Science.gov

Sample records for supernova winds ii

  1. Nucleosynthesis in Early Supernova Winds II: The Role of Neutrinos

    SciTech Connect

    Pruet, J; Hoffman, R; Woosley, S; Janka, H; Buras, R

    2005-11-04

    One of the outstanding unsolved riddles of nuclear astrophysics is the origin of the so called ''p-process'' nuclei from A = 92 to 126. Both the lighter and heavier p-process nuclei are adequately produced in the neon and oxygen shells of ordinary Type II supernovae, but the origin of these intermediate isotopes, especially {sup 92,94}Mo and {sup 96,98}Ru, has long been mysterious. Here we explore the production of these nuclei in the neutrino-driven wind from a young neutron star. We consider such early times that the wind still contains a proton excess because the rates for {nu}{sub e} and positron captures on neutrons are faster than those for the inverse captures on protons. Following a suggestion by Froehlich et al. (2005), they also include the possibility that, in addition to the protons, {alpha}-particles, and heavy seed, a small flux of neutrons is maintained by the reaction p({bar {nu}}{sub e}, e{sup +})n. This flux of neutrons is critical in bridging the long waiting points along the path of the rp-process by (n,p) and (n,{gamma}) reactions. Using the unmodified ejecta histories from a recent two-dimensional supernova model by Janka, Buras, and Rampp (2003), they find synthesis of p-rich nuclei up to {sup 102}Pd. However, if the entropy of these ejecta is increased by a factor of two, the synthesis extends to {sup 120}Te. Still larger increases in entropy, that might reflect the role of magnetic fields or vibrational energy input neglected in the hydrodynamical model, result in the production of numerous r-, s-, and p-process nuclei up to A {approx} 170, even in winds that are proton-rich.

  2. Nucleosynthesis Modes in the High-Entropy-Wind Scenario of Type II Supernovae

    SciTech Connect

    Farouqi, K.; Kratz, K.-L.; Cowan, J. J.; Mashonkina, L. I.; Pfeiffer, B.; Sneden, C.; Thielemann, F.-K.; Truran, J. W.

    2008-03-11

    In an attempt to constrain the astrophysical conditions for the nucleosynthesis of the classical r-process elements beyond Fe, we have performed large-scale dynamical network calculations within the model of an adiabatically expanding high- entropy wind (HEW) of type II supernovae (SN II). A superposition of several entropy-components (S) with model-inherent weightings results in an excellent reproduction of the overall Solar System (SS) isotopic r-process residuals (N{sub r,{center_dot}}), as well as the more recent observations of elemental abundances of metal-poor, r-process rich halo stars in the early Galaxy. For the heavy r-process elements beyond Sn, our HEW model predicts a robust abundance pattern up to the Th, U r-chronometer region. For the lighter neutron-capture region, an S-dependent superposition of (i) a normal {alpha}-component directly producing stable nuclei, including s-only isotopes, and (ii) a component from a neutron-rich {alpha}-freezeout followed by the rapid recapture of {beta}-delayed neutrons ({beta}dnrpar; emitted from the far-unstable seed nuclei is indicated. In agreement with several recent halo-star observations in the 60

  3. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  4. Supernova shock breakout through a wind

    NASA Astrophysics Data System (ADS)

    Balberg, Shmuel; Loeb, Abraham

    2011-06-01

    The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.

  5. Type II supernovae as a significant source of interstellar dust.

    PubMed

    Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike

    2003-07-17

    Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

  6. Kinematic detection of supernova remnants in giant H II regions

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua; Kennicutt, Robert C., Jr.

    1986-12-01

    In a kinematic survey of giant H II regions in M 101, four sources that have large velocity widths at low intensity levels are detected. Two of these large-velocity-width sources (LVWSs) are, within the limit of resolution, coincident with nonthermal radio sources several times as luminous as Cas A. The LVWS in NGC 5471 B is so bright that it is possible to separate its broad profile from the narrower profile of the background H II region. H-alpha CCD photometry, optical spectroscopy, and high-resolution radio data are combined to derive its physical properties, which support Skillman's (1985) identification of the object as a supernova remnant. The other LVWSs might be supernova remnants embedded in giant H II regions, unusually massive wind-driven shells, or the combination of both.

  7. Moderately luminous Type II supernovae

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Pastorello, A.; Turatto, M.; Pumo, M. L.; Benetti, S.; Cappellaro, E.; Botticella, M. T.; Bufano, F.; Elias-Rosa, N.; Harutyunyan, A.; Taubenberger, S.; Valenti, S.; Zampieri, L.

    2013-07-01

    Context. Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8 M⊙. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. Aims: In this paper we present ultraviolet, optical and near infrared observations of five Type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous Type II events. We investigate the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral evolutions, in order to find some traces of CSM-ejecta interaction. Methods: We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the properties of the progenitor stars. Results: The light curves have luminous peak magnitudes (-16.95 < MB < -18.70). The ejected masses of 56Ni for three SNe span a wide range of values (2.8 × 10-2 M⊙ < M(56Ni)< 1.4 × 10-1 M⊙), while for a fourth (SN 2010aj) we could determine a stringent upper limit (7 × 10-3 M⊙). Clues of interaction, such as the presence of high velocity (HV) features of the Balmer lines, are visible in the photospheric spectra of SNe 2009dd and 1996W. For SN 2007pk we observe a spectral transition from a Type IIn to a standard Type II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5 × 1013 cm and ejected masses of ~5.0-9.5 M⊙. Conclusions: These

  8. Electron-capture supernovae exploding within their progenitor wind

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Tominaga, Nozomu; Langer, Norbert; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.

    2014-09-01

    The most massive stars on the asymptotic giant branch (AGB), or the so-called super-AGB stars, are thought to produce supernovae triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their circumstellar density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense circumstellar environment. We provide the first synthetic light curves for such events by exploding realistic electron-capture supernova progenitors within their super-AGB winds. We find that the early light curve - that is, before the recombination wave reaches the bottom of the hydrogen-rich envelope of supernova ejecta (the plateau phase) - is not affected by the dense wind. However, after the luminosity drop following the plateau phase, the luminosity remains much higher when the super-AGB wind is taken into account. We compare our results to the historical light curve of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an electron-capture supernova within an ordinary super-AGB wind can explain the observed light curve features. We conclude that SN 1054 could have been a Type IIn supernova without any extra extreme mass loss, which was previously suggested to be necessary to account for its early high luminosity. We also show that our light curves match Type IIn supernovae with an early plateau phase or the so-called Type IIn-P supernovae, and suggest that they are electron-capture supernovae within super-AGB winds. Although some electron-capture supernovae can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn supernovae whose optical luminosities are also powered by the interaction. Thus, we suggest that optically bright X-ray-faint Type IIn supernovae can emerge from electron-capture supernovae. Optically faint Type IIn supernovae

  9. Sloan Digital Sky Survey II (SDSS-II) Supernova Data

    DOE Data Explorer

    The Sloan Digital Sky Survey (SDSS) is a series of three interlocking imaging and spectroscopic surveys, carried out over an eight-year period with a dedicated 2.5m telescope located at Apache Point Observatory in Southern New Mexico. The SDSS Supernova Survey was one of those three components of SDSS and SDSS-II, a 3-year extension of the original SDSS that operated from July 2005 to July 2008. The Supernova Survey was a time-domain survey, involving repeat imaging of the same region of sky every other night, weather permitting. The primary scientific motivation was to detect and measure light curves for several hundred supernovae through repeat scans of the SDSS Southern equatorial stripe 82 (about 2.5? wide by ~120? long). Over the course of three 3-month campaigns SDSS-II SN discovered and measured multi-band lightcurves for ~500 spectroscopically confirmed Type Ia supernovae in the redshift range z=0.05-0.4. In addition, the project harvested a few hundred light curves for SNe Ia and discovered about 80 spectroscopically confirmed core-collapse supernovae (supernova types Ib/c and II).

  10. CONDITIONS FOR SUPERNOVAE-DRIVEN GALACTIC WINDS

    SciTech Connect

    Nath, Biman B.; Shchekinov, Yuri E-mail: yus@sfedu.ru

    2013-11-01

    We point out that the commonly assumed condition for galactic outflows, that supernovae (SNe) heating is efficient in the central regions of starburst galaxies, suffers from invalid assumptions. We show that a large filling factor of hot (≥10{sup 6} K) gas is difficult to achieve through SNe heating, irrespective of the SN's initial gas temperature and density, its uniformity, or its clumpiness. We instead suggest that correlated supernovae from OB associations in molecular clouds in the central region can drive powerful outflows if the molecular surface density is >10{sup 3} M {sub ☉} pc{sup –2}.

  11. Supernova 1993J as a spectroscopic link between type II and type Ib supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, D. A.; Clocchiatti, A.; Benjamin, R.; Lester, D. F.; Wheeler, J. C.

    1993-01-01

    Supernova 1993J in the nearby galaxy M81 is one of the closest - and hence brightest - supernovae to be witnessed this century. The early spectrum of SN1993J showed the characteristic hydrogen signature of type II supernovae, but its subsequent evolution is atypical for this class of supernova. Here we present optical and infrared spectra of SN1993J up to 43 days after outburst, which reveal the onset of the helium absorption and emission features more commonly associated with hydrogen-free type Ib supernovae. Corresponding model spectra show that the progenitor star must have possessed an unusually thin (for type II supernovae) hydrogen-rich envelope overlying a helium-rich mantle. Moreover, the supernova ejecta must have remained compositionally stratified, with little transport of the hydrogen-rich material down into the underlying helium layer or mixing of heavier elements outwards. SN1993J therefore represents a transition object between hydrogen-dominated type II supernovae, and hydrogen-free, helium-dominated type Ib supernovae.

  12. Classification of SN2005dj, a Type II Supernova

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Sauge, L.; Smadja, G.; Antilogus, P.; Garavini, G.; Gilles, S.; Pain, R.; Aldering, G.; Bailey, S.; Lee, B. C.; Loken, S.; Nugent, P.; Perlmutter, S.; Scalzo, R.; Thomas, R. C.; Wang, L.; Weaver, B. A.; Bonnaud, C.; Pecontal, E.; Kessler, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.

    2005-08-01

    The Nearby Supernova Factory reports that a spectrum (range 320-1000 nm) of SN 2005dj (IAUC#8585), obtained August 19.6 UT with the Supernova Integral Field Spectrograph on the University of Hawaii 2.2-meter telescope, reveals P-Cygni H-alpha and H-beta, indicative of a Type II supernova. The observed redshift is consistent with that of the host UGC 3545 (z = 0.011508, Huchtmeier & Skillman 1998 via NED).

  13. GRB 011121: Jet, wind and supernova -- all in one

    NASA Astrophysics Data System (ADS)

    Greiner, J.; Klose, S.; Salvato, M.; Zeh, A.; Schwarz, R.; Hartmann, D. H.; Masetti, N.; Stecklum, B.; Lamer, G.; Lodieu, N.; Scholz, R. D.; Sterken, C.; Gorosabel, J.; Burud, I.; Rhoads, J.; Mitrofanov, I.; Litvak, M.; Sanin, A.; Grinkov, V.; Andersen, M. I.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Fruchter, A.; Fynbo, J. U.; Hjorth, J.; Kaper, L.; Kouveliotou, C.; Palazzi, E.; Pian, E.; Rol, E.; Salamanca, I.; Tanvir, N. R.; Vreeswijk, P. M.; Wijers, R. A. M. J.; van den Heuvel, E.

    2004-06-01

    We report optical and near-infrared follow-up observations of GRB 011121. We discover a break in the afterglow light curve after 1.3 days, which implies an initial jet opening angle of ˜9°. The jet origin of this break is supported by the achromatic spectral energy distribution. During later phases, GRB 011121 shows significant excess emission above the flux predicted by a power law decline, interpreted as light from an underlying supernova. The deduced parameters for the decay slope as well as the spectral index favor a wind scenario, i.e. an outflow into a circum-burst environment shaped by the stellar wind of a massive GRB progenitor. Due to its low redshift of z=0.36, GRB 011121 is the so far best example for the GRB-supernova connection, and provides compelling evidence for a circum-burster wind region expected to exist if the progenitor was a massive star.

  14. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  15. UBVRIz Light Curves of 51 Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Galbany, Lluís; Hamuy, Mario; Phillips, Mark M.; Suntzeff, Nicholas B.; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I.; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wishnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P.; Gutiérrez, Claudia P.; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M.; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A.; Mulchaey, John S.; Phillips, Andrew C.; Pizzella, Alessandro; Prosser, Charles F.; Schmidt, Brian P.; Schommer, Robert A.; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A.; Williger, Gerard M.

    2016-02-01

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986-2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  16. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    SciTech Connect

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P.; Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna; Suntzeff, Nicholas B.; Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina; Krisciunas, Kevin; Krzeminski, Wojtek; McCarthy, Patrick; Anderson, Joseph P.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  17. SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND

    SciTech Connect

    Ginzburg, Sivan; Balberg, Shmuel

    2012-10-01

    Observations from the last decade have indicated the existence of a general class of superluminous supernovae (SLSNe), in which the peak luminosity exceeds 10{sup 44} erg s{sup -1}. Here we focus on a subclass of these events, where the light curve is also tens of days wide, so the total radiated energy is of order 10{sup 51} erg. If the origin of these SLSNe is a core-collapse-driven explosion of a massive star, then the mechanism that converts the explosion energy into radiation must be very efficient (much more than in typical core-collapse SNe, where this efficiency is of order 1%). We examine the scenario where the radiated luminosity is due to efficient conversion of kinetic energy of the ejected stellar envelope into radiation by interaction with an optically thick, pre-existing circumstellar material, presumably the product of a steady wind from the progenitor. We base the analysis on analytical derivations of various limits, and on a simple, numerically solved, hydrodynamic diffusion model, which allows us to explore the regime of interest, which does not correspond to the analytical limits. In our results, we identify the qualitative behavior of the observable light curves, and relate them to the parameters of the wind. We specifically show that a wide and superluminous supernova requires the mass of the relevant wind material to be comparable to that of the ejected material from the exploding progenitor. We find the wind parameters that explain the peak luminosity and width of the bolometric light curves of three particular SLSNe, namely, SN 2005ap, SN 2006gy, and SN 2010gx, and show that they are best fitted with a wind that extends to a radius of order 10{sup 15} cm. These results serve as an additional indication that at least some SLSNe may be powered by interaction of the ejected material with a steady wind of similar mass.

  18. The core collapse supernova rate from the SDSS-II supernova survey

    SciTech Connect

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-09-10

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10{sup –4}((h/0.7){sup 3}/(yr Mpc{sup 3})) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  19. The Core Collapse Supernova Rate from the SDSS-II Supernova Survey

    SciTech Connect

    Taylor, Matt; Cinabro, David; Dilday, Ben; Galbany, Lluis; Gupta, Ravi R.; Kessler, R.; Marriner, John; Nichol, Robert C.; Richmond, Michael; Schneider, Donald P.; Sollerman, Jesper

    2014-08-26

    We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03 < z < 0.09). Using a sample of 89 CCSN, we find a volume-averaged rate of 1.06 ± 0.19 × 10(–)(4)((h/0.7)(3)/(yr Mpc(3))) at a mean redshift of 0.072 ± 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.

  20. Light curves from supernova shock breakout through an extended wind

    SciTech Connect

    Ginzburg, Sivan; Balberg, Shmuel

    2014-01-01

    Recent observations suggest that some supernovae may be the result of an explosion into an optically thick circumstellar material, the product of pre-explosion mass loss (wind) by the progenitor star. This scenario has been studied previously both analytically and numerically. However, many previous studies base their analysis on the diffusion approximation for radiation transfer, which is inappropriate in the optically thin outer layers of the wind. Here we study the deviations from diffusion and calculate light curves more accurately using a Monte Carlo approach to photon transfer. We distinguish between 'compact' winds, for which the diffusion approximation is appropriate, and 'extended' winds, which require a more delicate treatment of the radiation. We show that this effect is more significant than that of the light-travel time difference to a distant observer, which has a secondary influence on the light curves of extended-wind systems. We also comment on the applicability of the widely used flux-limited diffusion approximation in this context: we find that it generally does not reproduce the Monte Carlo results. The flux-limited diffusion approximation leads to results that are not only quantitatively but also qualitatively wrong in the extended-wind regime.

  1. Interaction of Supernova Remnants with Stellar-Wind Bubbles

    NASA Astrophysics Data System (ADS)

    Lee, Jae Kwan; Koo, Bon-Chul

    1997-12-01

    We have developed a spherical FCT code in order to simulate the interaction of supernova remnants with stellar wind bubbles. We assume that the density profile of the supernova ejecta follows the Chevalier model(1982) where the outer portion has a power-law density distribution(rho~r^{-n}) and the SN ejecta has a kinetic energy of 10^51 ergs. The structure of wind bubble has been calculated with the stellar mass loss rate dM/dt=5x10e-6 Mo/yr and the wind velocity v=2x10e3km/s. We have simulated seven models with different initial conditions. In the first two models we computed the evolution of SNRs with n=7 and n=14 in the uniform medium. The numerical results agree with the Chevalier's similarity solution at early times. When all of the power-law portion of the ejecta is swept up by the reverse shock, the evolution slowly converges to the Sedov-Taylor stages. There is not much difference between the two cases with different n's. The other five models simulate SNRs produced inside wind bubbles. In model III, we consider the SN ejecta of 1.4 Mo and the radius of bubble ~2,76pc so that ratio of the mass alpha(=M_{W,S}/Mej) is 2. We follow the complex hydrodynamic flows produced by the interaction of SN shocks with stellar shocks and with the contact discontinuities. In the model III, the time scale for the SN shock to cross the wind shell taucross is similar to the time scale for the reverse shock to sweep the power-law density profile taubend. Hence the SN shock crosses the wind shell. At late times SN shock produces another shell in the ambient medium so that we have a SNR with double shell structure. From the numerical results of the remaining models, we have found that when taucross/taubend <= 2. or equivalently when alpha<=50, the SNRs produced inside wind bubbles have double shell structure. Otherwise, either the SN shock does not cross the wind shell or even if it crosses at one time, the reverse shock reflected at the center accelerates the wind shell to

  2. Future GLAST Observations of Supernova Remnants And Pulsar Wind Nebulae

    SciTech Connect

    Funk, S.; /KIPAC, Menlo Park

    2007-09-26

    Shell-type Supernova remnants (SNRs) have long been known to harbour a population of ultra-relativistic particles, accelerated in the Supernova shock wave by the mechanism of diffusive shock acceleration. Experimental evidence for the existence of electrons up to energies of 100 TeV was first provided by the detection of hard X-ray synchrotron emission as e.g. in the shell of the young SNR SN1006. Furthermore using theoretical arguments shell-type Supernova remnants have long been considered as the main accelerator of protons - Cosmic rays - in the Galaxy; definite proof of this process is however still missing. Pulsar Wind Nebulae (PWN) - diffuse structures surrounding young pulsars - are another class of objects known to be a site of particle acceleration in the Galaxy, again through the detection of hard synchrotron X-rays such as in the Crab Nebula. Gamma-rays above 100 MeV provide a direct access to acceleration processes. The GLAST Large Area telescope (LAT) will be operating in the energy range between 30 MeV and 300 GeV and will provide excellent sensitivity, angular and energy resolution in a previously rather poorly explored energy band. We will describe prospects for the investigation of these Galactic particle accelerators with GLAST.

  3. On the nature of rapidly fading Type II supernovae

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Pruzhinskaya, Maria V.; Ergon, Mattias; Blinnikov, Sergei I.

    2016-01-01

    It has been suggested that Type II supernovae with rapidly fading light curves (a.k.a. Type IIL supernovae) are explosions of progenitors with low-mass hydrogen-rich envelopes which are of the order of 1 M⊙. We investigate light-curve properties of supernovae from such progenitors. We confirm that such progenitors lead to rapidly fading Type II supernovae. We find that the luminosity of supernovae from such progenitors with the canonical explosion energy of 1051 erg and 56Ni mass of 0.05 M⊙ can increase temporarily shortly before all the hydrogen in the envelope recombines. As a result, a bump appears in their light curves. The bump appears because the heating from the nuclear decay of 56Ni can keep the bottom of hydrogen-rich layers in the ejecta ionized, and thus the photosphere can stay there for a while. We find that the light-curve bump becomes less significant when we make explosion energy larger (≳2 × 1051 erg), 56Ni mass smaller (≲0.01 M⊙), 56Ni mixed in the ejecta, or the progenitor radius larger. Helium mixing in hydrogen-rich layers makes the light-curve decline rates large but does not help reducing the light-curve bump. Because the light-curve bump we found in our light-curve models has not been observed in rapidly fading Type II supernovae, they may be characterized by not only low-mass hydrogen-rich envelopes but also higher explosion energy, larger degrees of 56Ni mixing, and/or larger progenitor radii than slowly fading Type II supernovae, so that the light-curve bump does not become significant.

  4. Evolution of Pulsar Wind Nebulae inside Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Temim, T.

    2016-06-01

    Composite supernova remnants (SNRs) are those consisting of both a central pulsar that produces a wind of synchrotron-emitting relativistic particle and a supernova (SN) blast wave that expands into the surrounding interstellar medium (ISM). The evolution of the pulsar wind nebula (PWN) is coupled to the evolution of its host SNR and characterized by distinct stages, from the PWN's early expansion into the unshocked SN ejecta to its late-phase interaction with the SNR reverse shock. I will present an overview of the various evolutionary stages of composite SNRs and show how the signatures of the PWN/SNR interaction can reveal important information about the SNR and PWN dynamics, the SN progenitor and explosion asymmetry, the properties of the SN ejecta and newly-formed dust, particle injection and loss processes, and the eventual escape of energetic particles into the ISM. I will also discuss recent multi-wavelength observations and hydrodynamical modeling of evolved systems in which the PWN interacts with the SNR reverse shock and discuss their implications for our general understanding of the structure and evolution of composite SNRs.

  5. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  6. Carbon and Silicate Dust Condensation in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan A.-N.; Morales, B.

    2012-01-01

    We investigate the chemistry of formation and destruction processes of molecules in the expanding and cooling ejecta of Type II Supernovae. In this work, we use a kinetic chemistry network to explore the parameters and conditions of the ejecta which are required for the condensation of graphite and silicon carbide grains.

  7. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  8. A kinematic search for supernova remnants in giant extragalactic H II regions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Skillman, E. D.; Sramek, R. A.

    1994-02-01

    We have obtained velocity fields of the Giant H II complexes NGC 5471 in M101, NGC 2363 in NGC 2366, and the largest H II region in NGC 2403 from H-alpha observations using the TAURUS imaging Fabry-Perot interferometer. We have detected five H-alpha sources with velocity profiles which are broad when compared with the surrounding H II region. Region B in NGC 5471 has been previously determined to contain a supernova remnant by the presence of nonthermal radio continuum radiation and enhanced (O I) and (S II) emission (Skillman 1985) and broad H-alpha emission (Chu & Kennicutt 1986). Two broad H-alpha sources in NGC 2363 coincide with regions where strong splitting has been found in the (O III) line (Roy et al. 1991). Two more broad H-alpha sources have been identified in the largest H II region in NGC 2403. Very Large Array (VLA) radio continuum observations with a resolution of 2 sec at lambda(6) and lambda(20) cm of all 3 H II complexes are presented. In addition, high resolution (subarcsecond) VLA images of NGC 5471 were made at lambda(2) and lambda(6) cm. The presence of a nonthermal source in region NGC 5471 B was confirmed while region NGC 5471 A appears to be dominated by thermal emission. The nonthermal spectral index in NGC 2363 A indicates the existence of none or more supernova remnants at the position of a large velocity width source detected in H-alpha emission. No similar nonthermal sources were detected in NGC 2403 #1. Supernovae explosions and stellar winds are considered as causes for these large velocity width sources (LVWS). If the emission from the LVWSs is attributed to single supernova remnants, they are unusually luminous in both nonthermal radio continuum and H-alpha emision. The very large H-alpha luminosities could be a result of high velocity gas being ionized by the neighboring stellar cluster.

  9. A kinematic search for supernova remnants in giant extragalactic H II regions

    NASA Technical Reports Server (NTRS)

    Yang, Hui; Skillman, Evan D.; Sramek, Richard A.

    1994-01-01

    We have obtained velocity fields of the Giant H II complexes NGC 5471 in M101, NGC 2363 in NGC 2366, and the largest H II region in NGC 2403 from H-alpha observations using the TAURUS imaging Fabry-Perot interferometer. We have detected five H-alpha sources with velocity profiles which are broad when compared with the surrounding H II region. Region B in NGC 5471 has been previously determined to contain a supernova remnant by the presence of nonthermal radio continuum radiation and enhanced (O I) and (S II) emission (Skillman 1985) and broad H-alpha emission (Chu & Kennicutt 1986). Two broad H-alpha sources in NGC 2363 coincide with regions where strong splitting has been found in the (O III) line (Roy et al. 1991). Two more broad H-alpha sources have been identified in the largest H II region in NGC 2403. Very Large Array (VLA) radio continuum observations with a resolution of 2 sec at lambda(6) and lambda(20) cm of all 3 H II complexes are presented. In addition, high resolution (subarcsecond) VLA images of NGC 5471 were made at lambda(2) and lambda(6) cm. The presence of a nonthermal source in region NGC 5471 B was confirmed while region NGC 5471 A appears to be dominated by thermal emission. The nonthermal spectral index in NGC 2363 A indicates the existence of none or more supernova remnants at the position of a large velocity width source detected in H-alpha emission. No similar nonthermal sources were detected in NGC 2403 #1. Supernovae explosions and stellar winds are considered as causes for these large velocity width sources (LVWS). If the emission from the LVWSs is attributed to single supernova remnants, they are unusually luminous in both nonthermal radio continuum and H-alpha emision. The very large H-alpha luminosities could be a result of high velocity gas being ionized by the neighboring stellar cluster.

  10. Type II supernovae as probes of environment metallicity: observations of host H II regions

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Gutiérrez, C. P.; Dessart, L.; Hamuy, M.; Galbany, L.; Morrell, N. I.; Stritzinger, M. D.; Phillips, M. M.; Folatelli, G.; Boffin, H. M. J.; de Jaeger, T.; Kuncarayakti, H.; Prieto, J. L.

    2016-05-01

    Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used as environment metallicity indicators. Aims: To assess this accuracy we present a sample of type II supernova host H ii-region spectroscopy, from which environment oxygen abundances have been derived. These environment abundances are compared to the observed strength of metal lines in supernova spectra. Methods: Combining our sample with measurements from the literature, we present oxygen abundances of 119 host H ii regions by extracting emission line fluxes and using abundance diagnostics. These abundances are then compared to equivalent widths of Fe ii 5018 Å at various time and colour epochs. Results: Our distribution of inferred type II supernova host H ii-region abundances has a range of ~0.6 dex. We confirm the dearth of type II supernovae exploding at metallicities lower than those found (on average) in the Large Magellanic Cloud. The equivalent width of Fe ii 5018 Å at 50 days post-explosion shows a statistically significant correlation with host H ii-region oxygen abundance. The strength of this correlation increases if one excludes abundance measurements derived far from supernova explosion sites. The correlation significance also increases if we only analyse a "gold" IIP sample, and if a colour epoch is used in place of time. In addition, no evidence is found of a correlation between progenitor metallicity and supernova light-curve or spectral properties - except for that stated above with respect to Fe ii 5018 Å equivalent widths - suggesting progenitor metallicity is not a driving factor in producing the diversity that is observed in our sample. Conclusions: This study provides observational evidence of the usefulness of type II supernovae as metallicity indicators. We finish with a discussion of the

  11. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  12. Model light curves of linear Type II supernovae

    SciTech Connect

    Swartz, D.A.; Wheeler, J.C.; Harkness, R.P. )

    1991-06-01

    Light curves computed from hydrodynamic models of supernova are compared graphically with the average observed B and V-band light curves of linear Type II supernovae. Models are based on the following explosion scenarios: carbon deflagration within a C + O core near the Chandrasekhar mass, electron-capture-induced core collapse of an O-Ne-Mg core of the Chandrasekhar mass, and collapse of an Fe core in a massive star. A range of envelope mass, initial radius, and composition is investigated. Only a narrow range of values of these parameters are consistent with observations. Within this narrow range, most of the observed light curve properties can be obtained in part, but none of the models can reproduce the entire light curve shape and absolute magnitude over the full 200 day comparison period. The observed lack of a plateau phase is explained in terms of a combination of small envelope mass and envelope helium enhancement. The final cobalt tail phase of the light curve can be reproduced only if the mass of explosively synthesized radioactive Ni-56 is small. The results presented here, in conjunction with the observed homogeneity among individual members of the supernova subclass, argue favorably for the O-Ne-Mg core collapse mechanism as an explanation for linear Type II supernovae. The Crab Nebula may arisen from such an explosion. Carbon deflagrations may lead to brighter events like SN 1979C. 62 refs.

  13. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The original proposal for this LTSA grant was for X-ray studies of pulsars, and especially pulsar wind nebulae and what they could tell us about pulsar properties, especially their space velocities. By any metric, this program has been very successful. No fewer than 14 papers on directly related topics (and several dozen more on related topics) have been published in refereed journals with the PI as lead or co-author, all observational results that have had significant impact on the field. These include the first X-ray detection of the "Duck" pulsar, a clear demonstration that estimated pulsar ages can be off by over an order of magnitude (via observations of the young supernova remnant G11.2-0.3) and the detection of the first pulsar wind nebula around a millisecond pulsar. These publications have also resulted in 4 press releases. Moreover, they also represent the thesis work of two PhD students at MIT (Froney Crawford and Mike Pivovaroff) and one postdoctoral fellow, Bryan Gaensler, now Assistant Professor at Harvard.

  14. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  15. Bolometric Lightcurves of Peculiar Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Lusk, Jeremy A.; Baron, Edward A.

    2017-01-01

    We examine the bolometric lightcurves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au and 2009E) which are thought to originate from blue supergiant progenitors using a new python package named SuperBoL. With this code, we calculate SNe lightcurves using three different techniques common in the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the lightcurves calculated by SuperBoL along with previously published lightcurves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction lightcurves largely agree with previously published lightcurves, but with what we believe to be more robust error calculations, with 0.2 ≤ δL/L ≤ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ˜5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric lightcurves from observed sets of broad-band light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  16. Bolometric Light Curves of Peculiar Type II-P Supernovae

    NASA Astrophysics Data System (ADS)

    Lusk, Jeremy A.; Baron, E.

    2017-04-01

    We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ∼5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  17. Formation of giant H II regions following supernova explosions

    NASA Technical Reports Server (NTRS)

    Sartori, L.

    1971-01-01

    The principal optical properties of type I supernovae are summarized. These include the light curve and the spectrum. The spectra consist of broad bands with very little continuum. According to the theory presented, the observed light is principally fluorescence, excited in the medium surrounding the supernova by ultraviolet radiation originating from the explosion. It is proposed that the spectrum that impinges on the fluorescent medium while emission is taking place must fall abruptly across the Lyman edge of He II. Such a filtering action is plausibly provided by a much denser internal region, rich in helium, immediately surrounding the exploding object. This will form a Stromgren sphere during the time the intense UV pulse is passing through it. The dense region also slows down the photons below the edge by Thomson scattering, thereby spreading out the UV pulse in time. Various proposed mechanisms for the production of ionization in the Gum nebula are discussed.

  18. 75 FR 23263 - Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... Energy Regulatory Commission Alta Wind I, LLC; Alta Wind II, LLC; Alta Wind III, LLC; Alta Wind IV, LLC; Alta Wind V, LLC; Alta Wind VI, LLC; Alta Wind VII, LLC; Alta Wind VIII, LLC; Alta Windpower... Federal Energy Regulatory Commission (Commission), 18 CFR 285.207 (2009), Alta Wind I, LLC, Alta Wind...

  19. A sample of Type II-L supernovae

    NASA Astrophysics Data System (ADS)

    Faran, T.; Poznanski, D.; Filippenko, A. V.; Chornock, R.; Foley, R. J.; Ganeshalingam, M.; Leonard, D. C.; Li, W.; Modjaz, M.; Serduke, F. J. D.; Silverman, J. M.

    2014-11-01

    What are Type II-Linear supernovae (SNe II-L)? This class, which has been ill defined for decades, now receives significant attention - both theoretically, in order to understand what happens to stars in the ˜15-25 M⊙ range, and observationally, with two independent studies suggesting that they cannot be cleanly separated photometrically from the regular hydrogen-rich SNe II-P characterized by a marked plateau in their light curve. Here, we analyse the multiband light curves and extensive spectroscopic coverage of a sample of 35 SNe II and find that 11 of them could be SNe II-L. The spectra of these SNe are hydrogen deficient, typically have shallow Hα absorption, may show indirect signs of helium via strong O I λ7774 absorption, and have faster line velocities consistent with a thin hydrogen shell. The light curves can be mostly differentiated from those of the regular, hydrogen-rich SNe II-P by their steeper decline rates and higher luminosity, and we propose to define them based on their decline in the V band: SNe II-L decline by more than 0.5 mag from peak brightness by day 50 after explosion. Using our sample we provide template light curves for SNe II-L and II-P in four photometric bands.

  20. COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Campbell, Heather; D'Andrea, Chris B; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert; Sako, Masao; Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S.; Bassett, Bruce; Biswas, Rahul; Kuhlmann, Steve; Cinabro, David; Dilday, Ben; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; and others

    2013-02-15

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega} {sub m} = 0.24{sup +0.07} {sub -0.05} (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega} {sub m} and {Omega}{sub {Lambda}}, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H {sub 0}, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96{sup +0.10} {sub -0.10}, {Omega} {sub m} = 0.29{sup +0.02} {sub -0.02}, and {Omega} {sub k} = 0.00{sup +0.03} {sub -0.02} (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving

  1. Unsupervised Clustering of Type II Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay

    2016-09-01

    As new facilities come online, the astronomical community will be provided with extremely large data sets of well-sampled light curves (LCs) of transients. This motivates systematic studies of the LCs of supernovae (SNe) of all types, including the early rising phase. We performed unsupervised k-means clustering on a sample of 59 R-band SN II LCs and find that the rise to peak plays an important role in classifying LCs. Our sample can be divided into three classes: slowly rising (II-S), fast rise/slow decline (II-FS), and fast rise/fast decline (II-FF). We also identify three outliers based on the algorithm. The II-FF and II-FS classes are disjoint in their decline rates, while the II-S class is intermediate and “bridges the gap.” This may explain recent conflicting results regarding II-P/II-L populations. The II-FS class is also significantly less luminous than the other two classes. Performing clustering on the first two principal component analysis components gives equivalent results to using the full LC morphologies. This indicates that Type II LCs could possibly be reduced to two parameters. We present several important caveats to the technique, and find that the division into these classes is not fully robust. Moreover, these classes have some overlap, and are defined in the R band only. It is currently unclear if they represent distinct physical classes, and more data is needed to study these issues. However, we show that the outliers are actually composed of slowly evolving SN IIb, demonstrating the potential of such methods. The slowly evolving SNe IIb may arise from single massive progenitors.

  2. The Mass and Age Dependence of Dusty Red Supergiant Winds, and Their Impact on Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    The dusty winds of red supergiants (RSGs) have a tremendous impact on the evolution of stars of 8-40 M_sun. Wind strength determines whether a star can shed its H envelope or not, thus determining the type of resulting SN, and these dusty winds create the circumstellar medium (CSM) at the end of the stars life. However, RSG mass-loss rates are very uncertain, which hampers the predictive power of stellar evolution models. RSGs are expected to end their lives as Type II-P supernovae. Many RSGs are observed with initial masses well above 20 M_sun, but from Type II-P progenitors directly detected so far it seems that the stars that explode are of relatively low mass, with all progenitor mass estimates below 16-17 M_sun. This is known as the Red Supergiant Problem, prompting suggestions that the massive RSGs collapse to black holes with undetectably faint SNe. Alternatively, it has also been suggested that the more massive RSGs evolve to yield other types of SNe or that dusty CSM could cause the progenitor to faint, underestimating its mass. One expects that the most massive and most evolved RSGs would also have the highest extinction or would be the most likely to evolve to a H-free star -- this is qualitatively what is needed to explain the missing high-mass RSGs. To test this idea, we propose to use FORCAST to obtain mid-IR photometry for RSGs in three coeval star clusters with known ages(and different turnoff masses of 12, 18, and 35 M_sun). By modeling CSM dust emission, we will derive mass and age dependent mass-loss rates and CSM extinction, below and above the derived cutoff mass for Type II-P progenitors, thereby determining whether this effect is large enough to solve the Red Supergiant Problem.

  3. Predicted continuum spectra of type II supernovae - LTE results

    NASA Technical Reports Server (NTRS)

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  4. Detection of a red supergiant progenitor star of a type II-plateau supernova.

    PubMed

    Smartt, Stephen J; Maund, Justyn R; Hendry, Margaret A; Tout, Christopher A; Gilmore, Gerard F; Mattila, Seppo; Benn, Chris R

    2004-01-23

    We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.

  5. Photometric Supernova Cosmology with BEAMS and SDSS-II

    NASA Astrophysics Data System (ADS)

    Hlozek, Renée; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Bernstein, Joseph P.; Campbell, Heather; Dilday, Ben; Falck, Bridget; Frieman, Joshua; Kuhlmann, Steve; Lampeitl, Hubert; Marriner, John; Nichol, Robert C.; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-06-01

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 104 SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the Ω m , ΩΛ contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are ΩBEAMS m = 0.194 ± 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  6. PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II

    SciTech Connect

    Hlozek, Renee; Kunz, Martin; Bassett, Bruce; Smith, Mat; Newling, James; Varughese, Melvin; Kessler, Rick; Frieman, Joshua; Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John; Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.; Dilday, Ben; Falck, Bridget; Riess, Adam G.; Sako, Masao; Schneider, Donald P.

    2012-06-20

    Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

  7. Unifying Type II Supernova Light Curves with Dense Circumstellar Material

    NASA Astrophysics Data System (ADS)

    Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano

    2017-03-01

    A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ∼ 10{--}100 {km} {{{s}}}-1, suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first ∼ 20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies.

  8. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ∼5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  9. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  10. The ASAS-SN Bright Supernova Catalog - II. 2015

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Brown, J. S.; Stanek, K. Z.; Kochanek, C. S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Brimacombe, J.; Bishop, D. W.; Basu, U.; Beacom, J. F.; Bersier, D.; Chen, Ping; Danilet, A. B.; Falco, E.; Godoy-Rivera, D.; Goss, N.; Pojmanski, G.; Simonian, G. V.; Skowron, D. M.; Thompson, Todd A.; Woźniak, P. R.; Ávila, C. G.; Bock, G.; Carballo, J.-L. G.; Conseil, E.; Contreras, C.; Cruz, I.; Andújar, J. M. F.; Guo, Zhen; Hsiao, E. Y.; Kiyota, S.; Koff, R. A.; Krannich, G.; Madore, B. F.; Marples, P.; Masi, G.; Morrell, N.; Monard, L. A. G.; Munoz-Mateos, J. C.; Nicholls, B.; Nicolas, J.; Wagner, R. M.; Wiethoff, W. S.

    2017-01-01

    This manuscript presents information for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during 2015, its second full year of operations. The same information is presented for bright (mV ≤ 17), spectroscopically confirmed supernovae discovered by other sources in 2015. As with the first ASAS-SN bright supernova catalog, we also present redshifts and near-UV through IR magnitudes for all supernova host galaxies in both samples. Combined with our previous catalog, this work comprises a complete catalog of 455 supernovae from multiple professional and amateur sources, allowing for population studies that were previously impossible. This is the second of a series of yearly papers on bright supernovae and their hosts from the ASAS-SN team.

  11. A study of low-energy type II supernovae

    NASA Astrophysics Data System (ADS)

    Lisakov, Sergey M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2015-08-01

    All stars with an initial mass greater than 8Msun, but not massive enough to encounter the pair-production instability, eventually form a degenerate core and collapse to form a compact object, either a neutron star or a black hole.At the lower mass end, these massive stars die as red-supergiant stars and give rise to Type II supernovae (SNe). The diversity of observed properties of SNe II suggests a range of progenitor mass, radii, but also explosion energy.We have performed a large grid simulations designed to cover this range of progenitor and explosion properties. Using MESA STAR, we compute a set of massive star models (12-30Msun) from the main sequence until core collapse. We then generate explosions with V1D to produce ejecta with a range of explosion energies and yields. Finally, all ejecta are evolved with CMFGEN to generate multi-band light curves and spectra.In this poster, we focus our attention on the properties of low-energy explosions that give rise to low-luminosity Type II Plateau (II-P) SNe. In particular, we present a detailed study of SN 2008bk, but also include other notorious low-energy SNe II-P like 2005cs, emphasising their non-standard properties by comparing to models that match well events like SN 1999em. Such low-energy explosions, characterised by low ejecta expansion rates, are more suitable for reliable spectral line identifications.Based on our models, we discuss the distinct signatures of low-energy explosions in lower and higher mass models. One important goal is to identify whether there is a progenitor-mass bias leading to such events.

  12. Analytic Approximation of Carbon Condensation Issues in Type ii Supernovae

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    2013-01-01

    I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if 56Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel & Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

  13. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    SciTech Connect

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D; Villar, A.

    2016-03-20

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R{sub ⊙}) to be significantly smaller than that for KSN2011d (490 ± 20 R{sub ⊙}), but both have similar explosion energies of 2.0 ± 0.3 × 10{sup 51} erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10{sup −4}M{sub ⊙} yr{sup −1} from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

  14. Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler

    NASA Astrophysics Data System (ADS)

    Garnavich, P. M.; Tucker, B. E.; Rest, A.; Shaya, E. J.; Olling, R. P.; Kasen, D.; Villar, A.

    2016-03-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R⊙) to be significantly smaller than that for KSN2011d (490 ± 20 R⊙), but both have similar explosion energies of 2.0 ± 0.3 × 1051 erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10-4M⊙ yr-1 from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

  15. LATE-TIME LIGHT CURVES OF TYPE II SUPERNOVAE: PHYSICAL PROPERTIES OF SUPERNOVAE AND THEIR ENVIRONMENT

    SciTech Connect

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Wesson, Roger; Clayton, Geoffrey C.; Andrews, Jennifer E.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Ercolano, Barbara; Welch, Douglas E-mail: otsuka@asiaa.sinica.edu.tw

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days {approx}300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate {sup 56}Ni masses for our targets (0.5-14 Multiplication-Sign 10{sup -2} M{sub Sun }) from the bolometric light curve of each of days {approx}150-300 using SN 1987A as a standard (7.5 Multiplication-Sign 10{sup -2} M{sub Sun }). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm{sup -3}) and SNe 2003gd and 2004et have densities more typical of the interstellar medium ({approx}1 cm{sup -3}). We analyze the sample as a whole in the context of physical properties derived in prior work. The {sup 56}Ni mass appears well correlated with progenitor mass with a slope of 0

  16. Late-time Light Curves of Type II Supernovae: Physical Properties of Supernovae and Their Environment

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Meixner, Margaret; Panagia, Nino; Fabbri, Joanna; Barlow, Michael J.; Clayton, Geoffrey C.; Gallagher, Joseph S.; Sugerman, Ben E. K.; Wesson, Roger; Andrews, Jennifer E.; Ercolano, Barbara; Welch, Douglas

    2012-01-01

    We present BVRIJHK-band photometry of six core-collapse supernovae, SNe 1999bw, 2002hh, 2003gd, 2004et, 2005cs, and 2006bc, measured at late epochs (>2 yr) based on the Hubble Space Telescope (HST), and the Gemini North, and WIYN telescopes. We also show the JHK light curves of supernova impostor SN 2008S up to day 575 because it was serendipitously in our SN 2002hh field of view. Of our 43 HST observations in total, 36 observations are successful in detecting the light from the SNe alone and measuring magnitudes of all the targets. HST observations show a resolved scattered light echo around SN 2003gd at day 1520 and around SN 2002hh at day 1717. Our Gemini and WIYN observations detected SNe 2002hh and 2004et as well. Combining our data with previously published data, we show VRIJHK-band light curves and estimate decline magnitude rates at each band in four different phases. Our prior work on these light curves and other data indicate that dust is forming in our targets from days ~300 to 400, supporting SN dust formation theory. In this paper we focus on other physical properties derived from late-time light curves. We estimate 56Ni masses for our targets (0.5-14 × 10-2 M ⊙) from the bolometric light curve of each of days ~150-300 using SN 1987A as a standard (7.5 × 10-2 M ⊙). The flattening or sometimes increasing fluxes in the late-time light curves of SNe 2002hh, 2003gd, 2004et, and 2006bc indicate the presence of light echoes. We estimate the circumstellar hydrogen density of the material causing the light echo and find that SN 2002hh is surrounded by relatively dense materials (n(H) >400 cm-3) and SNe 2003gd and 2004et have densities more typical of the interstellar medium (~1 cm-3). We analyze the sample as a whole in the context of physical properties derived in prior work. The 56Ni mass appears well correlated with progenitor mass with a slope of 0.31 × 10-2, supporting the previous work by Maeda et al., who focus on more massive Type II SNe. The

  17. On the Intrinsic Diversity of Type II-Plateau Supernovae

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Prieto, Jose L.

    2015-06-01

    Hydrogen-rich Type II-Plateau supernovae (SNe) exhibit correlations between the plateau luminosity {L}{pl}, the nickel mass {M}{Ni}, the explosion energy {E}{exp}, and the ejecta mass {M}{ej}. Using our global, self-consistent, multi-band model of nearby well-observed SNe, we find that the covariances of these quantities are strong and that the confidence ellipsoids are oriented in the direction of the correlations, which reduces their significance. By proper treatment of the covariance matrix of the model, we discover a significant intrinsic width to the correlations between {L}{pl}, {E}{exp} and {M}{Ni}, where the uncertainties due to the distance and the extinction dominate. For fixed {E}{exp}, the spread in {M}{Ni} is about 0.25 dex, which we attribute to the differences in the progenitor internal structure. We argue that the effects of incomplete γ-ray trapping are not important in our sample. Similarly, the physics of the Type II-Plateau SN light curves leads to inherently degenerate estimates of {E}{exp} and {M}{ej}, which makes their observed correlation weak. Ignoring the covariances of SN parameters or the intrinsic width of the correlations causes significant biases in the slopes of the fitted relations. Our results imply that Type II-Plateau SN explosions are not described by a single physical parameter or a simple one-dimensional trajectory through the parameter space, but instead reflect the diversity of the core and surface properties of their progenitors. We discuss the implications for the physics of the explosion mechanism and possible future observational constraints.

