close to Venus and the Moon, which occurred on 1054 April 12 and April 13, respectively. Collins et al., using the four historical dates, derived a light curve that is like that of a Type Ia supernova. The only remaining problem with this identification is that this supernova was near maximum light for 85 d, which is unlike the behavior of any known supernova.
SUPERNOVA FALLBACK ONTO MAGNETARS AND PROPELLER-POWERED SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L.; Ott, Christian D., E-mail: piro@caltech.edu, E-mail: cott@tapir.caltech.edu
2011-08-01
We explore fallback accretion onto newly born magnetars during the supernova of massive stars. Strong magnetic fields ({approx}10{sup 15} G) and short spin periods ({approx}1-10 ms) have an important influence on how the magnetar interacts with the infalling material. At long spin periods, weak magnetic fields, and high accretion rates, sufficient material is accreted to form a black hole, as is commonly found for massive progenitor stars. When B {approx}< 5 x 10{sup 14} G, accretion causes the magnetar to spin sufficiently rapidly to deform triaxially and produces gravitational waves, but only for {approx}50-200 s until it collapses to amore » black hole. Conversely, at short spin periods, strong magnetic fields, and low accretion rates, the magnetar is in the 'propeller regime' and avoids becoming a black hole by expelling incoming material. This process spins down the magnetar, so that gravitational waves are only expected if the initial protoneutron star is spinning rapidly. Even when the magnetar survives, it accretes at least {approx}0.3 M{sub sun}, so we expect magnetars born within these types of environments to be more massive than the 1.4 M{sub sun} typically associated with neutron stars. The propeller mechanism converts the {approx}10{sup 52} erg of spin energy in the magnetar into the kinetic energy of an outflow, which shock heats the outgoing supernova ejecta during the first {approx}10-30 s. For a small {approx}5 M{sub sun} hydrogen-poor envelope, this energy creates a brighter, faster evolving supernova with high ejecta velocities {approx}(1-3) x 10{sup 4} km s{sup -1} and may appear as a broad-lined Type Ib/c supernova. For a large {approx}> 10 M{sub sun} hydrogen-rich envelope, the result is a bright Type IIP supernova with a plateau luminosity of {approx}> 10{sup 43} erg s{sup -1} lasting for a timescale of {approx}60-80 days.« less
Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter
NASA Astrophysics Data System (ADS)
Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan
2011-09-01
A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.
Not Color-Blind: Using Multiband Photometry to Classify Supernovae
NASA Astrophysics Data System (ADS)
Poznanski, Dovi; Gal-Yam, Avishay; Maoz, Dan; Filippenko, Alexei V.; Leonard, Douglas C.; Matheson, Thomas
2002-08-01
Large numbers of supernovae (SNe) have been discovered in recent years, and many more will be found in the near future. Once discovered, further study of a SN and its possible use as an astronomical tool (e.g., as a distance estimator) require knowledge of the SN type. Current classification methods rely almost solely on the analysis of SN spectra to determine their type. However, spectroscopy may not be possible or practical when SNe are faint, numerous, or discovered in archival studies. We present a classification method for SNe based on the comparison of their observed colors with synthetic ones, calculated from a large database of multiepoch optical spectra of nearby events. We discuss the capabilities and limitations of this method. For example, Type Ia SNe at redshifts z<0.1 can be distinguished from most other SN types during the first few weeks of their evolution, based on V-R versus R-I colors. Type II-P SNe have distinct (very red) colors at late (t>100 days) stages. Broadband photometry through standard Johnson-Cousins UBVRI filters can be useful to classify SNe out to z~0.6. The use of Sloan Digital Sky Survey (SDSS) ugriz filters allows the extension of our classification method to even higher redshifts (z=0.75), and the use of infrared bands, to z=2.5. We demonstrate the application of this method to a recently discovered SN from the SDSS. Finally, we outline the observational data required to further improve the sensitivity of the method and discuss prospects for its use on future SN samples. Community access to the tools developed is provided by a dedicated Web site.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M., E-mail: mulchaey@obs.carnegiescience.edu
X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves frommore » 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.« less
VLA radio upper limit on Type IIn Supernova 2007pk
NASA Astrophysics Data System (ADS)
Chandra, Poonam; Soderberg, Alicia
2007-11-01
Poonam Chandra and Alicia Soderberg report on behalf of a larger collaboration: We observed Type IIn supernova SN 2007pk (CBET 1129) with the VLA in 8.46 GHz band on 2007, November 12.20 UT, 1.89 days since discovery (CBET 1129). We do not detect radio emission from the SN position (CBET 1129). The flux density at the SN position is 11 +/-26 uJy.
Nucleosynthesis in Thermonuclear Supernovae
NASA Astrophysics Data System (ADS)
Seitenzahl, Ivo Rolf; Townsley, Dean M.
The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.
New developments in the mechanism for core-collapse supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guidry, M.
1994-12-31
Recent results indicate that the standard type-2 supernova scenario in which the shock wave stagnates but is reenergized by neutrino heating fails to consistently produce supernova explosions having the required characteristics. The authors review the theory of convection and survey some recent calculations indicating the importance of convection operating on millisecond timescales in the protoneutron star. These calculations suggest that such convection is probably generic to the type-2 scenario, that this produces a violet overturn of material below the stalled shock, and that this overturn could lead to significant alterations in the neutrino luminosity and energy. This provides a mechanismmore » that could be effective in reenergizing the stalled shock and producing supernovae explosions having the quantitative characteristics demands by observations. This mechanism implies, in turn, that the convection cannot be adequately described by the 1-dimensional hydrodynamics employed in most simulations. Thus, a full understanding of the supernova mechanism and the resulting heavy element production is likely to require 3-dimensional relativistic hydrodynamics and a comprehensive description of neutrino transport. The prospects for implementing such calculations using a new generation of massively parallel supercomputers and modern scalable algorithms are discussed.« less
Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.
2017-06-01
Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.
Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant
NASA Technical Reports Server (NTRS)
Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi
2012-01-01
Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.
Constraining the Origin and Heating Mechanism of Dust in Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Fox, Ori; Skrutskie, Michael; Filippenko, Alex
2012-12-01
More than any other supernova subclass, Type IIn supernovae tend to exhibit late-time (>1 year) infrared emission from warm dust. Identifying the origin and heating mechanism of the dust provides an important probe of the supernova explosion, circumstellar environment, and progenitor system. Yet mid-infrared observations, which span the peak of the thermal emission, are rare. Three years ago, we executed a warm Spitzer survey (P60122) that uncovered a unique sample of ten supernovae with unreported late-time infrared excesses, in some cases more than 5 years post-explosion. The data from this single epoch are most consistent with a pre-existing dust shell that is continuously heated by visible and/or X-ray emission generated by ongoing shock interaction. Furthermore, the lack of any detections beyond ~2000 days suggests the dust is destroyed once the forward shock overruns the pre-existing shell. The actual shell sizes remain unknown, however, since the derived blackbody radii offer only lower limits. Last year, we obtained second epoch observations of these ten re-discovered SNe IIn (plus the well-studied Type IIn SN 2010jl). The project aimed for non-detections to constrain the light-curve ``turn-off'' times and, thereby, the shell sizes and progenitor mass-loss models. Only two SNe (2005gn and 2008J), however, went undetected. The other nine SNe remain bright at mid-IR wavelengths, which means the dust shell radii are larger than expected. Here we propose continued monitoring of these nine SNe IIn to constrain the size of the circumstellar dust shell and characterize the supernova progenitor system. We can obtain all the necessary data in only 6.1 hours of observation.
Kinematics of the Galactic Supernova Remnant G109.1-1.0 (CTB 109)
NASA Astrophysics Data System (ADS)
Sánchez-Cruces, M.; Rosado, M.; Fuentes-Carrera, I.; Ambrocio-Cruz, P.
2018-01-01
We present direct images in the H α and [S II] λλ6717,6731 Å lines of the Galactic supernova remnant (SNR) G109.1-1.0 (CTB 109). We confirm that the filaments detected are the optical counterpart of the X-ray and radio SNR due to their high [S II]/H α line ratios. We study for the first time the kinematics of the optical counterpart of SNR CTB 109 using the Universidad Nacional Autónoma de México scanning Fabry-Perot interferometer PUMA. We estimate a systemic velocity of VLSR = -50 ± 6 km s-1 for this remnant and an expansion velocity of Vexp = 230 ± 5 km s-1. From this velocity and taking into account previous studies of the kinematics of objects at that Galactic longitude, we derive a distance to SNR CTB 109 of 3.1 ± 0.2 kpc, locating it in the Perseus arm. Using the [S II] λ6717/[S II] λ6731 line ratio, we find an electronic density value around ne = 580 cm-3. Considering that this remnant is evolving in a low-density medium with higher-density cloudlets responsible for the optical emission, we determine the age and energy deposited in the ISM by the supernova explosion (E0) in both the Sedov-Taylor phase and the radiative phase. For both cases, the age is thousands of years and E0 is rather typical of SNRs containing simple pulsars, so that the energy released to the ISM cannot be used to distinguish between SNRs hosting typical pulsars from those hosting powerful magnetars, like CTB 109.
Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd1
NASA Technical Reports Server (NTRS)
Stritzinger, Maximilian; Taddia, Francesco; Fransson, Claes; Fox, Ori D.; Morrell, Nidia; Phillips, M. M.; Sollerman, Jesper; Anderson, J. P.; Bolft, Luis; Brown, Peter J.;
2012-01-01
We present an observational study of the Type IIn supernovae (SNe IIn) 2005ip and 2006jd. Broad-band UV, optical and near-IR photometry, and visual-wavelength spectroscopy of SN 2005ip complement and extend upon published observations to 6.5 years past discovery. Our observations of SN 2006jd extend from UV to mid-infrared wavelengths, and like SN 2005ip, are compared to reported X-ray measurements to understand the nature of the progenitor. Both objects display a number of similarities with the 1988Z-like subclass of SN IIn including: (i) remarkably similar early- and late-phase optical spectra, (ii) a variety of high ionization coronal lines, (iii) long-duration optical and near-IR emission and, (iv) evidence of cold and warm dust components. However, diversity is apparent including an unprecedented late-time r-band excess in SN 2006jd. The observed di erences are attributed to di erences between the mass-loss history of the progenitor stars. We conclude that the progenitor of SN 2006jd likely experienced a signi cant mass-loss event during its pre-SN evolution akin to the great 19th century eruption of eta Carinae. Contrarily, as advocated by Smith et al. (2009), we nd the circumstellar environment of SN 2005ip to be more consistent with a clumpy wind progenitor.
Models for Supernovae and Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Woosley, Stan
Supernovae and gamma-ray bursts are the brightest stellar mass explosions in the universe. As such, they serve as cosmic beacons for probing cosmic structure and diagnosing the properties of stars and the universe when it was young. They also produce black holes and neutron stars, interesting in themselves as laboratories where exotic physics comes into play, and they make the elements from which life arises. Consequently, supernovae and gamma-ray bursts are subject to intense study by many NASA missions. We propose focused studies in five areas of supernova research that are directly relevant to NASA's missions, especially SWIFT, HST, JWST, and planning for WFIRST. Our specific topics are a) models for Type Ia supernovae; b) extreme supernovae and first supernovae; c) magnetar-powered supernovae; d) ultra-long duration gamma-ray bursts; and e) shock breakout in supernovae. These phenomena all have in common their importance to NASA missions and the fact that they can be studied using similar tools - computer codes that do radiation hydrodynamics. Our two principal codes, KEPLER (one-dimension) and CASTRO (one to three dimensions), have been honed to the task by years of supernova modeling, and have some unique capabilities. Type Ia supernovae have long been of interest to NASA, but their importance has increased lately because of their utility in determining cosmic distances and because a string of recent observational breakthroughs has severely limited their progenitors. Responding to these developments, we propose to focus on a class of model we have previously neglected, the merger of two white dwarfs. The mergers will be studied with KEPLER and CASTRO in one and two dimensions, and the spectra and light curves determined. The library of model results will be useful in interpreting the results of present NASA missions and planning new ones. A second important area of investigation will be the study of first generation stars and the supernovae that they produce. These stars may have been born more massive than nowadays, and certainly died more massive if mass loss depends upon metallicity. We will explore the bright signal from shock breakout in these stars, a signal that should be detectable even after traversing almost all the universe. We will also study a particular class of ultra-luminous supernovae resulting from the collisions of shells ejected by repeated thermonuclear explosions in very massive stars, the so called ``pulsational pair instability supernovae''. Shock break out will also be studied in more nearby stars using the large library of supernova models we have computed over the years. And we will study the effects that the black holes and neutron stars have on the light emitted by the supernovae that made them. If the outer layers of the star that made the black hole rotate too fast to fall straight into the hole, a long duration (minutes to days) gamma-ray burst can result. If the neutron star has an exceptionally strong magnetic field and rotates rapidly, it may contribute to the supernova light curve. In some cases the supernova would be ultraluminous. Finding compelling evidence for either of these effects would have important implications for how supernovae and gamma-ray bursts work. We are seeking support for one month's summer salary for the PI and full time support for a graduate student. The student is already at UCSC and working on similar projects.
Classification of ASASSN-16ct as a Type Ia supernova near maximum
NASA Astrophysics Data System (ADS)
Piascik, A. S.; Steele, I. A.
2016-03-01
We conducted a spectroscopic observation of transient ASASSN-16ct (AT 2016aud) at 2016-03-10T04:38:37 UT. This transient was identified in ATel #8796 by the All Sky Automated Survey for SuperNovae (ASAS-SN).
The shocking development of lithium (and boron) in supernovae
NASA Technical Reports Server (NTRS)
Dearborn, David S. P.; Schramm, David N.; Steigman, Gary; Truran, James
1989-01-01
It is shown that significant amounts of Li-7 and B-11 are produced in Type 2 supernovae. The synthesis of these rare elements occurs as the supernova shock traverses the base of the hydrogen envelope burning He-3 to masses 7 and 11 via alpha capture. The yields in this process are sufficient to account for the difference in lithium abundance observed between Pop 2 and Pop 1 stars. Since lithium (and boron) would, in this manner, be created in the same stars that produce the bulk of the heavy elements, the lithium abundance even in old Pop 1 stars would be high (as observed). The B-11 production may remedy the long-standing problem of the traditional spallation scenario to account for the observed isotopic ratio of boron. Observational consequences of this mechanism are discussed, including the evolution of lithium and boron isotope ratios in the Galaxy and the possible use of the boron yields to constrain the number of blue progenitor Type 2 supernovae.
CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.
2013-08-10
The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead tomore » severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers.« less
A surge of light at the birth of a supernova.
Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N
2018-02-21
It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
Banerjee, Projjwal; Qian, Yong-Zhong; Heger, Alexander; Haxton, W C
2016-01-01
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. PMID:27873999
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander; ...
2016-11-22
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less
A surge of light at the birth of a supernova
NASA Astrophysics Data System (ADS)
Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.
2018-02-01
It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.
Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Projjwal; Qian, Yong -Zhong; Heger, Alexander
About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either domore » not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived 10Be can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.« less
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Alberdi, A.; Guirado, J. C.; Pérez-Torres, M. A.; Ros, E.
2011-02-01
We report on a simultaneous modelling of the expansion and radio light curves of the supernova SN1993J. We developed a simulation code capable of generating synthetic expansion and radio light curves of supernovae by taking into consideration the evolution of the expanding shock, magnetic fields, and relativistic electrons, as well as the finite sensitivity of the interferometric arrays used in the observations. Our software successfully fits all the available radio data of SN 1993J with a standard emission model for supernovae, which is extended with some physical considerations, such as an evolution in the opacity of the ejecta material, a radial decline in the magnetic fields within the radiating region, and a changing radial density profile for the circumstellar medium starting from day 3100 after the explosion.
NASA Technical Reports Server (NTRS)
Nomoto, K.
1981-01-01
As a plausible explosion model for a Type I supernova, the evolution of carbon-oxygen white dwarfs accreting helium in binary systems was investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case of slow accretion, since in this case the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail.
NASA Technical Reports Server (NTRS)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert;
2015-01-01
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios - (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.
The highly luminous Type Ibn supernova ASASSN-14ms
NASA Astrophysics Data System (ADS)
Vallely, P. J.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Sukhbold, T.; Bersier, D.; Brown, J. S.; Chen, P.; Dong, S.; Falco, E.; Berlind, P.; Calkins, M.; Koff, R. A.; Kiyota, S.; Brimacombe, J.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, T. A.; Stritzinger, M. D.
2018-04-01
We present photometric and spectroscopic follow-up observations of the highly luminous Type Ibn supernova ASASSN-14ms, which was discovered on UT 2014-12-26.61 at mV ˜ 16.5. With a peak absolute V-band magnitude brighter than -20.5, a peak bolometric luminosity of 1.7 × 1044 erg s-1, and a total radiated energy of 2.1 × 1050 erg, ASASSN-14ms is one of the most luminous Type Ibn supernovae yet discovered. In simple models, the most likely power source for this event is a combination of the radioactive decay of 56Ni and 56Co at late times and the interaction of supernova ejecta with the progenitor's circumstellar medium at early times, although we cannot rule out the possibility of a magnetar-powered light curve. The presence of a dense circumstellar medium is indicated by the intermediate-width He I features in the spectra. The faint (mg ˜ 21.6) host galaxy SDSS J130408.52+521846.4 has an oxygen abundance below 12 + log (O/H) ≲ 8.3, a stellar mass of M* ˜ 2.6 × 108 M⊙, and a star formation rate of SFR ˜ 0.02 M⊙ yr-1.
