Science.gov

Sample records for supernovae x-ray binaries

  1. The Youngest Known X-Ray Binary: Circinus X-1 and Its Natal Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Heinz, S.; Sell, P.; Fender, R. P.; Jonker, P. G.; Brandt, W. N.; Calvelo-Santos, D. E.; Tzioumis, A. K.; Nowak, M. A.; Schulz, N. S.; Wijnands, R.; van der Klis, M.

    2013-12-01

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time.

  2. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant

    SciTech Connect

    Heinz, S.; Sell, P.; Fender, R. P.; Jonker, P. G.; Brandt, W. N.; Calvelo-Santos, D. E.; Tzioumis, A. K.; Nowak, M. A.; Schulz, N. S.; Wijnands, R.; Van der Klis, M.

    2013-12-20

    Because supernova remnants are short-lived, studies of neutron star X-ray binaries within supernova remnants probe the earliest stages in the life of accreting neutron stars. However, such objects are exceedingly rare: none were known to exist in our Galaxy. We report the discovery of the natal supernova remnant of the accreting neutron star Circinus X-1, which places an upper limit of t < 4600 yr on its age, making it the youngest known X-ray binary and a unique tool to study accretion, neutron star evolution, and core-collapse supernovae. This discovery is based on a deep 2009 Chandra X-ray observation and new radio observations of Circinus X-1. Circinus X-1 produces type I X-ray bursts on the surface of the neutron star, indicating that the magnetic field of the neutron star is small. Thus, the young age implies either that neutron stars can be born with low magnetic fields or that they can rapidly become de-magnetized by accretion. Circinus X-1 is a microquasar, creating relativistic jets that were thought to power the arcminute-scale radio nebula surrounding the source. Instead, this nebula can now be attributed to non-thermal synchrotron emission from the forward shock of the supernova remnant. The young age is consistent with the observed rapid orbital evolution and the highly eccentric orbit of the system and offers the chance to test the physics of post-supernova orbital evolution in X-ray binaries in detail for the first time.

  3. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    SciTech Connect

    Seward, F. D.; Charles, P. A.; Foster, D. L.; Dickel, J. R.; Romero, P. S.; Edwards, Z. I.; Perry, M.; Williams, R. M.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  4. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  5. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  6. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  7. Discovery of a Be/X-ray pulsar binary and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hénault-Brunet, V.; Oskinova, L. M.; Guerrero, M. A.; Sun, W.; Chu, Y.-H.; Evans, C. J.; Gallagher, J. S., III; Gruendl, R. A.; Reyes-Iturbide, J.

    2012-02-01

    We report on a new Be/X-ray pulsar binary located in the Wing of the Small Magellanic Cloud (SMC). The strong pulsed X-ray source was discovered with the Chandra and XMM-Newton X-ray observatories. The X-ray pulse period of 1062 s is consistently determined from both Chandra and XMM-Newton observations, revealing one of the slowest rotating X-ray pulsars known in the SMC. The optical counterpart of the X-ray source is the emission-line star 2dFS 3831. Its B0-0.5(III)e+ spectral type is determined from VLT-FLAMES and 2dF optical spectroscopy, establishing the system as a Be/X-ray binary (Be-XRB). The hard X-ray spectrum is well fitted by a power law with additional thermal and blackbody components, the latter reminiscent of persistent Be-XRBs. This system is the first evidence of a recent supernova in the low-density surroundings of NGC 602. We detect a shell nebula around 2dFS 3831 in Hα and [O III] images and conclude that it is most likely a supernova remnant. If it is linked to the supernova explosion that created this new X-ray pulsar, its kinematic age of (2-4) × 104 yr provides a constraint on the age of the pulsar.

  8. Supernova SN 2014C X-ray

    NASA Image and Video Library

    2017-01-24

    This image from NASA's Chandra X-ray Observatory shows spiral galaxy NGC 7331, center, in a three-color X-ray image. Red, green and blue colors are used for low, medium and high-energy X-rays, respectively. An unusual supernova called SN 2014C has been spotted in this galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA21089

  9. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  10. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE

  11. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragkos, Anastasios

    black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.

  12. Hard X Rays from Supernova 1993J

    DTIC Science & Technology

    1994-01-01

    extensively observed at many wavelengths and has yielded a wealth of new information about core - collapse supernovae (Wheeler & Filipenko 1994, and references...modelled as the result of a core collapse and subsequent explosion in a red supergiant that had lost almost all of its hydrogen-rich envelope (Nomoto...HARD X RAYS FROM SUPERNOVA 1993J M.D. Leising1, J.D. Kurfess2, D.D. Clayton1, D.A. Grabelsky3, J.E. Grove2, W.N. Johnson2, G.V. Jung4, R.L. Kinzer2

  13. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  14. UV observations of x ray binaries

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    1990-01-01

    IUE (International Ultraviolet Explorer) has observed both high and low mass x ray binaries throughout its life. The UV spectra of high mass systems reveal the nature of the massive companion star and the effects of the x ray illumination of the stellar wind. In loss mass systems, the x ray illuminated disk or companion star dominates the UV light. System parameters and the characteristics of the accretion disk can be inferred.

  15. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  16. The X-ray binary, UW CMa

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1982-01-01

    The UW CMa is a close, eclipsing binary composed of an O7f primary with a stron wind and a less luminous O-type companion. It was found that UW CMa a variable X-ray source, whose X-ray variations are in phase with its optical light curve. Since both components of the binary system are O stars, accretion by a compact object is ruled out as a mechanism for generating X-rays. The UW CMa represents a new class of X-ray binaries, in which X-rays result from the collision of a wind from one star with the surface or wind of the other star. It is hypothesised that the impact of a wind against a star generates a shock wave about 0.25 stellar radii above the stellar surface, and material behind the shock front, heated to bout 10 million degrees, radiates the X-ray apparent X-ray variability is due to its location between the two stars, where it undergoes eclipses. The high temperature region maintains an ionization cavity in the wind, as detected with IUE. The ionization cavity is the source of depletion of absorbing ions in the wind between the two stars.

  17. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    This grant was for the study of Luminous Supersoft X-Ray Sources (SSSs). During the first year a number of projects were completed and new projects were started. The projects include: 1) Time variability of SSSs 2) SSSs in M31; 3) Binary evolution scenarios; and 4) Acquiring new data.

  18. Polarisation modulation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  19. Quasiperiodic Oscillations in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    van der Klis, M.; Murdin, P.

    2000-11-01

    The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...

  20. The attenuation of X-rays emitted by supernovae

    NASA Technical Reports Server (NTRS)

    Schocken, K.

    1973-01-01

    The attenuation of X-rays in Arnett's C-12 detonation supernova model is computed. The attenuation of X-rays in the filaments of the Crab Nebula is computed using a model for the filaments by Woltjer and a model by Davidson and Tucker. An empirical expression by Gorenstein, Kellogg, and Gursky for the optical thickness of the interstellar medium for three supernova remnants is analyzed.

  1. Supernova SN 2014C Optical and X-Ray

    NASA Image and Video Library

    2017-01-24

    This visible-light image from the Sloan Digital Sky Survey shows spiral galaxy NGC 7331, center, where astronomers observed the unusual supernova SN 2014C . The inset images are from NASA's Chandra X-ray Observatory, showing a small region of the galaxy before the supernova explosion (left) and after it (right). Red, green and blue colors are used for low, medium and high-energy X-rays, respectively. http://photojournal.jpl.nasa.gov/catalog/PIA21088

  2. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  3. A long-period, violently variable X-ray source in a young supernova remnant.

    PubMed

    De Luca, A; Caraveo, P A; Mereghetti, S; Tiengo, A; Bignami, G F

    2006-08-11

    Observations with the Newton X-ray Multimirror Mission satellite show a strong periodic modulation at 6.67 +/- 0.03 hours of the x-ray source at the center of the 2000-year-old supernova remnant RCW 103. No fast pulsations are visible. If genetically tied to the supernova remnant, the source could either be an x-ray binary, composed of a compact object and a low-mass star in an eccentric orbit, or an isolated neutron star. In the latter case, the combination of its age and period would indicate that it is a peculiar magnetar, dramatically slowed down, possibly by a supernova debris disc. Both scenarios require nonstandard assumptions about the formation and evolution of compact objects in supernova explosions.

  4. Polarization from Scattering in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.

    2009-01-01

    A paradox of X-ray binaries is that their strong X-ray flux ionizes much nearby low density gas, making it difficult to observe. Polarization can reveal gas which is fully ionized and can provide new insight into X-ray binary environments. In this talk I will present models for the scattering and polarization in X-ray binaries, adopting gas parameters which are chosen according to current ideas about these systems. These include stellar winds from a massive companion, X-ray induced disk winds, and the photospheres of a disk or binary companion.

  5. X-ray Emission likely not from Supernova 2017egm

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Dong, Subo; Prieto, Jose L.; Pooley, David

    2017-06-01

    We report on new Swift observations of the field of supernova 2017egm (Delgado et al, TNS Astronomical Transient Report No 11679; - > TNS; ATel #10498) and found that the X-ray emission reported in ATel #10499 (Grupe et al.) are likely not associated with supernova 2017egm.

  6. Swift X-Ray Telescope Observations of Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Kae Batara Olaes, Melanie; Quimby, Robert

    2016-06-01

    Superluminous Supernovae (SLSNe) are a part of an emerging class of exceptionally bright supernovae with peak luminosities 10 times brighter than typical Type Ia supernovae. Similar to supernovae, SLSNe are divided into two subclasses: hydrogen poor SLSN-I and hydrogen rich SLSN-II. However, the luminosity of these events is far too high to be explained by the models for normal supernovae. New models developed to explain SLSNe predict high luminosity X-ray emission at late times. A consistent analysis of incoming SLSNe is essential in order to place constraints on the mechanisms behind these events. Here we present the results of X-ray analysis on SLSNe using a Bayesian method of statistical inference for low count rate events.

  7. Kinematics of Supernova Remnants: Status of X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Dewey, Daniel

    2010-12-01

    A supernova (SN) explosion drives stellar debris into the circumstellar material (CSM) filling a region on a scale of parsecs with X-ray emitting plasma. The velocities involved in supernova remnants (SNRs), thousands of km s-1, can be directly measured with medium and high-resolution X-ray spectrometers and add an important dimension to our understanding of the last stages of the progenitor, the explosion mechanism, and the physics of strong shocks. After touching on the ingredients of SNR kinematics, I present a summary of the still-growing measurement results from SNR X-ray observations. Given the advances in 2D/3D hydrodynamics, data analysis techniques, and especially X-ray instrumentation, it is clear that our view of SNRs will continue to deepen in the decades ahead.

  8. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  9. Collective properties of neutron-star X-ray binary populations of galaxies. II. Pre-low-mass X-ray binary properties, formation rates, and constraints

    SciTech Connect

    Bhadkamkar, H.; Ghosh, P.

    2014-04-01

    We continue our exploration of the collective properties of neutron-star X-ray binaries in the stellar fields (i.e., outside globular clusters) of normal galaxies. In Paper I of this series, we considered high-mass X-ray binaries (HMXBs). In this paper (Paper II), we consider low-mass X-ray binaries (LMXBs), whose evolutionary scenario is very different from that of HMXBs. We consider the evolution of primordial binaries up to the stage where the neutron star just formed in the supernova explosion of the primary is in a binary with its low-mass, unevolved companion, and this binary has circularized tidally, producing what we call a pre-low-mass X-ray binary (pre-LMXB). We study the constraints on the formation of such pre-LMXBs in detail (since these are low-probability events), and calculate their collective properties and formation rates. To this end, we first consider the changes in the binary parameters in the various steps involved, viz., the common-envelope phase, the supernova, and the tidal evolution. This naturally leads to a clarification of the constraints. We then describe our calculation of the evolution of the distributions of primordial binary parameters into those of pre-LMXB parameters, following the standard evolutionary scenario for individual binaries. We display the latter as both bivariate and monovariate distributions, discuss their essential properties, and indicate the influences of some essential factors on these. Finally, we calculate the formation rate of these pre-LMXBs. The results of this paper will be used in a subsequent one to compute the expected X-ray luminosity function of LMXBs.

  10. An X-Ray Survey of Colliding Wind Binaries

    NASA Astrophysics Data System (ADS)

    Gagné, M.; Fehon, G.; Savoy, M. R.; Cartagena, C. A.; Cohen, D. H.; Owocki, S. P.

    2012-12-01

    We have compiled a list of 35 O + O binaries and 86 Wolf-Rayet (WR) binaries in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton, and ROSAT satellites to probe the connection between their X-ray properties and their system characteristics. Of the WR binaries with published model parameters, all have log LX > 32, kT > 1 keV and log LX/Lbol > -7. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O + O binaries, short-period systems have soft X-ray spectra and longer period systems show harder X-ray spectra again with a large spread in LX/Lbol.

  11. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  12. Neutron Stars in X-ray Binaries and their Environments

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2017-09-01

    Neutron stars in X-ray binary systems are fascinating objects that display a wide range of timing and spectral phenomena in the X-rays. Not only parameters of the neutron stars, like magnetic field strength and spin period evolve in their active binary phase, the neutron stars also affect the binary systems and their immediate surroundings in many ways. Here we discuss some aspects of the interactions of the neutron stars with their environments that are revelaed from their X-ray emission. We discuss some recent developments involving the process of accretion onto high magnetic field neutron stars: accretion stream structure and formation, shape of pulse profile and its changes with accretion torque. Various recent studies of reprocessing of X-rays in the accretion disk surface, vertical structures of the accretion disk and wind of companion star are also discussed here. The X-ray pulsars among the binary neutron stars provide excellent handle to make accurate measurement of the orbital parameters and thus also evolution of the binray orbits that take place over time scale of a fraction of a million years to tens of millions of years. The orbital period evolution of X-ray binaries have shown them to be rather complex systems. Orbital evolution of X-ray binaries can also be carried out from timing of the X-ray eclipses and there have been some surprising results in that direction, including orbital period glitches in two X-ray binaries and possible detection of the most massive circum-binary planet around a Low Mass X-ray Binary.

  13. New developments in studies of compact X-ray binaries

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1987-01-01

    Several recent developments, both observational and theoretical, on the study of X-ray binaries and the compact objects they contain are discussed. The recent discovery of the first binary periods for the globular cluster X-ray sources has stimulated a new model for their origin. As a variant of the 'standard' tidal capture origin model, this predicts an enhanced number of neutron stars in globular clusters. Long term timing studies of X-ray binaries may be consistent with many of these systems, primarily X-ray burst sources, being in fact hierarchical triple systems. Finally, the radio studies of Cyg X-3 and other X-ray binaries suggest that nonthermal processes are as important, energetically, as accretion processes in these systems.

  14. The intrinsic collective X-ray spectrum of luminous high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Khabibullin, I.

    2017-06-01

    Using a sample of 200 luminous (LX, unabs > 1038 erg s-1, where LX, unabs is the unabsorbed 0.25-8 keV luminosity) high-mass X-ray binary (HMXB) candidates found with Chandra in 27 nearby galaxies, we have constructed the collective X-ray spectrum of HMXBs in the local Universe per unit star formation rate, corrected for observational biases associated with intrinsic diversity of HMXB spectra and X-ray absorption in the interstellar medium. This spectrum is well fit by a power law with a photon index Γ = 2.1 ± 0.1 and is dominated by ultraluminous X-ray sources with LX, unabs > 1039 erg s-1. Hard sources (those with the 0.25-2 to 0.25-8 keV flux ratio of <0.6) dominate above ˜2 keV, while soft and supersoft sources (with the flux ratios of 0.6-0.95 and >0.95, respectively) at lower energies. The derived spectrum probably represents the angle-integrated X-ray emission of the near- and supercritically accreting stellar mass black holes and neutron stars in the local Universe. It provides an important constraint on supercritical accretion models and can be used as a reference spectrum for calculations of the X-ray preheating of the Universe by the first generations of X-ray binaries.

  15. Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Narayan, R.

    1996-12-01

    X-ray binaries (XRBs) are systems in which a neutron star or a black hole accretes matter from a companion secondary star. Several XRBs have mass functions greater than 3M_sun, the maximum mass of a neutron star. These are identified as black hole candidates purely on the basis of mass, but in a few cases there is additional evidence to suggest that the accreting stars actually do have event horizons (see below). Black hole XRBs display at least five spectral states: quiescent state, low state, intermediate state, high state, and very high state. The states are believed to correspond to increasing mass accretion rates. The phenomenology of XRBs can be explained by models which combine the following two basic modes of accretion. (1) Thin accretion disk: In this well-known accretion model, the gas radiates efficiently, is relatively cool, and is geometrically thin in the vertical direction. The spectrum is nearly blackbody. (2) Advection-dominated accretion flow (ADAF): Here the accreting gas is optically thin, radiates inefficiently, and is quasi-spherical. Because of the negligible loss of energy through radiation, the gas is extremely hot, with the ions approaching the virial temperature, T_i ~ 10(12) K /r, where r is the radius in Schwarzschild units. The electrons, however, level off at a temperature T_e ~ 10(9-10(10)) K. The spectrum consists of Comptonized synchrotron and bremsstrahlung emission. The quiescent state of black hole XRBs has been explained with a model in which the accreting gas is in the form of a thin disk at large radii, r>rtr ~ 10(3-10^4) , and an ADAF at smaller radii, r

  16. The X-ray surface brightness of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    White, R. L.; Long, K. S.

    1983-01-01

    The first X-ray images of Kepler's supernova remnant (SN Ophiuchi 1604) are presented, and consequences for SNR models are discussed. Observations made with the Einstein Observatory Imaging Proportional Counter and High Resolution Imager show the remnant to be circular, with a strong shell brighter in the north than in the south. A flux of 1.2 x 10 to the -10th ergs/sq cm per sec was measured in the 0.15-4.5 keV region, which corresponds to an X-ray luminosity of 1.0 x 10 to the 36th ergs/sec at a distance of 5 kpc and an interstellar medium density of 2.8 x 10 to the 21st/sq cm. The X-ray observations do not allow the determination of whether the SNR is in the adiabatic or free expansion phase, but in either case it is shown that the mean ISM density must be greater than about 0.1/cu cm. In addition, the density of the X-ray emitting gas must be high, and its electron temperature must be fairly low. The high ISM densities derived for Kepler's SNR and other SNRs thus suggest an atypical ISM, possibly influenced by mass lost from the pre-supernova star.

  17. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300

    NASA Astrophysics Data System (ADS)

    Binder, B.; Williams, B. F.; Kong, A. K. H.; Gaetz, T. J.; Plucinsky, P. P.; Skillman, E. D.; Dolphin, A.

    2016-04-01

    We present new observations of the `supernova impostor' SN 2010da using the Chandra X-ray Observatory and the Hubble Space Telescope. During the initial 2010 outburst, the 0.3-10 keV luminosity was observed by Swift to be ˜5 × 1038 erg s-1 and faded by a factor of ˜25 in a four month period. Our two new Chandra observations show a factor of ˜10 increase in the 0.35-8 keV X-ray luminosity, from ˜4 × 1036 to 4 × 1037 erg s-1 in ˜6 months, and the X-ray spectrum is consistent in both observations with a power-law with a photon index of Γ ˜ 0. We find evidence of X-ray spectral state changes: when SN 2010da is in a high-luminosity state, the X-ray spectrum is harder (Γ ˜0) compared to the low-luminosity state (Γ ˜ 1.2 ± 0.8). Using our Hubble observations, we fit the colour-magnitude diagram of the coeval stellar population to estimate a time since formation of the SN 2010da progenitor system of ≲5 Myr. Our observations are consistent with SN 2010da being a high-mass X-ray binary (HMXB) composed of a neutron star and a luminous blue variable-like companion, although we cannot rule out the possibility that SN 2010da is an unusually X-ray bright massive star. The ≲5 Myr age is consistent with the theoretically predicted delay time between the formation of a massive binary and the onset of the HMXB phase. It is possible that the initial 2010 outburst marked the beginning of X-ray production in the system, making SN 2010da possibly the first massive progenitor binary ever observed to evolve into an HMXB.

  18. X-ray observations of planetary nebulae with binary nuclei

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Berthiaume, G. D.; Nousek, J. A.

    1992-01-01

    Einstein and EXOSAT satellite observations of X-ray emission from the planetary nebulae A63 and LoTr 5 are reviewed. Both of these systems contain binary central stars. No flux was detected from A63 (central star UU Sge). LoTr 5 (central star IN Com) is a previously unreported X-ray emitter; it showed no statistically significant X-ray variability. Three models for the source of the X-ray emission in such systems are considered in the light of these and previous results.

  19. Mass transfer in binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  20. X-ray Evidence Supports Possible New Class Of Supernova

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Evidence for a significant new class of supernova has been found with NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton. These results strengthen the case for a population of stars that evolve rapidly and are destroyed by thermonuclear explosions. Such "prompt" supernovas could be valuable tools for probing the early history of the cosmos. A team of astronomers uncovered a puzzling situation when they examined X-ray data from DEM L238 and DEM L249, the remnants of two supernovas in a nearby galaxy. On the one hand, the unusually high concentration of iron atoms implied that the remnants are the products of thermonuclear explosions of white dwarf stars, a well-known type of supernova known as Type Ia. On the other hand, the hot gas in the remnants was much denser and brighter in X-rays than typical Type Ia remnants. A white dwarf, the dense final stage in the evolution of a sun-like star, is a very stable object and will not explode on its own. However, if a white dwarf has a close companion star it can grow beyond a critical mass by pulling gas off the companion and explode. Chandra X-ray and MCELS Optical Image of DEM L238 and DEM L249 Chandra X-ray and MCELS Optical Image of DEM L238 and DEM L249 Computer simulations of Type Ia supernova remnants showed that the most likely explanation for the X-ray data is that the white dwarfs exploded into very dense environments. This suggests that the stars which evolved into these white dwarfs were more massive than usual, because heavier stars are known to expel more gas into their surroundings. "We know that the more massive a star is, the shorter its lifetime," said Kazimierz Borkowski of North Carolina State University, Raleigh. "If such a star could also begin to pull matter from its companion at an early stage, then this star would have a much shorter fuse and explode in only about 100 million years -- much less than other Type Ia supernovas." Other teams have independently found evidence for

  1. Superluminous X-Rays from a Superluminous Supernova

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Read, A. M.; Metzger, B. D.; Wheatley, P. J.; Tanvir, N. R.

    2013-07-01

    The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of ~100 brighter than normal supernovae (SNe; typically SLSNe have MV < -21), has shown an unexpected diversity in core-collapse SN properties. Numerous models have been postulated for the nature of these events, including a strong interaction of the shockwave with a dense circumstellar environment, a re-energizing of the outflow via a central engine, or an origin in the catastrophic destruction of the star following a loss of pressure due to pair production in an extremely massive stellar core (so-called pair instability SNe). Here we consider constraints that can be placed on the explosion mechanism of hydrogen-poor SLSNe (SLSNe-I) via X-ray observations, with XMM-Newton, Chandra, and Swift, and show that at least one SLSN-I is likely the brightest X-ray SN ever observed, with LX ~ 1045 erg s-1, ~150 days after its initial discovery. This is a luminosity three orders of magnitude higher than seen in other X-ray SNe powered via circumstellar interactions. Such high X-ray luminosities are sufficient to ionize the ejecta and markedly reduce the optical depth, making it possible to see deep into the ejecta and any source of emission that resides there. Alternatively, an engine could have powered a moderately relativistic jet external to the ejecta, similar to those seen in gamma-ray bursts. If the detection of X-rays does require an engine it implies that these SNe do create compact objects, and that the stars are not completely destroyed in a pair instability event. Future observations will determine which, if any, of these mechanisms are at play in SLSNe.

  2. SUPERLUMINOUS X-RAYS FROM A SUPERLUMINOUS SUPERNOVA

    SciTech Connect

    Levan, A. J.; Wheatley, P. J.; Read, A. M.; Tanvir, N. R.; Metzger, B. D.

    2013-07-10

    The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of {approx}100 brighter than normal supernovae (SNe; typically SLSNe have M{sub V} < -21), has shown an unexpected diversity in core-collapse SN properties. Numerous models have been postulated for the nature of these events, including a strong interaction of the shockwave with a dense circumstellar environment, a re-energizing of the outflow via a central engine, or an origin in the catastrophic destruction of the star following a loss of pressure due to pair production in an extremely massive stellar core (so-called pair instability SNe). Here we consider constraints that can be placed on the explosion mechanism of hydrogen-poor SLSNe (SLSNe-I) via X-ray observations, with XMM-Newton, Chandra, and Swift, and show that at least one SLSN-I is likely the brightest X-ray SN ever observed, with L{sub X} {approx} 10{sup 45} erg s{sup -1}, {approx}150 days after its initial discovery. This is a luminosity three orders of magnitude higher than seen in other X-ray SNe powered via circumstellar interactions. Such high X-ray luminosities are sufficient to ionize the ejecta and markedly reduce the optical depth, making it possible to see deep into the ejecta and any source of emission that resides there. Alternatively, an engine could have powered a moderately relativistic jet external to the ejecta, similar to those seen in gamma-ray bursts. If the detection of X-rays does require an engine it implies that these SNe do create compact objects, and that the stars are not completely destroyed in a pair instability event. Future observations will determine which, if any, of these mechanisms are at play in SLSNe.

  3. The X-Ray Spectral Evolution of Galactic Black Hole X-Ray Binaries toward Quiescence

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard. M.; Gallo, Elena; Jonker, Peter G.

    2013-08-01

    Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a normalized Eddington ratio lx = L 0.5-10 keV/L Edd < 10-5). Here, we present Chandra X-ray imaging spectroscopy for three BHXB systems (H 1743-322, MAXI J1659-152, and XTE J1752-223) as they fade into quiescence following an outburst. Multiple X-ray observations were taken within one month of each other, allowing us to track each individual system's X-ray spectral evolution during its decay. We compare these three systems to other BHXB systems. We confirm that quiescent BHXBs have softer X-ray spectra than low-hard-state BHXBs, and that quiescent BHXB spectral properties show no dependence on the binary system's orbital parameters. However, the observed anti-correlation between X-ray photon index (Γ) and lx in the low-hard state does not continue once a BHXB enters quiescence. Instead, Γ plateaus to an average langΓrang = 2.08 ± 0.07 by the time lx reaches ~10-5. lx ~ 10-5 is thus an observationally motivated upper limit for the beginning of the quiescent spectral state. Our results are discussed in the context of different accretion flow models and across the black hole mass scale.

  4. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    SciTech Connect

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E. [INAF and others

    2012-06-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot < 2 x 10{sup -9} M{sub Sun }yr{sup -1} (3{sigma} c.l.) for wind velocity v{sub w} = 100 km s{sup -1}. Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if {approx}> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n{sub CSM} < 150 cm{sup -3}) for 2 Multiplication-Sign 10{sup 15} {approx}< R {approx}< 5 Multiplication-Sign 10{sup 16} cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  5. X-ray observations of Crab-like supernova remnants

    NASA Technical Reports Server (NTRS)

    Becker, R. H.

    1983-01-01

    Distinguishing radio and morphological characteristics of Crab Nebula-like supernova remnants (SNR) are described. Radio features comprise a flat spectrum, a filled center brightness distribution, and a centrally located pulsar. The radio signals are linearly polarized and suggest a synchrotron emission mechanism. Known objects with those characteristics include the Crab Nebula, Vela X, 3C58, G21.5 - 0.9 and G74.9 + 1.2. Only the Crab Nebula exhibits pulsations, while all have unresolved X-ray sources and nonthermal X-ray spectra. Although the Crab-like SNR are distinctly different from shell-like SNR, the SNR CTB80, G326.3 - 1.8, W28 and G29.7 0.3 display characteristics of both, particularly shell-like structures and flat spectra. X-ray spectra from compact sources have also been detected from 3C58, CTB80, W28 and MSH 15 - 52 and exhibit nonthermal power law features. The X-ray spectra could be used as a measure of the evolutionary stage of the source.

  6. Discovery of Be/x-ray stars in two supernova remnants in the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Smith, R. Chris

    1994-01-01

    We present ROSAT high resolution x-ray images of two previously cataloged supernova remnants in the Small Magellanic Cloud (SMC): 0101-72.4 and 0104-72.3. These remnants were known to show optical, x-ray, and radio emission based on earlier observations: the present data show the first evidence for arcsecond-scale x-ray structure. There is no diffuse x-ray emission associated with the optically emitting shell in 0101-72.4; we set a 3 sigma upper limit of 7 x 10(exp 34) erg s(exp -1) on the 0.02-2 keV luminosity from the region. The x-ray emission comes instead from a weak pointlike object near the limb of the remnant. Optical observations of this source reveal a m(sub v) = 14.8 blue star with H alpha and H beta in emission; we identify this as a Be star in the SMC. No evidence for variability down to time scales of about 1 s was found in the ROSAT data; however, a comparison of the ROSAT and Einstein fluxes indicates possible long term variability by a factor of approximately 2 over several years. The other SNR, 0104-72.3, also contains a pointlike x-ray source with a blue optical counterpart (m(sub v) = 16.7) and H alpha emission. We tentatively identify this as a Be star as well. In addition to the point source there is weak diffuse x-ray emission from 0104-72.3 (L(sub x) approximately 1.4 x 10(exp 35) erg s(exp -1)), but the remnant's appearance in the x-ray band is considerably different from that in either the radio or optical band. We argue for a physical association between the supernova remnants (SNRs) and Be/x-ray stars. A large space velocity (greater than or approximately 100 km s(exp -1)) for the Be/x-ray binaries is required if the explosions that produced the remnants also formed the neutron stars in the binaries. Alternatively, the associations could be the result of common membership in OB associations in the SMC.

  7. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Rosanne

    2003-01-01

    We have made remarkable progress in the study of luminous supersoft X-ray sources during the past year. We have begun to discover a population of ultraluminous SSSs (e.g., in NGC 300 [Kong & Di Stefano 20031 as well as in Ml0l [Di Stefano & Kong 2003]), which may be accreting intermediate-mass (50-100 solar mass) black holes. This work follows from an algorithm we have developed (Di Stefano & Kong 2003) to identify SSSs in external galaxies, selecting them from among each galaxy s total population of X-ray sources. We have applied the algorithm to approximately one dozen galaxies and will make it public after it has been published in its entirety. Through our own application of the algorithm, we have discovered SSSs in every galaxy, mapping their spatial distribution, to obtain important clues to their fundamental natures. We have discovered that there is a large population of X-ray sources which are slightly hotter (100-250 eV) than standard SSSs. Some of these may be accreting BHs with masses between roughly 50 anf 100 solar masses. To explore this possibility, we are working on theoretical models for the formation and evolution of such systems (Di Stefano 2003).

  8. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Rosanne

    2003-01-01

    We have made remarkable progress in the study of luminous supersoft X-ray sources during the past year. We have begun to discover a population of ultraluminous SSSs (e.g., in NGC 300 [Kong & Di Stefano 20031 as well as in Ml0l [Di Stefano & Kong 2003]), which may be accreting intermediate-mass (50-100 solar mass) black holes. This work follows from an algorithm we have developed (Di Stefano & Kong 2003) to identify SSSs in external galaxies, selecting them from among each galaxy s total population of X-ray sources. We have applied the algorithm to approximately one dozen galaxies and will make it public after it has been published in its entirety. Through our own application of the algorithm, we have discovered SSSs in every galaxy, mapping their spatial distribution, to obtain important clues to their fundamental natures. We have discovered that there is a large population of X-ray sources which are slightly hotter (100-250 eV) than standard SSSs. Some of these may be accreting BHs with masses between roughly 50 anf 100 solar masses. To explore this possibility, we are working on theoretical models for the formation and evolution of such systems (Di Stefano 2003).

  9. Soft x-ray spectroscopy of the Vela supernova remnant

    NASA Astrophysics Data System (ADS)

    Zeiger, Benjamin R.

    The CODEX sounding rocket payload was designed and flown to significantly improve spectral resolution of the Vela supernova remnant (SNR) in the soft x-ray (0.1--1.0 keV) bandpass. High spectral resolution (E/Delta E > 40) across its 3.25° x 3.25° field of view would disentangle thermal emission from nonthermal or line emission components to constrain the age when SNRs stop emitting nonthermal x-rays. Relatively recent observations have found significant nonthermal emission from remnants up to several kyr old, but CODEX encountered concurrent problems of higher noise and lower signal than expected, leaving the thermal versus nonthermal question unanswered in the 11 kyr-old Vela SNR. This thesis covers the motivation, design, and post-flight analysis of the CODEX instrument and data from its flight.

  10. X-RAY POLARIZATION FROM HIGH-MASS X-RAY BINARIES

    SciTech Connect

    Kallman, T.; Blondin, J.

    2015-12-10

    X-ray astronomy allows study of objects that may be associated with compact objects, i.e., neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically nonspherical, and likely noncircular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. Potential targets for future X-ray polarization observations are the high-mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early-type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature that depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  11. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  12. Applications of Indirect Imaging Techniques in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Harlaftis, E. T.

    A review is given on aspects of indirect imaging techniques in X-ray binaries which are used as diagnostics tools for probing the X-ray dominated accretion disc physics. These techniques utilize observed properties such as the emission line profile variability, the time delays between simultaneous optical/X-ray light curves, the light curves of eclipsing systems and the pulsed emission from the compact object in order to reconstruct the accretion disc's line emissivity (Doppler tomography), the irradiated disc and heated secondary (echo mapping), the outer disc structure (modified eclipse mapping) and the accreting regions onto the compact object, respectively.

  13. Two populations of X-ray pulsars produced by two types of supernova.

    PubMed

    Knigge, Christian; Coe, Malcolm J; Podsiadlowski, Philipp

    2011-11-09

    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core-collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct subpopulations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two subpopulations are most probably associated with the two distinct types of neutron-star-forming supernova, with electron-capture supernovae preferentially producing systems with short spin periods, short orbital periods and low eccentricities. Intriguingly, the split between the two subpopulations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explained.

  14. THE X-RAY SPECTRAL EVOLUTION OF GALACTIC BLACK HOLE X-RAY BINARIES TOWARD QUIESCENCE

    SciTech Connect

    Plotkin, Richard M.; Gallo, Elena; Jonker, Peter G.

    2013-08-10

    Most transient black hole X-ray binaries (BHXBs) spend the bulk of their time in a quiescent state, where they accrete matter from their companion star at highly sub-Eddington luminosities (we define quiescence here as a normalized Eddington ratio l{sub x} = L{sub 0.5-10{sub keV}}/L{sub Edd} < 10{sup -5}). Here, we present Chandra X-ray imaging spectroscopy for three BHXB systems (H 1743-322, MAXI J1659-152, and XTE J1752-223) as they fade into quiescence following an outburst. Multiple X-ray observations were taken within one month of each other, allowing us to track each individual system's X-ray spectral evolution during its decay. We compare these three systems to other BHXB systems. We confirm that quiescent BHXBs have softer X-ray spectra than low-hard-state BHXBs, and that quiescent BHXB spectral properties show no dependence on the binary system's orbital parameters. However, the observed anti-correlation between X-ray photon index ({Gamma}) and l{sub x} in the low-hard state does not continue once a BHXB enters quiescence. Instead, {Gamma} plateaus to an average ({Gamma}) = 2.08 {+-} 0.07 by the time l{sub x} reaches {approx}10{sup -5}. l{sub x} {approx} 10{sup -5} is thus an observationally motivated upper limit for the beginning of the quiescent spectral state. Our results are discussed in the context of different accretion flow models and across the black hole mass scale.

  15. Discovery of radio pulsations from the X-ray pulsar in the supernova remnant G32. 4-1. 2

    SciTech Connect

    Manchester, R.N.; Tuohy, I.R.; D'Amico, N.

    1982-11-15

    A radio counterpart to the X-ray pulsar discovered by Seward and Harnden in the supernova remnant G320.4-1.2 (MSH 15--52) has been detected. The radio observations confirm the very large period derivative indicated by the X-ray data. This implies that the object is not a member of a binary system and hence is an isolated pulsar similar in some ways to the Crab pulsar. Association of the pulsar and the supernova remnant is supported by the observed pulsar dispersion measure.

  16. On the X-ray spectrum of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Blondin, John M.

    1994-01-01

    We have devised a method to do nonequilibrium ionization calculations on the results of two-dimensional hydrodynamical simulations, based on the algorithm of Hughes & Helfand (1985). We have calculated the ionization structure and X-ray emission for a two-dimensional numerical hydrodynamical simulation for the remnant of Kepler's supernova (SN); the hydrodynamical model was presented in a previous paper. In this model, the progenitor of Kepler's SN is assumed to have been a massive runaway star ejected from the Galactic plane. In its red supergiant stage, its dense stellar wind was distorted and compressed into a bow shock by the ram pressure of the tenuous interstellar medium. The subsequent interaction of the supernova ejecta with this asymmetric circumstellar matter produced a strongly asymmetric supernova remnant (SNR). In this paper, we present calculated X-ray spectra for this hydrodynamical model. A comparison with observations implies a moderate overabundance of Fe in Kepler's SNR (only 50% larger than its cosmic value), in contrast to a large (6 to 15) Fe overabundance derived previously. However, we confirm earlier conclusions that Si and S abundances are 2 to 3 times solar. These modest enhancements of Si, S, and Fe may be attributed either to heavy-element enriched SN ejecta or to the initial chemical abundances of the SN progenitor, which originated in the metal-rich inner Galaxy. The comparison of our models with the observed spectra confirm theoretical predictions that moderate electron heating occurs at strong collisionless shock fronts, with the implied electron/mean temperature ratio of approximately 0.5.

  17. On the X-ray spectrum of Kepler's supernova remnant

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Blondin, John M.

    1994-01-01

    We have devised a method to do nonequilibrium ionization calculations on the results of two-dimensional hydrodynamical simulations, based on the algorithm of Hughes & Helfand (1985). We have calculated the ionization structure and X-ray emission for a two-dimensional numerical hydrodynamical simulation for the remnant of Kepler's supernova (SN); the hydrodynamical model was presented in a previous paper. In this model, the progenitor of Kepler's SN is assumed to have been a massive runaway star ejected from the Galactic plane. In its red supergiant stage, its dense stellar wind was distorted and compressed into a bow shock by the ram pressure of the tenuous interstellar medium. The subsequent interaction of the supernova ejecta with this asymmetric circumstellar matter produced a strongly asymmetric supernova remnant (SNR). In this paper, we present calculated X-ray spectra for this hydrodynamical model. A comparison with observations implies a moderate overabundance of Fe in Kepler's SNR (only 50% larger than its cosmic value), in contrast to a large (6 to 15) Fe overabundance derived previously. However, we confirm earlier conclusions that Si and S abundances are 2 to 3 times solar. These modest enhancements of Si, S, and Fe may be attributed either to heavy-element enriched SN ejecta or to the initial chemical abundances of the SN progenitor, which originated in the metal-rich inner Galaxy. The comparison of our models with the observed spectra confirm theoretical predictions that moderate electron heating occurs at strong collisionless shock fronts, with the implied electron/mean temperature ratio of approximately 0.5.

  18. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This has been a remarkably productive year. We have completed an algorithm to select SSSs in external galaxies which have been observed by Chandru or XMM-Newton. By applying this algorithm to new data, we have discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We have completed a study of SSSs in M31 and have also considered several other galaxies. From these studies, some population characteristics are beginning to emerge; these provide clues to the natures of the systems. We have considered ultraluminous SSSs in M1O1 and NGC 300. It is possible that these may correspond to accreting intermediate-mass black holes, rather than accreting white dwarfs. We have also studied individual systems, such as CAL 83, and have followed up on additional sources in fields we have studied, such as in the galaxy NGC 1313. NASA has released a press release on some of our work.

  19. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2004-01-01

    This has been a remarkably productive year. We have completed an algorithm to select SSSs in external galaxies which have been observed by Chandru or XMM-Newton. By applying this algorithm to new data, we have discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We have completed a study of SSSs in M31 and have also considered several other galaxies. From these studies, some population characteristics are beginning to emerge; these provide clues to the natures of the systems. We have considered ultraluminous SSSs in M1O1 and NGC 300. It is possible that these may correspond to accreting intermediate-mass black holes, rather than accreting white dwarfs. We have also studied individual systems, such as CAL 83, and have followed up on additional sources in fields we have studied, such as in the galaxy NGC 1313. NASA has released a press release on some of our work.

  20. Be/X-ray binaries emission models probed by LOFT

    NASA Astrophysics Data System (ADS)

    Ferrigno, Carlo; Pottschmidt, Katja; Wilson-Hodge, Colleen; Bozzo, Enrico; Doroshenko, Victor; Santangelo, Andrea; Wilms, Joern

    2012-07-01

    LOFT, the Large Observatory For X-ray Timing, is a new space mission concept selected by ESA to compete for a lunch opportunity in the early 2020s. The LOFT payload comprises a Large Area Detector (LAD) and a Wide Field Monitor (WFM), designed to study timing and spectral features in the X-ray emission of bright accreting X-ray sources with an unprecedented large effective area (10 m^{2}) and good spectral resolution (200-300 eV). We show here the results that LOFT will be able to achieve in the study of the Be/X-ray binaries sources, by carrying out detailed spectral and timing simulations with the WFM and the LAD. We will review the most recent observational and theoretical advancements in the field with particular emphasis on the observational constraints on the emission models from the accretion columns that will be accessible by exploiting the LOFT capabilities.

  1. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); DiStefano, Roseanne

    2005-01-01

    One of the key accomplishments of the two preceding years was our development of an algorithm to select SSSs in external galaxies which have been observed by Chandra or XMM-Newton. By applying this algorithm to data from a number of galaxies, we discovered an extension of the class of SSSs to sources that are somewhat harder (100 - 300 eV, instead of tens of eV), but which are nevertheless much softer than canonical X-ray sources. We call these new sources quasisoft sources (QSSs). During this past year, we have built on and extended this work. We have (1) continued to identify SSSs and QSSs in external galaxies, (2) worked on models for the sources and find that black hole models seem promising for a subset of them, and (3) have studied individual systems, especially M101-ULX1. This special system has been observed as an SSS in its high &ate, with a luminosity in excess of 10(exp 41) erg/s. It has also been observed as a QSS when it is less luminous, and as a hard source in its low state. It is one of the best candidates to be an accreting intermediate-mass black hole. We have several papers in preparation. Below we list papers which are complete, including only new work and papers whose status has changed (e.g., been accepted for publication) since our last report. In addition, our work on QSSs has received some publicity. It was the subject of a Chandra press release and was picked up by several media outlets.

  2. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  3. Masses and Luminosities of X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Quirrenbach, Andreas; Frink, Sabine; Tomsick, John

    2004-01-01

    Using SIM, we will perform narrow-angle observations of several X-ray binaries to determine their orbits, and we will observe about 50 X-ray binary systems in wide-angle mode to measure their distances and proper motions. Sources with mass estimates for the compact component of greater than 3 solar masses are generally called black hole candidates since this mass is above the theoretical neutron star limit. Narrow-angle observations of these sources provide a direct test of the dynamical mass estimates on which the black hole evidence is based. Better measurements of the black hole masses will provide constraints on possible evolutionary paths that lead to black hole formation. When combined with X-ray data, mass measurements may provide additional constraints on the black hole spin. Precise mass determinations of neutron star systems can address the question of whether neutron stars can be significantly more massive than 1.4 solar masses, which would eliminate soft models of the neutron star equations of state. The wide-angle observations will probe the Galactic distribution of X-ray binaries through parallaxes and proper motions. They will also eliminate the uncertainties in the luminosities of individual sources, which is currently up to a full order of magnitude. This will enable more detailed comparisons of X-ray observations to physical models such as advection-dominated accretion flows (ADAFs). We intend to carry out the following measurements: 1) Determine the orbits of two black hole candidates to measure the black hole masses; 2) Obtain precise mass measurements for two neutron star systems to constrain neutron star equations of state; 3) Determine the distances and thus luminosities of selected representatives of various classes of X-ray binaries (black hole candidates, neutron stars, jet sources); 4) In the process of distance determination, proper motions will also be measured, from which the age of the population can be estimated.