  18. FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.; Stiavelli, Massimo; Heger, Alexander; Holz, Daniel E.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M{sub Sun} in addition to 50-500 M{sub Sun }. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15-40 M{sub Sun} Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z {approx} 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.

  19. Neutrinos from type II supernovae - The first 100 milliseconds

    NASA Technical Reports Server (NTRS)

    Myra, Eric S.; Burrows, Adam

    1990-01-01

    The collapse of a 1.17 solar mass iron core is numerically followed through infall to 100 ms past core bounce, and the emergent neutrino spectra during each phase are highlighted. It is found that, even with fairly optimistic conditions for producing a strong, sustained core-bounce shock wave, the prompt shock stalls within 9 ms of core bounce at a radius of less than 250 km. It appears that a radical change in the character of the progenitor core or in our understanding of the relevant physics of stellar collapse is needed before the direct mechanism for type II supernovae can become viable. Expanding the number of neutrino types from one to six magnifies the debilitating effect of neutrino loss on shock propagation. At shock breakout, prompt bursts of all neutrino types are observed. The luminosities of the nonelectron types show a sudden turn-on in luminosity while that of the electron neutrinos steadily increases throughout infall as a result of accelerating electron capture.

  20. The properties of the progenitor, neutron star, and pulsar wind in the supernova remnant Kes 75

    NASA Astrophysics Data System (ADS)

    Gelfand, J. D.; Slane, P. O.; Temim, T.

    2014-03-01

    By studying composite supernova remnants (SNRs), remnants which contain a pulsar wind nebula (PWN), it is possible to estimate physical properties of the progenitor explosion, central neutron star, and its pulsar wind that are difficult to measure directly. This is best done by fitting the dynamical and broadband spectral properties of a PWN with an evolutionary model for a PWN inside an SNR. We apply such a model to the composite SNR Kes 75, whose associated pulsar PSR J1846-0258 is thought to have an extremely strong surface magnetic field. If ˜ 3 M_⊙ of mass was ejected in the supernova, our model suggests a normal or slightly subenergetic supernova in a low density environment. Additionally, for the measured pre-outburst braking index of p=2.65, our model prefers an age of {˜ 430} years and an initial spin period P_0 ˜ 0.2 s. Lastly, the magnetization of the pulsar wind and energy spectrum of particles injected at the termination shock are similar to those observed from other PWNe powered by less magnetized neutron stars. While further study is needed to verify these results, they are nominally inconsistent with strong neutron star magnetic fields resulting from very fast initial rotation.

  1. Neutrino-driven Type-II supernova explosions and the role of convection.

    NASA Astrophysics Data System (ADS)

    Janka, H. T.; Mueller, E.

    1995-05-01

    The role of neutrino heating and convection in the explosions of Type-II supernovae is reviewed. The neutrino-driven mechanism of supernova explosions is based upon the fact that high-energetic neutrinos streaming up from the hotter interior must transfer energy to the cooler layers adjacent to the nascent neutron star. While this energy deposition is unavoidable, there is still controversy about the point whether it is able to drive and power a Type-II supernova event or not. To investigate this question one-dimensional hydrodynamical simulations have been performed for the long-time evolution of the collapsed stellar core after the bounce at nuclear matter density and after the associated formation of the supernova shock. In these studies the parameters describing the neutrino emission have been varied and the influence of the temporal contraction of the central part of the nascent neutron star has been tested.

  2. VizieR Online Data Catalog: UBVRIz light curves of 51 Type II supernovae (Galbany+, 2016)

    NASA Astrophysics Data System (ADS)

    Galbany, L.; Hamuy, M.; Phillips, M. M.; Suntzeff, N. B.; Maza, J.; de Jaeger, T.; Moraga, T.; Gonzalez-Gaitan, S.; Krisciunas, K.; Morrell, N. I.; Thomas-Osip, J.; Krzeminski, W.; Gonzalez, L.; Antezana, R.; Wishnjewski, M.; McCarthy, P.; Anderson, J. P.; Gutierrez, C. P.; Stritzinger, M.; Folatelli, G.; Anguita, C.; Galaz, G.; Green, E. M.; Impey, C.; Kim, Y.-C.; Kirhakos, S.; Malkan, M. A.; Mulchaey, J. S.; Phillips, A. C.; Pizzella, A.; Prosser, C. F.; Schmidt, B. P.; Schommer, R. A.; Sherry, W.; Strolger, L.-G.; Wells, L. A.; Williger, G. M.

    2016-08-01

    This paper presents a sample of multi-band, visual-wavelength light curves of 51 type II supernovae (SNe II) observed from 1986 to 2003 in the course of four different surveys: the Cerro Tololo Supernova Survey, the Calan Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernovae Survey (CATS). Near-infrared photometry and optical spectroscopy of this set of SNe II will be published in two companion papers. A list of the SNe II used in this study is presented in Table1. The first object in our list is SN 1986L and it is the only SN observed with photoelectric techniques (by M.M.P and S.K., using the Cerro Tololo Inter-American Observatory (CTIO) 0.9m equipped with a photometer and B and V filters). The remaining SNe were observed using a variety of telescopes equipped with CCD detectors and UBV(RI)KCz filters (see Table5). The magnitudes for the photometric sequences of the 51 SNe II are listed in Table4. In every case, these sequences were derived from observations of Landolt standards (see Appendix D in Hamuy et al. 2001ApJ...558..615H for the definition of the z band and Stritzinger et al. 2002AJ....124.2100S for the description of the z-band standards). Table5 lists the resulting UBVRIz magnitudes for the 51 SNe. (3 data files).

  3. Toward a Kinetic Model of Silicon Carbide Condensation in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Deneault, Ethan A. N.

    2017-01-01

    One of the most interesting types of dust grain extracted from terrestrial meteorites is the silicon carbide X-grain (SiC-X). These grains bear distinct isotopic signatures which classify them as supernova condensates, but their formation within the ejecta has not been well-studied. Using a kinetic chemistry network, we investigate possible pathways that lead to the formation of silicon carbide grains in the cooling outflows of type II supernovae.

  4. Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae

    NASA Astrophysics Data System (ADS)

    Pumo, M. L.; Zampieri, L.; Spiro, S.; Pastorello, A.; Benetti, S.; Cappellaro, E.; Manicò, G.; Turatto, M.

    2017-01-01

    With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SNe, we infer explosion energies of 0.16-0.18 foe, radii at explosion of 1.8-3.5 × 1013 cm and ejected masses of 10-11.3 M⊙. The estimated progenitor mass on the main sequence is in the range ˜13.2-15.1 M⊙ for SN 2003Z and ˜11.4-12.9 M⊙ for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way enable us also to conduct a comparative study on this SN sub-group. The results suggest that (a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP; (b) both faint and intermediate-luminosity SNe IIP originate from low-energy explosions of red (or yellow) supergiant stars of low to intermediate mass; (c) some faint objects may also be explained as electron-capture SNe from massive super-asymptotic giant branch stars; and (d) LL SNe IIP form the underluminous tail of the SNe IIP family, where the main parameter `guiding' the distribution seems to be the ratio of the total explosion energy to the ejected mass. Further hydrodynamical studies should be performed and compared to a more extended sample of LL SNe IIP before drawing any conclusion on the relevance of fall-back to this class of events.

  5. Observations of supernova remnants and pulsar wind nebulae at gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Lemoine-Goumard, Marianne

    2015-08-01

    In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production.

  6. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  7. First-Year Spectroscopy for the SDSS-II Supernova Survey

    SciTech Connect

    Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Frieman, Joshua A.; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Kessler, Richard; Konishi, Kohki; Lampeitl, Hubert

    2008-03-25

    This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

  8. Cosmological galaxy evolution with superbubble feedback - II. The limits of supernovae

    NASA Astrophysics Data System (ADS)

    Keller, B. W.; Wadsley, J.; Couchman, H. M. P.

    2016-12-01

    We explore when supernovae can (and cannot) regulate the star formation and bulge growth in galaxies based on a sample of 18 simulated galaxies. The simulations are the first to model feedback superbubbles including evaporation and conduction. These processes determine the mass loadings and wind speeds of galactic outflows. We show that for galaxies with virial masses >1012 M⊙, supernovae alone cannot prevent excessive star formation. This occurs due to a shutdown of galactic winds, with wind mass loadings falling from η ˜ 10 to η < 1. In more massive systems, the ejection of baryons to the circumgalactic medium falters earlier on and the galaxies diverge significantly from observed galaxy scaling relations and morphologies. The decreasing efficiency is due to a deepening potential well preventing gas escape, and is unavoidable if mass-loaded outflows regulate star formation on galactic scales. This implies that non-supernova feedback mechanisms must become dominant for galaxies with stellar masses greater than ˜4 × 1010 M⊙. The runaway growth of the central stellar bulge, strongly linked to black hole growth, suggests that feedback from active galactic nuclei is the likely mechanism. Below this mass, supernovae alone are able to produce a realistic stellar mass fraction, star formation history and disc morphology.

  9. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-07-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  10. Two bi-stability jumps in theoretical wind models for massive stars and the implications for luminous blue variable supernovae

    NASA Astrophysics Data System (ADS)

    Petrov, Blagovest; Vink, Jorick S.; Gräfener, Götz

    2016-05-01

    Luminous blue variables (LBVs) have been suggested to be the direct progenitors of supernova Types IIb and IIn, with enhanced mass loss prior to explosion. However, the mechanism of this mass loss is not yet known. Here, we investigate the qualitative behaviour of theoretical stellar wind mass loss as a function of Teff across two bi-stability jumps in blue supergiant regime and also in proximity to the Eddington limit, relevant for LBVs. To investigate the physical ingredients that play a role in the radiative acceleration we calculate blue supergiant wind models with the CMFGEN non-local thermodynamic equilibrium model atmosphere code over an effective temperature range between 30 000 and 8800 K. Although our aim is not to provide new mass-loss rates for BA supergiants, we study and confirm the existence of two bi-stability jumps in mass-loss rates predicted by Vink et al. However, they are found to occur at somewhat lower Teff (20 000 and 9000 K, respectively) than found previously, which would imply that stars may evolve towards lower Teff before strong mass loss is induced by the bi-stability jumps. When the combined effects of the second bi-stability jump and the proximity to Eddington limit are accounted for, we find a dramatic increase in the mass-loss rate by up to a factor of 30. Further investigation of both bi-stability jumps is expected to lead to a better understanding of discrepancies between empirical modelling and theoretical mass-loss rates reported in the literature, and to provide key inputs for the evolution of both normal AB supergiants and LBVs, as well as their subsequent supernova Type II explosions.

  11. 76 FR 35882 - Paulding Wind Farm II, LLC, et al.;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ....] Paulding Wind Farm II, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status Docket Nos. Paulding Wind Farm II LLC EG11-61-000 Macho Springs Power I, LLC EG11-63-000 Alta Wind III Owner Lessor A EG11-64-000 Alta Wind III Owner Lessor B EG11-65-000 Alta Wind III Owner Lessor C EG11-66-000 Alta...

  12. H{sub α} SPECTRAL DIVERSITY OF TYPE II SUPERNOVAE: CORRELATIONS WITH PHOTOMETRIC PROPERTIES

    SciTech Connect

    Gutiérrez, Claudia P.; Hamuy, Mario; González-Gaitán, Santiago; Anderson, Joseph P.; Folatelli, Gastón; Morrell, Nidia I.; Phillips, Mark M.; Thomas-Osip, Joanna; Stritzinger, Maximilian D.; McCarthy, Patrick; Suntzeff, Nicholas B.

    2014-05-10

    We present a spectroscopic analysis of the H{sub α} profiles of hydrogen-rich Type II supernovae. A total of 52 Type II supernovae having well-sampled optical light curves and spectral sequences were analyzed. Concentrating on the H{sub α} P-Cygni profile we measure its velocity from the FWHM of the emission and the ratio of absorption to emission (a/e) at a common epoch at the start of the recombination phase, and search for correlations between these spectral parameters and photometric properties of the V-band light curves. Testing the strength of various correlations we find that a/e appears to be the dominant spectral parameter in terms of describing the diversity in our measured supernova properties. It is found that supernovae with smaller a/e have higher H{sub α} velocities, more rapidly declining light curves from maximum during the plateau and radioactive tail phase, are brighter at maximum light, and have shorter optically thick phase durations. We discuss possible explanations of these results in terms of physical properties of Type II supernovae, speculating that the most likely parameters that influence the morphologies of H{sub α} profiles are the mass and density profile of the hydrogen envelope, together with additional emission components due to circumstellar interaction.

  13. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    SciTech Connect

    Pejcha, Ondřej; Prieto, Jose L.

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  14. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE PAGES

    Takanashi, N.; Doi, M.; Yasuda, N.; ...

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  15. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    SciTech Connect

    Takanashi, N.; Doi, M.; Yasuda, N.; Kuncarayakti, H.; Konishi, K.; Schneider, D. P.; Cinabro, D.; Marriner, J.

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) have a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.

  16. Collisionless shocks and TeV neutrinos before Supernova shock breakout from an optically thick wind

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Bell, A. R.

    2015-06-01

    During a supernova explosion, a radiation-dominated shock (RDS) travels through its progenitor. A collisionless shock (CS) is usually assumed to replace it during shock breakout (SB). We demonstrate here that for some realistic progenitors enshrouded in optically thick winds, such as possibly SN 2008D, a CS forms deep inside the wind, soon after the RDS leaves the core, and therefore significantly before SB. The RDS does not survive the transition from the core to the thick wind when the wind close to the core is not sufficiently dense to compensate for the r-2 dilution of photons due to shock curvature. This typically happens when the shock velocity is ≲ 0.1 c (u_w/10 km s^{-1}) (dot{M} /5 × 10^{-4 M_{⊙} yr^{-1}})^{-1} (r_*/10^{13 cm}), where uw, dot{M} and r* are, respectively, the wind velocity, mass-loss rate and radius of the progenitor star. The radiative CS results in a hard spectrum of the photon flash at breakout, which would produce an X-ray flash. Cosmic ray acceleration would start before SB, for such progenitors. A fraction of secondary TeV neutrinos can reach the observer up to more than 10 h before the first photons from breakout, providing information on the invisible layers of the progenitor.

  17. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    NASA Astrophysics Data System (ADS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-03-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  18. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. II. TYPE II-P AND II-L SUPERNOVAE

    SciTech Connect

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito; Aldering, Greg; Arimoto, Nobuo; Pereira, Rui

    2013-08-01

    Thirteen explosion sites of Type II-P and II-L supernovae (SNe) in nearby galaxies have been observed using integral field spectroscopy, enabling both spatial and spectral study of the explosion sites. We used the properties of the parent stellar population of the coeval SN progenitor star to derive its metallicity and initial mass. The spectrum of the parent stellar population yields estimates of metallicity via the strong-line method and age via a comparison with simple stellar population models. These metallicity and age parameters are adopted for the progenitor star. Age, or lifetime of the star, was used to derive the initial (zero-age main sequence) mass of the star using comparisons with stellar evolution models. With this technique, we were able to determine the metallicities and initial masses of the SN progenitors in our sample. Our results indicate that some Type II SN progenitors may have been stars with masses comparable to those of SN Ib/c progenitors.

  19. RCW 86: A TYPE Ia SUPERNOVA IN A WIND-BLOWN BUBBLE

    SciTech Connect

    Williams, Brian J.; Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Blair, William P.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Rho, Jeonghee

    2011-11-10

    We report results from a multi-wavelength analysis of the Galactic supernova remnant RCW 86, the proposed remnant of the supernova of 185 A.D. We show new infrared observations from the Spitzer Space Telescope and the Wide-Field Infrared Survey Explorer, where the entire shell is detected at 24 and 22 {mu}m. We fit the infrared flux ratios with models of collisionally heated ambient dust, finding post-shock gas densities in the non-radiative shocks of 2.4 and 2.0 cm{sup -3} in the southwest (SW) and northwest (NW) portions of the remnant, respectively. The Balmer-dominated shocks around the periphery of the shell, large amount of iron in the X-ray-emitting ejecta, and lack of a compact remnant support a Type Ia origin for this remnant. From hydrodynamic simulations, the observed characteristics of RCW 86 are successfully reproduced by an off-center explosion in a low-density cavity carved by the progenitor system. This would make RCW 86 the first known case of a Type Ia supernova in a wind-blown bubble. The fast shocks (>3000 km s{sup -1}) observed in the northeast are propagating in the low-density bubble, where the shock is just beginning to encounter the shell, while the slower shocks elsewhere have already encountered the bubble wall. The diffuse nature of the synchrotron emission in the SW and NW is due to electrons that were accelerated early in the lifetime of the remnant, when the shock was still in the bubble. Electrons in a bubble could produce gamma rays by inverse-Compton scattering. The wind-blown bubble scenario requires a single-degenerate progenitor, which should leave behind a companion star.

  20. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Kessler, Richard; Frieman, Joshua A.; Jha, Saurabh W.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Kasen, Daniel; Marriner, John; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our

  1. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Takanashi, N.; Doi, M.; Yasuda, N.; Kuncarayakti, H.; Konishi, K.; Schneider, D. P.; Cinabro, D.; Marriner, J.

    2017-02-01

    We have analysed multiband light curves of 328 intermediate-redshift (0.05 ≤ z < 0.24) Type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey. The multiband light curves were parametrized by using the multiband stretch method, which can simply parametrize light-curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia that appeared in red host galaxies (u - r > 2.5) do not have a broad light-curve width and the SNe Ia that appeared in blue host galaxies (u - r < 2.0) have a variety of light-curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appearing in red/blue host galaxies is different (a significance level of 99.9 per cent). We also investigate the extinction law of host galaxy dust. As a result, we find that the value of Rv derived from SNe Ia with medium light-curve widths is consistent with the standard Galactic value, whereas the value of Rv derived from SNe Ia that appear in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and that they are obscured by host galaxy dust with two different properties.

  2. Methodological studies on the search for Gravitational Waves and Neutrinos from Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Casentini, Claudio

    2016-02-01

    Type II SNe, also called Core-collapse SuperNovae have a neutrino (v) emission, as confirmed by SN 1987A, and are also potential sources of gravitational waves. Neutrinos and gravitational waves from these sources reach Earth almost contemporaneously and without relevant interaction with stellar matter and interstellar medium. The upcoming advanced gravitational interferometers would be sensitive enough to detect gravitational waves signals from close galactic Core-collapse SuperNovae events. Nevertheless, significant uncertainties on theoretical models of emission remain. A joint search of coincident low energy neutrinos and gravitational waves events from these sources would bring valuable information from the inner core of the collapsing star and would enhance the detection of the so-called Silent SuperNovae. Recently a project for a joint search involving gravitational wave interferometers and neutrino detectors has started. We discuss the benefits of a joint search and the status of the search project.

  3. Characterizing the V-band Light-curves of Hydrogen-rich Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Stritzinger, Maximilian D.; Olivares E., Felipe; Phillips, Mark M.; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellón, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gastón; Förster, Francisco; Freedman, Wendy L.; González, Luis; Hsiao, Eric; Krzemiński, Wojtek; Krisciunas, Kevin; Maza, José; McCarthy, Patrick; Morrell, Nidia I.; Persson, Sven E.; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B.; Thomas-Osip, Joanna

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the "plateau" phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply "SN II" with an "s 2" value giving the decline rate during the "plateau" phase, indicating its morphological type. Based on observations obtained with the du-Pont and Swope telescopes at LCO, and the Steward Observatory's CTIO60, SO90 and CTIO36 telescopes.

  4. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    SciTech Connect

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Antezana, Roberto; De Jaeger, Thomas; Förster, Francisco; González, Luis; Stritzinger, Maximilian D.; Contreras, Carlos; Olivares E, Felipe; Phillips, Mark M.; Campillay, Abdo; Castellón, Sergio; Hsiao, Eric; Schulze, Steve; Bolt, Luis; Folatelli, Gastón; Freedman, Wendy L.; Krzemiński, Wojtek; and others

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SN II' with an 's {sub 2}' value giving the decline rate during the 'plateau' phase, indicating its morphological type.

  5. Supernova 2014J at M82 - II. Direct analysis of a middle-class Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Vallely, Patrick; Moreno-Raya, M. E.; Baron, E.; Ruiz-Lapuente, Pilar; Domínguez, I.; Galbany, Lluís; González Hernández, J. I.; Méndez, J.; Hamuy, M.; López-Sánchez, A. R.; Catalán, S.; Cooke, E.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-08-01

    We analyse a time series of optical spectra of SN 2014J from almost two weeks prior to maximum to nearly four months after maximum. We perform our analysis using the SYNOW code, which is well suited to track the distribution of the ions with velocity in the ejecta. We show that almost all of the spectral features during the entire epoch can be identified with permitted transitions of the common ions found in normal supernovae (SNe) Ia in agreement with previous studies. We show that 2014J is a relatively normal SN Ia. At early times the spectral features are dominated by Si II, S II, Mg II, and Ca II. These ions persist to maximum light with the appearance of Na I and Mg I. At later times iron-group elements also appear, as expected in the stratified abundance model of the formation of normal Type Ia SNe. We do not find significant spectroscopic evidence for oxygen, until 100 d after maximum light. The +100 d identification of oxygen is tentative, and would imply significant mixing of unburned or only slight processed elements down to a velocity of 6000 kms-1. Our results are in relatively good agreement with other analyses in the infrared. We briefly compare SN 2011fe to SN 2014J and conclude that the differences could be due to different central densities at ignition or differences in the C/O ratio of the progenitors.

  6. Unveiling Vela - Time Variability of Interstellar Lines in the Direction of the Vela Supernova Remnant II. Na D and Ca II

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Lambert, David L.; Reddy, Arumalla B. S.; Gupta, Ranjan; Muneer, S.; Singh, Harinder P.

    2017-01-01

    In a survey conducted between 2011-12 of interstellar Na I D line profiles in the direction of the Vela supernova remnant, a few lines of sight showed dramatic changes in low velocity absorption components with respect to profiles from 1993-1994 reported by Cha & Sembach. Three stars - HD 63578, HD 68217 and HD 76161 showed large decrease in strength over the 1993-2012 interval. HD 68217 and HD 76161 are associated with the Vela SNR whereas HD 63578 is associated with γ2 Velorum wind bubble. Here, we present high spectral resolution observations of Ca II K lines obtained with the Southern African Large Telescope (SALT) towards these three stars along with simultaneous observations of Na I D lines. These new spectra confirm that the Na D interstellar absorption weakened drastically between 1993-1994 and 2011-2012 but show for the first time that the Ca II K line is unchanged between 1993-1994 and 2015. This remarkable contrast between the behaviour of Na D and Ca II K line absorption lines is a puzzle concerning gas presumably affected by the outflow from the SNR and the wind from γ2 Velorum.

  7. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  8. Supernova feedback in a local vertically stratified medium: interstellar turbulence and galactic winds

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Fielding, Drummond; Faucher-Giguère, Claude-André; Quataert, Eliot

    2016-07-01

    We use local Cartesian simulations with a vertical gravitational potential to study how supernova (SN) feedback in stratified galactic discs drives turbulence and launches galactic winds. Our analysis includes three disc models with gas surface densities ranging from Milky Way-like galaxies to gas-rich ultraluminous infrared galaxies (ULIRGs), and two different SN driving schemes (random and correlated with local gas density). In order to isolate the physics of SN feedback, we do not include additional feedback processes. We find that, in these local box calculations, SN feedback excites relatively low mass-weighted gas turbulent velocity dispersions ≈3-7 km s-1 and low wind mass loading factors η ≲ 1 in all the cases we study. The low turbulent velocities and wind mass loading factors predicted by our local box calculations are significantly below those suggested by observations of gas-rich and rapidly star-forming galaxies; they are also in tension with global simulations of disc galaxies regulated by stellar feedback. Using a combination of numerical tests and analytic arguments, we argue that local Cartesian boxes cannot predict the properties of galactic winds because they do not capture the correct global geometry and gravitational potential of galaxies. The wind mass loading factors are in fact not well defined in local simulations because they decline significantly with increasing box height. More physically realistic calculations (e.g. including a global galactic potential and disc rotation) will likely be needed to fully understand disc turbulence and galactic outflows, even for the idealized case of feedback by SNe alone.

  9. A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

    NASA Astrophysics Data System (ADS)

    de Jaeger, T.; González-Gaitán, S.; Hamuy, M.; Galbany, L.; Anderson, J. P.; Phillips, M. M.; Stritzinger, M. D.; Carlberg, R. G.; Sullivan, M.; Gutiérrez, C. P.; Hook, I. M.; Howell, D. Andrew; Hsiao, E. Y.; Kuncarayakti, H.; Ruhlmann-Kleider, V.; Folatelli, G.; Pritchet, C.; Basa, S.

    2017-02-01

    The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01–0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, i.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe’s matter density: {{{Ω }}}m={0.32}-0.21+0.30 providing a new independent evidence for dark energy at the level of two sigma. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program N-2005A-Q-11, GN-2005B-Q-7, GN-2006A-Q-7, GS-2005A-Q-11, GS-2005B-Q-6, and GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  10. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    SciTech Connect

    Chen, X.; Han, Z.

    2011-07-10

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr{sup -1} for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  11. Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    NASA Astrophysics Data System (ADS)

    Hakobyan, A. A.; Nazaryan, T. A.; Adibekyan, V. Zh.; Petrosian, A. R.; Aramyan, L. S.; Kunth, D.; Mamon, G. A.; de Lapparent, V.; Bertin, E.; Gomes, J. M.; Turatto, M.

    2014-11-01

    We present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of spiral host galaxies of 692 SNe from the Sloan Digital Sky Survey in different stages of galaxy-galaxy interaction and activity classes of nucleus. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the star formation rates and morphologies of galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to active galactic nuclei (AGN) classes of galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.

  12. Neutrino heating, convection, and the mechanism of Type-II supernova explosions.

    NASA Astrophysics Data System (ADS)

    Janka, H.-T.; Mueller, E.

    1996-02-01

    The role of neutrino heating and convective processes in the explosion mechanism of Type-II supernovae is investigated by one- and two-dimensional hydrodynamical simulations of the long-time evolution of the collapsed stellar core after the bounce at nuclear matter density and after the associated formation of the supernova shock. The parameters describing the neutrino emission from the collapsed stellar core are systematically varied. The possibility to obtain explosions turns out to be very sensitive to the physical conditions in and at the protoneutron star, in particular to its contraction and to the neutrino cooling inside of the gain radius. Yet, above a certain threshold for the core neutrino luminosity, stable and energetic explosions can be obtained in spherical symmetry, provided the energy deposition by neutrinos remains strong for a sufficiently long period. The explosion energy and time scale critically depend on the neutrino fluxes during the shock revival phase and on their temporal decay during the first few 100ms after shock formation. The threshold luminosity is a very sensitive function of the shock stagnation radius, because small radii of the stalled prompt shock lead to significantly higher neutrino loss from the hot and compact postshock layers, cause the region of neutrino heating to be very narrow, and reduce the heating time scale of the matter due to the high infall velocity. Repeating the simulations in two dimensions we find that strong convective processes occur in the collapsed stellar core in two spatially separate regions. One region of convection lies inside the neutrinosphere and another one is located in the neutrino-heated layer below the shock front. The convective mixing around the neutrinosphere is mainly driven by the negative lepton gradient, which is maintained by rapid loss of leptons from the semitransparent layers at the neutrinosphere. This considerably speeds up the deleptonization of the outer layers of the collapsed

  13. Nonthermal X-rays and Gamma Rays from Supernova Remnants in Stellar-Wind Bubbles

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1997-12-01

    Electrons are expected to be accelerated in strong shock waves to energies limited by radiative losses, by the finite age of the shock, or by escape. Young supernova remnants can easily produce electron distributions that, while steepening from the slope at radio energies, still contain significant numbers of electrons at energies of 100 TeV or higher, where they produce synchrotron X-rays to 10 keV and above. In addition, these electrons can inverse-Compton scatter cosmic microwave background photons up to energies in excess of 100 GeV. For remnants of core-collapse supernovae expanding into stellar-wind bubbles, the upstream density is likely to drop as r(-2) while the upstream magnetic field is wrapped into a tight spiral, resulting in an almost perpendicular shock everywhere. Such shocks can be extremely effective in accelerating electrons to high energies. I describe spectra and images for spherical remnants, assuming the dynamics are given by the Sedov self-similar solution appropriate for an ambient r(-2) density profile (r_sh t(2/3) ). Both images and spectra differ significantly from those for remnants expanding into uniform magnetic fields, and should be distinguishable. Remnants expanding into spherical wind bubbles should show little azimuthal variation in synchrotron brightness for any viewing angle. Except at the highest photon energies, their brightness profiles peak somewhat inside the outermost edge of emission. X-ray halos caused by electrons diffusing ahead of the shock are generally narrow and faint. I shall describe inverse-Compton gamma-ray spectra produced by these electron distributions as well.

  14. Condensation of dust in the ejecta of Type II-P supernovae

    NASA Astrophysics Data System (ADS)

    Sarangi, Arkaprabha; Cherchneff, Isabelle

    2015-03-01

    Aims: We study the production of dust in Type II-P supernova ejecta by coupling the gas-phase chemistry to the dust nucleation and condensation phases. We consider two supernova progenitor masses with homogeneous and clumpy ejecta to assess the chemical type and quantity of dust that forms. Grain size distributions are derived for all dust components as a function of post-explosion time. Methods: The chemistry of the gas phase and the simultaneous formation of dust clusters are described by a chemical network that includes all possible processes that are efficient at high gas temperatures and densities. The formation of key bimolecular species (e.g., CO, SiO) and dust clusters of silicates, alumina, silica, metal carbides, metal sulphides, pure metals, and amorphous carbon is considered. A set of stiff, coupled, ordinary, differential equations is solved for the gas conditions pertaining to supernova explosions. These master equations are coupled to a dust condensation formalism based on Brownian coagulation. Results: We find that Type II-P supernovae produce dust grains of various chemical compositions and size distributions as a function of post-explosion time. The grain size distributions gain in complexity with time, are slewed towards large grains, and differ from the usual Mathis, Rumpl, & Nordsieck power-law distribution characterising interstellar dust. Gas density enhancements in the form of ejecta clumps strongly affect the chemical composition of dust and the grain size distributions. Some dust type, such as forsterite and pure metallic grains, are highly dependent on clumpiness. Specifically, a clumpy ejecta produces large grains over 0.1 μm, and the final dust mass for the 19 M⊙ progenitor reaches 0.14 M⊙. Clumps also favour the formation of specific molecules, such as CO2, in the oxygen-rich zones. Conversely, the carbon and alumina dust masses are primarily controlled by the mass yields of alumina and carbon in the ejecta zones where the dust is

  15. 75 FR 8052 - Stetson Wind II, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Stetson Wind II, LLC; Notice of Filing February 12, 2010. Take notice that, on February 5, 2010, Stetson Wind II, LLC filed to amend, its filing in the above captioned...

  16. 75 FR 17406 - Stetson Wind II, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Stetson Wind II, LLC; Notice of Filing March 31, 2010. Take notice that, on March 29, 2010, Stetson Wind II, LLC filed a supplement to its filing in the above captioned docket...

  17. Enhancement of high-energy cosmic-ray spectrum by type-II supernovae

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Miyaji, S.; Parnell, T. A.; Weisskopf, M. C.; Hayashi, T.

    1986-01-01

    The cosmic-ray spectrum has an intensity enhancement in the energy range 10 to the 14th to 10 to the 16th eV per nucleus. Recent observations of heavy cosmic rays in this energy range indicate that the Ca/Fe ratio may be as large as 10 times the solar value. It is suggested that pulsars in type-II supernova remnants are the origin of this component of the cosmic-ray spectrum.

  18. Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Schwab, Josiah

    2017-01-01

    In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.

  19. A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Ma, Xin; Chen, Xuefei; Chen, Hai-liang; Han, Zhanwen; Denissenkov, Pavel A. E-mail: cxf@ynao.ac.cn

    2013-12-01

    The accretion of hydrogen-rich material on to carbon-oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M {sub ☉} and accretion rates in the range from 10{sup –8} to 10{sup –5} M {sub ☉} yr{sup –1}, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu et al. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

  20. The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary

    SciTech Connect

    Frieman, Joshua A.; Bassett, Bruce; Becker, Andrew; Choi, Changsu; Cinabro, David; DeJongh, Don Frederic; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Holtzman, Jon; Im, Myungshin; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marriner, John; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; Nichol, Robert C.; Prieto, Jose Luis; /Ohio State U. /Rochester Inst. Tech. /Stanford U., Phys. Dept. /Pennsylvania U. /Penn State U., Astron. Astrophys. /Portsmouth U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Stanford U., Phys. Dept. /Fermilab /Fermilab /Ohio State U. /Stanford U., Phys. Dept. /Fermilab /Bristol U. /Apache Point Observ. /Liverpool John Moores U., ARI /Columbia U., CBA /Apache Point Observ. /Ohio State U. /Durham U. /Portsmouth U. /South African Astron. Observ. /Naval Academy, Annapolis /UC, Berkeley /UC, Berkeley /Ohio State U. /Stockholm U. /New Mexico State U. /Princeton U. Observ. /Tokyo U. /Washington U., Seattle, Astron. Dept. /Stanford U., Phys. Dept. /Jefferson Lab /Apache Point Observ. /Gottingen U. /Chicago U. /San Francisco State U. /DARK Cosmology Ctr. /Fermilab /Apache Point Observ. /Durham U. /Princeton U. Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Barcelona U. /Stockholm U. /Apache Point Observ. /Lick Observ. /Sussex U. /Barcelona U. /Apache Point Observ. /Ohio State U. /Apache Point Observ. /Fermilab /DARK Cosmology Ctr. /Chicago U. /Fermilab /South African Astron. Observ. /Ohio State U. /Apache Point Observ. /Texas U., McDonald Observ. /Fermilab

    2007-09-14

    The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

  1. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M.

    2014-01-01

    Magnetic spin-down of a rapidly rotating (millisecond) neutron star has been proposed as the power source of hydrogen-poor `superluminous' supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ˜0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity LX ˜ 1043-1045 erg s-1. This `ionization break-out' may explain the luminous X-ray emission observed from the transient SCP 06F, providing direct evidence that this SLSN was indeed engine powered. Luminous break-out requires a low ejecta mass and that the spin-down time of the pulsar be comparable to the photon diffusion time-scale at optical maximum, the latter condition being similar to that required for a supernova with a high optical fluence. These relatively special requirements may explain why most SLSNe-I are not accompanied by detectable X-ray emission. Global asymmetry of the supernova ejecta increases the likelihood of an early break-out along the direction of lowest density. Atomic states with lower threshold energies are more readily ionized at earlier times near optical maximum, allowing `UV break-out' across a wider range of pulsar and ejecta properties than X-ray break-out, possibly contributing to the blue/UV colours of SLSNe-I.

  2. The peculiar type II supernova 1993J in M81: Transition to the nebular phase

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.; Matheson, Thomas; Barth, Aaron J.

    1994-01-01

    We present optical spectra of the bright, peculiar Type II supernova 1993J in M81 spanning the first 14 months of its existence, revealing its transition to the nebular phase. Unlike the case in normal Type II supernovae, during the first 2-10 months the H-alpha emission line gradually becomes less prominent relative to other features such as (O I) lambda lambda 6300, 6364 and (Ca II) lambda lambda 7291, 7324, as we had predicted based on early-time (tau less than or approximately equal to 2 months) spectra. The nebular spectrum resembles those of the Type Ib/Ic supernovae 1985F and 1987M, although weak H-alpha emission is easily visible even at late times in SN 1993J. At tau = 8 months a close similarity is found with the spectrum of SN 1987K, the only other Type II supernova known to have undergone such a metamorphosis. The emission lines are considerably broader than those of normal Type II supernovae at comparable phases, consistent with the progenitor having lost a majority of its hydrogen envelope prior to exploding. Consequently, there is now little doubt that Type Ib, and probably Type Ic, supernovae result from core collapse in stripped, massive stars; models of the chemical evolution of galaxies in which these subtypes are ascribed to exploding white dwarfs must be appropriately modified. Although all of the emission lines in spectra of SN 1993J fade roughly exponentially for a considerable time, the fading of H-alpha begins to slow down at tau approximately = 8 months, and in the interval tau = 10-14 months its flux is constant, or even slightly rising in the wings of the line. This behavior, together with the box-like shape and great breadth (full width at half maximum (FWHM) approximately = 17 000 km/s) of the line profile, suggests that the H-alpha emission is being produced by the high-velocity outer layer of hydrogen ejecta interacting with circumstellar gas released by the progenitor prior to its explosion. A similar phenomenon has previously been

  3. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  4. The Final Word on the Progenitor of the Type II-Plateau Supernova SN 2006ov

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas

    2011-10-01

    Despite recent rapid progress, the field of supernova {SN} progenitor identification remains in its infancy, with only five supernovae having had unambiguous detection and characterization of their progenitor stars made. The existence of deep pre-SN WFPC2 images of the site of the nearby core-collapse {Type II-Plateau} SN 2006ov has enabled two independent searches for its progenitor star to be carried out. While both studies agree that an object is located at the location of SN 2006ov in the pre-SN images, they disagree on whether the light from this source {or, part of it} is, in fact, coming from the actual progenitor star. The time is ripe to settle the issue: A single-orbit reobservation of the SN site with HST/ACS will permit the definitive determination of whether this object is indeed associated with SN 2006ov. If it is, and its flux is found to have diminished {it was an extended source} or vanished {it was an isolated star}, then this will enable the third conclusive characterization of a Type II-Plateau supernova's progenitor star's properties to be made. If it is not, then a firm upper mass limit on the progenitor star will be confidently declared the final word on the topic.

  5. Nuclear structure and the fate of core collapse (Type II) supernova

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2014-08-01

    For a long time Gerry Brown and his collaborator Hans Bethe considered the question of the final fate of a core collapse (Type II) supernova. Recalling ideas from nuclear structure on Kaon condensate and a soft equation of state of the dense nuclear matter they concluded that progenitor stars with mass as low as 17-18M⊙ (including supernova 1987A) could collapse to a small mass black hole with a mass just beyond 1.5M⊙, the upper bound they derive for a neutron star. We discuss another nuclear structure effect that determines the carbon to oxygen ratio (C/O) at the end of helium burning. This ratio also determines the fate of a Type II supernova with a carbon rich progenitor star producing a neutron star and oxygen rich collapsing to a black hole. While the C/O ratio is one of the most important nuclear inputs to stellar evolution it is still not known with sufficient accuracy. We discuss future efforts to measure with gamma-beam and TPC detector of the C12(α,γ)O16 reaction that determines the C/O ratio in stellar helium burning.

  6. Shock waves and nucleosynthesis in type II supernovae

    NASA Technical Reports Server (NTRS)

    Aufderheide, M. B.; Baron, E.; Thielemann, F.-K.

    1991-01-01

    In the study of nucleosynthesis in type II SN, shock waves are initiated artificially, since collapse calculations do not, as yet, give self-consistent shock waves strong enough to produce the SN explosion. The two initiation methods currently used by light-curve modelers are studied, with a focus on the peak temperatures and the nucleosynthetic yields in each method. The various parameters involved in artificially initiating a shock wave and the effects of varying these parameters are discussed.

  7. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  8. A high-energy catalogue of Galactic supernova remnants and pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar; Ferrand, Gilles; Matheson, Heather

    2013-03-01

    Motivated by the wealth of past, existing, and upcoming X-ray and gamma-ray missions, we have developed the first public database of high-energy observations of all known Galactic Supernova Remnants (SNRs): http://www.physics.umanitoba.ca/snr/SNRcat The catalogue links to, and complements, other existing related catalogues, including Dave Green's radio SNRs catalogue. We here highlight the features of the high-energy catalogue, including allowing users to filter or sort data for various purposes. The catalogue is currently targeted to Galactic SNR observations with X-ray and gamma-ray missions, and is timely with the upcoming launch of X-ray missions (including Astro-H in 2014). We are currently developing the existing database to include an up-to-date Pulsar Wind Nebulae (PWNe)-dedicated webpage, with the goal to provide a global view of PWNe and their associated neutron stars/pulsars. This extensive database will be useful to both theorists to apply their models or design numerical simulations, and to observers to plan future observations or design new instruments. We welcome input and feedback from the SNR/PWN/neutron stars community.

  9. Chandra Detection of a Pulsar Wind Nebula Associated With Supernova Remnant 3C 396

    NASA Technical Reports Server (NTRS)

    Olbert, C. M.; Keohane, J. W.; Arnaud, K. A.; Dyer, K. K.; Reynolds, S. P.; Safi-Harb, S.

    2003-01-01

    We present a 100 ks observation of the Galactic supernova remnant 3C396 (G39.2-0.3) with the Chandra X-Ray Observatory that we compare to a 20cm map of the remnant from the Very Large Array. In the Chandra images, a nonthermal nebula containing an embedded pointlike source is apparent near the center of the remnant which we interpret as a synchrotron pulsar wind nebula surrounding a yet undetected pulsar. From the 2-10 keV spectrum for the nebula (N(sub H) = 5.3 plus or minus 0.9 x 10(exp 22) per square centimeter, GAMMA =1.5 plus or minus 0.3) we derive an unabsorbed x-ray flux of S(sub z)=1.62 x 10(exp -12) erg per square centimeter per second, and from this we estimate the spin-down power of the neutron star to be E(sup dot) = 7.2 x 10(exp 36) ergs per second. The central nebula is morphologically complex, showing bent, extended structure. The radio and X-ray shells of the remnant correlate poorly on large scales, particularly on the eastern half of the remnant, which appears very faint in X-ray images. At both radio and X-ray wavelengths the western half of the remnant is substantially brighter than the east.

  10. Evidence of a pulsar wind nebula in supernova remnant IC 443

    NASA Astrophysics Data System (ADS)

    Olbert, Charles M.; Clearfield, Christopher R.; Williams, Nikolas E.; Keohane, Jonathan W.; Frail, Dale A.

    2001-05-01

    New Chandra X-Ray Observatory and Very Large Array observations of the hard X-ray feature along the southern edge of the supernova remnant IC 443 have revealed a comet-shaped nebula of hard emission with a soft X-ray point source at its apex. Based on the X-ray spectrum, X-ray and radio morphology, and the radio polarization properties, we argue that this object is a synchrotron nebula powered by the compact source. The derived parameters of the system favor an interpretation in which the central object is a young, energetic neutron star physically associated with IC 443. The cometary morphology of the nebula originates from the supersonic motion of the pulsar (VPSR~=250+/-50 km s-1), which causes the relativistic wind of the pulsar to terminate in a bow shock and trail behind as a synchrotron tail. This velocity is consistent with an age of 30,000 years for the SNR and its associated pulsar. .

  11. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  12. The sloan digital sky Survey-II supernova survey: search algorithm and follow-up observations

    SciTech Connect

    Sako, Masao; Bassett, Bruce; Becker, Andrew; Hogan, Craig J.; Cinabro, David; DeJongh, Fritz; Frieman, Joshua A.; Marriner, John; Miknaitis, Gajus; Depoy, D. L.; Prieto, Jose Luis; Dilday, Ben; Kessler, Richard; Doi, Mamoru; Garnavich, Peter M.; Holtzman, Jon; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Nichol, Robert C.; and others

    2008-01-01

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg{sup 2} region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  13. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    SciTech Connect

    Sako, Masao; et al.

    2014-01-14

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r~22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star-formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1443 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 677 purely-photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat Lambda-CDM cosmology, we determine Omega_M = 0.315 +/- 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7 sigmas.

  14. PSN J08070669-2803101 is a young Type II supernova

    NASA Astrophysics Data System (ADS)

    Milisavljevic, D.; Fesen, R.; Pickering, T.; Kniazev, A.; Parrent, J.; Soderberg, Alicia; Margutti, Raffaella

    2013-03-01

    Low-dispersion spectra (range 350-880 nm), obtained on March 10.9 UT with the 10-m SALT telescope (+ RSS), show PSN J08070669-2803101 to be a young type-II supernova not long after outburst. Fitting with the SYN++ software (Thomas et al. 2011, PASP, 123, 237) suggests that the broad P-Cyg features seen on a fairly blue continuum are associated with H_alpha, Na I, Ca II, and He I. Using a redshift of z = 0.0037 measured from narrow emission lines associated with a coincident H II region in the host galaxy ESO 430-020, we estimate the velocity of the H_alpha absorption feature to be approximately -18500 km/s.

  15. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are

  16. A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY

    SciTech Connect

    Dilday, Benjamin; Jha, Saurabh W.; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Hopp, Ulrich; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, LluIs; Miquel, Ramon; Garnavich, Peter; Goobar, Ariel; Ihara, Yutaka; Kessler, Richard; Lampeitl, Hubert; Nichol, Robert C.; Marriner, John; Molla, Mercedes

    2010-06-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {<=} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {<=} z {<=} 0.3. We find values for the cluster SN Ia rate of (0.37{sup +0.17+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.55{sup +0.13+0.02} {sub -0.11-0.01}) SNur h {sup 2} (SNux = 10{sup -12} L {sup -1} {sub xsun} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sup +0.18+0.01} {sub -0.12-0.01}) SNur h {sup 2} and (0.49{sup +0.15+0.02} {sub -0.11-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sup +1.99+0.07} {sub -1.11-0.04}) SNur h {sup 2} and (0.36{sup +0.84+0.01} {sub -0.30-0.01}) SNur h {sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sup +1.31+0.043} {sub -0.91-0.015} and 3.02{sup +1.31+0.062} {sub -1.03-0.048}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sup +0.15} {sub -0.14})+(0.91{sup +0.85} {sub -0.81}) x z] SNuB h {sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most three hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe

  17. Peering into the heart of the M82 starburst: Type II supernova remnants and a possible relic GRB?

    NASA Astrophysics Data System (ADS)

    Fenech, Danielle Marie; Beswick, Robert; Muxlow, Tom; Argo, Megan

    2015-08-01

    M82 is considered the archetypal starburst galaxy and at a distance of ~3.6 Mpc is one of the closest examples of its kind. It therefore provides a unique opportunity to study a star-forming environment in detail and particularly the discrete products of star-formation such as supernova remnants (SNR) and HII regions. Supernovae and supernova remnants play an important role in the feedback of energy and material into the surrounding interstellar medium as evidenced in M82 by the galactic superwind driven by the numerous supernovae, SNR and massive stellar winds.Radio observations can be used to see into the core of the star-forming region in the centre of M82 as they are unaffected by the gas and dust associated with such an intense starburst environment. Since their discovery in the 1970s, radio observations have been used to study and monitor the evolution of the ~100 supernova remnants at the heart of this galaxy.We present multi-epoch millarcsecond resolution images of the most compact supernova remnants in M82, spanning 25 years of evolution. In particular, we will discuss one of the quintessential SNR 43.31+59.2 as well as the unusual object 41.95+57.5 and its potential as a GRB afterglow.