Search for gamma ray lines from supernovae and supernova remnants
NASA Technical Reports Server (NTRS)
Chupp, E. L.; Forrest, D. J.; Suri, A. N.; Adams, R.; Tsai, C.
1974-01-01
A gamma ray monitor with a NaI crystal shielded with a cup-shaped CsI cover was contained in the rotating wheel compartment of the OSO-7 spacecraft for measuring the gamma ray spectra from 0.3 to 10 MeV in search for gamma ray lines from a possible remnant in the Gum Nebula and the apparent Type I supernovae in NGC5253. A brief analysis of data yielded no positive indications for X-rays, gamma ray lines, or continuum from these sources.
Spectroscopic Classification of AT2016fij as a Normal Type Ia Supernova
NASA Astrophysics Data System (ADS)
Shivvers, I.; Yuk, H.; Kelly, P.; Stahl, B.; Filippenko, A. V.
2016-09-01
We report that a CCD spectrum (range 350-1050 nm) of AT2016fij was obtained on Aug. 27.5 UT with the 3-m Shane reflector (+Kast) at Lick Observatory. We classified the event via cross-correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin & Tonry 2007, Ap.J. 666, 1024) including the updated templates of Silverman et al. (2012, MNRAS, 425, 1789) and Liu & Modjaz (2014, arXiv:1405.1437).
NASA Astrophysics Data System (ADS)
McCrum, M.; Smartt, S. J.; Rest, A.; Smith, K.; Kotak, R.; Rodney, S. A.; Young, D. R.; Chornock, R.; Berger, E.; Foley, R. J.; Fraser, M.; Wright, D.; Scolnic, D.; Tonry, J. L.; Urata, Y.; Huang, K.; Pastorello, A.; Botticella, M. T.; Valenti, S.; Mattila, S.; Kankare, E.; Farrow, D. J.; Huber, M. E.; Stubbs, C. W.; Kirshner, R. P.; Bresolin, F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.
2015-04-01
The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ˜ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3^{+3}_{-2}× 10^{-5} and 8^{+2}_{-1}× 10^{-5} that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.
The Supernova Spectropolarimetry (SNSPOL) Project; Probing the Geometry of Supernova Explosions
NASA Astrophysics Data System (ADS)
Williams, George Grant; Leonard, Douglas; Smith, Nathan; Smith, Paul; Milne, Peter; Hoffman, Jennifer L.; Bilinski, Christopher
2018-01-01
In recent years, evidence has grown that most supernovae exhibit departures from spherical symmetry. These results, together with full three-dimensional modeling, are exposing the possibility that asymmetries are not simply an observable feature of some supernovae, but may, in fact, be a necessity of the explosion mechanism itself. However, with the exception of SN 1987A, a supernova photosphere cannot be resolved through direct imaging from ground or space. Only the powerful technique of polarimetry can directly probe asymmetries on those spatial scales. Spectropolarimetry enhances the power of this technique by revealing wavelength-dependent variations that may result from differences in the geometrical distributions of the various ionic species. Multi-epoch observations over several months can be used to follow the evolution of these asymmetries as a supernova evolves and its photosphere recedes through the ejecta. The Supernova Spectropolarimetry (SNSPOL) Project aims to study the predominance and characteristics of asymmetries in all types of supernovae by decoding their complex, time-dependent polarimetric behavior. This is accomplished through multi-epoch observations using the CCD Imaging/Spectropolarimeter (SPOL) on the 61” Kuiper, the 90” Bok, and the 6.5-m MMT telescopes. During the past six years, the SNSPOL Project has observed more than 95 supernovae, approximately 2/3 of which have been observed at multiple epochs. Here we present a summary of the project, its current status, and a few selected results.
SESNPCA: Principal Component Analysis Applied to Stripped-Envelope Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Williamson, Marc; Bianco, Federica; Modjaz, Maryam
2018-01-01
In the new era of time-domain astronomy, it will become increasingly important to have rigorous, data driven models for classifying transients, including supernovae (SNe). We present the first application of principal component analysis (PCA) to stripped-envelope core-collapse supernovae (SESNe). Previous studies of SNe types Ib, IIb, Ic, and broad-line Ic (Ic-BL) focus only on specific spectral features, while our PCA algorithm uses all of the information contained in each spectrum. We use one of the largest compiled datasets of SESNe, containing over 150 SNe, each with spectra taken at multiple phases. Our work focuses on 49 SNe with spectra taken 15 ± 5 days after maximum V-band light where better distinctions can be made between SNe type Ib and Ic spectra. We find that spectra of SNe type IIb and Ic-BL are separable from the other types in PCA space, indicating that PCA is a promising option for developing a purely data driven model for SESNe classification.
Spectroscopic Classification of SN 2018nt as a Reddened Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Szeged, U.; Wheeler, J. C.
2018-02-01
An optical spectrum (range 360-700 nm) of SN 2018nt (K2 C16-0043), was obtained with the "Low Resolution Spectrograph-2" (LRS2) on the 10m Hobby-Eberly Telescope at McDonald Observatory by S. Odewahn on 2018 Feb 05.20 UT. The spectrum is consistent with that of a heavily reddened Type Ia supernova (with Av > 2 mag) about 3 weeks after maximum light.
Type Ia supernovae as standard candles
NASA Technical Reports Server (NTRS)
Branch, David; Miller, Douglas L.
1993-01-01
The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.
A new supernova light curve modeling program
NASA Astrophysics Data System (ADS)
Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József
2017-12-01
Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.
NASA's Chandra Reveals Origin of Key Cosmic Explosions
NASA Astrophysics Data System (ADS)
2010-02-01
WASHINGTON -- New findings from NASA's Chandra X-ray Observatory have provided a major advance in understanding a type of supernova critical for studying the dark energy that astronomers think pervades the universe. The results show mergers of two dense stellar remnants are the likely cause of many of the supernovae that have been used to measure the accelerated expansion of the universe. These supernovae, called Type Ia, serve as cosmic mile markers to measure expansion of the universe because they can be seen at large distances, and they follow a reliable pattern of brightness. However, until now, scientists have been unsure what actually causes the explosions. "These are such critical objects in understanding the universe," said Marat Gilfanov of the Max Planck Institute for Astrophysics in Germany and lead author of the study that appears in the Feb. 18 edition of the journal Nature. "It was a major embarrassment that we did not know how they worked. Now we are beginning to understand what lights the fuse of these explosions." Most scientists agree a Type Ia supernova occurs when a white dwarf star -- a collapsed remnant of an elderly star -- exceeds its weight limit, becomes unstable and explodes. Scientists have identified two main possibilities for pushing the white dwarf over the edge: two white dwarfs merging or accretion, a process in which the white dwarf pulls material from a sun-like companion star until it exceeds its weight limit. "Our results suggest the supernovae in the galaxies we studied almost all come from two white dwarfs merging," said co-author Akos Bogdan, also of Max Planck. "This is probably not what many astronomers would expect." The difference between these two scenarios may have implications for how these supernovae can be used as "standard candles" -- objects of a known brightness -- to track vast cosmic distances. Because white dwarfs can come in a range of masses, the merger of two could result in explosions that vary somewhat in brightness. Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type 1a supernova caused by accreting material produces significant X- ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario. The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out. This implies that white dwarf mergers dominate in these galaxies. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes. "To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist," said Gilfanov. "Now this path to supernovae will have to be investigated in more detail." In addition to the X-rays observed with Chandra, other data critical for this result came from NASA's Spitzer Space Telescope and the ground-based, infrared Two Micron All Sky Survey. The infrared brightness of the galaxies allowed the team to estimate how many supernovae should occur. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Late-time Flattening of Type Ia Supernova Light Curves: Constraints from SN 2014J in M82
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Lifan; Baade, Dietrich; Brown, Peter. J.; Cikota, Aleksandar; Cracraft, Misty; Höflich, Peter A.; Maund, Justyn R.; Patat, Ferdinando; Sparks, William B.; Spyromilio, Jason; Stevance, Heloise F.; Wang, Xiaofeng; Wheeler, J. Craig
2018-01-01
The very nearby Type Ia supernova 2014J in M82 offers a rare opportunity to study the physics of thermonuclear supernovae at extremely late phases (≳800 days). Using the Hubble Space Telescope, we obtained 6 epochs of high-precision photometry for SN 2014J from 277 days to 1181 days past the B-band maximum light. The reprocessing of electrons and X-rays emitted by the radioactive decay chain {}57{Co}\\to {}57{Fe} is needed to explain the significant flattening of both the F606W-band and the pseudo-bolometric light curves. The flattening confirms previous predictions that the late-time evolution of type Ia supernova luminosities requires additional energy input from the decay of 57Co. By assuming the F606W-band luminosity scales with the bolometric luminosity at ∼500 days after the B-band maximum light, a mass ratio {}57{Ni}{/}56{Ni}∼ {0.065}-0.004+0.005 is required. This mass ratio is roughly ∼3 times the solar ratio and favors a progenitor white dwarf with a mass near the Chandrasekhar limit. A similar fit using the constructed pseudo-bolometric luminosity gives a mass ratio {}57{Ni}{/}56{Ni}∼ {0.066}-0.008+0.009. Astrometric tests based on the multi-epoch HST ACS/WFC images reveal no significant circumstellar light echoes in between 0.3 and 100 pc from the supernova.