  4. X-ray reverberation of the inner accretion disc in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Uttley, Phil; Cassatella, Pablo; Wilkinson, Tony; Wilms, Joern; Pottschmidt, Katja; Hanke, Manfred; Boeck, Moritz

    Rapid fluctuations in the Comptonised emission close to accreting compact objects should lead to reverberation of the accretion disc, both through X-ray heating of the disc (to produce a variable blackbody component) and also correlated changes in the disc reflection component, including the iron K line. If they can be detected, these reverberation signatures can provide powerful constraints on the geometry of the disc and Comptonising regions. The measure-ment of the reverberation delays will provide a natural 'yardstick' to measure the inner disc radius (in km, not R/M!) and so constrain the black hole spin or the neutron star equation of state. I will present new results from XMM-Newton and RXTE observations, which confirm the presence of X-ray reverberation in X-ray binary systems and allow the first measurement of reverberation delays. These results are a pathfinder which highlights the enormous po-tential of high-throughput spectral-timing with the proposed HTRS instrument on board the International X-ray Observatory.

  5. XMM Observations of X-Ray Emission from Supernovae

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  6. XMM Observations of X-Ray Emission from Supernovae

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  7. X-ray studies of three binary millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Webb, N. A.; Olive, J.-F.; Barret, D.

    2005-10-01

    It is thought that millisecond pulsars with white dwarf companions are born from X-ray binaries. The majority of known systems have been studied uniquely in the radio domain, which limits our understanding of such systems. We present here the X-ray observations of the millisecond pulsar PSR J0218+4232 and the two faint millisecond pulsars PSR J0751+1807 and PSR J1012+5307, which we discuss in conjunction with radio observations. We confirm the previously detected X-ray pulsations of PSR J0218+4232 and we show that its folded lightcurve is strongly dependent on energy. We present evidence to suggest that the broad band X-ray spectrum for this pulsar may not be a simple power law, but that there is some evidence for an excess of soft thermal emission over the power law spectrum, in particular from the strongest pulse, in support of a heated polar cap model for this pulsar. We also present the X-ray spectra of the two faint millisecond pulsars as well as some evidence to suggest that both of these millisecond pulsars show pulsations in the X-ray band. We then discuss the implied nature of the magnetic field configuration as a means of discriminating between competing magnetic field evolution theories in millisecond pulsars.

  8. GIANT OUTBURSTS IN Be/X-RAY BINARIES

    SciTech Connect

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J.; Lubow, Stephen H.; Price, Daniel J.

    2014-08-01

    Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origins have remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using three-dimensional smoothed particle hydrodynamics simulations, we model the long-term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth which occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient; the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.

  9. COLLECTIVE PROPERTIES OF X-RAY BINARY POPULATIONS OF GALAXIES. I. LUMINOSITY AND ORBITAL PERIOD DISTRIBUTIONS OF HIGH-MASS X-RAY BINARIES

    SciTech Connect

    Bhadkamkar, Harshal; Ghosh, Pranab

    2012-02-10

    We introduce a method for obtaining the X-ray luminosity function (XLF) and the binary-period distribution of populations of high-mass X-ray binaries (HMXBs) in the stellar fields (i.e.,outside globular clusters) of normal galaxies. We start from standard distributions of the parameters of those primordial binaries which are the progenitors of HMXBs and follow the transformation of these distributions with the aid of a Jacobian formalism as the former evolve into the latter through the processes of the first mass transfer and the supernova (SN) that follows. We discuss the distributions of the post-SN binaries and the HMXBs. We show that our calculated model XLF has a differential slope Almost-Equal-To - 1.6 with a flattening at low luminosities, in excellent agreement with observations. The calculated binary-period distribution, which basically has a slightly sloping plateau-like character at intermediate periods, with a rise to this plateau at shorter periods and fall-off from it at longer periods, is in agreement with the observed distribution within observational uncertainties. We discuss the physical origin of these distributions. We demonstrate that, while the effects of both (1) the distribution of the properties of the massive companion in the HMXBs and (2) the primordial orbital distribution and the SN dynamics are important, the former appear to be dominant in determining the XLF, and the latter in determining the HMXB binary-period distribution. We discuss the possible roles of stellar-mass black holes and ultraluminous X-ray sources in the observed 'universal' XLF of HMXBs.

  10. A natural explanation for periodic X-ray outbursts in Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Okazaki, A. T.; Negueruela, I.

    2001-10-01

    When applied to Be/X-ray binaries, the viscous decretion disc model, which can successfully account for most properties of Be stars, naturally predicts the truncation of the circumstellar disc. The distance at which the circumstellar disc is truncated depends mainly on the orbital parameters and the viscosity. In systems with low eccentricity, the disc is expected to be truncated at the 3:1 resonance radius, for which the gap between the disc outer radius and the critical lobe radius of the Be star is so wide that, under normal conditions, the neutron star cannot accrete enough gas at periastron passage to show periodic X-ray outbursts (type I outbursts). These systems will display only occasional giant X-ray outbursts (type II outbursts). On the other hand, in systems with high orbital eccentricity, the disc truncation occurs at a much higher resonance radius, which is very close to or slightly beyond the critical lobe radius at periastron unless the viscosity is very low. In these systems, disc truncation cannot be efficient, allowing the neutron star to capture gas from the disc at every periastron passage and display type I outbursts regularly. In contrast to the rather robust results for systems with low eccentricity and high eccentricity, the result for systems with moderate eccentricity depends on rather subtle details. Systems in which the disc is truncated in the vicinity of the critical lobe will regularly display type I outbursts, whereas those with the disc significantly smaller than the critical lobe will show only type II outbursts under normal conditions and temporary type I outbursts when the disc is strongly disturbed. In Be/X-ray binaries, material will be accreted via the first Lagrangian point with low velocities relative to the neutron star and carrying high angular momentum. This may result in the temporary formation of accretion discs during type I outbursts, something that seems to be confirmed by observations.

  11. Power colours: simple X-ray binary variability comparison

    NASA Astrophysics Data System (ADS)

    Heil, L. M.; Uttley, P.; Klein-Wolt, M.

    2015-04-01

    We demonstrate a new method of variability classification using observations of black hole X-ray binaries. Using `power colours' - ratios of integrated power in different Fourier frequency bands - we can clearly differentiate different canonical black hole states as the objects evolve during outburst. We analyse (˜2400) Rossi X-ray Timing Explorer observations of 12 transient low-mass black hole X-ray binaries and find that the path taken around the power colour-colour diagram as the sources evolve is highly consistent from object to object. We discuss how the consistency observed in the power colour-colour diagram between different objects allows for easy state classification based on only a few observations, and show how the power-spectral shapes can be simply classified using a single parameter, the power-spectral `hue'. To illustrate the benefits of our simple model-independent approach, we show that the persistent high-mass X-ray binary Cyg X-1 shows very similar power-spectral evolution to the transient black hole sources, with the main difference being caused by a combination of a lack of quasi-periodic oscillations and an excess of low-frequency power-law noise in the Cyg X-1 power spectra during the transitional state. We also compare the transient objects to the neutron star atoll source Aquila X-1, demonstrating that it traces a different path in the power colour-colour plot. Thus, power colours could be an effective method to classify newly discovered X-ray binaries.

  12. X-Ray Measured Dynamics of Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Petre, Robert; Hughes, John; Hwang, Una; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr-1 (expansion index m = 0.33, where R = tm ) to 0.''40 yr-1 (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr-1 (m = 0.26) to 0.''40 yr-1 (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of [approx]0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr-1 and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of [less, similar]0.2 cm-3.

  13. Featured Image: A Supernova Remnant in X-Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    This is a three-color X-ray image taken by Chandra of the supernova remnant RCW 103. This supernova remnant is an unusual system: its young, but unlike other remnants of its age, metal-rich ejecta hadnt previously been discovered in it. In this paper, Kari Frank (Pennsylvania State University) and collaborators analyze the three deepest Chandra observations of RCW 103 and find the first evidence for metal-rich ejecta emission scattered throughout the remnant. Their analyses also help to constrain the identity of the mysterious compact stellar object powering the remnant. In this image, red = 0.30.85 keV, green = 0.851.70 keV, and blue = 1.73.0 keV; click on the image for the full view. For more information and the original image, see the paper here:Kari A. Frank et al 2015 ApJ 810 113 doi:10.1088/0004-637X/810/2/113.

  14. X-RAY MEASURED DYNAMICS OF TYCHO'S SUPERNOVA REMNANT

    SciTech Connect

    Katsuda, Satoru; Petre, Robert; Hwang, Una; Hughes, John P.; Yamaguchi, Hiroya; Hayato, Asami; Mori, Koji; Tsunemi, Hiroshi E-mail: Robert.Petre-1@nasa.go E-mail: jackph@physics.rutgers.ed E-mail: hayato@crab.riken.j E-mail: tsunemi@ess.sci.osaka-u.ac.j

    2010-02-01

    We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tycho's supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the remnant (i.e., the forward shock and protruding ejecta knots) varies from 0.''20 yr{sup -1} (expansion index m = 0.33, where R = t{sup m} ) to 0.''40 yr{sup -1} (m = 0.65) with azimuthal angle in 2000-2007 measurements, and 0.''14 yr{sup -1} (m = 0.26) to 0.''40 yr{sup -1} (m = 0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of approx0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.''21-0.''31 yr{sup -1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of approx<0.2 cm{sup -3}.

  15. High-mass X-ray binary populations. 1: Galactic modeling

    NASA Technical Reports Server (NTRS)

    Dalton, William W.; Sarazin, Craig L.

    1995-01-01

    Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.

  16. Symbiotic X-ray binaries systems in the galaxy

    NASA Astrophysics Data System (ADS)

    Kuranov, A. G.; Postnov, K. A.

    2015-03-01

    The evolution of symbiotic X-ray binaries in the Galaxy is studied by the population synthesis method. We show that allowance for the nonstationarity of the regime of quasi-spherical subsonic accretion from the stellar wind of a giant onto slowly rotating neutron stars in these sources allows their observed positions on the neutron star spin period-X-ray luminosity diagramto be described in a wide range of stellar wind parameters. The derived distributions of sources in orbital periods, neutron star spin periods, and X-ray luminosities can be used to analyze the observations of Galactic sources in the range of luminosities ˜1032-1036 erg s-1 in the planned SRG/eROSITA all-sky survey.

  17. High ionisation absorption in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; De, K.; Fender, R.; Merloni, A.

    2016-05-01

    The advent of the new generation of X-ray telescopes yielded a significant step forward in our understanding of ionised absorption generated in the accretion discs of X-ray binaries. It has become evident that these relatively weak and narrow absorption features, sporadically present in the X-ray spectra of some systems, are actually the signature of equatorial outflows, which might carry away more matter than that being accreted. Therefore, they play a major role in the accretion phenomenon. These outflows (or ionised atmospheres) are ubiquitous during the softer states but absent during the power-law dominated, hard states, suggesting a strong link with the state of the inner accretion disc, presence of the radio-jet and the properties of the central source. Here, we discuss the current understanding of this field.

  18. Classifying X-Ray Binaries: A Probabilistic Approach

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Dil Vrtilek, Saeqa; Bornn, Luke

    2015-08-01

    In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star, there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce the spatial correlation which we believe exists between systems of the same type. The utility of this approach is demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data, but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our analyses, we provide the astronomer with the public R code which can be used to predict the compact object type of XRBs given training data.

  19. CLASSIFYING X-RAY BINARIES: A PROBABILISTIC APPROACH

    SciTech Connect

    Gopalan, Giri; Bornn, Luke; Vrtilek, Saeqa Dil

    2015-08-10

    In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star, there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce the spatial correlation which we believe exists between systems of the same type. The utility of this approach is demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data, but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our analyses, we provide the astronomer with the public R code which can be used to predict the compact object type of XRBs given training data.

  20. Interactions of X-ray Binaries with Their Surrounding Material

    NASA Astrophysics Data System (ADS)

    Servillat, Mathieu; Chaty, S.; Coleiro, A.; Tang, S.; Grindlay, J. E.; Los, E.

    2013-04-01

    We can observe the interactions of high mass X-ray binaries with their surrounding material in two complementary ways: variability over long time scales, and direct infrared observation of dust/gas. This gives unprecedented clues on the formation and evolution of those systems. Using Herschel infrared observations of high mass X-ray binaries and of ultra-luminous X-ray sources, we aim to detect and characterize the surrounding material. In the case of ultra-luminous X-ray sources, due to the enormous amount of energy radiated, strong interactions with their environment are expected, particularly if the emission is not beamed and if they host an intermediate mass black hole. This provides a unique test for the existence of such objects. The Digital Access to a Sky Century at Harvard (DASCH) is a project to digitize and analyze the scientific data contained in the 530 000 Harvard College Observatory plates taken between the 1880s and 1990s, which is a unique resource for studying temporal variations in the universe on 10-100 yr timescales. The Be star SAO 49275 shows significant slow variability of 1 magnitude on time scales 10-50 years. This variability seems connected to the formation and disappearance of the decretion disk of the Be star, maybe triggered by the presence of a compact object companion, possibly a white dwarf.

  1. The Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, S.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of simultaneous X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  2. Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, Saeqa D.

    2004-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of {\\it simultaneous} X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these Observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  3. X-ray studies of supernova remnants: a different view of supernova explosions.

    PubMed

    Badenes, Carles

    2010-04-20

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research.

  4. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  5. A high sensitivity search for X-rays from supernova remnants in Aquila

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; Bleach, D. A.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1972-01-01

    A high sensitivity scan of the galactic plane was performed to search for 2-20 keV X-rays from supernova remnants. The spectra of five X-ray sources detected between 44 deg and 31 deg longitude, of which only two might be associated with suggested supernova remnants, are reported on. Upper limits are presented for the 19 possible supernova remnants scanned in this survey.

  6. A high-sensitivity search for X-rays from supernova remnants in Aquila.

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Bleach, R. D.

    1972-01-01

    A high-sensitivity scan of the galactic plane from 70 to 30 deg was performed to search for 2-20-keV X rays from supernova remnants. The spectra of five X-ray sources detected between 44 and 31 deg longitude are presented, of which only two might be associated with suggested supernova remnants. Upper limits are given for the 19 possible supernova remnants scanned.

  7. DISCOVERY OF X-RAY EMISSION FROM SUPERNOVA 1970G WITH CHANDRA: FILLING THE VOID BETWEEN SUPERNOVAE AND SUPERNOVA REMNANTS

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Kuntz, K. D.

    2005-01-01

    We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.

  8. A radio pulsar/x-ray binary link.

    PubMed

    Archibald, Anne M; Stairs, Ingrid H; Ransom, Scott M; Kaspi, Victoria M; Kondratiev, Vladislav I; Lorimer, Duncan R; McLaughlin, Maura A; Boyles, Jason; Hessels, Jason W T; Lynch, Ryan; van Leeuwen, Joeri; Roberts, Mallory S E; Jenet, Frederick; Champion, David J; Rosen, Rachel; Barlow, Brad N; Dunlap, Bart H; Remillard, Ronald A

    2009-06-12

    Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray-emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the past decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.

  9. GBM Observations of Be X-Ray Binary Outbursts

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  10. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  11. X-RAY BINARY EVOLUTION ACROSS COSMIC TIME

    SciTech Connect

    Fragos, T.; Zezas, A.; Lehmer, B.; Tzanavaris, P.; Tremmel, M.; Basu-Zych, A.; Hornschemeier, A.; Jenkins, L.; Ptak, A.; Belczynski, K.; Kalogera, V.

    2013-02-10

    High-redshift galaxies permit the study of the formation and evolution of X-ray binary (XRB) populations on cosmological timescales, probing a wide range of metallicities and star formation rates (SFRs). In this paper, we present results from a large-scale population synthesis study that models the XRB populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II cosmological simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from XRB populations with properties such as SFR and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from XRBs in our universe today is dominated by low-mass XRBs, and it is only at z {approx}> 2.5 that high-mass XRBs become dominant. We also find that there is a delay of {approx}1.1 Gyr between the peak of X-ray emissivity from low-mass XRBs (at z {approx} 2.1) and the peak of SFR density (at z {approx} 3.1). The peak of the X-ray luminosity from high-mass XRBs (at z {approx} 3.9) happens {approx}0.8 Gyr before the peak of the SFR density, which is due to the metallicity evolution of the universe.

  12. Formation and Destruction of Jets in X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.

    2011-01-01

    Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.

  13. AN X-RAY AND OPTICAL LIGHT CURVE MODEL OF THE ECLIPSING SYMBIOTIC BINARY SMC3

    SciTech Connect

    Kato, Mariko; Hachisu, Izumi; Mikolajewska, Joanna

    2013-01-20

    Some binary evolution scenarios for Type Ia supernovae (SNe Ia) include long-period binaries that evolve to symbiotic supersoft X-ray sources in their late stage of evolution. However, symbiotic stars with steady hydrogen burning on the white dwarf's (WD) surface are very rare, and the X-ray characteristics are not well known. SMC3 is one such rare example and a key object for understanding the evolution of symbiotic stars to SNe Ia. SMC3 is an eclipsing symbiotic binary, consisting of a massive WD and red giant (RG), with an orbital period of 4.5 years in the Small Magellanic Cloud. The long-term V light curve variations are reproduced as orbital variations in the irradiated RG, whose atmosphere fills its Roche lobe, thus supporting the idea that the RG supplies matter to the WD at rates high enough to maintain steady hydrogen burning on the WD. We also present an eclipse model in which an X-ray-emitting region around the WD is almost totally occulted by the RG swelling over the Roche lobe on the trailing side, although it is always partly obscured by a long spiral tail of neutral hydrogen surrounding the binary in the orbital plane.

  14. On the formation of galactic black hole low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Jia, Kun; Li, Xiang-Dong

    2016-03-01

    Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.

  15. Formation of Galactic Black Hole Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Li, Xiangdong

    2016-07-01

    Most of the Galactic black hole (BH) X-ray binary systems are low-mass X-ray binaries (LMXBs). Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. Here we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distributions of the donor mass, effective temperature and orbital period for the BH LMXBs in each case. By comparing the calculated results with the observations, we put useful constraints on the aforementioned parameters. In particular, we show that it is possible to form BH LMXBs with the standard CE scenario if most BHs are born through failed supernovae.

  16. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  17. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  18. Supergiant X-Ray Binaries Observed by Suzaku

    NASA Technical Reports Server (NTRS)

    Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.

    2011-01-01

    Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.

  19. The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.

    2013-03-01

    SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.

  20. Interstellar medium composition through X-ray spectroscopy of low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Kaastra, J. S.; Costantini, E.; de Vries, C.

    2013-03-01

    Context. The diffuse interstellar medium (ISM) is an integral part of the evolution of the entire Galaxy. Metals are produced by stars and their abundances are the direct testimony of the history of stellar evolution. However, the interstellar dust composition is not well known and the total abundances are yet to be accurately determined. Aims: We probe ISM dust composition, total abundances, and abundance gradients through the study of interstellar absorption features in the high-resolution X-ray spectra of Galactic low-mass X-ray binaries (LMXBs). Methods: We used high-quality grating spectra of nine LMXBs taken with XMM-Newton. We measured the column densities of O, Ne, Mg, and Fe with an empirical model and estimated the Galactic abundance gradients. Results: The column densities of the neutral gas species are in agreement with those found in the literature. Solids are a significant reservoir of metals like oxygen and iron. Respectively, 15-25% and 65-90% of the total amount of O i and Fe i is found in dust. The dust amount and mixture seem to be consistent along all the lines-of-sight (LOS). Our estimates of abundance gradients and predictions of local interstellar abundances are in agreement with those measured at longer wavelengths. Conclusions: Our work shows that X-ray spectroscopy is a very powerful method to probe the ISM. For instance, on a large scale the ISM appears to be chemically homogeneous showing similar gas ionization ratios and dust mixtures. The agreement between the abundances of the ISM and the stellar objects suggests that the local Galaxy is also chemically homogeneous.

  1. Optical and X-Ray Studies of 10 X-Ray-selected Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Thorstensen, John R.; Halpern, Jules

    2013-11-01

    We report on ground-based optical observations of 10 cataclysmic binaries that were discovered through their X-ray emission. Time-resolved radial velocity spectroscopy yields unambiguous orbital periods for eight objects and ambiguous results for the remaining two. The orbital periods range from 87 minutes to 9.38 hr. We also obtained time-series optical photometry for six targets, four of which have coherent pulsations. These periods are 1218 s for 1RXS J045707.4+452751, 628 s for AX J1740.2-2903, 477 s for AX J1853.3-0128, and 935 s for IGR J19267+1325. A total of seven of the sources have coherent oscillations in X-rays or optical, indicating that they are intermediate polars (DQ Herculis stars). Time-resolved spectroscopy of one object, Swift J2218.4+1925, shows that it is an AM Herculis star, or polar, and IGR J19552+0044 may also be in that class. For another object, Swift J0746.2-1611, we find an orbital period of 9.384 hr and detect the spectrum of the secondary star. The secondary's spectral contribution implies a distance of 900 (+190, -150) pc, where the error bars are estimated using a Monte Carlo technique to account for correlated uncertainties. Based on observations obtained at the MDM Observatory, operated by Dartmouth College, Columbia University, Ohio State University, Ohio University, and the University of Michigan.

  2. OPTICAL AND X-RAY STUDIES OF 10 X-RAY-SELECTED CATACLYSMIC BINARIES

    SciTech Connect

    Thorstensen, John R.; Halpern, Jules

    2013-11-01

    We report on ground-based optical observations of 10 cataclysmic binaries that were discovered through their X-ray emission. Time-resolved radial velocity spectroscopy yields unambiguous orbital periods for eight objects and ambiguous results for the remaining two. The orbital periods range from 87 minutes to 9.38 hr. We also obtained time-series optical photometry for six targets, four of which have coherent pulsations. These periods are 1218 s for 1RXS J045707.4+452751, 628 s for AX J1740.2–2903, 477 s for AX J1853.3–0128, and 935 s for IGR J19267+1325. A total of seven of the sources have coherent oscillations in X-rays or optical, indicating that they are intermediate polars (DQ Herculis stars). Time-resolved spectroscopy of one object, Swift J2218.4+1925, shows that it is an AM Herculis star, or polar, and IGR J19552+0044 may also be in that class. For another object, Swift J0746.2–1611, we find an orbital period of 9.384 hr and detect the spectrum of the secondary star. The secondary's spectral contribution implies a distance of 900 (+190, –150) pc, where the error bars are estimated using a Monte Carlo technique to account for correlated uncertainties.

  3. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    SciTech Connect

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-06-10

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F{sub 3-9} {sub keV}, is below and above a critical flux, F{sub X,} {sub crit}, which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F{sub 3-9} {sub keV} ≳ F{sub X,} {sub crit} have a steeper radio-X-ray correlation (F{sub X}∝F{sub R}{sup b} and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F{sub 3-9} {sub keV} either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  4. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  5. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2009-05-11

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  6. Star formation history and X-ray binary populations: the case of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Antoniou, V.; Zezas, A.

    2016-06-01

    In this work we investigate the link between high-mass X-ray binaries (HMXBs) and star formation in the Large Magellanic Cloud (LMC), our nearest star-forming galaxy. Using optical photometric data, we identify the most likely counterpart of 44 X-ray sources. Among the 40 HMXBs classified in this work, we find 33 Be/X-ray binaries (Be-XRBs), and 4 supergiant XRBs. Using this census and the published spatially resolved star formation history map of the LMC, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star formation bursts ∼6-25 Myr ago, in contrast to the Small Magellanic Cloud (SMC), for which this population peaks at later ages (∼25-60 Myr ago). We also estimate the HMXB production rate to be equal to one system per ∼43.5× 10-3 M⊙ yr-1 or one system per ∼143M⊙ of stars formed during the associated star formation episode. Therefore, the formation efficiency of HMXBs in the LMC is ∼17 times lower than that in the SMC. We attribute this difference primarily in the different ages and metallicity of the HMXB populations in the two galaxies. We also set limits on the kicks imparted on the neutron star during the supernova explosion. We find that the time elapsed since the supernova kick is ∼3 times shorter in the LMC than the SMC. This in combination with the average offsets of the HMXBs from their nearest star clusters results in ∼4 times faster transverse velocities for HMXBs in the LMC than in the SMC.

  7. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  8. Connections between X-ray and optical variability in the low mass X-ray binary 1735-444

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Smale, A. P.; Charles, P. A.; Lewin, W. H. G.; Menzies, J. W.

    1989-01-01

    The results of a long duration (4 day) simultaneous optical and X-ray observation of the low mass X-ray binary 1735-444 are presented. The observed X-ray and optical fluxes are correlated; the strength of this correlation is increased when allowance is made for the relatively large orbital modulation of the optical light. A simple interpretation of the optical radiation as reprocessed X-rays in a blackbody disk leads to an implausibly low disk temperature if the disk is assumed to have constant geometry. 1735-444 exhibits bimodal behavior having an X-ray spectral hardness ratio versus source intensity which is similar to that previously seen in sources such as Cyg X-2.

  9. An extremely luminous X-ray outburst at the birth of a supernova.

    PubMed

    Soderberg, A M; Berger, E; Page, K L; Schady, P; Parrent, J; Pooley, D; Wang, X-Y; Ofek, E O; Cucchiara, A; Rau, A; Waxman, E; Simon, J D; Bock, D C-J; Milne, P A; Page, M J; Barentine, J C; Barthelmy, S D; Beardmore, A P; Bietenholz, M F; Brown, P; Burrows, A; Burrows, D N; Bryngelson, G; Byrngelson, G; Cenko, S B; Chandra, P; Cummings, J R; Fox, D B; Gal-Yam, A; Gehrels, N; Immler, S; Kasliwal, M; Kong, A K H; Krimm, H A; Kulkarni, S R; Maccarone, T J; Mészáros, P; Nakar, E; O'Brien, P T; Overzier, R A; de Pasquale, M; Racusin, J; Rea, N; York, D G

    2008-05-22

    Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

  10. The origin of the hard X-ray tail in neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, P.; Kylafis, N.

    2016-06-01

    Context. Neutron star X-ray binaries emit a compact, optically thick, relativistic radio jet during low-luminosity, usually hard states, as Galactic black-hole X-ray binaries do. When radio emission is bright, a hard power-law tail without evidence for an exponential cutoff is observed in most systems. Aims: We have developed a jet model that explains many spectral and timing properties of black-hole binaries in the states where a jet is present. Our goal is to investigate whether our jet model can reproduce the hard tail, with the correct range of photon index and the absence of a high-energy cutoff, in neutron-star X-ray binaries. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft, accretion-disk or boundary layer photons in the jet and computed the emergent energy spectra, as well as the time lag of hard photons with respect to softer ones as a function of Fourier frequency. We fit the energy spectra with a power law modified by an exponential cutoff at high energy. Results: We demonstrate that our jet model naturally explains the observed power-law distribution with photon index in the range 1.8-3. With an appropriate choice of the parameters, the cutoff expected from Comptonization is shifted to energies above ~300 keV, producing a pure power law without any evidence for a rollover, in agreement with the observations. Conclusions: Our results reinforce the idea that the link between the outflow (jet) and inflow (disk) in X-ray binaries does not depend on the nature of the compact object, but on the process of accretion. Furthermore, we address the differences between jets in black-hole and neutron-star X-ray binaries and predict that the break frequency in the spectral energy distribution of neutron-star X-ray binaries, as a class, will be lower than that of black-hole binaries.

  11. Proto Supermassive Binary Black Hole Detected in X-rays

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a

  12. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Immler, S.; Brown, P. J.; Milne, P.; Dessart, L.; Mazzali, P. A.; Landsman, W.; Gehrels, N.; Petre, R.; Burrows, D. N.; Nousek, J. A.; Chevalier, R. A.; Williams, C. L.; Koss, M.; Stockdale, C. J.; Kelley, M. T.; Weiler, K. W.; Holland, S. T.; Pian, E.; Roming, P. W. A.; Pooley, D.; Nomoto, K.; Greiner, J.; Campana, S.; Soderberg, A. M.

    2007-01-01

    We present results on the X-ray and optical/UV emission from the Type IIP supernova (SN) 2006bp and the interaction of the SW shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigmalevel of significance in the merged XRT data from days 1 to 12 after the explosion. If the (0.2-10 keV band) X-ray luminosity of L(sub 0.2-10) = (1.8 plus or minus 0.4) x l0(exp 39 ergs s(exp -1) is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of M is approximately 2x10(exp -6) solar mass yr(exp -1) (v(sub w)/10 km s(exp -l) is inferred. The mass-loss rate is one of the lowest ever recorded for a core-collapse SN and consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion. The Swift data further show a fading of the X-ray emission starting around day 12 after the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline Lx, varies as t(exp -n) with index n = 1.2 plus or minus 0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since Type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (approximately 10-100), inconsistent with the ejecta velocity inferred from optical line widths, we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet (1900-5500A) spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and

  13. STATE TRANSITIONS IN LOW-MASS X-RAY BINARIES

    SciTech Connect

    Bradley, Charles K.; Frank, Juhan

    2009-10-10

    We investigate the model of disk/coronal accretion into a black hole. We show that the inner regions of an accretion disk in X-ray binaries can transform from a cool standard disk to an advection-dominated flow through the known properties of Coulomb interaction in a two-temperature plasma, viscous heating, radiative processes, and thermal conduction. A hot, diffuse corona covering the disk is powered by accretion, but it exchanges mass with the underlying cold disk. If the accretion rate in the system is low enough, we show that the corona evaporates the disk away, leaving an advective flow to continue toward the hole. In the soft/hard transition commonly seen in X-ray binaries, we show that this advective flow can recondense back onto the underlying disk if the change in the system's accretion rate is slow enough due to thermal conduction. Unabsorbed spectra are produced to test against observations as well as prediction of the location of truncation radii of the accretion disk.

  14. Magnetic Field in X-Ray Binary Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Karitskaya, E. A.; Bochkarev, N. G.; Hubrig, S.; Gnedin, Yu. N.; Pogodin, M. A.; Yudin, R. V.; Agafonov, M. I.; Sharova, O. I.

    Our spectroscopic observations with FORS1 at 8.2-m VLT telescope (Paranal, Chile) lead to detection of magnetic field in the X-ray binary Cyg X-1. That is the first successful attempt of measuring magnetic field in a binary with a black hole. The value of the mean longitudinal magnetic field in optical component (O9.7 Iab supergiant) changes regularly with the orbital phase reaching its maximum of 130 G (σ≈20 G). The measurements based on Zeeman effect were carried through over all observed supergiant photosphere absorption spectral lines. Similar measurements over the emission line He II λ 4686 Å yielded a value of several hundreds Gauss of a smaller significance level. The system Doppler tomogram we build over the line profiles shows that He II λ 4686 Å originates in the outer regions of the accretion structure. The values measured correspond, in the frame of the disc accretion standard model, to a near-black-hole field of ˜ 10^8-10^9 G and may be responsible for the observed Cyg X-1 X-ray flickering. Also some consequences of such magnetic field existence in Cyg X-1 optical component photosphere were suggested.

  15. Infrared Spectroscopy of Low-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, R. M.; Shahbaz, T.; Charles, P. A.; Naylor, T.

    1999-04-01

    Using CGS4 on UKIRT, we have obtained 2.00--2.45 mu m infrared spectra of a number of low-mass X-ray binaries including Sco X-1, Sco X-2, and GX13+1. Sco X-1 shows emission lines only, supporting our previous conclusion that the spectral type of the evolved secondary must be earlier than G5. Emission lines are also seen in the spectrum of Sco X-2, confirming the identity of the IR counterpart. We report the detection of CO bands in GX13+1 and estimate the most likely spectral type of the secondary to be K5 sc iii. We also find P Cygni type profiles in the Brackett gamma lines of Sco X-1 and GX13+1, indicating the presence of high velocity outflows in these systems. We present spectra of candidate IR counterparts to several other elusive X-ray binaries. Finally, implications for the nature and classification of these systems are discussed.

  16. Observation of soft X-ray emission from the supernova remnant HB9

    NASA Technical Reports Server (NTRS)

    Tuohy, I. R.; Clark, D. H.; Garmire, G. P.

    1979-01-01

    The number of known X-ray emitting supernova remnants in our galaxy has significantly grown as a result of the soft X-ray survey by the HEAO-1 spacecraft. The HEAO-1 A-2 experiment has observed soft X-ray emission from the old supernova remnant HB9 which lies close to the previously identified X-ray source, Capella. Spectral data and the low optical obscuration in the direction of the remnant suggest that HB9 is a good candidate for detecting Fe XIV coronal forbidden-line emission. Mapping of the coronal line emission in association with the imaging X-ray data expected from HEAO-2 would allow the temperature profile of the emitting shell to be determined in a manner similar to that used by Tuohy, Nousek, and Garmire (1979) for the Cygnus Loop, which is in a similar evolutionary phase to HB9.

  17. On binary-driven hypernovae and their nested late X-ray emission

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Muccino, M.; Bianco, C. L.; Enderli, M.; Izzo, L.; Kovacevic, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Wang, Y.

    2014-05-01

    Context. The induced gravitational collapse (IGC) paradigm addresses the very energetic (1052-1054 erg) long gamma-ray bursts (GRBs) associated to supernovae (SNe). Unlike the traditional "collapsar" model, an evolved FeCO core with a companion neutron star (NS) in a tight binary system is considered as the progenitor. This special class of sources, here named "binary-driven hypernovae" (BdHNe), presents a composite sequence composed of four different episodes with precise spectral and luminosity features. Aims: We first compare and contrast the steep decay, the plateau, and the power-law decay of the X-ray luminosities of three selected BdHNe (GRB 060729, GRB 061121, and GRB 130427A). Second, to explain the different sizes and Lorentz factors of the emitting regions of the four episodes, for definiteness, we use the most complete set of data of GRB 090618. Finally, we show the possible role of r-process, which originates in the binary system of the progenitor. Methods: We compare and contrast the late X-ray luminosity of the above three BdHNe. We examine correlations between the time at the starting point of the constant late power-law decay t*a, the average prompt luminosity ⟨ Liso ⟩, and the luminosity at the end of the plateau La. We analyze a thermal emission (~ 0.97-0.29 keV), observed during the X-ray steep decay phase of GRB 090618. Results: The late X-ray luminosities of the three BdHNe, in the rest-frame energy band 0.3-10 keV, show a precisely constrained "nested" structure. In a space-time diagram, we illustrate the different sizes and Lorentz factors of the emitting regions of the three episodes. For GRB 090618, we infer an initial dimension of the thermal emitter of ~ 7 × 1012 cm, expanding at Γ ≈ 2. We find tighter correlations than the Dainotti-Willingale ones. Conclusions: We confirm a constant slope power-law behavior for the late X-ray luminosity in the source rest frame, which may lead to a new distance indicator for BdHNe. These results

  18. Possible Discovery of X-ray Emission from Supernova 2017egm with Swift

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Dong, Subo; Prieto, Jose L.; Pooley, David

    2017-06-01

    We report of the discovery of X-ray emission possibly associated with the GAIA-discovered supernova 2017egm (Delgado et al, TNS Astronomical Transient Report No 11679), which has been recently been identified as a hydrogen-poor super-luminous supernova (SLSN-I, Dong et al., ATEL #10498).

  19. Tugboat model for OB binaries, X-ray stars and pulsars.

    PubMed

    Helfand, D J; Tademaru, E

    1977-05-12

    An examination of the kinematical properties of binary OB stars, binary X-ray sources and pulsars suggests an evolutionary sequence linking an apparent low-velocity class of pulsars to the binary nature of their extreme Population I progenitors.

  20. X-ray irradiation of the winds in binaries with massive components

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kubát, J.; Krtičková, I.

    2015-07-01

    Context. Binaries with hot massive components are strong X-ray sources. Besides the intrinsic X-ray emission of individual binary members originating in their winds, X-ray emission stems from the accretion on the compact companion or from wind collision. Since hot star winds are driven by the light absorption in the lines of heavier elements, wind acceleration is sensitive to the ionization state. Therefore, the over-ionization induced by external X-ray source strongly influences the winds of individual components. Aims: We studied the effect of external X-ray irradiation on hot star winds. Methods: We used our kinetic equilibrium (NLTE) wind models to estimate the influence of external X-ray ionization for different X-ray luminosities and source distances. The models are calculated for parameters typical of O stars. Results: The influence of X-rays is given by the X-ray luminosity, by the optical depth between a given point and the X-ray source, and by a distance to the X-ray source. Therefore, the results can be interpreted in the diagrams of X-ray luminosity vs. the optical depth parameter. X-rays are negligible in binaries with low X-ray luminosities or at large distances from the X-ray source. The influence of X-rays is stronger for higher X-ray luminosities and in closer proximity of the X-ray source. There is a forbidden area with high X-ray luminosities and low optical depth parameters, where the X-ray ionization leads to wind inhibition. There is excellent agreement between the positions of observed stars in these diagrams and our predictions. All wind-powered high-mass X-ray binary primaries lie outside the forbidden area. Many of them lie close to the border of the forbidden area, indicating that their X-ray luminosities are self-regulated. We discuss the implications of our work for other binary types. Conclusions: X-rays have a strong effect on the winds in binaries with hot components. The magnitude of the influence of X-rays can be estimated from the

  1. A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2015-04-01

    The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.

  2. Light Curve Models of Supernovae and X-ray Spectra of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Blinnikov, S. I.; Baklanov, P. V.; Kozyreva, A. V.; Sorokina, E. I.

    2005-12-01

    We compare parameters of well-observed type II SN1999em derived by M. Hamuy and D. Nadyozhin based on tet*{LN85} analytic fits with those found from the simulations using our radiative hydro code STELLA. The same code applied to models of SN1993J allows us to estimate systematic errors of extracting foreground extinction toward SN1993J suggested by tet{Clo95} which is based on the assumption of black body radiation of the supernova envelope near the first maximum light after shock break out. A new implicit two-temperature hydro code code SUPREMNA is introduced which self-consistently takes into account the kinetics of ionization, electron thermal conduction, and radiative losses. Finally, a combination of STELLA and SUPREMNA allows us to use the same Type Ia supernova (SNIa) models both for building their light curves and predicting X-ray spectra of young Supernova remnants such as Tycho and Kepler. For the comparison of theoretical results with the observations we used data on Tycho supernova remnant (SNR) obtained with XMM-Newton space telescope.

  3. Future of X-Ray Astronomy: X-Ray Polarization of Stellar Mass Black Holes in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Gnedin, Yu. N.; Piotrovich, M. Yu.

    2017-06-01

    We discuss the perspectives of future polarimetric observations of cosmic objects in the X-ray spectral range. X-ray polarimetry is one of the perspective methods of X-ay astronomy. Since the first discovery of X-ray sources theory predicted a high degree of polarization that could be expected via electron scattering and non-thermal emission mechanisms. X-ray polarimetry is especially important for the X-ray binary systems. The compact objects in these systems are neutron stars, white dwarfs and black holes. Neutron stars and white dwarfs have their intrinsic magnetic fields. But the magnetic field can exist in the accretion disk around a black hole. We demonstrate that the results of the future polarimetric observations in the X-ray range allow to determine the magnetic field strength at the the radius of the innermost stable circular orbit and to determine the value of the black hole spin. The X-ray polarimetry allows also to obtain constraints on the electric charge value of a black hole.

  4. A Unified Model of Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Balucinska-Church, M.; Church, M.

    2014-07-01

    We present a unified physical model of Low Mass X-ray Binaries explaining the basic Atoll and Z-track types of source. In all LMXB with luminosity above 1-2.10^{37} erg/s, we have a new fundamental result that the temperature of the Comptonizing ADC corona equals that of the neutron star, i.e. there is thermal equilibrium. This equilibrium explains the properties of the basic Banana State of Atoll sources. Below this luminosity, equilibrium breaks down, T_ADC rising towards 100 keV by an unknown heating mechanism, explaining the Island State. Above 5.10^{37} erg/s flaring begins in the GX-Atolls which we show is unstable nuclear burning. Above 1.10^{38} erg/s, LMXB are seen as Z-track sources. Flaring in these and the GX-Atolls occurs when the mass accretion rate to the neutron star falls to the critical value for unstable nuclear burning on the star. Below 2.10^{37} erg/s, a different unstable burning: X-ray bursting, takes over. We show that the Normal Branch of the Z-track consists simply of increasing mass accretion rate, as is the Banana State in Atolls. In the Horizontal Branch, a measured, strongly increasing radiation pressure of the neutron star disrupts the inner disk launching the relativistic jets seen on this branch.

  5. Displacement of X-ray binaries: constraints on the natal kicks

    NASA Astrophysics Data System (ADS)

    Zuo, Zhao-Yu

    2015-01-01

    Context. This work uses the measured luminosity vs. displacement (LX vs. R) distribution of high-mass X-ray binaries (HMXBs) to constrain the dispersion of kick velocity σkick, which is an important parameter affecting the system velocity of a binary, and hence its spatial offset from the point of origin. Aims: The aim is to constrain the natal kicks and discriminate between models by comparing the observed LX vs. R distributions with the theoretical simulations. Methods: Using an up-to-date evolutionary population synthesis technique, the spatial offsets of HMXBs are modeled for a range of theoretical models describing the natal kicks, including different choices of the dispersion of kick velocity σkick, as well as different theoretical treatments for black hole (BH) natal kicks. Results: The study shows that the value of σkick for neutron stars (NSs) is constrained to be greater than ~100 km s-1, while σkick on the order of several tens of km s-1 may be excluded, though a low or absent natal kick for electron capture supernovae NSs is permitted. In particular, BH natal kicks are found not indispensable to account for the LX vs. R distributions. It is more interesting that full BH natal kicks (i.e., similar to those that NSs may receive) are likely to be ruled out in this study, which is in contrast with the recent finding to explain the observed distribution of low-mass X-ray binaries hosting BHs.

  6. Infrared spectroscopy of low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, R.; Shahbaz, T.; Charles, P. A.; van Kerkwijk, M. H.; Naylor, T.

    1997-03-01

    Using CGS4 on UKIRT, we have obtained the first 2.05-2.45 μm infrared spectra of the Galactic bulge low-mass X-ray binaries (LMXBs) GX1+4 and GX13+1. We report the detection of Brackett gamma emission from the accretion disc in both systems, confirming the identification of the IR counterpart to GX13+1. In addition, both spectra show CO molecular bands and metal lines in absorption, representing the first infrared spectroscopic detection of the secondary in a heavily obscured bulge source. We also present a JHK spectrum of the LMXB ScoX-1, which shows strong Hi, Hei and HeII emission.

  7. Synchronous rotation in magnetic X-ray binaries

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S. A.; Katz, J. I.