  18. The Final Word on the Progenitor of the Type II-Plateau Supernova SN 2006my

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas

    2010-09-01

    Despite recent rapid progress, the field of supernova {SN} progenitor identification remains in its infancy, with only four supernovae having had unambiguous detection and characterization of their progenitor stars made. The existence of pre-SN WFPC2 images of the site of the nearby core-collapse {Type II-Plateau} SN 2006my has enabled three independent searches for its progenitor star to be carried out. In the first, Li et. al. {2007} find spatial coincidence between the SN and a possibly extended source with properties deemed consistent with those of a red supergiant. Subsequent analyses by Leonard et al. {2008} and Crockett et al. {2010} refute the Li et al. detection claim, but recognize that existing data do not permit a definitive resolution of the issue since even the revised SN localizations place SN 2006my on part of the putative progenitor's point-spread-function in the pre-SN frames {although no longer at its center}. The time is ripe to settle the issue: A single-orbit reobservation of the SN site with HST/ACS will permit the definitive determination of whether this object is indeed associated with SN 2006my. If it is, and its flux is found to have diminished {it was an extended source} or vanished {it was an isolated star}, then this will enable the second conclusive characterization of a Type II-Plateau supernova's progenitor star's properties to be made. If it is not, then upper mass limits on the progenitor star will be confidently declared the final word on the topic.

  19. Supernova models

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-01-01

    Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the /sup 56/Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed.

  20. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  1. The diversity of Type II supernova versus the similarity in their progenitors

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Howell, D. A.; Stritzinger, M. D.; Graham, M. L.; Hosseinzadeh, G.; Arcavi, I.; Bildsten, L.; Jerkstrand, A.; McCully, C.; Pastorello, A.; Piro, A. L.; Sand, D.; Smartt, S. J.; Terreran, G.; Baltay, C.; Benetti, S.; Brown, P.; Filippenko, A. V.; Fraser, M.; Rabinowitz, D.; Sullivan, M.; Yuan, F.

    2016-07-01

    High-quality collections of Type II supernova (SN) light curves are scarce because they evolve for hundreds of days, making follow-up observations time consuming and often extending over multiple observing seasons. In light of these difficulties, the diversity of SNe II is not fully understood. Here we present ultraviolet and optical photometry of 12 SNe II monitored by the Las Cumbres Observatory Global Telescope Network during 2013 to 2014, and compare them with previously studied SNe having well-sampled light curves. We explore SN II diversity by searching for correlations between the slope of the linear light-curve decay after maximum light (historically used to divide SNe II into IIL and IIP) and other measured physical properties. While SNe IIL are found to be on average more luminous than SNe IIP, SNe IIL do not appear to synthesize more 56Ni than SNe IIP. Finally, optical nebular spectra obtained for several SNe in our sample are found to be consistent with models of red supergiant progenitors in the 12-16 M⊙ range. Consequently, SNe IIL appear not to account for the deficit of massive red supergiants as SN II progenitors.

  2. Exploring the unified class of Type II Supernovae with the Las Cumbres Observatory Global Telescope Network

    NASA Astrophysics Data System (ADS)

    Valenti, Stefano; Howell, Dale Andrew; Sand, David J.; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis

    2015-01-01

    Traditionally Type II supernovae (SNe) have been separated into two distinct classes based on the shape of their light curves after peak: Type II plateau (IIP) and Type II linear (IIL) SNe. Recent works suggest that Type II SNe form a continuum of objects from a single progenitor system. Here we present data for a set of Type II SNe collected with the Las Cumbres Observatory Global Telescope (LCOGT) Network and observed simultaneously with UVOT-Swift. In the growing sample of Type II SNe, we search for clear evidence to distinguish the two classes. SNe IIL show a similar drop at the end of their short steep plateau that resemble the drop visible in SNe IIP. We show that also at early phase SNe IIP and IIL are similar both in the UV and in the optical. Our analysis is consistent with the scenario that SNe IIP and IIL come from similar progenitors but with SN IIL progenitors having been stripped of their hydrogen envelope before explosion. While SNe IIL are on average more luminous than SNe IIP, we show that they both produce a comparable amount of nickel.

  3. On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Meikle, W. P. S.; Fassia, A.; Geballe, T.; Lundqvist, P.; Chugai, N. N.; Sollerman, J.

    2004-08-01

    We present late-time near-infrared (NIR) and optical observations of the Type IIn SN 1998S. The NIR photometry spans 333-1242 d after explosion, while the NIR and optical spectra cover 333-1191 and 305-1093 d, respectively. The NIR photometry extends to the M' band (4.7 μm), making SN 1998S only the second ever supernova for which such a long IR wavelength has been detected. The shape and evolution of the Hα and HeI 1.083-μm line profiles indicate a powerful interaction with a progenitor wind, as well as providing evidence of dust condensation within the ejecta. The latest optical spectrum suggests that the wind had been flowing for at least 430 yr. The intensity and rise of the HK continuum towards longer wavelengths together with the relatively bright L' and M' magnitudes show that the NIR emission was due to hot dust newly formed in the ejecta and/or pre-existing dust in the progenitor circumstellar medium (CSM). The NIR spectral energy distribution (SED) at about 1 yr is well described by a single-temperature blackbody spectrum at about 1200 K. The temperature declines over subsequent epochs. After ~2 yr, the blackbody matches are less successful, probably indicating an increasing range of temperatures in the emission regions. Fits to the SEDs achieved with blackbodies weighted with λ-1 or λ-2 emissivity are almost always less successful. Possible origins for the NIR emission are considered. Significant radioactive heating of ejecta dust is ruled out, as is shock/X-ray-precursor heating of CSM dust. More plausible sources are (a) an IR echo from CSM dust driven by the ultraviolet/optical peak luminosity, and (b) emission from newly-condensed dust which formed within a cool, dense shell produced by the ejecta shock/CSM interaction. We argue that the evidence favours the condensing dust hypothesis, although an IR echo is not ruled out. Within the condensing-dust scenario, the IR luminosity indicates the presence of at least 10-3 Msolar of dust in the ejecta

  4. Black hole winds II: Hyper-Eddington winds and feedback

    NASA Astrophysics Data System (ADS)

    King, Andrew; Muldrew, Stuart I.

    2016-01-01

    We show that black holes supplied with mass at hyper-Eddington rates drive outflows with mildly sub-relativistic velocities. These are ˜0.1-0.2c for Eddington accretion factors {dot{m}_acc}˜ 10-100, and ˜1500 km s-1 for {dot{m}_acc}˜ 10^4. Winds like this are seen in the X-ray spectra of ultraluminous sources (ULXs), strongly supporting the view that ULXs are stellar-mass compact binaries in hyper-Eddington accretion states. SS433 appears to be an extreme ULX system ({dot{m}_acc}˜ 10^4) viewed from outside the main X-ray emission cone. For less-extreme Eddington factors {dot{m}_acc}˜ 10-100 the photospheric temperatures of the winds are ˜100 eV, consistent with the picture that the ultraluminous supersoft sources (ULSs) are ULXs seen outside the medium-energy X-ray beam, unifying the ULX/ULS populations and SS433 (actually a ULS but with photospheric emission too soft to detect). For supermassive black holes (SMBHs), feedback from hyper-Eddington accretion is significantly more powerful than the usual near-Eddington (`UFO') case, and if realized in nature would imply M - σ masses noticeably smaller than observed. We suggest that the likely warping of the accretion disc in such cases may lead to much of the disc mass being expelled, severely reducing the incidence of such strong feedback. We show that hyper-Eddington feedback from bright ULXs can have major effects on their host galaxies. This is likely to have important consequences for the formation and survival of small galaxies.

  5. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  6. Twelve type II-P supernovae seen with the eyes of Spitzer

    NASA Astrophysics Data System (ADS)

    Szalai, T.; Vinkó, J.

    2013-01-01

    Context. Core-collapse supernovae (CC SNe), especially those of type II-plateau (II-P), are thought to be important contributors to cosmic dust production. The most obvious indicator of newly-formed and/or pre-existing dust is the time-dependent mid-infrared (MIR) excess coming from the environment of SNe. In the past few years several CC SNe were monitored by the Spitzer Space Telescope in the nebular phase, hundreds of days after explosion. On the other hand, only a few of these objects have been analyzed and published to date. Aims: Our goal was to collect publicly available, previously unpublished measurements on type II-P (or peculiar IIP) SNe from the Spitzer database. The most important aspect was to find SNe observed with the Infrared Array Camera (IRAC) on at least two epochs. The temporal changes of the observed fluxes may be indicative of the underlying supernova, while spectral energy distribution (SED) fitting to the fluxes in different IRAC channels may reveal the physical parameters of the mid-IR radiation, which is presumably caused by warm dust. Methods: The IRS spectra were extracted and calibrated with SPICE, while photometric SEDs were assembled using IRAF and MOPEX. Calculated SEDs from observed fluxes were fit with simple dust models to obtain basic information on the dust presumed as the source of MIR radiation. Results: We found twelve SNe that satisfied the criterion above, observed at late-time epochs (typically after +300 days). In three cases we could not identify any point source at the SN position on late-time IRAC images. We found two SNe, 2005ad and 2005af, which likely have newly formed dust in their environment, while in the other seven cases the observed MIR flux may originate from pre-existing circumstellar or interstellar dust. Our results support the previous observational conclusions that warm new dust in the environment of SNe contributes only marginally to the cosmic dust content.

  7. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD

    SciTech Connect

    De Jaeger, T.; González-Gaitán, S.; Galbany, L.; Hamuy, M.; Gutiérrez, C. P.; Kuncarayakti, H.; Anderson, J. P.; Phillips, M. M.; Campillay, A.; Castellón, S.; Hsiao, E. Y.; Morrell, N.; Stritzinger, M. D.; Contreras, C.; Bolt, L.; Burns, C. R.; Folatelli, G.; Krisciunas, K.; Krzeminski, W.; and others

    2015-12-20

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V − i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data.

  8. Amplification of magnetic fields in a primordial H II region and supernova

    NASA Astrophysics Data System (ADS)

    Koh, Daegene; Wise, John H.

    2016-10-01

    Magnetic fields permeate the Universe on all scales and play a key role during star formation. We study the evolution of magnetic fields around a massive metal-free (Population III) star at z ˜ 15 during the growth of its H II region and subsequent supernova explosion by conducting three cosmological magnetohydrodynamics simulations with radiation transport. Given the theoretical uncertainty and weak observational constraints of magnetic fields in the early universe, we initialize the simulations with identical initial conditions only varying the seed field strength. We find that magnetic fields grow as ρ2/3 during the gravitational collapse preceding star formation, as expected from ideal spherical collapse models. Massive Population III stars can expel a majority of the gas from the host halo through radiative feedback, and we find that the magnetic fields are not amplified above the spherical collapse scaling relation during this phase. However, afterwards when its supernova remnant can radiatively cool and fragment, the turbulent velocity field in and around the shell causes the magnetic field to be significantly amplified on average by ˜100 in the shell and up to 6 orders of magnitude behind the reverse shock. Within the shell, field strengths are on the order of a few nG at a number density of 1 cm-3. We show that this growth is primarily caused by small-scale dynamo action in the remnant. These strengthened fields will propagate into the first generations of galaxies, possibly affecting the nature of their star formation.

  9. On the association between core-collapse supernovae and H ii regions

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.

    2013-01-01

    Previous studies of the location of core-collapse supernovae (ccSNe) in their host galaxies have variously claimed an association with H ii regions; no association or an association only with hydrogen-deficient ccSNe. Here, we examine the immediate environments of 39 ccSNe whose positions are well known in nearby (≤15 Mpc), low-inclination (≤65°) hosts using mostly archival, continuum-subtracted Hα ground-based imaging. We find that 11 out of 29 hydrogen-rich ccSNe are spatially associated with H ii regions (38 ± 11 per cent), versus 7 out of 10 hydrogen-poor ccSNe (70 ± 26 per cent). Similar results from Anderson et al. led to an interpretation that the progenitors of Type Ib/c ccSNe are more massive than those of Type II ccSNe. Here, we quantify the luminosities of H ii region either coincident with or nearby to the ccSNe. Characteristic nebulae are long-lived (˜20 Myr) giant H ii regions rather than short-lived (˜4 Myr) isolated, compact H ii regions. Therefore, the absence of an H ii region from most Type II ccSNe merely reflects the longer lifetime of stars with ⪉12 M⊙ than giant H ii regions. Conversely, the association of an H ii region with most Type Ib/c ccSNe is due to the shorter lifetime of stars with >12 M⊙ stars than the duty cycle of giant H ii regions. Therefore, we conclude that the observed association between certain ccSNe and H ii provides only weak constraints upon their progenitor masses. Nevertheless, we do favour lower mass progenitors for two Type Ib/c ccSNe that lack associated nebular emission, a host cluster or a nearby giant H ii region. Finally, we also reconsider the association between long gamma-ray bursts and the peak continuum light from their (mostly) dwarf hosts, and conclude that this is suggestive of very high mass progenitors, in common with previous studies.

  10. Supernova frequency estimates

    SciTech Connect

    Tsvetkov, D.Y.

    1983-01-01

    Estimates of the frequency of type I and II supernovae occurring in galaxies of different types are derived from observational material acquired by the supernova patrol of the Shternberg Astronomical Institute.

  11. Contributions of type II and Ib/c supernovae to Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Sahijpal, Sandeep

    2014-06-01

    Type II and Ib/c supernovae (SNe II and Ib/c) have made major stellar nucleosynthetic contributions to the inventories of stable nuclides during chemical evolution of the Galaxy. A case study is performed here with the help of recently developed numerical simulations of Galactic chemical evolution in the solar neighborhood to understand the contributions of SNe II and Ib/c by comparing the stellar nucleosynthetic yields obtained by two leading groups in this field. These stellar nucleosynthetic yields differ in terms of their treatment of stellar evolution and nucleosynthesis. The formulation describing Galactic chemical evolution is developed with the recently revised solar metallicity of ~0.014. Furthermore, the recent nucleosynthetic yields of stellar models based on the revised solar metallicity are also used. The analysis suggests that it could be difficult to explain, in a self-consistent manner, the various features associated with the elemental evolutionary trends over Galactic timescales by any single adopted stellar nucleosynthetic model that incorporates SNe II and Ib/c.

  12. The Massive Progenitor of the Type II-linear Supernova 2009kr

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Li, Weidong; Miller, Adam A.; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Boden, Andrew F.; Kasliwal, Mansi M.; Vinkó, József; Cuillandre, Jean-Charles; Filippenko, Alexei V.; Steele, Thea N.; Bloom, Joshua S.; Griffith, Christopher V.; Kleiser, Io K. W.; Foley, Ryan J.

    2010-05-01

    We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (~26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M 0 V = -7.8 mag) yellow supergiant with initial mass ~18-24 M sun. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN. Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with

  13. Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Gal-Yam, A.; Armen, S.; Duggan, G.; Ergon, M.; Filippenko, A. V.; Fransson, C.; Hosseinzadeh, G.; Kasliwal, M. M.; Laher, R. R.; Leloudas, G.; Leonard, D. C.; Lunnan, R.; Masci, F. J.; Moon, D.-S.; Silverman, J. M.; Wozniak, P. R.

    2016-04-01

    Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (~84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims: We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments. Methods: Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected 56Ni mass, the explosion energy, and the ejecta mass. Results: We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected 56Ni mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R⊙ (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R⊙ (PTF09gpn) and 300 R⊙ (SN 2004em). Conclusions: We confirm that long-rising SNe II with light-curve shapes closely

  14. EARLY-TYPE HOST GALAXIES OF TYPE II AND Ib SUPERNOVAE

    SciTech Connect

    Suh, Hyewon; Jeong, Hyunjin; Yi, Sukyoung K.; Yoon, Sung-chul

    2011-04-01

    Recent studies find that some early-type galaxies host Type II or Ibc supernovae (SNe II, Ibc). This may imply recent star formation activities in these SNe host galaxies, but a massive star origin of the SNe Ib so far observed in early-type galaxies has been questioned because of their intrinsic faintness and unusually strong Ca lines shown in the nebular phase. To address the issue, we investigate the properties of early-type SNe host galaxies using the data with Galaxy Evolution Explorer (GALEX) ultraviolet photometry and the Sloan Digital Sky Survey optical data. Our sample includes eight SNe II and one peculiar SN Ib (SN 2000ds) host galaxies as well as 32 SN Ia host galaxies. The host galaxy of SN 2005cz, another peculiar SN Ib, is also analyzed using the GALEX data and the NASA/IPAC Extragalactic Database optical data. We find that the NUV-optical colors of SN II/Ib host galaxies are systematically bluer than those of SN Ia host galaxies, and some SN II/Ib host galaxies with NUV - r colors markedly bluer than the others exhibit strong radio emission. We perform a stellar population synthesis analysis and find a clear signature of recent star formation activities in most of the SN II/Ib host galaxies. Our results generally support the association of the SNe II/Ib hosted in early-type galaxies with core collapse of massive stars. We briefly discuss implications for the progenitors of the peculiar SNe Ib 2000ds and 2005cz.

  15. Asphericity, Interaction, and Dust in the Type II-P/II-L Supernova 2013EJ in Messier 74

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Johansson, Joel; Hu, Maokai; Fox, Ori D.; Wang, Lifan; Graham, Melissa L.; Filippenko, Alexei V.; Shivvers, Isaac

    2017-01-01

    SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multiepoch spectropolarimetry of SN 2013ej during the first 107 days and deep optical spectroscopy and ultraviolet through infrared photometry past ∼800 days. SN 2013ej exhibits the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy show that asymmetric CSM interaction is ongoing, and the morphology of broad Hα emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase. Finally, our latest space-based optical imaging confirms that the late interaction-powered light curve dropped below the stellar progenitor level, confirming the RSG star’s association with the explosion.

  16. Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Sollerman, J.; Leloudas, G.; Stritzinger, M. D.; Valenti, S.; Galbany, L.; Kessler, R.; Schneider, D. P.; Wheeler, J. C.

    2015-02-01

    Context. Type Ib/c supernovae (SNe Ib/c) have been investigated in several single-object studies; however, there is still a paucity of works concerning larger, homogeneous samples of these hydrogen-poor transients, in particular regarding the premaximum phase of their light curves. Aims: In this paper we present and analyze the early-time optical light curves (LCs, ugriz) of 20 SNe Ib/c from the Sloan Digital Sky Survey (SDSS) SN survey II, aiming to study their observational and physical properties, as well as to derive their progenitor parameters. Methods: High-cadence, multiband LCs are fitted with a functional model and the best-fit parameters are compared among the SN types. Bolometric LCs (BLCs) are constructed for the entire sample. We also computed the black-body (BB) temperature (TBB) and photospheric radius (Rph) evolution for each SN via BB fits on the spectral energy distributions. In addition, the bolometric properties are compared to both hydrodynamical and analytical model expectations. Results: Complementing our sample with literature data, we find that SNe Ic and Ic-BL (broad-line) have shorter rise times than those of SNe Ib and IIb. The decline rate parameter, Δm15, is similar among the different subtypes. SNe Ic appear brighter and bluer than SNe Ib, but this difference vanishes if we consider host galaxy extinction corrections based on colors. Templates for SN Ib/c LCs are presented. Our SNe have typical TBB of ~10 000 K at the peak and Rph of ~1015 cm. Analysis of the BLCs of SNe Ib and Ic gives typical ejecta masses Mej≈ 3.6-5.7 M⊙, energies EK≈ 1.5-1.7×1051 erg, and M(56Ni) ≈ 0.3 M⊙. Higher values for EK and M(56Ni) are estimated for SNe Ic-BL (Mej≈ 5.4 M⊙, EK≈ 10.7×1051 erg, M(56Ni) ≈ 1.1 M⊙). For the majority of SNe Ic and Ic-BL, we can put strong limits (<2-4 days) on the duration of the expected early-time plateau. Less stringent limits can be placed on the duration of the plateau for the sample of SNe Ib. In the

  17. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  18. The Type II supernovae 2006V and 2006au: two SN 1987A-like events

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Stritzinger, M. D.; Sollerman, J.; Phillips, M. M.; Anderson, J. P.; Ergon, M.; Folatelli, G.; Fransson, C.; Freedman, W.; Hamuy, M.; Morrell, N.; Pastorello, A.; Persson, S. E.; Gonzalez, S.

    2012-01-01

    Context. Supernova 1987A revealed that a blue supergiant (BSG) star can end its life as a core-collapse supernova (SN). SN 1987A and other similar objects exhibit properties that distinguish them from ordinary Type II Plateau (IIP) SNe, whose progenitors are believed to be red supergiants (RSGs). Similarities among 1987A-like events include a long rise to maximum, early luminosity fainter than that of normal Type IIP SNe, and radioactivity acting as the primary source powering the light curves. Aims: We present and analyze two SNe monitored by the Carnegie Supernova Project that are reminiscent of SN 1987A. Methods: Optical and near-infrared (NIR) light curves, and optical spectroscopy of SNe 2006V and 2006au are presented. These observations are compared to those of SN 1987A, and are used to estimate properties of their progenitors. Results: Both objects exhibit a slow rise to maximum and light curve evolution similar to that of SN 1987A. At the earliest epochs, SN 2006au also displays an initial dip which we interpret as the signature of the adiabatic cooling phase that ensues shock break-out. SNe 2006V and 2006au are both found to be bluer, hotter and brighter than SN 1987A. Spectra of SNe 2006V and 2006au are similar to those of SN 1987A and other normal Type II objects, although both consistently exhibit expansion velocities higher than SN 1987A. Semi-analytic models are fit to the UVOIR light curve of each object from which physical properties of the progenitors are estimated. This yields ejecta mass estimates of Mej ≈ 20 M⊙, explosion energies of E ≈ 2-3 × 1051 erg s-1, and progenitor radii of R ≈ 75-100 R⊙ for both SNe. Conclusions: The progenitors of SNe 2006V and 2006au were most likely BSGs with a larger explosion energy as compared to that of SN 1987A. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 076.A-0156). This paper includes data gathered with the 6

  19. SDSS-II Supernova survey. An analysis of the largest sample of type IA supernovae and correlations with host-galaxy spectral properties

    SciTech Connect

    Wolf, Rachel C.; D’Andrea, Chris B.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; Kessler, Rick; Jha, Saurabh W.; March, Marisa C.; Scolnic, Daniel M.; Fischer, Johanna-Laina; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.; Smith, Mathew

    2016-04-20

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HR). Our sample consists of 345 photometrically-classified or spectroscopicallyconfirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric hostgalaxy properties from the SDSS-SNS data release (Sako et al. 2014) such as host stellar mass and star-formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6σ significance of a non-zero linear slope. We also recover correlations between HR and hostgalaxy gas-phase metallicity and specific star-formation rate as they are reported in the literature. With our large dataset, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically-confirmed and photometrically-classified SNe Ia and comment on the significance of similar combined datasets for future surveys.

  20. The Sloan Digital Sky Survey-II: Photometry and Supernova Ia Light Curves from the 2005 Data

    SciTech Connect

    Holtzman, Jon A.; Marriner, John; Kessler, Richard; Sako, Masao; Dilday, Ben; Frieman, Joshua A.; Schneider, Donald P.; Bassett, Bruce; Becker, Andrew; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; /KICP, Chicago /Portsmouth U., ICG /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Rochester Inst. Tech. /KIPAC, Menlo Park /Portsmouth U., ICG /Tokyo U., Inst. Astron. /South African Astron. Observ. /Cape Town U. /Tokyo U., ICRR /KIPAC, Menlo Park

    2010-08-26

    We present ugriz light curves for 146 spectroscopically confirmed or spectroscopically probable Type Ia supernovae from the 2005 season of the SDSS-II Supernova survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that supernova brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.

  1. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    SciTech Connect

    Mosher, J.; Guy, J.; Kessler, R.; Astier, P.; Marriner, J.; Betoule, M.; Sako, M.; El-Hage, P.; Biswas, R.; Pain, R.; Kuhlmann, S.; Regnault, N.; Frieman, J. A.; Schneider, D. P.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  2. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  3. The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase

    NASA Astrophysics Data System (ADS)

    Terreran, G.; Jerkstrand, A.; Benetti, S.; Smartt, S. J.; Ochner, P.; Tomasella, L.; Howell, D. A.; Morales-Garoffolo, A.; Harutyunyan, A.; Kankare, E.; Arcavi, I.; Cappellaro, E.; Elias-Rosa, N.; Hosseinzadeh, G.; Kangas, T.; Pastorello, A.; Tartaglia, L.; Turatto, M.; Valenti, S.; Wiggins, P.; Yuan, F.

    2016-10-01

    We present multiband ultraviolet, optical, and near-infrared photometry, along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission lines of the high ionization species He II/N IV/C IV during the first 2-3 d after explosion, traces of a metal-rich circumstellar material (CSM) probably due to pre-explosion mass-loss events. These disappear by day 9 and the spectral evolution then continues matching that of normal Type II SNe. The post-maximum light curve declines at a rate typical of Type II-L class. The extensive photometric coverage tracks the drop from the photospheric stage and constrains the radioactive tail, with a steeper decline rate than that expected from the 56Co decay if γ-rays are fully trapped by the ejecta. We report the appearance of an unusual feature on the blue side of H α after 100 d, which evolves to appear as a flat spectral feature linking H α and the [O I] doublet. This may be due to interaction of the ejecta with a strongly asymmetric, and possibly bipolar CSM. Finally, we report two deep spectra at ˜190 and 340 d after explosion, the latter being arguably one of the latest spectra for a Type II-L SN. By modelling the spectral region around the [Ca II], we find a supersolar Ni/Fe production. The strength of the [O I] λλ6300,6363 doublet, compared with synthetic nebular spectra, suggests a progenitor with a zero-age main-sequence mass between 15 and 19 M⊙.

  4. Berkeley Supernova Ia Program - II. Initial analysis of spectra obtained near maximum brightness

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Kong, Jason J.; Filippenko, Alexei V.

    2012-09-01

    In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z < 0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20 d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. We investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences among the subclasses are investigated. Several ratios of pEW values are calculated and studied. The so-called Si II ratio, often used as a luminosity indicator, is found to be well correlated with the so-called SiFe ratio and anticorrelated with the analogous 'SSi ratio', confirming the results of previous studies. Furthermore, SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. We find that purely spectroscopic classification schemes are useful in identifying the most peculiar SNe Ia. However, in almost all spectral parameters investigated, the full sample of objects spans a nearly continuous range of values. Comparisons to previously published theoretical models of SNe Ia are made and we conclude with a brief discussion of how the measurements performed herein and the possible correlations presented will be important for future SN surveys.

  5. A Hubble Diagram from Type II Supernovae Based Solely on Photometry: The Photometric Color Method

    NASA Astrophysics Data System (ADS)

    de Jaeger, T.; González-Gaitán, S.; Anderson, J. P.; Galbany, L.; Hamuy, M.; Phillips, M. M.; Stritzinger, M. D.; Gutiérrez, C. P.; Bolt, L.; Burns, C. R.; Campillay, A.; Castellón, S.; Contreras, C.; Folatelli, G.; Freedman, W. L.; Hsiao, E. Y.; Krisciunas, K.; Krzeminski, W.; Kuncarayakti, H.; Morrell, N.; Olivares E., F.; Persson, S. E.; Suntzeff, N.

    2015-12-01

    We present a Hubble diagram of SNe II using corrected magnitudes derived only from photometry, with no input of spectral information. We use a data set from the Carnegie Supernovae Project I for which optical and near-infrared light curves were obtained. The apparent magnitude is corrected by two observables, one corresponding to the slope of the plateau in the V band and the second a color term. We obtain a dispersion of 0.44 mag using a combination of the (V - i) color and the r band and we are able to reduce the dispersion to 0.39 mag using our golden sample. A comparison of our photometric color method (PCM) with the standardized candle method (SCM) is also performed. The dispersion obtained for the SCM (which uses both photometric and spectroscopic information) is 0.29 mag, which compares with 0.43 mag from the PCM for the same SN sample. The construction of a photometric Hubble diagram is of high importance in the coming era of large photometric wide-field surveys, which will increase the detection rate of supernovae by orders of magnitude. Such numbers will prohibit spectroscopic follow up in the vast majority of cases, and hence methods must be deployed which can proceed using solely photometric data. This paper includes data gathered with the 6.5 m Magellan Telescopes, with the du Pont and Swope telescopes located at Las Campanas Observatory, Chile, and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2008B-Q-56). Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Programmes 076.A-0156,078.D-0048, 080.A-0516, and 082.A-0526).

  6. Persistent C II absorption in the normal type Ia supernova 2002fk

    SciTech Connect

    Cartier, Régis; Zelaya, Paula; Hamuy, Mario; Maza, José; González, Luis; Huerta, Leonor; Pignata, Giuliano; Förster, Francisco; Folatelli, Gaston; Phillips, Mark M.; Morrell, Nidia; Contreras, Carlos; Roth, Miguel; González, Sergio; Clocchiatti, Alejandro; Coppi, Paolo; Koviak, Kathleen

    2014-07-01

    We present well-sampled UBVRIJHK photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from –4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at 11,000 km s{sup –1} and persisting until 8 days past maximum light with a velocity of ∼9000 km s{sup –1}. SN 2002fk is characterized by a small velocity gradient of v-dot {sub Si} {sub II}=26 km s{sup –1} day{sup –1}, possibly caused by an off-center explosion with the ignition region oriented toward the observer. The connection between the viewing angle of an off-center explosion and the presence of C II in the early-time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first H {sub 0} value based on near-infrared (near-IR) measurements of a Type Ia supernova (SN) between 63.0 ± 0.8 (±3.4 systematic) and 66.7 ± 1.0 (±3.5 systematic) km s{sup –1} Mpc{sup –1}, depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6%-9%) H {sub 0} values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of H {sub 0}.

  7. Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants

    NASA Astrophysics Data System (ADS)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-05-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate further sputtering in the inter-clump medium gas once the clumps have been disrupted by the reverse shock. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also explored. We study oxygen-rich clumps that describe the oxygen core of the ejecta, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non-thermal sputtering within clumps and thermal sputtering in the inter-clump medium gas are studied. We find that non-thermal sputtering in the clumps is important for all supernova types and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density, the grain type and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive in the remnant. Our derived masses of currently processed silicate, alumina and carbon grains agree well with the values derived from the observations of warm dust, and seem to indicate that the dust is currently being processed within clumps by non-thermal sputtering. Out of the ~ 0.03M⊙ of dust formed in the ejecta, between 30% and 60% of this mass is present today in Cas A, and only 6% to 11% of the initial mass will survive the remnant phase. Grains formed in Type II-P supernovae are

  8. THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66

    SciTech Connect

    Elias-Rosa, Nancy; Van Dyk, Schuyler D.; Mauerhan, Jon C.; Li, Weidong; Silverman, Jeffrey M.; Ganeshalingam, Mohan; Filippenko, Alexei V.; Smith, Nathan; Foley, Ryan J.; Berger, Edo; Jha, Saurabh; Beckman, John E.; Cuillandre, Jean-Charles

    2011-11-20

    We present early- and late-time photometric and spectroscopic observations of supernova (SN) 2009hd in the nearby spiral galaxy NGC 3627 (M66). This SN is one of the closest to us in recent years and provides an uncommon opportunity to observe and study the nature of SNe. However, the object was heavily obscured by dust, rendering it unusually faint in the optical given its proximity. We find that the observed properties of SN 2009hd support its classification as a possible Type II-Linear SN (SN II-L), a relatively rare subclass of core-collapse SNe. High-precision relative astrometry has been employed to attempt to identify an SN progenitor candidate, based on a pixel-by-pixel comparison between Hubble Space Telescope (HST) F555W and F814W images of the SN site prior to explosion and at late times. A progenitor candidate is identified in the F814W images only; this object is undetected in F555W. Significant uncertainty exists in the astrometry, such that we cannot definitively identify this object as the SN progenitor. Via insertion of artificial stars into the pre-SN HST images, we are able to constrain the progenitor's properties to those of a possible supergiant, with intrinsic absolute magnitude M {sup 0}{sub F555W} {approx}> -7.6 mag and intrinsic color (V - I){sup 0} {approx}> 0.99 mag. The magnitude and color limits are consistent with a luminous red supergiant (RSG); however, they also allow for the possibility that the star could have been more yellow than red. From a comparison with theoretical massive-star evolutionary tracks which include rotation and pulsationally enhanced mass loss, we can place a conservative upper limit on the initial mass for the progenitor of M{sub ini} {approx}< 20 M{sub Sun }. If the actual mass of the progenitor is near the upper range allowed by our derived mass limit, then it would be consistent with that for the identified progenitors of the SN II-L 2009kr and the high-luminosity SN II-Plateau (II-P) 2008cn. The progenitors

  9. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  10. Luminous supernovae.

    PubMed

    Gal-Yam, Avishay

    2012-08-24

    Supernovae, the luminous explosions of stars, have been observed since antiquity. However, various examples of superluminous supernovae (SLSNe; luminosities >7 × 10(43) ergs per second) have only recently been documented. From the accumulated evidence, SLSNe can be classified as radioactively powered (SLSN-R), hydrogen-rich (SLSN-II), and hydrogen-poor (SLSN-I, the most luminous class). The SLSN-II and SLSN-I classes are more common, whereas the SLSN-R class is better understood. The physical origins of the extreme luminosity emitted by SLSNe are a focus of current research.

  11. A study of the low-luminosity Type II-Plateau supernova 2008bk

    NASA Astrophysics Data System (ADS)

    Lisakov, S. M.; Dessart, Luc; Hillier, D. John; Waldman, Roni; Livne, Eli

    2017-04-01

    Supernova (SN) 2008bk is a well-observed low-luminosity Type II event visually associated with a low-mass red-supergiant progenitor. To model SN 2008bk, we evolve a 12 M⊙ star from the main sequence until core collapse, when it has a total mass of 9.88 M⊙, a He-core mass of 3.22 M⊙ and a radius of 502 R⊙. We then artificially trigger an explosion that produces 8.29 M⊙ of ejecta with a total energy of 2.5 × 1050 erg and ∼0.009 M⊙ of 56Ni. We model the subsequent evolution of the ejecta with non-local thermodynamic equilibrium time-dependent radiative transfer. Although somewhat too luminous and energetic, this model reproduces satisfactorily the multiband light curves and multi-epoch spectra of SN 2008bk, confirming the suitability of a low-mass massive star progenitor. As in other low-luminosity SNe II, the structured Hα profile at the end of the plateau phase is probably caused by Ba II 6496.9 Å rather than asphericity. We discuss the sensitivity of our results to changes in progenitor radius and mass, as well as chemical mixing. A 15 per cent increase in progenitor radius causes a 15 per cent increase in luminosity and a 0.2 mag V-band brightening of the plateau but leaves its length unaffected. An increase in ejecta mass by 10 per cent lengthens the plateau by ∼10 d. Chemical mixing introduces slight changes to the bolometric light curve, limited to the end of the plateau, but has a large impact on colours and spectra at nebular times.

  12. Type II supernova energetics and comparison of light curves to shock-cooling models

    DOE PAGES

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; ...

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, withmore » $$\\gt 5$$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 $${M}_{\\odot }$$), and have a mean energy per unit mass of $$\\langle E/M\\rangle =0.85\\times {10}^{51}$$ erg/(10 $${M}_{\\odot }$$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ($${\\rm{\\Delta }}{m}_{15}$$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.« less

  13. Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    NASA Astrophysics Data System (ADS)

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of < E/M> =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  14. Type II supernova energetics and comparison of light curves to shock-cooling models

    SciTech Connect

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Wozniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y. -C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-16

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with $\\gt 5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1–3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2–20) × 1051 erg/(10 ${M}_{\\odot }$), and have a mean energy per unit mass of $\\langle E/M\\rangle =0.85\\times {10}^{51}$ erg/(10 ${M}_{\\odot }$), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate (${\\rm{\\Delta }}{m}_{15}$), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. Lastly, this limits the possible power sources for such events.

  15. Studies of Pulsar Wind Nebula in the Supernova Remnant IC443: Preliminary Observations from the Chandra Data

    NASA Astrophysics Data System (ADS)

    Ariyibi, E. A.

    2009-10-01

    Preliminary observations of the Chandra data were made in order to study the Pulsar Wind Nebula in the Supernova Remnant IC443. The Chandra X-ray observatory short observation on IC443 was centred on 13 chip ACIS. The CIAO analytical programme was used for the data analysis. The data were separated into point source, with an energy range of 2.1 to 10.0 keV, and diffuse source with energy less than 2.1 Kev. The resulting spectra were fitted to a power law. The observed density numbers and the normalised counts of both the point source and the diffuse source were used to describe the X-ray source. Afin d'étudier la "Pulsar wind Nebula" dans le reste de la Supernova IC 443, nous avons mené une exploitation préliminaire des observations provenant du satellite spatiale Chandra. L'observation brêve de IC 443, par Chandra fut centrée sur les composantes du spectromètre identifiées par la séquence 13. Le programme informatique CIAO fut utilisé pour l'analyse des données. Les données furent groupées en sources ponctuelles, chacune ayant des énergies allant de 2.1 a 10.0 kev ; et en sources diffuses chacune avec des énergies de moins de 2.1 kev. Les spectres obtenus furent interpolés à l'aide de fonction puissance. La densité de flux ainsi que le décompte des particules induites au détecteur par le rayonnement provenant des sources ponctuelles et diffuses furent utilisés pour décrire la source de rayon-X.

  16. Photometric and polarimetric observations of fast declining Type II supernovae 2013hj and 2014G

    NASA Astrophysics Data System (ADS)

    Bose, Subhash; Kumar, Brijesh; Misra, Kuntal; Matsumoto, Katsura; Kumar, Brajesh; Singh, Mridweeka; Fukushima, Daiki; Kawabata, Miho

    2016-01-01

    We present broad-band photometric and polarimetric observations of two Type II supernovae (SNe) 2013hj and 2014G. SN 2014G is a spectroscopically classified Type IIL event, which we also confirm photometrically because its light curve shows characteristic features - a plateau slope of 2.55 mag (100 d)-1 in the V band and a duration of ˜77 d - of a generic Type IIL SN. However, SN 2013hj also shows a high plateau decline rate of 1.5 mag (100 d)-1 in the V band, similar to SNe IIL, but marginally lower than SNe IIL template light curves. Our high cadence photometric observations of SNe 2013hj and 2014G enables us to cover all characteristic phases up to the radioactive tail of optical light curves. Broad-band polarimetric observations reveal some polarization in SN 2013hj with subtle enhancement as the SN evolves towards the plateau end. However, the polarization angle remains constant throughout the evolution. This characteristic is consistent with the idea that the evolving SN with recombining hydrogen envelope is slowly revealing a more asymmetric central region of explosion. Modelling of the bolometric light curve yields a progenitor mass of ˜11 M⊙ with a radius of ˜700 R⊙ for SN 2013hj, while for the SN 2014G model estimated progenitor mass is ˜9 M⊙ with a radius of ˜630 R⊙, both having a typical energy budget of ˜2 × 1051 erg.

  17. Feedback in Clouds II: UV photoionization and the first supernova in a massive cloud

    NASA Astrophysics Data System (ADS)

    Geen, Sam; Hennebelle, Patrick; Tremblin, Pascal; Rosdahl, Joakim

    2016-12-01

    Molecular cloud structure is regulated by stellar feedback in various forms. Two of the most important feedback processes are UV photoionization and supernovae from massive stars. However, the precise response of the cloud to these processes, and the interaction between them, remains an open question. In particular, we wish to know under which conditions the cloud can be dispersed by feedback, which, in turn, can give us hints as to how feedback regulates the star formation inside the cloud. We perform a suite of radiative magnetohydrodynamic simulations of a 105 solar mass cloud with embedded sources of ionizing radiation and supernovae, including multiple supernovae and a hypernova model. A UV source corresponding to 10 per cent of the mass of the cloud is required to disperse the cloud, suggesting that the star formation efficiency should be of the order of 10 per cent. A single supernova is unable to significantly affect the evolution of the cloud. However, energetic hypernovae and multiple supernovae are able to add significant quantities of momentum to the cloud, approximately 1043 g cm s-1 of momentum per 1051 erg of supernova energy. We argue that supernovae alone are unable to regulate star formation in molecular clouds. We stress the importance of ram pressure from turbulence in regulating feedback in molecular clouds.

  18. Setting the stage for circumstellar interaction in core-collapse supernovae. II. Wave-driven mass loss in supernova progenitors

    SciTech Connect

    Shiode, Joshua H.; Quataert, Eliot E-mail: eliot@berkeley.edu

    2014-01-01

    Supernovae (SNe) powered by interaction with circumstellar material provide evidence for intense stellar mass loss during the final years before core collapse. We have argued that during and after core neon burning, internal gravity waves excited by core convection can tap into the core fusion power and transport a super-Eddington energy flux out to the stellar envelope, potentially unbinding ∼1 solar mass of material. In this work, we explore the internal conditions of SN progenitors using the MESA one-dimensional stellar evolution code in search of those most susceptible to wave-driven mass loss. We focus on simple, order of magnitude considerations applicable to a wide range of progenitors. Wave-driven mass loss during core neon and oxygen fusion happens preferentially in either lower mass (∼20 solar mass zero-age main sequence) stars or massive, sub-solar metallicity stars. Roughly 20% of the SN progenitors we survey can excite 10{sup 46-48} erg of energy in waves that can potentially drive mass loss within a few months to a decade of core collapse. This energy can generate circumstellar environments with 10{sup –3}-1 solar masses reaching 100 AU before explosion. We predict a correlation between the energy associated with pre-SN mass ejection and the time to core collapse, with the most intense mass loss preferentially occurring closer to core collapse. During silicon burning, wave energy may inflate 10{sup –3}-1 solar masses of the envelope to 10-100 s of solar radii. This suggests that some nominally compact SN progenitors (Type Ibc progenitors) will have a significantly different SN shock breakout signature than traditionally assumed.

  19. VizieR Online Data Catalog: Spectra of 5 Type II supernovae (Inserra+, 2013)

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Pastorello, A.; Turatto, M.; Pumo, M. L.; Benetti, S.; Cappellaro, E.; Botticella, M. T.; Bufano, F.; Elias-Rosa, N.; Harutyunyan, A.; Taubenberger, S.; Valenti, S.; Zampieri, L.

    Core-collapse Supernovae (CC-SNe) descend from progenitors more massive than about 8M⊙. Because of the young age of the progenitors, the ejecta may eventually interact with the circumstellar medium (CSM) via highly energetic processes detectable in the radio, X-ray, ultraviolet (UV) and, sometimes, in the optical domains. In this paper we present ultraviolet, optical and near infrared observations of five type II SNe, namely SNe 2009dd, 2007pk, 2010aj, 1995ad, and 1996W. Together with few other SNe they form a group of moderately luminous type II events. We investigate the photometric similarities and differences among these bright objects. We also attempt to characterise them by analysing the spectral evolutions, in order to find some traces of CSM-ejecta interaction. We collected photometry and spectroscopy with several telescopes in order to construct well-sampled light curves and spectral evolutions from the photospheric to the nebular phases. Both photometry and spectroscopy indicate a degree of heterogeneity in this sample. Modelling the data of SNe 2009dd, 2010aj and 1995ad allows us to constrain the explosion parameters and the properties of the progenitor stars. The light curves have luminous peak magnitudes (-16.95II SN. Modelling the observations of SNe 2009dd, 2010aj and 1995ad with radiation hydrodynamics codes, we infer kinetic plus thermal energies of about 0.2-0.5 foe, initial radii of 2-5x1013cm and ejected masses of ~5.0-9.5M⊙. These values suggest moderate-mass, super-asymptotic giant branch (SAGB) or

  20. The Sloan Digital Sky Survey-II Supernova Survey:Search Algorithm and Follow-up Observations

    SciTech Connect

    Sako, Masao; Bassett, Bruce; Becker, Andrew; Cinabro, David; DeJongh, Don Frederic; Depoy, D.L.; Doi, Mamoru; Garnavich, Peter M.; Craig, Hogan, J.; Holtzman, Jon; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Nichol, Robert C.; Prieto, Jose Luis; Richmond, Michael W.; Schneider, Donald P.; Smith, Mathew; SubbaRao, Mark; /Chicago U. /Tokyo U. /Tokyo U. /South African Astron. Observ. /Tokyo U. /Apache Point Observ. /Seoul Natl. U. /Apache Point Observ. /Apache Point Observ. /Tokyo U. /Seoul Natl. U. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ. /Apache Point Observ.

    2007-09-14

    The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

  1. A search for supernova remnants in NGC 6946 using the [Fe II] 1.64 μm line

    SciTech Connect

    Bruursema, Justice; Meixner, Margaret; Long, Knox S.; Otsuka, Masaaki

    2014-09-01

    Shock models indicate and observations show that in the infrared (IR), supernova remnants (SNRs) emit strongly in [Fe II] at 1.64 μm. Here, we report the results of a search for SNRs in NGC 6946 relying on [Fe II] 1.64 μm line emission, where we employed an adjacent [Fe II]{sub Off} filter to accurately assess the local continuum levels. For this study, we used the WIYN High Resolution Infrared Camera on the WIYN 3.5 m telescope to image NGC 6946 in broadbands J and H and narrowbands [Fe II], [Fe II]{sub Off}, Paβ, and Paβ{sub Off}. From our search, we have identified 48 SNR candidates (SNRcs), 6 of which are coincident with sources found in prior radio, optical, and/or X-ray studies. The measured [Fe II] fluxes of our SNRcs range from 1.5 × 10{sup –16} to 4.2 × 10{sup –15} erg s{sup –1} cm{sup –2} and are among the highest of previously published extragalactic SNR [Fe II] fluxes. All of the candidates now need to be confirmed spectroscopically. However, the fact that we detect as many objects as we did suggests that [Fe II] can be used as an effective search tool to find extragalactic SNRs.

  2. The hydrodynamics of clouds overtaken by supernova remnants. II - Attrition shocks, condensation and ejection of clouds

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Tenorio-Tagle, G.

    1987-04-01

    Hydrodynamical events resulting from interactions of supernova remnants with dense interstellar cloudlets are investigated by means of high-resolution, two dimensional modelling. Three different evolutionary paths of a cloudlet are identified, all of which eventually lead to its strong deformation and expulsion from the remnant. The main factors determining the fate of a cloudlet are the speed and geometry of transmitted and secondary ("attrition") shocks propagating through it. None of the performed calculations leads to structures which could clearly be related to filaments typical of supernova remnants.