Radio Observations of the Type IIP Supernova 20017eaw
NASA Astrophysics Data System (ADS)
Stockdale, Christopher; Perez-Torres, Miguel; Argo, Megan; Ryder, Stuart D.; Panagia, Nino; Van Dyk, Schuyler; Bauer, Franz Erik; Roming, Peter; Marcaide, Jon; Pooley, Dave; Lien, Amy; Sramek, Richard A.
2018-01-01
We present the results of radio observations of the type IIP Supernova 2017eaw using the Very Large Array and the eMERLIN radio telescopes at centimeter wavelengths. SN 2017eaw is a rare type IIP that did not show prompt radio emission after initial explosion. We will present our analysis of the current data and discuss the implications for the pre-explosion evolution of the progenitor star of SN 20017eaw. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.
Kepler Supernova Remnant: A View from Chandra X-Ray Observatory
2004-10-06
The images indicate that the bubble of gas that makes up the supernova remnant appears different in various types of light. Chandra reveals the hottest gas [colored blue and colored green], which radiates in X-rays. http://photojournal.jpl.nasa.gov/catalog/PIA06908
Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc
NASA Astrophysics Data System (ADS)
Ferretti, R.; Amanullah, R.; Goobar, A.; Petrushevska, T.; Borthakur, S.; Bulla, M.; Fox, O.; Freeland, E.; Fremling, C.; Hangard, L.; Hayes, M.
2017-10-01
Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their well known spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features. Aims: We aim to study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221. Methods: Using a time-series of high-resolution spectra, we have examined narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we have taken advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight. Results: From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust. Conclusions: We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past 109 yr. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diffuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO DDT programme 297.D-5005(A), P. I. Ferretti.
Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared
NASA Astrophysics Data System (ADS)
Mandel, Kaisey; Narayan, G.; Kirshner, R. P.
2011-01-01
I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, A.; Ruhlmann-Kleider, V.; Leloup, C.
In the era of large astronomical surveys, photometric classification of supernovae (SNe) has become an important research field due to limited spectroscopic resources for candidate follow-up and classification. In this work, we present a method to photometrically classify type Ia supernovae based on machine learning with redshifts that are derived from the SN light-curves. This method is implemented on real data from the SNLS deferred pipeline, a purely photometric pipeline that identifies SNe Ia at high-redshifts (0.2 < z < 1.1). Our method consists of two stages: feature extraction (obtaining the SN redshift from photometry and estimating light-curve shape parameters)more » and machine learning classification. We study the performance of different algorithms such as Random Forest and Boosted Decision Trees. We evaluate the performance using SN simulations and real data from the first 3 years of the Supernova Legacy Survey (SNLS), which contains large spectroscopically and photometrically classified type Ia samples. Using the Area Under the Curve (AUC) metric, where perfect classification is given by 1, we find that our best-performing classifier (Extreme Gradient Boosting Decision Tree) has an AUC of 0.98.We show that it is possible to obtain a large photometrically selected type Ia SN sample with an estimated contamination of less than 5%. When applied to data from the first three years of SNLS, we obtain 529 events. We investigate the differences between classifying simulated SNe, and real SN survey data. In particular, we find that applying a thorough set of selection cuts to the SN sample is essential for good classification. This work demonstrates for the first time the feasibility of machine learning classification in a high- z SN survey with application to real SN data.« less
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
NASA Astrophysics Data System (ADS)
1995-08-01
International Astronomer Team Witnesses Very Ancient Stellar Explosion A few months ago, a violent stellar explosion -- a supernova -- was discovered in an extremely distant galaxy by an international team of astronomers [1]. This is the very promising first result of a recently initiated, dedicated search for such objects. Subsequent spectral observations have shown this to be the most distant supernova ever observed. Although it is very faint, it has been possible to classify it as a supernova of Type Ia, a kind that is particularly well suited for cosmological distance determinations. A Very Efficient Supernova Search Programme The present discovery was made during the team's first observations with the 4-metre telescope at the Cerro Tololo Inter-American Observatory in Chile. This telescope is equipped with a wide-field camera at its prime focus that enables the simultaneous recording of the images of even very faint objects in a 15-arcminute field. Hundreds of distant galaxies are located in a field of this size and this observational method is therefore very well suited for a search of faint and transient supernovae in such galaxies. With a carefully planned observing sequence, it is possible to image up to 55 sky fields per night. A comparison with earlier exposures makes it possible to detect suddenly appearing supernovae as faint points of light near the galaxy in which the exploding star is located (the parent galaxy). A crucial feature of the new programme is the possibility to perform follow-up spectroscopic observations, whenever a new supernova is discovered. For this, the team has obtained access to several other large telescopes, including the ESO 3.5-metre New Technology Telescope (NTT), the 3.9-metre Anglo-Australian Telescope (AAT) and the Multi-Mirror Telescope (MMT) in Arizona, U.S.A.. The Spectrum of the Supernova The present supernova was first detected at Tololo on March 30, 1995. It was given the official designation SN 1995K, and its spectrum was observed a few nights later with the EMMI instrument at the ESO NTT at La Silla. Further direct images were taken with EMMI and also with the high-resolution NTT SUSI camera, three of which are shown on the photo with text accompanying this Press Release. The supernova is located only 1 arcsecond from the centre of the parent galaxy. As the supernova was very faint (its magnitude was about 22.7, or about 5 million times fainter than what can be seen with the unaided eye), an exposure of 2.5 hours was necessary to collect enough photons to allow a classification of its spectrum. Because of the very small angular distance, the light from the supernova was heavily contaminated with that of the parent galaxy, but the excellent angular resolution of the NTT optics made it possible to overcome this problem. It was also possible to measure the redshift [2] of the galaxy (and thereby of the supernova) as 0.478. This demonstrates that SN 1995K is the most distant supernova (indeed, the most distant star!) ever observed [3]. The spectrum clearly showed SN 1995K to be of Type Ia. This is evident by a comparison with that of a ``standard'' Type Ia supernova (SN 1989B), cf. the graph with explanatory text attached to this Press Release. When the redshift of SN 1995K is taken into account, the two spectra are very similar. The current belief is that supernovae of this type are due to the explosions of white dwarf stars in compact binary systems which are triggered by the successive accretion of stellar material from the other component. As the sequence of NTT images shows, SN 1995K quickly faded and in late May 1995, it could no longer be observed. The rate of change (the ``light-curve'') also closely matched that of a normal Type Ia supernova. Why Are Type Ia Supernovae So Important? While supernovae are important astrophysical objects by themselves, Type Ia supernovae are also of great interest to cosmologists. The main reason is that they provide independent information about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the end of this Press Release. For such studies, independent, reliable distances to very distant objects are needed. This is exactly what may be obtained from careful observations of Type Ia supernovae and this is why they are so important for cosmology. It has been found that all supernovae of Type Ia radiate the same luminous energy at the moment of maximum light (within an uncertainty of 15 - 20 percent or less). If all such supernovae were located at the same distance, they would appear equally bright to us. This is of course not the case and the difference in observed brightness between individual Type Ia supernovae is therefore a direct measure of their relative distances. A supernova that is located at twice the distance of another will appear four times fainter. The distances to a few nearby objects of this type have now been measured, thus fixing the zero-point (that is, the absolute brightness of a Type Ia supernova [4]). At least in principle, this then allows to measure the accurate distances to all others, including SN 1995K. Towards a Measurement of q0 The crucial ingredients for the use of a high-redshift supernova like SN 1995K to measure the distance are its correct classification and the establishment of an accurate light-curve. The above method only works if we can be sure that it is of Type Ia and we can deduce the apparent brightness at maximum light. The current classification scheme of supernovae is based on spectra obtained near the maximum brightness of the event. For a meaningful and secure distance determination, it is therefore of paramount importance to classify the supernova by obtaining a spectrum. Since a supernova at redshift 