    1979-01-01

    AM Herculis is thought to be a binary stellar system that contains an accreting magnetic degenerate dwarf whose rotation is synchronous with the orbital period. This synchronism is remarkable, particularly because of the small moment of inertia of a degenerate dwarf and the large specific angular momentum of the accreted matter. This paper demonstrates that ohmic dissipation from the magnetic interaction of the stars is capable of bringing about exact synchronism, provided that some other process has brought the rotation period of the degenerate dwarf to the same order of magnitude as the orbital period. It is also shown that magnetostatic interaction in the synchronous state leads to oscillatory drifts in phase about exact synchronism with periods of approximately 1-10 yr. These phase drifts could manifest themselves in long-term periodic variability in the X-ray or optical properties of the source. Accretion torques could excite such oscillatory motions but need not disrupt synchronism once it has been established.

  8. Photometry of Two Intense Low Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wachter, S.; Margon, B.; Anderson, S.

    1995-12-01

    The intense galactic X-ray source GX349+2 (Sco X-2) belongs to the class of persistently bright low-mass X-ray binaries called Z-sources. GX349+2 has only recently been optically identified with a 19th mag star. Of the six known Z-sources, only two (Sco X-1 and Cyg X-2) have been studied in the optical. It has been suggested that Z-sources as a group are characterized by evolved companions and correspondingly long orbital periods (Sco X-1, P=0.8d; Cyg X-2, P=9.8d). Recently Southwell et al. have presented spectroscopic observations of GX349+2 suggesting a 14d orbital period. We have obtained broadband photometry of the system on six consecutive nights in May 1995, and find evidence for a 21.7 +/- 0.3hr period of 0.14 mag half-amplitude, superposed on erratic flickering typical of Sco X-1 type objects. As with other Z-sources, caution will be needed to insure that the variations are truly periodic, and not simply due to chaotic variability observed over a relatively short time span. If our period is confirmed, then the nature of the 14d spectroscopic variation found by Southwell et al. is unclear. GX13+1 is a bright X-ray burst source, located in the galactic bulge. Due to heavy obscuration, no optical counterpart brighter than R ~ 22 has been detected, but an infrared counterpart (K=12) has recently been identified by Naylor et al. (1991) based on spatial coincidence with an accurate radio position. GX13+1 is unusual as there is a disagreement over its classification. Studies of the X-ray time variability place it among the Atoll-sources. However, there is some evidence that the system contains a giant companion (Garcia et al. 1992) which would place it among the Z-sources. In an attempt to determine the period of the system, we observed GX13+1 for 9 days in May -- July 1995. Preliminary photometry confirms variability of ~ 0.4 mag on a timescale of several days, as previously discovered by Charles & Naylor (1992). If GX13+1 is found to have a large orbital period

  9. X-RAY OUTBURSTS OF LOW-MASS X-RAY BINARY TRANSIENTS OBSERVED IN THE RXTE ERA

    SciTech Connect

    Yan, Zhen; Yu, Wenfei E-mail: wenfei@shao.ac.cn

    2015-06-01

    We have performed a statistical study of the properties of 110 bright X-ray outbursts in 36 low-mass X-ray binary transients (LMXBTs) seen with the All-Sky Monitor (2–12 keV) on board the Rossi X-ray Timing Explorer (RXTE) in 1996–2011. We have measured a number of outburst properties, including peak X-ray luminosity, rate of change of luminosity on a daily timescale, e-folding rise and decay timescales, outburst duration, and total radiated energy. We found that the average properties, such as peak X-ray luminosity, rise and decay timescales, outburst duration, and total radiated energy of black hole LMXBTs, are at least two times larger than those of neutron star LMXBTs, implying that the measurements of these properties may provide preliminary clues to the nature of the compact object of a newly discovered LMXBT. We also found that the outburst peak X-ray luminosity is correlated with the rate of change of X-ray luminosity in both the rise and decay phases, which is consistent with our previous studies. Positive correlations between total radiated energy and peak X-ray luminosity, and between total radiated energy and the e-folding rise or decay timescale, are also found in the outbursts. These correlations suggest that the mass stored in the disk before an outburst is the primary initial condition that sets up the outburst properties seen later. We also found that the outbursts of two transient stellar-mass ultraluminous X-ray sources in M31 also roughly follow the correlations, which indicate that the same outburst mechanism works for the brighter outbursts of these two sources in M31 that reached the Eddington luminosity.

  10. Radiative efficiency of hot accretion flow and the radio/X-ray correlation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo

    2016-02-01

    Significant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.

  11. X-ray emission from the supernova remnant G287.8-0.5

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Rothschild, R. E.; Serlemitsos, P. J.; Swank, J. H.

    1976-01-01

    The GSFC Cosmic X-ray spectroscopy experiment on OSO-8 observed a weak galactic X-ray source near theta 2 at 288 deg, b2 at -1 deg. The spectrum for this source between 2-20 keV is well represented by a thermal spectrum of kT = 7.34(+3.6), sub -2.6 keV with an intense iron emission line centered at 6.5 + or - .2 keV. The error box of the Uhuru source 4U1043-59, the only known X-ray source in our field of view, contains the radio supernova remnant G287.8-0.5. The possible association of the X-ray source with this supernova remnant is discussed.

  12. X-ray emission from the supernova remnant MSH 14-63

    NASA Technical Reports Server (NTRS)

    Naranan, S.; Shulman, S.; Yentis, D.; Fritz, G.; Friedman, H.

    1977-01-01

    X-ray emission in the 0.6-2.5-keV energy range has been detected from the supernova remnant MSH 14-63. The observed flux is 3.5 by 10 to the -10th power erg/sq cm per sec. The absence of lower-energy X-rays indicates a hydrogen column density consistent with the radio and optical distance estimates of 2.5 kpc.

  13. The donor star winds in High-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2014-10-01

    High-mass X-ray binaries (HMXBs) are essential astrophysical laboratories. These objects represent an advanced stage in the evolution of massive binary systems, after the initially more massive star has already collapsed in a supernova explosion, but its remnant, a neutron star or black hole, remains gravitationally bound. The stellar wind from the OB-type donor is partially accreted onto its compact companion powering its relatively high X-ray luminosity. Since HMXBs accrete from the stellar wind, parameters such as the donor's mass-loss rate, the velocity of the wind, and its clumpiness are of fundamental importance.This proposal takes advantage of the unique capabilities of HST/STIS for UV spectroscopy. We focus on the most populous in the Galaxy class of those HMXBs where the stellar wind of the OB donor is directly accreted onto a neutron star. Recently, a new sub-class of HMXBs - "supergiant fast X-ray transients" - was discovered. It has been proposed that these enigmatic objects can be explained by the specific properties of their donor-star winds. The only way to validate or disprove this hypothesis is by a studying the wind diagnostics lines in the UV spectra of donor stars. The observations proposed here will, for the first time, provide the UV spectra of this important new type of accreting binaries. Our state-of-the art non-LTE expanding stellar atmospheres and 3-D stellar wind simulations allow thorough exploitation of the STIS spectra. As a result we will obtain the wind parameters for a representative sample of six Galactic HMXBs, thus heightening our knowledge thereof considerably.

  14. Hot White Dwarf Donors in Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2002-09-01

    The discovery of two accreting millisecond X-ray pulsars in binaries with ~43 minute orbital periods allows for a new probe of the donor's structure. For XTE J1751-305, only a hot white dwarf (WD) can fill the Roche lobe. A cold He WD is a possible solution for XTE J0929-314, although I will show that evolutionary arguments make a hot WD more likely. In addition to being larger than the T=0 models, these finite entropy, low-mass (Mc<0.03 Msolar) WDs have a minimum mass for a fixed core temperature. If they remain hot as they lose mass and expand, they can ``evaporate'' to leave an isolated millisecond radio pulsar. They also adiabatically expand upon mass loss at a rate faster than the growth of the Roche radius if the angular momentum deposited in the disk is not returned to the donor. If the timescale of the resulting runaway mass transfer is shorter than the viscous timescale in the outer disk, then the mass transfer instability of Ruderman & Shaham for He WDs would be realized. However, my estimates of these timescales still make the instability unlikely for adiabatic responses. I close by noting the possible impact of finite temperature WDs on our understanding of AM CVn binaries.

  15. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  16. X-rays of IC443 - remnant of Tang dynasty supernova.

    NASA Astrophysics Data System (ADS)

    Wang, Zhenru

    Hard X-rays with energies up to 20 keV were observed from IC443 by the X-ray satellite Ginga. The X-ray flux below 6 keV is found consistent with that of earlier observations with Einstein and HEAO 1, and the X-ray spectrum smoothly extends to 20 keV. The feature of Fe K line is not conspicuous; an upper limit of the equivalent width for its emission is 250 eV. It is likely that the hard X-rays are emitted from a shock-heated plasma with a temperature higher than 10 keV and a number density smaller than 0.1 cm-3 which is probably located in the SW and W regions of IC443. This model predicts the age of IC443 to be about 1000 years. It is suggested that IC443 is the remnant of a supernova in AD 837.

  17. X-ray-binary spectra in the lamp post model

    NASA Astrophysics Data System (ADS)

    Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.

    2016-05-01

    Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a

  18. Powerful jets from black hole X-ray binaries in low/hard X-ray states

    NASA Astrophysics Data System (ADS)

    Fender, R. P.

    2001-03-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the low/hard X-ray state, which is characterized in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that α>~0, where Sν~να) radio spectrum in this state, markedly different from the optically thin radio spectra exhibited by most X-ray transients within days of outburst. Furthermore, in none of the systems is a high-frequency cut-off to this spectral component detected, and there is evidence that it extends to near-infrared or optical regimes. Luminous persistent hard X-ray states in the black hole system GRS 1915+105 produce a comparable spectrum. This spectral component is considered to arise in synchrotron emission from a conical, partially self-absorbed jet, of the same genre as those originally considered for active galactic nuclei. Whatever the physical origin of the low/hard X-ray states, these self-similar outflows are an ever-present feature. The power in the jet component is likely to be a significant (>=5per cent) and approximately fixed fraction of the total accretion luminosity. The correlation between hard X-ray and synchrotron emission in all the sources implies that the jets are intimately related to the Comptonization process, and do not have very large bulk Lorentz factors, unless the hard X-ray emission is also beamed by the same factor.

  19. GALACTIC ULTRACOMPACT X-RAY BINARIES: DISK STABILITY AND EVOLUTION

    SciTech Connect

    Heinke, C. O.; Ivanova, N.; Engel, M. C.; Pavlovskii, K.; Sivakoff, G. R.; Gladstone, J. C.; Cartwright, T. F.

    2013-05-10

    We study the mass-transfer rates and disk stability conditions of ultracompact X-ray binaries (UCXBs) using empirical time-averaged X-ray luminosities from Paper I and compiled information from the literature. The majority of UCXBs are consistent with evolutionary tracks for white dwarf donors. Three UCXBs with orbital periods longer than 40 minutes have mass-transfer rates above 10{sup -10} M{sub Sun} yr{sup -1}, inconsistent with white dwarf donor tracks. We show that if helium star donors can retain their initial high entropy, they can explain the observed mass-transfer rates of these UCXBs. Several UCXBs show persistent luminosities apparently below the disk instability limit for irradiated He accretion disks. We point out that a predominantly C and/or O disk (as observed in the optical spectra of several) lowers the disk instability limit, explaining this disagreement. The orbital period and low time-averaged mass-transfer rate of 2S 0918-549 provide evidence that the donor star is a low-entropy C/O white dwarf, consistent with optical spectra. We combine existing information to constrain the masses of the donors in 4U 1916-053 (0.064 {+-} 0.010 M{sub Sun }) and 4U 1626-67 (<0.036 M{sub Sun} for a 1.4 M{sub Sun} neutron star). We show that 4U 1626-67 is indeed persistent, and not undergoing a transient outburst, leaving He star models as the best explanation for the donor.

  20. Search for Nonthermal X-Rays from Supernova Remnant Shells

    NASA Astrophysics Data System (ADS)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  1. X-raying supernova remnants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Hirschi, R.; Haberl, F.; Vasilopoulos, G.; Pietsch, W.; Greiner, J.; Kavanagh, J. P.; Sasaki, M.; Bozzetto, M. L.; Filipovic, M. D.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.

    2016-06-01

    The Magellanic Clouds (MCs) offer an ideal laboratory for the study of the SNR population in star-forming galaxies, since they are relatively nearby and free of large absorption. Both the LMC and SMC have been targeted by large XMM-Newton surveys, which, combined with archival observations, provide the best dataset to systematically study the X-ray emission of their numerous SNRs (˜ 60 in the LMC, ˜ 20 in the SMC). In this talk, I will highlight the results from this homogeneous analysis, which allows for the first time meaningful comparisons of temperature, chemical composition, and luminosity of SNRs in the MCs. The SNRs can be used as probes of their host galaxies: We measured chemical abundances in the hot phase of the LMC, and constrained the ratio of core-collapse to type Ia SN rates. The X-ray luminosity function of SNRs in the MCs are compared to those in other Local Group galaxies with different metallicities and star formation properties. Finally, we present a new population of evolved type Ia SNRs that was discovered recently in the MCs via their iron-rich X-ray emission.

  2. Catalogue of Be/X-ray binary systems in the Small Magellanic Cloud: X-ray, optical and IR properties

    NASA Astrophysics Data System (ADS)

    Coe, M. J.; Kirk, J.

    2015-09-01

    This is a catalogue of ˜70 X-ray emitting binary systems in the Small Magellanic Cloud (SMC) that contain a Be star as the mass donor in the system and a clear X-ray pulse signature from a neutron star. The systems are generally referred to as Be/X-ray binaries. It lists all their known binary characteristics (orbital period, eccentricity), the measured spin period of the compact object, plus the characteristics of the Be star (spectral type, size of the circumstellar disc, evidence for non-radial pulsations behaviour). For the first time data from the Spitzer Observatory are combined with ground-based data to provide a view of these systems out into the far-IR. Many of the observational parameters are presented as statistical distributions and compared to other similar populations (e.g. isolated Be & B stars) in the SMC, and to other Be/X-ray systems in the Milky Way. In addition, previous important results are re-investigated using this excellently homogenous sample. In particular, the evidence for a bimodality in the spin period distribution is shown to be even stronger than first proposed, and the correlation between orbital period and circumstellar disc size seen in galactic sources is shown to be clearly present in the SMC systems and quantized for the first time.

  3. The low-mass X-ray binary LMC X-2

    SciTech Connect

    Crampton, D.; Hutchings, J.B.; Cowley, A.P.; Schmidtke, P.C.; Thompson, I.B. Arizona State Univ., Tempe Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1990-06-01

    Spectroscopic and photometric observations of LMC X-2 reveal the source to be an X-ray binary with a relatively long orbital period, probably 12.5 days. It appears to be a partially eclipsing system. It is one of a small subclass of low-mass X-ray binaries with longer orbital periods and higher X-ray luminosity than average, which contain a compact object accreting material from an evolving giant companion. 26 refs.

  4. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback.

    PubMed

    Voit, G M; Bryan, G L

    2001-11-22

    Clusters of galaxies are thought to contain about ten times as much dark matter as baryonic matter. The dark component therefore dominates the gravitational potential of a cluster, and the baryons confined by this potential radiate X-rays with a luminosity that depends mainly on the gas density in the cluster's core. Predictions of the X-rays' properties based on models of cluster formation do not, however, agree with the observations. If the models ignore the condensation of cooling gas into stars and feedback from the associated supernovae, they overestimate the X-ray luminosity because the density of the core gas is too high. An early episode of uniformly distributed supernova feedback could rectify this by heating the uncondensed gas and therefore making it harder to compress into the core, but such a process seems to require an implausibly large number of supernovae. Here we show how radiative cooling of intergalactic gas and subsequent supernova heating conspire to eliminate highly compressible low-entropy gas from the intracluster medium. This brings the core entropy and X-ray luminosities of clusters into agreement with the observations, in a way that depends little on the efficiency of supernova heating in the early Universe.

  5. The Effects of Common Envelope and Tidal Evolution On the Properties of X-ray Binaries, CVs and SN Ia

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell C.; Di Stefano, R.

    2011-09-01

    Population synthesis studies provide an excellent testbed for determining the consequences and significance of certain binary processes that lead to accretion onto a compact object. We investigated the recent observational constraints of the common envelope (CE) efficiency parameter with particular regard to the dependence on the mass ratio of the binary. In our population synthesis calculations, we also implemented binary tidal interactions prior to Roche lobe overflow, such as tidal capture of and spin up by the companion, synchronization, and enhanced equatorial mass loss of the giant that can significantly alter the evolution of the system. Finally, we analyzed these binary interactions in the context of nuclear burning on white dwarfs, accreting X-ray binaries, cataclysmic variables, progenitors of Type Ia supernovae, and other high energy binary phenomena.

  6. X-ray Observations of the Tycho Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hughes, John P.

    2006-06-01

    In this presentation I summarize some key new findings from recent Chandra and XMM-Newton data on the remnant of the supernova (SN) observed by Tycho Brahe in 1572, which is widely believed to have been of Type Ia origin. Studies of the Tycho supernova remnant (SNR) at the current epoch address aspects of SN Ia physics, the evolution of young SNRs, and cosmic ray acceleration at high Mach-number shocks.Research on the Tycho SNR at Rutgers has been supported by Chandra grants GO3-4066X and AR5-6010X.

  7. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  8. Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    DiStefano, R.

    1996-01-01

    In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.

  9. GLOBULAR CLUSTER FORMATION EFFICIENCIES FROM BLACK HOLE X-RAY BINARY FEEDBACK

    SciTech Connect

    Justham, Stephen; Peng, Eric W.; Schawinski, Kevin

    2015-08-10

    We investigate a scenario in which feedback from black hole X-ray binaries (BHXBs) sometimes begins inside young star clusters before strong supernova (SN) feedback. Those BHXBs could reduce the gas fraction inside embedded young clusters while maintaining virial equilibrium, which may help globular clusters (GCs) to stay bound when SN-driven gas ejection subsequently occurs. Adopting a simple toy model with parameters guided by BHXB population models, we produce GC formation efficiencies consistent with empirically inferred values. The metallicity dependence of BHXB formation could naturally explain why GC formation efficiency is higher at lower metallicity. For reasonable assumptions about that metallicity dependence, our toy model can produce a GC metallicity bimodality in some galaxies without a bimodality in the field-star metallicity distribution.

  10. X-Ray Binary Populations in a Cosmological Context, Including NuSTAR Predictions

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2011-01-01

    The new ultradeep 4 Ms Chandra Deep Field South has afforded the deepest view ever of X-ray binary populations. We report on the latest results on both LMXB and HMXB evolution out to redshifts of approximately four, including comparison with the latest theoretical models, using this deepest-ever view of the X-ray universe with Chandra. The upcoming NuSTAR mission will open up X-ray binary populations in the hard X-ray band, similar to the pioneering work of Fabbiano et al. in the Einstein era. We report on plans to study both Local Group and starburst galaxies as well as the implications those observations may have for X-ray binary populations in galaxies contributing to the Cosmic X-ray Background.

  11. On the spin period distribution in Be/X-ray binaries

    SciTech Connect

    Cheng, Z.-Q.; Shao, Y.; Li, X.-D.

    2014-05-10

    There is a remarkable correlation between the spin periods of the accreting neutron stars (NSs) in Be/X-ray binaries (BeXBs) and their orbital periods. Recently, Knigge et al. showed that the distribution of the spin periods contains two distinct subpopulations peaked at ∼10 s and ∼200 s, respectively, and suggested that they may be related to two types of supernovae for the formation of the NSs, i.e., core-collapse and electron-capture supernovae. Here we propose that the bimodal spin period distribution is likely to be ascribed to different accretion modes of the NSs in BeXBs. When the NS tends to capture material from the warped, outer part of the Be star disk and experiences giant outbursts, a radiatively cooling dominated disk is formed around the NS, which spins up the NS and is responsible for the short-period subpopulation. In BeXBs that are dominated by normal outbursts or are persistent, the accretion flow is advection-dominated or quasi-spherical. The spin-up process is accordingly inefficient, leading to longer periods of the neuron stars. The potential relation between the subpopulations and the supernova mechanism is also discussed.

  12. Broadband Near-Infrared Spectroscopy of X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Froning, Cynthia S.; Robinson, Edward L.; Bitner, Martin A.

    2008-05-01

    We present broadband NIR spectroscopy of the X-ray binaries A0620-00, Cen X-4, V404 Cyg, and GX 13+1. The NIR spectra consist of emission from the late-type donor star and the accretion disk. In A0620-00 and Cen X-4, the donor star is the dominant component but there are emission lines from the accretion disk as well as evidence of a continuum disk component. In V404 Cyg, there are no signatures of the accretion disk in the NIR spectrum, whereas in GX13+1, the accretion disk is the dominant emitter. Using spectra of field stars of known spectral type, we have examined the donor star absorption spectra in these systems. The apparent spectral types of the donor stars in A0620-00 and Cen X-4 are those of late-type dwarf stars (K7 or later). In A0620-00, the weakness of the 12CO bandhead features relative to the atomic lines indicates a depleted carbon abundance in the system, [C/H] = -1.5. The spectrum of Cen X-4 does not show this abundance anomaly. The donor stars in the V404 Cyg and GX13+1 are evolved, but while the donor star in V404 Cyg appears to the only NIR source, the donor in GX13+1 only accounted for about 1/4 of NIR flux at the time of our observations. For A0620-00, we have used scaled fits of spectral type template stars to determine the donor star contribution in the H-band, which is combined with previous work to determine the binary inclination and, in turn, the mass of the black hole: MBH = 9.7+/-0.6 Msolar.

  13. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  14. Kepler Supernova Remnant: A View from Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-10-06

    The images indicate that the bubble of gas that makes up the supernova remnant appears different in various types of light. Chandra reveals the hottest gas [colored blue and colored green], which radiates in X-rays. http://photojournal.jpl.nasa.gov/catalog/PIA06908

  15. X-ray upper limits on the progenitor of the Type Ia supernova 2017cbv

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2017-04-01

    Following the discovery of the Type Ia supernova 2017cbv (ATel #10158), we examined a combined archival Chandra observation of the host galaxy NGC 5643 taken in 2015 May 21 and Dec 26 to search for the X-ray progenitor.

  16. The nature of the compact X-ray source in the supernova remnant G27.4+0.0

    NASA Technical Reports Server (NTRS)

    Helfand, David J.; Becker, R. H.; Hawkins, G.; White, R. L.

    1994-01-01

    High-resolution X-ray imaging data obtained with ROSAT is used to constrain the nature of the central compact source in the supernova remnant G27.4+0.0. Diffuse emission is seen from throughout the approximately 4 min diameter radio shell, while the central source remains unresolved at approximately 3 sec. We combine archival data from the Einstein HRI, IPC, and MPC with the ROSAT HRI data to define the X-ray spectra of the diffuse and point-like emission. The bulk of the shell radiation is consistent with that of a approximately 10(exp 7) K plasma, although a higher temperature component is also suggested by the data; coupled with the remnant's size and distance, we derive an age of between 500 and 2500 yr. The point source has a substantially harder spectrum, with a power-law photon index less than or approximately equal to 1. A search for periodic modulation from the point source yields upper limits ranging from 10%-35% for periods between 0.025 and 1000 s, depending on the assumed pulse shape. No aperiodic variability on timescales of from 10(exp 3) to 10(exp 8) s is required, although a factor of approximately 2 change between the Einstein and ROSAT eras is possible. We show that the point source cannot represent thermal emission from the surface of a young neutron star and is unlikely to be explained as nonthermal, Crab-like X-ray pulses or a small synchrotron nebula. The most likely models involve accretion-powered systems -- either a wind-fed neutron star with a massive companion or a low-mass X-ray binary. In all probability, this is the youngest X-ray binary in the Galaxy.

  17. On the relationship between circumstellar disc size and X-ray outbursts in Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Monageng, I. M.; McBride, V. A.; Coe, M. J.; Steele, I. A.; Reig, P.

    2017-01-01

    We present long-term Hα monitoring results of five Be/X-ray binaries to study the Be disc size variations and their influence on type II (giant) X-ray outbursts. The work is done in the context of the viscous decretion disc model which predicts that Be discs in binary systems are truncated by resonant torques induced by the neutron star in its orbit. Our observations show that type II outbursts are not correlated (nor anticorrelated) with the disc size, as they are seen to occur both at relatively small and large Be disc radii. We discuss these observations in context of alternate interpretation of Be disc behaviour, such as precession, elongation and density effects, and with cognisance of the limitations of our disc size estimates.

  18. A Search For X-Ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes; Salter, Demerese M.; Garmire, Gordon P.

    2016-12-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.

  19. SXP 1062, a young Be X-ray binary pulsar with long spin period. Implications for the neutron star birth spin

    NASA Astrophysics Data System (ADS)

    Haberl, F.; Sturm, R.; Filipović, M. D.; Pietsch, W.; Crawford, E. J.

    2012-01-01

    Context. The Small Magellanic Cloud (SMC) is ideally suited to investigating the recent star formation history from X-ray source population studies. It harbours a large number of Be/X-ray binaries (Be stars with an accreting neutron star as companion), and the supernova remnants can be easily resolved with imaging X-ray instruments. Aims: We search for new supernova remnants in the SMC and in particular for composite remnants with a central X-ray source. Methods: We study the morphology of newly found candidate supernova remnants using radio, optical and X-ray images and investigate their X-ray spectra. Results: Here we report on the discovery of the new supernova remnant around the recently discovered Be/X-ray binary pulsar CXO J012745.97-733256.5 = SXP 1062 in radio and X-ray images. The Be/X-ray binary system is found near the centre of the supernova remnant, which is located at the outer edge of the eastern wing of the SMC. The remnant is oxygen-rich, indicating that it developed from a type Ib event. From XMM-Newton observations we find that the neutron star with a spin period of 1062 s (the second longest known in the SMC) shows a very high average spin-down rate of 0.26 s per day over the observing period of 18 days. Conclusions: From the currently accepted models, our estimated age of around 10 000-25 000 years for the supernova remnant is not long enough to spin down the neutron star from a few 10 ms to its current value. Assuming an upper limit of 25 000 years for the age of the neutron star and the extreme case that the neutron star was spun down by the accretion torque that we have measured during the XMM-Newton observations since its birth, a lower limit of 0.5 s for the birth spin period is inferred. For more realistic, smaller long-term average accretion torques our results suggest that the neutron star was born with a correspondingly longer spin period. This implies that neutron stars in Be/X-ray binaries with long spin periods can be much younger

  20. X-ray emission from star-forming galaxies - I. High-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Gilfanov, M.; Sunyaev, R.

    2012-01-01

    Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation to the star-formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star-formation activity in the host galaxy and their collective luminosity and number scale with the SFR: in particular, ?. However, the scaling relations still bear a rather large dispersion of rms ˜ 0.4 dex, which we believe is of a physical origin. We present the catalogue of 1055 X-ray sources detected within the D25 ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with a slope of 1.6 in the log (LX) ˜ 35-40 luminosity range with moderately significant evidence for a break or cut-off at LX˜ 1040 erg s-1. As before, we did not find any features at the Eddington limit for a neutron star or a stellar-mass black hole. We discuss the implications of our results for the theory of binary evolution. In particular we estimate the fraction of compact objects that once in their lifetime experienced an X-ray active phase powered by accretion from a high-mass companion and obtain a rather large number, fX˜ 0.2 × (0.1 Myr/τX), where τX is the lifetime of the X-ray active phase. This is ˜4 orders of magnitude more frequent than in low-mass X-ray binaries (LMXBs). We also derive constraints on the mass distribution of the secondary star in HMXBs.

  1. Optical/IR - X-ray variability in black hole and neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Casella, Piergiorgio; Marsh, Tom; Malzac, Julien; Russell, David; Littlefair, Stuart; Dallilar, Yigit; Eikenberry, Steve; Dhillon, Vik; Hardy, Liam

    2016-07-01

    Following 50+ years of X-ray studies, we are at the threshold of a new era of fast multiwavelength timing studies of X-ray binaries. The optical and infrared regimes can directly measure the peak emission of the jet and hot flow in many accretion systems. When combined with simultaneous X-ray observations, they can be a powerful tool to probe the accretion/outflow connection in 'real-time' and to measure key physical parameters of the various binary components. This field has long been handicapped by the lack of suitable detectors and the difficulty of multiwavelength coordination of observations, but this is set to change with new dedicated observatories becoming operational almost continually over the next decade. I will review advances made in this field, concentrating on results from multiwavelength observations of black hole binaries in the hard state and contrasting them with (the few) studies of neutron stars. I will also discuss prospects from upcoming missions, and argue that a concerted effort by the community is needed to make the next leap forward.

  2. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni during Quiescence

    NASA Astrophysics Data System (ADS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; Fuerst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Hailey, Charles; Harrison, Fiona A.; Madsen, Kristin K.; Rahoui, Farid; Stern, Daniel; Tendulkar, Shriharsh; Zhang, William W.

    2016-04-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 × 1032 erg s-1 for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of Γ = 2.12 ± 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3σ confidence level with the e-folding energy of the cutoff as {20}-7+20 keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  3. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  4. CLUSTERING BETWEEN HIGH-MASS X-RAY BINARIES AND OB ASSOCIATIONS IN THE MILKY WAY

    SciTech Connect

    Bodaghee, A.; Tomsick, J. A.; Rodriguez, J.

    2012-01-10

    We present the first direct measurement of the spatial cross-correlation function of high-mass X-ray binaries (HMXBs) and active OB star-forming complexes in the Milky Way. This result relied on a sample containing 79 hard X-ray-selected HMXBs and 458 OB associations. Clustering between the two populations is detected with a significance above 7{sigma} for distances <1 kpc. Thus, HMXBs closely trace the underlying distribution of the massive star-forming regions that are expected to produce the progenitor stars of HMXBs. The average offset of 0.4 {+-} 0.2 kpc between HMXBs and OB associations is consistent with being due to natal kicks at velocities of the order of 100 {+-} 50 km s{sup -1}. The characteristic scale of the correlation function suggests an average kinematical age (since the supernova phase) of {approx}4 Myr for the HMXB population. Despite being derived from a global view of our Galaxy, these signatures of HMXB evolution are consistent with theoretical expectations as well as observations of individual objects.

  5. Formation of high mass X-ray black hole binaries

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Heger, A.; Langer, N.; Lee, C.-H.; Wellstein, S.; Bethe, H. A.

    2001-10-01

    The discrepancy in the past years of many more black-hole soft X-ray transients (SXTs), of which a dozen have now been identified, had challenged accepted wisdom in black hole evolution. Reconstruction in the literature of high-mass X-ray binaries has required stars of up to ˜40 M ⊙ to evolve into low-mass compact objects, setting this mass as the limit often used for black hole formation in population syntheses. On the other hand, the sheer number of inferred SXTs requires that many, if not most, stars of ZAMS masses 20-35 M ⊙ end up as black holes ( Portegies Zwart et al., 1997; Ergma and van den Heuvel, 1998). In this paper we show that this can be understood by challenging the accepted wisdom that the result of helium core burning in a massive star is independent of whether the core is covered by a hydrogen envelope, or 'naked' while it burns. The latter case occurs in binaries when the envelope of the more massive star is transferred to the companion by Roche Lobe overflow while in either main sequence or red giant stage. For solar metallicity, whereas the helium cores which burn while naked essentially never go into high-mass black holes, those that burn while clothed do so, beginning at ZAMS mass ˜20 M ⊙, the precise mass depending on the 12C( α, γ) 16O rate as we outline. In this way the SXTs can be evolved, provided that the H envelope of the massive star is removed only following the He core burning. Whereas this scenario was already outlined in 1998 by Brown et al. [NewA 4 (1999) 313], their work was based on evolutionary calculations of Woosley et al. [ApJ 448 (1995) 315] which employed wind loss rates which were too high. In this article we collect results for lower, more correct wind loss rates, finding that these change the results only little. We go into the details of carbon burning in order to reconstruct why the low Fe core masses from naked He stars are relatively insensitive to wind loss rate. The main reason is that without the

  6. Stellar feedback from high-mass X-ray binaries in cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Artale, M. C.; Tissera, P. B.; Pellizza, L. J.

    2015-04-01

    We explored the role of X-ray binaries composed by a black hole and a massive stellar companion [black hole X-ray binaries (BHXs)] as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects metal-poor stars (Z = [0, 10-4]) as possible progenitors. The model that better reproduces observations assumes that an ˜20 per cent fraction of low-metallicity black holes are in binary systems which produces BHXs. These sources are estimated to deposit ˜1052 erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents ˜30 per cent of the total energy released by Type II supernova and BHX events at redshift z ˜ 7 and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than ˜1010 M⊙ (or Tvir ≲ 105 K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range 107-108 M⊙. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.

  7. Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.

  8. X-ray observations of the supernova remnant MSH 11-54

    SciTech Connect

    Agrawal, P.C.; Riegler, G.R.

    1980-04-15

    Soft X-ray observations of the X-ray source H1122--59 in the 0.4--2 keV band made with the low-energy detector 1 of the HEAO A-2 experiment are described. Based on positional coincidence, the source is identified with the supernova remnant MSH 11-54, thus confirming the report of Share et al. (1978). The object is a bright source in the 0.4--2 keV band with an X-ray flux of approx.9 x 10/sup -11/ ergs cm/sup -2/ s/sup -1/ near the Earth. The measured source spectrum implies a plasma temperature of approx.4 x 10/sup 6/ K and X-ray luminosity in the 0.4--2 keV band of approx.10/sup 37/ ergs s/sup -1/ using a distance of 10 kpc for MSH 11-54. The X-ray observations, interpreted in terms of an adiabatic shock wave model, give a shock velocity of approx.560 km s/sup -1/ and a supernova age of approx.2300 yr, in good agreement with the age derived from the radio observations.

  9. X-ray observations of the supernova remnant MSH 11-54

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Riegler, G. R.

    1980-01-01

    Soft X-ray observations of the X-ray source H1122-59 in the 0.4-2 keV band made with the low-energy detector 1 of the HEAO A-2 experiment are described. Based on positional coincidence, the source is identified with the supernova remnant MSH-11-54, thus confirming the report of Share et al. (1980). The object is a bright source in the 0.4-2 keV band with an X-ray flux of 9 x 10 to the -11th ergs/sq cm s near the earth. The measured source spectrum implies a plasma temperature of 4 million K and X-ray luminosity in the 0.4-2 keV band of 10 to the 37th ergs/s using a distance of 10 kpc for MSH 11-54. The X-ray observations, interpreted in terms of an adiabatic shock wave model, give a shock velocity of about 560 km/s and a supernova age of about 2300 yr, in good agreement with the age derived from the radio observations.

  10. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  11. X-ray spectra of young Type I supernova remnants - Exploded white dwarfs?

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Sarazin, C. L.; Szymkowiak, A. E.; Vartanian, M. H.

    1985-01-01

    It is argued that the X-ray spectra of young Type I supernova remnants can be understood consistently in terms of thermal emission mainly from a reverse shock into initially uniform density ejecta. The inferred mass of ejecta is then consistent with 1.4 solar mass in SN 1006, Tycho, and Kepler. A substantial mass of iron, perhaps 0.8 solar mass, may be present provided that the ejecta are chemically inhomogeneous, with iron confined to inner layers of ejecta. The marked difference between the X-ray spectra of SN 1006 and Tycho is explained by the lower interstellar density around SN 1006.

  12. Soft X-ray emission from the Lupus Loop and Sn 1006 supernova remnants

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Hearn, D. R.; Richardson, J. A.; Behnken, J. M.

    1979-01-01

    X-ray maps of the Lupus region have been obtained in a raster scan observation from SAS 3. These show the Lupus Loop to be a faint extended source of soft X-rays with a temperature about 2.5 million K. The most prominent feature of the region is the A.D. 1006 supernova remnant, which is unexpectedly bright at 0.2-1.0 keV. One speculative interpretation of the low-energy flux from SN 1006 is as blackbody radiation from a hot neutron star.

  13. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    2001-01-01

    The proposed study entails use of archival data, primarily from past and active X-ray observatories, to study the properties of a class of supernova remnants (SNRs) which display a centrally-bright X-ray morphology. Several models which have been proposed to explain the morphology are being investigated for comparisons with measured characteristics of several remnants: nonthermal emission from a central synchrotron nebula; thermal emission enhanced by slow evaporation of cool clouds in the hot SNR interior; and relic thermal emission from the SNR interior after the remnant has entered the radiative phase of evolution, thus causing the shell emission to cease.

  14. The x-ray structure of the supernova remnant W49B

    NASA Technical Reports Server (NTRS)

    Dickel, John R.; Murphy, Rosa; Chu, You-Hua; Garcia, Guillermo; Goscha, Daniel

    1994-01-01

    Comparison of x-ray and radio images of W49B and other supernova remnants (SNR) provides detailed information on the mechanisms responsible for the emission and on the evolution of the remnants. There is faint x-ray emission from all parts of W49B but most of it is concentrated near the center of the remnant, unlike the radio emission which arises in a shell near the periphery. This structure indicates that this SNR is in the adolescent phase of its lifetime.

  15. X-Ray Illumination of the Ejecta of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.; hide

    2011-01-01

    When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.

  16. X-ray illumination of the ejecta of supernova 1987A.

    PubMed

    Larsson, J; Fransson, C; Ostlin, G; Gröningsson, P; Jerkstrand, A; Kozma, C; Sollerman, J; Challis, P; Kirshner, R P; Chevalier, R A; Heng, K; McCray, R; Suntzeff, N B; Bouchet, P; Crotts, A; Danziger, J; Dwek, E; France, K; Garnavich, P M; Lawrence, S S; Leibundgut, B; Lundqvist, P; Panagia, N; Pun, C S J; Smith, N; Sonneborn, G; Wang, L; Wheeler, J C

    2011-06-08

    When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.

  17. Studying Young and Old Supernova Remnants with the Upcoming ASTRO-H X-ray Mission

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar; Hughes, John P.; Long, Knox; Bamba, Aya; Aharonian, Felix; Foster, Adam; Funk, Stefan; Hiraga, Junko; Ishida, Manabu; Katsuda, Satoru; Koyama, Katsuji; Leutenegger, Maurice; Maeda, Yoshitomo; Matsumoto, Hironori; Mori, Koji; Nakajima, Hiroshi; Nakamori, Takashi; Nobukawa, Masayoshi; Ozaki, Masanobu; Petre, Robert; Sawada, Makoto; Tamagawa, Toru; Tamura, Keisuke; Tanaka, Takaaki; Tomida, Hiroshi; Tsunemi, Hiroshi; Uchida, Hiroyuki; Uno, Shin'ichiro; Uchiyama, Yasunobu; Yamaguchi, Hiroya; Yamauchi, Shigeo; ASTRO-H Science Working Group

    2015-01-01

    The upcoming X-ray mission ASTRO-H will open a new discovery window to the high-energy Universe thanks to the unprecedented high-resolution spectroscopy (~7eV) to be achieved with the Soft X-ray Spectrometer (SXS) combined with its broadband coverage (0.5-600 keV) with the Soft X-ray Imager (SXI), Hard X-ray Imager (HXI) and the Soft Gamma-ray Detector (SGD). Supernova remnants (SNRs) are a prime science focus for ASTRO-H, particularly with the SXS providing accurate plasma diagnostics of line-rich spectra expected from the youngest, ejecta-dominated, SNRs to the oldest SNRs impacted by their interaction with the Interstellar Medium (ISM). We here highlight the SNR science topics and program that the ASTRO-H team considers of highest priority and impact. For the younger SNRs, the primary science goals are (1) using abundance measurements to unveil SNR progenitors, (2) using spatial and velocity distribution of the ejecta to understand supernova explosion mechanisms, and (3) revealing the link between the thermal plasma state of SNRs and the efficiency of their particle acceleration. For the older SNRs where thermal emission is dominated or heavily impacted by the ISM, the primary goals are (1) constraining metal abundances and physical processes in the mature limb-brightened SNRs, and (2) understanding the puzzling nature of the `mixed-morphology' SNRs and the physics of recombining plasma. For the pulsar-powered nebulae, also known as Pulsar Wind Nebulae (PWNe) or plerions with many still lacking thermal X-ray emission from their supernova shells, ASTRO-H will shed light on their progenitors and environment. The hard X-ray coverage on board ASTRO-H will further allow a study of their broadband spectra (for the brightest objects), beyond NuSTAR's range, filling the gap between the soft X-ray regime (with current X-ray missions) and the gamma-ray regime (with Fermi in the GeV and H.E.S.S. in the TeV), allowing the search for spectral breaks in the hard X-ray band.

  18. Recognition of binary x-ray systems utilizing the doppler effect

    NASA Technical Reports Server (NTRS)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  19. New Radio Continuum, Hi, And X-ray Observations Of The Old Supernova Remnant Ctb80

    NASA Astrophysics Data System (ADS)

    Leahy, Denis A.

    2012-05-01

    New radio continuum and HI line observations of the old supernova remnant CTB80 are analyzed. The radio continuum emission is more extended than previously known, and a 21cm absorption line profile is produced, which gives a revised distance to the supernova remnant and associated pulsar B1951+32. Archival ROSAT PSPC pointed observations of the CTB80 region are analyzed, and reveal extended X-ray emission associated the remnant over a large (1.2 degree) region. An analysis of the HI emission using the velocity channel maps confirms the inner shell found by Koo et al. (1990). In addition, an outer slowly moving shell centered on CTB80’s center, with radius 76 arcmin and velocity 40 km/s, is found. The shell’s size and velocity are not consistent with a stellar wind origin, but have properties consistent with what is expected for a cool dense shell behind the outer shock in the cooling (snowplow) phase of a supernova remnant. It is concluded from the radio and X-ray observations, that CTB80 is a large and old supernova remnant, with a slowly expanding snowplow-phase shell and a hot interior which is still emitting X-rays.

  20. ENERGY DEPENDENCE OF SYNCHROTRON X-RAY RIMS IN TYCHO’S SUPERNOVA REMNANT

    SciTech Connect

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Reynolds, Stephen P.

    2015-10-20

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ∼1%–5% of remnant radius and magnetic field strengths ∼50–400 μG assuming Bohm diffusion. X-ray rim widths are ∼1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ≳20 μG, affirming the necessity of magnetic field amplification beyond simple compression.

  1. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources. A population synthesis analysis using SeBa

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Nelemans, G.; Voss, R.; Toonen, S.

    2014-03-01

    Context. The nature of the progenitors of type Ia supernova progenitors remains unclear. While it is usually agreed that single-degenerate progenitor systems would be luminous supersoft X-ray sources, it was recently suggested that double-degenerate progenitors might also go through a supersoft X-ray phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being supersoft X-ray systems, and place stringent upper limits on the maximally possible durations of any supersoft X-ray source phases and expected number of these systems in a galactic population. Methods: We employ the binary population synthesis code SeBa to examine the mass-transfer characteristics of a possible supersoft X-ray phase of double-degenerate type Ia supernova progenitor systems for 1) the standard SeBa assumptions; and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source double-degenerate type Ia supernova progenitor systems. Results: Our results indicate that unlike what is expected for single-degenerate progenitor systems, the vast majority of the material accreted by either pure wind mass transfer or a combination of wind and RLOF mass transfer is helium rather than hydrogen. Even with extremely optimistic assumptions concerning the mass-transfer and retention efficiencies, the average mass accreted by systems that eventually become double-degenerate type Ia supernovae is small. Consequently, the lengths of time that these systems may be supersoft X-ray sources are short, even under optimal conditions, and the expected number of such systems in a galactic population is negligible. Conclusions: The population of double-degenerate type Ia supernova progenitors that are supersoft X-ray sources is at least an order of magnitude smaller than the population of single-degenerate progenitors expected to be supersoft X-ray sources, and the supersoft X-ray behaviour of double-degenerate systems

  2. A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; Van Den Berg, Maureen

    2017-01-01

    We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.