  3. LARGE-AREA [Fe II] LINE MAPPING OF THE SUPERNOVA REMNANT IC 443 WITH THE IRSF/SIRIUS

    SciTech Connect

    Kokusho, Takuma; Nagayama, Takahiro; Kaneda, Hidehiro; Ishihara, Daisuke; Lee, Ho-Gyu; Onaka, Takashi

    2013-05-01

    We present the results of near-infrared (near-IR) [Fe II] line mapping of the supernova remnant IC 443 with IRSF/SIRIUS, using the two narrow-band filters tuned for the [Fe II] 1.257 {mu}m and [Fe II] 1.644 {mu}m lines. Covering a large area of 30' Multiplication-Sign 35', our observations reveal that [Fe II] filamentary structures exist all over the remnant, not only in an ionic shock shell, but also in a molecular shock shell and a central region inside the shells. With the two [Fe II] lines, we performed corrections for dust extinction to derive the intrinsic line intensities. We also obtained the intensities of thermal emission from the warm dust associated with IC 443, using the far- and mid-IR images taken with AKARI and Spitzer, respectively. As a result, we find that the [Fe II] line emission relative to the dust emission notably enhances in the inner central region. We discuss causes of the enhanced [Fe II] line emission, estimating the Fe{sup +} and dust masses.

  4. Supernovae explosions in the Large Magellanic Cloud drive massive winds toward the Milky Way

    NASA Astrophysics Data System (ADS)

    Ciampa, Drew A.; Barger, Kat; Horn, Madeline; Hernandez, Michael; Haffner, L. Matthew; Lehner, Nicolas; Howk, J. Christopher

    2017-01-01

    We present H-alpha mapped observations of Large Magellanic Cloud (LMC) intermediate- and high-velocity clouds. The intermediate-velocity cloud represents a present-day galactic wind while the high-velocity cloud may trace a remnant of a past wind from 300 Myr ago. Previous absorption-line studies detected these winds in front of the LMC, but were unable to confirm that these clouds extend off the LMC. Using the Wisconsin H-alpha Mapper, we mapped the H-alpha emission of the near side LMC cloud population. This enabled us, for the first time, to determine the extent, morphology, and kinematics of these clouds. The previous work by Lehner et al. (2009) and Barger et al. (2016) find that these clouds are roughly 10 million solar masses each; our observations show that these clouds contain substantially more mass than previous estimates. This ejected material is falling toward the Milky Way and may aid in replenishing our star formation reservoir.

  5. Neutrino transport in type II supernovae: Boltzmann solver vs. Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yamada, Shoichi; Janka, Hans-Thomas; Suzuki, Hideyuki

    1999-04-01

    We have coded a Boltzmann solver based on a finite difference scheme (S_N method) aiming at calculations of neutrino transport in type II supernovae. Close comparison between the Boltzmann solver and a Monte Carlo transport code has been made for realistic atmospheres of post bounce core models under the assumption of a static background. We have also investigated in detail the dependence of the results on the numbers of radial, angular, and energy grid points and the way to discretize the spatial advection term which is used in the Boltzmann solver. A general relativistic calculation has been done for one of the models. We find good overall agreement between the two methods. This gives credibility to both methods which are based on completely different formulations. In particular, the number and energy fluxes and the mean energies of the neutrinos show remarkably good agreement, because these quantities are determined in a region where the angular distribution of the neutrinos is nearly isotropic and they are essentially frozen in later on. On the other hand, because of a relatively small number of angular grid points (which is inevitable due to limitations of the computation time) the Boltzmann solver tends to slightly underestimate the flux factor and the Eddington factor outside the (mean) ``neutrinosphere'' where the angular distribution of the neutrinos becomes highly anisotropic. As a result, the neutrino number (and energy) density is somewhat overestimated in this region. This fact suggests that the Boltzmann solver should be applied to calculations of the neutrino heating in the hot-bubble region with some caution because there might be a tendency to overestimate the energy deposition rate in disadvantageous situations. A comparison shows that this trend is opposite to the results obtained with a multi-group flux-limited diffusion approximation of neutrino transport. Employing three different flux limiters, we find that all of them lead to a significant

  6. LINE IDENTIFICATIONS OF TYPE I SUPERNOVAE: ON THE DETECTION OF Si II FOR THESE HYDROGEN-POOR EVENTS

    SciTech Connect

    Parrent, J. T.; Milisavljevic, D.; Soderberg, A. M.; Parthasarathy, M.

    2016-03-20

    Here we revisit line identifications of type I supernovae (SNe I) and highlight trace amounts of unburned hydrogen as an important free parameter for the composition of the progenitor. Most one-dimensional stripped-envelope models of supernovae indicate that observed features near 6000–6400 Å in type I spectra are due to more than Si ii λ6355. However, while an interpretation of conspicuous Si ii λ6355 can approximate 6150 Å absorption features for all SNe Ia during the first month of free expansion, similar identifications applied to 6250 Å features of SNe Ib and Ic have not been as successful. When the corresponding synthetic spectra are compared with high-quality timeseries observations, the computed spectra are frequently too blue in wavelength. Some improvement can be achieved with Fe ii lines that contribute redward of 6150 Å; however, the computed spectra either remain too blue or the spectrum only reaches a fair agreement when the rise-time to peak brightness of the model conflicts with observations by a factor of two. This degree of disagreement brings into question the proposed explosion scenario. Similarly, a detection of strong Si ii λ6355 in the spectra of broadlined Ic and super-luminous events of type I/R is less convincing despite numerous model spectra used to show otherwise. Alternatively, we suggest 6000–6400 Å features are possibly influenced by either trace amounts of hydrogen or blueshifted absorption and emission in Hα, the latter being an effect which is frequently observed in the spectra of hydrogen-rich, SNe II.

  7. The Young Core-Collapse Supernova Remnant G11.2-0.3: An Asymmetric Circumstellar Medium and a Variable Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Moseby, A.; Reynolds, S. P.

    2014-01-01

    G11.2-0.3 is a young supernova remnant (SNR) that has been suggested to be associated with a historical supernova of 386 AD. In addition to a bright radio and X-ray shell, it contains a pulsar wind nebula (PWN) and a 65 ms pulsar. We present first results from new deep (about 400 ks in duration) Chandra observations from 2013 May and September. Ahead of the main shell, there are a number of outlying X-ray protrusions surrounded by bow shocks, presumably produced by dense ejecta knots. Pronounced spectral variations are seen in thermal X-ray spectra of the main shell, indicating the presence of shocks with a wide range in shock speeds and large spatial variations in intervening absorption. A band of soft X-ray emission is clearly seen at the remnant's center. We interpret this band as a result of the interaction of supernova ejecta with the strongly asymmetric wind produced by a red supergiant SN progenitor shortly before its explosion. We study interstellar absorption in the central region of the remnant, finding high absorption everywhere. This rules out the association of G11.2-0.3 with SN 386. The PWN is dominated by a bright "jet" whose spatial morphology is markedly different between our May and September observations.

  8. Spectroscopic Classification of SN 2017auu as a Young Type II Supernova

    NASA Astrophysics Data System (ADS)

    Zhang, Jujia; Lun, Baoli; Xu, Zhijian; Li, Wenxiong; Wang, Xiaofeng; Li, Bin; Zhao, Haibin; Wang, Lifan; Tan, Hanjie; Rui, Liming; Yang, Zesheng

    2017-02-01

    We obtained an optical spectrum (range 340-860 nm) of SN 2017auu (=PTSS-17fhy),discovered by the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/), on UT Feb.16.5 2017 with the 2.4 m telescope (LJT + YFOSC) at LiJiang Gaomeigu Observatory of Yunnan Observatories (YNAO).

  9. ASASSN-17bw is a Type II Supernova in SBS 1657+505

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Kiyota, S.; Post, R. S.; Klusmeyer, J.; Holoien, T. W.-S.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Shields, J.; Thompson, T. A.; Shappee, B. J.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Fernandez, J. M.; Krannich, G.; Masi, G.

    2017-02-01

    The transient source ASASSN-17bw (AT 2017zu) in the galaxy SBS 1657+505 was discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii.

  10. The infrared echo of Type II supernovae with circumstellar dust shells. II - A probe into the presupernova evolution of the progenitor star

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1985-01-01

    This paper studies the spectral appearance and evolution of the infrared light curve, also referred to as the infrared echo, of Type II supernovae embedded in carbon- or oxygen-rich circumstellar dust shells. The distinct spectral signature of the echo and its temporal evolution can be used to estimate the mass of the shell and identify the composition of the dust. Since the shell mass and dust composition are determined by the combined effect of stellar mass loss and the dredging of newly synthesized heavy elements to the stellar surface, observations of the infrared echo may provide useful clues to the presupernova evolution of the progenitor star.

  11. VizieR Online Data Catalog: Berkeley supernova Ia program. II. (Silverman+, 2012)

    NASA Astrophysics Data System (ADS)

    Silverman, J. M.; Kong, J. J.; Filippenko, A. V.

    2013-08-01

    In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z<0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. (J/MNRAS/425/1789). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. (10 data files).

  12. Critical study of type II supernovae: equations of state and general relativity

    SciTech Connect

    Kahana, S.

    1986-01-01

    The relevance of relativistic gravitation and of the properties of nuclear matter at high density to supernova explosions is examined in detail. The existing empirical knowledge on the nuclear equation of state at densities greater than saturation, extracted from analysis of heavy ion collisions and from the breathing mode in heavy nuclei, is also considered. Particulars of the prompt explosions recently obtained theoretically by Baron, Cooperstein, and Kahana are presented. 40 refs., 9 figs., 3 tabs.

  13. THE OUTER SHOCK OF THE OXYGEN-RICH SUPERNOVA REMNANT G292.0+1.8: EVIDENCE FOR THE INTERACTION WITH THE STELLAR WINDS FROM ITS MASSIVE PROGENITOR

    SciTech Connect

    Lee, Jae-Joon; Park, Sangwook; Burrows, David N.; Hughes, John P.; Slane, Patrick O.; Gaensler, B. M.; Ghavamian, Parviz

    2010-03-10

    We study the outer-shock structure of the oxygen-rich supernova remnant G292.0+1.8 using a deep observation with the Chandra X-ray Observatory. We measure radial variations of the electron temperature and emission measure that we identify as the outer shock propagating into a medium with a radially decreasing density profile. The inferred ambient density structure is consistent with models for the circumstellar wind of a massive progenitor star rather than for a uniform interstellar medium. The estimated wind density (n{sub H} = 0.1-0.3 cm{sup -3}) at the current outer radius ({approx} 7.7 pc) of the remnant is consistent with a slow wind from a red supergiant (RSG) star. The total mass of the wind is estimated to be {approx}15-40 M{sub sun} (depending on the estimated density range), assuming that the wind extended down to near the surface of the progenitor. The overall kinematics of G292.0+1.8 are consistent with the remnant expanding through the RSG wind.

  14. First supernova companion star found

    NASA Astrophysics Data System (ADS)

    2004-01-01

    ). These two mighty galaxies in the Plough (Ursa Major) belong to some of the most famous and beloved galaxies known to amateur astronomers. This may be one of the reasons that Supernova 1993J was discovered by the Spanish amateur astronomer Francisco Garcia Diaz and not a professional astronomer. The violent star-forming activity in the neighbouring Messier 82 gives rise to a strong galactic wind that is spewing knotty filaments of hydrogen and nitrogen gas (seen in red) out of its centre. Supernovae are some of the most significant sources of chemical elements in the Universe, and they are at the heart of our understanding of the evolution of galaxies. Supernovae are some of the most violent events in the Universe. For many years astronomers have thought that they occur in either solitary massive stars (Type II supernovae) or in a binary system where the companion star plays an important role (Type I supernovae). However no one has been able to observe any such companion star. It has even been speculated that the companion stars might not survive the actual explosion... The second brightest supernova discovered in modern times, SN 1993J, was found in the beautiful spiral galaxy M81 on 28 March 1993. From archival images of this galaxy taken before the explosion, a red supergiant was identified as the mother star in 1993 - only the second time astronomers have actually seen the progenitor of a supernova explosion (the first was SN 1987A, the supernova that exploded in 1987 in our neighbouring galaxy, the Large Magellanic Cloud). Initially rather ordinary, SN 1993J began to puzzle astronomers as its ejecta seemed too rich in the chemical element helium and instead of fading normally it showed a bizarre sharp increase in brightness. The astronomers realised that a normal red supergiant alone could not have given rise to such a weird supernova. It was suggested that the red supergiant orbited a companion star that had shredded its outer layers just before the explosion. Ten

  15. Supernovae and mass extinctions

    NASA Technical Reports Server (NTRS)

    Vandenbergh, S.

    1994-01-01

    Shklovsky and others have suggested that some of the major extinctions in the geological record might have been triggered by explosions of nearby supernovae. The frequency of such extinction events will depend on the galactic supernova frequency and on the distance up to which a supernova explosion will produce lethal effects upon terrestrial life. In the present note it will be assumed that a killer supernova has to occur so close to Earth that it will be embedded in a young, active, supernova remnant. Such young remnants typically have radii approximately less than 3 pc (1 x 10(exp 19) cm). Larger (more pessimistic?) killer radii have been adopted by Ruderman, Romig, and by Ellis and Schramm. From observations of historical supernovae, van den Bergh finds that core-collapse (types Ib and II) supernovae occur within 4 kpc of the Sun at a rate of 0.2 plus or minus 0.1 per century. Adopting a layer thickness of 0.3 kpc for the galacitc disk, this corresponds to a rate of approximately 1.3 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). Including supernovae of type Ia will increase the total supernovae rate to approximately 1.5 x 10(exp -4) supernovae pc(exp -3) g.y.(exp -1). For a lethal radius of R pc the rate of killer events will therefore be 1.7 (R/3)(exp 3) x 10(exp -2) supernovae per g.y. However, a frequency of a few extinctions per g.y. is required to account for the extinctions observed during the phanerozoic. With R (extinction) approximately 3 pc, the galactic supernova frequency is therefore too low by 2 orders of magnitude to account for the major extinctions in the geological record.

  16. Accurate weak lensing of standard candles. II. Measuring σ8 with supernovae

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Marra, Valerio; Amendola, Luca

    2014-01-01

    Soon the number of type Ia supernova (SN) measurements should exceed 100 000. Understanding the effect of weak lensing by matter structures on the supernova brightness will then be more important than ever. Although SN lensing is usually seen as a source of systematic noise, we will show that it can be in fact turned into signal. More precisely, the non-Gaussianity introduced by lensing in the SN Hubble diagram dispersion depends rather sensitively on the amplitude σ8 of the matter power spectrum. By exploiting this relation, we are able to predict constraints on σ8 of 7% (3%) for a catalog of 100 000 (500 000) SNe of average magnitude error 0.12, without having to assume that such intrinsic dispersion and its redshift evolution are known a priori. The intrinsic dispersion has been assumed to be Gaussian; possible intrinsic non-Gaussianities in the data set (due to the SN themselves and/or to other transients) could be potentially dealt with by means of additional nuisance parameters describing higher moments of the intrinsic dispersion distribution function. This method is independent of and complementary to the standard methods based on cosmic microwave background, cosmic shear, or cluster abundance observables.

  17. CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Farouqi, K.; Truran, J. W.; Kratz, K.-L.; Pfeiffer, B.; Rauscher, T.; Thielemann, F.-K. E-mail: truran@nova.uchicago.ed E-mail: k-l.Kratz@mpic.d E-mail: F-K.Thielemann@unibas.c

    2010-04-01

    The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has still to be undertaken. Sufficiently high neutron-to-seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy S, electron abundance Y{sub e} , and expansion velocity V{sub exp}. We investigate the termination point of charged-particle reactions, and we define a maximum entropy S{sub final} for a given V{sub exp} and Y{sub e} , beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a beta-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from beta-delayed neutron emission can play. Furthermore, we analyze the impact of nuclear properties from different theoretical mass models on the final abundances after these late freeze-out phases and beta-decays back to stability. As only a superposition of astrophysical conditions can provide a good fit to the solar r-abundances, the question remains how such superpositions are attained, resulting in the apparently robust r-process pattern observed in low

  18. He II lambda-4686 in Eta Carinae: Collapse of the Wind-Wind Collision Region During Periastron Passage

    NASA Technical Reports Server (NTRS)

    Teodoro, M.; Damineli, A.; Arias, J. I.; DeAraujo, F. X.; Barba, R. H.; Corcoran, M. F.; Fernandes, M. Borges; Fernandez-Lajus, E.; Fraga, L.; Gamen, R. C.; Gonzalex, J. F.; Groh, J. H.; Marshall, J. L.; McGregor, P. J.; Morrell, N.; Nicholls, D. C.; Parkin, E. R.; Perbira, C. B.

    2012-01-01

    The periodic spectroscopic events in Eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events we performed a dense monitoring of Eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda-4686 emission line (L approx 310 solar L) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda-4686 light-curves. After a short-lived minimum, He II lambda-4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

  19. Surviving Companions of Supernovae

    NASA Astrophysics Data System (ADS)

    Kerzendorf, W.

    2016-06-01

    Most supernovae should occur in binaries. Massive stars, the progenitors of core collapse supernovae (SN II/Ib/c), have a very high binarity fraction of 80 percent (on average, they have 1.5 companions). Binary systems are also required to produce thermonuclear supernovae (SN Ia). Understanding the role that binarity plays in pre-supernova evolution is one of the great mysteries in supernova research. Finding and studying surviving companions of supernovae has the power to shed light on some of these mysteries. Searching Galactic and nearby supernova remnants for surviving companions is a particularly powerful technique. This might allow to study the surviving companion in great detail possibly enabling a relatively detailed reconstruction of the pre-supernova evolution. In this talk, I will summarize the multitude of theoretical studies that have simulated the impact of the shockwave on the companion star and the subsequent evolution of the survivor. I will then give an overview of the searches that used these theoretical findings to identify surviving companions in nearby supernova remnants as well as their results. Finally, I will give an outlook of new opportunities in the relatively young field.

  20. Suzaku spectra of a Type-II supernova remnant, Kes 79

    NASA Astrophysics Data System (ADS)

    Sato, Tamotsu; Koyama, Katsuji; Lee, Shiu-Hang; Takahashi, Tadayuki

    2016-06-01

    This paper reports on results of a Suzaku observation of the supernova remnant (SNR) Kes 79 (G33.6+0.1). The X-ray spectrum is best fitted by a two-temperature model: a non-equilibrium ionization (NEI) plasma and a collisional ionization equilibrium (CIE) plasma. The NEI plasma is spatially confined within the inner radio shell with kT ˜ 0.8 keV, while the CIE plasma is found in more spatially extended regions associated with the outer radio shell with kT ˜0.2 keV and solar abundance. Therefore, the NEI plasma is attributable to the SN ejecta, and the CIE plasma is the forward shocked interstellar medium. In the NEI plasma, we discovered K-shell lines of Al, Ar, and Ca for the first time. The abundance pattern and estimated mass of the ejecta are consistent with a core-collapse supernova explosion of a ˜30-40M⊙ progenitor star. An Fe line with a center energy of ˜6.4 keV is also found in the southeast (SE) portion of the SNR, a close peripheral region around dense molecular clouds. One possibility is that the line is associated with the ejecta. However, the centroid energy of ˜6.4 keV and the spatial distribution of enhancement near the SE peripheral do not favor this scenario. Since the ˜6.4 keV emitting region coincides with the molecular clouds, we propose another possibility, that the Fe line is due to K-shell ionization of neutral Fe by the interaction of locally accelerated protons (LECRp) with the surrounding molecular cloud. Both of these possibilities, heated ejecta or LECRp origin, are discussed based on the observational facts.

  1. LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan

    2017-03-01

    In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}ȯ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ∼3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ∼30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.

  2. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  3. On the diversity of compact objects within supernova remnants - II. Energy-loss mechanisms

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2017-02-01

    Energy losses from isolated neutron stars are commonly attributed to the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This emission mechanism predicts a braking index n = 3, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori, typically causing a discrepancy between the characteristic age and the associated supernova remnant (SNR) age. We focus on neutron stars with `anomalous' magnetic fields that have established SNR associations and known ages. Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are usually described in terms of the magnetar model that posits a large magnetic field established by dynamo action. The high magnetic field pulsars (HBPs) have extremely large magnetic fields just above quantum electrodynamics scale (but below that of the AXPs and SGRs), and central compact objects (CCOs) may have buried fields that will emerge in the future as nascent magnetars. In the first part of this series, we examined magnetic field growth as a method of uniting the CCOs with HBPs and X-ray dim isolated neutron stars (XDINSs) through evolution. In this work, we constrain the characteristic age of these neutron stars using the related SNR age for a variety of energy-loss mechanisms and allowing for arbitrary initial spin periods. In addition to the SNR age, we also use the observed braking indices and X-ray luminosities to constrain the models.

  4. Type Ia Supernovae from Merging White Dwarfs. II. Post-merger Detonations

    NASA Astrophysics Data System (ADS)

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Schwab, Josiah; Woosley, Stan

    2014-06-01

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of "tamped" SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total 56Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger 56Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical "tamped" SN Ia for explaining the class of "super-Chandrasekhar" SN Ia.

  5. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Woosley, Stan; Schwab, Josiah

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  6. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    SciTech Connect

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-12

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

  7. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE

    SciTech Connect

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Ofek, E. O.; Horesh, A.; Kulkarni, S. R.; Kasliwal, M. M.; Cao, Y.; Perley, D.; Arcavi, I.; Howell, D. A.; Sollerman, J.; Sullivan, M.; Filippenko, A. V.; Nugent, P. E.; Cenko, S. B.; Silverman, J. M.; Ebeling, H.; and others

    2016-02-10

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.

  8. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    DOE PAGES

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.; ...

    2016-02-02

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude MR = -18.2 belong to the FI or BF groups, and that all FI events peaked above MR = -17.6 mag, significantly brighter than average SNe II.« less

  9. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    SciTech Connect

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; Perley, D.; Sollerman, J.; Horesh, A.; Sullivan, M.; Filippenko, A. V.; Nugent, P. E.; Howell, D. A.; Cenko, S. B.; Silverman, J. M.; Ebeling, H.; Taddia, F.; Johansson, J.; Laher, R. R.; Surace, J.; Rebbapragada, U. D.; Wozniak, Przemyslaw R.; Matheson, T.

    2016-02-02

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude MR = -18.2 belong to the FI or BF groups, and that all FI events peaked above MR = -17.6 mag, significantly brighter than average SNe II.

  10. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    SciTech Connect

    Blasi, Pasquale; Amato, Elena E-mail: amato@arcetri.astro.it

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ≤ Z ≤ 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)∝(E/Z){sup δ}, with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as δ{sub A}∝D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10{sup 5} GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)∝E{sup 1/3}. Faster diffusion, for instance with δ = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in

  11. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    SciTech Connect

    Di Stefano, R.

    2010-08-10

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M{sub C} , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M{sub C} are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10{sup 6} years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  12. SN Refsdal: Classification as a Luminous and Blue SN 1987A-like Type II Supernova

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Brammer, G.; Selsing, J.; Foley, R. J.; Hjorth, J.; Rodney, S. A.; Christensen, L.; Strolger, L.-G.; Filippenko, A. V.; Treu, T.; Steidel, C. C.; Strom, A.; Riess, A. G.; Zitrin, A.; Schmidt, K. B.; Bradač, M.; Jha, S. W.; Graham, M. L.; McCully, C.; Graur, O.; Weiner, B. J.; Silverman, J. M.; Taddia, F.

    2016-11-01

    We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in fall 2014. The HST light curve of SN Refsdal has a shape consistent with the distinctive, slowly rising light curves of SN 1987A-like SNe, and we find strong evidence for a broad Hα P-Cygni profile and Na I D absorption in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, largely powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong Hα and Na I D absorption. From the grism spectrum, we measure an Hα expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the Hα emission of the WFC3 and X-shooter spectra, separated by ˜2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, photometry of SN Refsdal favors bluer B - V and V - R colors and one of the largest luminosities for the assumed range of potential magnifications. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material. Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3 ± 0.1 dex and <8.4 dex, respectively) near the explosion site.

  13. The Progenitors of Type Ia Supernovae. II. Are they Double-degenerate Binaries? The Symbiotic Channel

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.

    2010-08-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, MC , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing "progenitor problem." Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to MC are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >106 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  14. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  15. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES

    SciTech Connect

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer; Cenko, S. Bradley; Becker, Adam B.; Fox, Derek B.; Leonard, Douglas C.; Moon, Dae-Sik; Sand, David J.; Soderberg, Alicia M.; Kiewe, Michael; Scheps, Raphael; Birenbaum, Gali; Chamudot, Daniel; Zhou, Jonathan

    2012-09-10

    We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

  16. Expanding photospheres of type II supernovae and the extragalactic distance scale

    NASA Astrophysics Data System (ADS)

    Schmidt, Brian P.; Kirshner, Robert P.; Eastman, Ronald G.

    1992-08-01

    The Expanding Photosphere Method is applied here to determine distances to 10 Type II SNe, exploring the effects of asymmetries, extinction, and flux dilution. It is shown that blackbody corrections caused by flux dilution are small for type II SNe in the infrared, and in the optical when their color temperatures are less than 6000 K. The distance measurements to the SNe span a wide range of 50 kpc to 120 Mpc, which is unique among the methods for establishing the extragalactic distance scale. A value of H(0) = 60 +/- 10 km/s/Mpc is derived.

  17. Optical and ultraviolet observations of a low-velocity type II plateau supernova 2013am in M65

    SciTech Connect

    Zhang, Jujia; Bai, Jinming; Fan, Yufeng; Wang, Jianguo; Yi, Weimin; Wang, Chuanjun; Xin, Yuxin; Liangchang; Zhang, Xiliang; Lun, Baoli; Wang, Xueli; He, Shousheng; Wang, Xiaofeng; Huang, Fang; Mo, Jun; Mazzali, Paolo A.; Bersier, David; Zhang, Tianmeng; Walker, Emma S. E-mail: baijinming@ynao.ac.cn

    2014-12-10

    Optical and ultraviolet observations for the nearby type II plateau supernova (SN IIP) 2013am in the nearby spiral galaxy M65 are presented in this paper. The early spectra are characterized by relatively narrow P-Cygni features, with ejecta velocities much lower than observed in normal SNe IIP (i.e., ∼2000 km s{sup –1} versus ∼5000 km {sup –1} in the middle of the plateau phase). Moreover, prominent Ca II absorptions are also detected in SN 2013am at relatively early phases. These spectral features are reminiscent of those seen in the low-velocity and low-luminosity SN IIP 2005cs. However, SN 2013am exhibits different photometric properties, having shorter plateau phases and brighter light curve tails if compared to SN 2005cs. Adopting R{sub V} = 3.1 and a mean value of total reddening derived from the photometric and spectroscopic methods (i.e., E(B – V) = 0.55 ± 0.19 mag), we find that SN 2013am may have reached an absolute V-band peak magnitude of –15.83 ± 0.71 mag and produced an {sup 56}Ni mass of 0.016{sub −0.006}{sup +0.010} M {sub ☉} in the explosion. These parameters are close to those derived for SN 2008in and SN 2009N, which have been regarded as 'gap-filler' objects linking the faint SNe IIP to the normal ones. This indicates that some low-velocity SNe IIP may not necessarily result from the low-energetic explosions. The low expansion velocities could be due to a lower metallicity of the progenitor stars, a larger envelope mass ejected in the explosion, or the effect of viewing angle where these SNe were observed at an angle away from the polar direction.

  18. Wake effects in a Fayette 95-IIS wind turbine array

    SciTech Connect

    Simon, R.L.; Matson, D.F.; Fuchs, J.M.

    1987-09-01

    A group of 35 wind turbines on the Castello Ranch in Altamont Pass, California, was investigated to quantify array wake effects (losses in energy production due to operation of upwind turbines) and the factors influencing them. Approximately 65 hours of field measurements were made in summer 1986, with turbine energy production and wind velocity data recorded for various scenarios of array operation. Customized software and hardware were developed and installed by Fayette to facilitate these measurements. The existence of wake effects was fairly well established. Relative energy-production losses averaged 6% at the second row, when the first row was operating, and 7 to 8% at the third row, when the first two were operating. Apparently, then, the impact of the first row on the third (at a 21-rotor-diameter distance) was minimal. Ambient wind speed did not appear to affect the relative wind speed pattern within the array due to wakes, but because of the shape of the performance curve, it did affect relative energy production losses (particularly for the low-RPM mode of machine operation). The influences of ambient atmospheric conditions, such as stability, turbulence, and shear on the array wakes, were also investigated by testing over a range of the conditions available during a typical 24-hour day at the test site. None of these variables showed any significant effect on the degree of wake-induced energy losses. While the results of this study apply only to this specific array and type of wind turbine, the methodology could be applied to study wake effects at other wind farms. 6 refs., 7 figs., 20 tabs.

  19. UV/Optical Emission from the Expanding Envelopes of Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Sapir, Nir; Waxman, Eli

    2017-04-01

    The early part of a supernova (SN) light curve is dominated by radiation escaping from the expanding shock-heated progenitor envelope. For polytropic hydrogen envelopes, the properties of the emitted radiation are described by simple analytic expressions and are nearly independent of the polytropic index, n. This analytic description holds at early time, t < few days, during which radiation escapes from shells that are initially lying near the stellar surface. We use numerical solutions to address two issues. First, we show that the analytic description holds at early time also for nonpolytropic density profiles. Second, we extend the solutions to later times, when the emission emerges from deep within the envelope and depends on the progenitor’s density profile. Examining the late time behavior of the polytropic envelopes with a wide range of core to envelope mass and radius ratios, 0.1 ≤ M c/M env ≤ 10 and 10‑3 ≤ R c/R ≤ 10‑1, we find that the effective temperature is well described by the analytic solution also at late time, while the luminosity, L, is suppressed by a factor, which may be approximated to be better than a 20 [30]% accuracy up to t = t tr/a by A\\exp [-{({at}/{t}{tr})}α ] with t tr = 13 (M env/M ⊙)3/4(M/M env)1/4(E/1051erg)‑1/4 days, M = M c + M env, A = 0.9[0.8], a = 1.7[4.6], and α = 0.8[0.7] for n = 3/2[3]. This description holds as long as the opacity is approximately that of a fully ionized gas, i.e., for T > 0.7 eV, t < 14(R/1013.5cm)0.55 days. The suppression of L at t tr/a that is obtained for standard polytropic envelopes may account for the first optical peak of double-peaked SN light curves, with the first peak at a few days for M env < 1 M ⊙.

  20. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-63-000; EG12-64-000; EG12-65-000; EG12-66-000; EG12- 67-000; EG12-68-000; EG12-69-000] Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind...

  1. Neutral Winds in Local Quasar-Dominated Mergers. II.

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Rupke, David S. N.; Trippe, Margaret; Teng, Stacy; Krug, Hannah; Kreimeyer, Kory; Sturm, Eckhard

    2012-08-01

    The role of galactic winds in gas-rich mergers is of crucial importance to understand galaxy and supermassive black hole evolution. In the past year, our group has discovered powerful neutral and molecular winds in several ULIRGs and quasars. These outflows may be the long-sought ``smoking gun" of quasar mechanical feedback purported to transform gas-rich mergers into red and dead spheroids. We have on- going Herschel, HST, and GBT programs to follow up on these results, but none of them will map the winds on the critical galactic scale (~1-2 arcsec). We propose deep long-slit Na I (lambda)(lambda)5890, 5896 spectroscopy to address this weakness. We already have high-S/N Na I spectroscopy of all starburst-dominated mergers in our sample; here we propose to do the quasar-dominated systems. We will look for trends between the basic measured properties of the neutral gas probed by the Na I doublet (incidence of absorption, kinematics, column densities) and host/evolutionary indicators. Measured velocities in excess of ~1000 km/s or inferred mass outflow rates much larger than the star formation rates would be telltale signs of AGN-driven winds.

  2. Detecting stellar-wind bubbles through infrared arcs in H ii regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H ii regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H ii regions around individual stars to predict the infrared emission properties of the dust within the H ii region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H ii region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H ii region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H ii regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  3. Supernova rates from the SUDARE VST-Omegacam search II. Rates in a galaxy sample

    NASA Astrophysics Data System (ADS)

    Botticella, M. T.; Cappellaro, E.; Greggio, L.; Pignata, G.; Della Valle, M.; Grado, A.; Limatola, L.; Baruffolo, A.; Benetti, S.; Bufano, F.; Capaccioli, M.; Cascone, E.; Covone, G.; De Cicco, D.; Falocco, S.; Haeussler, B.; Harutyunyan, V.; Jarvis, M.; Marchetti, L.; Napolitano, N. R.; Paolillo, M.; Pastorello, A.; Radovich, M.; Schipani, P.; Tomasella, L.; Turatto, M.; Vaccari, M.

    2017-02-01

    Aims: This is the second paper of a series in which we present measurements of the supernova (SN) rates from the SUDARE survey. The aim of this survey is to constrain the core collapse (CC) and Type Ia SN progenitors by analysing the dependence of their explosion rate on the properties of the parent stellar population averaging over a population of galaxies with different ages in a cosmic volume and in a galaxy sample. In this paper, we study the trend of the SN rates with the intrinsic colours, the star formation activity and the masses of the parent galaxies. To constrain the SN progenitors we compare the observed rates with model predictions assuming four progenitor models for SNe Ia with different distribution functions of the time intervals between the formation of the progenitor and the explosion, and a mass range of 8-40 M⊙ for CC SN progenitors. Methods: We considered a galaxy sample of approximately 130 000 galaxies and a SN sample of approximately 50 events. The wealth of photometric information for our galaxy sample allows us to apply the spectral energy distribution (SED) fitting technique to estimate the intrinsic rest frame colours, the stellar mass and star formation rate (SFR) for each galaxy in the sample. The galaxies have been separated into star-forming and quiescent galaxies, exploiting both the rest frame U-V vs. V-J colour-colour diagram and the best fit values of the specific star formation rate (sSFR) from the SED fitting. Results: We found that the SN Ia rate per unit mass is higher by a factor of six in the star-forming galaxies with respect to the passive galaxies, identified as such both on the U-V vs. V-J colour-colour diagram and for their sSFR. The SN Ia rate per unit mass is also higher in the less massive galaxies that are also younger. These results suggest a distribution of the delay times (DTD) less populated at long delay times than at short delays. The CC SN rate per unit mass is proportional to both the sSFR and the galaxy

  4. SN 2013ej IN M74: A LUMINOUS AND FAST-DECLINING TYPE II-P SUPERNOVA

    SciTech Connect

    Huang, Fang; Wang, Xiaofeng; Chen, Juncheng; Mo, Jun; Zhao, Xulin; Zhang, Jujia; Brown, Peter J.; Zampieri, Luca; Pumo, Maria Letizia; Zhang, Tianmeng E-mail: wang_xf@mail.tsinghua.edu.cn

    2015-07-01

    We present extensive ultraviolet, optical, and near-infrared observations of the Type IIP supernova (SN IIP) 2013ej in the nearby spiral galaxy M74. The multicolor light curves, spanning from ∼8–185 days after explosion, show that it has a higher peak luminosity (i.e., M{sub V} ∼ −17.83 mag at maximum light), a faster post-peak decline, and a shorter plateau phase (i.e., ∼50 days) compared to the normal Type IIP SN 1999em. The mass of {sup 56}Ni is estimated as 0.02 ± 0.01 M{sub ⊙} from the radioactive tail of the bolometric light curve. The spectral evolution of SN 2013ej is similar to that of SN 2004et and SN 2007od, but shows a larger expansion velocity (i.e., v{sub Fe} {sub ii} ∼ 4600 km s{sup −1} at t ∼ 50 days) and broader line profiles. In the nebular phase, the emission of the Hα line displays a double-peak structure, perhaps due to the asymmetric distribution of {sup 56}Ni produced in the explosion. With the constraints from the main observables such as bolometric light curve, expansion velocity, and photospheric temperature of SN 2013ej, we performed hydrodynamical simulations of the explosion parameters, yielding the total explosion energy as ∼0.7× 10{sup 51} erg, the radius of the progenitor as ∼600 R{sub ⊙}, and the ejected mass as ∼10.6 M{sub ⊙}. These results suggest that SN 2013ej likely arose from a red supergiant with a mass of 12–13 M{sub ⊙} immediately before the explosion.

  5. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  6. LATE-TIME EVOLUTION OF COMPOSITE SUPERNOVA REMNANTS: DEEP CHANDRA OBSERVATIONS AND HYDRODYNAMICAL MODELING OF A CRUSHED PULSAR WIND NEBULA IN SNR G327.1-1.1

    SciTech Connect

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccoló

    2015-07-20

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology: a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for a mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock (RS), whichcan occur as a result of a density gradient in the ambient medium and/or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a ∼17,000-year-old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar’s motion. We also show that the RS/PWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to γ-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  7. Spectroscopy of supernova host galaxies from the SDSS-II SN survey with the SDSS and BOSS spectrographs

    NASA Astrophysics Data System (ADS)

    Olmstead, Matthew Dwaune

    Type Ia supernovae (SNeIa) have been used as standard candles to measure cosmological distances. The initial discovery of the accelerated expansion of the universe was performed using ~50 SNe Ia. Large SNe surveys have increased the number of spectroscopically-confirmed SNe Ia to over a thousand with redshift coverage beyond z = 1. We are now in the age of abundant photometry without the ability for full follow-up spectroscopy of all SN candidates. SN cosmology using these large samples will increasingly rely on robust photometric classification of SN candidates. Photometric classification will increase the sample by including faint SNe as these are preferentially not observed with follow-up spectroscopy. The primary concern with using photometrically classified SNe Ia in cosmology is when a core-collapse SNe is incorrectly classified as an SN Ia. This can be mitigated by obtaining the host galaxy redshift of each SN candidate and using this information as a prior in the photometric classification, removing one degree of freedom. To test the impact of redshift on photometric classification, I have performed an assessment on photometric classification of candidates from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. I have tested the classification with and without redshift priors by looking at the change of photometric classification, the effect of data quality on photometric classification, and the effect of SN light curve properties on photometric classification. Following our suggested classification scheme, there are a total of 1038 photometrically classified SNe Ia when using a flat redshift prior and 1002 SNe~Ia with the spectroscopic redshift. For 912 (91.0%) candidates classified as likely SNe Ia without redshift information, the classification is unchanged when adding the host galaxy redshift. Finally, I investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2

  8. 77 FR 16029 - High Majestic Wind II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission High Majestic Wind II, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of High Majestic Wind II, LLC's application for market-based rate...

  9. 76 FR 3624 - Milford Wind Corridor Phase II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Milford Wind Corridor Phase II, LLC; Supplemental Notice That Initial Market... supplemental notice in the above-referenced proceeding Milford Wind Corridor Phase II, LLC's application...

  10. 78 FR 61946 - Pheasant Run Wind II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pheasant Run Wind II, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Pheasant Run Wind II, LLC's application for market-based rate...

  11. 75 FR 70740 - Elk City II Wind, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Elk City II Wind, LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding of Elk City II Wind, LLC's application for market-based...

  12. 76 FR 11774 - Paulding Wind Farm II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Paulding Wind Farm II LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Paulding Wind Farm II LLC's application for market-based rate...

  13. 77 FR 42721 - Limon Wind II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Limon Wind II, LLC; Supplemental Notice That Initial Market- Based Rate...-referenced proceeding, of Limon Wind II, LLC's application for market-based rate authority, with...

  14. Magnetohydrodynamic disc winds and line width distributions - II

    NASA Astrophysics Data System (ADS)

    Chajet, L. S.; Hall, P. B.

    2017-02-01

    We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magnetohydrodynamic (MHD) model of Emmering et al. Here, we extend our previous work to consider central objects with different masses and/or luminosities. We have compared the dispersions in our model C IV line-width distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. Following Fine et al., we transform that scatter in the profile line-widths into a constraint on the torus geometry and show how the half-opening angle of the obscuring structure depends on the mass of the central object and the accretion rate. We find that the results depend only mildly on the dimensionless angular momentum, one of the two integrals of motion that characterize the dynamics of the self-similar ideal MHD outflows.

  15. Filament winding cylinders. II - Validation of the process model

    NASA Technical Reports Server (NTRS)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  16. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect

    Howes, H; Perley, R

    1981-01-01

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  17. Interaction of Supernova Remnants with a Circumstellar Shell

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.

    1995-12-01

    We are studying the interaction of supernova remnants (SNRs) with circumstellar shells, with an emphasis on Type II supernovae (SNe). These supernovae arise from massive progenitor stars (> 8 Msun), which lose mass during their lifetime, primarily in the form of a stellar wind. Often the stellar wind creates a circumstellar bubble surrounded by a dense shell. When the star explodes as a supernova, the resulting shock wave eventually collides with this dense shell. In a recent paper on SN 1987A (Chevalier & Dwarkadas, ApJL, 452, L45) we have shown that from the radio and X-ray emission, one can infer the presence of a high density region interior to the dense circumstellar shell. This can be explained as an HII region photoionized by the flux from the pre-supernova star. Using the Zeus code and assuming spherical symmetry, we have studied the dynamics of the shock wave interacting first with the HII region and then the circumstellar shell in SN 1987A. Collision with the HII region results in a significant deceleration of the shock wave, forming a high-density shocked region that grows with time, and is primarily responsible for the X-ray emission. X-ray emission from the reflected shock may begin to dominate when the forward shock hits the dense circumstellar shell and is considerably slowed down. Simulations are in progress with parameters suited to other remnants such as Cas A and W44. Radio and X-ray images of Cas A show a shell structure, which may result from interaction with a stellar bubble. W44 also shows a double-shell structure that may have been produced by a SN explosion inside a pre-existing wind bubble. The interaction is subject to instabilities that may give rise to filamentary structure.

  18. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M ⊙ progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  19. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  20. The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Stelios; Mayer, Lucio; Callegari, Simone; Dotti, Massimo; Moustakas, Leonidas A.

    2017-02-01

    A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, f gas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (f gas ≳ 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (f gas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When f gas ≳ 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.

  1. Aspherical supernovae

    SciTech Connect

    Kasen, Daniel Nathan

    2004-01-01

    Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy and toroidal geometries in fitting the spectropolarimetry of the Type Ia supernova SN 2001el. We then calculate the observable consequences of a supernova that has been rendered asymmetric by crashing into a nearby companion star. Finally, we fit the spectrum of a peculiar and extraordinarily luminous Type Ic supernova. The results are brought to bear on three broader astrophysical questions: (1) What are the progenitors and the explosion processes of Type Ia supernovae? (2) What effect does asymmetry have on the observational diversity of Type Ia supernovae, and hence their use in cosmology? (3) And

  2. Supernova Neutrinos

    SciTech Connect

    Beacom, John

    2009-11-14

    Supernovae in our Galaxy probably occur about 3 times per century, though 90% of them are invisible optically because of obscuration by dust. However, present solar neutrino detectors are sensitive to core-collapse supernovae anywhere in our Galaxy, and would detect of order 10,000 events from a supernova at a distance of 10 kpc (roughly the distance to the Galactic center). I will describe how this data can be used to understand the supernova itself, as well as to test the properties of neutrinos.

  3. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Kashiyama, Kazumi; Mészáros, Peter

    2016-09-01

    Tenuous wind bubbles, which are formed by the spin-down activity of central compact remnants, are relevant in some models of fast radio bursts (FRBs) and superluminous supernovae (SNe). We study their high-energy signatures, focusing on the role of pair-enriched bubbles produced by young magnetars, rapidly rotating neutron stars, and magnetized white dwarfs. (i) First, we study the nebular properties and the conditions allowing for escape of high-energy gamma-rays and radio waves, showing that their escape is possible for nebulae with ages of ≳10-100 yr. In the rapidly rotating neutron star scenario, we find that radio emission from the quasi-steady nebula itself may be bright enough to be detected especially at sub-mm frequencies, which is relevant as a possible counterpart of pulsar-driven SNe and FRBs. (ii) Secondly, we consider the fate of bursting emission in the nebulae. We suggest that an impulsive burst may lead to a highly relativistic flow, which would interact with the nebula. If the shocked nebula is still relativistic, pre-existing non-thermal particles in the nebula can be significantly boosted by the forward shock, leading to short-duration (maybe millisecond or longer) high-energy gamma-ray flashes. Possible dissipation at the reverse shock may also lead to gamma-ray emission. (iii) After such flares, interactions with the baryonic ejecta may lead to afterglow emission with a duration of days to weeks. In the magnetar scenario, this burst-in-bubble model leads to the expectation that nearby (≲10-100 Mpc) high-energy gamma-ray flashes may be detected by the High-Altitude Water Cherenkov Observatory and the Cherenkov Telescope Array, and the subsequent afterglow emission may be seen by radio telescopes such as the Very Large Array. (iv) Finally, we discuss several implications specific to FRBs, including constraints on the emission regions and limits on soft gamma-ray counterparts.

  4. X-RAY OBSERVATIONS OF THE SUPERNOVA REMNANT CTB 87 (G74.9+1.2): AN EVOLVED PULSAR WIND NEBULA

    SciTech Connect

    Matheson, H.; Safi-Harb, S.; Kothes, R. E-mail: samar@physics.umanitoba.ca

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by {approx}100'' and located at the southeastern edge of the radio nebula. We detect a point source-the putative pulsar-at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for {approx}250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N{sub H} = 1.38 (1.21-1.57) Multiplication-Sign 10{sup 22} cm{sup -2} (90% confidence). The total X-ray luminosity of the source is {approx}1.6 Multiplication-Sign 10{sup 34} erg s{sup -1} at an assumed distance of 6.1 kpc, with {approx}2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved ({approx}5-28 kyr) PWN, with the extended radio emission likely a ''relic'' PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n{sub 0} < 0.2 D{sup -1/2}{sub 6.1} cm{sup -3}), likely caused by a stellar wind bubble blown by the

  5. X-Ray Observations of the Supernova Remnant CTB 87 (G74.9+1.2): An Evolved Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Matheson, H.; Safi-Harb, S.; Kothes, R.