0.4 reaches a peak brightness of about magnitude 22.3-23.3 (depending on the value of q0 [5]), this is not a simple task. It is also a major organisational problem to obtain the necessary, significant amount of observing time at large telescopes at short notice. Preliminary photometry indicates a peak (red) magnitude of SN 1995K of about 22.7, but the uncertainty of this value is still so large that this measurement alone cannot be used to determine the value of q0. This will require many more observations of supernovae at least as distant as the present one, a daunting task that may nevertheless be possible within this broad, international programme. It is estimated that a reliable measurement of q0 may become possible when about 20 Type Ia supernovae with accurate peak magnitudes have been measured. According to the discovery predictions, this could be possible within the next couple of years. In this connection, it is of some importance that for this investigation, it is in principle not necessary to know the correct value of the Hubble constant H0 in advance; q0 may still be determined by comparing the relative distance scale of distant supernovae with that of nearby ones. This research is described in more detail in a forthcoming article in the September 1995 issue of the ESO Messenger. Notes: [1] Brian P. Schmidt (Mount Stromlo and Siding Spring Observatories, Australia), Bruno Leibundgut, Jason Spyromilio, Jeremy Walsh (ESO), Mark M. Phillips, Nicholas B. Suntzeff, Mario Hamuy, Robert A. Schommer (Cerro Tololo Inter-American Observatory), Roberto Aviles (formerly Cerro Tololo Inter-American Observatory; now at ESO), Robert P. Kirshner, Adam Riess, Peter Challis, Peter Garnavich (Center for Astrophysics, Cambridge, Massachussetts, U.S.A.), Christopher Stubbs, Craig Hogan (University of Washington, Seattle, U.S.A.), Alan Dressler (Carnegie Observatories, U.S.A.) and Robin Ciardullo (Pennsylvania State University, U.S.A.) [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. [3] A supernova at redshift 0.3 was found some years ago at ESO during an earlier search programme (Noergaard-Nielsen et al., Nature, Vol. 339, page 523, 1989) and before now the most distant known supernova was located in a galaxy at redshift 0.458 (Perlmutter et al., Astrophysical Journal, Vol. 440, Page L41, 1995) [4] For comparison, a Type Ia supernova at maximum brightness emits nearly 6,000 million times more light than the Sun. [5] The brighter the supernova at a given redshift is at maximum, the larger is q0. APPENDIX: Messages From the Deceleration Parameter q0 A determination of the deceleration parameter q0 by means of astronomical observations is important because it will allow us to choose between the various current theories of the evolution of the Universe, or at least to eliminate some of them as impossible. If the value turns of to be small, e.g. q0 ~ 0, then there has been only a small decrease (deceleration) of the universal expansion in the past. In this case, a galaxy's velocity does not change much with time and the actual distance is very nearly as indicated from the Hubble relation. Should, however, the value of q0 be significantly larger, then a galaxy's velocity would have been larger in the past than it is now. The velocity we now measure would therefore be ``too high'' (since it refers to the time the light was emitted from the galaxy), and the distance obtained by dividing with the Hubble constant will be too large. The value of q0 is proportional to the total amount of matter in the Universe. A measurement of q0 will establish limits for the amount of ``missing matter'', i.e. the ``invisible'' matter which cannot be directly observed with current observational techniques and which is believed to be the dominant mass component. If q0 is near 0, the expansion of the Universe will continue unabated (the Universe is ``open''). If, however, q0 is larger than 0.5, then the expansion will ultimately stop and be followed by a future contraction (the Universe is ``closed''). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Barium from a mini r-process in supernovae
NASA Technical Reports Server (NTRS)
Heymann, D.
1983-01-01
McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.
Constraints on Janus Cosmological model from recent observations of supernovae type Ia
NASA Astrophysics Data System (ADS)
D'Agostini, G.; Petit, J. P.
2018-07-01
From our exact solution of the Janus Cosmological equation we derive the relation of the predicted magnitude of distant sources versus their red shift. The comparison, through this one free parameter model, to the available data from 740 distant supernovae shows an excellent fit.
HD271791: dynamical versus binary-supernova ejection scenario
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2009-05-01
The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.
Cosmic rays from supernovae and comments on the Vela X pre-supernova
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.
Is supernova 1987A a stripped asymptotic-branch giant in a binary system?
NASA Technical Reports Server (NTRS)
Joss, P. C.; Podsiadlowski, PH.; Hsu, J. J. L.; Rappaport, S.
1988-01-01
It is proposed that the progenitor of supernova 1987A was a previously undetected red star in orbit about a blue supergiant. The progenitor was the remnant of an asymptotic-branch giant that had lost most of its hydrogen-rich envelope to its blue companion by type C mass transfer. A detailed evolutionary model strongly supports the feasibility of this proposition. It is found that the original mass of the supernova precursor was 10-15 solar (unless a large fraction of the mass was ejected from the binary sytem), and its final mass, just before the supernova event, was 3-6 solar. The system remained bound, with a new orbital period of 3-10 yr and an eccentricity of 0.1-0.4. This picture can provide plausible qualitative explanations for several anomalies in the observational properties of this supernova.
Unusual Supernovae and Alternative Power Sources
NASA Astrophysics Data System (ADS)
Kasen, Daniel
Recent observations have revealed a diverse class of peculiar supernovae, among them transients that are extremely luminous and unusually dim, or that evolve remarkably rapidly or slowly over time. The light curves of some of these events cannot be powered by ordinary energy sources such as the decay of radioactive isotopes. This chapter begins with a brief description of certain types of unusual supernovae and then reviews the basic physics of supernova light curves, deriving in a pedagogical way the analytic scalings that characterize the peak brightness and duration. After illustrating that ordinary power sources cannot explain all of the observed events, we turn to theoretical ideas involving less common mechanisms, such as energy injection from a long-lived central engine (a rapidly rotating magnetar or an accreting black hole). We conclude by speculating how alternative power sources may be manifest in observations of the assorted classes of peculiar supernovae.
Neutrino signal from pair-instability supernovae
NASA Astrophysics Data System (ADS)
Wright, Warren P.; Gilmer, Matthew S.; Fröhlich, Carla; Kneller, James P.
2017-11-01
A very massive star with a carbon-oxygen core in the range of 64M ⊙
Spectroscopic classification of AT 2017byx as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Vinko, J.; Wheeler, J. C.; Sarneczky, K.; Szakats, R.; Szalai, T.; Szekely, P.; HETDEX Collaboration
2017-05-01
During the commissioning phase of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) survey we observed AT 2017byx (ATLAS17bla, PS17bve) at R.A.=14:17:48.36 Dec.=+52:41:54.6 with the Visible Integral-field Replicable Unit Spectrograph (VIRUS) at McDonald Observatory on 2017-04-28.2 UT. The spectrum (range between 3500 and 5500 Angstroms) indicates that AT 2017byx is a Type Ia supernova.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Elise; Wolf, Rachel; Sako, Masao
2016-11-09
Cosmological parameter estimation techniques that robustly account for systematic measurement uncertainties will be crucial for the next generation of cosmological surveys. We present a new analysis method, superABC, for obtaining cosmological constraints from Type Ia supernova (SN Ia) light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. The ABC method works by using a forward model simulation of the data where systematic uncertainties can be simulated and marginalized over. A key feature of the method presented here is the use of two distinct metrics, the `Tripp' and `Light Curve' metrics, which allow us to compare the simulated data to the observed data set. The Tripp metric takes as input the parameters of models fit to each light curve with the SALT-II method, whereas the Light Curve metric uses the measured fluxes directly without model fitting. We apply the superABC sampler to a simulated data set ofmore » $$\\sim$$1000 SNe corresponding to the first season of the Dark Energy Survey Supernova Program. Varying $$\\Omega_m, w_0, \\alpha$$ and $$\\beta$$ and a magnitude offset parameter, with no systematics we obtain $$\\Delta(w_0) = w_0^{\\rm true} - w_0^{\\rm best \\, fit} = -0.036\\pm0.109$$ (a $$\\sim11$$% 1$$\\sigma$$ uncertainty) using the Tripp metric and $$\\Delta(w_0) = -0.055\\pm0.068$$ (a $$\\sim7$$% 1$$\\sigma$$ uncertainty) using the Light Curve metric. Including 1% calibration uncertainties in four passbands, adding 4 more parameters, we obtain $$\\Delta(w_0) = -0.062\\pm0.132$$ (a $$\\sim14$$% 1$$\\sigma$$ uncertainty) using the Tripp metric. Overall we find a $17$% increase in the uncertainty on $$w_0$$ with systematics compared to without. We contrast this with a MCMC approach where systematic effects are approximately included. We find that the MCMC method slightly underestimates the impact of calibration uncertainties for this simulated data set.« less
A model of habitability within the Milky Way galaxy.