  3. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  4. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  5. Constraining the formation of black holes in short-period black hole low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Repetto, Serena; Nelemans, Gijs

    2015-11-01

    The formation of stellar-mass black holes (BHs) is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova (SN) event (if any) and the magnitude of the natal kick (NK) the BH receives at birth (if any). Repetto et al., studying the position of Galactic X-ray binaries containing BHs, found evidence for BHs receiving high NKs at birth. In this paper, we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period BH X-ray binaries that we use are compact binaries consisting of a low-mass star orbiting a BH in a period less than 1 d. We trace their binary evolution backwards in time, from the current observed state of mass transfer, to the moment the BH was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no NK, just mass ejection, while for two systems (and possibly more) a high kick is required. So unless the latter have an alternative formation, such as within a globular cluster, we conclude that at least some BHs get high kicks. This challenges the standard picture that BH kicks would be scaled down from neutron star kicks. Furthermore, we find that five systems could have formed with a non-zero NK but zero mass ejected (i.e. no SN) at formation, as predicted by neutrino-driven NKs.

  6. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  7. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-08-20

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope, and Expanded Very Large Array; at X-ray wavelengths with Chandra, XMM-Newton, and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region; external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density {approx}10{sup 6} cm{sup -3} at a radius r {approx} 2 Multiplication-Sign 10{sup 16} cm, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r{sup -2} because of the slow evolution of the unabsorbed emission.

  8. X-ray evidence for electron-ion equilibrium and ionization nonequilibrium in young supernova remnants

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Smith, B. W.

    1979-01-01

    The A-2 spectroscopy experiment on HEAO 1 detected X-ray emission up to 25 keV from the supernova remnants Cas A and Tycho. The spectra must include continuum components with effective temperature equivalent or 10 to the 8th power K which could arise from optically thin plasmas in the collisionless shock fronts. This is the first indication of electron-ion temperature equilibrium in the expanding shell of young remnants. Measurements of the equivalent widths of the K alpha and K beta iron line blends in Cas A, show that their ratio is not compatible with the measured X-ray temperature in the collisional ionization equilibrium model. The search for hard X-ray pulsars in both remnants was unsuccessful.

  9. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Technical Reports Server (NTRS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  10. An Infrared Search for Binary Companions to White Dwarfs with Hard X-Ray Emission

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Ian J.; Gruendl, Robert; Chu, You-Hua; Guerrero, Martin A.

    2002-08-01

    A white dwarf (WD) can emit soft (≪ 0.4 keV) X-rays, if it is hot enough, i.e., T_eff > 30,000 K for a pure hydrogen atmosphere or T_eff > 100,000 K for a hydrogen and helium atmosphere. A WD can also emit harder (> 0.5 keV) X-rays, if it has a close binary companion and mass transfer takes place, e.g., dwarf novae, polars, and cataclysmic variables. We found a large number of hard X-ray emitting WDs by cross-correlating the McCook & Sion (1999) catalog of WDs with the ROSAT point source database. We have verified the position of the WD, analysed the ROSAT data and extracted X-ray spectra to confirm the hard X-ray component. Since the only current explanation for hard X-ray emission from a WD involves a stellar companion and only five of the ~40 WDs that exhibit hard X-ray emission are known binary systems, we wish to investigate whether hard X-ray emssion is a useful diagnostic for the presence of companions to WDs. We request KPNO 2.1m SQIID near infrared photometric observations of a sample of 34 WDs, 23 of which exhibit hard X-ray emission, to look for an infrared excess consistent with the presence of a stellar companion.

  11. The nature of the X-ray pulsar in M 31: An intermediate-mass X-ray binary?

    NASA Astrophysics Data System (ADS)

    Karino, Shigeyuki

    2016-12-01

    The first finding of the spin period of an accreting neutron star in M 31 was recently reported. The observed spin period is 1.2 s, and it shows 1.27 d modulations due to orbital motion. From the orbital information, the mass donor could not be a giant massive star. On the other hand, its observed properties are very odd as those of typical low-mass X-ray binaries. In this study, we compare the observed binary parameters with theoretical models given by a stellar evolution track, and give a restriction on the possible mass range of the donor. According to the standard stellar evolution model, the donor star should be larger than 1.5 M⊙, which suggests that this system is a new member of a rare category, an intermediate-mass X-ray binary. The magnetic field strength of the neutron star suggested by the spin-up/down tendency in this system supports the possibility of an intermediate-mass donor.

  12. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    1997-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of x-rays observed with the ROSAT PSPC. Here we report on ASCA observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an x-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  13. Comparison of the Hα circumstellar disks in Be/X-ray binaries and Be stars

    NASA Astrophysics Data System (ADS)

    Zamanov, R. K.; Reig, P.; Martí, J.; Coe, M. J.; Fabregat, J.; Tomov, N. A.; Valchev, T.

    2001-03-01

    We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the Hα emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the Be/X-ray binaries and the Be stars seen in the full width half maximum versus peak separation diagram indicates that the disks in Be/X-ray binaries have on average a smaller size, probably truncated by the compact object.

  14. Sigma observations of the low mass X-ray binaries of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.

    1995-01-01

    The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.

  15. Sigma observations of the low mass X-ray binaries of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.

    1995-01-01

    The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.

  16. Iron K photons from weakly magnetized neutron stars in X-ray binaries

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1980-01-01

    The emission of iron K photons by the continuum X-ray source and the neutron star surface is considered. It is shown that the continuum sources of X-ray binaries produce negligible amounts of iron K photons because nearly all iron atoms in the continuum source are fully stripped due to the intense X-ray fluxes. In contrast, the atmosphere of the neutron star in an X-ray binary might be an important source of iron K photons (photon energy about 6.5 keV) because it is bombarded by a large number of hard X-rays capable of photo-ejecting K-shell electrons from iron atoms. Information is discussed concerning the magnetic field strength, the gravitational potential at the neutron star surface, and the direction of the magnetic dipole axis which are obtainable from the observations of K photons of the neutron star atmosphere.

  17. Hunting stellar-mass black holes in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Corral-Santana, J. M.

    2017-07-01

    In the last 50 years of X-ray astronomy we have detected nearly 60 Galactic stellar-mass black hole (BH) candidates in transient X-ray binaries, i.e. systems with low-mass companions and sporadic outburst episodes. In addition, we have detected 2 more systems with high-mass companion stars. Only 17 out of the ˜60 transients have been dynamically confirmed although we have established strong constrains in two more systems. In this contribution, we will introduce the X-ray binaries, summarise their status and present the latest advances in the field.

  18. New, fast X-ray pulsar in the supernova remnant MSH 15--52

    SciTech Connect

    Seward, F.D.; Harnden, F.R. Jr.

    1982-05-15

    A pulsing X-ray source has been discovered within the shell of the supernova remnant MSH 15--52. The period is 0.150 s, and the rate of increase of period with time is the highest measured for any pulsar. These characteristics and the fact that the pulsar is surrounded by a small, bright nebula indicate that this object is very similar to the Crab pulsar.

  19. A new, fast X-ray pulsar in the supernova remnant MSH 15-52

    NASA Technical Reports Server (NTRS)

    Seward, F. D.; Harnden, F. R., Jr.

    1982-01-01

    A pulsing X-ray source has been discovered within the shell of the supernova remnant MSH 15-52. The period is 0.150 s, and the rate of increase of period with time is the highest measured for any pulsar. These characteristics and the fact that the pulsar is surrounded by a small, bright nebula indicate that this object is very similar to the Crab pulsar.

  20. The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Batta, Aldo; Ramirez-Ruiz, Enrico; Fryer, Chris

    2017-09-01

    High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a≳ 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 {M}ȯ pre-SN star in a close binary with a 12 {M}ȯ companion with an orbital period of ≈1.2 days, finding that it is possible to obtain a BH with a high spin parameter a≳ 0.8 even when the expected spin parameter from direct collapse is a≲ 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.

  1. BLACK HOLE SPIN-ORBIT MISALIGNMENT IN GALACTIC X-RAY BINARIES

    SciTech Connect

    Fragos, T.; Tremmel, M.; Rantsiou, E.; Belczynski, K. E-mail: michaeltremmel2007@u.northwestern.ed E-mail: kbelczyn@nmsu.ed

    2010-08-10

    In black hole (BH) X-ray binaries (XRBs), a misalignment between the spin axis of the BH and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this Letter, we present population synthesis (PS) models of Galactic BH XRBs and study the probability density function of the misalignment angle and its dependence on our model parameters. In our modeling, we also take into account the evolution of the misalignment angle due to accretion of material onto the BH during the XRB phase. The major factor that sets the misalignment angle for XRBs is the natal kick that the BH may receive at its formation. However, large kicks tend to disrupt binaries, while small kicks allow the formation of XRBs and naturally select systems with small misalignment angles. Our calculations predict that the majority (>67%) of Galactic field BH XRBs have rather small ({approx}<10{sup 0}) misalignment angles, while some systems may reach misalignment angles as high as {approx}90{sup 0} and even higher. These results are robust among all PS models. The assumption of small misalignment angles is extensively used to observationally estimate BH spin magnitudes, and for the first time we are able to confirm this assumption using detailed PS calculations.

  2. The Fundamental Plane of Radio Loud Quasars and X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, H. J.; Zhang, X.

    2016-05-01

    Several X-ray binaries (X-ray binaries) in low/hard state that follow a track of radio-X-ray correlation have been found in recent years. Dong et al. also found this relation in RQQs (radio quiet quasars). Black hole accretion and jet formation are scale invariants which form the fundamental plane of black hole activity. It is a plane given in the space of the black hole mass and the radio/X-ray luminosities. In this paper, we compile a sample of radio loud active galactic nuclei and find that: (1) The hard X-ray photon indices and Eddington ratios of our sample are positively correlated, similar to XRBs. The Eddington-scaled radio-X-ray correlation of our sample also has that of outliers. A radiatively efficient accretion flow can regulate the positively correlated X-ray spectral evolution and the steep radio-X-ray correlation. (2) We can present a fundamental plane for XRBs. Several XRBs and radio-loud quasars (RLQs) have similarities in the relation formed by the black-hole mass, radio and X-ray luminosities. The fundamental plane is lg LR=0.998+0.045-0.045 lg LX+0.592+0.049-0.049 lg MBH -6.56+1.605-1.605, where LR is the radio luminosity, LX is the X-ray luminosity, and MBH is the black hole mass. (3) The plane can be suitable for the RLQ black hole sources. And the X-ray binaries also agree to the relation.

  3. The End of Days -- Chandra Catches X-ray Glow From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the

  4. An X-ray View of the Zoo of Compact Objects and Associated Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar

    2015-08-01

    Core-collapse explosions of massive stars leave behind some of the most exotic compact objects in the Universe. These include: rotation-powered pulsars like the Crab, powering pulsar wind nebulae (PWNe) observed across the electromagnetic spectrum; highly magnetized neutron stars ("magnetars") shining or bursting at high-energies; and X-ray emitting “Central Compact Objects” (CCOs) with intrinsic properties and emission mechanism that remain largely unknown. I will highlight this observed diversity of compact stellar remnants from an X-ray perspective, and address the connection between their properties and those of their hosting supernova remnants (SNRs). In particular I will highlight topics related to their formation and evolution, including: 1) which supernovae make magnetars and the shell-less PWNe?, 2) what can we learn from the apparent age discrepancy between SNRs and their associated pulsars? I will conclude with prospects for observations of SNRs with the upcoming ASTRO-H X-ray mission. The unprecedented spectral resolution on board of ASTRO-H’s micro-calorimeter will particularly open a new discovery window for supernova progenitors' science.

  5. An X-ray spectroscopic study of the SMC X-1/Sk 160 X-ray binary system

    NASA Astrophysics Data System (ADS)

    Wojdowski, Patrick Stephen

    1999-11-01

    In this thesis, the properties of the circumstellar environment of the high-mass X-ray binary system SMC X- 1/Sk 160 are explored using observational data from several satellite X-ray observatories. First, we have investigated the cause of the quasiperiodic ~60 day high-state low-state X-ray flux variation, previously suggested, and now clearly evident in extensive BATSE and RXTE monitoring data. Data from short-term pointed observations with the Ginga, ROSAT, ASCA, and RXTE observatories, show that while the uneclipsed flux varies by as much as a factor of 20 between high and low states, the eclipsed flux consists of approximately the same flux of reprocessed radiation in both states. From this we conclude that the high-low cycle is due to a quasi-periodic occultation of the source, most likely by a precessing tilted accretion disk around the neutron star. Next, we investigate the composition and distribution of the wind of Sk 160, the supergiant companion of the X-ray star SMC X-1, by comparing an X-ray spectrum of the source, obtained with the ASCA observatory during an eclipse with the computed spectra of reprocessed radiation from circumstellar matter with various density distributions. We show that the metal abundance in the wind of SMC X-1 is no greater than a few tenths of solar, as has been determined for other objects in the Magellanic Clouds. We also show that the observed spectrum is not consistent with the density distributions of circumstellar matter of the spherically symmetric form derived for line-driven winds, nor the density distribution from a hydrodynamic simulation of the X-ray perturbed and line-driven wind by Blondin & Woo (1995). Essential properties of a density distribution that would yield agreement with the observed spectrum are defined. Finally, we discuss prospects for future studies of this kind based on high-resolution spectroscopy data expected from the AXAF mission. (Copies available exclusively from MIT Libraries, Rm. 14

  6. High-eccentric X-ray binaries: evolution, wind rose effect, accretor-propeller luminosity gap

    NASA Astrophysics Data System (ADS)

    Raguzova, Natalya V.; Lipunov, Vladimir M.

    1998-12-01

    The influence of the spatial distribution of stellar wind velocities (Wind Rose effect) on the X-ray light curve of highly eccentric binaries is examined using the properties of spherical-symmetrical and Be disk-fed outflow. The effects of the wind geometry, velocities and densities in the stellar wind of the Be star and of the orbital motion of the neutron star on the expected X-ray luminosity are investigated. It is shown that the shapes of the X-ray light curves depend strongly on the outflow velocity of the gas ejected by the Be star at the orbital distance of the compact object. If vwind << vorb then the X-ray luminosity is high and the X-ray light curves are determined by the orbital velocity of the neutron star. The effects of changes in the mass loss rate of the Be star and in the orbital separation on the expected X-ray light curves are studied. It is shown that a phase shift of the maximum X-ray luminosity is always present in the X-ray light curves. We show that in some cases an accretion disk may temporarily form around the neutron star. The observed X-ray light curves of some transient binaries are analysed using the developed model. We show that the Be/X-ray transients A 0538-66, X 0331+53 and some other sources are likely to undergo transitions from the accreting neutron star regime to the propelling one. Evolutionary scenarios which can lead to a formation of the binary systems A 0538-66, A 0535+26, X 0331+53, 4U 1145-619, 4U 0115+634 and EXO 2030+375 are presented. For the first time, the evolutionary tracks include both the orbital period changes and the neutron star spin period history. Using Monte Carlo simulations, we calculate the number distributions of Be+X-ray PSR binaries over orbital periods and eccentricities for different scenario parameters taking into consideration the influence of kick velocity and synchronization. We conclude that synchronization is a very important process and must be taken into account when calculating Be star

  7. The Effect of Variability on X-Ray Binary Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Gross, Jacob; Williams, Benjamin F.; Eracleous, Michael; Gaetz, Terrance J.; Plucinsky, Paul P.; Skillman, Evan D.

    2017-08-01

    X-ray binaries are inherently variable X-ray sources, particularly at low luminosities (<1036 erg s-1). Despite this intrinsic variability, the resulting X-ray luminosity functions of X-ray binary populations in star-forming galaxies are remarkably stable across galaxies and across multiple epochs in time. We have obtained three epochs of Chandra ACIS-I observations (totaling ~184 ks) of the nearby spiral galaxy NGC 300 to study the logN-logS distributions of its X-ray point-source population down to 0.35-8 keV luminosities of ~1036 erg s-1. The individual epoch differential logN-logS distributions are best described as the sum of a component made up of background active galactic nuclei (AGN), a simple power law, and a broken power law.We find the shape of the logN-logS distributions sometimes varies between observations. The simple power law and AGN components produce a good fit for “persistent” sources (i.e., with fluxes that remain constant within a factor of ~2). The power-law index of ~1.2 and high fluxes suggest that the persistent sources intrinsic to NGC 300 are dominated by Roche-lobe-overflowing low-mass X-ray binaries. The variable X-ray sources are described by a broken power law, with a faint-end power-law index of ~1.7, a bright-end index of ~2.8-4.9, and a break luminosity of ~4 × 1036 erg s-1. This suggests that these variable sources are mostly outbursting, wind-fed high-mass X-ray binaries, although the logN-logS distribution of variable sources likely also contains low-mass X-ray binaries. We generate model logN-logS distributions for synthetic X-ray binaries and constrain the distribution of maximum X-ray fluxes attained during outburst. Our observations suggest that the majority of X-ray binaries outburst at sub-Eddington luminosities, where mass transfer likely occurs through direct wind accretion at ~1%-3% of the Eddington rate.

  8. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  9. The Black Hole X-ray Binary Population of M51 as seen by Chandra

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Dorn-Wallenstein, Trevor; Kuntz, K. D.; Desjardins, Tyler D.

    2014-06-01

    We present an analysis of the black hole X-ray binary population of the interacting galaxy system M51 from new and archival observations by the Chandra X-ray Observatory with total exposure time of nearly 1 Ms. This dataset allows us to probe spectral and temporal variability of the X-ray source population on timescales ranging from tens of seconds to years. We examine both the ultraluminous X-ray source (ULX) population, which likely consists of black hole binaries based solely on luminosity, and the less luminous binaries that show evidence for harboring black holes. We further examine the environments of these sources within the host galaxy using new and archival Hubble Space Telescope observations to determine the probable mass donor stars in the system. We also present initial results from an effort to study the interaction of the luminous X-ray binaries with the interstellar medium of M51. This sample includes all of the historical ULXs as well as a new transient ULX which is a probable black hole low mass X-ray binary.

  10. On binary driven hypernovae and their nested late X-ray emission

    NASA Astrophysics Data System (ADS)

    Muccino, Marco; Ruffini, Remo; Bianco, Carlo Luciano; Enderli, Maxime; Kovacevic, Milos; Izzo, Luca; Penacchioni, Ana Virginia; Pisani, Giovanni Battista; Rueda, Jorge A.; Wang, Yu

    2015-07-01

    The induced gravitational collapse (IGC) paradigm addresses energetic (1052-1054 erg), long gamma-ray bursts (GRBs) associated to supernovae (SNe) and proposes as their progenitors tight binary systems composed of an evolved FeCO core and a companion neutron star (NS). Their emission is characterized by four specific episodes: Episode 1, corresponding to the on-set of the FeCO SN explosion and the accretion of the ejecta onto the companion NS; Episode 2, related the collapse of the companionNS to a black hole (BH) and to the emission of a long GRB; Episode 3, observed in X-rays and characterized by a steep decay, a plateau phase and a late power-law decay; Episode 4, corresponding to the optical SN emission due to the 56Ni decay. We focus on Episode 3 and we show that, from the thermal component observed during the steep decay of the prototype GRB 090618, the emission region has a typical dimension of ~1013 cm, which is inconsistent with the typical size of the emitting region of GRBs, e.g., ~1016 cm. We propose, therefore, that the X-ray afterglow emission originates from a spherically symmetric SN ejecta expanding at G ˜ 2 or, possibly, from the accretion onto the newly formed black hole, and we name these systems "binary driven hypernovae" (BdHNe). This interpretation is alternative to the traditional afterglow model based on the GRB synchrotron emission from a collimated jet outflow, expanding at ultra-relativistic Lorentz factor of G ~ 102-103 and originating from the collapse of a single object. We show then that the rest-frame energy band 0.3-10 keV X-ray luminosities of three selected BdHNe, GRB 060729, GRB 061121, and GRB 130427A, evidence a precisely constrained "nested" structure and satisfy precise scaling laws between the average prompt luminosity, < Liso>, and the luminosity at the end of the plateau, La, as functions of the time at the end of the plateau. All these features extend the applicability of the "cosmic candle" nature of Episode 3. The

  11. Common envelope mechanisms: constraints from the X-ray luminosity function of high-mass X-ray binaries

    SciTech Connect

    Zuo, Zhao-Yu; Li, Xiang-Dong E-mail: lixd@nju.edu.cn

    2014-12-10

    We use the measured X-ray luminosity function (XLF) of high-mass X-ray binaries (HMXBs) in nearby star-forming galaxies to constrain the common envelope (CE) mechanisms, which play a key role in governing the binary evolution. We find that the XLF can be reproduced quite closely under both CE mechanisms usually adopted, i.e., the α{sub CE} formalism and the γ algorithm, with a reasonable range of parameters considered. Provided that the parameter combination is the same, the γ algorithm is likely to produce more HMXBs than the α{sub CE} formalism, by a factor of up to ∼10. In the framework of the α{sub CE} formalism, a high value of α{sub CE} is required to fit the observed XLF, though it does not significantly affect the global number of the HMXB populations. We present the detailed components of the HMXB populations under the γ algorithm and compare them with those in Zuo et al. and observations. We suggest the distinct observational properties, as well as period distributions of HMXBs, may provide further clues to discriminate between these two types of CE mechanisms.

  12. MAXI/GSC detection of onset of X-ray outburst from Be/X-ray binary pulsar 4U 0115+63

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Mihara, T.; Sugizaki, M.; Ueno, S.; Tomida, H.; Ishikawa, M.; Sugawara, Y.; Isobe, N.; Shimomukai, R.; Serino, M.; Nakahira, S.; Iwakiri, W.; Shidatsu, M.; Matsuoka, M.; Kawai, N.; Sugita, S.; Yoshii, T.; Tachibana, Y.; Harita, S.; Muraki, Y.; Morita, K.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Kitaoka, Y.; Hashimoto, T.; Tsunemi, H.; Yoneyama, T.; Negoro, H.; Kawase, T.; Sakamaki, A.; Ueda, Y.; Hori, T.; Tanimoto, A.; Oda, S.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Kawai, H.; Yamauchi, M.; Hanyu, C.; Hidaka, K.; Kawamuro, T.; Yamaoka, K.

    2017-08-01

    On 2017 July 27 (MJD 57961), the MAXI/GSC nova-alert system (Negoro et al. 2016) detected an X-ray flux increase from Be/X-ray binary pulsar 4U 0115+63. Subsequent monitoring observations have revealed that the 4-10 keV flux is still increasing steadily.

  13. Studying X-Ray Binaries with High Energy Frequency Quasi-Periodic Oscillations

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; West, Donald K. (Technical Monitor)

    2002-01-01

    The goal of this investigation is to further our understanding of the dynamics of secreting neutron stars and black holes in the hope of using these systems as probes of the physics of strong gravitational fetus. The main focus of this work has been a multi-year program of simultaneous millisecond X-ray timing and spectral observations carried out with the Rossi X-Ray Timing Explorer (RXTE) to perform the X-ray timing and one of the satellites Asca, BeppoSAX, or Chandra to perform X-ray spectral measurements. With the advent of Chandra, we have extended our work to incLude extragalactic X-ray binaries. We conducted a comprehensive study of the X-ray and radio behavior of the Black Hole Candidate (BHC) X-ray transient XTE J1550-564 using RXTE, Chandra, and the Australian Telescope Compact Array (ATCA). We showed that strong radio emission is associated with major X-ray outbursts involving an X-ray state transition, while a compact radio jet is seen in the low/hard X-ray state found in the outburst decay. Interesting, the total energy required to produce the compact jet may be a substantial fraction of the total accretion energy of the system in that state. We also performed a detailed study of the spectral and timing properties of the decay. In joint RXTE/BeppoSAX observations of the neutron-star X-ray binary Cyg X-2, we discovered a correlation between the timing properties (the frequency of the horizontal branch oscillations) and the properties of a soft, thermal component of the X-ray spectrum. d e showed that more detX- ray from accreting neutron stars. We have completed analysis of RXTE observations of the X-ray transient SAX J1750.8-2900 made after detection of X-ray bursts from the source with the BeppoSAX Wide-Field Camera. We discovered millisecond oscillations in both the persistent emission and in the X-ray bursts.

  14. The ultracompact nature of the black hole candidate X-ray binary 47 Tuc X9

    NASA Astrophysics Data System (ADS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, Jay; Garcia, Javier A.; Kallman, Timothy

    2017-05-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio/X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18 ± 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a C/O white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an ˜6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swiftand ROSAT data. The simultaneous radio/X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  15. A deep census of the X-ray binary populations in the SMC

    NASA Astrophysics Data System (ADS)

    Zezas, Andreas; Antoniou, Vallia; Hong, JaeSub; Wright, Nick; Drake, Jeremy J.; Haberl, Frank; SMC XVP Collaboration

    2016-04-01

    The analysis of the deep Chandra survey of the Small Magellanic Cloud (SMC) (a Chandra X-ray Visionary Program) yielded a wealth of discrete X-ray sources down to a limiting luminosity of a few times 1032 erg/s. The survey is designed to sample stellar populations of ages between ~10 up to ~100Myr, in order to study the evolution of the X-ray binary populations as a function of age. Based on the comparison of the detected X-ray sources with photometric catalogs of the SMC, we identify over 100 High Mass X-ray binaries (HMXBs) associated with the SMC, 21 of which exhibit pulsations. We measure the formation rate of HMXBs as a function of the age of their parent stellar populations, and we find that it shows a clear peak at ages of ~30-40Myr. In addition we measure the X-ray luminosity function of HMXBs which shows a clear break at a luminosity of ~5×1034 erg/s, indicative of the onset of the propeller effect. We discuss these results in the context of X-ray binary populations in environments of different ages and metallicities.

  16. Non-equilibrium x-ray emission from young supernova remnants

    SciTech Connect

    Nugent, J.J. Jr.

    1983-01-01

    A computer model (NIE model) has been developed to predict the x-ray spectra from the hot (10/sup 6 -8/K), shock-heated plasmas that are found in the remnants of supernovae. The model accounts for the lack of collisional ionization equilibrium and for the possible lack of thermal equilibrium between the electrons and ions behind the shock fronts. Both of these effects are potentially important in determining the emergent x-ray spectrum of young (supernova remnants (SNR). Both a spectral component arising from the supernova ejecta and a component arising from the shocked interstellar medium surrounding the supernova are calculated. The NIE model has been fit to the spectral data from two young SNR's, MSH 14-63 and RCW 103. The data from MSH 14-63 was collected with HEAO A-2 experiment and spans an energy range from 0.18 - 15 keV. Spectral resolution is varied over this range. For example, ..delta..E/E = 32% FWHM at 1.5 keV, and ..delta..E/E = 15% FWHM at 7 keV. The data for RCW 103 was obtained using the Solid State Spectrometer (SSS) on board the HEAO-2 spacecraft. This data set had a more limited spectral range than above (0.8 -2.5 keV) but enhanced spectral resolution (..delta..E/E approx. = 10%). In addition, the data had limited spatial resolution.

  17. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  18. Soft extragalactic X-ray binaries at the Eddington Threshold

    NASA Astrophysics Data System (ADS)

    Earnshaw, Hannah M.; Roberts, Timothy P.

    2017-05-01

    The luminosity range at and just below the 1039 erg s-1 cut-off for defining ultraluminous X-ray sources (ULXs) is a little-explored regime. It none the less hosts a large number of X-ray sources, and has great potential for improving our understanding of sources with ˜Eddington accretion rates. We select a sample of four sources in this Eddington Threshold regime with good data for further study; these objects possess a variety of soft spectral shapes. We perform X-ray spectral and timing analysis on the XMM-Newton and Chandra data for these objects to gain insight into their accretion mechanisms, and also examine their optical counterparts using Hubble Space Telescope images. NGC 300 X-1 is a highly luminous and well-known example of the canonical steep power-law accretion state. M51 ULS exhibits a cool blackbody-like spectrum and is consistent with being an ultraluminous supersoft source (ULS), possibly a super-Eddington accreting object viewed at a high inclination through an optically thick outflowing wind. NGC 4395 ULX-1 and NGC 6946 ULX-1 have unusually steep power-law tails, for which we discuss a variety of possible physical mechanisms and links to similar features in Galactic microquasars, and we conclude that these sources are likely intermediate objects between the soft ultraluminous regime of ULXs and classic ULSs.

  19. MHD Wind Models in X-Ray Binaries and AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  20. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  1. EVIDENCE FOR QUASI-PERIODIC X-RAY DIPS FROM AN ULTRALUMINOUS X-RAY SOURCE: IMPLICATIONS FOR THE BINARY MOTION

    SciTech Connect

    Pasham, Dheeraj R.; Strohmayer, Tod E. E-mail: tod.strohmayer@nasa.gov

    2013-02-10

    We report results from long-term ( Almost-Equal-To 1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 {+-} 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 {+-} 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination {approx}>70 Degree-Sign . We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  2. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    SciTech Connect

    Zabalza, V.; Paredes, J. M.; Bosch-Ramon, V.

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  3. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in an X-Ray Binary System

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jörn

    2014-05-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60%-80%), and the location in the Corbet diagram favor high B-field (gsim 1012 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1033-1035 erg s-1), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1013 G NS, this scheme can explain the ~5.4 hr equilibrium rotation without employing the magnetar-like field (~1016 G) required in the disk accretion case. The timescales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfvén shell for a ~1013 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  4. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  5. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    SciTech Connect

    Enoto, Teruaki; Corbet, Robin H. D.; Sasano, Makoto; Yamada, Shin'ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Fuerst, Felix; Wilms, Jörn

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  6. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    SciTech Connect

    Belczynski, Krzysztof; Ziolkowski, Janusz E-mail: jz@camk.edu.p

    2009-12-20

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F{sub NStoBH} approx 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F{sub NStoBH} approx 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only approx0-2. This is entirely consistent with the observed Galactic sample.

  7. Binary progenitors of supernovae

    NASA Astrophysics Data System (ADS)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  8. Feedback from winds and supernovae in massive stellar clusters - II. X-ray emission

    NASA Astrophysics Data System (ADS)

    Rogers, H.; Pittard, J. M.

    2014-06-01

    The X-ray emission from a simulated massive stellar cluster is investigated. The emission is calculated from a 3D hydrodynamical model which incorporates the mechanical feedback from the stellar winds of three O stars embedded in a giant molecular cloud (GMC) clump containing 3240 M⊙ of molecular material within a 4 pc radius. A simple prescription for the evolution of the stars is used, with the first supernova (SN) explosion at t = 4.4 Myr. We find that the presence of the GMC clump causes short-lived attenuation effects on the X-ray emission of the cluster. However, once most of the material has been ablated away by the winds, the remaining dense clumps do not have a noticeable effect on the attenuation compared with the assumed interstellar medium (ISM) column. We determine the evolution of the cluster X-ray luminosity, LX, and spectra, and generate synthetic images. The intrinsic X-ray luminosity drops from nearly 1034 erg s-1 while the winds are `bottled up', to a near-constant value of 1.7 × 1032 erg s-1 between t = 1 and 4 Myr. LX reduces slightly during each star's red supergiant stage due to the depressurization of the hot gas. However, LX increases to ≈1034 erg s-1 during each star's Wolf-Rayet stage. The X-ray luminosity is enhanced by two to three orders of magnitude to ˜1037 erg s-1 for at least 4600 yr after each SN explosion, at which time the blast wave leaves the grid and the X-ray luminosity drops. The X-ray luminosity of our simulation is generally considerably fainter than predicted from spherically symmetric bubble models, due to the leakage of hot gas material through gaps in the outer shell. This process reduces the pressure within our simulation and thus the X-ray emission. However, the X-ray luminosities and temperatures which we obtain are comparable to similarly powerful massive young clusters.

  9. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    Context. High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the cirscumstellar disk in Be/X-ray binaries. In either case, the Hα line stands out as the main source of information about the state of the accreting material. Aims: We present the results of our monitoring program to study the long-term variability of the Hα line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Methods: We fitted the Hα line with Gaussian profiles and obtained the line parameters and equivalent width. The peak separation in split profiles was used to determine the disk velocity law and estimate the disk radius. The relative intensity of the two peaks (V/R ratio) allowed us to investigate the distribution of gas particles in the disk. The equivalent width was used to characterise the degree of variability of the systems. We also studied the variability of the Hα line in correlation with the X-ray activity. Results: Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods; ii) we show that a Keplerian distribution of gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars; iii) a decrease in the Hα equivalent width is generally observed after major X-ray outbursts; iv) we confirm that the Hα equivalent width correlates with disk radius; v) while systems with supergiant companions display multi-structured profiles, most of the Be/X-ray binaries show, at some epoch, double-peak asymmetric profiles, which indicates that density inhomogeneities is a common property in the disk of Be/X-ray binaries; vi) the

  10. Using Poisson statistics to analyze supernova remnant emission in the low counts X-ray regime

    NASA Astrophysics Data System (ADS)

    Roper, Quentin Jeffrey

    We utilize a Poisson likelihood in a maximum likelihood statistical analysis to analyze X-ray spectragraphic data. Specifically, we examine four extragalactic supernova remnants (SNR). IKT 5 (SNR 0047-73.5), IKT 25 (SNR 0104-72.3), and DEM S 128 (SNR 0103-72.4) which are designated as Type Ia in the literature due to their spectra and morphology. This is troublesome because of their asymmetry, a trait not usually associated with young Type Ia remnants. We present Chandra X-ray Observatory data on these three remnants, and perform a maximum likelihood analysis on their spectra. We find that the X-ray emission is dominated by interactions with the interstellar medium. In spite of this, we find a significant Fe overabundance in all three remnants. Through examination of radio, optical, and infrared data, we conclude that these three remnants are likely not "classical" Type Ia SNR, but may be examples of so-called "prompt" Type Ia SNR. We detect potential point sources that may be members of the progenitor systems of both DEM S 128 and IKT 5, which could suggest a new subclass of prompt Type Ia SNR, Fe-rich CC remnants. In addition, we examine IKT 18. This remnant is positionally coincident with the X-ray point source HD 5980. Due to an outburst in 1994, in which its brightness changed by 3 magnitudes (corrsponding to an increase in luminosity by a factor of 16) HD 5980 was classified as a luminous blue variable star. We examine this point source and the remnant IKT 18 in the X-ray, and find that its non-thermal photon index has decreased from 2002 to 2013, corresponding to a larger proportion of more energetic X-rays, which is unexpected.

  11. SNaX: A Database of Supernova X-Ray Light Curves

    NASA Astrophysics Data System (ADS)

    Ross, Mathias; Dwarkadas, Vikram V.

    2017-06-01

    We present the Supernova X-ray Database (SNaX), a compilation of the X-ray data from young supernovae (SNe). The database includes the X-ray fluxes and luminosities of young SNe, from days to years after outburst. The original goal and intent of this study was to present a database of Type IIn SNe (SNe IIn), which we have accomplished. Our ongoing goal is to expand the database to include all SNe for which published data are available. The database interface allows one to search for SNe using various criteria, plot all or selected data points, and download both the data and the plot. The plotting facility allows for significant customization. There is also a facility for the user to submit data that can be directly incorporated into the database. We include an option to fit the decay of any given SN light curve with a power-law. The database includes a conversion of most data points to a common 0.3-8 keV band so that SN light curves may be directly compared with each other. A mailing list has been set up to disseminate information about the database. We outline the structure and function of the database, describe its various features, and outline the plans for future expansion.

  12. The population of X-ray supernova remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Haberl, F.; Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Filipović, M. D.; Vasilopoulos, G.; Pietsch, W.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.; Greiner, J.

    2016-01-01

    Aims: We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). Using primarily XMM-Newton observations, we conduct a systematic spectral analysis of LMC SNRs to gain new insight into their evolution and the interplay with their host galaxy. Methods: We combined all the archival XMM-Newton observations of the LMC with those of our Very Large Programme LMC survey. We produced X-ray images and spectra of 51 SNRs, out of a list of 59 objects compiled from the literature and augmented with newly found objects. Using a careful modelling of the background, we consistently analysed all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. The locations of SNRs are compared to the distributions of stars, cold gas, and warm gas in the LMC, and we investigated the connection between the SNRs and their local environment, characterised by various star formation histories. We tentatively typed all LMC SNRs, in order to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We also compared the column densities derived from X-ray spectra to H i maps, thus probing the three-dimensional structure of the LMC. Results: This work provides the first homogeneous catalogue of the X-ray spectral properties of SNRs in the LMC. It offers a complete census of LMC remnants whose X-ray emission exhibits Fe K lines (13% of the sample), or reveals the contribution from hot supernova ejecta (39%), which both give clues to the progenitor types. The abundances of O, Ne, Mg, Si, and Fe in the hot phase of the LMC interstellar medium are found to be between 0.2 and 0.5 times the solar values with a lower abundance ratio [α/Fe] than in the Milky Way. The current ratio of core-collapse to type Ia SN rates in the LMC is constrained to NCC/NIa=1.35(-0.24+0.11), which is lower than in local SN surveys and galaxy clusters. Our comparison of the X-ray luminosity functions of SNRs in Local Group

  13. Gas flow and generation of x ray emission in WR+OB binaries

    NASA Technical Reports Server (NTRS)

    Usov, V. V.

    1991-01-01

    The supersonic flow of the ionized gas in WR+OB binaries and X-ray generation are considered. X-ray emission is caused by gas heating up to temperatures of 10(exp 7) to 10(exp 8) K behind the front of shock waves. These are found in the collision of gas flowing out from the WR star with either the OB star's surface or the gas of the OB star's wind. The distribution of temperature and concentration behind the shock front are obtained. Using these distributions, the spectral power of bremsstrahlung X-ray emission of hot gas is calculated. Possible reasons that lead to a considerable difference between the observed parameters of X-ray emission of the WR binary of V 444 Cygni and the theoretically expected are discussed.

  14. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of

  15. Low-mass X-ray Binaries with RXTE

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.

  16. Low-mass X-ray Binaries with RXTE

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.

  17. Bulk X-ray Doppler Velocities in the Supernova Remnant Cassiopeia A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Szymkowiak, Andrew E.; Petre, Robert; Holt, Stephen S.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We map the average line-of-sight velocities of the X-ray-emitting mass in the supernova remnant Cassiopeia A using measurements of the centroid of the Si-Healpha blend with the Advanced CCD Imaging Spectrometer on the Chandra X-Ray Observatory. This 4 inch scale map confirms the broad trends noted in previous studies, namely, that the line-of-sight velocity scale is roughly 2000-3000 kilometers per second with relatively more blueshifted material in the southeastern region of the remnant than in the northwest; new details are that the northwestern region consists of two arcs, with the southernmost one representing the most redshifted X-ray-emitting material in Cas A. These results are consistent with contemporaneous results from XMM-Newton. The X-ray patterns resemble the complex velocity patterns measured at optical wavelengths for much denser ejecta, and they support the growing body of evidence that the explosion and subsequent evolution of Cas A were highly asymmetrical.

  18. An Optical and X-Ray Examination of Two Radio Supernova Remnant Candidates in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua; Gruendl, Robert A.; Chen, C.-H. Rosie; Lazendic, Jasmina S.; Dickel, John R.

    2004-11-01

    The giant H II region 30 Doradus is known for its violent internal motions and bright diffuse X-ray emission, suggesting the existence of supernova remnants (SNRs), but no nonthermal radio emission has been detected. Recently, Lazendic et al. compared the Hα/Hβ and radio/Hα ratios and suggested two small radio sources to be nonthermal and thus SNR candidates; however, no optical or X-ray counterparts were detected. We have used high-resolution optical images and high-dispersion spectra to examine the morphological, spectral, and kinematic properties of these two SNR candidates and still find no optical evidence supporting their identification as SNRs. We have also determined the X-ray luminosities of these SNR candidates and find them 1-3 orders of magnitude lower than those commonly seen in young SNRs. High extinction can obscure optical and X-ray signatures of an SNR, but would prohibit the use of a high radio/Hα ratio to identify nonthermal radio emission. We suggest that the SNR candidate MCRX J053831.8-690620 is associated with a young star-forming region; while the radio emission originates from the obscured star-forming region, the observed optical emission is dominated by the foreground. We suggest that the SNR candidate MCRX J053838.8-690730 is associated with a dust/molecular cloud, which obscures some optical emission but not the radio emission.

  19. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    McEntaffer, R. L.; Cash, W.

    2008-06-01

    The Cygnus X-Ray Emission Spectroscopic Survey (CyXESS) sounding rocket payload was launched from White Sands Missile Range on 2006 November 20 and obtained a high-resolution spectrum of the Cygnus Loop supernova remnant in the soft X-ray. The novel X-ray spectrograph incorporated a wire-grid collimator feeding an array of gratings in the extreme off-plane mount that ultimately dispersed the spectrum onto gaseous electron multiplier (GEM) detectors. This instrument recorded 65 s of usable data between 43 and 49.5 Å in two prominent features. The first feature near 45 Å is dominated by the He-like triplet of O VII in second order with contributions from Mg X and Si IX-Si XII in first order, while the second feature near 47.5 Å is first-order S IX and S X. Fits to the spectra give an equilibrium plasma at log (T) = 6.2 (kTe = 0.14 keV) and near cosmic abundances. This is consistent with previous observations, which demonstrated that the soft X-ray emission from the Cygnus Loop is dominated by interactions between the initial blast wave and the walls of a precursor-formed cavity surrounding the Cygnus Loop and that this interaction can be described using equilibrium conditions.

  20. Monte Carlo Simulator to Study High Mass X-Ray Binary System

    SciTech Connect

    Watanabe, Shin; Nagase, Fumiaki; Takahashi, Tadayuki; Sako, Masao; Kahn, Steve M.; Ishida, Manabu; Ishisaki, Yoshitaka; Paerels, Frederik; /Columbia U.

    2005-07-08

    We have developed a Monte Carlo simulator for astrophysical objects, which incorporate the transportation of X-ray photons in photoionized plasma. We applied the code to X-ray spectra of high mass X-ray binaries, Vela X-1 and GX 301-2, obtained with Chandra HETGS. By utilizing the simulator, we have successfully reproduced many emission lines observed from Vela X-1. The ionization structure and the matter distribution in the Vela X-1 system are deduced. For GX 301-2, we have derived the physical parameters of material surrounding the neutron star from fully resolved shape of the Compton shoulder in the iron K{alpha} line.

  1. The noncompact binary X-ray source 4U 2129+47

    NASA Technical Reports Server (NTRS)

    Mcclintock, J. E.; London, R. A.; Bond, H. E.; Grauer, A. D.

    1982-01-01

    The 5.2 hr X-ray binary 4U 2129+47 was observed for a full orbital cycle using the imaging proportional counter detector and the monitor proportional counter detector aboard the Einstein Observatory, as well as a 0.9 m reflector for 5 hrs continuous optical photometry. The X-ray and optical light curves, the X-ray spectrum, and the times of optical and X-ray minimum were determined. The shape of the 5.2 hr X-ray light curve is independent of energy. A partial X-ray eclipse occurred which was centered on the time of optical minimum and which lasted 20 percent of the orbital period. During this interval the X-ray intensity varied smoothly by a factor of three, and the light curve was symmetric relative to the time of minimum. These findings argue that the X-ray emitting region is extended and highly ionized. A model is presented in which an accretion disk corona scatters radiation from a central accreting neutron star.