    2013-09-01

    Pulsar wind nebulae (PWNe) studies with the Chandra X-Ray Observatory have opened a new window to address the physics of pulsar winds, zoom on their interaction with their hosting supernova remnant (SNR) and interstellar medium, and identify their powering engines. We here present a new 70 ks, plus an archived 18 ks, Chandra ACIS observation of the SNR CTB 87 (G74.9+1.2), classified as a PWN with unusual radio properties and poorly studied in X-rays. We find that the peak of the X-ray emission is clearly offset from the peak of the radio emission by ~100'' and located at the southeastern edge of the radio nebula. We detect a point source—the putative pulsar—at the peak of the X-ray emission and study its spectrum separately from the PWN. This new point source, CXOU J201609.2+371110, is surrounded by a compact nebula displaying a torus-like structure and possibly a jet. A more extended diffuse nebula is offset from the radio nebula, extending from the point source to the northwest for ~250''. The spectra of the point source, compact nebula, and extended diffuse nebula are all well described by a power-law model with a photon index of 1.1 (0.7-1.6), 1.2 (0.9-1.4), and 1.7 (1.5-1.8), respectively, for a column density N H = 1.38 (1.21-1.57) × 1022 cm-2 (90% confidence). The total X-ray luminosity of the source is ~1.6 × 1034 erg s-1 at an assumed distance of 6.1 kpc, with ~2% and 6% contribution from the point source and compact nebula, respectively. The observed properties suggest that CTB 87 is an evolved (~5-28 kyr) PWN, with the extended radio emission likely a "relic" PWN, as in Vela-X and G327.1-1.1. To date, however, there is no evidence for thermal X-ray emission from this SNR, and the SNR shell is still missing, suggesting expansion into a low-density medium (n_0 < 0.2 D^{-1/2}_{6.1} cm-3), likely caused by a stellar wind bubble blown by the progenitor star.

  6. FLOYDS Classification of ASASSN-15oz as a Young Type II Supernova and ASASSN-15os as a Few-Week-Old Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, G.; Valenti, S.; Arcavi, I.; McCully, C.; Howell, D. A.

    2015-09-01

    We obtained a spectrum of ASASSN-15oz (ATel #7989) on 2015 September 4.5 UT with the robotic FLOYDS instrument mounted on the Faulkes Telescope South. Using SNID (Blondin & Tonry 2007, ApJ, 666, 1024), we find a good fit to the Type II SN 1999gi one week after explosion at the redshift of the proposed host galaxy (z=0.007; Meyer et al.

  7. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  8. The late behavior of supernova 1987A. I - The light curve. II - Gamma-ray transparency of the ejecta

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Fu, Albert

    1989-01-01

    Observations of the late (t = 20-1500 days) bolometric light curve and the gamma-lines and X-rays from supernova 1987A are compared to theoretical models. It is found that 0.073 + or - 0.015 solar masses of freshly synthesized Ni-56 must be present to fit the bolometric light curve. The results place limits on the luminosity and presumed period of the newly formed pulsar/neutron star. In the second half of the paper, the problem of computing the luminosities in gamma-ray lines and in X-rays from supernova 1987A is addressed. High-energy observations suggest the development of large-scale clumping and bubbling of radioactive material in the ejecta. A model is proposed with a hydrogen envelope mass of about 7 solar masses, homologous scale expansion velocities of about 3000 km/s, and an approximately uniform mass distribution.

  9. Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System: Preprint

    SciTech Connect

    Robertson, A.; Jonkman, J.; Musial, W.; Vorpahl, F.; Popko, W.

    2013-11-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. The Offshore Code Comparison Collaboration (OC3), which operated under the International Energy Agency (IEA) Wind Task 23, was established to verify the accuracy of these simulation tools [1]. This work was then extended under the Offshore Code Comparison Collaboration, Continuation (OC4) project under IEA Wind Task 30 [2]. Both of these projects sought to verify the accuracy of offshore wind turbine dynamics simulation tools (or codes) through code-to-code comparison of simulated responses of various offshore structures. This paper describes the latest findings from Phase II of the OC4 project, which involved the analysis of a 5-MW turbine supported by a floating semisubmersible. Twenty-two different organizations from 11 different countries submitted results using 24 different simulation tools. The variety of organizations contributing to the project brought together expertise from both the offshore structure and wind energy communities. Twenty-one different load cases were examined, encompassing varying levels of model complexity and a variety of metocean conditions. Differences in the results demonstrate the importance and accuracy of the various modeling approaches used. Significant findings include the importance of mooring dynamics to the mooring loads, the role nonlinear hydrodynamic terms play in calculating drift forces for the platform motions, and the difference between global (at the platform level) and local (at the member level) modeling of viscous drag. The results from this project will help guide development and improvement efforts for these tools to ensure that they are providing the accurate information needed to support the design and

  10. 75 FR 27339 - Blackstone Wind Farm II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Blackstone Wind Farm II, LLC; Supplemental Notice That Initial Market-Based... notice in the above-referenced proceeding of Blackstone Wind Farm, LLCs application for market-based...

  11. Interaction of Supernovae with Circumstellar Material

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    1996-07-01

    The interaction of supernova {SN} ejecta with circumstellar material supplied by the wind of the evolved progenitor star can sometimes provide enough energy to sustain the SN luminosity for several decades. Existing observations of certain Type II SNe strongly favor such an interpretation over other possible late-time energy sources. Some peculiar SNe II have such dense circumstellar winds that interaction with the ejecta substantially alters their observed properties even at early times. The UV spectrum is a powerful diagnostic for probing the conditions in the shocked outer ejecta and circumstellar gas. We propose to observe two old SNs {1979C and 1980K} whose optical and radio characteristics reveal them to be especially well suited for an investigation of the interaction between ejecta and circumstellar gas. We will also observe a more recent SN II {1995N} showing strong evidence for early interaction with circumstellar gas. The fluxes and intensity ratios of UV emission lines will be used to test theoretical models of the interaction. In addition, we will obtain UBVRI and HAlpha images of SN 1979C to obtain a precise offset from an offset star {for the subsequent FOS spectroscopy}, to determine background contamination corrections for previous photometry, to measure accurate current magnitudes, to search for light echoes, and to investigate the stellar population and structure of H II regions in its vicinity. The HST observations will shed light on differences among the 3 objects, as well as on the mass-loss histories of their progenitors.

  12. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    SciTech Connect

    Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta; Bartos, Imre

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.

  13. Theoretical models for supernovae

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1981-09-21

    The results of recent numerical simulations of supernova explosions are presented and a variety of topics discussed. Particular emphasis is given to (i) the nucleosynthesis expected from intermediate mass (10sub solar less than or equal to M less than or equal to 100 Msub solar) Type II supernovae and detonating white dwarf models for Type I supernovae, (ii) a realistic estimate of the ..gamma..-line fluxes expected from this nucleosynthesis, (iii) the continued evolution, in one and two dimensions, of intermediate mass stars wherein iron core collapse does not lead to a strong, mass-ejecting shock wave, and (iv) the evolution and explosion of vary massive stars (M greater than or equal to 100 Msub solar of both Population I and III. In one dimension, nuclear burning following a failed core bounce does not appear likely to lead to a supernova explosion although, in two dimensions, a combination of rotation and nuclear burning may do so. Near solar proportions of elements from neon to calcium and very brilliant optical displays may be created by hypernovae, the explosions of stars in the mass range 100 M/sub solar/ to 300 M/sub solar/. Above approx. 300 M/sub solar/ a black hole is created by stellar collapse following carbon ignition. Still more massive stars may be copious producers of /sup 4/He and /sup 14/N prior to their collapse on the pair instability.

  14. Dynamics of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Blondin, John M.; Sarazin, Craig L.

    1992-01-01

    Observations of Kepler's SNR have revealed a strong interaction with the ambient medium, far in excess of that expected at a distance of about 600 pc away from the Galactic plane where Kepler's SNR is located. This has been interpreted as a result of the interaction of supernova ejecta with the dense circumstellar medium (CSM). Based on the bow-shock model of Bandiera (1985), we study the dynamics of this interaction. The CSM distribution consists of an undisturbed stellar wind of a moving supernova progenitor and a dense shell formed in its interaction with a tenuous interstellar medium. Supernova ejecta drive a blast wave through the stellar wind which splits into the transmitted and reflected shocks upon hitting this bow-shock shell. We identify the transmitted shock with the nonradiative, Balmer-dominated shocks found recently in Kepler's SNR. The transmitted shock most probably penetrated the shell in the vicinity of the stagnation point.

  15. Supernova Neutrinos

    SciTech Connect

    Cardall, Christian Y

    2007-01-01

    A nascent neutron star resulting from stellar collapse is a prodigious source of neutrinos of all flavors. While the most basic features of this neutrino emission can be estimated from simple considerations, the detailed simulation of the neutrinos' decoupling from the hot neutron star is not yet computationally tractable in its full glory, being a time-dependent six-dimensional transport problem. Nevertheless, supernova neutrino fluxes are of great interest in connection with the core-collapse supernova explosion mechanism and supernova nucleosynthesis, and as a potential probe of the supernova environment and of some of the neutrino mixing parameters that remain unknown; hence, a variety of approximate transport schemes have been used to obtain results with reduced dimensionality. However, none of these approximate schemes have addressed a recent challenge to the conventional wisdom that neutrino flavor mixing cannot impact the explosion mechanism or r-process nucleosynthesis.

  16. Supernova research with VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  17. Core bounce supernovae

    SciTech Connect

    Cooperstein, J.

    1987-01-01

    The gravitational collapse mechanism for Type II supernovae is considered, concentrating on the direct implosion - core bounce - hydrodynamic explosion picture. We examine the influence of the stiffness of the dense matter equation of state and discuss how the shock wave is formed. Its chances of success are determined by the equation of state, general relativistic effects, neutrino transport, and the size of presupernova iron core. 12 refs., 1 tab.

  18. SASS wind ambiguity removal by direct minimization. II - Use of smoothness and dynamical constraints

    NASA Technical Reports Server (NTRS)

    Hoffman, R. N.

    1984-01-01

    A variational analysis method (VAM) is used to remove the ambiguity of the Seasat-A Satellite Scatterometer (SASS) winds. The VAM yields the best fit to the data by minimizing an objective function S which is a measure of the lack of fit. The SASS data are described and the function S and the analysis procedure are defined. Analyses of a single ship report which are analogous to Green's functions are presented. The analysis procedure is tuned and its sensitivity is described using the QE II storm. The procedure is then applied to a case study of September 6, 1978, south of Japan.

  19. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Pinto, C.; Kaastra, J. S.; Kosec, P.; Zhang, Y.-Y.; Mao, J.; Werner, N.; Pols, O. R.; Vink, J.

    2016-11-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z 2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the models. We show that the Ca/Fe ratio can be reproduced better, either by taking a SNIa delayed-detonation model that matches the observations of the Tycho supernova remnant, or by adding a contribution from the "Ca-rich gap transient" SNe, whose material should easily mix into the hot ICM. On the other hand, the Ni/Fe ratio can be reproduced better by assuming that both deflagration and delayed-detonation SNIa contribute in similar proportions to the ICM enrichment. In either case, the fraction of SNIa over the total number of SNe (SNIa+SNcc) contributing to the ICM enrichment ranges within 29-45%. This fraction is found to be systematically higher than the corresponding SNIa/(SNIa+SNcc) fraction contributing to the enrichment of the proto-solar environnement (15-25%). We also discuss and quantify two useful constraints on both SNIa (i.e. the initial metallicity on SNIa progenitors and the fraction of low-mass stars that result in SNIa) and SNcc (i.e. the effect of

  20. Supernova Photometric Lightcurve Classification

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  1. TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY

    SciTech Connect

    Galbany, Lluis; Miquel, Ramon; Oestman, Linda; Brown, Peter J.; Olmstead, Matthew D.; Cinabro, David; D'Andrea, Chris B.; Nichol, Robert C.; Frieman, Joshua; Jha, Saurabh W.; Marriner, John; Nordin, Jakob; Sako, Masao; Schneider, Donald P.; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; and others

    2012-08-20

    We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  2. Supernova olivine from cometary dust.

    PubMed

    Messenger, Scott; Keller, Lindsay P; Lauretta, Dante S

    2005-07-29

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  3. Supernova olivine from cometary dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  4. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  5. Gamma-ray constraints on supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  6. Radio emission from Supernovae and High Precision Astrometry

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M. A.

    1999-11-01

    corrections, agree well within one standard deviation. In summary, our astrometric results demonstrate the feasibility of using phase-delay difference techniques (single-frequency or dual-frequency) for sources separated by as far as 15(deg) on the sky. This opens the avenue for the extension of the technique on a global scale with the aim of building up a quasi-inertial reference frame (of submilliarcsecond accuracy) based on extragalactic radio sources. The second part of this thesis is devoted to the study of the radio emission of the Type II supernova SN 1993J, whose relative proximity (it exploded in the Galaxy M81, at a distance of 10 million of light-years) has allowed us to observe it with VLBI at different radio frequency bands since June 1993. This radio supernova is the best studied one so far and thus a perfect laboratory to test supernova radio emission models. Early VLBI observations of this supernova by our group allowed us to discover the shell structure of SN 1993J--likely common to all supernovae--the youngest ever discovered in a supernova. Subsequently, our VLBI observations showed SN 1993J to be self-similarly expanding and, more recently, we used our VLBI observations at 3.6 and 6 cm in the period 6 through 42 months after explosion to show that the supernova expansion is decelerating, its size following a power-law with time (R t^m; m=0.86 +- 0.02). Our measurement of the expansion index yields estimates of the density of both supernova ejecta and circumstellar material in standard supernova explosion models. In particular, the density of the circumstellar material seems to be following a power-law less steep than usual (rhocs r^{-s}, with s approx. 1.66 instead of the standard s=2). Our VLBI observations also showed that the supernova radio emission comes from a shell of width 30% of the outer radius. In this thesis, we describe a numerical code that simulates synchrotron radio emission from a supernova. We assume that the supernova is self

  7. Dust production in supernovae and AGB stars

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2015-08-01

    In the last decade, the role of supernovae on dust has changed; it has been long proposed that supernovae are dust destroyers, but now recent observations show that core-collapse supernovae can become dust factories. Theoretical models of dust evolution in galaxies have predicted that core-collapse supernovae can be an important source of dust in galaxies, if these supernovae can form a significant mass of dust (0.1-1 solar masses). The Herschel Space Observatory and ALMA detected dust in the ejecta of Supernova 1987A. They revealed an estimated 0.5 solar masses of dust. Herschel also found nearly 0.1 solar masses of dust in historical supernovae remnants, namely Cassiopeia A and the Crab Nebula. If dust grains can survive future interaction with the supernova winds and ambient interstellar medium, core-collapse supernovae can be an important source of dust in the interstellar media of galaxies. We further discuss the total dust mass injected by AGB stars and SNe into the interstellar medium of the Magellanic Clouds.

  8. Gravitational lensing statistics of amplified supernovae

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.; Wagoner, Robert V.; Schneider, P.

    1988-01-01

    Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.

  9. Supernovae and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.

    2014-09-01

    Nucleosynthesis by rapid neutron capture (the r-process) could be an important diagnostic of the explosive deep interiors of supernovae. The early appearance of r-process elements in the Galaxy, along with energetic requirements, strongly argues in favor of a supernova origin for r-process isotopes. However there is a current conundrum as to the relative contributions from various supernovae environments, e.g. MHD jets or neutrino energized winds. There are also possible contributions from failed supernovae (collapsars) leading to a black hole (BH), or the ejection of material during the mergers of neutron stars in binary systems, i.e. NS+NS or NS+BH systems. In this talk we will review the theoretical underpinnings of each possibility in the quest to deduce the relative contribution of each process. In particular, each model for r-process nucleosynthesis invariably leads to systematic discrepancies with the observed solar-system r-process abundances. For example, although the location of the abundance peaks near nuclear mass numbers A = 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. Similarly, most recent neutrino-driven wind simulations produce only the lighter r-process elements, while neutron-star mergers may miss the r-process peaks due to fission recycling. In this talk we demonstrate that the underproduction of elements above and below the r-process peaks can be supplemented via fission fragment distributions from the recycling of material synthesized during neutron star mergers, while the abundance peaks themselves are well reproduced in MHD jets in supernovae and collapsars. Moreover, we show that the relative contributions to the solar-system r-process yields from core-collapse supernovae and neutron star mergers required by this proposal are consistent with estimates of the

  10. Non-LTE models for synthetic spectra of type Ia supernovae / hot stars with extremely extended atmospheres. II. Improved lower boundary conditions for the numerical solution of the radiative transfer

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Hoffmann, T. L.; Pauldrach, A. W. A.

    2006-11-01

    Context: .Realistic atmospheric models that link the properties and the physical conditions of supernova ejecta to observable spectra are required for the quantitative interpretation of observational data of type Ia supernovae (SN Ia) and the assessment of the physical merits of theoretical supernova explosion models. The numerical treatment of the radiation transport - yielding the synthetic spectra - in models of SN Ia ejecta in early phases is usually carried out in analogy to atmospheric models of "normal" hot stars. Applying this analogy indiscriminately leads to inconsistencies in SN Ia models because a diffusive lower boundary, while justified for hot stars, is invalid for hydrogen and helium-deficient supernova ejecta. In type Ia supernovae the radiation field does not thermalize even at large depths, and large optical depths are not reached at all wavelengths. Aims: .We aim to derive an improved description of the lower boundary that allows a more consistent solution of the radiation transfer in SN Ia and therefore yields more realistic synthetic spectra. Methods: .We analyze the conditions that lead to a breakdown of the conventional diffusion approximation as the lower boundary in SN Ia. For the radiative transfer, we use a full non-LTE code originally developed for radiatively driven winds of hot stars, with adaptations for the physical conditions in SN Ia. In addition to a well-tested treatment of the underlying microphysical processes, this code allows a direct comparison of the results for SN Ia and hot stars. Results: .We develop a semi-analytical description that allows us to overcome some of the limiting assumptions in the conventional treatment of the lower boundary in SN Ia radiative transfer models. We achieve good agreement in a comparison between the synthetic spectrum of our test model and an observed spectrum.

  11. Abundances of La138 and Ta180 Through ν-Nucleosynthesis in 20 M ⊙ Type II Supernova Progenitor, Guided by Stellar Models for Seeds

    NASA Astrophysics Data System (ADS)

    Lahkar, N.; Kalita, S.; Duorah, H. L.; Duorah, K.

    2017-03-01

    Yields of nature's rarest isotopes La138 and Ta180 are calculated by neutrino processes in the Ne-shell of density ρ ≈ 104 g/cc in a type II supernova (SN II) progenitor of mass 20 M ⊙. Two extended sets of neutrino temperature - T ν e = 3, 4, 5, 6 MeV and T ν( μ/ τ)= 4, 6, 8, 10, 12 MeV respectively for charged and neutral current processes are taken. Solar mass fractions of the seeds La 139, Ta 181, Ba 138 and Hf 180 are taken for calculation. They are assumed to be produced in some s-processing events of earlier generation massive `seed stars' with average interior density range < ρ>≈103-106 g/cc. The abundances of these two elements are calculated relative to O 16 and are found to be sensitive to the neutrino temperature. For neutral current processes with the neutron emission branching ratio, b n = 3.81 × 10-4 and b n = 9.61 × 10-1, the relative abundances of La138 lie in the ranges 4.48 × 10-14-2.94 × 10-13 and 1.13 × 10-10-7.43 × 10-10 respectively. Similarly, the relative abundances of Ta180 lie in the ranges 1.80 × 10-15-1.17 × 10-14 and 4.53 × 10-12-2.96 × 10-11 respectively for the lower and higher values of the neutron emission branching ratio. For charged current processes, the relative abundances of La138 and Ta180 are found to be in the ranges 1.38 × 10-9-7.62 × 10-9 and 2.09 × 10-11-1.10 × 10-10 respectively. Parametrized by density of the `seed stars', the yields are found to be consistent with recent supernova simulation results throughout the range of neutrino temperatures. La138 and Ta180 are found to be efficiently produced in charged current interaction.

  12. Oblique shock breakout in supernovae and gamma-ray bursts. II. Numerical solutions for non-relativistic pattern speeds

    SciTech Connect

    Salbi, Pegah; Matzner, Christopher D.; Ro, Stephen; Levin, Yuri

    2014-07-20

    Non-spherical explosions develop non-radial flows as the pattern of shock emergence progresses across the stellar surface. In supernovae, these flows can limit ejecta speeds, stifle shock breakout emission, and cause collisions outside the star. Similar phenomena occur in stellar and planetary collisions, tidal disruption events, accretion-induced collapses, and propagating detonations. We present two-dimensional, nested-grid Athena simulations of non-radial shock emergence in a frame comoving with the breakout pattern, focusing on the adiabatic, non-relativistic limit in a plane stratified envelope. We set boundary conditions using a known self-similar solution and explore the role of box size and resolution on the result. The shock front curves toward the stellar surface, and exhibits a kink from which weak discontinuities originate. Flow around the point of shock emergence is neither perfectly steady nor self-similar. Waves and vortices, which are not predominantly due to grid effects, emanate from this region. The post-shock flow is deflected along the stellar surface and its pressure disturbs the stellar atmosphere upstream of the emerging shock. We use the numerical results and their analytical limits to predict the effects of radiation transfer and gravity, which are not included in our simulations.

  13. Three-dimensional Explosion Geometry of Stripped-envelope Core-collapse Supernovae. II. Modeling of Polarization

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Maeda, Keiichi; Mazzali, Paolo A.; Kawabata, Koji S.; Nomoto, Ken’ichi

    2017-03-01

    We present modeling of line polarization to study the multidimensional geometry of stripped-envelope core-collapse supernovae (SNe). We demonstrate that a purely axisymmetric, two-dimensional (2D) geometry cannot reproduce a loop in the Stokes Q ‑ U diagram, that is, a variation of the polarization angles along the velocities associated with the absorption lines. On the contrary, three-dimensional (3D) clumpy structures naturally reproduce the loop. The fact that the loop is commonly observed in stripped-envelope SNe suggests that SN ejecta generally have a 3D structure. We study the degree of line polarization as a function of the absorption depth for various 3D clumpy models with different clump sizes and covering factors. A comparison between the calculated and observed degree of line polarization indicates that a typical size of the clump is relatively large, ≳25% of the photospheric radius. Such large-scale clumps are similar to those observed in the SN remnant Cassiopeia A. Given the small size of the observed sample, the covering factor of the clumps is only weakly constrained (∼5%–80%). The presence of a large-scale clumpy structure suggests that the large-scale convection or standing accretion shock instability takes place at the onset of the explosion.

  14. Astronomical Resources: Supernovae.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1987-01-01

    Contains a partially annotated, nontechnical bibliography of recent materials about supernovae, including some about the discovery of a supernova in the Large Magellanic Cloud. Includes citations of general books and articles about supernovae, articles about Supernova 1987A, and a few science fiction stories using supernovae. (TW)

  15. Simulating Supernova Light Curves

    SciTech Connect

    Even, Wesley Paul; Dolence, Joshua C.

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  16. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1989-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more than 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  17. On relative supernova rates and nucleosynthesis roles

    NASA Technical Reports Server (NTRS)

    Arnett, W. David; Schramm, David N.; Truran, James W.

    1988-01-01

    It is shown that the Ni-56-Fe-56 observed in SN 1987A argues that core collapse supernovae may be responsible for more that 50 percent of the iron in the galaxy. Furthermore it is argued that the time averaged rate of thermonuclear driven Type I supernovae may be at least an order of magnitude lower than the average rate of core collapse supernovae. The present low rate of Type II supernovae (below their time averaged rate of approx. 1/10 yr) is either because the past rate was much higher because many core collapse supernovae are dim like SN 1987A. However, even in this latter case they are only an order of magnitude dimmer that normal Type II's due to the contribution of Ni-56 decay to the light curve.

  18. Connecting supernovae with their environments

    NASA Astrophysics Data System (ADS)

    Galbany, L.

    2017-03-01

    We present MUSE observations of galaxy NGC 7469 from its Science Verification to show how powerful is the combination of high-resolution wide-field integral field spectroscopy with both photometric and spectroscopic observations of supernova (SN) explosions. Using STARLIGHT and H II explorer, we selected all H II regions of the galaxy and produced 2-dimensional maps of the Hα equivalent width, average luminosity-weighted stellar age, and oxygen abundance. We measured deprojected galactocentric distances for all H II regions, and radial gradients for all above-mentioned parameters. We positioned the type Ia SN2008ec in the Branch et al. diagram, and finally discussed the characteristics of the SN parent H II region compared to all other H II regions in the galaxy. In a near future, the AMUSING survey will be able to reproduce this analysis and construct statistical samples to enable the characterization of the progenitors of different supernova types.

  19. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  20. SUPERNOVA 1986J VERY LONG BASELINE INTERFEROMETRY. II. THE EVOLUTION OF THE SHELL AND THE CENTRAL SOURCE

    SciTech Connect

    Bietenholz, M. F.; Bartel, N.; Rupen, M. P.

    2010-04-01

    We present new Very Long Baseline Interferometry (VLBI) images of supernova (SN) 1986J, taken at 5, 8.4, and 22 GHz between t = 22 and 25 yr after the explosion. The shell expands {proportional_to}{proportional_to}t {sup 0.69+}-{sup 0.03}. We estimate the progenitor's mass-loss rate at (4-10) x 10{sup -5} M{sub sun} yr{sup -1} (for v{sub w} = 10 km s{sup -1}). Two bright spots are seen in the images. The first, in the northeast, is now fading. The second, very near the center of the projected shell and unique to SN 1986J, is still brightening relative to the shell, and now dominates the VLBI images. It is marginally resolved at 22 GHz (diameter {approx}0.3 mas; {approx}5 x 10{sup 16} cm at 10 Mpc). The integrated VLA spectrum of SN 1986J shows an inversion point and a high-frequency turnover, both progressing downward in frequency and due to the central bright spot. The optically thin spectral index of the central bright spot is indistinguishable from that of the shell. The small proper motion of 1500 +- 1500 km s{sup -1} of the central bright spot is consistent with our previous interpretation of it as being associated with the expected black-hole or neutron-star remnant. Now, an alternate scenario seems also plausible, where the central bright spot, like the northeast one, results when the shock front impacts on a condensation within the circumstellar medium (CSM). The condensation would have to be so dense as to be opaque at cm wavelengths ({approx}10{sup 3}x denser than the average corresponding CSM) and fortuitously close to the center of the projected shell. We include a movie of the evolution of SN 1986J at 5 GHz from t = 0 to 25 yr.

  1. A KINEMATIC DISTANCE STUDY OF THE PLANETARY NEBULAE-SUPERNOVA REMNANT-H II REGION COMPLEX AT G35.6–0.5

    SciTech Connect

    Zhu, H.; Tian, W. W.; Su, H. Q.; Torres, D. F.; Pedaletti, G. E-mail: tww@bao.ac.cn

    2013-10-01

    Two possible planetary nebulae (PN G035.5–00.4 and IRAS 18551+0159), one newly re-identified supernova remnant (SNR G35.6–0.4), and one H II region (G35.6–0.5) form a line-of-sight-overlapping complex known as G35.6–0.5. We analyze 21 cm H I absorption spectra toward the complex to constrain the kinematic distances of these objects. PN G035.5–00.4 has a distance from 3.8 ± 0.4 kpc to 5.4 ± 0.7 kpc. IRAS 18551+0159 is at 4.3 ± 0.5 kpc. We discuss the distance for SNR 35.6–0.4, for which the previous estimate was 10.5 kpc, and find a plausible distance of 3.6 ± 0.4 kpc. The new distance of SNR G35.6–0.4 and the derived mass for the ∼55 km s{sup –1} CO molecular cloud can accommodate an association with HESS J1858+020. We also conclude that SNR G35.6–0.4 is unlikely to be associated with PSR J1857+0210 or PSR J1857+0212, which are projected onto the SNR area.

  2. Postexplosion hydrodynamics of supernovae in red supergiants

    NASA Technical Reports Server (NTRS)

    Herant, Marc; Woosley, S. E.

    1994-01-01

    Shock propagation, mixing, and clumping are studied in the explosion of red supergiants as Type II supernovae using a two-dimensional smooth particle hydrodynamic (SPH) code. We show that extensive Rayleigh-Talor instabilities develop in the ejecta in the wake of the reverse shock wave. In all cases, the shell structure of the progenitor is obliterated to leave a clumpy, well-mixed supernova remnant. However, the occurrence of mass loss during the lifetime of the progenitor can significantly reduce the amount of mixing. These results are independent of the Type II supernova explosion mechanism.

  3. Radio studies of extragalactic supernovae.

    PubMed

    Weiler, K W; Sramek, R A; Panagia, N

    1986-03-14

    Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.

  4. Offshore Code Comparison Collaboration, Continuation within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System: Preprint

    SciTech Connect

    Robertson, A.; Jonkman, J.; Vorpahl, F.; Popko, W.; Qvist, J.; Froyd, L.; Chen, X.; Azcona, J.; Uzungoglu, E.; Guedes Soares, C.; Luan, C.; Yutong, H.; Pengcheng, F.; Yde, A.; Larsen, T.; Nichols, J.; Buils, R.; Lei, L.; Anders Nygard, T.; et al.

    2014-03-01

    Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, Continuation (OC4) project, which operates under the International Energy Agency (IEA) Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load-case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants? codes, thus improving the standard of offshore wind turbine modeling.

  5. The Radio Emission, X-Ray Emission, and Hydrodynamics of G328.4+0.2: A Comprehensive Analysis of a Luminous Pulsar Wind Nebula, Its Neutron Star, and the Progenitor Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph D.; Gaensler, B. M.; Slane, Patrick O.; Patnaude, Daniel J.; Hughes, John P.; Camilo, Fernando

    2007-07-01

    We present new observational and modeling results obtained for the Galactic nonthermal radio source G328.4+0.2. Using X-ray data obtained by XMM-Newton, we confirm that its X-ray emission is heavily absorbed, has a spectrum best fitted by a power-law model of photon index Γ=2 with no evidence for a thermal component, comes from a region significantly smaller than the radio emission, and that the X-ray and radio emissions are significantly offset from each other. We also present the results of a new high-resolution (7") 1.4 GHz image of G328.4+0.2 obtained using ATCA and a deep search for radio pulsations using the Parkes radio telescope. By comparing this 1.4 GHz image with a similar resolution image at 4.8 GHz, we find that the radio emission has a flat spectrum (α~0 Sν~να). Additionally, we are able to limit the pseudoluminosity of any pulsar to L1400≡S1400400d2<~30 mJy kpc2 for the central radio pulsar, assuming a distance of 17 kpc. In light of these observational results, we test whether G328.4+0.2 is a pulsar wind nebula or an SNR that contains a large pulsar wind nebula using a simple hydrodynamic model for the evolution of a pulsar wind nebula inside an SNR. As a result of this analysis, we conclude that G328.4+0.2 is a young (<~10,000 years old) pulsar wind nebula formed by a low magnetic field (<~1012 G) neutron star born spinning rapidly (<~10 ms) expanding into an undetected SNR formed by an energetic (>~1051 ergs), low ejecta mass (Mej<~5 Msolar) supernova explosion that occurred in a low-density (n~0.03 cm-3) environment.

  6. Model-based estimation of wind fields over the ocean from wind scatterometer measurements. I - Development of the wind field model. II - Model parameter estimation

    NASA Technical Reports Server (NTRS)

    Long, David G.; Mendel, Jerry M.

    1990-01-01

    Techniques for the determination of near-surface mesoscale ocean wind fields on the basis of satellite scatterometer data are developed and demonstrated. The derivation of normal-boundary and parameterized-boundary-condition (PBC) wind-field models is outlined, and results from a simulation performed to estimate the model errors are presented in tables. It is shown that the PBC model provides accurate results while minimizing the number of unknowns. After a review of the principles of scatterometry and an analysis of scatterometer measurement noise, an objective function for the measurement parameters is developed and optimized on the basis of gradient search with initial values computed from pointwise wind estimates. The model is then applied to data from a simulation of the NASA Scatterometer (Li et al., 1984), and the results are presented in extensive graphs. The feasibility of model-based wind-field estimation and the appropriateness of the PBC model are demonstrated.

  7. QUIJOTE scientific results - II. Polarisation measurements of the microwave emission in the Galactic molecular complexes W43 and W47 and supernova remnant W44

    NASA Astrophysics Data System (ADS)

    Génova-Santos, R.; Rubiño-Martín, J. A.; Peláez-Santos, A.; Poidevin, F.; Rebolo, R.; Vignaga, R.; Artal, E.; Harper, S.; Hoyland, R.; Lasenby, A.; Martínez-González, E.; Piccirillo, L.; Tramonte, D.; Watson, R. A.

    2017-02-01

    We present Q-U-I JOint TEnerife (QUIJOTE) intensity and polarisation maps at 10-20 GHz covering a region along the Galactic plane 24° ≲ l ≲ 45°, |b| ≲ 8°. These maps result from 210 h of data, have a sensitivity in polarisation of ≈40 μK beam-1 and an angular resolution of ≈1°. Our intensity data are crucial to confirm the presence of anomalous microwave emission (AME) towards the two molecular complexes W43 (22σ) and W47 (8σ). We also detect at high significance (6σ) AME associated with W44, the first clear detection of this emission towards a supernova remnant. The new QUIJOTE polarisation data, in combination with Wilkinson Microwave Anisotropy Probe (WMAP), are essential to (i) determine the spectral index of the synchrotron emission in W44, βsync = -0.62 ± 0.03, in good agreement with the value inferred from the intensity spectrum once a free-free component is included in the fit; (ii) trace the change in the polarisation angle associated with Faraday rotation in the direction of W44 with rotation measure -404 ± 49 rad m-2 and (iii) set upper limits on the polarisation of W43 of ΠAME < 0.39 per cent (95 per cent C.L.) from QUIJOTE 17 GHz, and <0.22 per cent from WMAP 41 GHz data, which are the most stringent constraints ever obtained on the polarisation fraction of the AME. For typical physical conditions (grain temperature and magnetic field strengths), and in the case of perfect alignment between the grains and the magnetic field, the models of electric or magnetic dipole emissions predict higher polarisation fractions.

  8. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    SciTech Connect

    Galbany, Lluis; et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  9. Numerical Predictions of Wind Turbine Power and Aerodynamic Loads for the NREL Phase II and IV Combined Experiment Rotor

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Johnson, Wayne; vanDam, C. P.; Chao, David D.; Cortes, Regina; Yee, Karen

    1999-01-01

    Accurate, reliable and robust numerical predictions of wind turbine rotor power remain a challenge to the wind energy industry. The literature reports various methods that compare predictions to experiments. The methods vary from Blade Element Momentum Theory (BEM), Vortex Lattice (VL), to variants of Reynolds-averaged Navier-Stokes (RaNS). The BEM and VL methods consistently show discrepancies in predicting rotor power at higher wind speeds mainly due to inadequacies with inboard stall and stall delay models. The RaNS methodologies show promise in predicting blade stall. However, inaccurate rotor vortex wake convection, boundary layer turbulence modeling and grid resolution has limited their accuracy. In addition, the inherently unsteady stalled flow conditions become computationally expensive for even the best endowed research labs. Although numerical power predictions have been compared to experiment. The availability of good wind turbine data sufficient for code validation experimental data that has been extracted from the IEA Annex XIV download site for the NREL Combined Experiment phase II and phase IV rotor. In addition, the comparisons will show data that has been further reduced into steady wind and zero yaw conditions suitable for comparisons to "steady wind" rotor power predictions. In summary, the paper will present and discuss the capabilities and limitations of the three numerical methods and make available a database of experimental data suitable to help other numerical methods practitioners validate their own work.

  10. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect

    Cordes, J A; Johnson, B A

    1981-06-01

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  11. Magnetar-Powered Supernovae in Two Dimensions. I. Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Woosley, S. E.; Sukhbold, Tuguldur

    2016-11-01

    Previous studies have shown that the radiation emitted by a rapidly rotating magnetar embedded in a young supernova can greatly amplify its luminosity. These one-dimensional studies have also revealed the existence of an instability arising from the piling up of radiatively accelerated matter in a thin dense shell deep inside the supernova. Here, we examine the problem in two dimensions and find that, while instabilities cause mixing and fracture this shell into filamentary structures that reduce the density contrast, the concentration of matter in a hollow shell persists. The extent of the mixing depends upon the relative energy input by the magnetar and the kinetic energy of the inner ejecta. The light curve and spectrum of the resulting supernova will be appreciably altered, as will the appearance of the supernova remnant, which will be shellular and filamentary. A similar pile up and mixing might characterize other events where energy is input over an extended period by a centrally concentrated source, e.g., a pulsar, radioactive decay, a neutrino-powered wind, or colliding shells. The relevance of our models to the recent luminous transient ASASSN-15lh is briefly discussed.

  12. Supernova neutrinos

    SciTech Connect

    John Beacom

    2003-01-23

    We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum, which solves a long-standing problem of how to separately measure the total energy release and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  13. VizieR Online Data Catalog: R-band light curves of type II supernovae (Rubin+, 2016)

    NASA Astrophysics Data System (ADS)

    Rubin, A.; Gal-Yam, A.; De Cia, A.; Horesh, A.; Khazov, D.; Ofek, E. O.; Kulkarni, S. R.; Arcavi, I.; Manulis, I.; Yaron, O.; Vreeswijk, P.; Kasliwal, M. M.; Ben-Ami, S.; Perley, D. A.; Cao, Y.; Cenko, S. B.; Rebbapragada, U. D.; Wozniak, P. R.; Filippenko, A. V.; Clubb, K. I.; Nugent, P. E.; Pan, Y.-C.; Badenes, C.; Howell, D. A.; Valenti, S.; Sand, D.; Sollerman, J.; Johansson, J.; Leonard, D. C.; Horst, J. C.; Armen, S. F.; Fedrow, J. M.; Quimby, R. M.; Mazzali, P.; Pian, E.; Sternberg, A.; Matheson, T.; Sullivan, M.; Maguire, K.; Lazarevic, S.

    2016-05-01

    Our sample consists of 57 SNe from the PTF (Law et al. 2009PASP..121.1395L; Rau et al. 2009PASP..121.1334R) and the intermediate Palomar Transient Factory (iPTF; Kulkarni 2013ATel.4807....1K) surveys. Data were routinely collected by the Palomar 48-inch survey telescope in the Mould R-band. Follow-up observations were conducted mainly with the robotic 60-inch telescope using an SDSS r-band filter, with additional telescopes providing supplementary photometry and spectroscopy (see Gal-Yam et al. 2011, J/ApJ/736/159). The full list of SNe, their coordinates, and classification spectra are presented in Table 1. Most of the spectra were obtained with the Double Spectrograph on the 5m Hale telescope at Palomar Observatory, the Kast spectrograph on the Shane 3m telescope at Lick Observatory, the Low Resolution Imaging Spectrometer (LRIS) on the Keck I 10m telescope, and the DEep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10m telescope. (2 data files).

  14. RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP

    SciTech Connect

    Arcavi, Iair; Howell, D. Andrew; Wolf, William M.; Bildsten, Lars; McCully, Curtis; Valenti, Stefano; Leloudas, Giorgos; Gal-Yam, Avishay; Katz, Boaz; Hardin, Delphine; Astier, Pierre; Balland, Cristophe; Prajs, Szymon; Sullivan, Mark; Perley, Daniel A.; Svirski, Gilad; Cenko, S. Bradley; Lidman, Chris; Carlberg, Ray G.; Conley, Alex; and others

    2016-03-01

    We present observations of four rapidly rising (t{sub rise} ≈ 10 days) transients with peak luminosities between those of supernovae (SNe) and superluminous SNe (M{sub peak} ≈ −20)—one discovered and followed by the Palomar Transient Factory (PTF) and three by the Supernova Legacy Survey. The light curves resemble those of SN 2011kl, recently shown to be associated with an ultra-long-duration gamma-ray burst (GRB), though no GRB was seen to accompany our SNe. The rapid rise to a luminous peak places these events in a unique part of SN phase space, challenging standard SN emission mechanisms. Spectra of the PTF event formally classify it as an SN II due to broad Hα emission, but an unusual absorption feature, which can be interpreted as either high velocity Hα (though deeper than in previously known cases) or Si ii (as seen in SNe Ia), is also observed. We find that existing models of white dwarf detonations, CSM interaction, shock breakout in a wind (or steeper CSM), and magnetar spin down cannot readily explain the observations. We consider the possibility that a “Type 1.5 SN” scenario could be the origin of our events. More detailed models for these kinds of transients and more constraining observations of future such events should help to better determine their nature.

  15. ON THE INJECTION OF SHORT-LIVED RADIONUCLIDES FROM A SUPERNOVA INTO THE SOLAR NEBULA: CONSTRAINTS FROM THE OXYGEN ISOTOPES

    SciTech Connect

    Liu, Ming-Chang

    2014-02-01

    Injection of short-lived radionuclides from a nearby core-collapse Type II supernova into the already-formed solar protoplanetary disk was proposed to account for the former presence of {sup 26}Al, {sup 41}Ca, and {sup 60}Fe in the early solar system inferred from isotopic analysis of meteoritic samples. One potential corollary of this ''late-injection'' scenario is that the disk's initial (pre-injection) oxygen isotopic composition could be significantly altered, as supernova material that carried the short-lived radionuclides would also deliver oxygen components synthesized in that given star. Therefore, the change in the oxygen isotopic composition of the disk caused by injection could in principle be used to constrain the supernova injection models. Previous studies showed that although supernova oxygen could result in a wide range of shifts in {sup 17}O/{sup 16}O and {sup 18}O/{sup 16}O of the disk, a couple of cases existed where the calculated oxygen changes in the disk would be compatible with the meteoritic and solar wind data. Recently, the initial abundances of {sup 41}Ca and {sup 60}Fe in the solar system were revised to lower values, and the feasibility of supernova injection as a source for the three radionuclides was called into question. In this study, supernova parameters needed for matching {sup 26}Al, {sup 41}Ca, and {sup 60}Fe to their early solar system abundances were reinvestigated and then were used to infer the pre-injection O-isotope composition of the disk. The result suggested that a supernova undergoing mixing fallback might be a viable source for the three radionuclides.

  16. On the Injection of Short-lived Radionuclides from a Supernova into the Solar Nebula: Constraints from the Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Chang

    2014-02-01

    Injection of short-lived radionuclides from a nearby core-collapse Type II supernova into the already-formed solar protoplanetary disk was proposed to account for the former presence of 26Al, 41Ca, and 60Fe in the early solar system inferred from isotopic analysis of meteoritic samples. One potential corollary of this "late-injection" scenario is that the disk's initial (pre-injection) oxygen isotopic composition could be significantly altered, as supernova material that carried the short-lived radionuclides would also deliver oxygen components synthesized in that given star. Therefore, the change in the oxygen isotopic composition of the disk caused by injection could in principle be used to constrain the supernova injection models. Previous studies showed that although supernova oxygen could result in a wide range of shifts in 17O/16O and 18O/16O of the disk, a couple of cases existed where the calculated oxygen changes in the disk would be compatible with the meteoritic and solar wind data. Recently, the initial abundances of 41Ca and 60Fe in the solar system were revised to lower values, and the feasibility of supernova injection as a source for the three radionuclides was called into question. In this study, supernova parameters needed for matching 26Al, 41Ca, and 60Fe to their early solar system abundances were reinvestigated and then were used to infer the pre-injection O-isotope composition of the disk. The result suggested that a supernova undergoing mixing fallback might be a viable source for the three radionuclides.

  17. The relationship among air quality, mixing heights, and winds observed during the entire TexAQS-II field study

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Knoderer, C. A.; Zahn, P.

    2007-12-01

    The Texas Air Quality Study II (TexAQS-II) was designed to provide support for State Implementation Plan (SIP) revisions. The SIP revisions outline strategies for improving air quality to meet the new federal 8-hr ozone standard and regional haze requirements. As part of TexAQS-II, a field study was conducted to collect air quality and meteorological data throughout eastern Texas from May 1, 2005, through October 15, 2006. As part of the field study, various organizations made upper-air meteorological measurements at several locations. These measurements were collected by twelve 915-MHz radar wind profilers (RWPs), three 404 MHz RWPs, nine Radio Acoustic Sounding Systems (RASS), two sodars, and one lidar. These instruments provide vertically, horizontally, and temporally resolved wind, virtual temperature (Tv), and mixing height information. This presentation will address the three-dimensional and temporal characteristics of these parameters throughout the study domain for the entire study period and how these characteristic vary by season, month, and synoptic weather pattern. The presentation will also address how these characteristics influence regional and local air quality conditions throughout the study domain, including the relationship among various transport statistics, mixing height characteristics (e.g., time of peak mixing, morning mixing height growth rate, peak mixing height, average morning mixing height, etc.) and air quality. In addition, case studies will illustrate the finer-scale details of the relationship among the evolution of mixing heights, diurnal variability of winds, and air quality.

  18. Near-infrared IFU and MOS observations of supernova remnants

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Gyu

    2016-06-01

    We present near-infrared IFU and MOS observations of two bright [Fe II] line emitting supernova remnants (SNRs). The two SNRs, G11.2-0.3 and RCW103, are selected from our near-infrared [Fe II] 1.64 um narrow band imaging survey of SNRs such as UKIRT unbiased [Fe II] imaging survey of the the Galactic plane and AAT [Fe II] imaging of some core-collapse SNRs. We detect several near-infrared hyperfine lines of [Fe II] at the southeastern shell of G11.2-0.3. We estimate the line strength and extinction-corrected density, which gives a clue to the origin of the iron-rich southeastern shell of G11.2-0.3. We obtain the MOS spectra of [Fe II]-emitting clumps inside RCW103. The observed clumps move about hundreds kilometers in radial direction, suggesting that they are shocked dense materials lost by stellar wind at the final stage of the evolution of the progenitor star.

  19. Signatures of the late time core-collapse supernova environment

    NASA Astrophysics Data System (ADS)

    Roberts, Luke Forrest

    The hot and dense proto-neutron star (PNS) born subsequent to core-collapse in a type II supernova explosion is an intense source of neutrinos of all flavors. It emits the 3 - 5 × 1053 ergs of gravitational binding energy gained during collapse as neutrino radiation on a time scale of tens of seconds as it contracts, becomes increasingly neutron-rich and cools. While the supernova explosion mechanism and associated accretion of material is expected to influence the neutrino emission at early time (i.e. t ≲ 1 s post bounce) the late time neutrino signal is shaped by the properties of the PNS, such as the nuclear equation of state (EoS), neutrino opacities in dense matter, and other microphysical properties that affect the cooling timescale by influencing either neutrino diffusion or convection. Detection of significant numbers of late time supernova neutrinos will provide a direct window into the properties of nuclear matter and neutron stars, if the neutrino signal can be modeled accurately. The average emitted neutrino energies also strongly affect nucleosynthesis in the neutrino driven wind, neutrino induced nucleosynthesis further out in the star, and the patterns of neutrino oscillations outside of the PNS. This thesis examines a number of aspects of this environment. First, the equations of spherically symmetric general relativistic radiation hydrodynamics are discussed, a new code for calculating neutrino transport in PNSs is described, and first results from this code are presented. It is found that the NDW is neutron rich for at least a few seconds, in contrast to other recent work. This change in the expected wind electron fraction is traced to the correct treatment of the nucleon dispersion relations in an interacting medium and turns out to be influenced by the sub-nuclear density symmetry energy. Late time convection in PNSs is also studied. It is found that the density dependence of the symmetry energy may affect the duration of

  20. The Interaction of Supernovae with Their Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    1995-07-01

    The interaction of supernova (SN) ejecta with circumstellar material supplied by the wind of the evolved progenitor star can sometimes provide enough energy to sustain the SN luminosity for several decades. Existing observations of certain Type II SNe strongly favor such an interpretation over other possible late-time energy sources. Some peculiar SNe II have such dense circumstellar winds that interaction with the ejecta substantially alters their observed properties even at early times. The UV spectrum is a powerful diagnostic for probing the conditions in the shocked outer ejecta and circumstellar gas. We propose to observe two old SNe (t = 7- 15 years) which, due to their extensive radio and optical data records, are particularly well suited for an investigation of the interaction between ejecta and circumstellar gas. We will also observe one of the most recent SNe II (SN 1994Y), which shows strong evidence for very early interaction with its circumstellar medium. The fluxes and intensity ratios of UV emission lines measured in FOS spectra will be used to test theoretical models of the interaction. HST observations of these objects will shed light on differences among them and their shocks, as well as on the mass-loss histories of their progenitor stars.