Gowanlock, M G; Patton, D R; McConnell, S M
2011-11-01
We present a model of the galactic habitable zone (GHZ), described in terms of the spatial and temporal dimensions of the Galaxy that may favor the development of complex life. The Milky Way galaxy was modeled using a computational approach by populating stars and their planetary systems on an individual basis by employing Monte Carlo methods. We began with well-established properties of the disk of the Milky Way, such as the stellar number density distribution, the initial mass function, the star formation history, and the metallicity gradient as a function of radial position and time. We varied some of these properties and created four models to test the sensitivity of our assumptions. To assess habitability on the galactic scale, we modeled supernova rates, planet formation, and the time required for complex life to evolve. Our study has improved on other literature on the GHZ by populating stars on an individual basis and modeling Type II supernova (SNII) and Type Ia supernova (SNIa) sterilizations by selecting their progenitors from within this preexisting stellar population. Furthermore, we considered habitability on tidally locked and non-tidally locked planets separately and studied habitability as a function of height above and below the galactic midplane. In the model that most accurately reproduces the properties of the Galaxy, the results indicate that an individual SNIa is ∼5.6× more lethal than an individual SNII on average. In addition, we predict that ∼1.2% of all stars host a planet that may have been capable of supporting complex life at some point in the history of the Galaxy. Of those stars with a habitable planet, ∼75% of planets are predicted to be in a tidally locked configuration with their host star. The majority of these planets that may support complex life are found toward the inner Galaxy, distributed within, and significantly above and below, the galactic midplane.
Grouping normal type Ia supernovae by UV to optical color differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.
2013-12-10
Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with themore » broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezer, Cemile; Ercan, E. Nihal; Bulbul, Esra
2017-02-10
The spatial distribution of the metals residing in the intra-cluster medium (ICM) of galaxy clusters records all the information on a cluster’s nucleosynthesis and chemical enrichment history. We present measurements from a total of 1.2 Ms Suzaku XIS and 72 ks Chandra observations of the cool-core galaxy cluster Abell 3112 out to its virial radius (∼1470 kpc). We find that the ratio of the observed supernova type Ia explosions to the total supernova explosions has a uniform distribution at a level of 12%–16% out to the cluster’s virial radius. The observed fraction of type Ia supernova explosions is in agreementmore » with the corresponding fraction found in our Galaxy and the chemical enrichment of our Galaxy. The non-varying supernova enrichment suggests that the ICM in cluster outskirts was enriched by metals at an early stage before the cluster itself was formed during a period of intense star formation activity. Additionally, we find that the 2D delayed detonation model CDDT produce significantly worse fits to the X-ray spectra compared to simple 1D W7 models. This is due to the relative overestimate of Si, and the underestimate of Mg in these models with respect to the measured abundances.« less
Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.
Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi
2011-12-14
Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.
The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, C. S.; Fesen, R. A.; Milisavljevic, D.
2017-10-10
We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significantmore » broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.« less
2015-05-07
The plot of data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR (right), amounts to a "smoking gun" of evidence in the mystery of how massive stars explode. The observations indicate that supernovae belonging to a class called Type II or core-collapse blast apart in a lopsided fashion, with the core of the star hurtling in one direction, and the ejected material mostly expanding the other way (see diagram in Figure 1). NuSTAR made the most precise measurements yet of a radioactive element, called titanium-44, in the supernova remnant called 1987A. NuSTAR sees high-energy X-rays, as shown here in the plot ranging from 60 to more than 80 kiloelectron volts. The spectral signature of titanium-44 is apparent as the two tall peaks. The white line shows where one would expect to see these spectral signatures if the titanium were not moving. The fact that the spectral peaks have shifted to lower energies indicates that the titanium has "redshifted," and is moving way from us. This is similar to what happens to a train's whistle as the train leaves the station. The whistle's sound shifts to lower frequencies. NuSTAR's detection of redshifted titanium reveals that the bulk of material ejected in the 1987A supernova is flying way from us at a velocity of 1.6 million miles per hour (2.6 million kilometers per hour). Had the explosion been spherical in nature, the titanium would have been seen flying uniformly in all directions. This is proof that this explosion occurred in an asymmetrical fashion. http://photojournal.jpl.nasa.gov/catalog/PIA19335
The Late-Time Evolution of SN 2002hh
NASA Astrophysics Data System (ADS)
Clayton, G. C.; Welch, D. L.
2005-12-01
We present new spectroscopic and photometric observations of the interesting Type II-P supernova, SN 2002hh, in NGC 6946. Gemini/GMOS-N has been used to acquire visible spectra and also g'r'i' photometry covering 5 epochs between August 2004 and October 2005, following the evolution of the supernova from 650 to 1050 d since its initial explosion. Supernova spectra obtained 3 years after outburst are rare. In addition, data have been obtained at several epochs in the JHK bands using the Steward 90" with the 256x256 imager and with Gemini/NIRI. Dust emission from SN 2002hh has been detected at mid-infrared wavelengths by SST/IRAC and confirmed by higher angular resolution Gemini/Michelle observations (Barlow et al. 2005, ApJ, 627, L113). There is a pre-existing optically thick dust shell having a mass of ˜0.1 Msun, suggesting a massive M supergiant or luminous blue variable precursor. However, the formation of new dust in the ejecta of SN 2002hh has not been ruled out. The IR emission from any such new dust would be swamped by the emission from the existing circumstellar dust. The new data, presented here, are being used to investigate the late-time evolution of SN 2002hh and whether new dust has been formed in its ejecta. In particular, we are looking for changes in the H-alpha emission line profiles and for variations in brightness due to changes in the extinction and emission due to dust. This study is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
NASA Astrophysics Data System (ADS)
Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.
2018-02-01
We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with M< 8 M⊙ become white dwarfs and cool to the point where the electrons are degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.
Infrared light curves of type Ia supernovae
Phillips, M. M.; Krisciunas, K.; Suntzeff, N. B.; ...
2003-10-02
This article provides a progress report on a collaborative program at the Las Campanas and Cerro Tololo Observatories to observe the near-IR light curves of Type Ia supernovae. We discuss how the morphologies of the JHK light curves change as a function of the decline rate parameter Δm 15 (B). Evidence is presented which indicates that the absolute magnitudes in the H band have little or no dependence on the decline rate, suggesting that SNe Ia may be nearly perfect cosmological standard candles in the near-IR. A preliminary Hubble diagram in the H band is presented and compared with amore » similar diagram in V for the same objects. Finally, observations of two peculiar supernovae, 1999ac and 2001ay, are briefly discussed.« less
The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta
NASA Technical Reports Server (NTRS)
Arnett, W. David; Fu, Albert
1989-01-01
Observations of the late (t = 20-1500 days) bolometric light curve and the gamma-lines and X-rays from supernova 1987A are compared to theoretical models. It is found that 0.073 + or - 0.015 solar masses of freshly synthesized Ni-56 must be present to fit the bolometric light curve. The results place limits on the luminosity and presumed period of the newly formed pulsar/neutron star. In the second half of the paper, the problem of computing the luminosities in gamma-ray lines and in X-rays from supernova 1987A is addressed. High-energy observations suggest the development of large-scale clumping and bubbling of radioactive material in the ejecta. A model is proposed with a hydrogen envelope mass of about 7 solar masses, homologous scale expansion velocities of about 3000 km/s, and an approximately uniform mass distribution.
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Ofek, Eran; Corsi, Alessandra; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2012-12-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe for IRAC follow-up. Additionally, we request low-impact target of opportunity observations for new discoveries in 2013. Our total request is 24 hrs.
Spitzer Characterization of Transients from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Kasliwal, Mansi; Goobar, Ariel; Johansson, Joel; Cenko, Brad; Ofek, Eran; Nugent, Peter; Kulkarni, Shri; Cao, Yi; Helou, George; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi
2013-10-01
We propose to continue Spitzer/IRAC follow-up of optical transients discovered by the Palomar Transient Factory. Our goals are: (i) probe the mass loss history and characterize the circumstellar environment of supernovae. (ii) construct a late-time bolometric light curve; the mid-infrared observations complement our ground-based optical and near-infrared data and (iii) understand the physical origin of new classes of transients (specifically, intermediate luminosity red transients) where the mystery is literally enshrouded in dust. We select extremely nearby supernovae, both thermonuclear and core-collapse, where the thermal echo is easily detectable in the mid-infrared. We also select peculiar supernovae that show tell-tale signs of circumstellar interaction. We also select rare and red gap transients in the local universe. Additionally, we request low-impact target of opportunity observations for new discoveries in 2014. Our total request is 17 hrs.