  2. A unified model of accretion flows and X ray emission in low mass X ray binary systems

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1989-01-01

    Recent work on a unified model of accretion flows and X-ray emission in low mass X-ray binaries is summarized. In this model, a weakly magnetic neutron star accretes gas simultaneously from a Keplerian disk and a corona above the inner part of the disk. Photons are produced and escape through an approximately radial inflow of gas captured from the inner disk corona. Changes in the optical depths of the central corona and the radial flow may explain the Z-shaped hardness-intensity and color-color tracks observed in the most luminous sources. Numerical simulations show that the radial flow oscillates when the luminosity rises to within a few percent of the Eddington critical luminosity L sub E, and that the oscillation frequency is approximately 5 to 10 Hz if the radial flow develops approximately 300 km from the neutron star. The 10 to 20 Hz oscillations observed in Sco X-1 when it is on the flaring branch are discussed.

  3. An IR Search for Orbital Periods in Highly Obscured X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Reba M.; Wachter, Stefanie

    2001-02-01

    Of all Galactic X-ray sources, the X-ray binaries (XRBs) located in the highly obscured region of the Galactic Bulge are amongst the most intriguing and elusive. The low-mass X-ray binaries GX17+2 and GX13+1 are two of the brightest sources in the X-ray sky. Although extensively studied at X-ray wavelengths, relatively little is known about the mass- donating stars, due to the heavy optical extinction in the direction of the Galactic center. However, the companions to these X-ray sources become visible in the IR; the counterparts in both systems have been identified, allowing us the opportunity to explore the characteristics of the mass donor stars in detail. Despite this, no orbital period has yet been established for either of these XRBs, leading to speculation that they may have long orbital periods (≳=5 d). We propose to obtain IR photometry across several months to search for short-term (~hours), intermediate (~days), and long-term (~1 month) periodicities. Identification of orbital modulations would place significant constraints on the masses of the companion stars and have substantial implications for the nature of these binaries.

  4. X-ray characteristics of the Lupus Loop and SN 1006 supernova remnants

    SciTech Connect

    Toor, A.

    1980-01-01

    The spatial extent of the Lupus Loop and spectra for the Lupus Loop and SN1006 supernova remnants have been determined with a rocket-borne payload. The Lupus Loop is an extended source of soft X-rays (approx. 300' diam) that shows a correlation between its brightest x-ray and radio-emission regions. Its spectrum is characterized by a temperature of 350 eV. Thus, the Lupus Loop appears similar to Vela X and Cygnus Loop, although much weaker. Emission from SN1006 is spatially unresolved and exhibits a harder spectrum than that of the Lupus Loop. All spectral data (0.2 to 10 keV) from our observation and previous observations are satisfactorily fit with a power law (index = 2.15). This spectral dependence suggests the possibility that a rotating neutron star is the underlying source of the radiated energy although such an interpretation appears inconsistent with the remnant's morphology.

  5. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  6. N157B: X-ray evidence for a Crab-like supernova remnant

    NASA Technical Reports Server (NTRS)

    Gotthelf, Eric V.; Wang, Q. Daniel

    1996-01-01

    The X-ray observation of the supernova remnant N 157B is described. The Rosat High Resolution Imager (HRI) X-ray emission from the remnant was decomposed into point-like sources. The spectra showed abundance-enhanced neon and magnesium lines, indicating that the remnant originated in a massive progenitor. The flat and featureless data from the Advanced Satellite for Cosmology and Astrophysics (ASCA) confirm the Crab-like nature of the remnant. By interpreting both the thermal spectral component and the shell as representing the remnant's outer shock, the age of the remnant was estimated to be 4 x 10(exp 3) yr and the energy release approximately 2 x 10(exp 50) erg.

  7. An X-ray study of five supernova remnants in the Carina spiral arm

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Markert, Thomas H.

    1994-01-01

    The ROSAT Position Sensitive Proportional Counter (PSPC) is used to perform an exploratory study of four fields in the Carina spiral arm containing five radio supernova remnants, only one of which has previously been studied in X-rays. We present upper limits for the detection in X-rays of G298.5 - 0.3, G298.6 - 0.0, and G299.0+0.2, and report a 4 sigma detection of G296.8-0.3. In addition, we present detailed spatial and spectral analysis of the bright X-ray remnant G296.1-0.7, which has previously been studied by both the Einstein IPC and EXOSAT LE/CMA. We detect relatively slight, but statistically significant, variations in the spectrum across the remnant via spatially resolved spectral fits and a study of the spatial variation of hardness ratios. In general, the spectrum is characteristic of a thermal plasma with kT about 0.2 keV and N(sub H) about 1.5 x 10(exp 21/sq. cm). The total X-ray emitting mass is estimated to be about 250 solar mass for an optically estimated distance of 4 kpc to the remnant. At this distance, the linear dimensions of the remnant are roughly 35 - 50 pc, implying an age on the order of 20,000 yr. Assuming that X-ray and radio brightnesses are related by SIGMA(sub R) proportional to SIGMA(exp 0.69)(sub X) and that the four radio remnants have X-ray spectral characteristics similar to G296.1-0.7, we find that the column densities to these sources must be several times 10(exp 22)/sq cm in order to explain their low X-ray count rates. This column density is considerably in excess of the X-ray fitted column density to G296.1-0.7, but is comparable to the total column densities in H I measured via the 21 cm line in the directions to all five remnants. This implies that G296.1 - 0.7 is at a significantly smaller distance than the other remnants.

  8. A neutron-star-driven X-ray flash associated with supernova SN 2006aj.

    PubMed

    Mazzali, Paolo A; Deng, Jinsong; Nomoto, Ken'ichi; Sauer, Daniel N; Pian, Elena; Tominaga, Nozomu; Tanaka, Masaomi; Maeda, Keiichi; Filippenko, Alexei V

    2006-08-31

    Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\\circ, where M\\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

  9. An X-ray and optical study of the supernova remnant W44

    NASA Technical Reports Server (NTRS)

    Rho, Jeongee; Petre, R.; Schlegel, Eric M.

    1994-01-01

    We report the results of a 8000 s observation of the supernova remnant W44 using the ROSAT Position Sensitive Proportional Counter (PSPC). The image shows the same centrally peaked morphology observed by the Einstein IPC and contrasts with the shell-like radio morphology. The eastern limb shows a lack of X-ray emission within the radio shell, probably due to the interaction between the Supernova Remnants (SNR) and a molecular cloud. No counterpart to the pulsar 1853 + 01 in W44 has been detected, with L(sub X) less than 1.3 x 10(exp 32) ergs/s in the 0.2 to 2.4 keV band. The spectral analysis of the central part of W44, combining EXOSAT ME and Einstein SSS data, shows that the shocked plasma has not reached ionization equilibrium. The best nonequilibrium fit to PSPC, ME, and SSS spectra gives Eta = 10(exp 51) ergs cm(exp -6), T(sub s) = 10(exp 7) K with T(sub e) = T(sub i), suggesting conditions are approaching ionization equilibrium. There is no evidence of enhanced abundances of Mg, Si, S, or Fe. The variation of temperature and column density was obtained region by region using the PSPC and Einstein IPC. The temperature is largely uniform over the remnant, but strong column density variations are found to be consistent with molecular clouds in the line of sight. An evaporation model with a two-phase interstellar medium structure of clumps and interclump gas (White & Long 1991) can explain the X-ray centrally peaked morphology of W44. The clumps remaining behind a SN shock provide a reservoir of material, and evaporat e to increase the density of X-ray emitting gas in the interior of a SNR. The uniform temperature distribution of W44 strongly supports the predictions of this model. In addition, mosaiced H alpha and (S II) images of W44, taken using the prime focus universal extragalactic instrument (PFUEI) camera on the Palomar 60 sec telescope, reveal the first discovery of optical filaments (both H alpha and (S II)) in the northwestern and southeastern portion

  10. Deep optical observations of the central X-ray source in the Puppis A supernova remnant

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; de Luca, A.; Mereghetti, S.; Caraveo, P. A.

    2009-06-01

    Context: X-ray observations revealed a group of radio-silent isolated neutron stars (INSs) at the centre of young supernova remnants (SNRs), dubbed central compact objects or CCOs, with properties different from those of classical rotation-powered pulsars. In at least three cases, evidence points towards CCOs being low-magnetized INSs, born with slow rotation periods, and possibly accreting from a debris disc of material formed out of the supernova event. Understanding the origin of the diversity of the CCOs can shed light on supernova explosion and neutron star formation models. Optical/infrared (IR) observations are crucial to test different CCO interpretations. Aims: The aim of our work is to perform a deep optical investigation of the CCO RX J0822.0-4300 in the Puppis A SNR, one of the most poorly understood in the CCO family. Methods: By using as a reference the Chandra X-ray coordinates of RX J0822.0-4300 we performed deep optical observations in the B, V and I bands with the Very Large Telescope (VLT). Results: We found no candidate optical counterpart within 3 σ of the computed Chandra X-ray position down to 5 σ limits of B ~ 27.2, V ~ 26.9, and I ~ 25.6, the deepest obtained in the optical band for this source. Conclusions: These limits confirm the non-detection of a companion brighter than an M 5 dwarf. At the same time, they do not constrain optical emission from the neutron star surface, while emission from the magnetosphere would require a spectral break in the optical/IR. Based on observations collected at ESO, Paranal, under Programme 78.D-0706(A).

  11. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above

  12. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion

    NASA Technical Reports Server (NTRS)

    DilVrtilek, Saeqa; Mushotsky, Richard (Technical Monitor)

    2004-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. The second of two objects was observed on September of 2002. Data analysis for both observation has been completed: an investigation of the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure. A study of behavior of the emission features as a function of binary orbit shows modulated behavior in one of the systems. A paper on "High-resolution observations of low-mass X-ray binaries" is near completion. The paper includes observations with the Chandra HETG that are not yet completed.

  13. A study of low mass x-ray binaries

    NASA Technical Reports Server (NTRS)

    Catura, Richard C.

    1994-01-01

    The entire effort under this contract during the period through January 1992 was devoted to a study of the cost and schedule required to put an upgraded Aries payload on the ASTRO-SPAS carrier provided by the German space agency, DARA. The ASTRO-SPAS is flown on the Space Shuttle, deployed by the crew for 5 to 7 days of free-flying observations and then recovered and returned to Earth. The spectrograph was to be provided by a collaboration involving the Lockheed Palo Alto Research Laboratory (LPARL), the Center for Astrophysics and Space Astronomy (CASA) at the U. of Colorado and the Mullard Space Science Laboratory (MSSL) in England. The payload for the ASTRO-SPAS mission included our own spectrograph and an instrument provided by Dr. Joachim Trumper of the Max Planck Institute (MPI) in Garching, Germany. A meeting was held in late July, 1991 with German scientists, DARA representatives and MBB, the ASTRO-SPAS spacecraft contractor. Sufficient information was exchanged to allow us to complete the study and the name LEXSA (Low Energy X-ray Spectrograph on ASTRO-SPAS) was given to our instrument and HERTA (High Energy x-Ray Telescope on ASTR0-SPAS) to the German instrument. The combination was called SPECTRO-SPAS. On October 1, 1991 CASA and LPARL submitted a cost and brief technical proposal to NASA on results of the study. The total cost over 4 fiscal years was 6.16 M dollars including CASA costs. NASA Headquarters was briefed on 3 October on details of the proposal. They found our costs reasonable, but indicated that the NASA FY '92 budget is extremely tight, they could not readily identify where the -S2.3M for LEXSA could be found and it was not clear that FY '93 would improve.

  14. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    SciTech Connect

    Ivanova, N.; Heinke, C. O.; Woods, T. E.; Chaichenets, S.; Fregeau, J.; Lombardi, J. C.

    2010-07-10

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  15. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    SciTech Connect

    Degenaar, N.; Reynolds, M. T.; Miller, J. M.; Wijnands, R.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  16. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Astrophysics Data System (ADS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-09-01

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of sime2 hr and a radiated energy output of ~= 5 × 1040 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L X ~= 5 × 1032(D/6.5 kpc)2 erg s-1 and exhibits occasional accretion outbursts during which it brightens to L X ~= 1035-1036(D/6.5 kpc)2 erg s-1 for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L X ~= 1033-1034(D/6.5 kpc)2 erg s-1. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ~= 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  17. A SYNCHROTRON SELF-COMPTON-DISK REPROCESSING MODEL FOR OPTICAL/X-RAY CORRELATION IN BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Veledina, Alexandra; Poutanen, Juri; Vurm, Indrek E-mail: juri.poutanen@oulu.fi

    2011-08-10

    The physical picture of the emission mechanisms operating in the X-ray binaries was put under question by the simultaneous optical/X-ray observations with high time resolution. The light curves of the two energy bands appeared to be connected and the cross-correlation functions observed in three black hole binaries exhibited a complicated shape. They show a dip of the optical emission a few seconds before the X-ray peak and the optical flare just after the X-ray peak. This behavior could not be explained in terms of standard optical emission candidates (e.g., emission from the cold accretion disk or a jet). We propose a novel model, which explains the broadband optical to the X-ray spectra and the variability properties. We suggest that the optical emission consists of two components: synchrotron radiation from the non-thermal electrons in the hot accretion flow and the emission produced by reprocessing of the X-rays in the outer part of the accretion disk. The first component is anti-correlated with the X-rays, while the second one is correlated, but delayed and smeared relative to the X-rays. The interplay of the components explains the complex shape of the cross-correlation function, the features in the optical power spectral density as well as the time lags.

  18. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    NASA Astrophysics Data System (ADS)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  19. A Detailed Spatial and Spectral Study of Synchrotron X-rays from Supernova Remnants with Chandra

    NASA Astrophysics Data System (ADS)

    Bamba, Aya

    2004-01-01

    We present the first results of a systematic spatial and spectral X-ray study of small scale structures on the shock of five supernova remnants (Cas A, Kepler, Tycho, SN 1006, and RCW 86) and a super bubble (30 Dor C), with excellent spatial resolution of the Chandra X-ray observatory. All targets have synchrotron X-ray emission which concentrate on a very narrow region of the outer edge of the shock. The scale length of the region emitting synchrotron X-rays is incredibly small, less than 1% of the radius of the system both in the upstream and the downstream, in which smaller lengths are seen in the upstream than in the downstream. Together with the information of wide band spectra from radio to X-ray, both age-limited and loss-limited assumptions are checked for the acceleration history of all the SNRs. We found a possible magnetic field strength and configuration, and the maximum energy of accelerated electrons have been estimated for each target. The perpendicular magnetic field to the shock normal is accepted in all SNR cases, with highly turbulent magnetic field downstream. Comparing the samples, we found that the scale length of shocks grows as its age increases, in the same rate of Sedov similar solution for upstream (∝ t4/5) and in a faster rate for downstream (∝ t1/2). The energy density of magnetic field and cosmic rays evolve keeping an equipartition with the thermal and kinetic energies of the shock (∝ t-6/5) under the assumption that the system is in the age-limited case, implying that there are strong energy interaction between kinetic, thermal, magnetic field, and cosmic ray energy densities. The magnetic field is always near to perpendicular. These are the first results to estimate observationally the magnetic field and its direction, energy density of magnetic field and cosmic rays, and their evolutions.

  20. X-Ray and Optical Observations of the Unique Binary System HD 49798/RX J0648.0-4418

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.; La Palombara, N.; Tiengo, A.; Pizzolato, F.; Esposito, P.; Woudt, P. A.; Israel, G. L.; Stella, L.

    2011-08-01

    We report the results of XMM-Newton observations of HD 49798/RX J0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P = 13.2 s) and has a dynamically measured mass of 1.28 ± 0.05 M sun. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT BB ~ 40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index ~1.6). A luminosity of ~1032 erg s-1 is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass loss. A search for optical pulsations at the South African Astronomical Observatory 1.9 m telescope gave negative results. X-rays were also detected during the white dwarf eclipse. This emission, with luminosity 2 × 1030 erg s-1, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD 49798/RX J0648.0-4418 is a post-common-envelope binary which most likely originated from a pair of stars with masses ~8-10 M sun. After the current He-burning phase, HD 49798 will expand and reach the Roche lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.

  1. Hystereses in dwarf nova outbursts and low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Hameury, J.-M.; Lasota, J.-P.; Knigge, C.; Körding, E. G.

    2017-04-01

    Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star, or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries, which contain neutron-star or black-hole accretors, exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV, and X-ray fluxes. Aims: We examine the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods: We used our disc evolution code for modelling dwarf nova outbursts, and constructed the hardness intensity diagram as predicted by the disc instability model. Results: We show explicitly that the standard DIM, modified only to account for disc truncation, can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions: The spectral evidence for the existence of different accretion regimes or components (disc, corona, jets, etc.) should only be based on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays; this task is difficult because of interstellar absorption. The existing data, however, indicate that a hysteresis is in the EUV - X-ray domain is present in SS Cyg.

  2. Evolution of X-ray Binary Populations of Globular Clusters: A Boltzmann study

    NASA Astrophysics Data System (ADS)

    Ghosh, Pranab; Banerjee, S.

    2008-03-01

    We present a Boltzmann scheme for studying evolution of compact-binary populations of globular clusters, including dynamical formation and destruction processes, and binary hardening processes. For those processes which are stochastic (e.g., tidal formation, collisional destruction, and collisional hardening), we study the continuous limit first. We then introduce our stochastic model, showing that the continuous limit is an excellent representation of the average of many "realizations" of stochastic processes. We explore the scaling of the number of X-ray binaries in a globular cluster with two essential cluster parameters measuring star-star and star-binary encounter rates, which we call Verbunt parameters. We show that our computed scalings are in good agreement with CHANDRA data on Galactic globular cluster X-ray binaries. We discuss ways of extending our scheme, and of handling evolution of the cluster background.

  3. X-ray studies of Remnants of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-01-01

    Supernovae (SNe) play an essential role in the Universe, and they are detected routinely through dedicated surveys. However, most of these SNe are often too distant (1-100 Mpc) to resolve the SN ejecta and immediate surroundings of the exploded stars. Fortunately, supernova remnants (SNRs), including SN 1987A, offer the means to study explosions and dynamics at sub-pc scales. SNRs are observable for up to 100,000 years after the explosions across the electromagnetic spectrum, and almost 400 SNRs have now been identified in the Milky Way and nearby galaxies. In this talk, I will review recent advances in the understanding of core-collapse (CC) SNe based on studies of X-ray studies of SNRs. In particular, I will focus on SN 1987A and other young CC SNRs, highlighting investigations of their explosion (a)symmetries, heavy metal (like iron and titanium) abundances, progenitors, and particle acceleration.

  4. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shock

    NASA Technical Reports Server (NTRS)

    Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D; Arcavi, L.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.

    2012-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the

  5. FORMATION OF MILLISECOND PULSARS FROM INTERMEDIATE- AND LOW-MASS X-RAY BINARIES

    SciTech Connect

    Shao Yong; Li Xiangdong

    2012-09-01

    We present a systematic study of the evolution of intermediate- and low-mass X-ray binaries consisting of an accreting neutron star of mass 1.0-1.8 M{sub Sun} and a donor star of mass 1.0-6.0 M{sub Sun }. In our calculations we take into account physical processes such as unstable disk accretion, radio ejection, bump-induced detachment, and outflow from the L{sub 2} point. Comparing the calculated results with the observations of binary radio pulsars, we report the following results. (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with increasing neutron star mass. This may help explain why some millisecond pulsars with orbital periods longer than {approx}60 days seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown-dwarf-involved common envelope evolution. (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with anomalous magnetic braking. (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply or there are other mechanisms/processes spinning down the neutron stars.

  6. Spectral variability in early-type binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Castor, J. I.; Olson, G. L.; Mccray, R.

    1984-01-01

    Theoretical models for the ionization of trace elements in a strong stellar wind by a compact binary X-ray source and for the resulting orbital phase dependence of the emergent soft X-ray spectra and the profiles of ultraviolet resonance lines are presented. Model results agree qualitatively with the X-ray and ultraviolet spectra of the system 4U 0900-40/HD 77581 and explain the suppression of the absorption profiles of the Si IV upsilon 1394 and C IV upsilon 1548 lines when the X-ray sources are in front of the star. The model predicts that the absorption profiles of the N V upsilon 1239 and O VI upsilon 1032 lines will be enhanced rather than suppresed during this orbital phase.Phase-dependent linear polarization in the resonance lines profiles is predicted. Future observations of these phase dependent effects in early-type binary X-ray systems may be used to investigate the dynamics of stellar winds and their interactions with the X-ray source.

  7. Spectral variability in early-type binary X-ray systems

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Kallman, T. R.; Castor, J. I.; Olson, G. L.

    1984-01-01

    Theoretical models for the ionization of trace elements in a strong stellar wind by a compact binary X-ray source and for the resulting orbital phase dependence of the emergent soft X-ray spectra and the profiles of ultraviolet resonance lines are presented. Model results agree qualitatively with the X-ray and ultraviolet spectra of the system 4U 0900-40/HD 77581 and explain the suppression of the absorption profiles of the Si IV upsilon 1394 and C IV upsilon 1548 lines when the X-ray sources is in front of the star. The model predicts that the absorption profiles of the N V upsilon 1239 and O VI upsilon 1032 lines will be enhanced rather than suppressed during this orbital phase. We predict phase-dependent linear polarization in the resonance lines profiles. Future observations of these phase dependent effects in early-type binary X-ray systems may be used to investigate the dynamics of stellar winds and their interactions with the X-ray source.

  8. Detection of an X-ray flare in the RS CVn binary Sigma Coronae Borealis

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Rao, A. R.; Riegler, G. R.

    1986-01-01

    The detection of an X-ray flare in the RS CVn binary Sigma Coronae Borealis with the Monitor Proportional Counter on the Einstein Observatory is described. During the 513 min of observation, an X-ray flare of 208 min duration was detected at a significance level of 26 sigma in the 1.19-10.16 keV band. The rise time of the flare is between 25 and 70 min and the decay time is greater than or equal to 34 min. The X-ray luminosity at the flare maximum is found to be 6 x 10 to the 30th erg/s and the total energy radiated in X-rays during the flare is 2 x 10 to the 34th erg. The energy spectrum in the flaring state is found to be harder (temperature T about 2.5 x 10 to the 7th K) compared to the one observed in the quiescent state (T about 6 x 10 to the 6th K). Applying the coronal loop model, the loop parameters are calculated and compared for the X-ray flares observed in the various RS CVn binaries and the sun. The significance of the differences in the observed and derived parameters of the X-ray flares is briefly discussed.

  9. Separating Binary Stars and Supernova Remnants at Three Sigma

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.

    2002-12-01

    High spatial resolution X-ray observations are revealing a population of point-like nonvariable sources in a host of nearby galaxies. These are normally identified as supernova remnants or X-ray binaries. However, in general these detections do not have enough counts to fully populate a spectrum, leaving identifications extremely speculative. I will present simulated spectra from models and data from well studied Galactic remnants and binary systems in order to demonstrate the uncertainty inherent in identifying sources with only few hundred counts. I will also explore the efficacy of using a hardness ratio to distinguish between source types and the role of optical and radio observations in clearing up ambiguities.

  10. Separating Binary Stars and Supernova Remnants at Three Sigma

    NASA Astrophysics Data System (ADS)

    Dyer, K. K.

    2003-03-01

    High spatial resolution X-ray observations are revealing a population of point-like nonvariable sources in a host of nearby galaxies. These are normally identified as supernova remnants or X-ray binaries. However, in general these detections do not have enough counts to fully populate a spectrum, leaving identifications extremely speculative. I will present simulated spectra from models and data from well studied Galactic remnants and binary systems in order to demonstrate the uncertainty inherent in identifying sources with only few hundred counts. I will also explore the efficacy of using a hardness ratio to distinguish between source types and the role of optical and radio observations in clearing up ambiguities.

  11. INTEGRAL Observations of the Ultra-compact X-ray Binary 4U 1543-624 in Outburst

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Ludlam, R. M.; Reynolds, M. T.; Kuulkers, E.; Ferrigno, C.; Bozzo, E.

    2017-09-01

    4U 1543-624 is an X-ray binary that typically emits at a steady but low X-ray flux. To the best of our knowledge, there are no reports of millisecond variability, nor Type-1 X-ray bursts, nor other clear hallmarks of a neutron star primary in 4U 1543-624.

  12. X-Ray Binary Phenomenology and Their Accretion Disk Structure

    NASA Astrophysics Data System (ADS)

    Kazanas, Demosthenes

    We propose a scheme that accounts for the broader spectral and temporal properties of galactic black hole X-ray transients. The fundamental notion behind this proposal is that the mass accretion rate, dot{M}, of the disks of these systems depends on the radius, as it has been proposed for ADIOS. We propose that, because of this dependence of dot{M} on radius, an accretion disk which is geometrically thin and cool at large radii converts into a geometrically thick, advection dominated, hot disk interior to a transition radius at which the local accretion rate drops below the square of the viscosity parameter, a condition for the existence of advection dominated flows. We argue also that such a transition requires in addition that the vertical disk support be provided by magnetic fields. As discussed in other chapters of this book, the origin of these fields is local to the disk by the Poynting Robertson battery, thereby providing a complete self-contained picture for the spectra and evolution of these systems.

  13. ROSAT observations of the x ray binary HD 154791

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    1994-01-01

    We have been surveying the Taurus dark cloud for young stars using a variety of techniques. Two optical proper motion surveys identified 8 new pre-main sequence stars; an IRAS-based program discovered 6 new embedded sources and 4-6 new T Tauri stars. Finally, an optical objective prism survey found 12 new T Tauri stars. Our goal in this project is to examine and compare star formation in the dark clouds: Heiles cloud 2 (HCL2), L1537, L1538, and L1544. HCL2 is a very dense region actively forming young stars and contains 5-6 very young, deeply embedded sources; L1537 and L1538 have no known pre-main sequence stars; L1544 contains 7 optically visible T Tauri stars. These clouds appear roughly similar on optical sky survey plates. We would like to know why some of the clouds are active and why some are not. The first goal of the project is to survey the regions using IR photometry to identify very red pre-main sequence stars and X-ray imaging to identify solar-type young stars missed in the near-IR survey. We will follow up these observations with molecular line surveys to compare the conditions in various clouds with their star formation efficiencies.

  14. Detection of X-ray emission from the PSR 1259-63/SS 2883 binary system

    NASA Technical Reports Server (NTRS)

    Cominsky, Lynn; Roberts, Mallory; Johnston, Simon

    1994-01-01

    Nonpulsed but variable X-ray emission has been detected from the binary system containing the radio pulsar PSR 1259-63 during two pointed ROSAT observations, taken 5 months apart. This 47.7 ms radio pulsar is in a highly eccentric (epsilon approximately 0.85) binary system with the 10-15 solar mass Be star SS 2883. It is the first radio pulsar found to be in a binary system with a massive main-sequence companion; it is also the most highly eccentric binary system known to contain a neutron star. The level of X-ray flux detected in the ROSAT observations has increased with orbital phase by a factor of at least 10 between 1992 February and 1993 February. The X-ray flux is significantly greater than expected from the Be star's corona and seems likely to originate either from low-level stellar wind accretion onto the neutron star or from the shock between the stellar wind and the relativistic pulsar wind. The system may be the progenitor of the more slowly rotating Be X-ray binary pulsar systems.

  15. Recent Results of VLBA Imaging of X-Ray Binaries: the Newest and Oldest Microquasars

    NASA Astrophysics Data System (ADS)

    Mioduszewski, A. J.; Dhawan, V.; Rupen, M. P.

    2005-12-01

    X-ray binaries are stellar systems in which X-ray emission results from accretion from a normal star onto a compact object, i.e., a neutron star or black hole. Radio emission is associated both with X-ray outbursts, and with more stable conditions when the X-rays are dominated by a persistent hard power-law component. The VLBA has played a crucial role in studying these systems, by allowing detailed AU-scale imaging. This has allowed direct measurements of morphologies, orientations, expansion speeds, and scattering sizes, as well as detailed astrometric and proper motion studies. We review results from our group in this area, namely observations of H1743-322 and SS433.

  16. Retrograde accretion discs in high-mass Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-09-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  17. Recurrent X-ray Emission Variations of Eta Carinae and the Binary Hypothesis

    NASA Technical Reports Server (NTRS)

    Ishibashi, K.; Corcoran, M. F.; Davidson, K.; Swank, J. H.; Petre, R.; Drake, S. A.; Damineki, A.; White, S.

    1998-01-01

    Recent studies suggest that, the super-massive star eta Carinae may have a massive stellar companion (Damineli, Conti, and Lopes 1997), although the dense ejecta surrounding the star make this claim hard to test using conventional methods. Settling this question is critical for determining the current evolutionary state and future evolution of the star. We address this problem by an unconventional method: If eta Carinae is a binary, X-ray emission should be produced in shock waves generated by wind-wind collisions in the region between eta Carinae and its companion. Detailed X-ray monitoring of eta Carinae for more that) 2 years shows that the observed emission generally resembles colliding-wind X-ray emission, but with some significant discrepancies. Furthermore, periodic X-ray "flaring" may provide an additional clue to determine the presence of a companion star and for atmospheric pulsation in eta Carinae.

  18. Theoretical spectra of nonmagnetized low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Czerny, Bozena; Czerny, Michal; Grindlay, Jonathan E.

    1986-01-01

    Theoretical X-ray spectra of low-mass X-ray binaries with negligible magnetic fields are presented. The geometry of the X-ray emitting region, the energetic efficiency of the accretion in the disk and in the boundary layer which leads to a relation between the disk and the boundary layer luminosities, and the irradiation of the disk by the boundary layer are studied. The model of the radiation spectrum emerging from the neutron star and the innermost part of the disk is presented. The relativistic and Doppler effects and their influence on the spectrum as a function of inclination angle are discussed. A simple method for comparing the spectrum model with observations by studying the hardness ratio is given, and the results for three X-ray sources in globular clusters observed by the Einstein satellite are presented. The range of applicability of the spectrum models is also discussed.

  19. Very old and very young compact objects: X-ray studies of galactic globular clusters and recent core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David Aaron

    2003-09-01

    This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the

  20. The Modern Black Hole X-Ray Binary Database: A Comprehensive All-Sky Observational Study

    NASA Astrophysics Data System (ADS)

    Tetarenko, Bailey; Sivakoff, Gregory R.; Heinke, Craig O.; Gladstone, Jeanette C

    2014-08-01

    Stellar mass black holes accreting in binary systems provide valuable insight into how binary systems evolve and how mass is transferred via accretion. With the advent of more sensitive all-sky X-ray instruments like the Swift Burst Alert Transient Monitor (BAT) and the Monitor of All-Sky X-ray Image (MAXI) telescope, the transient X-ray Universe is being probed in greater depth than ever before. Taking advantage of these resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary activity over the last 18 years as revealed by all-sky X-ray instruments and scanning surveys. As a result, we have detected over 90 outbursts occurring in 43 transient BHXRBs, and estimate that current instruments can detect ~ 6-12 transient BHXRB outbursts every year, more than a factor of three larger than is commonly assumed. Most significantly, we find that the outbursts undergone by BHXRBs that do not complete the canonical pattern make up ~ 50% of all outbursts occurring in Galactic BHXRBs. Such a high fraction of "failed" outbursts challenges the standard paradigm for accretion behaviour in transient BHXRBs. We present the detailed findings of our database and discuss how both the larger number of these so-called "failed" outbursts and the BHXRB outbursts in general have significant implications for the mass-transfer history of the Galactic BHXRB population.

  1. AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Klimek, Matthew D.; Points, S. D.; Smith, R. C.; Shelton, R. L.; Williams, R. E-mail: spoints@ctio.noao.ed E-mail: rls@physast.uga.ed

    2010-12-20

    We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing optical emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H{alpha} surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.

  2. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  3. Thermal and Nonthermal X-ray Emission from the Forward Shock in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Decourchelle, Anne; Holt, Stephen S.; Petre, Robert; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present Chandra CCD images of Tycho's supernova remnant that delineate its outer shock, seen as a thin, smooth rim along the straight northeastern edge and most of the circular western half. The images also show that the Si and S ejecta are highly clumpy, and have reached the forward shock at numerous locations. Most of the X-ray spectra that we examine along the rim show line emission from Si and S, which in some cases must come from ejecta; the continuum is well represented by either thermal or nonthermal models. In the case that the continuum is assumed to be thermal, the temperatures at the rim are all similar at about 2 keV, and the ionization ages are very low because of the overall weakness of the line emission. Assuming shock velocities inferred from radio and X-ray expansion measurements, these temperatures are substantially below those expected for equilibration of the electron and ion temperatures; electron to mean temperature ratios of approximately less than 0.1 - 0.2 indicate at most modest collisionless heating of the electrons at the shock. The nonthermal contribution to these spectra may be important, however, and may account for as many as half of the counts in the 4-6 keV energy range, based on an extrapolation of the hard X-ray spectrum above 10 keV.

  4. All the X-ray binaries in the Universe: X-ray Emission from Normal and Starburst Galaxies Near and Far

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann; Basu-Zych, Antara; Lehmer, Bret

    2015-08-01

    There has recently been quite a bit of excitement on the role of X-ray emission from galaxies in early heating of the IGM, demonstrating that understanding of X-ray emission from normal and starburst galaxies may have significant impact on structure formation in the Universe. The X-ray output from X-ray binaries and hot gas are both important and may rival the ionizing output of AGN at z>5, particularly for Hydrogen reionization. Here we present our research on constraining the X-ray SED of galaxies across cosmic time via several complementary approaches. In the very local universe (d <~ 30 Mpc including the Local Group) we are using NuSTAR to understand the accretion states and total output of black hole and neutron star binaries using the important lever arm of 0.5-30 keV emission. At intermediate distances (10-100 Mpc), we are comparing the X-ray output of galaxies with star formation histories and population synthesis model predictions using both Chandra and XMM data. In the slightly more distant universe (z~0.1-0.2) we can find rare analogs to primordial starbursts via wide-field optical/UV surveys that may be studied with Chandra. We will finish with a discussion of starburst galaxies emitting X-rays at z>4, which thanks to the extremely deep Chandra Deep Field-South 7 Ms survey, are better constrained than ever before. We discuss survey strategy and how the various pieces of the puzzle fit together regarding the X-ray output of galaxies and their X-ray binary populations over cosmic time. We discuss implications for next-generation missions and instruments, including those with wide-field survey capabilities and high throughput, especially the Athena mission.

  5. X-RAY SPECTROSCOPY OF POTENTIAL SMALL MAGELLANIC CLOUD TYPE Ia SUPERNOVA REMNANTS AND THEIR ENVIRONMENTS

    SciTech Connect

    Roper, Q.; McEntaffer, R. L.; DeRoo, C.; Filipovic, M.; Wong, G. F.; Crawford, E. J.

    2015-04-20

    We examine three supernova remnants in the SMC, IKT 5 (supernova remnant (SNR) 0047-73.5), IKT 25 (SNR 0104-72.3), and DEM S 128 (SNR 0103-72.4), which are designated as Type Ia in the literature due to their spectra and morphology. This is troublesome because of their asymmetry, a trait not usually associated with young Type Ia remnants. We present Chandra X-ray Observatory data on these three remnants and perform a maximum likelihood analysis on their spectra. We find that the X-ray emission is dominated by interactions with the interstellar medium. In spite of this, we find a significant Fe overabundance in all three remnants. Through examination of radio, optical, and infrared data, we conclude that these three remnants are likely not Type Ia SNRs. We detect potential point sources that may be members of the progenitor systems of both DEM S 128 and IKT 5, which could suggest these could be Fe-rich core-collapse remnants.

  6. Freely Expanding X-ray Ejecta Knots in Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Hughes, John Patrick; Sato, Toshiki

    2017-08-01

    Using archival data from the Chandra X-ray Observatory, we measure the proper motions and radial velocities of compact X-ray bright knots in Kepler's supernova remnant (SNR). The high speed ejecta knots are morphologically and kinematically distinct from the rest of the ejecta and appear only in specific, limited locations. The highest speed knots show both large proper motions and high radial velocities with estimated space velocities of 10,000 km/s, similar to the typical Si velocity seen in Type Ia supernovae near maximum light. The proper motions of five knots extrapolate back over the age of the remnant to a consistent central position, defining a kinematic center for Kepler's SNR. Our new explosion center agrees well with previous determinations, but suffers less from systematic uncertainty. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 < m < 1.0), while other knots show slower speeds and expansion indices consistent with decelerated ejecta knots. The differences in the expansion rates are likely a function of differences in the ambient medium density surrounding Kepler’s SNR.

  7. X-ray Spectroscopy of Potential Small Magellanic Cloud Type Ia Supernova Remnants and Their Environments

    NASA Astrophysics Data System (ADS)

    Roper, Q.; McEntaffer, R. L.; DeRoo, C.; Filipovic, M.; Wong, G. F.; Crawford, E. J.

    2015-04-01

    We examine three supernova remnants in the SMC, IKT 5 (supernova remnant (SNR) 0047-73.5), IKT 25 (SNR 0104-72.3), and DEM S 128 (SNR 0103-72.4), which are designated as Type Ia in the literature due to their spectra and morphology. This is troublesome because of their asymmetry, a trait not usually associated with young Type Ia remnants. We present Chandra X-ray Observatory data on these three remnants and perform a maximum likelihood analysis on their spectra. We find that the X-ray emission is dominated by interactions with the interstellar medium. In spite of this, we find a significant Fe overabundance in all three remnants. Through examination of radio, optical, and infrared data, we conclude that these three remnants are likely not Type Ia SNRs. We detect potential point sources that may be members of the progenitor systems of both DEM S 128 and IKT 5, which could suggest these could be Fe-rich core-collapse remnants.

  8. X-ray spectroscopic and timing studies of galactic black hole binaries

    NASA Astrophysics Data System (ADS)

    Miller, Jon Matthew

    In rare cases, optical observations of Galactic binary star systems which are bright in the X-ray portion of the electromagnetic spectrum dynamically constrain the mass of one component to be well above theoretical limits for a neutron star. These systems—and systems with similar X-ray properties—are classified as black hole binaries. In this thesis, I report on observations of black hole binaries made with satellite observatories in the X-ray band. The region closest to the black hole is revealed in X-rays due to the viscous heating of matter that is accreted from the companion star. X-ray observations of these systems may therefore reveal General Relativistic effects. A fundamental and testable prediction of General Relativity is that matter may orbit more closely around black holes with significant angular momentum. I have investigated the possibility of black hole “spin” and the geometry of accretion flows in these systems using X-ray continuum spectroscopy, fast variability studies, and the shape of iron fluorescent emission lines in this band. I present evidence for black hole spin in XTE J1550-564, XTE J1650- 500, and XTE J1748-248. Spin is not required by high- resolution spectral analysis of the archetypical Galactic black hole—Cygnus X-1—but a thermal accretion disk plus hot corona geometry is confirmed. Studies of XTE J1118+480 and GRS 1758-258 at low X-ray luminosity reveal that models for radiatively-inefficient accretion do not satisfactorily describe the geometry in these systems. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)/

  9. STATE TRANSITIONS IN BRIGHT GALACTIC X-RAY BINARIES: LUMINOSITIES SPAN BY TWO ORDERS OF MAGNITUDE

    SciTech Connect

    Yu Wenfei; Yan Zhen

    2009-08-20

    Using X-ray monitoring observations with the All-Sky Monitor on board the Rossi X-Ray Timing Explorer and the Burst Alert Telescope on board the Swift, we are able to study the spectral state transitions occurred in about 20 bright persistent and transient black hole and neutron star binaries. We have confirmed that there is a correlation between the X-ray luminosity corresponding to the hard-to-soft transition and the X-ray luminosity of the following soft state. This correlation holds over a luminosity range spanning by 2 orders of magnitude, with no indication of a flux saturation or cutoff. We have also found that the transition luminosity correlates with the rate of increase in the X-ray luminosity during the rising phase of an outburst or flare, implying that the origin of the variation of the transition luminosity is associated with non-stationary accretion in both transient sources and persistent sources. The correlation between the luminosity corresponding to the end of the soft-to-hard transition and the peak luminosity of the preceding soft state is found insignificant. The results suggest that the hysteresis effect of spectral state transitions is primarily driven by non-stationary accretion when the mass accretion rate increases rather than the mass accretion rate decreases. Our results also imply that Galactic X-ray binaries can reach more luminous hard states during outbursts of higher luminosities and of similar rise timescales as those observed. Based on the correlations, we speculate that bright hard state beyond the Eddington luminosity will be observed in Galactic binaries in the next century. We also suggest that some ultra-luminous X-ray sources in nearby galaxies, which stay in the hard states during bright, short flares, harbor stellar-mass compact stars.

  10. The USA experiment on the Argos Satellite: A low cost instrument for timing x-ray binaries

    SciTech Connect

    Wood, K.S.; Fritz, G.; Hertz, P.; Johnson, W.N.; Lovelette, M.N.; Wolff, M.T. ); Bloom, E.; Godfrey, G.; Hanson, J.; Michelson, P.; Taylor, R.; Wen, H. )

    1994-07-05

    The Unconventional Stellar Aspect (USA) experiment to be launched in September 1995 on the Advanced Research and Global Observations Satellite (ARGOS) is a low-cost, quick---yet scientifically ambitious---x-ray timing experiment. It is designed for the dual purpose of scientific research in x-ray timing and time resolved spectroscopy and also for exploration of applications of x-ray sensor technology. Bright galactic x-ray binaries are used simultaneously for both scientific and applied objectives.

  11. Searching for New High-Mass X-Ray Binaries in the Norma Spiral Arm

    NASA Astrophysics Data System (ADS)

    Fornasini, Francesca

    2012-07-01

    We conducted a survey of a 2°×0.8° region of the Norma spiral arm with Chandra ACIS-I to study Galactic hard X-ray populations. A goal of this survey is to find new High-Mass X-ray Binaries (HMXBs) to further our understanding of HMXB evolution and their luminosity function, and to constrain estimates of NS/NS binaries to interpret future gravitational wave results. We selected this region because INTEGRAL imaging showed that, after the Galactic Center, it is the region most crowded with hard X-ray sources, and it contains several OB associations. We have found ~1400 sources in our field and have selected ~70 hard, bright, and/or variable sources for further study. We are identifying which sources have near-IR counterparts and will perform IR spectroscopic follow-up at CTIO in June 2012.

  12. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion. Revised

    NASA Technical Reports Server (NTRS)

    DilVrtilek, Saeqa; Mushotzky, Richard (Technical Monitor)

    2001-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. observation of one of the two objects has taken place and the data were received in late November. The second object is yet to be observed. Over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  13. Spectroscopy of Low Mass X-Ray Binaries: New Insights into Accretion

    NASA Technical Reports Server (NTRS)

    Vrtilek, Saeqa Dil; Mushotzky, Richard F. (Technical Monitor)

    2002-01-01

    This project is to observe two low mass X-ray binaries, chosen for their X-ray brightness, low column density, and diversity of accretion behavior. The high spectral resolution of the RGS, the broad energy range and tremendous collecting power of EPIC, and simultaneous optical monitoring with the OM are particularly well-suited to these studies. The second of two objects was not observed until September of 2002. Data analysis for the new observation is underway. over the next year we will: investigate the physical conditions of the emitting gas using emission and recombination line diagnostics to determine temperatures, densities, elemental abundances, and ionization structure; study the behavior of emission features as a function of binary orbit; and test and improve models of X-ray line emission developed by us over the past decade. We will gain insight on both the geometry of the accretion flow and on the evolutionary history of LMXBs.

  14. Dark jets in the soft X-ray state of black hole binaries?

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.

    2017-04-01

    X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.

  15. Period Derivative of the M15 X-Ray Binary AC211/X2127+119

    NASA Technical Reports Server (NTRS)

    Homer, L.; Charles, P. A.