  1. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  2. CONSTRAINING PHYSICAL PROPERTIES OF TYPE IIn SUPERNOVAE THROUGH RISE TIMES AND PEAK LUMINOSITIES

    SciTech Connect

    Moriya, Takashi J.; Maeda, Keiichi

    2014-08-01

    We investigate the diversity in the wind density, supernova ejecta energy, and ejecta mass in Type IIn supernovae based on their rise times and peak luminosities. We show that the wind density and supernova ejecta properties can be estimated independently if both the rise time and peak luminosity are observed. The peak luminosity is mostly determined by the supernova properties and the rise time can be used to estimate the wind density. We find that the ejecta energies of Type IIn supernovae need to vary by factors of 0.2-5 from the average if their ejecta masses are similar. The diversity in the observed rise times indicates that their wind densities vary by factors of 0.2-2 from the average. We show that Type IIn superluminous supernovae should have not only large wind density but also large ejecta energy and/or small ejecta mass to explain their large luminosities and the rise times at the same time. We also note that shock breakout does not necessarily occur in the wind even if it is optically thick, except for the case of superluminous supernovae, and we analyze the observational data both with and without assuming that the shock breakout occurs in the dense wind of Type IIn supernovae.

  3. Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Ladd, Carol; Cheng, Wei; Salo, Sigrid

    2016-10-01

    Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional ~150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging ~7 days per month during winter and ~2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.

  4. Supernova neutrino detection

    SciTech Connect

    Scholberg, K.

    2015-07-15

    In this presentation I summarize the main detection channels for neutrinos from core-collapse supernovae, and describe current status of and future prospects for supernova-neutrino-sensitive detectors worldwide.

  5. More Supernova Surprises

    DTIC Science & Technology

    2010-09-24

    SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE More Supernova Surprises 5a. CONTRACT NUMBER 5b. GRANT...PERSPECTIVES More Supernova Surprises ASTRONOMY J. Martin Laming Spectroscopic observations of the supernova SN1987A are providing a new window into high...a core-collapse supernova ) have stretched and motivated research that has expanded our knowledge of astrophysics. The brightest such event in

  6. Superluminous Extragalactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chen, C. H. R.; Chu, Y.-H.

    1998-12-01

    Extragalactic supernova remnants (SNRs) are conventionally surveyed by optical emission-line images, using the [S II]/Hα line ratio to diagnose SNRs. The majority of the optically identified extragalactic SNRs are too faint to be confirmed at X-ray or radio wavelengths. Conversely, extragalactic SNRs that are initially identified by X-ray or radio observations are all superluminous, e.g., the X-ray SNR in NGC 6946 (Blair & Fesen 1994, ApJ, 424, L103) and the radio SNR in NGC 5471 (Skillman 1985, ApJ, 290, 449). NGC 5471 is a giant H II region in M101. Optical echelle observations of the SNR in NGC 5471 have detected high-velocity gas with a FWZI of at least 350 km/s. Decomposing the narrow H II component and the broad SNR component in the Hα velocity profile, Chu & Kennicutt (1986) derived a total mass of 6500+/-3000 M_sun and a kinetic energy of a few *E(50) ergs. Using archival ROSAT X-ray observations, Williams & Chu (1995) measured an X-ray luminosity of ~ 1 x 10(38) ergs/s for NGC 5471. Apparently, the SNR in NGC 5471 is superluminous at all wavelengths. To determine the physical conditions and nature of the superluminous SNR in NGC 5471, we have obtained HST WFPC2 images of NGC 5471 in the Hα and [S II] lines and two continuum bands. These high-resolution images reveal a [S II]-enhanced shell with a diameter of ~ 60 pc. A recent 180-ks ROSAT High Resolution Imager image of M101 shows that the X-ray emission from NGC 5471 peaks at this SNR shell. We are thus confident in the identification of the superluminous SNR in NGC 5471. Are superluminous SNRs produced by particularly powerful supernova explosions? Are they associated with gamma-ray bursters? Are their luminosities caused by dense interstellar environment? We will report the detailed physical properties of the SNR in NGC 5471, compare it to the other superluminous SNRs, and address these questions.

  7. Acquiring information about neutrino parameters by detecting supernova neutrinos

    SciTech Connect

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-08-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle {theta}{sub 13}, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about {theta}{sub 13} and neutrino masses by detecting supernova neutrinos. We apply these methods to some current neutrino experiments.

  8. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect

    Whiteman, Cameron; Capps, Scott

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  9. Offshore Code Comparison Collaboration within IEA Wind Annex XXIII: Phase II Results Regarding Monopile Foundation Modeling

    SciTech Connect

    Jonkman, J.; Butterfield, S.; Passon, P.; Larsen, T.; Camp, T.; Nichols, J.; Azcona, J.; Martinez, A.

    2008-01-01

    This paper presents an overview and describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration, which operates under Subtask 2 of the International Energy Agency Wind Annex XXIII.

  10. Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report

    SciTech Connect

    Fallon, Christopher; Piper, Orvane; Hazelip, William; Zhao, Yishan; Salvador, Lisa; Pruitt, Tom; Peterson, Jeffrey; Ashby, Rebecca; Pierce, Bob; Burner, Bob; Daniel, John; Zhu, Jinxiang; Moore, Maria; Liu, Shu; Pennock, Ken; Frank, Jaclyn; Ibanez, Eduardo; Heaney, Michael; Bloom, Aaron; Zhang, Yingchen; Elliott, Dennis; Seim, Harvey E.

    2015-04-30

    Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS) which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.

  11. Photoionized gaseous nebulae and magnetized stellar winds: The evolution and shaping of H II regions and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Franco, José; García-Segura, Guillermo; Kurtz, Stan E.; López, José A.

    2001-05-01

    The early evolution of hydrogen+ (H II) regions is controlled by the properties of the star-forming cloud cores. The observed density distributions in some young H II regions indicate that the power-law stratifications can be steeper than r-2. Ionization fronts can overrun these gradients and the ionized outflows are strongly accelerated along these steep density distributions. Thus, photoionized regions can either reach pressure equilibrium inside the inner parts of the high-pressure cores [with sizes and densities similar to those observed in ultra compact (UC) H II regions], or create bright H II regions with extended emission. The density inhomogeneities engulfed within the ionization fronts create corrugations in the front, which in turn drive instabilities in the ionization-shock (I-S) front. These instabilities grow on short time scales and lead to the fragmentation of the dense shells generated by the shock fronts. Thus, new clumps are continuously created from the fragmented shell, and the resulting finger-like structures can explain the existence of elephant trunks and cometary-like globules in most H II regions. In the case of planetary nebulae (PNe), wind asymmetries and magnetic fields from rotating stars, along with precession of the rotation axis, can create the wide range of observed PNe morphologies and collimated outflows (jets). Magnetic collimation and jet formation in PNe become very efficient after the flow has passed through the reverse shock of the PN.

  12. Identification campaign of supernova remnant candidates in the Milky Way. II. X-ray studies of G38.7-1.4

    SciTech Connect

    Huang, R. H. H.; Wu, J. H. K.; Kong, A. K. H.; Hui, C. Y.; Seo, K. A.; Trepl, L.

    2014-04-20

    We report on XMM-Newton and Chandra observations of the Galactic supernova remnant candidate G38.7-1.4, together with complementary radio, infrared, and γ-ray data. An approximately elliptical X-ray structure is found to be well correlated with a radio shell as seen by the Very Large Array. The X-ray spectrum of G38.7-1.4 can be well described by an absorbed collisional ionization equilibrium plasma model, which suggests the plasma is shock heated. Based on the morphology and the spectral behavior, we suggest that G38.7-1.4 is indeed a supernova remnant belonging to a mix-morphology category.

  13. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Temi, P.; Rank, D.

    2000-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short enough times that many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extinction is especially severe. Thus, determining the supernova rate in active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micrometer emission line was the strongest line in the infrared spectrum for a period of a year and half after th explosion. Since dust extinction is much less at 6.63 micrometers than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the [NiII] line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micrometers using ISOCAM to search for the [NiII] emission line characteristic of recent supernovae. We did not detect any [NiII] line emission brighter than a 5-sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled ot the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a [NiII] line with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a [NiII] line luminosity greater than the line in SN1987A.

  14. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  15. Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies

    SciTech Connect

    Fragile, P C; Murray, S D; Lin, D C

    2004-06-15

    We examine the efficiency with which supernova-enriched gas may be ejected from dwarf disk galaxies, using a methodology previously employed to study the self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies that focused on highly concentrated starbursts, in the current work we consider discrete supernova events spread throughout various fractions of the disk. We model disk systems having gas masses of 10{sup 8} and 10{sup 9} M{sub {circle_dot}} with supernova rates of 30, 300, and 3000 Myr{sup -1}. The supernova events are confined to the midplane of the disk, but distributed over radii of 0, 30, and 80% of the disk radius, consistent with expectations for Type II supernovae. In agreement with earlier studies, we find that the enriched material from supernovae is largely lost when the supernovae are concentrated near the nucleus, as expected for a starburst event. In contrast, we find the loss of enriched material to be much less efficient (as low as 21%) when the supernovae occur over even a relatively small fraction of the disk. The difference is due to the ability of the system to relax following supernova events that occur over more extended regions. Larger physical separations also reduce the likelihood of supernovae going off within low-density ''chimneys'' swept out by previous supernovae. We also find that, for the most distributed systems, significant metal loss is more likely to be accompanied by significant mass loss. A comparison with theoretical predications indicates that, when undergoing self-regulated star formation, galaxies in the mass range considered shall efficiently retain the products of Type II supernovae.

  16. The Galactic Plane region near ℓ = 93°. II. A stellar wind bubble surrounding SNR 3C 434.1

    NASA Astrophysics Data System (ADS)

    Foster, T.; Routledge, D.; Kothes, R.

    2004-04-01

    New Canadian Galactic Plane Survey λ 21 cm H I line observations towards supernova remnant (SNR) 3C 434.1 (G94.0+1.0) are presented. We find a fragmented and thin-walled atomic hydrogen shell inside which the SNR is seen to be contained at v≃ -80 km s-1, which we report to be a highly evolved stellar wind bubble (SWB) associated with the remnant. A dark area in the midst of otherwise bright line emission is also seen near -71 km s-1. An absorption profile to the extragalactic continuum source 4C 51.45 (superimposed on the shell's north face) allows us to probe the shell's optical depth, kinetic temperature and expansion velocity. The material in the dark area has the same properties as material in the fragmented shell, suggesting that the dark area is actually the far-side ``cap'' of the shell seen absorbing emission from warm background gas, the first instance of H I Self Absorption (HISA) seen in such a structure. We show that the kinematic distance of 10 kpc derived from a flat Galactic rotation model is highly improbable, and that this bubble/SNR system is most likely resident in the Perseus Spiral Arm, lying 5.2 kpc distant. We model the SWB shell in three dimensions as a homologously expanding ellipsoid. Physical and dynamical characteristics of the bubble are determined, showing its advanced evolutionary state. Finally, from a photometric search for one or more stars associated with the SWB, we determine that three B0V stars and one O4V star currently inhabit this bubble, and that the progenitor of 3C 434.1 was at latest also an O4 type star.

  17. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner

  18. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    SciTech Connect

    Yang, Haifeng; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  19. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  20. Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Truran, James W.

    2006-08-01

    The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.

  1. THE ACCRETION WIND MODEL OF FERMI BUBBLES. II. RADIATION

    SciTech Connect

    Mou, Guobin; Yuan, Feng; Gan, Zhaoming; Sun, Mouyuan

    2015-09-20

    In a previous work, we have shown that the formation of Fermi bubbles can be due to the interaction between winds launched from the hot accretion flow in Sgr A* and the interstellar medium (ISM). In that work, we focus only on the morphology. In this paper we continue our study by calculating the gamma-ray radiation. Some cosmic-ray protons (CRp) and electrons (CRe) must be contained in the winds, which are likely formed by physical processes such as magnetic reconnection. We have performed MHD simulations to study the spatial distribution of CRp, considering the advection and diffusion of CRp in the presence of magnetic field. We find that a permeated zone is formed just outside of the contact discontinuity between winds and the ISM, where the collisions between CRp and thermal nuclei mainly occur. The decay of neutral pions generated in the collisions, combined with the inverse Compton scattering of background soft photons by the secondary leptons generated in the collisions and primary CRe, can well explain the observed gamma-ray spectral energy distribution. Other features such as the uniform surface brightness along the latitude and the boundary width of the bubbles are also explained. The advantage of this “accretion wind” model is that the adopted wind properties come from the detailed small-scale MHD numerical simulation of accretion flows and the value of mass accretion rate has independent observational evidences. The success of the model suggests that we may seriously consider the possibility that cavities and bubbles observed in other contexts such as galaxy clusters may be formed by winds rather than jets.

  2. Radiation-driven winds of hot luminous stars. XVIII. The unreliability of stellar and wind parameter determinations from optical vs. UV spectral analysis of selected central stars of planetary nebulae and the possibility of some CSPNs as single-star supernova Ia progenitors

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Pauldrach, A. W. A.; Kaschinski, C. B.

    2016-08-01

    that of moderate clumping factors. Moderate clumping factors leave the UV spectra mostly unaffected, indicating that the influence on the ionization balance, and thus on the radiative acceleration, is small. Instead of the erratic behavior of the clumping factors claimed from the optical analyses, our analysis based on the velocity field computed from radiative driving yields similar clumping factors for all CSPNs, with a typical value of fcl = 4. With and without clumping, wind strengths and terminal velocities consistent with the stellar parameters from the optical analysis give spectra incompatible with both optical and UV observations, whereas a model that consistently implements the physics of radiation-driven winds achieves a good fit to both the optical and UV observations with a proper choice of stellar parameters. The shock temperatures and the ratios of X-ray to bolometric luminosity required to reproduce the highly ionized O vi line in the FUSE spectral range agree with those known from massive O stars (LX/Lbol ~ 10-7...10-6), again confirming the similarity of O-type CSPN and massive O star atmospheres and further strengthening the claim that both have identical wind driving mechanisms. Conclusions: The similarity of the winds of O-type CSPNs and those of massive O stars justifies using the same methods based on the dynamics of radiation-driven winds in their analysis, thus supporting the earlier result that several of the CSPNs in the sample have near-Chandrasekhar-limit masses and may thus be possible single-star progenitors of type Ia supernovae.

  3. Measuring and Extrapolating the Chemical Abundances of Normal and Superluminous Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Stoll, R. A.

    2013-10-01

    We present All-Sky Automated Survey data starting 25 days before the discovery of the recent type IIn SN 2010jl, and we compare its light curve to other luminous IIn SNe, showing that it is a luminous (MI ≈ -20.5) event. Its host galaxy, UGC 5189, has a low gas-phase oxygen abundance (12+log(O/H) = 8.2±0.1), which reinforces the emerging trend that over-luminous core-collapse supernovae are found in the low-metallicity tail of the galaxy distribution, similar to the known trend for the hosts of long GRBs. We compile oxygen abundances from the literature and from our own observations of UGC 5189, and we present an unpublished spectrum of the luminous type Ic SN 2010gx that we use to estimate its host metallicity. We discuss these in the context of host metallicity trends for different classes of core-collapse objects. The earliest generations of stars are known to be enhanced in [O/Fe] relative to the Solar mixture; it is therefore likely that the stellar progenitors of these overluminous supernovae are even more iron-poor than they are oxygen-poor. A number of mechanisms and massive star progenitor systems have been proposed to explain the most luminous core-collapse supernovae. Any successful theory that tries to explain these very luminous events will need to include the emerging trend that points towards low-metallicity for the massive progenitor stars. This trend for very luminous supernovae to strongly prefer low-metallicity galaxies should be taken into account when considering various aspects of the evolution of the metal-poor early universe, such as enrichment and reionization. Type II SNe can be used as a star formation tracer to probe the metallicity distribution of global low-redshift star formation. We present oxygen and iron abundance distributions of type II supernova progenitor regions that avoid many previous sources of bias. Because iron abundance, rather than oxygen abundance, is of key importance for the late stage evolution of the massive

  4. Supernovae neutrino pasta interaction

    NASA Astrophysics Data System (ADS)

    Lin, Zidu; Horowitz, Charles; Caplan, Matthew; Berry, Donald; Roberts, Luke

    2017-01-01

    In core-collapse supernovae, the neutron rich matter is believed to have complex structures, such as spherical, slablike, and rodlike shapes. They are collectively called ``nuclear pasta''. Supernovae neutrinos may scatter coherently on the ``nuclear pasta'' since the wavelength of the supernovae neutrinos are comparable to the nuclear pasta scale. Consequently, the neutrino pasta scattering is important to understand the neutrino opacity in the supernovae. In this work we simulated the ``nuclear pasta'' at different temperatures and densities using our semi-classical molecular dynamics and calculated the corresponding static structure factor that describes ν-pasta scattering. We found the neutrino opacities are greatly modified when the ``pasta'' exist and may have influence on the supernovae neutrino flux and average energy. Our neutrino-pasta scattering effect can finally be involved in the current supernovae simulations and we present preliminary proto neutron star cooling simulations including our pasta opacities.

  5. The Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew

    2017-01-01

    Las Cumbres Observatory is a global network of robotic telescopes specializing in time domain astronomy. It currently has nine 1m telescopes, two 2m telescopes, and seven 0.4m telescopes. The Supernova Key Project is a 3 year program to obtain light curves and spectra of 500 supernovae with Las Cumbres Observatory. Here we show recent results, detail plans for the next Supernova Key Project, and explain how the US community can get involved.

  6. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND

    SciTech Connect

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.

    2009-12-01

    and wind sources provides an ideal environment for broad line emission, and explains the large observed broad/narrow-line flux ratios. We have examined in more detail the discrete outflow channel identified within the inner wind in Paper I. The channel appears as a coherent, expanding cylindrical structure of length >120 pc and width 35-50 pc. The walls maintain an approximately constant (but subsonic) expansion velocity of approx60 km s{sup -1}, and are defined by peaks and troughs in the densities of the different line components. We hypothesize that as the hot wind fluid flows down the channel cavity, it interacts with the cooler, denser walls of the channel and with entrained material within the flow to produce broad-line emission, while the walls themselves emit primarily the narrow lines. We use the channel to examine further the relationship between the narrow and broad component emitting gas within the inner wind. Within the starburst energy injection zone, we find that turbulent motions (as traced by the broad component) appear to play an increasing role with height. Finally, we have argued that a point-like knot identified in GMOS position 4, exhibiting blueshifted (by approx140 km s{sup -1}), broad (approx<350 km s{sup -1}) Halpha emission and enhanced [S II]/Halpha and [N II]/Halpha ratios, is most likely an ejected luminous blue variable-type object.

  7. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  8. SOUSA Supernova Surprises

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.

    2017-01-01

    The Swift Optical/Ultraviolet Supernova Archive is an effort to make public the Swift UVOT images and final photometry of as many supernovae as possible. These include many of the nearest, brightest, and most exciting supernovae of the last decade. Hiding within the archive, however, are supernovae you have never heard of, which never the less show extremes in color or luminosity or interesting light curve behavior in the ultraviolet. I will highlight some of the extreme objects of different subtypes and puzzling objects which warrant further study.

  9. 78 FR 76609 - Genesis Solar, LLC; NRG Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ..., LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of Effectiveness of Exempt Wholesale Generator...

  10. The Frequency of Supernovae in the Early Universe

    NASA Astrophysics Data System (ADS)

    Melinder, Jens

    Supernovae are cosmic explosions of cataclysmic proportion that signify the death of a star. While being interesting phenomena in their own right, their brightness also make them excellent probes of the early universe. Depending on the type of the progenitor star and the origin of the explosion different subjects can be investigated. In this dissertation the work I have done on the detection, characterisation and rate measurements of supernovae in the Stockholm VIMOS Supernova Search is presented. We have discovered 16 supernovae that exploded billions of years ago (or, equivalently, at high redshift, z). The observed brightness and colour evolution have been used to classify the supernovae into either thermonuclear (type Ia) or core collapse (type II) supernovae. The accuracy of the classification code is high, only about 5% of the supernovae are mistyped, similar to other codes of the same kind. By comparing the observed frequency of supernovae to simulations the underlying supernova rate at these high redshifts have been measured. The main result reported in this thesis is that the core collapse supernova rate at high redshift matches the rates estimated from looking at the star formation history of the universe, and agree well with previous studies. The rate of Ia supernovae at high redshift have been investigated by several projects, our results show a somewhat higher rate of Ia supernovae than expected. Proper estimates of the systematic errors of rate measurements are found to be very important. Furthermore, by using novel techniques for reducing and stacking images, we have obtained a galaxy sample containing approximately 50,000 galaxies. Photometric redshifts have been obtained for most of the galaxies, the resulting accuracy below z=1 is on the order of 10%. The galaxy sample has also been used to find high redshift sources, so called Lyman Break Galaxies, at z=3-5.

  11. Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Hoffman, R. D.; Woosley, S. E.; Qian, Y.-Z.

    1997-06-01

    During the first 20 s of its life, the enormous neutrino luminosity of a neutron star drives appreciable mass loss from its surface. This neutrino-driven wind has been previously identified as a likely site for the r-process. Qian & Woosley have derived, both analytically and numerically, the physical conditions relevant for heavy element synthesis in the wind. These conditions include the entropy (S), the electron fraction (Ye), the dynamic timescale, and the mass loss rate. Here we explore the implications of these conditions for nucleosynthesis. We find that the standard wind models derived in that paper are inadequate to make the r-process, though they do produce some rare species above the iron group. We further determine the general restrictions on the entropy, the electron fraction, and the dynamic timescale that are required to make the r-process. In particular, we derive from nuclear reaction network calculations the conditions required to give a sufficient neutron-to-seed ratio for production of the platinum peak. These conditions range from Ye ~ 0.2 and S <~ 100 baryon-1 for reasonable dynamic timescales of ~0.001-0.1 s, to Ye ~ 0.4-0.495 and S >~ 400 baryon-1 for a dynamic timescale of ~0.1 s. These conditions are also derived analytically to illustrate the physics determining the neutron-to-seed ratio.

  12. Eta Carinae: An Astrophysical Laboratory to Study Conditions During the Transition Between a Pseudo-Supernova and a Supernova

    NASA Astrophysics Data System (ADS)

    McKinnon, Darren; Gull, T. R.; Madura, T.

    2014-01-01

    A major puzzle in the studies of supernovae is the pseudo-supernova, or the near-supernovae state. It has been found to precede, in timespans ranging from months to years, a number of recently-detected distant supernovae. One explanation of these systems is that a member of a massive binary underwent a near-supernova event shortly before the actual supernova phenomenon. Luckily, we have a nearby massive binary, Eta Carinae, that provides an astrophysical laboratory of a near-analog. The massive, highly-eccentric, colliding-wind binary star system survived a non-terminal stellar explosion in the 1800's, leaving behind the incredible bipolar, 10"x20" Homunculus nebula. Today, the interaction of the binary stellar winds 1") is resolvable by the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). Using HST/STIS, several three-dimensional (3D) data cubes (2D spatial, 1D velocity) have been obtained at selected phases during Eta Carinae's 5.54-year orbital cycle. The data cubes were collected by mapping the central 1-2" at 0.05" intervals with a 52"x0.1" aperture. Selected forbidden lines, that form in the colliding wind regions, provide information on electron density of the shocked regions, the ionization by the hot secondary companion of the primary wind and how these regions change with orbital phase. By applying various analysis techniques to these data cubes, we can compare and measure temporal changes due to the interactions between the two massive winds. The observations, when compared to current 3D hydrodynamic models, provide insight on Eta Carinae's recent mass-loss history, important for determining the current and future states of this likely nearby supernova progenitor.

  13. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  14. The wind and thermally driven circulation of the eastern Mediterranean Sea. Part II: the Baroclinic case

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola; Bergamasco, Andrea

    1991-04-01

    Compared with other interesting parts of the World Ocean, little is known of the eastern Mediterranean and major issues of the Mediterranean circulation are still unsolved. Among them, the most crucial one is: what is the dominant driving mechanism of the eastern Mediterranean general circulation: (1) the wind stress; (2) the thermohaline surface fluxes; (3) the inflow forcing at the Sicily Straits? What is the relative importance of these three forcing functions? Is it the same in the different sub-basins comprising the eastern Mediterranean? What modelling factors are important for the simulation of the seasonal cycle and is the general circulation overall dominated by the annual mean or seasonal signal? To answer the above questions we have carried out an extensive and thorough series of numerical experiments using a multilevel model of the circulation, suitable for coarse-resolution studies but endowed with active thermodynamics and allowing for realistic geometry (coastlines, islands, bottom relief). The model is used in a three-level version as the minimum one capable of simulating the vertical superposition of different water masses observed in the eastern Mediterranean. The climatological monthly averages of wind-stress, thermal and evaporative fluxes and inflow at Sicily are used to drive the model. In Part I of the present study it was shown that the seasonal cycle present in the wind-stress curl induces a strongly seasonal barotropic circulation comprising the entire eastern Mediterranean. This seasonal gyre reverses from being cyclonic in winter to anticyclonic in summer. The inclusion of baroclinicity, however, profoundly modifies the purely wind-driven, barotropic circulation, eliminating the strong seasonality and the winter-to-summer reversal. The first important result is that the general circulation pattern now consists of a succession of sub-basin-scale gyres, with a seasonal modulation emphasizing the cyclonic centres in winter and the

  15. Nucleosynthesis in O-Ne-Mg Supernovae

    SciTech Connect

    Hoffman, R D; Janka, H; Muller, B

    2007-12-18

    We have studied detailed nucleosynthesis in the shocked surface layers of an oxygen-neon-magnesium core collapse supernova with an eye to determining whether the conditions are suitable for r-process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for Galactic chemical evolution.

  16. Convection in Type 2 supernovae

    SciTech Connect

    Miller, Douglas Scott

    1993-10-15

    Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.

  17. Possible origins of time variability in Jupiter's outer magnetosphere. I - Variations in solar wind dynamic pressure. II - Variations in solar wind magnetic field

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.

    1977-01-01

    Attention is given to the effect of changes in the dynamic pressure of the solar wind on the structure of a centrifugally driven planetary wind from Jupiter. It is suggested that dynamic pressure variations can induce a transition between a super-Alfvenic wind and a sub-Alfvenic wind breeze on Jupiter's dayside. This could possibly account for the observed large-scale changes in the structure of Jupiter's outer magnetosphere. An attempt is then made to conceptually merge planetary wind models of Jupiter's outer magnetosphere with reconnection models of Jupiter's outer magnetosphere.

  18. Matching Supernovae to Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  19. Ultra-High Pressure Driver and Nozzle Survivability in the RDHWT/MARIAH II Hypersonic Wind Tunnel

    SciTech Connect

    Costantino, M.; Brown, G.; Raman, K.; Miles, R.; Felderman, J.

    2000-06-02

    An ultra-high pressure device provides a high enthalpy (> 2500 kJ/kg), low entropy (< 5 kJ/kg-K) air source for the RDHWT/MARIAH II Program Medium Scale Hypersonic Wind Tunnel. The design uses stagnation conditions of 2300 MPa (330,000 Psi) and 750 K (900 F) in a radial configuration of intensifiers around an axial manifold to deliver pure air at 100 kg/s mass flow rates for run times suitable for aerodynamic, combustion, and test and evaluation applications. Helium injection upstream of the nozzle throat reduces the throat wall recovery temperature to about 1200 K and reduces the oxygen concentration at the nozzle wall.

  20. Wind River Watershed Restoration Project, Segment II, 2000-2002 Annual Report.

    SciTech Connect

    Bair, Brian; Olegario, Anthony; Powers, Paul

    2002-06-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its second year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey - Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW).

  1. TURBULENCE IN A THREE-DIMENSIONAL DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE. II. INTERMITTENCY AND THE DEFLAGRATION-TO-DETONATION TRANSITION PROBABILITY

    SciTech Connect

    Schmidt, W.; Niemeyer, J. C.; Ciaraldi-Schoolmann, F.; Roepke, F. K.; Hillebrandt, W.

    2010-02-20

    The delayed detonation model describes the observational properties of the majority of Type Ia supernovae very well. Using numerical data from a three-dimensional deflagration model for Type Ia supernovae, the intermittency of the turbulent velocity field and its implications on the probability of a deflagration-to-detonation (DDT) transition are investigated. From structure functions of the turbulent velocity fluctuations, we determine intermittency parameters based on the log-normal and the log-Poisson models. The bulk of turbulence in the ash regions appears to be less intermittent than predicted by the standard log-normal model and the She-Leveque model. On the other hand, the analysis of the turbulent velocity fluctuations in the vicinity of the flame front by Roepke suggests a much higher probability of large velocity fluctuations on the grid scale in comparison to the log-normal intermittency model. Following Pan et al., we computed probability density functions for a DDT for the different distributions. The determination of the total number of regions at the flame surface, in which DDTs can be triggered, enables us to estimate the total number of events. Assuming that a DDT can occur in the stirred flame regime, as proposed by Woosley et al., the log-normal model would imply a delayed detonation between 0.7 and 0.8 s after the beginning of the deflagration phase for the multi-spot ignition scenario used in the simulation. However, the probability drops to virtually zero if a DDT is further constrained by the requirement that the turbulent velocity fluctuations reach about 500 km s{sup -1}. Under this condition, delayed detonations are only possible if the distribution of the velocity fluctuations is not log-normal. From our calculations follows that the distribution obtained by Roepke allow for multiple DDTs around 0.8 s after ignition at a transition density close to 1 x 10{sup 7} g cm{sup -3}.

  2. Swift X-Ray Telescope Observations of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kae Batara Olaes, Melanie; Quimby, Robert

    2016-06-01

    Superluminous Supernovae (SLSNe) are a part of an emerging class of exceptionally bright supernovae with peak luminosities 10 times brighter than typical Type Ia supernovae. Similar to supernovae, SLSNe are divided into two subclasses: hydrogen poor SLSN-I and hydrogen rich SLSN-II. However, the luminosity of these events is far too high to be explained by the models for normal supernovae. New models developed to explain SLSNe predict high luminosity X-ray emission at late times. A consistent analysis of incoming SLSNe is essential in order to place constraints on the mechanisms behind these events. Here we present the results of X-ray analysis on SLSNe using a Bayesian method of statistical inference for low count rate events.

  3. Gamma-producing radioactivities from supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.; Pinto, Philip A.

    1988-09-01

    The production of three isotopes critical to astronomical γ-ray spectroscopy, 44Ti, 56Co, and 57Co, is briefly reviewed along with the information each contains. Emphasis is placed on SN 1987A, the only Type II supernova likely to be seen in γ-lines for decases to come. The 847 keV line from 56Co decay in this supernova should peak approximately 400 days after its explosion with a flux of about 1×10-3 cm-2 s-1. For comparison, the second best candidate, a Type Ia in the Virgo cluster (20 Mpc) gives a peak flux 100 times smaller than this 100 days after the explosion. 57Co decay in SN 1987A will also present a potentially detectable signal ~1×10-4 cm-2 s-1 in 1989 through 1991. 44Ti, chiefly from Type I supernovae, is a wild card, but may be responsible for the diffuse pair background.

  4. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P

    1998-11-10

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.

  5. Supernova experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Wallace, R.; Rubenchik, A.; Fryxell, B.A.

    1997-12-02

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in [l]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov and Rayleigh-Taylor instabilities as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. New analysis of the bubble velocity is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of SN 1987A.

  6. Supernova Experiments on the Nova Laser

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.

    2000-04-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported by Kane et al. in a recent paper. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmeyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few times 10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. We also present new analysis of the bubble velocity, a study of two-dimensional versus three-dimensional difference in growth at the He-H interface of SN 1987A, and designs for two-dimensional versus three-dimensional hydro experiments. (c) 2000 The American Astronomical Society.

  7. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  8. Type Ia Supernova Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Thomas, R. C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Rubin, D.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Weaver, B. A.; Wu, C.; Brown, P. J.; Milne, P. A.; Nearby Supernova Factory

    2011-12-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s-1) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22+10 - 6% of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a "carbon blobs" hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  9. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    SciTech Connect

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-20

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  10. Multi-dimensional Simulations of the Expanding Supernova Remnant of SN 1987A

    NASA Astrophysics Data System (ADS)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.; Ng, C.-Y.; Bicknell, G. V.; Sutherland, R. S.; Wagner, A. Y.

    2014-10-01

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of 10 M ⊙ and an energy of 1.5 × 1044 J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 107 m-3 produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.

  11. HUBBLE PINPOINTS DISTANT SUPERNOVAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These Hubble Space Telescope images pinpoint three distant supernovae, which exploded and died billions of years ago. Scientists are using these faraway light sources to estimate if the universe was expanding at a faster rate long ago and is now slowing down. Images of SN 1997cj are in the left hand column; SN 1997ce, in the middle; and SN 1997ck, on the right. All images were taken by the Hubble telescope's Wide Field and Planetary Camera 2. The top row of images are wider views of the supernovae. The supernovae were discovered in April 1997 in a ground-based survey at the Canada-France-Hawaii Telescope on Mauna Kea, Hawaii. Once the supernovae were discovered, the Hubble telescope was used to distinguish the supernovae from the light of their host galaxies. A series of Hubble telescope images were taken in May and June 1997 as the supernovae faded. Six Hubble telescope observations spanning five weeks were taken for each supernova. This time series enabled scientists to measure the brightness and create a light curve. Scientists then used the light curve to make an accurate estimate of the distances to the supernovae. Scientists combined the estimated distance with the measured velocity of the supernova's host galaxy to determine the expansion rate of the universe in the past (5 to 7 billion years ago) and compare it with the current rate. These supernovae belong to a class called Type Ia, which are considered reliable distance indicators. Looking at great distances also means looking back in time because of the finite velocity of light. SN 1997ck exploded when the universe was half its present age. It is the most distant supernova ever discovered (at a redshift of 0.97), erupting 7.7 billion years ago. The two other supernovae exploded about 5 billion years ago. SN 1997ce has a redshift of 0.44; SN 1997cj, 0.50. SN 1997ck is in the constellation Hercules, SN 1997ce is in Lynx, just north of Gemini; and SN 1997cj is in Ursa Major, near the Hubble Deep Field

  12. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    PubMed

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  13. Type IIb Supernovae with Compact and Extended Progenitors

    NASA Astrophysics Data System (ADS)

    Chevalier, Roger A.; Soderberg, Alicia M.

    2010-03-01

    The classic example of a Type IIb supernova is SN 1993J, which had a cool extended progenitor surrounded by a dense wind. There is evidence for another category of Type IIb supernova that has a more compact progenitor with a lower density, probably fast, wind. Distinguishing features of the compact category are weak optical emission from the shock heated envelope at early times, nonexistent or very weak H emission in the late nebular phase, rapidly evolving radio emission, rapid expansion of the radio shell, and expected nonthermal as opposed to thermal X-ray emission. Type IIb supernovae that have one or more of these features include SNe 1996cb, 2001ig, 2003bg, 2008ax, and 2008bo. All of these with sufficient radio data (the last four) show evidence for presupernova wind variability. We estimate a progenitor envelope radius ~1 × 1011 cm for SN 2008ax, a value consistent with a compact Wolf-Rayet progenitor. Supernovae in the SN 1993J extended category include SN 2001gd and probably the Cas A supernova. We suggest that the compact Type IIb events be designated Type cIIb and the extended ones Type eIIb. The H envelope mass dividing these categories is ~0.1 M sun.

  14. Galaxy Zoo Supernovae

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Lynn, S.; Sullivan, M.; Lintott, C. J.; Nugent, P. E.; Botyanszki, J.; Kasliwal, M.; Quimby, R.; Bamford, S. P.; Fortson, L. F.; Schawinski, K.; Hook, I.; Blake, S.; Podsiadlowski, P.; Jönsson, J.; Gal-Yam, A.; Arcavi, I.; Howell, D. A.; Bloom, J. S.; Jacobsen, J.; Kulkarni, S. R.; Law, N. M.; Ofek, E. O.; Walters, R.

    2011-04-01

    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14 000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ˜130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. This publication has been made possible by the participation of more than 10 000 volunteers in the Galaxy Zoo Supernovae project ().

  15. IFU observations of luminous type II AGN - I. Evidence for ubiquitous winds

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott M.; Pracy, Michael; Sharp, Rob; Ho, I.-Ting; Medling, Anne M.

    2015-01-01

    We present observations of 17 luminous (log (L_{{[O III]}}/L_{⊙})>8.7) local (z < 0.11) type II AGN. Our aim is to investigate the prevalence and nature of AGN-driven outflows in these galaxies by combining kinematic and ionization diagnostic information. We use non-parametric methods (e.g. W80, the width containing 80 per cent of the line flux) to assess the line widths in the central regions of our targets. The maximum values of W80 in each galaxy are in the range 400-1600 km s-1, with a mean of 790 ± 90 km s-1. Such high velocities are strongly suggestive that these AGN are driving ionized outflows. Multi-Gaussian fitting is used to decompose the velocity structure in our galaxies. 14/17 of our targets require three separate kinematic components in the ionized gas in their central regions. The broadest components of these fits have FWHM = 530-2520 km s-1, with a mean value of 920 ± 50 km s-1. By simultaneously fitting both the Hβ/[O III] and Hα/[N II] complexes, we construct ionization diagnostic diagrams for each component. 13/17 of our galaxies show a significant (>95 per cent) correlation between the [N II]/Hα ratio and the velocity dispersion of the gas. Such a correlation is the natural consequence of a contribution to the ionization from shock excitation and we argue that this demonstrates that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies.

  16. Probing the origins of neutrino mass with supernova data.

    PubMed

    Davoudiasl, Hooman; Huber, Patrick

    2005-11-04

    We study type II supernova signatures of neutrino mass generation via symmetry breaking at a scale in the range from keV to MeV. The scalar responsible for symmetry breaking is thermalized in the supernova core and restores the symmetry. The neutrinos from scalar decays have about half the average energy of thermal neutrinos. The Bose-Einstein distribution of the scalars can be established with a megaton water Cerenkov detector. The discovery of the bimodal neutrino flux is, however, well within the reach of the Super-Kamiokande detector, without a detailed knowledge of the supernova parameters.

  17. Neutrinos and Supernovae

    SciTech Connect

    Meyer, Bradley S.

    2008-05-12

    Core-collapse supernovae are one of the few astrophysical environments in which neutrinos play a dominant role. Neutrinos emission is the means by which a newly-born neutron star formed in a core-collapse event cools. Neutrinos may play a significant role in causing the supernova explosion. Finally neutrinos may significantly affect the nucleosynthesis occurring in the layers of the exploding star that are eventually ejected into interstellar space. This paper reviews some interesting neutrino-nucleus processes that may occur in the cores of exploding massive stars and then discusses some effects neutrinos may have on explosive nucleosynthesis in supernovae.

  18. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  19. Condensation of dust in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Sarangi, A.; Cherchneff, I.

    Observations in the infrared and submm indicate the presence of molecules and dust in the ejecta of type II-P supernovae. The mass of dust formed in the ejecta of supernovae is still uncertain and highly debated: Infrared observations indicate smaller dust masses (10-5 to 10-3 M ) before 500 days post-explosion, compared to submm observations with Herschel revealing supernova remnants as large reservoirs of cool dust (10-2 to 0.7 M ). We study the ejecta of a typical type II-P supernova with a chemical kinetic approach considering a 15 M progenitor as a benchmark. The synthesis of molecules (e.g., CO, SiO, O2, AlO, SiS, FeS, SiC, SO) and small clusters (e.g., silicates, carbon, metal oxides, metallic clusters etc.) in the gas phase is considered. The clusters form gradually over time in different ejecta zones, small dust masses form in the first 600 days (˜ 10-4 M ), that gradually increase up to ˜ 0.1 M at 1500 days post-explosion. The small clusters condense to form dust grains in the gas phase. The size distributions of different dust components are derived from the study.

  20. Supernova tests of the timescape cosmology

    NASA Astrophysics Data System (ADS)

    Smale, Peter R.; Wiltshire, David L.

    2011-05-01

    The timescape cosmology has been proposed as a viable alternative to homogeneous cosmologies with dark energy. It realizes cosmic acceleration as an apparent effect that arises in calibrating average cosmological parameters in the presence of spatial curvature and gravitational energy gradients that grow large with the growth of inhomogeneities at late epochs. Recently Kwan, Francis and Lewis have claimed that the timescape model provides a relatively poor fit to the Union and Constitution supernovae compilations, as compared to the standard Λ cold dark matter (ΛCDM) model. We show this conclusion is a result of systematic issues in supernova light-curve fitting, and of failing to exclude data below the scale of statistical homogeneity, z≲ 0.033. Using all currently available supernova data sets (Gold07, Union, Constitution, MLCS17, MLCS31, SDSS-II, CSP, Union2), and making cuts at the statistical homogeneity scale, we show that data reduced by the SALT/SALT-II (Spectral Adaptive Light curve Template) fitters provide Bayesian evidence that favours the spatially flat ΛCDM model over the timescape model, whereas data reduced with MLCS2k2 fitters give Bayesian evidence which favours the timescape model over the ΛCDM model. We discuss the questions of extinction and reddening by dust, and of intrinsic colour variations in supernovae which do not correlate with the decay time, and the likely impact these systematics would have in a scenario consistent with the timescape model.

  1. Wind River Watershed Project; Volume II of III Reports F and G, 1998 Annual Report.

    SciTech Connect

    Connolly, Patrick J.

    1999-11-01

    The authors report here their on-ground restoration actions. Part 1 describes work conducted by the Underwood Conservation District (UCD) on private lands. This work involves the Stabler Cut-Bank project. Part 2 describes work conducted by the U.S. Forest Service. The Stabler Cut-Bank Project is a cooperative stream restoration effort between Bonneville Power Administration (BPA), the UCD, private landowners, the U.S. Forest Service (USFS), and the U.S. Fish and Wildlife Service (USFWS). The Stabler site was identified by UCD during stream surveys conducted in 1996 as part of a USFWS funded project aimed at initiating water quality and habitat restoration efforts on private lands in the basin. In 1997 the Wind River Watershed Council selected the project as a top priority demonstration project. The landowners were approached by the UCD and a partnership developed. Due to their expertise in channel rehabilitation, the Forest Service was consulted for the design and assisted with the implementation of the project. A portion of the initial phase of the project was funded by USFWS. However, the majority of funding (approximately 80%) has been provided by BPA and it is anticipated that additional work that is planned for the site will be conducted with BPA funds.

  2. The Transport of Low-Frequency Turbulence in Astrophysical Flows. II. Solutions for the Super-Alfvenic Solar Wind

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Bruno, R.; Telloni, D.; Hunana, P.; Marino, R.; Hu, Q.

    2015-12-01

    Zank et al. 2012 developed a low-frequency turbulence transport model for any magnetized inhomogeneous flow. The model describes the energy corresponding to forward and backward propagating modes, the residual energy, and the correlation lengths corresponding to forward and backward propagating modes and the residual energy. We apply the Zank et al. model to the super-Alfvénic solar wind, considering i) the heliosphere from 0.29 to 5 AU with and without the Alfvén velocity, and ii) the entire heliosphere from 0.29 to 100 AU in the absence of the Alfvén velocity. The model shows that (1) shear driving is responsible for the in situ generation of backward propagating modes, (2) the inclusion of the background magnetic field modifies the transport of turbulence in the inner heliosphere, (3) the correlation lengths of forward and backward propagating modes are almost equal beyond ˜30 AU, and (4) the fluctuating magnetic and kinetic energies in MHD turbulence are in approximate equipartition beyond ˜30 AU. Model results for each case are compared to observations, using Helios 2 and Ulysses observations for the first case, and Voyager 2 data for the second case. For the Voyager 2 observations, we calculate the turbulent quantities corresponding to a positive and negative sign of B_r and B_t, and the azimuthal angle φ=tan-1(B_t /B_r ). The model reproduces the observations quite well from 0.29 to 5 AU. The outer heliosphere (>1 AU) observations are well described by the model. The temporal and latitudinal dependence of the observations makes a detailed comparison difficult but the overall trends are well captured by the models. We conclude that the results reasonably validate the Zank et al. model for the super-Alfvénic solar wind.

  3. Observations of forbidden Si II (35 microns) and Si I (25 microns) in Orion - Evidence of a wind shock near IRc2

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Hollenbach, David; Erickson, Edwin F.

    1991-01-01

    Forbidden Si II and Si I line emission from Orion's BN-KL was measured using a cryogenic grating spectrometer aboard NASA's Kuiper Airborne Observatory. It is believed that the bulk of the forbidden Si II emission in Orion originates in photodissociated gas at the interface between the H II region and its parent molecular cloud. There is, however, a twofold enhancement in forbidden Si II emission near IRc2, which is attributed to fast dissociative J-shock where the wind from IRc2 impact slower moving material. Model fits suggest a silicon gas-phase depletion near ITc2 of 0.3-1.0 relative to solar. The spatial distribution of the forbidden Si II emission has a centralized peak.

  4. The EASE Scenario: Dynamical Study of the Supernova Phase

    NASA Astrophysics Data System (ADS)

    Parmentier, Geneviève; Jehin, Emannuel; Magain, Pierre; Noels, Arlette; Thoul, Anne

    We revisit the most often encountered argument against self-enrichment in globular clusters, namely the ability of a few number of supernovae to disrupt the proto-globular cloud. We show that, within the context of the Fall and Rees theory, primordial proto-globular cluster clouds may sustain several hundreds of Type II supernovae. Furthermore, the corresponding self-enrichment level is in agreement with galactic halo globular cluster metallicities.