Hubble Finds Supernova Companion Star after Two Decades of Searching
2017-12-08
This is an artist's impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. More info: Using NASA’s Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova. The discovery confirms a long-held theory that the supernova, dubbed SN 1993J, occurred inside what is called a binary system, where two interacting stars caused a cosmic explosion. "This is like a crime scene, and we finally identified the robber," said Alex Filippenko, professor of astronomy at University of California (UC) at Berkeley. "The companion star stole a bunch of hydrogen before the primary star exploded." SN 1993J is an example of a Type IIb supernova, unusual stellar explosions that contains much less hydrogen than found in a typical supernova. Astronomers believe the companion star took most of the hydrogen surrounding the exploding main star and continued to burn as a super-hot helium star. “A binary system is likely required to lose the majority of the primary star’s hydrogen envelope prior to the explosion. The problem is that, to date, direct observations of the predicted binary companion star have been difficult to obtain since it is so faint relative to the supernova itself,” said lead researcher Ori Fox of UC Berkeley. Read more: 1.usa.gov/1Az5Qb9 Credit: NASA, ESA, G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Recent Progress on Supernova Remnants - Progenitors, Evolution, Cosmic-ray Acceleration
NASA Astrophysics Data System (ADS)
Bamba, A.
2017-10-01
Supernova remnants supplies heavy elements, kinetic and thermal energies, and cosmic rays, into the universe, and are the key sources to make the diversity of the universe. On the other hand, we do not know the fundamental issues of supernova remnants, such as (1) what their main progenitors are, (2) how they evolve into the realistic (non-uniform) interstellar space, and (3) which type of supernova remnants can accelerate cosmic rays to the knee energy. Recent X-ray studies with XMM-Newton, Chandra, Suzaku, NuSTAR, and Hitomi, progressed understandings of these issues, and found that each issue connect others tightly. In this paper, we will overview these progresses with focusing the above three topics, and discuss what we should do next.
NASA Astrophysics Data System (ADS)
Folatelli, G.
Supernovae are very relevant astrophysical objects because they indicate the violent end of certain stars and because they alter the interstellar medium. But most importantly, they have become an extremely useful tool for measuring cosmological distances. Based on highly precise distances to type Ia supernovae it was possible to find out that the expansion of the universe is currently accelerated. This led to introducing the concept of ``dark energy'' as a dominant and yet unknown component of the cosmos. In this article we will describe the method of distance measurements that leads to the determination of cosmological parameters. We will briefly review the current status of the field with emphasis on the importance of improving our knowledge about the physical nature of supernovae. FULL TEXT IN SPANISH
Surprisingly high-pressure shocks in the supernova remnant IC 443
NASA Technical Reports Server (NTRS)
Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.
1991-01-01
The intensities of several lines of molecular hydrogen have been measured from two regions of the supernova-remnant/molecular-cloud shock in IC 443. The lines measured have upper-state energies ranging from 7000 K to 23,000 K. Their relative intensities differ in the two regions, but are consistent with those predicted from the post-shock regions of simple jump-type shocks of different pressure. The pressures so derived are far higher than the pressure in the supernova remnant itself, and a possible reason for this discrepancy is discussed.
Hubble snap a beautiful supernova explosion some 160,000 light-years from Earth
2017-12-08
Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used NASA's Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf's fiery demise. This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B. It is located 160,000 light-years from Earth in a neighboring galaxy called the Large Magellanic Cloud. N103B resulted from a Type Ia supernova, whose cause remains a mystery. One possibility would leave behind a stellar survivor, and astronomers have identified a possible candidate. The actual supernova remnant is the irregular shaped dust cloud, at the upper center of the image. The gas in the lower half of the image and the dense concentration of stars in the lower left are the outskirts of the star cluster NGC 1850. The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3 in June 2014. Credit: NASA, ESA and H.-Y. Chu (Academia Sinica, Taipei) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
How Bright Can Supernovae Get?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms and a magnetic field of 2*1013 Gauss deposits energy into ~12 solar masses of ejecta. Click for a closerlook! [Adapted from SukhboldWoosley 2016]The authors find that the maximum luminosity that can be produced by these different supernova models ranges between 5*1043 and 2*1046 erg/s, with total radiated energies of 3*1050 to 4*1052 erg. This places the upper limit on the brightness of a supernova at about 5 trillion times the luminosity of the Sun.The calculations performed by Sukhbold and Woosley confirm that, of the options they explore, the least luminous events are produced by prompt explosions. The brightest events possible are powered by the rotational energy of a newly born magnetar at the heart of the explosion.The energies of observed ultra-luminous supernovae are (just barely) containedwithin the bounds of the mechanisms explored here. This is even true of the extreme ASASSN-15lh which, based on the authors calculations, was almost certainly powered by an embedded magnetar. If we were to observe a supernova more than twice as bright as ASASSN-15lh, however, it would be nearly impossible to explain with current models.CitationTuguldur Sukhbold and S. E. Woosley 2016 ApJ 820 L38. doi:10.3847/2041-8205/820/2/L38
A cosmology-independent calibration of type Ia supernovae data
NASA Astrophysics Data System (ADS)
Hauret, C.; Magain, P.; Biernaux, J.
2018-06-01
Recently, the common methodology used to transform type Ia supernovae (SNe Ia) into genuine standard candles has been suffering criticism. Indeed, it assumes a particular cosmological model (namely the flat ΛCDM) to calibrate the standardisation corrections parameters, i.e. the dependency of the supernova peak absolute magnitude on its colour, post-maximum decline rate and host galaxy mass. As a result, this assumption could make the data compliant to the assumed cosmology and thus nullify all works previously conducted on model comparison. In this work, we verify the viability of these hypotheses by developing a cosmology-independent approach to standardise SNe Ia data from the recent JLA compilation. Our resulting corrections turn out to be very close to the ΛCDM-based corrections. Therefore, even if a ΛCDM-based calibration is questionable from a theoretical point of view, the potential compliance of SNe Ia data does not happen in practice for the JLA compilation. Previous works of model comparison based on these data do not have to be called into question. However, as this cosmology-independent standardisation method has the same degree of complexity than the model-dependent one, it is worth using it in future works, especially if smaller samples are considered, such as the superluminous type Ic supernovae.
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; ...
2015-03-12
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
NASA Astrophysics Data System (ADS)
Jerkstrand, A.; Ergon, M.; Smartt, S. J.; Fransson, C.; Sollerman, J.; Taubenberger, S.; Bersten, M.; Spyromilio, J.
2015-01-01
We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] λλ6300, 6364 lines constrains the progenitors of these three SNe to the MZAMS = 12-16 M⊙ range (ejected oxygen masses 0.3-0.9 M⊙), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from MZAMS ≳ 17 M⊙ progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M⊙ is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] λλ6548, 6583 emission lines that dominate over Hα emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable Hα emission or absorption after ~150 days, and nebular phase emission seen around 6550 Å is in many cases likely caused by [N II] λλ6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually disappear as the optical depths decrease with time. The modelled evolution of this effect matches the observed evolution in SN 2011dh. Appendices are available in electronic form at http://www.aanda.org
Action Replay of Powerful Stellar Explosion
NASA Astrophysics Data System (ADS)
2008-03-01
Astronomers have made the best ever determination of the power of a supernova explosion that was visible from Earth long ago. By observing the remnant of a supernova and a light echo from the initial outburst, they have established the validity of a powerful new method for studying supernovas. Using data from NASA's Chandra X-ray Observatory, ESA's XMM-Newton Observatory, and the Gemini Observatory, two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth. They concluded that the supernova occurred about 400 years ago (in Earth’s time frame), and was unusually bright and energetic. X-ray Image of SNR 0509-67.5 X-ray Image of SNR 0509-67.5 This result is the first time two methods - X-ray observations of a supernova remnant and optical observations of the expanding light echoes from the explosion - have both been used to estimate the energy of a supernova explosion. Up until now, scientists had only made such an estimate using the light seen soon after a star exploded, or using remnants that are several hundred years old, but not from both. "People didn't have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations using Gemini. "But we've done the next best thing by looking around the site of the explosion and constructing an action replay of it." People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Oldest Known Objects Are Surprisingly Immature Discovery of Most Recent Supernova in Our Galaxy NASA Unveils Cosmic Images Book in Braille for Blind Readers In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a so-called Type Ia supernova, caused by a white dwarf star in a binary system that reaches a critical mass and explodes. In the new optical study, an estimate of the explosion's energy came from studying an echo of the original light of the explosion. Just as sound bounces off walls of a canyon, so too can light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the supernova itself. First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm that the supernova was a Type Ia and to unambiguously determine the particular class of explosion and therefore its energy. The Chandra data, along with XMM data obtained in 2000, were then independently used to calculate the amount of energy involved in the original explosion, using an analysis of the supernova remnant and state-of-the-art explosion models. Their conclusion confirmed the results from the optical data, namely that the explosion was an especially energetic and bright variety of Type Ia supernova. This agreement provides strong evidence that the detailed explosion models are accurate. "Having these two methods agree lets us breathe a sigh of relief," said Carlos Badenes of Princeton University who led the Chandra and XMM study. "It looks like we're on the right track with trying to understand these big explosions. Their stellar debris really can retain a memory of what created them hundreds of years earlier." Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events if it had occurred less than about 400 years ago. Because Type Ia supernovas have nearly uniform intrinsic brightness, they are used as important tools by scientists to study the expansion of the universe and the nature of dark energy. "It's crucial to know that the basic assumptions about these explosions are correct, so they're not used just as black-boxes to measure distances," said Badenes. This work is also being extended to other supernova remnants and light echoes. "This is the first case where the conclusions that are drawn from the supernova remnant about the original explosion can be directly tested by looking at the original event itself," said Rest. "We'll be able to learn a lot about supernovas in our own galaxy by using this technique." These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Badenes as first author, details the Chandra and XMM observations of SNR 0509-67.5. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
MASTER OT J014638.27+041324.4 is a Young Type IIP Supernova
NASA Astrophysics Data System (ADS)
Zheng, W.; Kelly, P. L.; Clubb, K. I.; Filippenko, A. V.