    1998-01-01

    We have combined Rossi X-ray Timing Explorer observations of X2127+119, the low-mass X-ray binary in the globular cluster M15, with archival X-ray lightcurves to study the stability of the 17.1 hr orbital period. We find that the data cannot be fit by the Ilovaisky ephemeris, and requires either a 7.sigma change to the period or a period derivative P prime/P approximately 9 x 10(exp -7)/yr. Given its remarkably low L(sub X)/L(sub opt) such a P prime lends support to models that require super-Eddington mass transfer in a q approximately 1 binary.

  16. The X-ray emission from young supernovae as a probe of their progenitors

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram

    2016-06-01

    Even after several decades of study, the progenitor stars of supernovae (SNe) have proven difficult to identify. The identification of progenitors has generally been the purview of optical astronomy, aided in part by stellar evolution models. But observations at otherwavelengths can also provide several hints about the progenitors.We have aggregated together data available in the literature, or analysed by us, to compute the lightcurves of almost all young SNe (days to years after explosion) that have been detected in X-rays. Currently we have about 60 SNe spanning all the various types, but the database is expanding rapidly. The lightcurves themselves span 12 orders of magnitude in luminosity. We use this library of lightcurves and spectra to explore the diversity of SNe, the characteristics of the environment into which they are expanding, and the implications for their progenitors. X-ray spectra can provide insight into the density structure, composition and metallicity of the surrounding medium, and the ionization level, through the spectra themselves as well as the X-ray absorption. Since core-collapse SNe expand mainly in environments created by the progenitor star mass-loss, this can provide crucial information about the nature of the progenitor star, and its mass-loss parameters in the decades or centuries before its death. We explore all SN types, with emphasis on Type IIP and Type IIn SNe. IIPs have the lowest X-ray luminosities, which is surprising given the high mass-loss rate, and low velocity, winds expected from their red supergiant (RSG) progenitors, and therefore the high density medium into which IIP SNe are expected to expand into. We show that the low X-ray luminosity sets a limit on the mass-loss rate, and thereby initial mass of a RSG star which can become a Type IIP progenitor. This initial mass limit, of about 19 Mo, is consistent with that obtained via direct optical progenitor identification. IIns are observed to have high X-ray

  17. Accretion states in X-ray binaries and their connection to GeV emission

    NASA Astrophysics Data System (ADS)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  18. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    NASA Astrophysics Data System (ADS)

    González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.

    2017-02-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  19. Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During the five-year period, our study of "Relativistic Astrophysics in Black Hole and Low-Mass Neutron Star X-ray Binaries" has been focused on the following aspects: observations, data analysis, Monte-Carlo simulations, numerical calculations, and theoretical modeling. Most of the results of our study have been published in refereed journals and conference presentations.

  20. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  1. Chemical abundances of the secondary star in the neutron star X-ray binary Cygnus X-2

    NASA Astrophysics Data System (ADS)

    Suárez-Andrés, L.; González Hernández, J. I.; Israelian, G.; Casares, J.; Rebolo, R.

    2015-03-01

    We present Utrecht Echelle Spectrograph@William Herschel Telescope high-resolution spectra of the low-mass X-ray binary (LMXB) Cygnus X-2. We have derived the stellar parameters of the secondary star using χ2 minimization procedure, and taking into account any possible veiling from the accretion disc. We determine a metallicity higher than solar ([Fe/H] = 0.27 ± 0.19), as seen also in the neutron star X-ray binary Centaurus X-4. The high quality of the secondary's spectrum allow us to determine the chemical abundances of O, Mg, Si, Ca, S, Ti, Fe, and Ni. We found that some α-elements (Mg, Si, S, Ti) are enhanced, consistent with a scenario of contamination of the secondary star during the supernova event. Surprisingly oxygen appears to be underabundant, whereas enhanced abundances of Fe and Ni are measured. Assuming that these abundances come from matter that has been processed in the SN and then captured by the secondary star, we explore different SN explosion scenarios with diverse geometries. A non-spherically symmetric SN explosion, with a low mass cut, seems to reproduce better the observed abundance pattern of the secondary star compared to the spherical case.

  2. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition)

    NASA Astrophysics Data System (ADS)

    Ritter, H.; Kolb, U.

    2003-06-01

    The catalogue lists coordinates, apparent magnitudes, orbital parameters, and stellar parameters of the components and other characteristc properties of 472 cataclysmic binaries, 71 low-mass X-ray binaries and 113 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition, the catalogue contains a list of references to published finding charts for 635 of the 656 objects, and a cross-reference list of alias object designations. Literature published before 1 January 2003 has, as far as possible, been taken into account. All data can be accessed via the dedicated catalogue webpage at http://www.mpa-garching.mpg.de/RKcat/ and http://physics.open.ac.uk/RKcat/ and at CDS via anonymous ftp to cdsarc.u-strasbg.fr (30.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/301. We will update the information given on the catalogue webpage regularly, initially every six months.

  3. MULTI-WAVELENGTH STUDY OF THE Be/X-RAY BINARY MXB 0656-072

    SciTech Connect

    Yan Jingzhi; Li Hui; Liu Qingzhong; Zurita Heras, Juan Antonio; Chaty, Sylvain E-mail: hli@pmo.ac.cn E-mail: juan-antonio.zurita-heras@cea.fr

    2012-07-01

    We present and analyze the optical photometric and spectroscopic data of the Be/X-ray binary MXB 0656-072 from 2006 to 2009. A 101.2 day orbital period is found, for the first time, from the present public X-ray data (Swift/BAT and RXTE/ASM). The anti-correlation between the H{alpha} emission and the UBV brightness of MXB 0656-072 during our 2007 observations indicates that a mass ejection event took place in the system. After the mass ejection, a low-density region might develop around the Oe star. With the outward motion of the circumstellar disk, the outer part of the disk interacted with the neutron star around its periastron passage and a series of X-ray outbursts were triggered between MJD 54350 and MJD 54850. The Proportional Counter Array-HEXTE spectra during the 2007-2008 X-ray outbursts could be well fitted by a cutoff power law with low-energy absorption, together with an iron line around 6.4 keV, and a broad cyclotron resonance feature around 30 keV. The same variability of the soft and hard X-ray colors in 2.3-21 keV indicated that there were no overall changes in the spectral shape during the X-ray outbursts, which might only be connected with the changes of the mass accretion rate onto the neutron star.

  4. Multi-wavelength Study of the Be/X-Ray Binary MXB 0656-072

    NASA Astrophysics Data System (ADS)

    Yan, Jingzhi; Zurita Heras, Juan Antonio; Chaty, Sylvain; Li, Hui; Liu, Qingzhong

    2012-07-01

    We present and analyze the optical photometric and spectroscopic data of the Be/X-ray binary MXB 0656-072 from 2006 to 2009. A 101.2 day orbital period is found, for the first time, from the present public X-ray data (Swift/BAT and RXTE/ASM). The anti-correlation between the Hα emission and the UBV brightness of MXB 0656-072 during our 2007 observations indicates that a mass ejection event took place in the system. After the mass ejection, a low-density region might develop around the Oe star. With the outward motion of the circumstellar disk, the outer part of the disk interacted with the neutron star around its periastron passage and a series of X-ray outbursts were triggered between MJD 54350 and MJD 54850. The Proportional Counter Array-HEXTE spectra during the 2007-2008 X-ray outbursts could be well fitted by a cutoff power law with low-energy absorption, together with an iron line around 6.4 keV, and a broad cyclotron resonance feature around 30 keV. The same variability of the soft and hard X-ray colors in 2.3-21 keV indicated that there were no overall changes in the spectral shape during the X-ray outbursts, which might only be connected with the changes of the mass accretion rate onto the neutron star.

  5. Preheating of the early universe by radiation from high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Sazonov, S. Yu.; Khabibullin, I. I.

    2017-04-01

    Using a reliablymeasured intrinsic (i.e., corrected for absorption effects) present-day luminosity function of high-mass X-ray binaries (HMXBs) in the 0.25-2 keV energy band per unit star formation rate, we estimate the preheating of the early Universe by soft X-rays from such systems. We find that X-ray irradiation, mainly executed by ultraluminous and supersoft ultraluminous X-ray sources with luminosity L X > 1039 erg s-1, could significantly heat ( T > T CMB, where T CMB is the temperature of the cosmic microwave background) the intergalactic medium by z 10 if the specific X-ray emissivity of the young stellar population in the early Universe was an order of magnitude higher than at the present epoch (which is possible due to the low metallicity of the first galaxies) and the soft X-ray emission from HMXBs did not suffer strong absorption within their galaxies. This makes it possible to observe the 21 cm line of neutral hydrogen in emission from redshifts z < 10.

  6. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  7. Radio and X-ray Observations of the Galactic Supernova Remnant G156.2+5.7

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Allen, G. E.; Fite, N. D.; Grimes, C. K.; Goff, E. J.; Murray, T. M.

    2010-01-01

    We present a broadband X-ray spectral study of the northwestern rim of the Galactic supernova remnant (SNR) G156.2+5.7 (RX J04591+5147). This SNR belongs to the class of sources which feature a significant non-thermal component to their observed X-ray emission. Recent X-ray observations of G156.2+5.7 have established that the non-thermal X-ray emission is broadly localized to the northwestern region of the SNR (where a radio bright rim is observed) but a true understanding of the physical process responsible for this emission has remained elusive. To investigate a possible synchrotron origin for this emission, we are analyzing archival X-ray observations made of this northwestern rim with XMM-Newton and RXTE as well as radio observation made with the 21-Meter Morehead State University Radio Telescope and Space Tracking Antenna. Initial results will be presented and discussed.

  8. Ultra-luminous X-Ray Sources in HARO II and the Role of X-Ray Binaries in Feedback in Lyα Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, A. H.; Jackson, F.; Kaaret, P.; Brorby, M.; Roberts, T. P.; Saar, S. H.; Yukita, M.

    2015-10-01

    Lyman Break Analogs (LBAs) are local proxies of high-redshift Lyman Break Galaxies. Spatially resolved studies of nearby starbursts have shown that Lyman continuum and line emission are absorbed by dust and that the Lyα is resonantly scattered by neutral hydrogen. In order to observe Lyα emission from star-forming regions, some source of feedback is required to blow the neutral gas away from the starburst to prevent scattering and allow the Lyα emission to escape. We show that there are two X-ray point sources embedded in the diffuse emission of the LBA galaxy Haro 11. CXOU J003652.4-333316 (abbreviated to Haro 11 X-1) is an extremely luminous (L{}{{X}}˜ {10}41 erg s-1), spatially compact source with a hard-X-ray spectrum. We suggest that the X-ray emission from Haro 11 X-1 is dominated by a single accretion source. This might be an active galactic nucleus or a source similar to the extreme black hole binary (BHB) M82 X-1. The hard X-ray spectrum indicates that Haro 11 X-1 may be a BHB in a low accretion state. In this case, the very high X-ray luminosity suggests an intermediate mass black hole that could be the seed for formation of a supermassive black hole. Source CXOU J003652.7-33331619.5 (abbreviated Haro 11 X-2) has an X-ray luminosity of {L}{{X}}˜ 5× {10}40 erg s-1 and a soft X-ray spectrum (power-law photon index Γ ˜ 2.2). This strongly suggests that Haro 11 X-2 is an X-ray binary in the ultra luminous state (i.e., an Ultra Luminous X-ray source, ULX). Haro 11 X-2 is coincident with the star-forming knot that is the source of the Lyα emission. The association of a ULX with Lyα emission raises the possibility that strong winds from X-ray binaries play an important role in injecting mechanical power into the interstellar medium, thus blowing away neutral material from the starburst region and allowing the Lyα to escape. We suggest that feedback from X-ray binaries may play a significant role in allowing Lyα emission to escape from galaxies in the

  9. Formation of Black Hole Low-mass X-Ray Binaries in Hierarchical Triple Systems

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar; Fragos, Tassos; Geller, Aaron; Stephan, Alexander P.; Rasio, Frederic A.

    2016-05-01

    The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in the LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (˜81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (˜11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (˜8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (˜0.3-0.6) preferably inclined (˜40°, ˜140°) tertiary, typically on a wide enough orbit (˜104 au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.

  10. Swift/BAT Detection of Hard X-Rays from Tycho's Supernova Remnant: Evidence for Titanium-44

    NASA Astrophysics Data System (ADS)

    Troja, E.; Segreto, A.; La Parola, V.; Hartmann, D.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Cusumano, G.; Gehrels, N.

    2014-12-01

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  11. Evolution of Intermediate-mass X-Ray Binaries Driven by the Magnetic Braking of AP/BP Stars. I. Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Podsiadlowski, Philipp

    2016-10-01

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40-60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100-10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced by the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10-5, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10-3, and 10-5, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.

  12. The optical counterpart to the Be/X-ray binary SAX J2239.3+6116

    NASA Astrophysics Data System (ADS)

    Reig, P.; Blay, P.; Blinov, D.

    2017-01-01

    Context. Be/X-ray binaries represent the main group of high-mass X-ray binaries. The determination of the astrophysical parameters of the counterparts of these high-energy sources is important for the study of X-ray binary populations in our Galaxy. X-ray observations suggest that SAX J2239.3+6116 is a Be/X-ray binary. However, little is known about the astrophysical parameters of its massive companion. Aims: The main goal of this work is to perform a detailed study of the optical variability of the Be/X-ray binary SAX J2239.3+6116. Methods: We obtained multi-colour BVRI photometry and polarimetry and 4000-7000 Å spectroscopy. The 4000-5000 Å spectra allowed us to determine the spectral type and projected rotational velocity of the optical companion; the 6000-7000 Å spectra, together with the photometric magnitudes, were used to derive the colour excess E(B-V), estimate the distance, and to study the variability of the Hα line. Results: The optical counterpart to SAX J2239.3+6116 is a V = 14.8 B0Ve star located at a distance of 4.9 kpc. The interstellar reddening in the direction of the source is E(B-V) = 1.70 ± 0.03 mag. The monitoring of the Hα line reveals a slow long-term decline of its equivalent width since 2001. The line profile is characterized by a stable double-peak profile with no indication of large-scale distortions. We measured intrinsic optical polarization for the first time. Although somewhat higher than predicted by the models, the optical polarization is consistent with electron scattering in the circumstellar disk. Conclusions: We attribute the long-term decrease in the intensity of the Hα line to the dissipation of the circumstellar disk of the Be star. The longer variability timescales observed in SAX J2239.3+6116 compared to other Be/X-ray binaries may be explained by the wide orbit of the system.

  13. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003-2010 and reach a limiting luminosity of >1035 erg s-1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40-200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  14. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  15. Interference as an Origin of the Peaked Noise in Accreting X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Veledina, Alexandra

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α(H/R)2 of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339-4 and XTE J1748-288 to constrain these parameters.

  16. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color-magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  17. Probing the neutron star spin evolution in the young Small Magellanic Cloud Be/X-ray binary SXP 1062

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Turolla, R.

    2012-03-01

    The newly discovered Be/X-ray binary in the Small Magellanic Cloud, SXP 1062, provides the first example of a robust association with a supernova remnant (SNR). The short age estimated for the SNR qualifies SXP 1062 as the youngest known source in its class, ?. As such, it allows us to test current models of magnetorotational evolution of neutron stars in a still unexplored regime. Here we discuss possible evolutionary scenarios for SXP 1062 in an attempt to reconcile its long spin period, ?, and short age. Although several options can be considered, like an anomalously long initial period or the presence of a fossil disc, our results indicate that SXP 1062 may host a neutron star born with a large initial magnetic field, typically in excess of ˜ 1014 G, which then decayed to ˜ 1013 G.

  18. The X-ray properties of five galactic supernova remnants detected by the Spitzer glimpse survey

    SciTech Connect

    Pannuti, Thomas G.; Moffitt, William P.; Rho, Jeonghee; Heinke, Craig O. E-mail: w.moffitt@moreheadstate.edu E-mail: heinke@ualberta.ca

    2014-03-01

    We present a study of the X-ray properties of five Galactic supernova remnants (SNRs)—Kes 17 (G304.6+0.1), G311.5–0.3, G346.6–0.2, CTB 37A (G348.5+0.1), and G348.5–0.0—that were detected in the infrared by Reach et al. in an analysis of data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) that was conducted by the Spitzer Space Telescope. We present and analyze archival ASCA observations of Kes 17, G311.5–0.3, and G346.6–0.2, archival XMM-Newton observations of Kes 17, CTB 37A, and G348.5–0.0, and an archival Chandra observation of CTB 37A. All of the SNRs are clearly detected in the X-ray except possibly G348.5–0.0. Our study reveals that the four detected SNRs all feature center-filled X-ray morphologies and that the observed emission from these sources is thermal in all cases. We argue that these SNRs should be classified as mixed-morphology SNRs (MM SNRs); our study strengthens the correlation between MM SNRs and SNRs interacting with molecular clouds and suggests that the origin of MM SNRs may be due to the interactions between these SNRs and adjacent clouds. Our ASCA analysis of G311.5–0.3 reveals for the first time X-ray emission from this SNR: the X-ray emission is center-filled within the radio and infrared shells and thermal in nature (kT ∼ 0.98 keV), thus motivating its classification as an MM SNR. We find considerable spectral variations in the properties associated with the plasmas of the other X-ray-detected SNRs, such as a possible overabundance of magnesium in the plasma of Kes 17. Our new results also include the first detailed spatially resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J171428.5–383601, which may be a neutron star associated with CTB 37A. Finally, we also estimate such properties as electron density n{sub e} , radiative age t {sub rad} and swept-up mass M{sub X} for each of the four X-ray-detected SNRs. Each

  19. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2015-08-01

    We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  20. Orbital period decay of compact black hole X-ray binaries: the influence of circumbinary disks?

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Li, Xiang-Dong

    2015-11-01

    Context. Recently, compact black hole X-ray binaries XTE J 1118+480 and A0620-00 have been reported to be experiencing a fast orbital period decay, which is two orders of magnitude higher than expected with gravitational wave radiation. Magnetic braking of an Ap/Bp star has been suggested to account for the period change when the surface magnetic field of the companion star Bs ≳ 104 G. However, our calculation indicates that anomalous magnetic braking cannot significantly contribute to the large orbital period decay rates observed in these two sources even if Bs ≳ 104 G. Aims: Observations have provided evidence that circumbinary disks around two compact black hole X-ray binaries may exist. Our analysis shows that, for some reasonable parameters, tidal torque between the circumbinary disk and the binary can efficiently extract the orbital angular momentum from the binary, and result in a large orbital period change rate. Methods: Based on the circumbinary disk model, we simulate the evolution of XTE J 1118+480 via a stellar evolution code. Results: Our computations are approximatively in agreement with the observed data (the masses of two components, donor star radius, orbital period, and orbital period derivative). Conclusions: The mass transfer rate and circumbinary disk mass are obviously far greater than the inferred values from observations. Therefore, it seems that the circumbinary disk is unlikely to be the main cause of the rapid orbital decay observed in some compact black hole X-ray binaries.

  1. A Search for X-ray Emitting Binary Stars in the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Deveny, Sarah; Gallien, Michael; Rickards Vaught, Ryan; Waters, Miranda; Cool, Adrienne; Bellini, Andrea; Anderson, Jay; Henleywillis, Simon; Haggard, Daryl; Heinke, Craig O.

    2016-06-01

    Omega Centauri is one of the most widely studied globular clusters, and is expected to harbor a significant population of binary stars. Binaries play a crucial role in determining the progression of stellar dynamics within globular clusters, and as such are relevant to questions concerning the possible formation of intermediate black holes at their centers. One effective way to identify certain classes of binary systems is to first locate X-ray sources in the cluster and then to search for their optical counterparts. Using Chandra X-ray Observatory's ACIS-I instrument we have identified 275 X-ray sources in and toward Omega Cen, more than 50 of which lie within the cluster's core radius. Here we present a search for the optical counterparts of these core sources using an extensive database of archival Hubble Space Telescope images. Using WFC3/UVIS data from 11 different filters, we construct color-magnitude diagrams that reveal a diverse array of objects, including (in addition to background and foreground objects) cataclysmic variables, coronally active binaries, and, interestingly, stars that lie on Omega Cen's anomalous giant branch. We discuss the significance of these results in the context of studies of the formation and evolution of binary stars in globular clusters.

  2. Photometric and Polarimetric Observations of Be/X-Ray and Be/Gamma-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Moritani, Y.; Akitaya, H.; Ebisuda, N.; Itoh, R.; Kanda, Y.; Kawabata, M.; Kawaguchi, K.; Mori, K.; Nakaoka, T.; Ohashi, Y.; Takaki, K.; Ueno, I.; Ui, T.; Urano, T.; Yoshida, M.

    2016-11-01

    Be/X-ray and Be/γ-ray binaries are systems comprised of a Be star and a compact object. In these systems, the Be disk plays an important role in their high-energy activities through the interaction with the compact object. Because of highly eccentric orbits, the interaction depends on the orbital phase in Be/X and Be/γ-ray binaries. Such interaction affects the Be disk structure, causing photometric and polarimetric variabilities. In order to search for photometric and polatimetric variability in Be/X-ray and Be/γ-ray binaries, we have monitored several systems with the polarimeter attached to Hiroshima 1.5m Kanata telescope, Japan. Our two-year monitor finds that some programmed systems show photometric variations and a few systems show polatimatric variabilities.

  3. X-ray variability in Galactic high-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    The stars of the night sky can to the naked eye appear to be steady and unchanging, apart from the twinkling created by air moving in the atmosphere. However, when viewed in X-rays, the sky is far from constant, with detectable changes occurring on very short timescales. Black hole X-ray binaries are strong sources of X-rays. These systems contain a star and a black hole in orbit around each other. As matter from the companion star is accreted by the black hole, large amounts of gravitational energy are released, giving rise to strong X-ray emission. The accretion flow close to a black hole is characterized by strong gravity, high-energy radiation and variability on timescales down to milliseconds. These systems allow us to probe physics under conditions we cannot recreate in a laboratory, and provide some of the strongest observational indications of the existence of black holes. Temporal analysis is a powerful diagnostic of the geometry and physical processes of this environment. The bulk of this thesis concerns studies of the rapid variability of perhaps the most well-known of all black hole binaries: Cygnus X-1. By tapping into the large amount of archival data available, a systematic study of the variability, in the form of the power spectrum, is conducted. The results show that timing studies can indeed give valuable information on the emission mechanisms and accretion geometry. Tying characteristic frequencies to effects predicted by general relativity directly gives information about the parameters of the compact object. Using these results, the past evolution of the binary system is studied. In addition, results from temporal analysis of the possible black hole binary Cygnus X-3 are presented. The study of X-ray variability covers timescales from years to seconds, and shows that while temporal analysis provides clues to this complex system, it does not provide immediate insight into the accretion geometry, or the nature of the compact object

  4. Selection effects on the orbital period distribution of Low Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Arur, Kavitha; Maccarone, Tom

    2017-01-01

    Observations show a lack of Low Mass Black Hole Binaries with orbital periods below 4 hours. While it is known that Black Hole Binaries (BHBs) tend to have lower peak luminosities in outburst compared to their Neutron Star counterparts, it is unclear if selection effects can account for the difference in the numbers. Studying the effect of these selection biases is important for binary population studies. Here we report on the implications for the inferred orbital period distribution of these BHBs after a simulation that accounts for extinction of the optical counterpart, absorption of X-ray counts and detectability of the outburst.

  5. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  6. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  7. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  8. X-ray and radio emission from the luminous supernova 2005kd

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Romero-Cañizales, C.; Reddy, R.; Bauer, F. E.

    2016-10-01

    SN 2005kd is among the most luminous supernovae (SNe) to be discovered at X-ray wavelengths. We have re-analysed all good angular resolution (better than 20 arcsec full width at half-maximum point spread function) archival X-ray data for SN 2005kd. The data reveal an X-ray light curve that decreases as t-1.62±0.06. Our modelling of the data suggests that the early evolution is dominated by emission from the forward shock in a high-density medium. Emission from the radiative reverse shock is absorbed by the cold dense shell formed behind the reverse shock. Our results suggest a progenitor with a mass-loss rate towards the end of its evolution of ≥4.3 × 10^{-4} {M_{{⊙}}} yr^{-1}, for a wind velocity of 10 km s-1, at 4.0 × 1016 cm. This mass-loss rate is too high for most known stars, except perhaps hypergiant stars. A higher wind velocity would lead to a correspondingly higher mass-loss rate. A luminous blue variable star undergoing a giant eruption could potentially fulfill this requirement, but would need a high mass-loss rate lasting for several hundred years, and need to explain the plateau observed in the optical light curve. The latter could perhaps be due to the ejecta expanding in the dense circum-stellar material at relatively small radii. These observations are consistent with the fact that Type IIn SNe appear to expand into high-density and high mass-loss rate environments, and also suggest rapid variability in the wind mass-loss parameters within at least the last 5000 yr of stellar evolution prior to core-collapse.

  9. The X-ray decay of the ultraluminous supernova SN 1978K in NGC 1313

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Hui; Weng, Shan-Shan; Ng, C.-Y.

    2017-06-01

    The Type IIn supernova (SN) 1978K in the nearby galaxy NGC 1313 has remained bright in multiwavelengths for more than ˜25 yr. The archival data of SN 1978K collected with ROSAT, ASCA, XMM-Newton and Chandra from 1990 to 2006 show no significant variation of the soft X-ray emission but a hint of flux decrease in hard X-rays. In this work, we perform a detailed analysis using more than 15 yr of XMM-Newton observations. Both the 0.5-2 and 2-10 keV light curves decline as t-1 from 2000 to 2015. The transition of light-curve profiles can be explained in a way that the reverse shock was radiative at an early phase and then became adiabatic at late times. Such a scenario is also supported by the spectral analysis results. We also found a decrease in the absorption column density, which indicates the presence of a cool shell during the radiative phase.

  10. SOFT X-RAY SPECTROSCOPY OF THE CYGNUS LOOP SUPERNOVA REMNANT

    SciTech Connect

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-20

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 A bandpass with a resolution up to {approx}60 ({lambda}/{Delta}{lambda}). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at {approx}22 A. Another emission feature at {approx}45 A is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  11. SWIFT X-RAY UPPER LIMITS ON TYPE Ia SUPERNOVA ENVIRONMENTS

    SciTech Connect

    Russell, B. R.; Immler, S.

    2012-04-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L{sub 0.2-10} < 1.7 Multiplication-Sign 10{sup 38} erg s{sup -1} and M-dot < 1.1 Multiplication-Sign 10{sup -6} M{sub sun} yr{sup -1} Multiplication-Sign (v{sub w})/(10 km s{sup -1}), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  12. An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 years in the X-rays and 30 years in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. Consistent with earlier measurements, we find a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23? toward the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.

  13. The X-Ray Spectrum of the Supernova Remnant 1E 0102-72.3

    NASA Technical Reports Server (NTRS)

    Rasmussen, Andrew P.; Behar, Ehud; Kahn, Steven M.; denHerder, Jan Willem; vanderHeyden, Kurt

    1997-01-01

    In this letter we present the soft X-ray (5-35A) spectrum of the supernova remnant (SNR) IE 0102-72.3 in the Small Magellanic Cloud, acquired by the reflection grating spectrometer (RGS) aboard ESA's XMM-Newton Observatory. This extended-source X-ray spectrum of unprecedented spectral resolution (lambda/Delta(lambda) approx. 300) permits, for the first time, unabiguous identification and measurement of isolated emission lines and line complexes alike. The diagnostic power of performing spectroscopy using groups of emission lines from single ions is exemplified. In particular, the bright Lyman and helium series lines for light elements (C VI, O VII, O VIII, Ne IX, Ne X and possibly Mg XI & Mg XII) show peculiar ratios, where the values [1s - np] / [1s - (n + l)p] are systematically weaker than expected for electron impact excitation. These measured ratios resemble signatures of recombining or charge exchanging plasmas. We argue that charge exchange, given its large cross section and evidence for inhomogeneous media within the SNR, is a likely mechanism for the observed emission. Also. the well known temperature diagnostics G(T(sub e)) = (i + f)/r of helium- like triplets (O VII & Ne IX) indicate high temperatures, well above the maximum emission temperature T(sub m) for each ion, and consistent with a purely ionizing plasma. The density diagnostics R(n(sub e)) = f / i meanwhile, are consistent with the low density limit, as expected.

  14. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  15. An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 year in the X-rays and 30 year in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. We find, consistent with earlier measurements, a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23'' towards the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.

  16. Synchrotron X-ray diagnostics of cutoff shape of nonthermal electron spectrum at young supernova remnants

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Ohira, Yutaka; Sawada, Makoto; Bamba, Aya

    2014-02-01

    Synchrotron X-rays can be a useful tool to investigate electron acceleration at young supernova remnants (SNRs). At present, since the magnetic field configuration around the shocks of SNRs is uncertain, it is not clear whether electron acceleration is limited by SNR age, synchrotron cooling, or even escape from the acceleration region. We study whether the acceleration mechanism can be constrained by the cutoff shape of the electron spectrum around the maximum energy. We derive analytical formulae of the cutoff shape in each case where the maximum electron energy is determined by SNR age, synchrotron cooling and escape from the shock. They are related to the energy dependence of the electron diffusion coefficient. Next, we discuss whether information on the cutoff shape can be provided by observations in the near future which will simply give the photon indices and the flux ratios in the soft and hard X-ray bands. We find that if the power-law index of the electron spectrum is independently determined by other observations, then we can constrain the cutoff shape by comparing theoretical predictions of the photon indices and/or the flux ratios with observed data which will be measured by NuSTAR and/or ASTRO-H. Such study is helpful in understanding the acceleration mechanism. In particular, it will supply another independent constraint on the magnetic field strength around the shocks of SNRs.

  17. The X-ray spectrum of the supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Rasmussen, A. P.; Behar, E.; Kahn, S. M.; den Herder, J. W.; van der Heyden, K.

    2001-01-01

    In this letter we present the soft X-ray (5-35 Å) spectrum of the supernova remnant (SNR) 1E 0102.2-7219 in the Small Magellanic Cloud, acquired by the reflection grating spectrometers (RGS) aboard ESA's XMM-Newton Observatory. Because the RGS features a large dispersion angle, spatial-spectral confusion is suppressed even for moderately extended (Delta theta ~ 2arcmin ) sources. Consequently, these data, along with the spectrum of N132d (Behar et al. \\cite{Behar00}), provide what are probably the most detailed soft X-ray spectrum of entire SNRs. The diagnostic power of performing spectroscopy using groups of emission lines from single ions is demonstrated. In particular, the bright Lyman and helium series lines for light elements (C Vi, O Vii, O Viii, Ne Ix & Ne X) show peculiar ratios, where the values [1s-np]/[1s-(n+1)p] are systematically weaker than expected for electron impact excitation close to ionization equilibrium, indicating nonequilibrium ionizing (NEI) conditions in the source. The well known temperature diagnostics {G}(T_e)=(i+f)/r of helium-like triplets (O Vii & Ne Ix) confirm this suggestion, with values that are inconsistent with ionization equilibrium. The temperatures implied are well above the maximum emission temperature Tm for each ion, and consistent with a purely ionizing plasma. The density diagnostics R(ne)=f/i meanwhile, are consistent with the low density limit, as expected.

  18. An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 years in the X-rays and 30 years in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. Consistent with earlier measurements, we find a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23? toward the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.

  19. Soft X-Ray Spectroscopy of the Cygnus Loop Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Oakley, Phil; McEntaffer, Randall; Cash, Webster

    2013-03-01

    We present the results of a suborbital rocket flight whose scientific target was the Cygnus Loop Supernova Remnant. The payload consists of wire grid collimators, off-plane grating arrays, and gaseous electron multiplier (GEM) detectors. The system is designed for spectral measurements in the 17-107 Å bandpass with a resolution up to ~60 (λ/Δλ). The Extended X-ray Off-plane Spectrometer (EXOS) was launched on a Terrier-Black Brant rocket on 2009 November 13 from White Sands Missile Range and obtained 340 s of useable scientific data. The X-ray emission is dominated by O VII and O VIII, including the He-like O VII triplet at ~22 Å. Another emission feature at ~45 Å is composed primarily of Si XI and Si XII. The best-fit model to this spectrum is an equilibrium plasma model at a temperature of log(T) = 6.4 (0.23 keV).

  20. The peculiar high-mass X-ray binary 1ES 1210-646

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Landi, R.; Sguera, V.; Capitanio, F.; Bassani, L.; Bazzano, A.; Bird, A. J.; Malizia, A.; Palazzi, E.

    2010-02-01

    Using data collected with the BeppoSAX, INTEGRAL and Swift satellites, we report and discuss the results of a study on the X-ray emission properties of the X-ray source 1ES 1210-646, recently classified as a high-mass X-ray binary through optical spectroscopy. This is the first in-depth analysis of the X-ray spectral characteristics of this source. We found that the flux of 1ES 1210-646 varies by a factor of ~3 on a timescale of hundreds of seconds and by a factor of at least 10 among observations acquired over a time span of several months. The X-ray spectrum of 1ES 1210-646 is described using a simple powerlaw shape or, in the case of INTEGRAL data, with a blackbody plus powerlaw model. Spectral variability is found in connection with different flux levels of the source. A strong and transient iron emission line with an energy of ~6.7 keV and an equivalent width of ~1.6 keV is detected when the source is found at an intermediate flux level. The line strength seems to be tied to the orbital motion of the accreting object, as this feature is only apparent at the periastron. Although the X-ray spectral description we find for the 1ES 1210-646 emission is quite atypical for a high-mass X-ray binary, the multiwavelegth information available for this object leads us to confirm this classification. The results presented here allow us instead to definitely rule out the possibility that 1ES 1210-646 is a (magnetic) cataclysmic variable as proposed previously and, in a broader sense, a white dwarf nature for the accretor is disfavoured. X-ray spectroscopic data actually suggest a neutron star with a low magnetic field as the accreting object in this system. Partly based on X-ray observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

  1. Nonthermal X-rays and Gamma Rays from Supernova Remnants in Stellar-Wind Bubbles

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1997-12-01

    Electrons are expected to be accelerated in strong shock waves to energies limited by radiative losses, by the finite age of the shock, or by escape. Young supernova remnants can easily produce electron distributions that, while steepening from the slope at radio energies, still contain significant numbers of electrons at energies of 100 TeV or higher, where they produce synchrotron X-rays to 10 keV and above. In addition, these electrons can inverse-Compton scatter cosmic microwave background photons up to energies in excess of 100 GeV. For remnants of core-collapse supernovae expanding into stellar-wind bubbles, the upstream density is likely to drop as r(-2) while the upstream magnetic field is wrapped into a tight spiral, resulting in an almost perpendicular shock everywhere. Such shocks can be extremely effective in accelerating electrons to high energies. I describe spectra and images for spherical remnants, assuming the dynamics are given by the Sedov self-similar solution appropriate for an ambient r(-2) density profile (r_sh t(2/3) ). Both images and spectra differ significantly from those for remnants expanding into uniform magnetic fields, and should be distinguishable. Remnants expanding into spherical wind bubbles should show little azimuthal variation in synchrotron brightness for any viewing angle. Except at the highest photon energies, their brightness profiles peak somewhat inside the outermost edge of emission. X-ray halos caused by electrons diffusing ahead of the shock are generally narrow and faint. I shall describe inverse-Compton gamma-ray spectra produced by these electron distributions as well.

  2. An X-ray study of the supernova remnant W44

    NASA Astrophysics Data System (ADS)

    Harrus, Ilana; Hughes, John P.

    1994-12-01

    We report results from the analysis and modeling of data for the supernova remnant (SNR) W44. Spectral analysis of archival data from the Einstein Solid State Spectrometer, the ROSAT Position Sensitive Proportional Counter, and the Large Area Counters on Ginga, covering an energy range from 0.3 to 8 keV, indicates that the SNR can be described well using a nonequilibrium ionization model with temperature ~ 0.8 keV, ionization timescale ~ 9000 cm(-3) years, and elemental abundances close to the solar ratios. The column density toward the SNR is high: greater than 10(22) atoms cm(-2) . As has been known for some time, W44 presents a centrally peaked surface brightness distribution in the soft X-ray band while at radio wavelengths it shows a limb-brightened shell morphology, in contradiction to predictions of standard models (e.g., Sedov) for SNR evolution. We have investigated two different evolutionary scenarios which can explain the centered X-ray morphology of the remnant: (1) the White and Long (1991) model involving the slow thermal evaporation of clouds engulfed by the supernova blast wave as it propagates though a clumpy interstellar medium (ISM), and (2) a hydrodynamical simulation of a blast wave propagating through a homogeneous ISM, including the effects of radiative cooling. Both models can have their respective parameters tuned to reproduce approximately the morphology of the SNR. We find that, for the case of the radiative-phase shock model, the best agreement is obtained for an initial explosion energy in the range (0.5 - 0.6) times 10(51) ergs and an ambient ISM density of between 1.5 and 2 cm(-3) .

  3. A CHANDRA SURVEY OF FLUORESCENCE Fe LINES IN X-RAY BINARIES AT HIGH RESOLUTION

    SciTech Connect

    Torrejon, J. M.; Schulz, N. S.; Nowak, M. A.; Kallman, T. R.

    2010-06-01

    Fe K line fluorescence is commonly observed in the X-ray spectra of many X-ray binaries (XRBs) and represents a fundamental tool to investigate the material surrounding the X-ray source. In this paper, we present a comprehensive survey of 41 XRBs (10 HMXBs and 31 LMXBs) with Chandra with specific emphasis on the Fe K region and the narrow Fe K{alpha} line, at the highest resolution possible. We find that (1) the Fe K{alpha} line is always centered at {lambda} = 1.9387 {+-} 0.0016 A, compatible with Fe I up to Fe X; we detect no shifts to higher ionization states nor any difference between high mass X-ray binaries (HMXBs) and low mass X-ray binaries (LMXBs). (2) The line is very narrow, with FWHM {<=} 5 mA, normally not resolved by Chandra which means that the reprocessing material is not rotating at high speeds. (3) Fe K{alpha} fluorescence is present in all the HMXBs in the survey. In contrast, such emissions are astonishingly rare ({approx}10%) among LMXBs where only a few out of a large number showed Fe K fluorescence. However, the line and edge properties of these few are very similar to their high mass cousins. (4) The lack of Fe line emission is always accompanied by the lack of any detectable K edge. (5) We obtain the empirical curve of growth of the equivalent width of the Fe K{alpha} line versus the density column of the reprocessing material, i.e., EW{sub K{alpha}} versus N {sub H}, and show that it is consistent with a reprocessing region spherically distributed around the compact object. (6) We show that fluorescence in XRBs follows the X-ray Baldwin effect as previously only found in the X-ray spectra of active galactic nuclei. We interpret this finding as evidence of decreasing neutral Fe abundance with increasing X-ray illumination and use it to explain some spectral states of Cyg X-1 as a possible cause of the lack of narrow Fe line emission in LMXBs. (7) Finally, we study anomalous morphologies such as Compton shoulders and asymmetric line profiles

  4. New insights into the Be/X-ray binary system MXB 0656-072

    NASA Astrophysics Data System (ADS)

    Nespoli, E.; Reig, P.; Zezas, A.

    2012-11-01

    Context. The X-ray transient MXB 0656-072 is a poorly studied member of high-mass X-ray binaries. Based on the transient nature of the X-ray emission, the detection of pulsations, and the early-type companion, it has been classified as a Be X-ray binary (Be/XRB). However, the flaring activity covering a large fraction of a giant outburst is somehow peculiar. Aims: Our goal is to investigate the multiwavelength variability of the high-mass X-ray binary MXB 0656-072. Methods: We carried out optical spectroscopy and analysed all RXTE archive data, performing a detailed X-ray-colour, spectral, and timing analysis of both normal (type-I) and giant (type-II) outbursts from MXB 0656-072. Results: This is the first detailed analysis of the optical counterpart in the classification region (4000-5000 A). From the strength and ratio of the elements and ions, we derive an O9.5Ve spectral type, in agreement with previous classification. This confirms its Be nature. The characterisation of the Be/XRB system relies on Balmer lines in emission in the optical spectra, long-term X-ray variability, and the orbital period vs. spin period and EW(Hα) relation. The peculiar feature that distinguishes the type-II outburst is flaring activity, which occurs during the whole outburst peak, before a smoother decay. We interpret it in terms of magneto-hydrodynamic instability. Colour and spectral analysis reveal a hardening of the spectrum as the flux increases. We explored the aperiodic X-ray variability of the system for the first time, finding a correlation of the central frequency and rms of the main timing component with luminosity, which extends up to a "saturation" flux of 1 × 10-8 erg cm-2 s-1. A correlation between timing and spectral parameters was also found, pointing to an interconnection between the two physical regions responsible for both phenomenologies. The spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc

  5. ESA's X-ray space telescope proves supernovae can cause mysterious gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    2002-04-01

    By analysing the afterglow of the gamma-ray burst in the X-ray light, scientists produced the first ever evidence of the presence of chemical elements which were the unmistakable remnants of a supernova explosion which had occurred just a few days before. "We can now confidently say that the death of a massive star, a supernova, was the cause of a gamma-ray burst. However we still don't know exactly how and why these bursts, the most energetic phenomena in the Universe, are triggered," says ESA astronomer Norbert Schartel, a co-author of the original paper, published today in Nature. Gamma-ray bursts were first discovered in 1967 by chance, when satellites designed to look for violations of the Nuclear Test Ban Treaty detected strong gamma-ray emissions coming from sources not in the vicinity of Earth, but from outer space. They have been a mystery ever since. They occur as often as several times a day but last for no longer than a couple of minutes, and there is no way to predict when or where the next burst will occur. Consequently they are very difficult to study. For three decades it was not even known whether the explosions were close, in our own Milky Way galaxy, or far away in distant galaxies. But astronomers set up an 'alert system'. This allows them to see the 'afterglow' of the burst before it fades away, by quickly aiming their telescopes at the precise location in the sky shortly after a detector triggers the alert. It is now clear that the bursts occur in galaxies millions of light-years away. The longest burst Technically called 'GRB 011211', it was first detected on 11 December 2001 at 19:09:21 (Universal Time), by the Italian-Dutch satellite BeppoSAX. The burst lasted for 270 seconds - the longest one observed by the satellite. A few hours afterwards, when a first analysis confirmed that a burst had indeed been registered, the BeppoSAX team alerted the rest of the astronomical community. ESA's XMM-Newton arrived on the scene 11 hours after the

  6. Simultaneous X-Ray and Radio Observations of the Unusual Binary LSI + 61 deg 303

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Leahy, Denis A.; Waltman, Elizabeth

    1996-01-01

    We present simultaneous 0.5 - 10 keV X-ray and two-frequency radio observations at 2.25 and 8.3 GHz of the unusual binary system LSI + 61 deg. 303. This system was observed twice in a single binary orbit by the ASCA satellite, and monitored daily at two radio frequencies during the same orbital cycle with the Greenbank Interferometer. During the first ASCA observation the source was detected with a 1 - 10 keV luminosity 3.6 x 10(exp 33) (d/2.0 kpc)(exp 2) erg 1/s and during the second at a similar level with evidence for a decrease in average flux of 30%. During the first pointing the radio source was at a quiescent 8 GHz flux level of 30 mJy while during the second the radio flux was rising dramatically with an average value of 100 mJy. No variability is seen in the X-ray flux during the first pointing, but during the second the flux is variable by approx. 50% on timescales of approx. 30 minutes. No pulsations are seen in either X-ray observation with an upper limit on pulsed flux of 20%. The low X-ray luminosity and lack of observed pulsations indicate that accretion onto a neutron star surface is not the origin for the high-energy emission. Rather, the X-rays must result either from accreted matter which is stopped at the magnetosphere because the magnetospheric boundry is rotating at super-Keplerian rates or due to a shock formed in the interaction of the dense wind of the Be star companion and a moderately young pulsar. We derive a required pulsar spin down luminosity of approx. 10(exp 37) erg 1/s, and argue that the shock model more easily explains the observed X-ray radio observations.