  5. RE-EXAMINATION OF THE EXPECTED GAMMA-RAY EMISSION OF SUPERNOVA REMNANT SN 1987A

    SciTech Connect

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5–50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ∼10{sup −13} erg cm{sup −2} s{sup −1}. This flux should decrease by a factor of about two over the next 10 years.

  6. Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A

    NASA Astrophysics Data System (ADS)

    Berezhko, E. G.; Ksenofontov, L. T.; Völk, H. J.

    2015-09-01

    A nonlinear kinetic theory, combining cosmic-ray (CR) acceleration in supernova remnants (SNRs) with their gas dynamics, is used to re-examine the nonthermal properties of the remnant of SN 1987A for an extended evolutionary period of 5-50 year. This spherically symmetric model is approximately applied to the different features of the SNR, consisting of (i) a blue supergiant wind and bubble, and (ii) of the swept-up red supergiant (RSG) wind structures in the form of an H ii region, an equatorial ring (ER), and an hourglass region. The RSG wind involves a mass loss rate that decreases significantly with elevation above and below the equatorial plane. The model adapts recent three-dimensional hydrodynamical simulations by Potter et al. in 2014 that use a significantlysmaller ionized mass of the ER than assumed in the earlier studies by the present authors. The SNR shock recently swept up the ER, which is the densest region in the immediate circumstellar environment. Therefore, the expected gamma-ray energy flux density at TeV energies in the current epoch has already reached its maximal value of ˜10-13 erg cm-2 s-1. This flux should decrease by a factor of about two over the next 10 years.

  7. Nucleosynthesis in Thermonuclear Supernovae

    SciTech Connect

    Claudia, Travaglio; Hix, William Raphael

    2013-01-01

    We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling of the nucleosynthesis within simulations of these events.

  8. Supernovae, neutrinos, and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Fröhlich, Carla

    2014-04-01

    Core-collapse supernovae are the violent explosions at the end of the life of massive stars (≳ 8 - 10 M⊙). In these explosions a wide range of elements are synthesized and ejected: low-mass elements (O and Mg) from the hydrostatic evolution, intermediate-mass elements and Fe-group elements from explosive nucleosynthesis, and elements heavier than iron from the νp-process and potentially an r-process. However, supernova nucleosynthesis predictions are hampered by the not yet fully understood supernova explosion mechanism. In addition, recent progress in observational astronomy paints a fascinating picture for the origin of heavy elements, which is more complicated than the traditional s-, r-, and γ-processes. In this paper, we summarize the status of core-collapse supernova nucleosynthesis.

  9. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  10. Automated search for supernovae

    SciTech Connect

    Kare, J.T.

    1984-11-15

    This thesis describes the design, development, and testing of a search system for supernovae, based on the use of current computer and detector technology. This search uses a computer-controlled telescope and charge coupled device (CCD) detector to collect images of hundreds of galaxies per night of observation, and a dedicated minicomputer to process these images in real time. The system is now collecting test images of up to several hundred fields per night, with a sensitivity corresponding to a limiting magnitude (visual) of 17. At full speed and sensitivity, the search will examine some 6000 galaxies every three nights, with a limiting magnitude of 18 or fainter, yielding roughly two supernovae per week (assuming one supernova per galaxy per 50 years) at 5 to 50 percent of maximum light. An additional 500 nearby galaxies will be searched every night, to locate about 10 supernovae per year at one or two percent of maximum light, within hours of the initial explosion.

  11. NIR Spectra of Type Ia Supernovae: High-Cadence Observations

    NASA Astrophysics Data System (ADS)

    Marion, Howie H.; Hsiao, E.; Vinko, J.; Parrent, J. T.; Silverman, J. M.; Kirshner, R. P.; Phillips, M.; Wheeler, J. C.; Burns, C. R.; Morrell, N.; Contreras, C.; Challis, P.; Supernova Project, Carnegie, II; CfA Supernova Group

    2014-01-01

    New observing resources and coordinated scheduling make it possible to obtain sequences of NIR spectra from individual supernovae on a regular basis. In the past three years the Carnegie Supernova Project II and the CfA Supernova Group have obtained 350 NIR spectra of 78 supernovae. Here we describe eight series of NIR spectra from Type Ia supernovae for which there are ten or more observations with 4 or more of the spectra obtained before Mg II becomes undetectable at about six days post-maximum. NIR spectra are particularly useful for tracing the burning history of the outer layers in SN Ia and the presence of Mg II defines the limit of the carbon burning region. Recent analysis suggests that all significant absorption features in spectra of SN Ia are blends of two or more lines. Data sets with higher spectral cadence are more successful at breaking line-identification degeneracies and consequently provide more accurate information about line profiles and velocity measurements. Three of the eight spectral series in this sample include more than 20 observations and in two cases, there are 12 spectra between -12d and +6d with respect to B-max. The eight SN Ia vary from -18.0 to -19.5 in absolute magnitude and we explore the differences between the supernovae in the timing and strength of spectral features. We make qualitative comparisons of these results to theoretical models for the chemical distribution of materials in SN Ia.

  12. Handbook of Supernovae

    NASA Astrophysics Data System (ADS)

    Athem Alsabti, Abdul

    2015-08-01

    Since the discovery of pulsars in 1967, few celestial phenomena have fascinated amateur and professional astronomers, and the public, more than supernovae - dying stars that explode spectacularly and, in so doing, may outshine a whole galaxy. Thousands of research papers, reviews, monographs and books have been published on this subject. These publications are often written either for a highly specific level of expertise or education, or with respect to a particular aspect of supernovae research. However, the study of supernovae is a very broad topic involving many integral yet connected aspects, including physics, mathematics, computation, history, theoretical studies and observation. More specifically, areas of study include historical supernovae, the different types and light curves, nucleosynthesis, explosion mechanisms, formation of black holes, neutron stars, cosmic rays, neutrinos and gravitational waves. Related questions include how supernovae remnants interact with interstellar matter nearby and how do these events affect the formation of new stars or planetary systems? Could they affect existing planetary systems? Closer to home, did any supernovae affect life on earth in the past or could they do so in the future? And on the larger scale, how did supernovae observations help measure the size and expansion of the universe? All these topics, and more, are to be covered in a new reference work, consisting of more than 100 articles and more than 1700 pages. It is intended to cover all the main facets of current supernovae research. It will be pitched at or above the level of a new postgraduate student, who will have successfully studied physics (or a similar scientific subject) to Bachelor degree level. It will be available in both print and electronic (updatable) formats, with the exception of the first section, which will consist of a review of all the topics of the handbook at a level that allows anyone with basic scientific knowledge to grasp the

  13. Supernova 1987A

    NASA Astrophysics Data System (ADS)

    McCray, R.; Murdin, P.

    2002-10-01

    Supernova 1987A (SN1987A) in the LARGE MAGELLANIC CLOUD (LMC) is the brightest supernova to be observed since SN1604 (Kepler), the first to be observed in every band of the ELECTROMAGNETIC SPECTRUM and the first to be detected through its initial burst of NEUTRINOS. Although the bolometric luminosity of SN1987A today is ≈10-6 of its value at maximum light (Lmax≈2.5×108L⊙), it ...

  14. Deep Recurrent Neural Networks for Supernovae Classification

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  15. Dust in supernova remnants

    NASA Astrophysics Data System (ADS)

    Gomez, H.

    In this Review, I will discuss our changing view on supernovae as interstellar dust sources. In particular I will focus on infrared and submillimetre studies of the historical supernova remnants Cassiopeia A, the Crab Nebula, SN 1987A, Tycho and Kepler. In the last decade (and particularly in recent years), SCUBA, Herschel and ALMA have now demonstrated that core-collapse supernovae are prolific dust factories, with evidence of 0.1 - 0.7 M⊙ of dust formed in the ejecta, though there is little evidence (as yet) for significant dust production in Type Ia supernova ejecta. There is no longer any question that dust (and molecule) formation is efficient after some supernova events, though it is not clear how much of this will survive over longer timescales. Current and future instruments will allow us to investigate the spatial distribution of dust within corecollapse ejecta, and whether this component contributes a significant amount to the dust content of the Universe or if supernovae ultimately provide a net loss once dust destruction by shocks is taken into account.

  16. Neutrinos from supernovae.

    NASA Astrophysics Data System (ADS)

    Burrows, A. S.

    First, the author presents a short history of supernova neutrino theory. Then, the theory of core collapse supernovae is reviewed. Because of the profound opacity to light of the dense core that experiences collapse, we "see" this core directly only through its neutrino signature. Every bump and wiggle echoes the internal convulsions of the event and can provide clues about both the supernova mechanism and the neutron star that remains. The author discusses the only neutrino observations of a supernova so far, SN 1987A. While the agreement with calculations has been gratifying, there remain, of course, plenty of outstanding issues in supernova theory to be tested. These are high-lighted throughout the text. Since neutrinos give us the only real access to the physics inside the collapse, it is important that observation of these particles continue. In an appendix the author describes some of the available or contemplated neutrino detectors capable of good time resolution and therefore of shedding light on supernova mechanisms.

  17. The interaction of supernovae with circumstellar bubbles

    NASA Technical Reports Server (NTRS)

    Chevalier, Roger A.; Liang, Edison P.

    1989-01-01

    This paper examines the interaction of a massive star supernova with the shell created by the fast wind from a blue supergiant, either in the main-sequence phase or in a late evolutionary phase. Making a number of idealizations, the general features of shell interaction are described by semianalytical solutions. The expected properties of the supernova and its environment are discussed, and the hydrodynamics of the interaction is described. It is found that, typically, the shock traversal occurs before the energy transfer is significant. Applications of the model to observed objects are considered, with special attention given to the interaction of SN 1987A with its circumstellar shell, which is expected to occur within decades.

  18. Adaptive Disturbance Tracking Theory with State Estimation and State Feedback for Region II Control of Large Wind Turbines

    NASA Technical Reports Server (NTRS)

    Balas, Mark J.; Thapa Magar, Kaman S.; Frost, Susan A.

    2013-01-01

    A theory called Adaptive Disturbance Tracking Control (ADTC) is introduced and used to track the Tip Speed Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). Since ADTC theory requires wind speed information, a wind disturbance generator model is combined with lower order plant model to estimate the wind speed as well as partial states of the wind turbine. In this paper, we present a proof of stability and convergence of ADTC theory with lower order estimator and show that the state feedback can be adaptive.

  19. The Origin of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Badenes, Carles; Park, Sangwook; Laming, J. Martin

    2012-09-01

    It is now well established that Kepler's supernova remnant (SNR) is the result of a Type Ia explosion. With an age of 407 yr and an angular diameter of ~4', Kepler is estimated to be between 3.0 and 7.0 kpc distant. Unlike other Galactic Type Ia SNRs such as Tycho and SN 1006, and SNR 0509-67.5 in the Large Magellanic Cloud, Kepler shows evidence for a strong circumstellar interaction. A bowshock structure in the north is thought to originate from the motion of a mass-losing system through the interstellar medium prior to the supernova. We present results of hydrodynamical and spectral modeling aimed at constraining the circumstellar environment of the system and the amount of 56Ni produced in the explosion. Using models that contain either 0.3 M ⊙ (subenergetic) or 1.0 M ⊙ (energetic) of 56Ni, we simulate the interaction between supernova Ia ejecta and various circumstellar density models. Based on dynamical considerations alone, we find that the subenergetic models favor a distance to the SNR of <6.4 kpc, while the model that produces 1 M ⊙ of 56Ni requires a distance to the SNR of >7 kpc. The X-ray spectrum is consistent with an explosion that produced ~1 M ⊙ of 56Ni, ruling out the subenergetic models, and suggesting that Kepler's SNR was an SN 1991T-like event. Additionally, the X-ray spectrum rules out a pure r -2 wind profile expected from isotropic mass loss up to the time of the supernova. Introducing a small cavity around the progenitor system results in modeled X-ray spectra that are consistent with the observed spectrum. If a wind-shaped circumstellar environment is necessary to explain the dynamics and X-ray emission from the shocked ejecta in Kepler's SNR, then we require that the distance to the remnant be greater than 7 kpc.

  20. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  1. THE TIP OF THE RED GIANT BRANCH DISTANCES TO TYPE Ia SUPERNOVA HOST GALAXIES. II. M66 AND M96 IN THE LEO I GROUP

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2013-08-10

    M66 and M96 in the Leo I Group are nearby spiral galaxies hosting Type Ia supernovae (SNe Ia). We estimate the distances to these galaxies from the luminosity of the tip of the red giant branch (TRGB). We obtain VI photometry of resolved stars in these galaxies from F555W and F814W images in the Hubble Space Telescope archive. From the luminosity function of these red giants, we find the TRGB I-band magnitude to be I{sub TRGB} = 26.20 {+-} 0.03 for M66 and 26.21 {+-} 0.03 for M96. These values yield distance modulus (m - M){sub 0} = 30.12 {+-} 0.03(random) {+-} 0.12(systematic) for M66 and (m - M){sub 0} = 30.15 {+-} 0.03(random) {+-} 0.12(systematic) for M96. These results show that they are indeed the members of the same group. With these results we derive absolute maximum magnitudes of two SNe (SN 1989B in M66 and SN 1998bu in M96). V-band magnitudes of these SNe Ia are {approx}0.2 mag fainter than SN 2011fe in M101, one of the nearest recent SNe Ia. We also derive near-infrared magnitudes for SN 1998bu. Optical magnitudes of three SNe Ia (SN 1989B, SN 1998bu, and SN 2011fe) based on TRGB analysis yield a Hubble constant, H{sub 0} = 68.4 {+-} 2.6(random) {+-} 3.7(systematic) km s{sup -1} Mpc{sup -1}. This value is similar to the values derived from recent WMAP9 results, H{sub 0} = 69.32 {+-} 0.80 km s{sup -1} Mpc{sup -1}, and from Planck results, H{sub 0} = 67.3 {+-} 1.2 km s{sup -1} Mpc{sup -1}, but smaller than other recent determinations based on Cepheid calibration for SNe Ia luminosity, H{sub 0} = 74 {+-} 3 km s{sup -1} Mpc{sup -1}.

  2. The SILCC (SImulating the LifeCycle of molecular Clouds) project - II. Dynamical evolution of the supernova-driven ISM and the launching of outflows

    NASA Astrophysics Data System (ADS)

    Girichidis, Philipp; Walch, Stefanie; Naab, Thorsten; Gatto, Andrea; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian

    2016-03-01

    The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We present three-dimensional (magneto)hydrodynamic simulations of the ISM in a vertically stratified box including self-gravity, an external potential due to the stellar component of the galactic disc, and stellar feedback in the form of an interstellar radiation field and supernovae (SNe). The cooling of the gas is based on a chemical network that follows the abundances of H+, H, H2, C+, and CO and takes shielding into account consistently. We vary the SN feedback by comparing different SN rates, clustering and different positioning, in particular SNe in density peaks and at random positions, which has a major impact on the dynamics. Only for random SN positions the energy is injected in sufficiently low-density environments to reduce energy losses and enhance the effective kinetic coupling of the SNe with the gas. This leads to more realistic velocity dispersions (σ _H I≈ 0.8σ _{300{-}8000 K}˜ 10-20 km s^{-1}, σ _H α ≈ 0.6σ _{8000-3× 10^5 K}˜ 20-30 km s^{-1}), and strong outflows with mass loading factors (ratio of outflow to star formation rate) of up to 10 even for solar neighbourhood conditions. Clustered SNe abet the onset of outflows compared to individual SNe but do not influence the net outflow rate. The outflows do not contain any molecular gas and are mainly composed of atomic hydrogen. The bulk of the outflowing mass is dense (ρ ˜ 10-25-10-24 g cm-3) and slow (v ˜ 20-40 km s-1) but there is a high-velocity tail of up to v ˜ 500 km s-1 with ρ ˜ 10-28-10-27 g cm-3.

  3. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  4. Supernova Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2008-06-01

    The hierarchical model of galaxy formation is known to suffer from the ``over-cooling'' problem: the high efficiency of radiative cooling results in too much baryonic matter in a condensed phase (namely, cold gas or stars) when compared to observations. A solution proposed by many authors (see Springel & Hernquist 2003; Fujita et al. 2004; Rasera & Teyssier 2005) is feedback due to supernova (SN) driven winds or active galactic nuclei. Modeling SN feedback by direct injection of thermal energy usually turns out to be inefficient in galaxy-scale simulations, due to the quasi-instantaneous radiation of the SN energy. To avoid this effect, we have developed a new method to incorporate SN feedback in cosmological simulations: using temporary test particles, we reproduce explicitly a local Sedov blast wave solution in the gas distribution. We have performed several self-consistent runs of isolated Navarro, Frenk, & White (1996, hereafter NFW) halos with radiative cooling, star formation, SN feedback and metal enrichment using the adaptive mesh refinement code RAMSES (Teyssier 2002). We have explored the influence of SN feedback on the formation and the evolution of galaxies with different masses. We have studied the efficiency of the resulting galactic winds, as a function of the mass of the parent halo.

  5. No cold dust within the supernova remnant Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Birkmann, Stephan M.; Rieke, George H.; Lemke, Dietrich; Klaas, Ulrich; Hines, Dean C.; Gordon, Karl D.

    2004-12-01

    A large amount (about three solar masses) of cold (18K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (~ 108 solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

  6. No cold dust within the supernova remnant Cassiopeia A.

    PubMed

    Krause, Oliver; Birkmann, Stephan M; Rieke, George H; Lemke, Dietrich; Klaas, Ulrich; Hines, Dean C; Gordon, Karl D

    2004-12-02

    A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (approximately 10(8) solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

  7. Pair-instability supernovae in the local universe

    SciTech Connect

    Whalen, Daniel J.; Smidt, Joseph; Heger, Alexander; Hirschi, Raphael; Yusof, Norhasliza; Even, Wesley; Fryer, Chris L.; Stiavelli, Massimo; Chen, Ke-Jung; Joggerst, Candace C.

    2014-12-10

    The discovery of 150-300 M {sub ☉} stars in the Local Group and pair-instability supernova candidates at low redshifts has excited interest in this exotic explosion mechanism. Realistic light curves for pair-instability supernovae at near-solar metallicities are key to identifying and properly interpreting these events as more are found. We have modeled pair-instability supernovae of 150-500 M {sub ☉} Z ∼ 0.1-0.4 Z {sub ☉} stars. These stars lose up to 80% of their mass to strong line-driven winds and explode as bare He cores. We find that their light curves and spectra are quite different from those of Population III pair-instability explosions, which therefore cannot be used as templates for low-redshift events. Although non-zero metallicity pair-instability supernovae are generally dimmer than their Population III counterparts, in some cases they will be bright enough to be detected at the earliest epochs at which they can occur, the formation of the first galaxies at z ∼ 10-15. Others can masquerade as dim, short duration supernovae that are only visible in the local universe and that under the right conditions could be hidden in a wide variety of supernova classes. We also report for the first time that some pair-instability explosions can create black holes with masses of ∼100 M {sub ☉}.

  8. Modeling Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, Anthony

    2017-01-01

    Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.

  9. Earth matter effects in detection of supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Guo, X.-H.; Young, Bing-Lin

    2006-05-01

    We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability PH inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93°. In the reaction channel ν¯e+p→e++n the Earth matter effect can be as big as about 12%. For other detection processes the amount of the Earth matter effect is a few per cent.

  10. Earth matter effects in detection of supernova neutrinos

    SciTech Connect

    Guo, X.-H.; Young Binglin

    2006-05-01

    We calculated the matter effect, including both the Earth and supernova, on the detection of neutrinos from type II supernovae at the proposed Daya Bay reactor neutrino experiment. It is found that apart from the dependence on the flip probability P{sub H} inside the supernova and the mass hierarchy of neutrinos, the amount of the Earth matter effect depends on the direction of the incoming supernova neutrinos, and reaches the biggest value when the incident angle of neutrinos is around 93 deg. In the reaction channel {nu}{sub e}+p{yields}e{sup +}+n the Earth matter effect can be as big as about 12%. For other detection processes the amount of the Earth matter effect is a few per cent.

  11. Supernovae by the Hundreds: the LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; LCOGT Key Project

    2016-01-01

    The LCOGT Supernova Key Project is a three year project to obtain lightcurves and spectra of 600 supernovae. To do this, it has been awarded 2900 hours per year on the 9 one meter and 2 two meter robotic telescopes of the Las Cumbres Observatory Global Telescope network (LCOGT). At the midway point of the Key Project, it is on track to achieving its goals. I will discuss recent insights into supernova progenitors, exotic individual supernovae, and some of the large samples of supernovae studied by the project.

  12. The First Extrasolar Measurement of Stellar He II and O III Bowen Fluorescence Emission in the EUV: A New Diagnostic of Hot Star Wind Conditions Applied to ɛ Canis Majoris (B 2 II)

    NASA Astrophysics Data System (ADS)

    Cohen, David H.; Macfarlane, Joseph J.; Cassinelli, Joseph P.; Owocki, Stanley P.

    1999-11-01

    The B bright giant ɛ CMa is one of only two OB stars observable with the Extreme Ultraviolet Explorer (EUVE) spectrometers (between 70 Åand 760ÅOne of the most interesting aspects of this unique spectrum is the presence of strong emission lines at 304 ÅHe II Lyman-α) and 374 ÅO III) due to the Bowen fluorescence mechanism. In this process, the He II 304 Åline pumps a resonance line of O III and the subsequent radiative decay yields several UV emission lines between 3000 Åand 4000 ÅThese lines are observed in nebulae, AGN, and novae, but the final O III transition leads to emission near 400 Åwhich had never before been seen in any astrophysical object outside of the solar system. The Bowen emission lines are formed in the radiation-driven stellar wind of ɛ CMa, as is shown by the Doppler-broadened 304 Åline profile. Our modeling indicates that the He II 304 Åline is sensitive to the X-ray emission in the wind of ɛ CMa, due to the importance of X-rays photoionization in controlling the ionization of helium. We also explore the temperature-sensitivity of the 374 ÅÅand 435 ÅO III lines, and use the non-detection of the latter two lines to place an upper limit on the wind temperature.

  13. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  14. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  15. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  16. The WFIRST Supernova Survey

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Hounsell, Rebekah; Scolnic, Daniel; WFIRST Supernova Science Investigation Team

    2017-01-01

    WFRIST is expected to launch in the mid 2020s. As part of its main mission, it will conduct a survey to measure the Universe's cosmic expansion history with supernovae. I will present the first simulations of this survey. The simulations take into account our current knowledge of the hardware, realistic properties of the supernovae, and our understanding of the relevant systematic uncertainties. I will compare the ultimate dark enegery figures of merit derived from the simulations and discuss future plans. These data will be extremely useful for other science; other transient science and studies of the resulting deep static images will particularly benefit.

  17. Demonstrating Supernova Remnant Evolution

    NASA Astrophysics Data System (ADS)

    Leahy, Denis A.; Williams, Jacqueline

    2017-01-01

    We have created a software tool to calculate at display supernova remnant evolution which includes all stages from early ejecta dominated phase to late-time merging with the interstellar medium. The software was created using Python, and can be distributed as Python code, or as an executable file. The purpose of the software is to demonstrate the different phases and transitions that a supernova remnant undergoes, and will be used in upper level undergraduate astrophysics courses as a teaching tool. The usage of the software and its graphical user interface will be demonstrated.

  18. Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Mccray, Richard; Li, Hong Wei

    1988-01-01

    Supernova 1987A (February 23, 1987) in the Large Magellanic Cloud is the brightest supernova to be observed since SN 1604 AD (Kepler). Detection of a burst of neutrinos indicates that a neutron star was formed. Radioactive decay of about 0.07 solar mass of Co-56 is responsible for the observed optical light as well as hard X-rays and gamma-ray lines. Ultraviolet, optical, and infrared 'light echoes' and soft X-rays provide information on the distribution of circumstellar matter and the evolution of the progenitor star.

  19. What Shapes Supernova Remnants?

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.

    2014-01-01

    Evidence has mounted that Type Ia and core-collapse (CC) supernovae (SNe) can have substantial deviations from spherical symmetry; one such piece of evidence is the complex morphologies of supernova remnants (SNRs). However, the relative role of the explosion geometry and the environment in shaping SNRs remains an outstanding question. Recently, we have developed techniques to quantify the morphologies of SNRs, and we have applied these methods to the extensive X-ray and infrared archival images available of Milky Way and Magellanic Cloud SNRs. In this proceeding, we highlight some results from these studies, with particular emphasis on SNR asymmetries and whether they arise from ``nature'' or ``nurture''.

  20. Short-Lived Circumstellar Interaction in a Low-Luminosity Type IIP Supernova

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Griffin; Valenti, Stefano; Arcavi, Iair; McCully, Curtis; Howell, Dale Andrew

    2017-01-01

    While interaction with circumstellar material is known to play an important role in Type IIn supernovae, analyses of the more common Type IIP and IIL supernovae have not traditionally included interaction as a significant power source. However, recent campaigns to observe supernovae within days of explosion have revealed narrow emission lines of high-ionization species in the earliest spectra of luminous Type II supernovae of all subclasses. These "flash spectroscopy" features indicate the presence of a confined shell of material around the progenitor star. Here we present the first low-luminosity supernova to show flash spectroscopy features, SN 2016bkv. This supernova peaked at MV = -16 mag and has expansion velocities around maximum light of < 2000 km s-1, placing it at the faint/slow end of the distribution of Type IIP supernovae (similar to SN 2005cs). The detection of flash spectroscopy features in this event demonstrates that circumstellar interaction plays a role even in a low-luminosity Type IIP supernovae. Conversely, it implies that the range of luminosities of Type II supernovae is not solely driven by the presence of circumstellar material.

  1. The Calan/Tololo Supernova Search

    NASA Astrophysics Data System (ADS)

    Maza, J.; Hamuy, M.; Suntzeff, N. B.; Phillips, M. M.; Aviles, R.

    1993-12-01

    In mid-1990, a group of staff members of CTIO and the University of Chile initiated a photographic search on the CTIO Curtis/Schmidt telescope that was designed to discover supernovae (SNe) near maximum light, with the aim to study the physical evolution of the supernova explosion, the environmental factors affecting the occurrence of supernovae, and the general usefulness of this class of objects as distance indicators. By monitoring a large number of fields (45 fields of 25 sq-deg each), the Calan/Tololo survey has yielded about 3 SNe per month to the limit of BMAX <= 19.5 which corresponds to a redshift range of (0.01la zla 0.1). To date, we have found 29 Ia SNe, 2 Type Ic, 15 Type II, and one peculiar SN. From spectroscopy and photometry of these SNe, we have verified that most events were caught before maximum or within a week of maximum light. Once discovered, all SNe were regularly observed on the CTIO 0.9m telescope in the BVRI system to produce light curves down to B ~ 22. The accurate magnitudes of these SNe, measured using psf fitting with DAOPHOT after the careful subtraction of the background galaxy, allow us to explore the range of variations in supernova light curve evolution. As examples, we present the light curves of the SNe 1990af (z=0.05) and 1992aq (z=0.101) which are two of the most distant SNe Ia ever observed through maximum light. A further example is the pair of Type Ia SNe (92bc and 92bo) at z=0.020 which have remarkably different light curve shapes: shapes which are apparently correlated to the intrinsic supernova luminosity at maximum light. This research has been supported by Grant 92/0312 from Fondo Nacional de Ciencias y Tecnología (FONDECYT-Chile).

  2. Scaling supernova hydrodynamics to the laboratory

    SciTech Connect

    Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  3. Scaling supernova hydrodynamics to the laboratory

    NASA Astrophysics Data System (ADS)

    Kane, J.; Arnett, D.; Remington, B. A.; Glendinning, S. G.; Bazan, G.; Drake, R. P.; Fryxell, B. A.; Teyssier, R.; Moore, K.

    1999-05-01

    Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al. [Astrophys. J. 478, L75 (1997) and B. A. Remington et al., Phys. Plasmas 4, 1994 (1997)]. The Nova laser is used to generate a 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer-Meshkov instability, and to the Rayleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few ×103 s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. 51, 179 (1994)] and CALE [R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985), pp. 482-497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. 54, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.

  4. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  5. Wind estimates from cloud motions - Preliminary results from phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1976-01-01

    The accuracy of wind estimates derived from cloud motion is under investigation. Aircraft measurements of the ambient wind field have been compared with simultaneous inertial navigation system descriptions of the extent and motion of 40 tropical cumulus and 5 cirrus clouds. Preliminary results indicate that cloud-motion wind estimates are sufficiently accurate to be used in sensitive divergence, vorticity, and vertical motion calculations. The magnitude of the vector difference between the cirrus cloud velocity and the mean wind of the cloud layer was found to be about 1.6 m/sec. The major source of error is thought to be in determination of the position of the cloud. In the case of cumulus clouds, the magnitude of the vector difference between the aircraft-measured cloud motion and the cloud-base wind is less than 1.3 m/sec.

  6. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of

  7. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  8. Core-collapse Supernovae

    SciTech Connect

    Hix, William Raphael; Lentz, E. J.; Baird, Mark L; Chertkow, Merek A; Lee, Ching-Tsai; Blondin, J. M.; Bruenn, S. W.; Messer, Bronson; Mezzacappa, Anthony

    2013-01-01

    Marking the inevitable death of a massive star, and the birth of a neutron star or black hole, core-collapse supernovae bring together physics at a wide range in spatial scales, from kilometer-sized hydrodynamic motions (growing to gigameter scale) down to femtometer scale nuclear reactions. Carrying 10$^{51}$ ergs of kinetic energy and a rich-mix of newly synthesized atomic nuclei, core-collapse supernovae are the preeminent foundries of the nuclear species which make up ourselves and our solar system. We will discuss our emerging understanding of the convectively unstable, neutrino-driven explosion mechanism, based on increasingly realistic neutrino-radiation hydrodynamic simulations that include progressively better nuclear and particle physics. Recent multi-dimensional models with spectral neutrino transport from several research groups, which slowly develop successful explosions for a range of progenitors, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progress on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  9. QCD and Supernovas

    NASA Astrophysics Data System (ADS)

    Barnes, T.

    2005-12-01

    In this contribution we briefly summarize aspects of the physics of QCD which are relevant to the supernova problem. The topic of greatest importance is the equation of state (EOS) of nuclear and strongly-interacting matter, which is required to describe the physics of the proto-neutron star (PNS) and the neutron star remnant (NSR) formed during a supernova event. Evaluation of the EOS in the regime of relevance for these systems, especially the NSR, requires detailed knowledge of the spectrum and strong interactions of hadrons of the accessible hadronic species, as well as other possible phases of strongly interacting matter, such as the quark-gluon plasma (QGP). The forces between pairs of baryons (both nonstrange and strange) are especially important in determining the EOS at NSR densities. Predictions for these forces are unfortunately rather model dependent where not constrained by data, and there are several suggestions for the QCD mechanism underlying these short-range hadronic interactions. The models most often employed for determining these strong interactions are broadly of two types, 1) meson exchange models (usually assumed in the existing neutron star and supernova literature), and 2) quark-gluon models (mainly encountered in the hadron, nuclear and heavy-ion literature). Here we will discuss the assumptions made in these models, and discuss how they are applied to the determination of hadronic forces that are relevant to the supernova problem.

  10. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation

    NASA Astrophysics Data System (ADS)

    Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen

    2015-10-01

    Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.

  11. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.

    PubMed

    Lu, Yehu; Wang, Faming; Wan, Xianfu; Song, Guowen; Zhang, Chengjiao; Shi, Wen

    2015-10-01

    Part II of this two-part series study was focused on examining the effects of wind and body movement on local clothing thermal insulation. Seventeen clothing ensembles with different layers (i.e., 1, 2, or 3 layers) were selected for this study. Local thermal insulation with different air velocities (0.15, 1.55, and 4.0 m/s) and walking speeds (0, 0.75, and 1.17 m/s) were investigated on a thermal manikin. Empirical equations for estimating local resultant clothing insulation as a function of local insulation, air velocity, and walking speed were developed. The results showed that the effects of wind and body movement on local resultant thermal resistance are complex and differ distinctively among different body parts. In general, the reductions of local insulation with wind at the chest, abdomen, and pelvis were greater than those at the lower leg and back, and the changes at the body extremity such as the forearm, thigh, and lower leg were higher than such immobile body parts as the chest and back. In addition, the wind effect interacted with the walking effect. This study may have important applications in human local thermal comfort modeling and functional clothing design.

  12. A non-spherical core in the explosion of supernova SN 2004dj.

    PubMed

    Leonard, Douglas C; Filippenko, Alexei V; Ganeshalingam, Mohan; Serduke, Franklin J D; Li, Weidong; Swift, Brandon J; Gal-Yam, Avishay; Foley, Ryan J; Fox, Derek B; Park, Sung; Hoffman, Jennifer L; Wong, Diane S

    2006-03-23

    An important and perhaps critical clue to the mechanism driving the explosion of massive stars as supernovae is provided by the accumulating evidence for asymmetry in the explosion. Indirect evidence comes from high pulsar velocities, associations of supernovae with long-soft gamma-ray bursts, and asymmetries in late-time emission-line profiles. Spectropolarimetry provides a direct probe of young supernova geometry, with higher polarization generally indicating a greater departure from spherical symmetry. Large polarizations have been measured for 'stripped-envelope' (that is, type Ic; ref. 7) supernovae, which confirms their non-spherical morphology; but the explosions of massive stars with intact hydrogen envelopes (type II-P supernovae) have shown only weak polarizations at the early times observed. Here we report multi-epoch spectropolarimetry of a classic type II-P supernova that reveals the abrupt appearance of significant polarization when the inner core is first exposed in the thinning ejecta (approximately 90 days after explosion). We infer a departure from spherical symmetry of at least 30 per cent for the inner ejecta. Combined with earlier results, this suggests that a strongly non-spherical explosion may be a generic feature of core-collapse supernovae of all types, where the asphericity in type II-P supernovae is cloaked at early times by the massive, opaque, hydrogen envelope.

  13. Wind estimates from cloud motions - Results from Phases I, II and III of an in situ aircraft verification experiment

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Shenk, W. E.; Skillman, W. C.

    1977-01-01

    An experiment is in progress to verify geostationary-satellite-derived cloud-motion wind estimates by in-situ aircraft wind-velocity measurements. One or more low-level aircraft equipped with Inertial Navigation Systems (INS) were used to define the vertical extent and horizontal motion of a cloud and to measure the ambient wind field. A high-level aircraft, also equipped with an INS, took photographs to describe the horizontal extent of the cloud field and to measure cloud motion. To date the experiment has been conducted over tropical oceans and in the western Gulf of Mexico. A total of 60 h have been spent tracking some 40 tropical cumulus and five cirrus clouds. Results for tropical cumulus clouds indicate excellent agreement between the cloud motion and the wind at cloud base. The magnitude of the vector difference between the cloud motion and the cloud-base wind is less than 1.3 m/s for 67% of the cases with track lengths of 1 h or longer. Similarly, the vector differences between the cloud motion and the wind at sub-cloud (150 m), mid-cloud, and cloud-top levels are 1.5, 3.6 and 7.0 m/s, respectively. The cirrus cloud motions agreed best with the mean wind in the cloud layer with a vector difference of about 1.6 m/s.

  14. The Fall 2004 SDSS Supernova Survey

    NASA Astrophysics Data System (ADS)

    Sako, Masao; Romani, Roger; Frieman, Josh; Adelman-McCarthy, Jen; Becker, Andrew; Dejongh, Fritz; Dilday, Ben; Estrada, Juan; Hendry, John; Holtzman, Jon; Kaplan, Jared; Kessler, Rick; Lampeitl, Hubert; Marriner, John; Miknaitis, Gajus; Riess, Adam; Tucker, Douglas; Barentine, John; Blandford, Roger; Brewington, Howard; Dembicky, Jack; Harvanek, Mike; Hawley, Suzanne; Hogan, Craig; Johnston, David; Kahn, Steve; Ketzeback, Bill; Kleinman, Scot; Krzesinski, Jerzy; Lamenti, Dennis; Long, Dan; McMillan, Russet; Newman, Peter; Nitta, Atsuko; Nichol, Robert; Scranton, Ryan; Sheldon, Erin; Snedden, Stephanie; Stoughton, Chris; York, Don; SDSS Collaboration

    In preparation for the Supernova Survey of the Sloan Digital Sky Survey (SDSS) II, a proposed 3-year extension to the SDSS, we have conducted an early engineering and science run during the fall of 2004, which consisted of approximately 20 scheduled nights of repeated imaging of half of the southern equatorial stripe. Transient supernova-like events were detected in near real-time and photometric measurements were made in the five SDSS filter bandpasses with a cadence of ~ 2 days. Candidate type Ia supernovae (SNe) were pre-selected based on their colors, light curve shape, and the properties of the host galaxy. Follow-up spectroscopic observations were performed with the Astrophysical Research Consortium 3.5m telescope and the 9.2m Hobby-Eberly Telescope to confirm their types and measure the redshifts. The 2004 campaign resulted in 22 spectroscopically confirmed SNe, which includes 16 type Ia, 5 type II, and 1 type Ib/c. These SN Ia will help fill in the sparsely sampled redshift interval of z = 0.05-0.35, the so-called 'redshift desert', in the Hubble diagram. Detailed investigation of the spectral properties of these moderate-redshift SNe Ia will also provide a bridge between local SNe and high-redshift objects, and will help us understand the systematics for future cosmological applications that require high photometric precision. Finally, the large survey volume also provides the opportunity to select unusual supernovae for spectroscopic study that are poorly sampled in other surveys. We report on some of the early results from this program and discuss potential future applications.

  15. Interstellar Bubbles in Two Young H II Regions

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Chu, You-Hua; Points, Sean D.; Danforth, Charles W.; Rosado, Margarita; Chen, C.-H. Rosie

    2001-08-01

    Massive stars are expected to produce wind-blown bubbles in the interstellar medium; however, ring nebulae, suggesting the existence of bubbles, are rarely seen around main-sequence O stars. To search for wind-blown bubbles around main-sequence O stars, we have obtained high-resolution Hubble Space Telescope WFPC2 images and high-dispersion echelle spectra of two pristine H II regions, N11B and N180B, in the Large Magellanic Cloud. These H II regions are ionized by OB associations that still contain O3 stars, suggesting that the H II regions are young and have not hosted any supernova explosions. Our observations show that wind-blown bubbles in these H II regions can be detected kinematically, but not morphologically, because their expansion velocities are comparable to or only slightly higher than the isothermal sound velocity in the H II regions. Bubbles are detected around concentrations of massive stars, individual O stars, and even an evolved red supergiant (a fossil bubble). Comparisons between the observed bubble dynamics and model predictions show a large discrepancy (1-2 orders of magnitude) between the stellar wind luminosity derived from bubble observations and models and that derived from observations of stellar winds. The number and distribution of bubbles in N11B differ from those in N180B, which can be explained by the difference in the richness of stellar content between these two H II regions. Most of the bubbles observed in N11B and N180B show a blister structure, indicating that the stars were formed on the surfaces of dense clouds. Numerous small dust clouds, similar to Bok globules or elephant trunks, are detected in these H II regions, and at least one of them hosts on-going star formation.

  16. A Circumstellar Shell Model for the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz; Szymkowiak, Andrew E.; Blondin, John M.; Sarazin, Craig L.

    1996-08-01

    We model the Cassiopeia A supernova remnant in the framework of the circumstellar medium (C SM) interaction picture. In this model, the slow red supergiant wind of the supernova (SN) progenitor was swept into a dense shell by a fast stellar wind in the subsequent blue supergiant stage of the progenitor star. The supernova blast wave propagated quickly (≤ 100 yr) through the tenuous wind-blown bubble located within this shell and then slowed down in the dense (nH ˜15 cm-3) CSM shell. The shell was impulsively accelerated during this interaction stage; during the subsequent interaction with SN ejecta, the shell has been further accelerated to ˜2000 km s-1, the currently observed expansion rate. The comparison of our X-ray emission calculations with the ASCA spectrum suggests that about 8 Msun of X- material is present in Cas A. Most of this mass is located in the CSM shell and in the outlying red supergiant wind. The X-ray continuum and the Fe Kα line are dominated by the shell emission, but prominent Kα complexes of Mg, Si, and S must be produced by SN ejecta with strongly enhanced abundances of these elements. Our hydrodynamical models indicate that about 2 Msun of ejecta have been shocked. An explosion of a stellar He core is consistent with these findings.

  17. 3D radiative transfer simulations of Eta Carinae's inner colliding winds - II. Ionization structure of helium at periastron

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    Spectral observations of the massive colliding wind binary Eta Carinae show phase-dependent variations, in intensity and velocity, of numerous helium emission and absorption lines throughout the entire 5.54-yr orbit. Approaching periastron, the 3D structure of the wind-wind interaction region (WWIR) gets highly distorted due to the eccentric (e ˜ 0.9) binary orbit. The secondary star (ηB) at these phases is located deep within the primary's dense wind photosphere. The combination of these effects is thought to be the cause of the particularly interesting features observed in the helium lines at periastron. We perform 3D radiative transfer simulations of η Car's interacting winds at periastron. Using the SIMPLEX radiative transfer algorithm, we post-process output from 3D smoothed particle hydrodynamic simulations of the inner 150 au of the η Car system for two different primary star mass-loss rates (dot{M}_{η A}). Using previous results from simulations at apastron as a guide for the initial conditions, we compute 3D helium ionization maps. We find that, for higher dot{M}_{η A}, ηB He0+-ionizing photons are not able to penetrate into the pre-shock primary wind. He+ due to ηB is only present in a thin layer along the leading arm of the WWIR and in a small region close to the stars. Lowering dot{M}_{η A} allows ηB's ionizing photons to reach the expanding unshocked secondary wind on the apastron side of the system, and create a low fraction of He+ in the pre-shock primary wind. With apastron on our side of the system, our results are qualitatively consistent with the observed variations in strength and radial velocity of η Car's helium emission and absorption lines, which helps better constrain the regions where these lines arise.

  18. Light Curve Models of Supernovae and X-ray Spectra of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blinnikov, S. I.; Baklanov, P. V.; Kozyreva, A. V.; Sorokina, E. I.

    2005-12-01

    We compare parameters of well-observed type II SN1999em derived by M. Hamuy and D. Nadyozhin based on tet*{LN85} analytic fits with those found from the simulations using our radiative hydro code STELLA. The same code applied to models of SN1993J allows us to estimate systematic errors of extracting foreground extinction toward SN1993J suggested by tet{Clo95} which is based on the assumption of black body radiation of the supernova envelope near the first maximum light after shock break out. A new implicit two-temperature hydro code code SUPREMNA is introduced which self-consistently takes into account the kinetics of ionization, electron thermal conduction, and radiative losses. Finally, a combination of STELLA and SUPREMNA allows us to use the same Type Ia supernova (SNIa) models both for building their light curves and predicting X-ray spectra of young Supernova remnants such as Tycho and Kepler. For the comparison of theoretical results with the observations we used data on Tycho supernova remnant (SNR) obtained with XMM-Newton space telescope.

  19. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This

  20. The effect of weak lensing on distance estimates from supernovae

    SciTech Connect

    Smith, Mathew; Maartens, Roy; Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B.; Clarkson, Chris; Bassett, Bruce A.; Cinabro, David; Finley, David A.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Olmstead, Matthew D.; Schneider, Donald P.; Shapiro, Charles; Sollerman, Jesper

    2014-01-01

    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7σ). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4σ. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on Ω {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.

  1. Evolution of Supernova Remnants near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yalinewich, A.; Piran, T.; Sari, R.

    2017-03-01

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using these results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.

  2. Presupernova models and supernovae

    NASA Technical Reports Server (NTRS)

    Sugimoto, D.; Nomoto, K.

    1980-01-01

    The present status of theories of presupernova stellar evolution and the triggering mechanisms of supernova explosions are reviewed. The validity of the single-star approximation for stellar core evolution is considered, and the central density and temperature of the stellar core are discussed. Attention is then given to the results of numerical models of supernova explosions by carbon deflagration of an intermediate mass star, resulting in the total disruption of the star; the photodissociation of iron nuclei in a massive star, resulting in neutron star or black hole formation; and stellar core collapse triggered by electron capture in stars of mass ranging between those of the intermediate mass and massive stars, resulting in neutron star formation despite oxygen deflagration. Helium and carbon combustion and detonation in accreting white dwarfs and the gravitational collapse triggered by electron-pair creation in supermassive stars are also discussed, and problems requiring future investigation are indicated.

  3. Supernova 1987A!

    PubMed

    Woosley, S E; Phillips, M M

    1988-05-06

    Light from the brightest supernova in almost 400 years arrived at Earth on 23 February 1987. Although located 160,000 light years away in a satellite galaxy of our own known as the Large Magellanic Cloud, this supernova's relative proximity compared to all others that have been observed in modern times has allowed observations, which were never possible before, to be made from space, from detectors on the ground and carried by balloons and airplanes, and from neutrino detectors deep underground. What emerges is a greater understanding of one of the most violent events in the universe, the death of a massive star. For the most part, theoretical expectations have been borne out, but some major surprises have made the event all the more fascinating.

  4. Supernova Science Center

    SciTech Connect

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  5. SN 2008jb: A 'LOST' CORE-COLLAPSE SUPERNOVA IN A STAR-FORMING DWARF GALAXY AT {approx}10 Mpc

    SciTech Connect

    Prieto, J. L.; Lee, J. C.; Drake, A. J.; Djorgovski, S. G.; McNaught, R.; Garradd, G.; Beacom, J. F.; Beshore, E.; Catelan, M.; Pojmanski, G.; Stanek, K. Z.; Szczygiel, D. M.