2013-12-01
We report that a CCD spectrum (range 350-1000 nm) of MASTER OT J014638.27+041324.4 (Shurpakov et al., ATel #5630) was obtained on Dec 6.5 UT with the Shane 3-m reflector (+Kast spectrograph) at Lick Observatory. The spectrum shows a blue continuum and weak, broad hydrogen Balmer lines having P-Cyg profiles, indicating that the object is a young Type IIP supernova. Weak He I 587.6 nm is also present.
Swift and LT UV and optical observations of type IIn superluminous supernova 2017gir
NASA Astrophysics Data System (ADS)
Cano, Zach; Kuin, Paul; Chandra, Poonam; Ashall, Chris; Malesani, Daniele; Pastorello, Andrea
2017-09-01
We observed the field of the type IIn superluminous supernova 2017gir (ATLAS17jsb, Tonry et al. 2017; Lyman et al. 2017, ATel 10674) with Swift via a target-of-opportunity for three epochs (6th, 16th and 19th of September, 2017) in the three UVOT UV filters (w1, m1, w2). The SN is clearly detected in all three filters, and it is seen that its brightness fades over this timescale.
Spectroscopic classification of AT 2018adg as a Type Ic supernova
NASA Astrophysics Data System (ADS)
Williams, S. C.; Nordin, J.; Hook, I. M.
2018-03-01
We obtained a spectrum of the transient AT 2018adg (see TNS) with the SPRAT spectrograph (resolution R 350; Piascik et al. 2014) on the 2-m Liverpool Telescope (LT; Steele et al. 2004) on 2018 Mar 11.13 UT. The spectrum is consistent with AT 2018adg being a Type Ic supernova around peak brightness, at a redshift of z 0.02 to 0.03, in agreement with the host galaxy redshift of z = 0.022 (da Costa et al. 1998).
The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.
2014-07-01
We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength rangemore » from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.« less
Spectroscopic Classification of SN 2018bq (=ASASSN-18ac) as a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Lin, Han; Xiang, Danfeng; Rui, Liming; Wang, Xiaofeng; Xiao, Feng; Ren, Juanjuan; Zhang, Tianmeng; Zhang, Jujia
2018-01-01
We obtained an optical spectrum (range 510-860 nm) of SN 2018bq(=ASASSN-18ac), discovered by All Sky Automated Survey for Supernova(ASAS-SN), on UT 09.81 2018 with the 2.16-m telescope (+BFOSC) at Xinglong Station of National Astronomical Observatories of China (NAOC).
The Progenitor of Tycho’s Supernova was Not Hot and Luminous
NASA Astrophysics Data System (ADS)
Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov
2018-01-01
Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.
Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leloudas, Giorgos; Gal-Yam, Avishay; Maund, Justyn R.
2017-03-01
We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between −20 and +46 days with the Nordic Optical Telescope. This was a nearby, slowly evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarization in the Galaxy to be negligible. The polarization of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from ∼0.54% to ≳1.10%) coincides in timemore » with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a “phase transition” at around +20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.« less
Why Are Peculiar Type Ia Supernovae More Likely to Show the Signature of a Single-degenerate Model?
NASA Astrophysics Data System (ADS)
Meng, Xiang-Cun; Han, Zhan-Wen
2018-03-01
Although type Ia supernovae (SNe Ia) are very useful in many astrophysical fields, their exact progenitor nature is still unclear. A basic method to distinguish the different progenitor models is to search the signal from the single-degenerate (SD) model, e.g., the signal for the existence of a nondegenerate companion before or after supernova explosion. Observationally, some SNe Ia show such signals, while the others do not. Here, we propose a universal model to explain these observations based on the spin-up/spin-down model, in which a white dwarf (WD) will experience a spin-down phase before supernova explosion, and the spin-down timescale is determined by its initial mass, i.e., the more massive the initial WD, the shorter the spin-down timescale and then the more likely the SN Ia is to show the SD signature. Therefore, our model predicts that the SNe Ia from hybrid carbon–oxygen–neon WDs are more likely to show the SD signature observationally, as some peculiar SNe Ia showed.
Walter Baade: Father of the Two Stellar Populations and Pioneer Supernova Researcher
NASA Astrophysics Data System (ADS)
Osterbrock, D. E.
2001-05-01
Walter Baade was the great observational astronomer of the middle part of the past century. He lived and worked in Pasadena, where he ``discovered" the two stellar populations and did outstanding pioneer research on supernovae at Mount Wilson and Palomar Observatories from 1931 until 1959, when he returned to his native Germany, and died the following year. Baade was born in a little town in northwest Germany, and educated at Goettingen University, where he received his Ph.D. in 1919, just after the end of World War I. He got a research position at Hamburg Observatory, and quickly jumped into globular cluster and galactic structure work with its 40-in reflector, then the largest telescope in Europe. Baade recognized very early the great importance of the extremely rare ``highly luminous novae" which Heber D. Curtis and Knut Lundmark isolated in 1919-21. In 1929 Baade called these ``Hauptnovae" the key to measuring distances of faint galaxies. We call them supernovae today, a term he and Fritz Zwicky began using in 1932. Similarly Baade's first inkling that there was a spherically symmetric distribution of stars in our Galaxy, which he named Population II in his two great 1944 papers, came when he began picking up field RR Lyrae variables in 1926. Baade's research on the two stellar populations and supernovae was extremely important in opening up the whole fields of stellar and galactic evolution. His invited lectures at meetings and symposia, and his courses as a visiting professor inspired a whole generation of research astrophysicists. Baade's attractive personality made it possible for him to make his great discoveries in a land in which he was officially an enemy alien during World War II.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, M. L.; Pritchet, C. J.; Balam, D.
2010-02-15
We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is {approx}1-5 times the rate in all early-type galaxies, and that any enhancement is always {approx}<2{sigma}. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infraredmore » properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.« less
NASA Astrophysics Data System (ADS)
Kamble, Atish; Soderberg, Alicia M.; Chomiuk, Laura; Margutti, Raffaella; Medvedev, Mikhail; Milisavljevic, Dan; Chakraborti, Sayan; Chevalier, Roger; Chugai, Nikolai; Dittmann, Jason; Drout, Maria; Fransson, Claes; Nakar, Ehud; Sanders, Nathan
2014-12-01
We present extensive radio and X-ray observations of SN 2012au, an energetic, radio-luminous supernova of Type Ib that exhibits multi-wavelength properties bridging subsets of hydrogen-poor superluminous supernovae, hypernovae, and normal core-collapse supernovae. The observations closely follow models of synchrotron emission from a shock-heated circumburst medium that has a wind density profile (ρvpropr -2). We infer a sub-relativistic velocity for the shock wave v ≈ 0.2 c and a radius of r ≈ 1.4 × 1016cm at 25 days after the estimated date of explosion. For a wind velocity of 1000 km s-1, we determine the mass-loss rate of the progenitor to be \\dot{M} = 3.6 × 10-6 M⊙ yr-1, consistent with the estimates from X-ray observations. We estimate the total internal energy of the radio-emitting material to be E ≈ 1047 erg, which is intermediate to SN 1998bw and SN 2002ap. The evolution of the radio light curve of SN 2012au is in agreement with its interaction with a smoothly distributed circumburst medium and the absence of stellar shells ejected from previous outbursts out to r ≈ 1017 cm from the supernova site. We conclude that the bright radio emission from SN 2012au was not dissimilar from other core-collapse supernovae despite its extraordinary optical properties, and that the evolution of the SN 2012au progenitor star was relatively quiet, marked with a steady mass loss, during the final years preceding explosion.