  7. INTEGRAL/IBIS observations of a hard X-ray outburst in high-mass X-ray binary 4U 2206+54

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2010-09-01

    Aims: 4U 2206+54 is a wind-fed high-mass X-ray binary with a main-sequence donor star. The nature of its compact object has been recently identified as a slow-pulsation magnetized neutron star. Methods: INTEGRAL/IBIS observations have a long-term hard X-ray monitoring of 4U 2206+54 and detected a hard X-ray outburst around 15 December 2005 combined with the RXTE/ASM data. Results: The hard X-ray outburst had a double-flare feature with a duration of ~2 days. The first flare showed a fast rise and long-term decaying light curve about 15 h with a peak luminosity of ~4 × 1036 erg s-1 from 1.5-12 keV and a hard spectrum (only significantly seen above 5 keV). The second one had the mean hard X-ray luminosity of 1.3 × 1036 erg s-1 from 20-150 keV with a modulation period at ~5550 s which is the pulse period of the neutron star in 4U 2206+54. Its hard X-ray spectrum from 20-300 keV can be fitted by a broken power-law model with the photon indexes Γ1 ~ 2.3, and Γ2 ~ 3.3, and the break energy is Eb ~ 31 keV or by a bremsstrahlung model of kT ~ 23 keV. Conclusions: We suggest that the hard X-ray flare could be induced by suddenly enhanced accreting dense materials from stellar winds hitting the polar cap region of the neutron star. This hard X-ray outburst may be a link to supergiant fast X-ray transients though 4U 2206+54 has a different type of companion.

  8. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  9. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    SciTech Connect

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.

  10. The x-ray and spectropolarimetric view of mass loss and transfer in massive binary stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.

    2013-03-01

    The majority of massive stars are members of binary systems. In order to have a better understanding of their evolutionary pathways, the mass and angular momentum loss from massive binaries needs to be well understood. Self consistent explanations for their behavior need to be valid across many wavelength regimes in order to illuminate key phases of mass loss to completely determine how it affects their evolution. In this dissertation I present the results of X-ray and specropolarimetric studies on one Roche-lobe overflow binary (beta Lyr) and two colliding wind binaries (V444 Cyg and WR 140). In beta Lyr a repeatable discrepancy between the secondary eclipse in total and polarized light indicates that an accretion hot spot has formed on the edge of the disk in the system. This hot spot may also be the source of the bipolar outflows within the system. The existence of a hot spot and its relationship to bipolar outflows is important in understanding the mass transfer dynamics of Roche-lobe overflow binaries. The absorption of the 2.0 keV spectral fit component in V444 Cyg suggests that the shock has a large opening angle while analysis of the X-ray light curves places the stagnation point farther away from the O star than theoretically expected. Combining this with evidence of polarimetric variability in V444 Cyg's optical emission lines shows that the effects of radiative inhibition or braking are significant for this close binary and may be important in other colliding wind systems. Long term X-ray monitoring of the shock formed by the winds in WR 140 shows conflicting evidence for unexpected intrinsic hard X-ray emission. Spectral analysis shows that the low energy thermal tail is causing the observed higher energy emission. On the other hand, light curve analysis of the absorption feature near periastron passage suggests that there may be intrinsic hard X-ray emission from the system. WR 140's polarimetric behavior is consistent with the formation of dust near

  11. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  12. High-Frequency X-Ray Oscillations and X-Ray Spectral Evolution in Galactic Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Morgan, E. H.; Muno, M.

    2002-12-01

    There are now 5 Galactic black hole candidates that have exhibited quasi-periodic oscillations (QPO) in X-rays in the range of 67 to 300 Hz. The rms amplitudes are near 1 % of the average flux, and in two cases there are significant changes in the QPO frequency. The short timescales and origin in X-rays suggest that these QPOs signify inner accretion disk oscillations rooted in General Relativity, but the particular mechanism is uncertain. For two of these cases, GRO J1655-40 and GRS 1915+105, we trace the conditions under which these QPOs appear in terms of the division of luminosity between the X-ray components due to the accretion disk and the hard X-ray power law. In this context, the fast QPOs are most likely to occur when there is high luminosity in both the disk and the X-ray power-law component. On the other hand, the QPOs are not seen when the X-ray spectrum resembles either a pure disk or a dominant power-law component associated with a radio jet. The results imply a closer kinship for these QPOs than might be concluded from considerations of the gross shape of the X-ray spectrum.

  13. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  14. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  15. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Hamaguchi, K.; Gull, T.

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  16. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    NASA Astrophysics Data System (ADS)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (i ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  17. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. I. OVERVIEW OF THE X-RAY SPECTRUM

    SciTech Connect

    Corcoran, M. F.; Hamaguchi, K.; Pablo, H.; Moffat, A. F. J.; Richardson, N. D.; Shenar, T.; Oskinova, L.; Hamann, W.-R.; Waldron, W. L.; Russell, C. M. P.; Huenemoerder, D. P.; Nazé, Y.; Ignace, R.; and others

    2015-08-20

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.

  18. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; hide

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  19. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; Leutenegger, M.; Gull, T. R.; Iping, R. C.

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  20. A New γ-Ray Loud, Eclipsing Low-mass X-Ray Binary

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Li, Kwan-Lok; Chomiuk, Laura; Heinke, Craig O.; Udalski, Andrzej; Peacock, Mark; Shishkovsky, Laura; Tremou, Evangelia

    2016-11-01

    We report the discovery of an eclipsing low-mass X-ray binary at the center of the 3FGL error ellipse of the unassociated Fermi/Large Area Telescope γ-ray source 3FGL J0427.9-6704. Photometry from OGLE and the SMARTS 1.3 m telescope and spectroscopy from the SOAR telescope have allowed us to classify the system as an eclipsing low-mass X-ray binary (P = 8.8 hr) with a main-sequence donor and a neutron-star accretor. Broad double-peaked H and He emission lines suggest the ongoing presence of an accretion disk. Remarkably, the system shows separate sets of absorption lines associated with the accretion disk and the secondary, and we use their radial velocities to find evidence for a massive (˜1.8-1.9 M ⊙) neutron-star primary. In addition to a total X-ray eclipse with a duration of ˜2200 s observed with NuSTAR, the X-ray light curve also shows properties similar to those observed among known transitional millisecond pulsars: short-term variability, a hard power-law spectrum ({{Γ }}˜ 1.7), and a comparable 0.5-10 keV luminosity (˜ 2.4× {10}33 erg s-1). We find tentative evidence for a partial (˜ 60 % ) γ-ray eclipse at the same phase as the X-ray eclipse, suggesting the γ-ray emission may not be confined to the immediate region of the compact object. The favorable inclination of this binary is promising for future efforts to determine the origin of γ-rays among accreting neutron stars.

  1. A DEEP RADIO SURVEY OF HARD STATE AND QUIESCENT BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Miller-Jones, J. C. A.; Jonker, P. G.; Maccarone, T. J.; Calvelo, D. E.; Nelemans, G.

    2011-09-20

    We have conducted a deep radio survey of a sample of black hole X-ray binaries in the hard and quiescent states to determine whether any systems were sufficiently bright for astrometric follow-up with high-sensitivity very long baseline interferometric arrays. The one hard-state system, Swift J1753.5-0127, was detected at a level of 0.5 mJy beam{sup -1}. All 11 quiescent systems were not detected. In the three cases with the highest predicted quiescent radio brightnesses (GRO J0422+32, XTE J1118+480, and GRO J1655-40), the new capabilities of the Expanded Very Large Array were used to reach noise levels as low as 2.6 {mu}Jy beam{sup -1}. None of the three sources were detected to 3{sigma} upper limits of 8.3, 7.8, and 14.2 {mu}Jy beam{sup -1}, respectively. These observations represent the most stringent constraints to date on quiescent radio emission from black hole X-ray binaries. The uncertainties in the source distances, quiescent X-ray luminosities at the times of the observations, and the power-law index of the empirical correlation between radio and X-ray luminosities make it impossible to determine whether these three sources are significantly less luminous in the radio band than expected. Thus it is not clear whether that correlation holds all the way down to quiescence for all black hole X-ray binaries.

  2. ORBITAL PERIOD AND OUTBURST LUMINOSITY OF TRANSIENT LOW MASS X-RAY BINARIES

    SciTech Connect

    Wu, Y. X.; Yu, W.; Li, T. P.; Maccarone, T. J.; Li, X. D.

    2010-08-01

    In this paper, we investigate the relationship between the maximal luminosity of X-ray outburst and the orbital period in transient low mass X-ray binaries (or soft X-ray transients) observed by the Rossi X-ray Timing Explorer (RXTE) in the past decade. We find that the maximal luminosity (3-200 keV) in Eddington units generally increases with increasing orbital period, which does not show a luminosity saturation but in general agrees with theoretical prediction. The peak luminosities in ultra-compact binaries might be higher than those with an orbital period of 2-4 hr, but more data are needed to make this claim. We also find that there is no significant difference in the 3-200 keV peak outburst luminosity between neutron star (NS) systems and black hole (BH) systems with orbital periods above 4 hr; however, there might be a significant difference at smaller orbital periods where only NS systems are observed and radiatively inefficient accretion flow is expected to work at low luminosities for BH accreters.

  3. Interstellar gas and X-rays toward the Young supernova remnant RCW 86; pursuit of the origin of the thermal and non-thermal X-ray

    NASA Astrophysics Data System (ADS)

    Sano, H.; Reynoso, E. M.; Mitsuishi, I.; Nakamura, K.; Furukawa, N.; Mruganka, K.; Fukuda, T.; Yoshiike, S.; Nishimura, A.; Ohama, A.; Torii, K.; Kuwahara, T.; Okuda, T.; Yamamoto, H.; Tachihara, K.; Fukui, Y.

    2017-09-01

    We have analyzed the atomic and molecular gas using the 21 cm HI and 2.6/1.3 mm CO emissions toward the young supernova remnant (SNR) RCW 86 in order to identify the interstellar medium with which the shock waves of the SNR interact. We have found an HI intensity depression in the velocity range between -46 and - 28 kms-1 toward the SNR, suggesting a cavity in the interstellar medium. The HI cavity coincides with the thermal and non-thermal emitting X-ray shell. The thermal X-rays are coincident with the edge of the HI distribution, which indicates a strong density gradient, while the non-thermal X-rays are found toward the less dense, inner part of the HI cavity. The most significant non-thermal X-rays are seen toward the southwestern part of the shell where the HI gas traces the dense and cold component. We also identified CO clouds which are likely interacting with the SNR shock waves in the same velocity range as the HI, although the CO clouds are distributed only in a limited part of the SNR shell. The most massive cloud is located in the southeastern part of the shell, showing detailed correspondence with the thermal X-rays. These CO clouds show an enhanced CO J = 2- 1 / 1- 0 intensity ratio, suggesting heating/compression by the shock front. We interpret that the shock-cloud interaction enhances non-thermal X-rays in the southwest and the thermal X-rays are emitted by the shock-heated gas of density 10-100 cm-3. Moreover, we can clearly see an HI envelope around the CO cloud, suggesting that the progenitor had a weaker wind than the massive progenitor of the core-collapse SNR RX J1713.7-3949. It seems likely that the progenitor of RCW 86 was a system consisting of a white dwarf and a low-mass star with low-velocity accretion winds.

  4. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  5. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  6. Infrared supernova remnants and their infrared to X-ray flux ratios

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Yeon Seok, Ji; Lee, Jae-Joon; Jeong, Il-Gyo; Kim, Hyun-Jeong

    2016-06-01

    Supernova remnants (SNRs) are one of prominent objects in infrared (IR) emission, and their Infrared-to-X-ray (IRX) flux ratios are generally thought to indicate the relative importance of dust cooling to gas cooling in hot dusty plasma. But recent high-resolution IR space missions show that SNRs have diverse morphology in IR dust emission often very different from their X-ray appearance, suggesting different origins for the IR dust emission. We explored how the natural and/or environmental properties of SNRs affect the IRX morphology of SNRs and their IRX flux ratios.We first investigated IR and X-ray properties of 20 Galactic SNRs that are relatively well defined in both bands. We found that the observed IRX flux ratios of some SNRs agree with theoretical ratios of SNR shocks in which dust grains are heated and destroyed by collisions with plasma particles. For the majority of SNRs, however, the IRX flux ratios are either significantly smaller or significantly larger than the theoretical ratios. The SNRs with the smallest IRX flux ratios are young SNRs with X-ray emission dominated by metal-rich SN ejecta. There are, however, also evolved SNRs with good IRX morphological correlation but have small IRX flux ratios. For these SNRs, low dust-to-gas ratio (DGR) of the ambient medium seems to be a plausible explanation. On the other hand, the SNRs with the largest IRX flux ratios have anticorrelated IRX morphology and relatively low dust temperatures. We have found that these SNRs are located in dense environment, and their IR emission is probably from dust heated by shock radiation rather than by collisions.We also derived IRX flux ratios of SNRs in the Large Magellanic Cloud (LMC) using {Spitzer} and {Chandra} SNR survey data and compared them with those of Galactic SNRs. We found that the IRX flux ratios of the LMC SNRs are systematically lower than those of the Galactic SNRs, which appears to be consistent with the low DGR of the LMC. We also confirmed the

  7. High resolution X-ray spectroscopy of supernova remnants with ASTRO-H

    NASA Astrophysics Data System (ADS)

    Hughes, John

    The high spectral resolution and sensitivity of the Soft X-ray Spectrometer (SXS) on the upcoming ASTRO-H mission will open a new window of discovery for the study of supernova remnants. In this presentation, I will offer some illustrative examples of the types of science that the ASTRO-H team hopes to pursue. In young, ejecta-dominated remnants, abundance measurements based on emission line diagnostics will allow for a closer link to the different types of supernova progenitor models. Line widths probe ion temperatures and turbulent gas velocities on small scales, while offsets in observed line centroids characterize the bulk expansion motion of a remnant. For older remnants, much of the line-rich thermal plasma arises from shocks in the ambient, interstellar material. SXS observations will address a number of existing concerns with the intepretation of low resolution CCD spectra, including for example the issue of low inferred abundances at the rims of the Cygnus Loop, Puppis A, and others; and the physical origin of recombination-dominated plasmas.

  8. A Statistical Approach to Identifying Compact Objects in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Vrtilek, Saeqa D.

    2013-04-01

    A standard approach towards statistical inferences in astronomy has been the application of Principal Components Analysis (PCA) to reduce dimensionality. However, for non-linear distributions this is not always an effective approach. A non-linear technique called ``diffusion maps" (Freema \\eta 2009; Richard \\eta 2009; Lee \\& Waterman 2010), a robust eigenmode-based framework, allows retention of the full ``connectivity" of the data points. Through this approach we define the highly non-linear geometry of X-ray binaries in a color-color-intensity diagram in an efficient and statistically sound manner providing a broadly applicable means of distinguishing between black holes and neutron stars in Galactic X-ray binaries.

  9. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  10. Coordinated X-Ray, Ultraviolet, Optical, and Radio Observations of the PSR J1023+0038 System in a Low-mass X-Ray Binary State

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Archibald, Anne M.; Bassa, Cees; Deller, Adam T.; Halpern, Jules P.; Heald, George; Hessels, Jason W. T.; Janssen, Gemma H.; Lyne, Andrew G.; Moldón, Javier; Paragi, Zsolt; Patruno, Alessandro; Perera, Benetge B. P.; Stappers, Ben W.; Tendulkar, Shriharsh P.; D'Angelo, Caroline R.; Wijnands, Rudy

    2015-06-01

    The PSR J1023+0038 binary system hosts a neutron star and a low-mass, main-sequence-like star. It switches on year timescales between states as an eclipsing radio millisecond pulsar and a low-mass X-ray binary (LMXB). We present a multi-wavelength observational campaign of PSR J1023+0038 in its most recent LMXB state. Two long XMM-Newton observations reveal that the system spends ˜70% of the time in a ≈3 × 1033 erg s-1 X-ray luminosity mode, which, as shown in Archibald et al., exhibits coherent X-ray pulsations. This emission is interspersed with frequent lower flux mode intervals with ≈ 5× {10}32 erg s-1 and sporadic flares reaching up to ≈1034 erg s-1, with neither mode showing significant X-ray pulsations. The switches between the three flux modes occur on timescales of order 10 s. In the UV and optical, we observe occasional intense flares coincident with those observed in X-rays. Our radio timing observations reveal no pulsations at the pulsar period during any of the three X-ray modes, presumably due to complete quenching of the radio emission mechanism by the accretion flow. Radio imaging detects highly variable, flat-spectrum continuum radiation from PSR J1023+0038, consistent with an origin in a weak jet-like outflow. Our concurrent X-ray and radio continuum data sets do not exhibit any correlated behavior. The observational evidence we present bears qualitative resemblance to the behavior predicted by some existing “propeller” and “trapped” disk accretion models although none can account for key aspects of the rich phenomenology of this system.

  11. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  12. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  13. Swift/BAT detection of hard X-rays from Tycho;s Supernova Remnant: Evidence for 44Ti

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter; Troja, Eleonora; Baumgartner, Wayne H.; Markwardt, Craig; Barthelmy, Scott Douglas; Gehrels, Neil; Segreto, Alberto; La Parola, Valentina

    2014-06-01

    We report Swift/BAT survey observations of the Tycho supernova remnant, performed over a period of 104 month. A total exposure of 19.6 Ms was used to detect significant hard X-ray emission up to about 100 keV. Excess emission above this continuum in the 60-85 keV band was found, consistent with line emission from radioactive 44T. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type II and Type Ia supernova, with emphasis on the production of 44Ti.

  14. HST UV observations of the accretion disk corona X-ray binary X1822-371

    NASA Technical Reports Server (NTRS)

    Puchnarewicz, E. M.; Mason, K. O.; Cordova, F. A.

    1995-01-01

    The Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) has provided the first ultraviolet orbital light curve of the low-mass X-ray binary X1822-371. The shape of the UV light curve changes with wavelength providing the first direct clues to the temperature of the various system components. The data support the idea that the system contains a thick, structured accretion disk.

  15. X-ray specular reflectivity study of a critical binary fluid mixture.

    PubMed

    Marschand, L W; Brown, M; Lurio, L B; Law, B M; Uran, S; Kuzmenko, I; Gog, T

    2005-07-01

    We have used direct inversion of x-ray reflectivity data to extract the liquid-vapor interface composition profile and the related critical scaling function of a binary mixture of dodecane and tetrabromoethane. The mixture was in the one-phase region above its critical point. The results indicate the formation of a monolayer of the lower surface tension component followed by an abrupt change to a mixed composition which gradually relaxes to the bulk composition deep within the fluid.

  16. Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M.

    2014-01-01

    Magnetic spin-down of a rapidly rotating (millisecond) neutron star has been proposed as the power source of hydrogen-poor `superluminous' supernovae (SLSNe-I). However, producing an unambiguous test that can distinguish this model from alternatives, such as circumstellar interaction, has proven challenging. After the supernova explosion, the pulsar wind inflates a hot cavity behind the expanding stellar ejecta: the nascent millisecond pulsar wind nebula. Electron/positron pairs injected by the wind cool through inverse Compton scattering and synchrotron emission, producing a pair cascade and hard X-ray spectrum inside the nebula. These X-rays ionize the inner exposed side of the ejecta, driving an ionization front that propagates outwards with time. Under some conditions this front can breach the ejecta surface within months after the optical supernova peak, allowing ˜0.1-1 keV photons to escape the nebula unattenuated with a characteristic luminosity LX ˜ 1043-1045 erg s-1. This `ionization break-out' may explain the luminous X-ray emission observed from the transient SCP 06F, providing direct evidence that this SLSN was indeed engine powered. Luminous break-out requires a low ejecta mass and that the spin-down time of the pulsar be comparable to the photon diffusion time-scale at optical maximum, the latter condition being similar to that required for a supernova with a high optical fluence. These relatively special requirements may explain why most SLSNe-I are not accompanied by detectable X-ray emission. Global asymmetry of the supernova ejecta increases the likelihood of an early break-out along the direction of lowest density. Atomic states with lower threshold energies are more readily ionized at earlier times near optical maximum, allowing `UV break-out' across a wider range of pulsar and ejecta properties than X-ray break-out, possibly contributing to the blue/UV colours of SLSNe-I.

  17. Energy dependent variability and outburst evolution in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Kong, A. K. H.

    2016-12-01

    Almost all low mass black hole X-ray binaries are transient sources. Most of these sources show a certain pattern during outburst: the evolution from low hard state through intermediate state(s) into high soft state and the returning to the hard state at lower luminosity. However, there are outbursts that remain in the hard state (so called "failed" outbursts). Using the technique of covariance spectra we can investigate the variability of individual spectral components on different time scales. Comprehensive studies of covariance spectra for a sample of black hole X-ray binaries observed in the rising low hard state of "normal" outbursts revealed an increase of the covariance ratios towards lower energies that has been interpreted as the sign of additional disc variability on long time scales. There are now two sources (h1743 and gs) that do not show an increase towards lower energies in their covariance ratio. Both sources have been observed during "failed" outbursts and showed photon indices much harder than what is usually observed in black hole X-ray binaries.

  18. Evidence for a black hole in the X-ray binary Nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Remillard, Ronald A.; Mcclintock, Jeffrey E.; Bailyn, Charles D.

    1992-01-01

    Optical photometry and spectroscopy of the X-ray Nova Muscae 1991 in quiescence reveal an orbital period of 10.398 +/- 0.014 hr and an absorption-line velocity curve consistent with a sinusoidal modulation at a half-amplitude of 409 +/- 18 km/s. The spectral type of the secondary star is in the range K0 V to K4 V. The value of the mass function, 3.1 +/- 0.4 solar mass, is a conservative lower limit on the mass of the compact primary and suggests that the primary is a black hole. Further considerations of the binary inclination angle and the mass of the secondary strengthen the black hole model. The folded light curves in the I band and the B + V band resemble ellipsoidal variations, with an additional brightening near one of the maxima in the B + V band. The orbital period is 1.4 percent shorter than the photometric period observed during outburst, as expected if the outburst modulations are analogs of 'superhumps' in dwarf novae. In quiescence, the optical properties of the X-ray binary Nova Muscae 1991 bear a striking resemblance to the black hole binary A0620-00, which extends the basis of similarity that was demonstrated during outburst at X-ray and optical wavelengths.

  19. A Bayesian Model for the Detection of X-ray Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Bornn, Luke; Vrtilek, Saku

    2015-01-01

    In X-ray binary systems consisting of a compact object that accretes material from an orbiting secondary star, there is no simple means to determine if the compact object is a black hole or a neutron star. To assist this process we develop a Bayesian statistical model, which makes use of the fact that X-ray binary systems appear to cluster based on their compact object type when viewed from a particular 3- dimensional coordinate system derived from spectral data. In particular we utilize a latent variable model in which the latent variables follow a Gaussian process prior, and hence we are able to induce the spatial correlation we believe exists between systems of the same type. The key parameters of this model are the probabilities that an observation comes from a black hole, a pulsar, or non-pulsing neutron star. A benefit of this approach is of a computational nature - the assumption of a prior which follows a multivariate normal distribution allows for the implementation of elliptical slice sampling for performing inference, a fast and stable alternative to standard Metropolis-Hastings or Gibbs sampling (Murray 2010). Our model is fit from 13 years worth of spectral data from 30 X-ray binary systems. Its predictive power is evidenced by the accurate prediction of system types using inferred probabilities from the aforementioned model.

  20. The Galactic Population of Low- and Intermediate-Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Pfahl, Eric; Rappaport, Saul; Podsiadlowski, Philipp

    2003-11-01

    We present the first study that combines binary population synthesis in the Galactic disk and detailed evolutionary calculations of low- and intermediate-mass X-ray binaries (L/IMXBs). Our approach allows us to follow completely the formation of incipient L/IMXBs and their evolution through the mass-transfer phase to the point when they become binary millisecond pulsars (BMPs). We show that the formation probability of IMXBs with initial donor masses of 1.5-4Msolar is typically >~5 times higher than that of standard LMXBs with initial donor masses of less than 1.5Msolar. Since IMXBs evolve to resemble observed LMXBs, we suggest that the majority of the observed systems may have descended from IMXBs. Distributions at the current epoch of the orbital periods, donor masses, and mass accretion rates of L/IMXBs have been computed, as have orbital-period distributions of BMPs. This is a major step forward over previous theoretical population studies of L/IMXBs that utilized only crude representations of the binary evolution through the X-ray phase. Several significant discrepancies between the theoretical and observed distributions are discussed. We find that the total number of luminous (LX>1036ergss-1) X-ray sources at the current epoch and the period distribution of BMPs are very sensitive to the parameters in the analytic formula describing the common-envelope phase that precedes the formation of the neutron star. The orbital-period distribution of observed BMPs strongly favors cases in which the common envelope is more easily ejected. However, this leads to an approximately hundred-fold overproduction of the theoretical number of luminous X-ray sources relative to the total observed number of LMXBs. As noted by several groups prior to our study, X-ray irradiation of the donor star may result in a dramatic reduction in the X-ray active lifetime of L/IMXBs, and we suggest that irradiation may resolve the overproduction problem as well as the long-standing BMP

  1. Faint X-ray binaries and their optical counterparts in M31

    SciTech Connect

    Vulic, N.; Gallagher, S. C.; Barmby, P.

    2014-08-01

    X-ray binaries (XRBs) are probes of both star formation and stellar mass, but more importantly remain one of the only direct tracers of the compact object population. To investigate the XRB population in M31, we utilized all 121 publicly available observations of M31 totalling over 1 Ms from Chandra's ACIS instrument. We studied 83 star clusters in the bulge using the year 1 star cluster catalogue from the Panchromatic Hubble Andromeda Treasury Survey. We found 15 unique star clusters that matched to 17 X-ray point sources within 1'' (3.8 pc). This population is composed predominantly of globular cluster low-mass XRBs, with one previously unidentified star cluster X-ray source. Star clusters that were brighter and more compact preferentially hosted an X-ray source. Specifically, logistic regression showed that the F475W magnitude was the most important predictor followed by the effective radius, while color (F475W–F814W) was not statistically significant. We also completed a matching analysis of 1566 H II regions and found 10 unique matches to 9 X-ray point sources within 3'' (11 pc). The H II regions hosting X-ray point sources were on average more compact than unmatched H II regions, but logistic regression concluded that neither the radius nor Hα luminosity was a significant predictor. Four matches have no previous classification and thus are high-mass XRB candidates. A stacking analysis of both star clusters and H II regions resulted in non-detections, giving typical upper limits of ≈10{sup 32} erg s{sup –1}, which probes the quiescent XRB regime.

  2. X-ray and γ-ray studies of the millisecond pulsar and possible X-ray binary/radio pulsar transition object PSR J1723-2837

    SciTech Connect

    Bogdanov, Slavko; Esposito, Paolo; Crawford III, Fronefield; Possenti, Andrea; McLaughlin, Maura A.; Freire, Paulo

    2014-01-20

    We present X-ray observations of the 'redback' eclipsing radio millisecond pulsar (MSP) and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ∼2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar MSP binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed detection, the implied γ-ray luminosity is ≲5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ-ray producing MSPs or, if the detection is spurious, the γ-ray emission pattern is not directed toward us.

  3. Long-term variability of low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Filippova, E.; Revnivtsev, M.; Parkin, E. R.

    2014-01-01

    We consider modulations of mass captured by the compact object from the companion star's stellar wind in Low Mass X-ray Binaries with late type giants. Based on 3D simulations with two different hydrodynamic codes used Lagrangian and Eulerian approaches - the SPH code GADGET and the Eulerian code PLUTO, we conclude that a hydrodynamical interaction of the wind matter within a binary system even without eccentricity results in variability of the mass accretion rate with characteristic time-scales close to the orbital period. Observational appearances of this wind might be similar to that of an accretion disc corona/wind.

  4. Modeling the luminosity function of galactic low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Kuranov, A. G.; Postnov, K. A.; Revnivtsev, M. G.

    2014-01-01

    The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s-1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ˜1036.5 erg s-1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy

  5. X-RAY AND OPTICAL OBSERVATIONS OF THE UNIQUE BINARY SYSTEM HD 49798/RX J0648.0-4418

    SciTech Connect

    Mereghetti, S.; La Palombara, N.; Tiengo, A.; Pizzolato, F.; Esposito, P.; Woudt, P. A.; Israel, G. L.; Stella, L.

    2011-08-20

    We report the results of XMM-Newton observations of HD 49798/RX J0648.0-4418, the only known X-ray binary consisting of a hot sub-dwarf and a white dwarf. The white dwarf rotates very rapidly (P = 13.2 s) and has a dynamically measured mass of 1.28 {+-} 0.05 M{sub sun}. Its X-ray emission consists of a strongly pulsed, soft component, well fit by a blackbody with kT{sub BB} {approx} 40 eV, accounting for most of the luminosity, and a fainter hard power-law component (photon index {approx}1.6). A luminosity of {approx}10{sup 32} erg s{sup -1} is produced by accretion onto the white dwarf of the helium-rich matter from the wind of the companion, which is one of the few hot sub-dwarfs showing evidence of mass loss. A search for optical pulsations at the South African Astronomical Observatory 1.9 m telescope gave negative results. X-rays were also detected during the white dwarf eclipse. This emission, with luminosity 2 x 10{sup 30} erg s{sup -1}, can be attributed to HD 49798 and represents the first detection of a hot sub-dwarf star in the X-ray band. HD 49798/RX J0648.0-4418 is a post-common-envelope binary which most likely originated from a pair of stars with masses {approx}8-10 M{sub sun}. After the current He-burning phase, HD 49798 will expand and reach the Roche lobe, causing a higher accretion rate onto the white dwarf which can reach the Chandrasekhar limit. Considering the fast spin of the white dwarf, this could lead to the formation of a millisecond pulsar. Alternatively, this system could be a Type Ia supernova progenitor with the appealing characteristic of a short time delay, being the descendent of relatively massive stars.

  6. The formation efficiency of high-mass X-ray binaries in our two nearest star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Antoniou, Vallia; Zezas, Andreas

    2016-04-01

    We present the results of our investigation of the link between high-mass X-ray binaries (HMXBs) and star formation in the Magellanic Clouds, our nearest star-forming galaxies. Using the most complete census of HMXBs in the Large Magellanic Cloud (LMC) and the published spatially resolved star-formation history map of this galaxy, we find that the HMXBs (and as expected the X-ray pulsars) are present in regions with star-formation bursts ˜6-25 Myr ago. In contrast, this population peaks at later ages (˜25-60 Myr ago) in the Small Magellanic Cloud (SMC). Thus, this study (in combination with previous works) reinforces the idea that the HMXBs are associated with young stellar populations of ages ˜10-40 Myr. In addition, we estimate an HMXB production rate of 1 system per ˜(23.0-4.1+4.4)×10-3 M⊙/yr or 1 system per ˜143M⊙ of stars formed during the associated star-formation episode. Therefore, the formation efficiency of HMXBs in the LMC is ˜17 times lower than that in the SMC. We attribute this difference primarily in the different ages and metallicity of the HMXB populations in the two galaxies. We also set limits on the kicks imparted on the neutron star during the supernova explosion. We find that the time elapsed since the supernova kick is ˜3 times shorter in the LMC than the SMC. This in combination with the average offsets of the HMXBs from their nearest star clusters results in ˜4 times faster transverse velocities for HMXBs in the LMC than in the SMC.

  7. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  8. MOLECULAR ENVIRONMENT AND AN X-RAY SPECTROSCOPY OF SUPERNOVA REMNANT KESTEVEN 78

    SciTech Connect

    Zhou Ping; Chen Yang

    2011-12-10

    We investigate the molecular environment of the Galactic supernova remnant (SNR) Kesteven 78 and perform an XMM-Newton X-ray spectroscopic study for the northeastern edge of the remnant. SNR Kes 78 is found to interact with the molecular clouds (MCs) at a systemic local standard of rest velocity of 81 km s{sup -1}. At around this velocity, the SNR appears to contact a long molecular strip in the northeast and a large cloud in the east as revealed in the {sup 13}CO line, which may be responsible for the radio brightness peak and the OH maser, respectively. The {sup 12}CO-line bright region morphologically matches the eastern bright radio shell in general, and the SNR is consistent in extent with a CO cavity. Broadened {sup 12}CO-line profiles discerned in the eastern maser region and the western clumpy molecular arc and the elevated {sup 12}CO (J = 2-1)/(J = 1-0) ratios along the SNR boundary may be signatures of shock perturbation in the molecular gas. The SNR-MC association places the SNR at a kinematic distance of 4.8 kpc. The X-rays arising from the northeastern radio shell are emitted by underionized hot ({approx}1.5 keV), low-density ({approx}0.1 cm{sup -3}) plasma with solar abundance, and the plasma may be of intercloud origin. The age of the remnant is inferred to be about 6 kyr. The size of the molecular cavity in Kes 78 implies an initial mass around 22 M{sub Sun} for the progenitor.

  9. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  10. On the rarity of X-ray binaries with Wolf-Rayet donors

    SciTech Connect

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  11. The X-ray and Spectropolarimetric View of Mass Loss and Transfer in Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.

    2014-01-01

    The majority of massive stars are members of binary systems. However, in order to understand their evolutionary pathways, mass and angular momentum loss from these systems needs to be well characterized. Self-consistent explanations for their behavior across many wavelength regimes need to be valid in order to illuminate key evolutionary phases. In this talk I will present the results of an X-ray and spectropolarimetric study of three key binaries: beta Lyrae, V444 Cyg, and WR 140. In beta Lyrae, I will show a repeatable discrepancy between secondary eclipse in the total and polarized light curves indicates an accretion hot spot has formed on the edge of the disk in the system. The existence of this hot spot and its relationship to bipolar outflows within the system is important in the understanding of mass transfer dynamics in Roche-lobe overflow binaries. For V444 Cyg, I will present the results of an X-ray and polarimetric monitoring campaign which indicate the effects of radiative inhibition or braking, and the Coriolis force can be significant contributors to the location and shape of the shock within colliding wind binaries. Additionally, I will present data from WR 140 that suggest unexpected intrinsic hard X-ray emission may be present at some and argue that better polarimetric monitoring of the system is needed. Continued work on these and additional objects will provide new and important constraints on the mass loss structures within binary systems. This research includes contributions from collaborators at the University of Denver, NASA/GSFC, The Universite de Liege, The University of Toledo, East Tennessee State University, The University of Leeds, ESA, Hokkai-Gakuen University, NRAO, The University of Delaware, and Vanderbilt University. Additionally, I acknowledge support from the NASA Harriett G. Jenkins Pre-doctoral Fellowship Program, Sigma Xi’s Grants-in-Aid of Research Program, and NASA ADAP award NNH12ZDA001N.

  12. Classification of compact binaries: an X-ray analog to the HR diagram

    NASA Astrophysics Data System (ADS)

    Vrtilek, Saeqa Dil; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  13. Chandra Observations of the Faintest Low-Mass X-ray Binaries

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; vanderKlis, Michiel; Lewin, Walter H. G.; Belloni, Tomaso

    2003-01-01

    There exists a group of persistently faint galactic X-ray sources that, based on their location in the galaxy, high L(sub X)/L(sub opt), association with X-ray bursts, and absence of low frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for 8 of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected) were improved to 0.6 sec error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408,2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power law indices typically 1.4-2.1, which are consistent with typical faint LMXB spectra.

  14. Chandra Observations of the Faintest Low-Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; vanderKlis, Michiel; Lewin, Walter H. G.; Belloni, Tomaso; Mendez, Mariano

    2003-01-01

    A group of persistently faint Galactic X-ray sources exist that, based on their location in the Galaxy, high L(sub X)/L(sub opt), association with X-ray bursts, and absence of low-frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all these sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected), were improved to 0.6 sec error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power-law indices typically 1.4-2.1, which is consistent with typical faint LMXB spectra.

  15. Chandra Observations of the Faintest Low-Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Patel, Sandeep K.; Kouveliotou, Chryssa; Jonker, Peter G.; vanderKlis, Michiel; Lewin, Walter H. G.; Belloni, Tomaso; Mendez, Mariano

    2003-01-01

    A group of persistently faint Galactic X-ray sources exist that, based on their location in the Galaxy, high L(sub X)/L(sub opt), association with X-ray bursts, and absence of low-frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all these sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected), were improved to 0.6 sec error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power-law indices typically 1.4-2.1, which is consistent with typical faint LMXB spectra.

  16. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    NASA Astrophysics Data System (ADS)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  17. Isotropic Detectable X-Ray Counterparts to Gravitational Waves from Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakamura, Takashi

    2015-08-01

    Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs), but the emission is highly collimated. We propose that the scattering of the long-lasting plateau emission in short GRBs by the merger ejecta produces nearly isotropic emission for ˜ {10}4 s with flux {10}-13-{10}-10 erg cm-2 s-1 at 100 Mpc in X-ray. This is detectable by Swift/XRT and wide field X-ray detectors such as ISS-Lobster, Einstein Probe, eROSITA, and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity, and GW polarizations. The activity of the plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the r-process radioactivity.

  18. Classification of compact binaries: an X-ray analog to the HR diagram

    NASA Astrophysics Data System (ADS)

    Dil Vrtilek, Saeqa; Raymond, John C.; Gopalan, Giri; Boroson, Bram Seth; Bornn, Luke

    2016-06-01

    X-ray binary systems (XRBs), when examined in an appropriate coordinate system derived from X-ray spectral and intensity information, appear to cluster based on their compact object type. We introduce such a coordinate system, in which two coordinates are hardness ratios and the third is a broadband X-ray intensity. In Gopalan, Vrtilek, & Bornn (2015) we developed a Bayesian statistical model that estimates the probability that an XRB contains a black hole, non-pulsing neutron star, or pulsing neutron star, depending on its location in our coordinate space. In particular, we utilized a latent variable model in which the latent variables follow a Gaussian process prior distribution. Here we expand our work to incorporate systems where the compact object is a white dwarf: cataclysmic variables (CVs). The fact that the CVs also fall into a location spatially distinct from the other XRB types supports the use of X-ray color-color-intensity diagrams as 3-dimensional analogs to the Hertzsprung-Russell diagram for normal stars.

  19. Wind-jet interaction in high-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.

  20. Two Distinct-absorption X-Ray Components from Type IIn Supernovae: Evidence for Asphericity in the Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Maeda, Keiichi; Bamba, Aya; Terada, Yukikatsu; Fukazawa, Yasushi; Kawabata, Koji; Ohno, Masanori; Sugawara, Yasuharu; Tsuboi, Yohko; Immler, Stefan

    2016-12-01

    We present multi-epoch X-ray spectral observations of three Type IIn supernovae (SNe), SN 2005kd, SN 2006jd, and SN 2010jl, acquired with Chandra, XMM-Newton, Suzaku, and Swift. Previous extensive X-ray studies of SN 2010jl have revealed that X-ray spectra are dominated by thermal emission, which likely arises from a hot plasma heated by a forward shock propagating into a massive circumstellar medium (CSM). Interestingly, an additional soft X-ray component was required to reproduce the spectra at a period of ˜1-2 years after the SN explosion. Although this component is likely associated with the SN, its origin remained an open question. We find a similar, additional soft X-ray component from the other two SNe IIn as well. Given this finding, we present a new interpretation for the origin of this component; it is thermal emission from a forward shock essentially identical to the hard X-ray component, but directly reaches us from a void of the dense CSM. Namely, the hard and soft components are responsible for the heavily and moderately absorbed components, respectively. The co-existence of the two components with distinct absorptions as well as the delayed emergence of the moderately absorbed X-ray component could be evidence for asphericity of the CSM. We show that the X-ray spectral evolution can be qualitatively explained by considering a torus-like geometry for the dense CSM. Based on our X-ray spectral analyses, we estimate the radius of the torus-like CSM to be on the order of ˜5 × 1016 cm.

  1. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    SciTech Connect

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by the presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.

  2. Detection of the Second Eclipsing High-Mass X-Ray Binary in M 33

    NASA Astrophysics Data System (ADS)

    Pietsch, Wolfgang; Haberl, Frank; Gaetz, Terrance J.; Hartman, Joel D.; Plucinsky, Paul P.; Tüllmann, Ralph; Williams, Benjamin F.; Shporer, Avi; Mazeh, Tsevi; Pannuti, Thomas G.

    2009-03-01

    Chandra data of the X-ray source [PMH2004] 47 were obtained in the ACIS Survey of M 33 (ChASeM33) in 2006. During one of the observations, the source varied from a high state to a low state and back, in two other observations it varied from a low state to respectively intermediate states. These transitions are interpreted as eclipse ingresses and egresses of a compact object in a high-mass X-ray binary (HMXB) system. The phase of mideclipse is given by HJD 245 3997.476 ± 0.006, the eclipse half angle is 30fdg6 ± 1fdg2. Adding XMM-Newton observations of [PMH2004] 47 in 2001 we determine the binary period to be 1.732479 ± 0.000027 days. This period is also consistent with ROSAT HRI observations of the source in 1994. No short-term periodicity compatible with a rotation period of the compact object is detected. There are indications for a long-term variability similar to that detected for Her X-1. During the high state the spectrum of the source is hard (power-law spectrum with photon index ~0.85) with an unabsorbed luminosity of 2 ×1037 erg s-1 (0.2-4.5 keV). We identify as an optical counterpart a V ~ 21.0 mag star with T eff>19000 K, log(g)>2.5. The Canada-France-Hawaii Telescope optical light curves for this star show an ellipsoidal variation with the same period as the X-ray light curve. The optical light curve together with the X-ray eclipse can be modeled by a compact object with a mass consistent with a neutron star or a black hole in an HMXB. However, the hard power-law X-ray spectrum favors a neutron star as the compact object in this second eclipsing X-ray binary in M 33. Assuming a neutron star with a canonical mass of 1.4 M sun and the best-fit companion temperature of 33,000 K, a system inclination i = 72° and a companion mass of 10.9 M sun are implied.

  3. The XMM-Newton survey of the Small Magellanic Cloud: a new X-ray view of the symbiotic binary SMC 3

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Greiner, J.; Pietsch, W.; La Palombara, N.; Ehle, M.; Gilfanov, M.; Udalski, A.; Mereghetti, S.; Filipović, M.

    2011-05-01

    Context. The XMM-Newton survey of the Small Magellanic Cloud (SMC) was performed to study the population of X-ray sources in this neighbouring galaxy. During one of the observations, the symbiotic binary SMC 3 was found at its highest X-ray luminosity as observed until now. Aims: In SMC 3 wind accretion from a giant donor star onto a white dwarf is believed to cause steady hydrogen burning on the white dwarf surface, making such systems candidates for supernova type Ia progenitors. It was suggested that the X-ray source is eclipsed every ~4.5 years by both the companion star and its stellar wind to explain the large X-ray variability seen in ROSAT data. We use the available X-ray data to test this scenario. Methods: We present the ~20 year X-ray light curve of SMC 3 and study the spectral evolution as seen with XMM-Newton/EPIC-pn to investigate possible scenarios which can reproduce the high X-ray variability. Results: We did not find any significant variations in the photo-electric absorption, as would be expected during eclipse ingress and egress. Instead, the X-ray spectra from different intensity levels, when modelled by black-body emission, can be better explained by variations either in normalisation (by a factor of ~50) or in temperature (kT between 24 eV and 34 eV). The light curve shows maxima and minima with slow transitions between them. Conclusions: To explain the gradual variations in the X-ray light curve and to avoid changes in absorption by neutral gas, a predominant part of the stellar wind must be ionised by the X-ray source. Compton scattering with variable electron column density (of the order of 5 × 1024 cm-2) along the line of sight could then be responsible for the intensity changes. The X-ray variability of SMC 3 could also be caused by temperature changes in the hydrogen-burning envelope of the white dwarf, an effect that could even dominate if the stellar wind density is not sufficiently high.