    2012-01-20

    We present the discovery and follow-up observations of SN 2008jb, a core-collapse supernova in the southern dwarf irregular galaxy ESO 302-14 (M{sub B} = -15.3 mag) at 9.6 Mpc. This nearby transient was missed by galaxy-targeted surveys and was only found in archival optical images obtained by the Catalina Real-time Transient Survey and the All-Sky Automated Survey. The well-sampled archival photometry shows that SN 2008jb was detected shortly after explosion and reached a bright optical maximum, V{sub max} {approx_equal} 13.6 mag (M{sub V,max} {approx_equal} -16.5). The shape of the light curve shows a plateau of {approx}100 days, followed by a drop of {approx}1.4 mag in the V band to a slow decline with an approximate {sup 56}Co decay slope. The late-time light curve is consistent with 0.04 {+-} 0.01 M{sub Sun} of {sup 56}Ni synthesized in the explosion. A spectrum of the supernova obtained two years after explosion shows a broad, boxy H{alpha} emission line, which is unusual for normal Type II-Plateau supernovae at late times. We detect the supernova in archival Spitzer and WISE images obtained 8-14 months after explosion, which show clear signs of warm (600-700 K) dust emission. The dwarf irregular host galaxy, ESO 302-14, has a low gas-phase oxygen abundance, 12 + log(O/H) = 8.2 ({approx}1/5 Z{sub Sun }), similar to those of the Small Magellanic Cloud and the hosts of long gamma-ray bursts and luminous core-collapse supernovae. This metallicity is one of the lowest among local ({approx}< 10 Mpc) supernova hosts. We study the host environment using GALEX far-UV, R-band, and H{alpha} images and find that the supernova occurred in a large star formation complex. The morphology of the H{alpha} emission appears as a large shell (R {approx_equal} 350 pc) surrounding the FUV and optical emission. Using the H{alpha}-to-FUV ratio and FUV and R-band luminosities, we estimate an age of {approx}9 Myr and a total mass of {approx}2 Multiplication-Sign 10{sup 5} M{sub Sun

  6. Are There Hidden Supernovae?

    NASA Astrophysics Data System (ADS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-02-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  7. Are There Hidden Supernovae?

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse; Harker, David; Dunham, E.; Rank, David; Temi, Pasquale

    1997-01-01

    Ames Research Center and UCSC have been working on the development of a Mid IR Camera for the KAO in order to search for extra galactic supernovae. The development of the camera and its associated data reduction software have been successfully completed. Spectral Imaging of the Orion Bar at 6.2 and 7.8 microns demonstrates the derotation and data reduction software which was developed.

  8. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  9. Supernova Dust Factories

    NASA Astrophysics Data System (ADS)

    Gomez, Haley; Consortium, MESS; LCOGT

    2013-01-01

    The origin of interstellar dust in galaxies is poorly understood, particularly the relative contribution from supernovae. We present infrared and submillimeter photometry and spectroscopy from the Herschel Space Observatory of the Galactic remnants Tycho, Kepler and the Crab Nebula, taken as part of the Mass Loss from Evolved StarS program (MESS). Although we detect small amounts of dust surrounding Tycho and Kepler (the remnants of Type Ia supernovae), we show this is due to swept-up interstellar and circumstellar material respectively. The lack of dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the ‘missing’ iron mass observed in ejecta. After carefully subtracting the synchrotron and line emission from the Crab, the remaining far-infrared continuum originates from 0.1-0.2 solar masses of dust. These observations suggest that the Crab Nebula has condensed most of the relevant refractory elements into dust and that these grains appear well set to survive their journey into the interstellar medium. In summary, our Herschel observations show that significantly less dust forms in the ejecta of Type Ia supernovae than in the remnants of core-collapse explosions, placing stringent constraints on the environments in which dust and molecules can form.

  10. Supernovae and neutrinos

    SciTech Connect

    John F. Beacom

    2002-09-19

    A long-standing problem in supernova physics is how to measure the total energy and temperature of {nu}{sub {mu}}, {nu}{sub {tau}}, {bar {nu}}{sub {mu}}, and {bar {nu}}{sub {tau}}. While of the highest importance, this is very difficult because these flavors only have neutral-current detector interactions. We propose that neutrino-proton elastic scattering, {nu} + p {yields} {nu} + p, can be used for the detection of supernova neutrinos in scintillator detectors. It should be emphasized immediately that the dominant signal is on free protons. Though the proton recoil kinetic energy spectrum is soft, with T{sub p} {approx_equal} 2E{sub {nu}}{sup 2}/M{sub p}, and the scintillation light output from slow, heavily ionizing protons is quenched, the yield above a realistic threshold is nearly as large as that from {bar {nu}}{sub e} + p {yields} e{sup +} + n. In addition, the measured proton spectrum is related to the incident neutrino spectrum. The ability to detect this signal would give detectors like KamLAND and Borexino a crucial and unique role in the quest to detect supernova neutrinos.

  11. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  12. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    SciTech Connect

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  13. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  14. Supernova Discoveries from the Nearby Supernova Factory (SNfactory)

    DOE Data Explorer

    SNfactory International Collaboration,

    The Nearby Supernova Factory is an experiment designed to collect data on more Type Ia supernovae than have ever been studied in a single project before, and in so doing, to answer some fundamental questions about the nature of the universe. Type Ia supernovae are extraordinarily bright, remarkably uniform objects which make excellent "standard candles" for measuring the expansion rate of the universe. However, such stellar explosions are very rare, occurring only a couple of times per millenium in a typical galaxy, and remaining bright enough to detect only for a few weeks. Previous studies of Type Ia supernovae led to the discovery of the mysterious "dark energy" that is causing the universe to expand at an accelerating rate. To reduce the statistical uncertainties in previous experimental data, extensive spectral and photometric monitoring of more Type Ia supernovae is required. The SNfactory collaboration has built an automated system consisting of specialized software and custom-built hardware that systematically searches the sky for new supernovae, screens potential candidates, then performs multiple spectral and photometric observations on each supernova. These observations are stored in a database to be made available to supernova researchers world-wide for further study and analysis [copied from http://snfactory.lbl.gov/snf/snf-about.html]. Users must register and agree to the open access honor system. Finding charts are in FITS format and may not be accessible through normal browser settings.

  15. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  16. Supernova Feedback in Smoothed Particle Hydrodynamics Simulations of Dwarf Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Stinson, Gregory S.; Quinn, T.; Dalcanton, J.; Wadsley, J.; Gogarten, S.

    2007-12-01

    I will describe simulations that represent the evolution of galaxies using N-body smoothed particle hydrodynamic. The simulations present a novel recipe for star formation and the consequent supernova feedback. The recipes are employed in a number of isolated galaxies with different masses. The supernova feedback is effective at delaying star formation in low mass galaxies. The feedback also drives winds from low mass galaxies. In these winds, we find that stars can form and populate a stellar halo surrounding dwarf galaxies that compares well with the observed stellar halos surrounding Local Group Dwarfs.

  17. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  18. Gravitational Lensing of Supernova Neutrinos

    SciTech Connect

    Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab

    2006-10-01

    The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.

  19. Positron Survival in Type II Supernovae

    DTIC Science & Technology

    1989-05-01

    56Co (daughter of 56Ni) or 4Ti. He predicted that both of these nuclei should be produced during explosive nucleosynthesis . The production of this...turned to cobalt at times of interest to us. I have therefore assumed that 56Co was the explosive nucleosynthesis product. The half-life of 56Co is 78.8...sixth edition, John Wiley and Sons, Inc., 1967, p. 189. Nomoto, K., et al. , "SN 1987A: Progenitor, Nucleosynthesis and Light Curves", 1988, preprint

  20. Possible explanation of the correlations between events recorded by underground detectors during the Supernova 1987A explosion

    SciTech Connect

    Alexeyev, E. N.

    2010-02-15

    A possible explanation of the time correlations between the data from underground detectors (Baksan telescope, LSD, IMB, Kamiokande II) and from the Rome and Maryland gravitational-wave antennas obtained during the Supernova 1987A explosion is proposed. It is shown that the synchronization of the events recorded by various underground facilities could be produced by gravitational radiation from the Supernova.

  1. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  2. Massive-star supernovae as major dust factories.

    PubMed

    Sugerman, Ben E K; Ercolano, Barbara; Barlow, M J; Tielens, A G G M; Clayton, Geoffrey C; Zijlstra, Albert A; Meixner, Margaret; Speck, Angela; Gledhill, Tim M; Panagia, Nino; Cohen, Martin; Gordon, Karl D; Meyer, Martin; Fabbri, Joanna; Bowey, Janet E; Welch, Douglas L; Regan, Michael W; Kennicutt, Robert C

    2006-07-14

    We present late-time optical and mid-infrared observations of the Type II supernova 2003gd in the galaxy NGC 628. Mid-infrared excesses consistent with cooling dust in the ejecta are observed 499 to 678 days after outburst and are accompanied by increasing optical extinction and growing asymmetries in the emission-line profiles. Radiative-transfer models show that up to 0.02 solar masses of dust has formed within the ejecta, beginning as early as 250 days after outburst. These observations show that dust formation in supernova ejecta can be efficient and that massive-star supernovae could have been major dust producers throughout the history of the universe.

  3. Galactic restrictions on iron production by various types of supernovae

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2012-02-01

    We propose a statistical method for decomposition of contributions to iron production from various sources: Type II supernovae and the subpopulations of Type Ia supernovae, prompt (their progenitors are short-lived stars with ages lower than ˜100 Myr) and tardy (their progenitors are long-lived stars with ages >100 Myr). To do that, we develop a theory of oxygen and iron synthesis that takes into account the influence of the spiral arms on the amount of the above elements synthesized by both Type II supernovae and prompt Type Ia supernovae. In the framework of the theory, we processed statistically the new, more precise, observational data on Cepheid abundances, which, as is well known, demonstrate non-trivial radial distributions of oxygen and iron in the Galactic disc with bends in the gradients. In our opinion, such fine structure in the distribution of elements along the Galactic disc enables one to decompose the amount of iron unambiguously into three components produced by the above three sources. In addition, by means of our statistical methods we solve this task without any preliminary suppositions about the ratios between the proportions of iron synthesized by the above sources. The total mass supplied to the Galactic disc during its life by all types of supernovae is ˜(4.0 ± 0.4) × 107 M⊙, while the mass of iron occurring in the present interstellar medium (ISM) is ˜(1.20 ± 0.05) × 107 M⊙, i.e. about two thirds of iron is contained in stars and stellar remnants. The relative proportion of iron synthesized by tardy type Ia supernovae for the lifetime of the Galaxy is ˜35 per cent (in the present ISM this portion is ˜50 per cent). Correspondingly, the total proportion of iron supplied to the disc by Type II supernovae and prompt Type Ia supernovae is ˜65 per cent (in the present ISM this proportion is ˜50 per cent). The above result depends slightly on the adopted mass of oxygen and iron synthesized during one supernova explosion and the

  4. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    sites. have low starting torques, operate at high tip-to- wind speeds, and generate high power output per turbine weight. 5 The Savonius rotor operates...DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two

  5. WIND BRAKING OF MAGNETARS

    SciTech Connect

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-05-10

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L{sub x}<- E-dot{sub rot} may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  6. Swift/BAT Detection of Hard X-Rays from Tycho's Supernova Remnant: Evidence for Titanium-44

    NASA Astrophysics Data System (ADS)

    Troja, E.; Segreto, A.; La Parola, V.; Hartmann, D.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Cusumano, G.; Gehrels, N.

    2014-12-01

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  7. Stellar core collapse and supernova

    SciTech Connect

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab.

  8. Nuclear astrophysics of supernovae

    SciTech Connect

    Cooperstein, J.

    1988-01-01

    In this paper, I'll give a general introduction to Supernova Theory, beginning with the presupernova evolution and ending with the later stages of the explosion. This will be distilled from a colloquium type of talk. It is necessary to have the whole supernova picture in one's mind's eye when diving into some of its nooks and crannies, as it is quite a mess of contradictory ingredients. We will have some discussion of supernova 1987a, but will keep our discussion more general. Second, we'll look at the infall and bounce of the star, seeing why it goes unstable, what dynamics it follows as it collapses, and how and why it bounces back. From there, we will go on to look at the equation of state (EOS) in more detail. We'll consider the cases T = 0 and T > 0. We'll focus on /rho/ < /rho//sub 0/, and then /rho/ > /rho//sub 0/ and the EOS of neutron stars, and whether or not they contain cores of strange matter. There are many things we could discuss here and not enough time. If I had more lectures, the remaining time would focus on two more questions of special interest to nuclear physicists: the electron capture reactions and neutrino transport. If time permitted, we'd have some discussion of the nucleosynthetic reactions in the explosion's debris as well. However, we cannot cover such material adequately, and I have chosen these topics because they are analytically tractable, pedagogically useful, and rather important. 23 refs., 14 figs., 3 tabs.

  9. Cosmological and supernova neutrinos

    SciTech Connect

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Shibagaki, S.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Suzuki, T.

    2014-06-24

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial {sup 7}Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and {sup 7}Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ{sub 13} with predicted and observed supernova-produced abundance ratio {sup 11}B/{sup 7}Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  10. Cosmological and supernova neutrinos

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Balantekin, A. B.; Cheoun, M.-K.; Hayakawa, T.; Hidaka, J.; Hirai, Y.; Kusakabe, M.; Mathews, G. J.; Nakamura, K.; Pehlivan, Y.; Shibagaki, S.; Suzuki, T.

    2014-06-01

    The Big Bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) anisotropies are the pillars of modern cosmology. It has recently been suggested that axion which is a dark matter candidate in the framework of the standard model could condensate in the early universe and induce photon cooling before the epoch of the photon last scattering. Although this may render a solution to the overproduction problem of primordial 7Li abundance, there arises another serious difficulty of overproducing D abundance. We propose a hybrid dark matter model with both axions and relic supersymmetric (SUSY) particles to solve both overproduction problems of the primordial D and 7Li abundances simultaneously. The BBN also serves to constrain the nature of neutrinos. Considering non-thermal photons produced in the decay of the heavy sterile neutrinos due to the magnetic moment, we explore the cosmological constraint on the strength of neutrino magnetic moment consistent with the observed light element abundances. Core-collapse supernovae eject huge flux of energetic neutrinos which affect explosive nucleosynthesis of rare isotopes like 7Li, 11B, 92Nb, 138La and 180Ta and r-process elements. Several isotopes depend strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. Combining the recent experimental constraints on θ13 with predicted and observed supernova-produced abundance ratio 11B/7Li encapsulated in the presolar grains from the Murchison meteorite, we show a marginal preference for an inverted neutrino mass hierarchy. We also discuss supernova relic neutrinos (SRN) that may indicate the softness of the equation of state (EoS) of nuclear matter and adiabatic conditions of the neutrino oscillation.

  11. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C. E-mail: sharanya.sur@asu.edu

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  12. Powerful Nearby Supernova Caught By Web

    NASA Astrophysics Data System (ADS)

    2008-09-01

    shortly after the explosion. X-rayChandra X-ray Image SN 1996cr was not detected by other major X-ray observatories in orbit - ROSAT and ASCA - around the time of explosion. Rather, it wasn't until several years later that it was detected as an X-ray source by Chandra (launched in 1999), and has become steadily brighter ever since. Previously, SN 1987A had been the only known supernova with an X-ray output observed to increase over time. "Supernovas that are close enough to be studied in detail like this are quite rare and may only appear once a decade, so we don't want to miss such an important opportunity for discovery," said Bauer. "It's a bit of a coup to find SN 1996cr like we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We've truly entered a new era of `Internet astronomy'." People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Dark Energy Found Stifling Growth in Universe Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Jet Power and Black Hole Assortment Revealed in New Chandra Image The data, combined with theoretical work, has led the team to the following model. Before it exploded, the parent star cleared out a large cavity around it, either via a fast wind or an outburst from the star late in its life. Then, the blast wave from the explosion expanded relatively unimpeded into this cavity. Once the blast wave hit the dense material surrounding SN1996cr, the impact caused the system to glow brightly in X-ray and radio emission. The X-ray and radio emission from SN 1987A is fainter because the surrounding material is probably less compact. Astronomers think that both SN 1987A and SN 1996cr show evidence for these pre-explosion clear-outs by the star doomed to explode. Having two nearby examples suggests that this type of activity could be relatively common during the death of massive stars. "Not only does our work suggest that SN 1987A isn't as unusual as

  13. Supernova 2002hi

    NASA Astrophysics Data System (ADS)

    Pooley, D.; Lewin, W. H. G.

    2003-01-01

    D. Pooley and W. H. G. Lewin, Massachusetts Institute of Technology, on behalf of a larger collaboration, report the detection of X-ray emission at the position of the type-IIn supernova (SN) 2002hi (IAUC 8006) with the Chandra X-ray observatory: An ACIS-S3 observation of 10 ks was made on Dec. 10.73. In the 0.5-10 keV range, we searched a 2x2 pixel region (approx. 1" by 1") around the reported position of the SN and detected 2 counts.

  14. CRTS Supernova Candidate

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Williams, R.; Mahabal, A.; Beshore, E. C.; Larson, S. M.; Hill, R.; Catelan, M.; Christensen, E.

    2008-09-01

    We have detected a likely supernova in CSS images from 24 Sep 2008 UT. The object has the following parameters:

    CSS080924:044524+182425 2008-09-24 UT 11:17:06 RA 04:45:24.00 Dec 18:24:25.1 Mag 17.5 Type SN
    The object is near the edge of galaxy LCSB L0250N (z=0.0155).

  15. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Martínez-González, Sergio; Muñoz-Tuñón, Casiana; Palouš, Jan; Wünsch, Richard E-mail: cmt@ll.iac.es

    2013-12-01

    Following the observational and theoretical evidence that points at core-collapse supernovae (SNe) as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large SN rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II SN era. We first show that such a balance determines the range of the dust-to-gas-mass ratio, and thus the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) versus cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead, matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V {sub A∞}, lower than when only gas radiative cooling is applied. And thus, many massive clusters are predicted to enter the bimodal regime.

  16. Supernova-relevant hydrodynamic instability experiments on the Nova Laser

    SciTech Connect

    Kane, J.; arnett, D.; Remington, B.A.; Glendinning, S.G.; wallace, R.; Mangan, R.; Rubenchik, A.; Fryxell, B.A.

    1997-04-18

    Supernova 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. The target consists of two-layer planar package composed on 85 micron Cu backed by 500 micron CH2, having a single mode sinusoidal perturbation at the interface, with gamma = 200 microns, nuo + 20 microns. The Nova laser is used to generate a 10-15 Mbar (10- 15x10{sup 12} dynes/cm2) shock at the interface, which triggers perturbation growth, due to the Richtmyer-Meshov instability followed by the Raleigh-Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at the intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamic codes HYADES and CALE, and the supernova code PROMETHEUS. We are designing experiments to test the differences in the growth of 2D vs 3D single mode perturbations; such differences may help explain the high observed velocities of radioactive core material in SN1987A. Results of the experiments and simulations are presented.

  17. FIRST LABORATORY OBSERVATION OF SILICA GRAINS FROM CORE COLLAPSE SUPERNOVAE

    SciTech Connect

    Haenecour, Pierre; Floss, Christine; Zinner, Ernst; Zhao Xuchao; Lin Yangting

    2013-05-01

    We report the discovery of two supernova silica (SiO{sub 2}) grains in the primitive carbonaceous chondrites LaPaZ 031117 and Grove Mountains 021710. Only five presolar silica grains have been previously reported from laboratory measurements but they all exhibit enrichments in {sup 17}O relative to solar, indicating origins in the envelopes of asymptotic giant branch stars. The two SiO{sub 2} grains identified in this study are characterized by moderate enrichments in {sup 18}O relative to solar, indicating that they originated in Type II supernova ejecta. If compared to theoretical models, the oxygen isotopic compositions of these grains can be reproduced by mixing of different supernova zones. While both theoretical models of grain condensation and recent NASA Spitzer Space Telescope observations have suggested the presence of silica in supernova ejecta, no such grains had been identified, until now, in meteorites. The discovery of these two silica grains provides definitive evidence of the condensation of silica dust in supernova ejecta.

  18. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  19. Dust grains from the heart of supernovae

    NASA Astrophysics Data System (ADS)

    Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.

    2016-06-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(-4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

  20. A faint type of supernova from a white dwarf with a helium-rich companion.

    PubMed

    Perets, H B; Gal-Yam, A; Mazzali, P A; Arnett, D; Kagan, D; Filippenko, A V; Li, W; Arcavi, I; Cenko, S B; Fox, D B; Leonard, D C; Moon, D-S; Sand, D J; Soderberg, A M; Anderson, J P; James, P A; Foley, R J; Ganeshalingam, M; Ofek, E O; Bildsten, L; Nelemans, G; Shen, K J; Weinberg, N N; Metzger, B D; Piro, A L; Quataert, E; Kiewe, M; Poznanski, D

    2010-05-20

    Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

  1. The Rediscovery of the Antlia Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Orchard, Alexander; Benjamin, Robert A.; Gostisha, Martin; Haffner, L. Matthew; Hill, Alex S.; Barger, Kathleen

    2015-01-01

    While undertaking a survey of velocity-resolved diffuse optical emission from the [S II] 6716 A line with the Wisconsin H-alpha Mapper, we have rediscovered the Antlia Supernova remnant, a 26 degree diameter remmant near the Gum Nebula that was originally detected in SHASSA (Southern H-alpha Sky Survey Atlas) by P. McCullough in 2002. The original discovery showed this remnant was associated with ¼ keV X-ray emission in the ROSAT All-Sky Survey, and argued that Antlia was potentially the closest remnant to the Sun. We will present an analysis of the H-alpha and [S II] lines in this direction: the ratio of these lines indicate the shell is consistent with being a supernova remnant and the velocities allow us to constrain its age. We discuss this remnant in the context of the evolution of the entire Gum Nebula region, noting that its proximity and age make it possible to search for geochemical evidence of this remnant on Earth. This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881.

  2. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  3. The LCOGT Supernova Key Project

    NASA Astrophysics Data System (ADS)

    Howell, Dale Andrew; Arcavi, Iair; Hosseinzadeh, Griffin; McCully, Curtis; Valenti, Stefano; Lcogt Supernova Key Project

    2015-01-01

    I present first results from the Las Cumbres Observatory Global Telescope Network (LCOGT) Supernova Key Project. LCOGT is a network of 11 robotic one and two meter telescopes spaced around the globe with imaging and spectroscopic capabilities. The supernova key project is a 3 year program to obtain lightcurves and spectra of at least 450 supernovae. About half are expected to be core-collapse supernovae, and half thermonuclear. We will start light curves and spectroscopy within hours of discovery, and focus on those SNe caught soon after explosion. The goals are fivefold: (1) observe supernovae soon after explosion to search for signs of their progenitors, (2) obtain a large homogeneous sample of supernovae for next generation cosmological studies, (3) obtain a large sample of supernovae for statistical studies comparing groups that are split into different populations, (4) obtain some of the first large samples of the recently discovered classes of rare and exotic explosions, (5) obtain the optical light curves and spectroscopy in support of studies at other wavelengths and using other facilities including UV observations, IR imaging and spectroscopy, host galaxy studies, high resolution spectroscopy, and late-time spectroscopy with large telescopes.

  4. A low-energy core-collapse supernova without a hydrogen envelope.

    PubMed

    Valenti, S; Pastorello, A; Cappellaro, E; Benetti, S; Mazzali, P A; Manteca, J; Taubenberger, S; Elias-Rosa, N; Ferrando, R; Harutyunyan, A; Hentunen, V P; Nissinen, M; Pian, E; Turatto, M; Zampieri, L; Smartt, S J

    2009-06-04

    The final fate of massive stars depends on many factors. Theory suggests that some with initial masses greater than 25 to 30 solar masses end up as Wolf-Rayet stars, which are deficient in hydrogen in their outer layers because of mass loss through strong stellar winds. The most massive of these stars have cores which may form a black hole and theory predicts that the resulting explosion of some of them produces ejecta of low kinetic energy, a faint optical luminosity and a small mass fraction of radioactive nickel. An alternative origin for low-energy supernovae is the collapse of the oxygen-neon core of a star of 7-9 solar masses. No weak, hydrogen-deficient, core-collapse supernovae have hitherto been seen. Here we report that SN 2008ha is a faint hydrogen-poor supernova. We propose that other similar events have been observed but have been misclassified as peculiar thermonuclear supernovae (sometimes labelled SN 2002cx-like events). This discovery could link these faint supernovae to some long-duration gamma-ray bursts, because extremely faint, hydrogen-stripped core-collapse supernovae have been proposed to produce such long gamma-ray bursts, the afterglows of which do not show evidence of associated supernovae.

  5. Supernova hydrodynamics experiments using the Nova laser*

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Glendinning, S. G.; Estabrook, K. G.; London, R. A.; Wallace, R. J.; Kane, J.; Arnett, D.; Drake, R. P.; Liang, E.; McCray, R.; Rubenchik, A.

    1997-04-01

    We are developing experiments using the Nova laser [1,2] to investigate two areas of physics relevant to core-collapse supernovae (SN): compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications will be discussed. *Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. [1] J. Kane et al., in press, Astrophys. J. Lett. (March-April, 1997). [2] B.A. Remington et al., in press, Phys. Plasmas (May, 1997).

  6. ESCAPING PARTICLE FLUXES IN THE ATMOSPHERES OF CLOSE-IN EXOPLANETS. II. REDUCED MASS-LOSS RATES AND ANISOTROPIC WINDS

    SciTech Connect

    Guo, J. H.

    2013-04-01

    In Paper I, we presented a one-dimensional hydrodynamic model for the winds of close-in exoplanets. However, close-in exoplanets are tidally locked and irradiated only on the day sides by their host stars. This requires two-dimensional hydrodynamic models with self-consistent radiative transfer calculations. In this paper, for the tidal-locking (two-dimensional radiative transfer) and non-tidal-locking cases (one-dimensional radiative transfer), we constructed a multi-fluid two-dimensional hydrodynamic model with detailed radiative transfer to depict the escape of particles. We found that the tidal forces (the sum of tidal gravity of the star and centrifugal force due to the planetary rotation) supply significant accelerations and result in anisotropic winds. An important effect of the tidal forces is that it severely depresses the outflow of particles near the polar regions where the density and the radial velocity are a factor of a few (ten) smaller than those of the low-latitude regions. As a consequence, most particles escape the surface of the planet from the regions of low latitude. Comparing the tidal-locking and non-tidal-locking cases, we found that their optical depths are very different so that the flows also emerge with a different pattern. In the case of non-tidal locking, the radial velocities at the base of the wind are higher than the meridional velocities. However, in the case of tidal locking, the meridional velocities dominate the flow at the base of the wind, and they can effectively transfer mass and energy from the day sides to the night sides. Further, we also found that the differences of the winds show a middle extent at large radii. This means that the structure of the wind at the base can be changed by the two-dimensional radiative transfer due to large optical depths, but the extent is reduced with an increase in radius. Because the escape is depressed in the polar regions, the mass-loss rate predicted by the non-tidal-locking model, in

  7. Late-time Constraints on the Fates of Supernova Impostors

    NASA Astrophysics Data System (ADS)

    Adams, Scott

    2016-01-01

    Transients showing circumstellar interactions, low luminosities and low expansion velocities are generally considered to be non-terminal outbursts. Two main classes of such transients are 'supernova impostors', whose progenitors are massive stars (>20 solar masses) and may be extra-galactic analogs of Eta Car's eruptions, and SN 2008S-like transients, which have lower-mass (~10 solar masses), dust-obscured progenitors. We present late-time Hubble and Spitzer Space Telescope observations of the archetypal 'supernova impostor', SN 1997bs, as well as the prototypes of the SN 2008S class of transients, SN 2008S and NGC 300 2008-OT1. All of these objects have faded below their progenitor luminosities in all bands for which comparisons are possible. We show that it is difficult to reconcile the late-time observations with models where surviving stars are obscured by either ejected shells or thick, dusty winds. Although some supernova impostors, such as SN 1954J, are clearly non-fatal, our results suggest that many of these weak stellar transients with circumstellar interactions may actually be low energy supernovae.

  8. Dust in Supernovae: Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Kozasa, T.; Nozawa, T.; Tominaga, N.; Umeda, H.; Maeda, K.; Nomoto, K.

    2009-12-01

    Core-collapsed supernovae (CCSNe) have been considered to be one of sources of dust in the universe. What kind and how much mass of dust are formed in the ejecta and are injected into the interstellar medium (ISM) depend on the type of CCSNe, through the difference in the thickness (mass) of outer envelope. In this review, after summarizing the existing results of observations on dust formation in CCSNe, we investigate formation of dust in the ejecta and its evolution in the supernova remnants (SNRs) of Type II-P and Type IIb SNe. Then, the time evolution of thermal emission from dust in the SNR of Type IIb SN is demonstrated and compared with the observation of Cas A. We find that the total dust mass formed in the ejecta does not so much depend on the type; ˜0.3-0.7 Msun in Type II-P SNe and ˜0.13 Msun in Type IIb SN. However the size of dust sensitively depends on the type, being affected by the difference in the gas density in the ejecta: the dust mass is dominated by grains with radii larger than 0.03 μm in Type II-P, and less than 0.006 μm in Type IIb, which decides the fate of dust in the SNR. The surviving dust mass is ˜0.04-0.2 Msun in the SNRs of Type II-P SNe for the ambient hydrogen density of nH=10.0-1.0 cm-3 while almost all dust grains are destroyed in the SNR of Type IIb. The spectral energy distribution (SED) of thermal emission from dust in SNR well reflects the evolution of dust grains in SNR through erosion by sputtering and stochastic heating. The observed SED of Cas A SNR is reasonably reproduced by the model of dust formation and evolution for Type IIb SN.

  9. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS

    SciTech Connect

    Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X.

    2012-09-01

    Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is

  11. Ages, chemistry, and type 1A supernovae: Clues to the formation of the galactic stellar halo

    NASA Technical Reports Server (NTRS)

    Smecker-Hane, Tammy A.; Wyse, Rosemary F. G.

    1993-01-01

    We endeavor to resolve two conflicting constraints on the duration of the formation of the Galactic stellar halo - 2-3 Gyr age differences in halo stars, and the time scale inferred from the observed constant values of chemical element abundance ratios characteristic of enrichment by Type II supernovae - by investigating the time scale for the onset of Type Ia supernovae (SNIa) in the currently favored progenitor model - mergers of carbon and oxygen white dwarfs (CO WDs).

  12. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    NASA Technical Reports Server (NTRS)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  13. Evidence for a possible black hole remnant in the Type IIL Supernova 1979C

    NASA Astrophysics Data System (ADS)

    Patnaude, D. J.; Loeb, A.; Jones, C.

    2011-04-01

    We present an analysis of archival X-ray observations of the Type IIL supernova SN 1979C. We find that its X-ray luminosity is remarkably constant at (6.5 ± 0.1) × 10 38 erg s -1 over a period of 12 years between 1995 and 2007. The high and steady luminosity is considered as possible evidence for a stellar-mass (˜5-10 M⊙) black hole accreting material from either a supernova fallback disk or from a binary companion, or possibly from emission from a central pulsar wind nebula. We find that the bright and steady X-ray light curve is not consistent with either a model for a supernova powered by magnetic braking of a rapidly rotating magnetar, or a model where the blast wave is expanding into a dense circumstellar wind.

  14. What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    NASA Astrophysics Data System (ADS)

    Dunne, B. C.; Gruendl, R. A.; Chu, Y.-H.

    1999-05-01

    The ultra-luminous supernova remnant (SNR) in NGC 6946 is the brightest X-ray SNR known, ~ 1000 times as luminous as Cas A. However, high-velocity gas with Vexp > 600 km/s has not been detected, as expected for a young remnant. HST WFPC2 images of this SNR show multiple loops. This morphology has been used as evidence of colliding SNRs of different ages, in order to explain the X-ray luminosity (Blair, Fesen, & Schlegel 1997), We have obtained high-dispersion echelle spectra of this SNR with the KPNO 4-m telescope. The SNR is detected in Hα , [N II]lambda 6584, and [O III]lambda 5007 lines. The emission lines show a narrow component (FWHM ~ 40 km/s) superposed on a broad component (FWZI ~ 360 km/s). The total [N II] flux is comparable to the Hα flux. The broad component contains ~ 1.5 times as much flux as the narrow component, and the broad component has slightly higher [N II]/Hα ratio than the narrow component. These spectral properties are qualitatively similar to some small SNRs in M33. The strong [N II] line in the narrow component suggests an anomalous nitrogen abundance usually associated with circumstellar material. The nitrogen abundance and small remnant size imply that the supernova progenitor was a WN star and the supernova exploded in a dense circumstellar bubble.

  15. The Vela Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Raymond, John C.

    We wish to obtain both emission and absorption line observations of the Vela Supernova remnant. The filament we wish to study in emission is the brightest filament in the SNR, so it will provide a spectrum twice the quality of any in existence. It is also located at the edge of an unusual bulge in the SNR, and it can be used to test the level of departure from pressure equilibrium in the remnant, which is useful as a test of evaporative models of SNR evolution. The absorption line studies will look for evidence of the drastically unstable behavior of shocks above 150 km/s predicted by Innes and Giddings. Four of the stars studied by Jenkins, Silk and Wallerstein showed marginal evidence for two positive or two negative high velocity components. If these multiple velocity components are confirmed, they support the secondary shock predictions of Innes and Giddings.

  16. Pulsars and supernova remnants

    SciTech Connect

    Narayan, R.; Schaudt, K.J.

    1988-02-01

    With the recent discovery of the pulsar PSR 1951 + 22 in CTB 80, four pulsars are now known in supernova remnants (SNRs) of the plerion and composite classes. It is argued that this success rate of pulsar detections implies that young fast pulsars have long fan-beams that enable them to be seen from most directions. Based on calculations that use a pulsar luminosity model and allow for selection effects, it is suggested that the best SNRs for future pulsar searches are 3C 58, MSH 11-62, G24.7 + 0.6, and MSH 15-56. It is also concluded that the failure to detect pulsars in shell SNRs implies either that there are no pulsars in these SNRs or that the pulsars are unusually weak, possibly due to slow rotation or weak magnetic fields. 25 references.

  17. Supernova Candidate from CSS

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Mahabal, A.; Djorgovski, S. G.; Williams, R.; Graham, M. J.; Christensen, E.; Beshore, E. C.; Larson, S. M.

    2008-06-01

    We have detected a likely Supernova in Catalina Sky Survey images from 11 Jun 2008 UT. The object has the following parameters:

    CSS080611:121642+410211 2008-06-11 UT 04:52:41 RA 12:16:41.53 Dec 41:02:11.2 Mag 17.7 Type SN
    The object is near the edge of galaxy SDSSJ121642.18+410223.7 (z = 0.039, mags: g~ 17.9, r~17.6, i~17.3, z~17.5).

  18. Dimming supernovae without cosmic acceleration.

    PubMed

    Csáki, Csaba; Kaloper, Nemanja; Terning, John

    2002-04-22

    We present a simple model where photons propagating in extragalactic magnetic fields can oscillate into very light axions. The oscillations may convert some of the photons, departing a distant supernova, into axions, making the supernova appear dimmer and hence more distant than it really is. Averaging over different configurations of the magnetic field we find that the dimming saturates at about one-third of the light from the supernovae at very large redshifts. This results in a luminosity distance versus redshift curve almost indistinguishable from that produced by the accelerating Universe, if the axion mass and coupling scale are m approximately 10(-16) eV, M approximately 4 x 10(11) GeV. This phenomenon may be an alternative to the accelerating Universe for explaining supernova observations.

  19. Spectroscopic classification of supernova candidates

    NASA Astrophysics Data System (ADS)

    Hodgkin, S. T.; Hall, A.; Fraser, M.; Campbell, H.; Wyrzykowski, L.; Kostrzewa-Rutkowska, Z.; Pietro, N.

    2014-09-01

    We report the spectroscopic classification of four supernovae at the 2.5m Isaac Newton Telescope on La Palma, using the Intermediate Dispersion Spectrograph and the R300V grating (3500-8000 Ang; ~6 Ang resolution).

  20. Simulation of Kepler Supernova Explosion

    NASA Video Gallery

    This video shows a simulation of the Kepler supernova as it interacts with material expelled by the giant star companion to the white dwarf before the latter exploded. It was assumed that the bulk ...

  1. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-01

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass MMs ˜ 7 - 9.5M⊙. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 1050 erg and the small 56Ni mass of 2.5 × 10-3 M⊙, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ˜ 2 × 1044 erg s-1 and can evaporate circumstellar dust up to R ˜ 1017 cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ˜ 1042 erg s-1 and t ˜ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ˜ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ˜ 1048 erg.

  2. Electron-capture supernovae of super-asymptotic giant branch stars and the Crab supernova 1054

    SciTech Connect

    Nomoto, Ken'ichi; Tominaga, Nozomu; Blinnikov, Sergei I.

    2014-05-02

    An electron-capture supernova (ECSN) is a core-collapse supernova explosion of a super-asymptotic giant branch (SAGB) star with a main-sequence mass M{sub Ms} ∼ 7 - 9.5M{sub ⊙}. The explosion takes place in accordance with core bounce and subsequent neutrino heating and is a unique example successfully produced by first-principle simulations. This allows us to derive a first self-consistent multicolor light curves of a core-collapse supernova. Adopting the explosion properties derived by the first-principle simulation, i.e., the low explosion energy of 1.5 × 10{sup 50} erg and the small {sup 56}Ni mass of 2.5 × 10{sup −3} M{sub ⊙}, we perform a multigroup radiation hydrodynamics calculation of ECSNe and present multicolor light curves of ECSNe of SAGB stars with various envelope mass and hydrogen abundance. We demonstrate that a shock breakout has peak luminosity of L ∼ 2 × 10{sup 44} erg s{sup −1} and can evaporate circumstellar dust up to R ∼ 10{sup 17} cm for a case of carbon dust, that plateau luminosity and plateau duration of ECSNe are L ∼ 10{sup 42} erg s{sup −1} and {sup t} ∼ 60 - 100 days, respectively, and that a plateau is followed by a tail with a luminosity drop by ∼ 4 mag. The ECSN shows a bright and short plateau that is as bright as typical Type II plateau supernovae, and a faint tail that might be influenced by spin-down luminosity of a newborn pulsar. Furthermore, the theoretical models are compared with ECSN candidates: SN 1054 and SN 2008S. We find that SN 1054 shares the characteristics of the ECSNe. For SN 2008S, we find that its faint plateau requires a ECSN model with a significantly low explosion energy of E ∼ 10{sup 48} erg.

  3. Supernova Modeling: Progress and Challenges

    SciTech Connect

    Cardall, Christian Y

    2012-01-01

    Neutrinos play important roles in the pre-collapse evolution, explosion, and aftermath of core-collapse supernovae. Detected neutrino signals from core-collapse supernovae would provide insight into the explosion mechanism and unknown neutrino mixing parameters. Achieving these goals requires large-scale, multiphysics simulations. For many years, several groups have performed such simulations with increasing realism. Current simulations and plans for future work of the Oak Ridge group are described.

  4. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  5. Walter Baade, Fritz Zwicky, and Rudolph Minkowski's Early Supernova Research, 1927 - 1973

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    1999-12-01

    Long before he ``discovered" the two stellar populations, Walter Baade was a pioneer in research on supernovae and their remnants. In 1927, while still in Germany, Baade emphasized what he called ``Hauptnovae" (chief novae) as highly luminous, potential distance indicators. He joined the Mount Wilson staff in 1931, bringing the ``secret" of the Schmidt camera with him, and encouraged Fritz Zwicky to carry out a supernova search with one at Palomar. Baade and Zwicky used the term ``supernova" in their 1933 joint paper. Zwicky began a systematic search in 1936, and Baade followed up with the 100-in reflector to derive light curves. He confirmed that Tycho's ``nova" of 1572 and the Crab nebula had been supernovae in our Galaxy. Baade advised N. U. Mayall, at Lick, on his spectroscopic study of the Crab nebula. In 1933, after Hitler came to power, Rudolph Minkowski had to leave Germany. Baade managed to get him a Mount Wilson staff position. Minkowski then did the spectroscopic observations of supernovae, beginning in 1937. Within a few years he and Baade were able to distinguish type I and II supernovae. Baade's further work on supernovae included historical research in Latin, Italian, and German, as well as filter photography. He searched hard for a remnant of SN 1885 in M 31, but never succeeded in finding it. After World War II the Crab nebula was found to be a strong radio source, and Baade and Minkowski used the 200-in to identify other supernova remnants, beginning with Cas A. Baade collaborated closely with Jan Oort and his student, Lo Woltjer, in their studies of the Crab nebula. After Baade retired in 1958, Minkowski continued supernova research for more than a decade; one of his favorite objects was the expanding Cygnus Loop.

  6. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  7. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  8. When will a pulsar in supernova 1987a be seen?

    PubMed

    Michel, F C; Kennel, C F; Fowler, W A

    1987-11-13

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magelanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the "missing" energy in the form of those gamma rays that escape from the remnant instead of powering it.

  9. When will a pulsar in supernova 1987a be seen?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis; Kennel, C. F.; Fowler, William A.

    1987-01-01

    The means by which a pulsar might be detected in the remnant of supernova 1987a in the Large Magellanic Cloud is examined. One possibility is that the slower-than-radioactive decay typically seen in the type II light curves is itself the sign of powering by the underlying pulsar, with the decline representing not the spinning down of the pulsar but rather the declining nebular opacity that would allow increasing amounts of the energy to escape as gamma rays. The test of this hypothesis (if the supernova conforms to type II expectations) would be to look for the 'missing' energy in the form of those gamma rays that escape from the remnant instead of powering it.

  10. The Search for Supernovae Signatures in an Ice Core

    NASA Astrophysics Data System (ADS)

    Cole, A. L.; Boyd, R. N.; Thompson, L. G.; Davis, M. E.; Davis, A. M.; Lewis, R. S.

    2002-10-01

    It has been proposed that ice cores may preserve detectable enhancements of some terrestrially rare, radioisotopes, ^10Be, ^26Al, ^36Cl, resulting from a near Earth, type II supernova [1]. A simple model is developed and calculations are presented to estimate the number of grains with ^26Al enhancements that could be deposited per cm^2 on the Earth by a type II supernova. We describe the search for supernova grains that may possess ^26Al enhancements amongst grains filtered from the 308.5m Guliya ice core recovered from the Qinghai-Tibetan plateau in China [2]. We have obtained Guliya grain samples from the epochs corresponding to previously discovered ^10Be and ^36Cl enhancements at 35ky and 60ky as well as ˜1-4ky samples surrounding the time periods 25ky, 55ky, 68ky. Additionally, we obtained a sample that spans the time period 2-10ky. The process of identifying potential supernova grains amongst their terrestrial cousins employs a procedure developed at the University of Chicago for detecting interstellar grains in meteoritic samples [3]. We report the identification of the potential supernova grains, CaAl_12O_19, Al_2O_3, and MgAl_2O4 in the samples. This work is supported in part by National Science Foundation grant PHY-9901241. [1] Ellis, J., Fields, B. D., Schramm, D. N. Astrophys. J., 470: 1227, 1996. [2] Thompson, L. G. et al. Science, 276: 1821, 1997. [3] Amari, S., Lewis, R.S., Anders, E. Geochim. Cosmochim. Acta, 58: 459, 1994.

  11. 0935+05 Supernova 1995D in NGC 2962

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    1995-02-01

    Reiki Kushida of Yatsugatake South Base Observatory discovers 0935+05 Supernova 1995D in NGC 2962. Magnitude 14.0. Position RA 09h 40m 54.79s DEC +5° 08' 26.6" (2000). Nova AQL 95 confirmed spectroscopically "as a slow 'FE II'-class nova in its post-maximum phase of development. Requests continue to monitor 1436-63 Nova Cir 95.

  12. The Search for Lensed Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-01-01

    Type Ia supernovae that have multiple images due to gravitational lensing can provide us with a wealth of information both about the supernovae themselves and about our surrounding universe. But how can we find these rare explosions?Clues from Multiple ImagesWhen light from a distant object passes by a massive foreground galaxy, the galaxys strong gravitational pull can bend the light, distorting our view of the backgroundobject. In severe cases, this process can cause multiple images of the distant object to appear in the foreground lensing galaxy.An illustration of gravitational lensing. Light from the distant supernova is bent as it passes through a giant elliptical galaxy in the foreground, causing multiple images of the supernova to appear to be hosted by the elliptical galaxy. [Adapted from image by NASA/ESA/A. Feild (STScI)]Observations of multiply-imaged Type Ia supernovae (explosions that occur when white dwarfs in binary systems exceed their maximum allowed mass) could answer a number of astronomical questions. Because Type Ia supernovae are standard candles, distant, lensed Type Ia supernovae can be used to extend the Hubble diagram to high redshifts. Furthermore, the lensing time delays from the multiply-imaged explosion can provide high-precision constraints on cosmological parameters.The catch? So far, weve only found one multiply-imaged Type Ia supernova: iPTF16geu, discovered late last year. Were going to need a lot more of them to develop a useful sample! So how do we identify themutiply-imaged Type Ias among the many billions of fleeting events discovered in current and future surveys of transients?Searching for AnomaliesAbsolute magnitudes for Type Ia supernovae in elliptical galaxies. None are expected to be above -20 in the B band, so if we calculate a magnitude for a Type Ia supernova thats larger than this, its probably not hosted by the galaxy we think it is! [Goldstein Nugent 2017]Two scientists from University of California, Berkeley and

  13. How Bright Can Supernovae Get?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Supernovae enormous explosions associated with the end of a stars life come in a variety of types with different origins. A new study has examined how the brightest supernovae in the Universe are produced, and what limits might be set on their brightness.Ultra-Luminous ObservationsRecent observations have revealed many ultra-luminous supernovae, which haveenergies that challenge our abilities to explain them usingcurrent supernova models. An especially extreme example is the 2015 discovery of the supernova ASASSN-15lh, which shone with a peak luminosity of ~2*1045 erg/s, nearly a trillion times brighter than the Sun. ASASSN-15lh radiated a whopping ~2*1052 erg in the first four months after its detection.How could a supernova that bright be produced? To explore the answer to that question, Tuguldur Sukhbold and Stan Woosley at University of California, Santa Cruz, have examined the different sources that could produce supernovae and calculated upper limits on the potential luminosities ofeach of these supernova varieties.Explosive ModelsSukhbold and Woosley explore multiple different models for core-collapse supernova explosions, including:Prompt explosionA stars core collapses and immediately explodes.Pair instabilityElectron/positron pair production at a massive stars center leads to core collapse. For high masses, radioactivity can contribute to delayed energy output.Colliding shellsPreviously expelled shells of material around a star collide after the initial explosion, providing additional energy release.MagnetarThe collapsing star forms a magnetar a rapidly rotating neutron star with an incredibly strong magnetic field at its core, which then dumps energy into the supernova ejecta, further brightening the explosion.They then apply these models to different types of stars.Setting the LimitThe authors show that the light curve of ASASSN-15lh (plotted in orange) can be described by a model (black curve) in which a magnetar with an initial spin period of 0.7 ms

  14. The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry

    SciTech Connect

    Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

    2007-01-08

    We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

  15. Core-collapse supernova remnants and interactions with their surroundings

    NASA Astrophysics Data System (ADS)

    Brantseg, Thomas Felton

    This thesis examines three core-collapse supernova remnants (SNR)---the Cygnus Loop in the Milky Way and 0453-68.5 and 0540-69.3 in the Large Magellanic Cloud---of varying ages and in varying states of interaction with the surrounding interstellar medium (ISM), using X-ray imaging spectroscopy with Chan