  4. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sato, Toshiki; Hughes, John P.

    2017-08-01

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions (μ ˜ 0.″11-0.″14 yr-1) and high radial velocities (v ˜ 8700-10,020 km s-1). For these knots the estimated space velocities (9100 km s-1 ≲ v 3D ≲ 10,400 km s-1) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density (n H < 0.1 cm-3) in the ambient medium. X-ray spectral analysis shows that the undecelerated knots have high Si and S abundances, a lower Fe abundance, and very low O abundance, pointing to an origin in the partial Si-burning zone, which occurs in the outer layer of the exploding white dwarf for models of SNe Ia. Other knots show lower speeds and expansion indices consistent with decelerated ejecta knots or features in the ambient medium overrun by the forward shock. Our new accurate location for the explosion site has well-defined positional uncertainties, allowing for a great reduction in the area to be searched for faint surviving donor stars under non-traditional single

  5. Confirmation of IGR J01363 plus 6610 as a Be X-Ray Binary with Very Low Quiescent X-Ray Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Heinke, Craig; Halpern, Jules; Kaaret, Philip; Chaty, Sylvain; Rodriguez, Jerome; Bodaghee, Arash

    2011-01-01

    The field containing the candidate High Mass X-ray Binary IGR J01 363+6610 was observed by XMM-Newton on 2009 July 31 for 28 ks. A Be star was previously suggested as the possible counterpart of the INTEGRAL source, and although Chandra, during a 2007 observation, did not detect an X-ray source at the position of the Be star, we find a variable source (XMMU 101 3549.5+661243) with an average X-ray flux of 2 x 10(exp -13)ergs/sq cm/s (0.2-12 keV, unabsorbed) at this position with XMM-Newton. The spectrum of this source is consistent with a hard power law with a photon index of r = 1.4+/-0.3 and a column density of N(sub H) = (15(+0.7/-0.5)) x 10(exp 22)/sq cm (90% confidence errors). These results, along with our optical investigation of other X-ray sources in the field, make the association with the Be star very likely, and the 2 kpc distance estimate for the Be star indicates an X-ray luminosity of 9.1 x 10(exp 31) ergs/s. This is lower than typical for a Be X-ray binary, and the upper limit on the luminosity was even lower ( < 1.4 x 10(exp 3)ergs/s assuming the same spectral model) during the Chandra observation. We discuss possible implications of the very low quiescent luminosity for the physical properties of IGR 101363+6610.

  6. THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807

    SciTech Connect

    Degenaar, N.; Patruno, A.; Wijnands, R.

    2012-09-10

    Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

  7. Unification of Low Luminosity AGN and Hard State X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Connolly, S.

    2015-09-01

    We present X-ray spectral variability of four low accretion rate and low luminosity AGN (LLAGN)- M81, NGC 1097, NGC 1052 and NGC 3998 - as observed by Swift and RXTE. All four objects were selected due to having spectra which hardened with increasing count rate, converse to the 'softer when brighter' behaviour normally observed in AGN with higher accretion rates. The spectra were summed in flux bins and fitted with a variety of models. A simple absorbed power law model was found to fit the spectra of M81, NGC 1097 and NGC 3998 well, whilst NGC 1052 required a partially covered power law model. In all four cases, the most likely cause of spectral variability is found to be hardening of the photon index of the power law component with increasing luminosity. Such a correlation has been seen previously within samples of low accretion rate AGN but in only one case has it been seen within observations of a single AGN. Here we show that such behaviour may be very common in LLAGN. A similar anticorrelation is found in X-ray binary systems in the 'hard state', at low accretion rates similar to those of the LLAGN discussed here. Our observations thus imply that LLAGN are the active galaxy equivalent of hard state X-ray binaries.

  8. Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu

    2017-02-01

    We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magnetic field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ-ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ-ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ-ray bands.

  9. Correlated Temporal and Spectral Variability in Neutron Star and Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2006-01-01

    The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the X-ray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and what they tell us about the physical states of the systems.

  10. Spectral-Timing to Probe Strong Gravity in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Stevens, Abigail; Uttley, Phil

    2017-01-01

    X-ray spectral-timing seeks to investigate how matter behaves in strong gravitational fields. Observations suggest that different types of quasi-periodic oscillations (QPOs) are associated with different emission-region geometries (e.g. disk-like or jet-like) in the innermost part of an X-ray binary, close to the neutron star or black hole. We developed a technique for phase-resolved spectroscopy of QPOs, and have applied it to low-frequency QPOs from black hole X-ray binaries. On the QPO time-scale, we find that the energy spectrum changes not only in normalization, but also in spectral shape. We identify these changes as a phase-dependence of the intrinsic power-law emission as well as the response of the accretion disk to variable illumination by the power-law. We also look for systematic trends between different classes of sources and different accretion states. These trends help us to further constrain the origin of low-frequency QPOs and QPO evolution with the changing emission geometry in the strong-gravity regime.

  11. Chandra High Resolution Spectroscopy of the Be X-Ray binary A0535+262

    NASA Astrophysics Data System (ADS)

    Reynolds, Mark

    2008-09-01

    We propose to observe the Be X-ray pulsar binary 1A 0535+262 with Chandra HETGS for 20 ks. This observations will allow us to investigate: 1) High M_dot accretion onto a NS: These observations will allow us to probe accretion at a high fraction of the Eddington luminosity onto a neutron star with an accurately constrained B-field (4e12 -- Cyclotron lines) and spin period (X-ray pulsations). 2) Disk winds from accreting compact objects: Miller et al. (2008) have previously obtained HETGS spectra of the black hole transient GRO J1655-40; while Ueda et al. (2004) have obtained HETGS spectra of the Z-source GX13+1. In both cases numerous wind absorption lines are observed. 3) Relativistic accretion disk emission lines: Cackett et al. (2009) have observed relativistic Fe emission from a sample of accreting neutron star LMXBs (Z, Atoll, MSP) providing constraints on the radius of the neutron star. This will be the definitive Chandra observation of a Be X-ray binary.

  12. POTENTIAL GAMMA-RAY EMISSIONS FROM LOW-MASS X-RAY BINARY JETS

    SciTech Connect

    Zhang, Jian-Fu; Gu, Wei-Min; Liu, Tong; Xue, Li; Lu, Ju-Fu E-mail: guwm@xmu.edu.cn

    2015-06-20

    By proposing a pure leptonic radiation model, we study the potential gamma-ray emissions from the jets of low-mass X-ray binaries. In this model, the relativistic electrons that are accelerated in the jets are responsible for radiative outputs. Nevertheless, jet dynamics are dominated by magnetic and proton–matter kinetic energies. The model involves all kinds of related radiative processes and considers the evolution of relativistic electrons along the jet by numerically solving the kinetic equation. Numerical results show that the spectral energy distributions can extend up to TeV bands, in which synchrotron radiation and synchrotron self-Compton scattering are dominant components. As an example, we apply the model to the low-mass X-ray binary GX 339–4. The results not only can reproduce the currently available observations from GX 339–4, but also predict detectable radiation at GeV and TeV bands by the Fermi and CTA telescopes. Future observations with Fermi and CTA can be used to test our model, which could be employed to distinguish the origin of X-ray emissions.

  13. The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin

    2016-02-01

    We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.

  14. ECLIPSE TIMINGS OF THE TRANSIENT LOW-MASS X-RAY BINARY EXO 0748-676. IV. THE ROSSI X-RAY TIMING EXPLORER ECLIPSES

    SciTech Connect

    Wolff, Michael T.; Ray, Paul S.; Wood, Kent S.; Hertz, Paul L. E-mail: Paul.Ray@nrl.navy.mil E-mail: Paul.Hertz@nasa.gov

    2009-07-01

    We report our complete database of X-ray eclipse timings of the low-mass X-ray binary EXO 0748-676 observed by the Rossi X-Ray Timing Explorer (RXTE) satellite. As of this writing we have accumulated 443 full X-ray eclipses, 392 of which have been observed with the Proportional Counter Array on RXTE. These include both observations where an eclipse was specifically targeted and those eclipses found in the RXTE data archive. Eclipse cycle count has been maintained since the discovery of the EXO 0748-676 system in 1985 February. We describe our observing and analysis techniques for each eclipse and describe improvements we have made since the last compilation by Wolff et al. The principal result of this paper is the database containing the timing results from a seven-parameter fit to the X-ray light curve for each observed eclipse along with the associated errors in the fitted parameters. Based on the standard O - C analysis, EXO 0748-676 has undergone four distinct orbital period epochs since its discovery. In addition, EXO 0748-676 shows small-scale events in the O - C curve that are likely due to short-lived changes in the secondary star.

  15. X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5

    SciTech Connect

    Montez, Rodolfo; Kastner, Joel H.; De Marco, Orsola; Chu, You-Hua

    2010-10-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.

  16. The Orbit and Properties of the BD+60 73 + IGRJ00370+612 Supergiant X-Ray Binary

    NASA Astrophysics Data System (ADS)

    Bolton, C. T.; Grunhut, J. H.

    2007-08-01

    Spectrograms of the blue and H alpha regions of BD+60 73 obtained with the Cassegrain spectrograph on the David Dunlap Observatory 1.88 m telescope have been measured for radial velocities. These measures confirm that BD+60 73 is a single-line spectroscopic binary with the same period, 15.665 d, as the x-ray flux variations of IGRJ00370+612. The x-ray maxima occur at or just after the time of periastron passage, even though the eccentricity e=0.37 does not seem large enough to produce a large increase in the mass flux at the position of the compact object at the time of periastron passage. The mass function combined with a plausible range of possible masses for a neutron star companion yields primary masses within the range expected for the spectral type of BD+60 73. The compact companion cannot be a black hole unless the supergiant has an exceptionally high mass for its B1Ib spectral type or the inclination of the orbit is very low. The H alpha line shows weak, variable emission, but we have insufficient data to test whether these variations are correlated with orbital phase. We note, as have other authors, that BD+60_73 is projected on the sky within the bounds of Cas OB5. It also lies close to the "adolescent" supernova remnant CTB1. However, the binary system has a radial velocity of approximately -40 km/s with respect to Cas OB5.

  17. X-ray study of the supernova remnant G337.2-0.7

    NASA Astrophysics Data System (ADS)

    Takata, Akihiro; Nobukawa, Masayoshi; Uchida, Hiroyuki; Tsuru, Takeshi Go; Tanaka, Takaaki; Koyama, Katsuji

    2016-06-01

    This paper reports on the Suzaku result of the Galactic supernova remnant (SNR) G337.2-0.7. The X-ray spectrum is well explained by three components in ionizing phase. One is a plasma with a low temperature kT = 0.70_{-0.03}^{+0.02}keV, solar abundances, and an ionization parameter n_et = 5.7^{+0.7}_{-0.4}× 10^{11}s cm-3. The second is a middle-temperature plasma with kT = 1.54^{+0.13}_{-0.02}keV and high metal abundances in a highly ionized state of n_et = 3.6^{+0.2}_{-0.5}× 10^{11}s cm-3, and the third is a high-temperature plasma with kT = 3.1^{+0.2}_{-0.1}keV and high metal abundances in a low-ionized state of n_et=2.1^{+0.4}_{-0.2}× 10^{10}s cm-3. The high metal-abundance plasmas are likely to be of an ejecta origin, while the solar abundance plasma would be of an interstellar-gas origin. The abundance pattern and mass of the ejecta confirm that G337.2-0.7 is a remnant of a Type Ia supernova (SN). The derived Fe mass of ejecta MFe = 0.025-0.039 M⊙ is far smaller than that expected from any Type Ia model, suggesting that most Fe has not yet been heated by the reverse shock. The ejecta has enhanced distribution in the northeastern region compared to the central region, and therefore the SN explosion or SNR evolution would be asymmetric.

  18. Faint and soft X-ray binaries in three dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Orio, Marina

    2007-10-01

    We propose to observe three nearby dwarf spheroidal (dSph) companions of the Milky Way. These galaxies host old populations with little or no contamination of recent star formation, and appear to have a huge dark matter content. They are the ideal Rosetta stones to probe theories of X-ray binary formation, type Ia progenitors evolution, and dark matter halos.Recent observations of four other dSph with Chandra and XMM-Newton have revealed a large number of X-ray sources in the fields, effected by small column density of neutral hydrogen N(H).Using deep optical and UV images, archival HST and GALEX exposures, and later spectroscopic follow-up, we will be able to determine the nature of the sources and whether they belong to the galactic populations.

  19. Evidence for the binary nature of Centaurus X-3 from Uhuru X-ray observations.

    NASA Technical Reports Server (NTRS)

    Schreier, E.; Levinson, R.; Gursky, H.; Kellogg, E.; Tananbaum, H.; Giacconi, R.

    1972-01-01

    Analysis of data spanning a year of observations of the pulsating X-ray source Cen X-3 from Uhuru has revealed the existence of periodic variations in intensity of the source and correlated sinusoidal variations in the period of the 4.8-sec pulsations. We interpret this effect as due to an occulting binary system. The changes in intensity are then due to occultation of the X-ray source by a large massive companion, and the sinusoidal variations in the period of the 4.8-sec pulsations are due to Doppler effect. Physical parameters for the system are derived, and evidence for the existence and nature of an extended atmosphere surrounding the massive occulting object is discussed.

  20. Monitoring the latest stages of a transient neutron star X-ray binary

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    2012-10-01

    Neutron star transient low mass X-ray binaries (TLMXB) are among the brightest sources in the X-ray sky. Their outbursts are well known and studied. Despite this, their return to quiescence has been studied only in a handful of cases. This return is quite fast making even more difficult. Recently we monitor in high detail the return to quiescence of the archetypal TLMXB Aql X-1 thanks to XMM-Newton observations. We probed for the first time the cooling of the neutron star after a (short) outburst, finding a very short cooling time ( 3d). Thanks to an approved Swift XRT program for monitoring every day for 5 ks (for 30 d) the latest stages of a TLMXB, we are aiming assessing the spectral properties of a transient LMXB close to the quiescent level.

  1. V404 Cyg - an Interacting Black-Hole Low-Mass X-ray Binary

    NASA Astrophysics Data System (ADS)

    Fox, Ori; Mauerhan, Jon; Graham, Melissa

    2015-07-01

    This DDT proposal is prompted by the June 15, 2015 outburst of V404 Cyg, a black-hole (BH) low-mass X-ray binary (LMXB). This outburst stands out since it is the first black hole system with a measured parallax, lying at a distance of only 2.39+/-0.14 kpc. An extensive and loosely organized multi-wavelength campaign is already underway by the astronomical community. One of the missing pieces of the puzzle is the mid-infrared (IR). Combined with radio, optical, and X-ray data, the mid-IR will help to discriminate discriminate between an accretion disk, jet emission, or circumstellar dust scenarios. Spitzer offers a unique opportunity to observe at these wavelengths. Here we propose 4 very short (5-minutes at 3.6 and 4.5 micron) observations of IRAC hotometry to search for the presence of warm dust and, if present, constrain the heating mechanism.

  2. Near-infrared spectroscopy of the brightest neutron-star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; van den Berg, Maureen

    2014-02-01

    The bright persistent neutron-star X-ray binaries (NSXBs) show a wide variety of phenomena in X-rays that are thought to be driven by near-Eddington mass accretion rates. We have recently started a program of near-infrared photometric and spectroscopic observations of these sources with the aim to understand a broad range of properties of these systems; disk line emission, donor spectral type, and the relation between jet outflows and disk winds. Here we request Flamingos-2 spectra of two sources from different NSXB subclasses, GX 3+1 and GX 340+0, which are thought to accrete at stubstantially different rates. Our main goal is to acquire more information on how the above properties are related to each other and to mass accretion rate. We request a total of 5.1 hr.

  3. X-ray accretion signatures in the close CTTS binary V4046 Sagittarii

    NASA Astrophysics Data System (ADS)

    Günther, H. M.; Liefke, C.; Schmitt, J. H. M. M.; Robrade, J.; Ness, J.-U.

    2006-11-01

    We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ni IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additional stellar corona. V4046 Sgr is the first close binary exhibiting these features. Together with previous high-resolution X-ray data on TW Hya and BP Tau, and in contrast to T Tau, now three out of four CTTS show evidence of accretion funnels.

  4. The atmospheric structures of the companion stars of eclipsing binary x ray sources

    NASA Technical Reports Server (NTRS)

    Clark, George W.

    1992-01-01

    This investigation was aimed at determining structural features of the atmospheres of the massive early-type companion stars of eclipse x-ray pulsars by measurement of the attenuation of the x-ray spectrum during eclipse transitions and in deep eclipse. Several extended visits were made to ISAS in Japan by G. Clark and his graduate student, Jonathan Woo to coordinate the Ginga observations and preliminary data reduction, and to work with the Japanese host scientist, Fumiaki Nagase, in the interpretation of the data. At MIT extensive developments were made in software systems for data interpretation. In particular, a Monte Carlo code was developed for a 3-D simulation of the propagation of x-rays from the neutron star through the ionized atmosphere of the companion. With this code it was possible to determine the spectrum of Compton-scattered x-rays in deep eclipse and to subtract that component from the observed spectra, thereby isolating the software component that is attributable in large measure to x-rays that have been scattered by interstellar grains. This research has culminated in the submission of paper to the Astrophysical Journal on the determination of properties of the atmosphere of QV Nor, the BOI companion of 4U 1538-52, and the properties of interstellar dust grains along the line of sight from the source. The latter results were an unanticipated byproduct of the investigation. Data from Ginga observations of the Magellanic binaries SMC X-1 and LMC X-4 are currently under investigation as the PhD thesis project of Jonathan Woo who anticipated completion in the spring of 1993.

  5. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    SciTech Connect

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew

    2014-07-01

    We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  6. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative

  7. INFRARED AND X-RAY SPECTROSCOPY OF THE Kes 75 SUPERNOVA REMNANT SHELL: CHARACTERIZING THE DUST AND GAS PROPERTIES

    SciTech Connect

    Temim, Tea; Arendt, Richard G.; Slane, Patrick; Dwek, Eli

    2012-01-20

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of {approx}1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of {approx}140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 Multiplication-Sign 10{sup -2} M{sub Sun }, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide

  8. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of

  9. The Mysterious sdO X-ray Binary BD+37°442

    NASA Astrophysics Data System (ADS)

    Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.

    2014-04-01

    Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.

  10. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    SciTech Connect

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-02-15

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  11. Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion

    NASA Astrophysics Data System (ADS)

    Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.

    2014-02-01

    By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.

  12. Three-dimensional Hydrodynamic Simulations of Accretion in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Raymer, Eric John

    Wind accretion in high-mass X-ray binaries (HMXBs) often results in highly variable X-ray behavior, the nature of which is not well understood. Most models of wind accretion are based on the analytical predictions of Hoyle-Lyttleton accretion (HLA), which assumes a steady axisymmetric flow. Surprisingly little is known about the structure, stability, and time-evolution of HLA in three dimensions, particularly in the presence of non-uniform winds. This work describes hydrodynamic simulations of idealized HLA in three-dimensions, then applies these simulations to two HMXB subclasses that exhibit unexplained X-ray behavior. Our idealized HLA models show that the accretion flow remains steady and stable in two-dimensional axisymmetric and three dimensional grid geometries, assuming a uniform upstream flow. We test the stability of the model with linear upstream density gradients and find that they are able to induce rotational flow around the accretor that reduces the mass accretion rate by up to an order of magnitude. We apply our 3D model to accretion in the context of Be/X-ray binaries, in which the accreting neutron star is immersed in the dense decretion disk of the Be donor star. These systems have traditionally been described with 2D models that exhibit the flip-flop instability. This instability results in the formation and destruction of transient accretion disks with accompanying bursts of mass accretion. Our 3D models show no sign of the flip-flop instability, but instead display rotation about the neutron star directed primarily out of the plane of the decretion disk. This rotation generates large-scale asymmetries in the bow shock and suppresses mass accretion by up to two orders of magnitude. The accretion of a clumped stellar wind is one of the primary mechanisms proposed to explain the high-luminosity X-ray flares of supergiant fast X-ray transients. We model clump accretion in 3D to determine whether the impact of a clump can produce flares with a

  13. Hard X-ray emission and {sup 44}Ti line features of the Tycho supernova remnant

    SciTech Connect

    Wang, Wei; Li, Zhuo E-mail: zhuo.li@pku.edu.cn

    2014-07-10

    A deep hard X-ray survey of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected for the first time non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3-100 keV spectrum is fitted with a thermal bremsstrahlung of kT ∼ 0.81 ± 0.45 keV plus a power-law model of Γ ∼ 3.01 ± 0.16. Based on diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that the Tycho remnant may not accelerate protons up to >PeV but to hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral 'knee'. In addition, using INTEGRAL, we search for soft gamma-ray lines at 67.9 and 78.4 keV that come from the decay of radioactive {sup 44}Ti in the Tycho remnant. A bump feature in the 60-90 keV energy band, potentially associated with the {sup 44}Ti line emission, is found with a marginal significance level of ∼2.6σ. The corresponding 3σ upper limit on the {sup 44}Ti line flux amounts to 1.5 × 10{sup –5} photon cm{sup –2} s{sup –1}. Implications on the progenitor of the Tycho SN, considered to be a Type Ia SN prototype, are discussed.

  14. High Resolution X-Ray Spectroscopy and Imaging of Supernova Remnant N132D

    NASA Technical Reports Server (NTRS)

    Behar, Ehud; Rasmussen, Andrew; Griffiths, R. Gareth; Dennerl, Konrad; Audard, Marc; Aschenbach, Bernd

    2000-01-01

    The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K - shell Fe seems to originate near the centre, all of the other ions are observed along the shell. An emission excess of O(6+) over O(7+) is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect a relatively cool region. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O(6+) spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.

  15. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  16. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  17. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  18. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  19. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; Mukai, K.; Possenti, A.

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  20. UV and X-ray emission in the interacting binary U Cephei

    NASA Technical Reports Server (NTRS)

    Gimenez, A.; Guinan, E. F.; Gonzalez-Riestra, R.

    1993-01-01

    The active close binary U Cep has been monitored in the ultraviolet, using IUE, during 1.25 orbital cycles. The emission spectrum at the bottom of the primary total eclipse confirms earlier suggestions of an unexpected absence of the Hell 1640 A line. Stronger than expected emission in some other lines like NV, CII, CIV or AlIII, indicative of hot plasma, points out that some important differences still remain between the active components of RS CVn-type binaries and the mass-losing components of semidetached Algols. Simultaneous X-ray measurements, carried out with GINGA, indicated a low upper limit flux in the observed energy range (1 to 10 keV). A comparison with other binary systems or isolated stars is discussed in order to understand the obtained results.

  1. A New Method to Constrain Supernova Fractions Using X-ray Observations of Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-01-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112.We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% plus or minus 5.4% to 37.1% plus or minus 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 plus or minus 0.34) x 10(exp 9), to (1.28 plus or minus 0.43) x 10(exp 9), fromsnapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kiloparsecs of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  2. A NEW METHOD TO CONSTRAIN SUPERNOVA FRACTIONS USING X-RAY OBSERVATIONS OF CLUSTERS OF GALAXIES

    SciTech Connect

    Bulbul, Esra; Smith, Randall K.; Loewenstein, Michael

    2012-07-01

    Supernova (SN) explosions enrich the intracluster medium (ICM) both by creating and dispersing metals. We introduce a method to measure the number of SNe and relative contribution of Type Ia supernovae (SNe Ia) and core-collapse supernovae (SNe cc) by directly fitting X-ray spectral observations. The method has been implemented as an XSPEC model called snapec. snapec utilizes a single-temperature thermal plasma code (apec) to model the spectral emission based on metal abundances calculated using the latest SN yields from SN Ia and SN cc explosion models. This approach provides a self-consistent single set of uncertainties on the total number of SN explosions and relative fraction of SN types in the ICM over the cluster lifetime by directly allowing these parameters to be determined by SN yields provided by simulations. We apply our approach to XMM-Newton European Photon Imaging Camera (EPIC), Reflection Grating Spectrometer (RGS), and 200 ks simulated Astro-H observations of a cooling flow cluster, A3112. We find that various sets of SN yields present in the literature produce an acceptable fit to the EPIC and RGS spectra of A3112. We infer that 30.3% {+-} 5.4% to 37.1% {+-} 7.1% of the total SN explosions are SNe Ia, and the total number of SN explosions required to create the observed metals is in the range of (1.06 {+-} 0.34) Multiplication-Sign 10{sup 9} to (1.28 {+-} 0.43) Multiplication-Sign 10{sup 9}, from snapec fits to RGS spectra. These values may be compared to the enrichment expected based on well-established empirically measured SN rates per star formed. The proportions of SNe Ia and SNe cc inferred to have enriched the ICM in the inner 52 kpc of A3112 is consistent with these specific rates, if one applies a correction for the metals locked up in stars. At the same time, the inferred level of SN enrichment corresponds to a star-to-gas mass ratio that is several times greater than the 10% estimated globally for clusters in the A3112 mass range.

  3. SWIFT/BAT DETECTION OF HARD X-RAYS FROM TYCHO'S SUPERNOVA REMNANT: EVIDENCE FOR TITANIUM-44

    SciTech Connect

    Troja, E.; Baumgartner, W.; Markwardt, C.; Barthelmy, S.; Gehrels, N.; Segreto, A.; La Parola, V.; Cusumano, G.; Hartmann, D.

    2014-12-10

    We report Swift/Burst Alert Telescope survey observations of the Tycho's supernova remnant, performed over a period of 104 months since the mission's launch. The remnant is detected with high significance (>10σ) below 50 keV. We detect significant hard X-ray emission in the 60-85 keV band, above the continuum level predicted by a simple synchrotron model. The location of the observed excess is consistent with line emission from radioactive titanium-44, so far reported only for Type II supernova explosions. We discuss the implications of these results in the context of the galactic supernova rate, and nucleosynthesis in Type Ia supernova.

  4. The search for low-luminosity high-mass X-ray binaries and the study of X-ray populations in the Galactic disk

    NASA Astrophysics Data System (ADS)

    Fornasini, Francesca; Tomsick, John; Bodaghee, Arash; Rahoui, Farid; Krivonos, Roman; Corral-Santana, Jesus; An, Hongjun; Bauer, Franz E.; Gotthelf, Eric V.; Stern, Daniel; NuSTAR Galactic Plane Survey Team

    2016-01-01

    High-mass X-ray binaries (HMXBs), which consist of a neutron star (NS) or black hole (BH) accreting material from a massive stellar companion, provide valuable insights into the evolution of massive stars and the merger rates of NS/NS, NS/BH, and BH/BH binaries whose gravitational wave signatures will soon be detectable by facilities such as Advanced-LIGO. INTEGRAL discoveries of new classes of lower-luminosity HMXBs, some highly obscured and some showing extreme transient activity, as well as the recent discovery of the very quiescent and only known Be-BH binary, have considerably changed our understanding of clumping in massive stellar winds and the relative importance of different binary evolutionary channels. In order to better characterize the low-luminosity HMXB population, we have performed a survey of a square degree region in the direction of the Norma spiral arm with Chandra and NuSTAR. These surveys, combined with optical and infrared spectroscopic follow-up of the counterparts of hard X-ray sources, have yielded three HMXB candidates to date. Future radial-velocity follow-up of these candidates, as well as other Be HMXB candidates from the NuSTAR serendipitous survey, will help determine whether these sources truly are HMXBs and, if so, constrain the mass of the compact object in these systems. If confirmed, these HMXB candidates could extend our measurement of the HMXB luminosity function by about two orders of magnitude and provide important constraints on massive binary evolutionary models. In addition, the colliding wind binaries and pulsar wind nebulae discovered in the Norma X-ray survey will help shed light on other aspects of massive stellar evolution and massive stellar remnants. Finally, these surveys provide the opportunity to compare the hard X-ray populations in the Galactic disk and the Galactic Center. While the dominant hard X-ray populations in both of these Galactic regions appear to be cataclysmic variables (CVs), those in the Norma

  5. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae.

  6. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  7. Searches for millisecond pulsations in low-mass X-ray binaries, 2

    NASA Technical Reports Server (NTRS)

    Vaughan, B. A.; Van Der Klis, M.; Wood, K. S.; Norris, J. P.; Hertz, P.; Michelson, P. F.; Paradijs, J. Van; Lewin, W. H. G.; Mitsuda, K.; Penninx, W.

    1994-01-01

    Coherent millisecond X-ray pulsations are expected from low-mass X-ray binaries (LMXBs), but remain undetected. Using the single-parameter Quadratic Coherence Recovery Technique (QCRT) to correct for unknown binary orbit motion, we have performed Fourier transform searches for coherent oscillations in all long, continuous segments of data obtained at 1 ms time resolution during Ginga observations of LMXB. We have searched the six known Z sources (GX 5-1, Cyg X-2, Sco X-1, GX 17+2, GX 340+0, and GX 349+2), seven of the 14 known atoll sources (GX 3+1. GX 9+1, GX 9+9, 1728-33. 1820-30, 1636-53 and 1608-52), the 'peculiar' source Cir X-1, and the high-mass binary Cyg X-3. We find no evidence for coherent pulsations in any of these sources, with 99% confidence limits on the pulsed fraction between 0.3% and 5.0% at frequencies below the Nyquist frequency of 512 Hz. A key assumption made in determining upper limits in previous searches is shown to be incorrect. We provide a recipe for correctly setting upper limits and detection thresholds. Finally we discuss and apply two strategies to improve sensitivity by utilizing multiple, independent, continuous segments of data with comparable count rates.

  8. A Survey of Upper Limits on the X-ray Luminosity of a Compact Object in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Rich, Anthony Glenn; Herbst, Ashley; Tripathi, Akshat; Thongkham, Paul; Mathews, Robert; Cooper, Eric; Clark, Nina; Carino, Alexandria; Bhalerao, Jayant; Park, Sangwook

    2017-06-01

    A core-collapse supernova explosion of a massive star (M > 8 Msun) leaves behind a compact stellar object (a neutron star or a black hole). However, there are a large number of supernova remnants (SNRs) in the Galaxy and Magellanic Clouds, in which a compact object has not been detected. Based on the archival Chandra data, we select a large sample of such SNRs, excluding Type Ia SNRs, and place upper limits on the X-ray luminosity for the embedded compact object.

  9. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-03-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray

  10. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  11. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  12. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  13. Dynamics of a Type Ia Supernova Remnant: X-ray and Radio Proper Motions in Tycho's SNR

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Blondin, John M.; Borkowski, Kazimierz J.; Chomiuk, Laura; Ghavamian, Parviz; Hewitt, John W.; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present results from new Chandra X-ray and JVLA radio observations of Tycho's supernova remnant, the remains of the supernova of 1572 A.D. The high spatial resolution of these instruments allows for accurate measurements of the proper motion of the forward shock in Tycho, with baselines now at 15 years for the X-ray data and 30 years for the radio. Type Ia SNe are of fundamental importance in astrophysics, yet the nature of their environments and progenitor systems is poorly understood. In a recent work, we have shown that theISM surrounding Tycho varies systematically in density by a factor of 5, with larger excursions in some locations. A substantial density variation is consistent with limited previous proper motion studies that have been done in radio and X-rays. Our expanded baseline measurements allow us to further explore the variations in the dynamics of the shock wave, which can also be used to localize the explosion site. Previous proper motion measurements, made over much shorter time baselines, have shown some discrepancies in the shockvelocity as measured in radio and X-rays. With our new, much improved data, we can compare proper motions in these two energy bands with much greater accuracy.

  14. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    NASA Astrophysics Data System (ADS)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  15. Evolution of Low-mass X-Ray Binaries: The Effect of Donor Evaporation

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Li, Xiang-Dong

    2016-10-01

    Millisecond pulsars (MSPs) are thought to originate from low-mass X-ray binaries (LMXBs). The discovery of eclipsing radio MSPs, including redbacks and black widows, indicates that evaporation of the donor star by the MSP’s irradiation takes place during the LMXB evolution. In this work, we investigate the effect of donor evaporation on the secular evolution of LMXBs, considering different evaporation efficiencies and related angular momentum loss. We find that for widening LMXBs, the donor star leaves a less massive white dwarf than without evaporation; for contracting systems, evaporation can speed up the evolution, resulting in dynamically unstable mass transfer and possibly the formation of isolated MSPs.

  16. Probing X-ray burst - accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    NASA Astrophysics Data System (ADS)

    Peille, P.; Olive, J.-F.; Barret, D.

    2014-07-01

    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Heating of the innermost disk regions would be a possibility, although we cannot exclude that the burst does not affect the QPO emission at all. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron

  17. A MULTIWAVELENGTH STUDY OF SUPERNOVA REMNANTS IN SIX NEARBY GALAXIES. I. DETECTION OF NEW X-RAY-SELECTED SUPERNOVA REMNANTS WITH CHANDRA

    SciTech Connect

    Leonidaki, I.; Boumis, P.; Zezas, A.

    2010-12-10

    We present results from a study of the supernova remnant (SNR) population in a sample of six nearby galaxies (NGC 2403, NGC 3077, NGC 4214, NGC 4449, NGC 4395, and NGC 5204) based on Chandra archival data. We have detected 244 discrete X-ray sources down to a limiting flux of 10{sup -15} erg s{sup -1} cm{sup -2}. We identify 37 X-ray-selected thermal SNRs based on their X-ray colors or spectra, 30 of which are new discoveries. In many cases, the X-ray classification is confirmed based on counterparts with SNRs identified in other wavelengths. Three of the galaxies in our sample (NGC 4214, NGC 4395, and NGC 5204) are studied for the first time, resulting in the discovery of 13 thermal SNRs. We discuss the properties (luminosity, temperature, and density) of the X-ray-detected SNRs in the galaxies of our sample in order to address their dependence on their environment. We find that X-ray-selected SNRs in irregular galaxies appear to be more luminous than those in spirals. We attribute this to the lower metallicities and therefore more massive progenitor stars of irregular galaxies or the higher local densities of the interstellar medium. We also discuss the X-ray-selected SNR populations in the context of the star formation rate of their host galaxies. A comparison of the numbers of observed luminous X-ray-selected SNRs with those expected based on the luminosity functions of X-ray SNRs in the Magellanic Clouds and M33 suggest different luminosity distributions between the SNRs in spiral and irregular galaxies with the latter tending to have flatter distributions.

  18. Early Radio and X-Ray Observations of the Youngest Nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NASA Technical Reports Server (NTRS)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; deBruyn, A. G.; hide

    2012-01-01

    On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M(raised dot) less than or equal to 10(exp -8) (w /100 kilometers per second ) solar mass yr(exp -1) from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.

  19. Evidence for Simultaneous Jets and Disk Winds in Luminous Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.; Chakrabarty, Deepto; Fender, Rob; Fridriksson, Joel K.; Remillard, Ronald A.; Schulz, Norbert

    2016-10-01

    Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in its X-ray color-color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.

  20. The Symbiotic X-ray Binary 3A 1954+319

    NASA Astrophysics Data System (ADS)

    Marcu, Diana; Fuerst, F.; Grieves, N.; Grinberg, V.; Pottschmidt, K.; Postnov, K.; Corbert, R. H. D.; Markwardt, C. B.; Wilms, J.; Miskovicova, I.; Cadolle Bel, M.

    2011-09-01

    We present an analysis of the highly variable X-ray source 3A 1954+319 from 2005 to 2009. We focus on an outburst serendipitously observed during INTEGRAL Key Program observations of the Cygnus region in November 2008 and on the Swift-BAT longterm light curve. The source has been identified to be one of only eight known symbiotic X-ray binaries, systems composed of an accreting neutron star orbiting in a highly inhomogeneous medium around an M-giant companion. Its 3-80 keV spectrum can be described by a broken power law model. The extremely long pulse period of 5.3 hours is clearly visible in the INTEGRAL-ISGRI light curve and confirmed by an epoch folding period search. Furthermore, these light curves allow for the determination of a very strong spin-up of -2 x 10-4 d/d during the 2008 outburst. This is confirmed by the pulse period evolution calculated from Swift-BAT data. Based on these results we discuss a possible wind accretion scenario for this source. In addition, we present a preliminary analysis of high quality data of the soft spectral component of 3A 1954+319 obtained with Chandra and RXTE in 2010/2011 during a relatively stable phase of moderate source brightness, allowing us to further constrain properties of the X-ray source as well as the M-star wind.

  1. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  2. Discovery of a periodic pulsating binary X-ray source in Hercules from Uhuru.

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Gursky, H.; Kellogg, E. M.; Levinson, R.; Schreier, E.; Giacconi, R.

    1972-01-01

    We have discovered a new pulsating X-ray source with a 1.24-sec period in the constellation Hercules. Analysis of 5 months of data has shown the existence of periodic variations in the intensity of the source and correlated sinusoidal variations in the period of the 1.24-sec pulsations. As in the case of the pulsating X-ray source Cen X-3, we interpret this effect as due to an occulting binary system, with the intensity changes due to occultation of the X-ray source by its companion and with the sinusoidal variations in the period of the 1.24-sec pulsations due to the Doppler effect. In addition, we have observed a longer-time scale cycle in which the source is bright and pulsing for approximately 9 days during which we can observe the 1.7-day occulting, followed by approximately 27 days during which the source is not detected above background on individual 20-sec scans.

  3. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  4. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE PAGES

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  5. Geometry of X-ray sources in accreting black-hole binaries

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej

    2016-07-01

    The structure of the X-ray sources in the hard spectral state of accreting black-hole binaries has been a subject of intense debate. The paradigm dominant for many years postulated that the accretion disc in the hard state is truncated at some radius >> the innermost stable orbit (ISCO) whereas the disc reaches the ISCO in the soft state. This paradigm explains a large body of observed phenomena, including the spectral and variability differences between the states and outbursts of transient sources, proceeding from quiescence (where no disc is present) through the hard state to the peak flux in the soft state. On the other hand, there have been numerous claims in recent years that the disc extends to the ISCO in the hard state. Also, the primary X-ray source has been postulated to consist of a compact source on-axis of the rotating black hole (a lamppost). Those claims are based on observations of broad Fe K lines and of soft X-ray components interpreted as blackbody-emitting accretion discs. I will discuss arguments for and against the disc truncation and the lamppost geometry based on current spectral and timing results.

  6. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE PAGES

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  7. Spectroscopic Separation of Solar Wind Charge Exchange, Local Bubble, and Nearby Supernova Remnant X-rays: Diffuse X-ray Spectrometer Recent Results

    NASA Astrophysics Data System (ADS)

    Morgenthaler, Jeffrey P.; Edgar, R. J.; Sanders, W. T.; Smith, R. K.; Koutroumpa, D.; Henley, D. B.; Shelton, R. L.; Robertson, I. P.; Collier, M. R.; Cravens, T. E.

    2011-05-01

    The Diffuse X-ray Spectrometer (DXS) was a Space Shuttle Payload of Opportunity that flew in 1993. DXS measured the spectrum of the diffuse X-ray background (DXRB) between 150 eV and 284 eV (the 1/4 keV band) using a Bragg crystal spectrometer. Higher order Bragg reflections included the OVII and OVIII features. The counting statistics and spectroscopic resolving power of the DXS measurements have yet to be rivaled in the 1/4 keV band. DXS had a 15°x15° FOV that was repeatedly scanned over a 140° arc in the Galactic plane centered roughly toward the Galactic anti-center. The Vela-Puppis and the Monogem ring supernova remnants were studied, as well 3 adjacent regions typical of the DXRB. During the 5-day Shuttle flight, the total sky-looking DXS count rate unexpectedly dropped by 20%, suggesting a significant and variable local source of X-rays, likely generated by the solar wind charge exchange mechanism (SWCX) in the geocorona and/or a passing coronal mass ejection. We use this unique dataset to: (1) Show that a state-of-the-art heliospheric SWCX model compares reasonably well to the DXS DXRB spectrum in the 190-284 eV range, but falls short in the 150-190 eV range. (2) Spectroscopically resolve the OVII forbidden and resonance lines, showing that the resonance line is somewhat stronger. This confirms there is a contribution to the DXRB from a source other than the SWCX. (3) Present spectra of the Vela-Puppis and Monogem regions cleaned of all foreground X-ray emission and compare to standard collisional ionization equilibrium plasma models. The discrepancies between the models and data highlight the need for continued progress in understanding the L-shell ions of Mg, Si, S and the M-shell ions of Fe. (4) Present the first isolated spectrum of the SWCX in the 1/4 keV band that resolves lines/line complexes.

  8. The Supersoft X-Ray Source V751 Cygi: The Missing Link between the Nova-Like Variables and Supersoft X-ray Binaries?

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.; Hollon, N. P.

    2007-12-01

    The VY Sculptoris nova-like variable is a supersoft X-ray source during its optical low brightness state when the accretion disk has faded or is absent (Greiner et al. 1999, A\\&A, 343, 183). By analogy, during the quiescence intervals of dwarf novae, when the accretion disk is in a cool state, hard X-ray emission is typically detected. The source of the V751 Cygni's soft X-ray emission remains a mystery but may be due to hydrogen shell burning, thus cementing a link between the VY Scl stars and the supersoft X-ray binaries. The archival far ultraviolet spectra of this key object have never been analyzed with realistic model accretion disks and photospheres to directly determine the accretion rate and white dwarf properties of the system. The orbital period is 0.144584 days, the inclination is low while the reddening is E(B-V) = 0.25 +/- 0.05 and the distance is 500 pc. We present the results of our multi-component model analysis and their implications for the relationship of this and other VY Scl stars to the supersoft sources. This research is supported by NSF grant AST0507514 to Villanova University

  9. The soft X-ray spectrum of the high-mass X-ray binary V0332+53 in quiescence

    NASA Astrophysics Data System (ADS)

    Elshamouty, Khaled G.; Heinke, Craig O.; Chouinard, Rhys

    2016-11-01

    The behaviour of neutron stars in high-mass X-ray binaries (HMXBs) during periods of low mass transfer is of great interest. Indications of spectral softening in systems at low mass-transfer rates suggest that some HMXBs are undergoing fundamental changes in their accretion regime, but the nature of the quiescent X-ray emission is not clear. We performed a 39 ks XMM-Newton observation of the transient HMXB V0332+53, finding it at a very low X-ray luminosity (Lx ˜ 4 × 1032 erg s-1). A power-law spectral fit requires an unusually soft spectral index (4.4^{+0.9}_{-0.6}), while a magnetized neutron star atmosphere model, with temperature LogTeff 6.7 ± 0.2 K and inferred emitting radius of ˜0.2-0.3 km, gives a good fit. We suggest that the quiescent X-ray emission from V0332+53 is mainly from a hotspot on the surface of the neutron star. No conclusions on the presence of pulsations could be drawn due to the low count rate. Due to the high absorption column, thermal emission from the rest of the neutron star could be only weakly constrained, to LogTeff <6.14^{+0.05}_{-6.14} K, or <3 × 1033 erg s-1.

  10. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  11. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-01-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereoscopic System), together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  12. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-01-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereos