Sample records for superposed epoch analysis

  1. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  2. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    DOE PAGES

    Li, W.; Thorne, R. M.; Bortnik, J.; ...

    2015-09-07

    In this study by determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outermore » radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.« less

  3. The use and misuse of statistical analyses. [in geophysics and space physics

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.

    1983-01-01

    The statistical techniques most often used in space physics include Fourier analysis, linear correlation, auto- and cross-correlation, power spectral density, and superposed epoch analysis. Tests are presented which can evaluate the significance of the results obtained through each of these. Data presented without some form of error analysis are frequently useless, since they offer no way of assessing whether a bump on a spectrum or on a superposed epoch analysis is real or merely a statistical fluctuation. Among many of the published linear correlations, for instance, the uncertainty in the intercept and slope is not given, so that the significance of the fitted parameters cannot be assessed.

  4. What time does the recovery phase of geomagnetic storms start: A superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Du, A.; Zhang, Y.; Ou, J.; Luo, H.

    2015-12-01

    It is well known that the recovery phase of the geomagnetic storms start during Dst reaches a minimum. This present paper is a discussion of recovery phase onset of a superposed epoch analysis of 247 storm events (-450 < Dst < -50 nT). The data of the solar wind parameters, the geomagnetic index AE and Dst are by means of 1 hour OMNI database. The energy budget for the driver and decay terms introduced by Burton et al. (1975) are checked. As might be expected, the recovery phase of geomagnetic storms starts when the decay term is greater than the driver term. The balance of the decay and driver terms is also dependent on the solar wind energy input during the initial phase. In general, at the onset of the recovery phase, EK-L decreases to 70% of a maximum of EK-L.

  5. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    NASA Astrophysics Data System (ADS)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  6. Superposed Epoch Analysis of Ring Current Geoeffectiveness Related to Solar Wind and Plasma Sheet Drivers

    NASA Technical Reports Server (NTRS)

    Liemohm, M. W.; Kozyra, J. U.; Thomsen, M. F.; Borovsky, J. E.; Gahurthakurta, Madulika (Technical Monitor)

    2004-01-01

    The goal of that proposal was to examine the relationship between solar wind drivers and ring current dynamics through data analysis and numerical simulations. The data analysis study was a statistical examination (via superposed epoch analyses) of a solar cycle's worth of storm data. Solar wind data, geophysical indices, and geosynchronous plasma data were collected for every time period with Dst< -50 nT from 1989 through 2002, and the storm list now exceeds 400 entries. This work was first conducted by a summer undergraduate student, Mr. John Vann (University of Kansas), with funding from the NSF Research Experience for Undergraduates program. It was then continued by a University of Michigan graduate student, Mr. Jichun Zhang. Mr. Zhang is now in his fourth year at U-M and is progressing very well toward a PhD in space science. His dissertation will be based on his data analysis and modeling efforts using this geomagnetic storm database. The results of the data analysis study have been the focus of several conference presentations, and the first manuscript has just been published. Two additional papers are presently being prepared, one on average (superposed) solar wind features for various storm subsets (e.g., intense storms at solar maximum), and another on geosynchronous plasma features for these same storm subsets. The latter result was highlighted by the TR&T program director in his presentation at the COSPAR meeting this summer.

  7. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    PubMed

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  8. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  9. Large-scale structures of solar wind and dynamics of parameters in them

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael

    2017-04-01

    On the basis of OMNI dataset and our catalog of large-scale solar wind (SW) phenomena (see web-site ftp://ftp.iki.rssi.ru/pub/omni/ and paper by Yermolaev et al., 2009) we study temporal profile of interplanetary and magnetospheric parameters in following SW phenomena: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath—compression region before ICME and corotating interaction region (CIR)—compression region before high-speed stream (HSS) of solar wind. To take into account a possible influence of other SW types, following sequences of phenomena, which include all typical sequences of non-stationary SW events, are analyzed: (1) SW/ CIR/ SW, (2) SW/ IS/ CIR/ SW, (3) SW/ Ejecta/ SW, (4) SW/ Sheath/Ejecta/ SW, (5) SW/ IS/ Sheath/ Ejecta/ SW, (6) SW/ MC/ SW, (7) SW/Sheath/ MC/ SW, (8) SW/ IS/ Sheath/ MC/ SW (where SW is undisturbed solar wind, and IS is interplanetary shock) (Yermolaev et al., 2015) using the method of double superposed epoch analysis for large numbers of events (Yermolaev et al., 2010). Similarities and distinctions of different SW phenomena depending on neighboring SW types and their geoeffectiveness are discussed. The work was supported by the Russian Science Foundation, projects 16-12-10062. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.

  10. Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric eddy heat flux during stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.

    2017-12-01

    A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.

  11. Magnetic storm generation by large-scale complex structure Sheath/ICME

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.; Riazantseva, M.; Borodkova, N. L.

    2017-12-01

    We study temporal profiles of interplanetary plasma and magnetic field parameters as well as magnetospheric indices. We use our catalog of large-scale solar wind phenomena for 1976-2000 interval (see the catalog for 1976-2016 in web-side ftp://ftp.iki.rssi.ru/pub/omni/ prepared on basis of OMNI database (Yermolaev et al., 2009)) and the double superposed epoch analysis method (Yermolaev et al., 2010). Our analysis showed (Yermolaev et al., 2015) that average profiles of Dst and Dst* indices decrease in Sheath interval (magnetic storm activity increases) and increase in ICME interval. This profile coincides with inverted distribution of storm numbers in both intervals (Yermolaev et al., 2017). This behavior is explained by following reasons. (1) IMF magnitude in Sheath is higher than in Ejecta and closed to value in MC. (2) Sheath has 1.5 higher efficiency of storm generation than ICME (Nikolaeva et al., 2015). The most part of so-called CME-induced storms are really Sheath-induced storms and this fact should be taken into account during Space Weather prediction. The work was in part supported by the Russian Science Foundation, grant 16-12-10062. References. 1. Nikolaeva N.S., Y. I. Yermolaev and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127 2. Yermolaev Yu. I., N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Res., , 47(2), 81-94 3. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177-2186 4. Yermolaev Yu. I., I. G. Lodkina, N. S. Nikolaeva and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274 5. Yermolaev Y. I., I. G. Lodkina, N. S. Nikolaeva, M. Y. Yermolaev, M. O. Riazantseva (2017), Some Problems of Identification of Large-Scale Solar Wind types and Their Role in the Physics of the Magnetosphere, Cosmic Res., 55(3), pp. 178-189. DOI: 10.1134/S0010952517030029

  12. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  13. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, Joseph E; Cayton, Thomas E; Denton, Michael H

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before themore » storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.« less

  15. Similarities and distinctions of CIR and Sheath

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Nikolaeva, Nadezhda; Yermolaev, Michael

    2016-04-01

    On the basis of OMNI data and our catalog of large scale solar wind (SW) streams during 1976-2000 [Yermolaev et al., 2009] we study the average temporal profiles for two types of compressed regions: CIR (corotating interaction region - compressed region before High Speed Stream (HSS)) and Sheath (compressed region before fast Interplanetary CMEs (ICMEs), including Magnetic Cloud (MC) and Ejecta). As have been shown by Nikolaeva et al, [2015], the efficiency of magnetic storm generation is ~50% higher for Sheath and CIR than for ICME (MC and Ejecta), i.e. reaction magnetosphere depends on type of driver. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allows us to suggest that the formation of all types of compression regions has the same physical mechanism irrespective of piston (HSS or ICME) type and differences are connected with geometry and full jumps of speed in edges of compression regions. If making the natural assumption that the gradient of speed is directed approximately on normal to the piston, CIR has the largest angle between the gradient of speed and the direction of average SW speed, and ICME - the smallest angle. The work was supported by the Russian Foundation for Basic Research, projects 13-02-00158, 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Nikolaeva, N. S. , Yu. I. Yermolaev, and I. G. Lodkina (2015), Modeling of the Corrected Dst* Index Temporal Profile on the Main Phase of the Magnetic Storms Generated by Different Types of Solar Wind, Cosmic Research, Vol. 53, No. 2, pp. 119-127. Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.

  16. Large-scale solar wind streams: Average temporal evolution of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda

    2016-07-01

    In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274

  17. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  18. Van Allen Probe Observations of Chorus Wave Activity, Source and Seed electrons, and the Radiation Belt Response During ICME and CIR Storms

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Farrugia, C. J.; Paulson, K. W.; Huang, C. L.; Boyd, A. J.; Spence, H. E.; Kletzing, C.

    2017-12-01

    Whistler mode chorus waves are electromagnetic waves that have been shown to be a major contributor to enhancements in the outer radiation belt during geomagnetic storms. The temperature anisotropy of source electrons (10s of keV) provides the free energy for chorus waves, which can accelerate sub-relativistic seed electrons (100s of keV) to relativistic energies. This study uses Van Allen Probe observations to examine the excitation and plasma conditions associated with chorus wave observations, the development of the seed population, and the outer radiation belt response in the inner magnetosphere, for 25 ICME and 35 CIR storms. Plasma data from the Helium Oxygen Proton Electron (HOPE) instrument and magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) are used to identify chorus wave activity and to model a linear theory based proxy for chorus wave growth. A superposed epoch analysis shows a peak of chorus wave power on the dawnside during the storm main phase that spreads towards noon during the storm recovery phase. According to the linear theory results, this wave activity is driven by the enhanced convection driving plasma sheet electrons across the dayside. Both ICME and CIR storms show comparable levels of wave growth. Plasma data from the Magnetic Electron Ion Spectrometer (MagEIS) and the Relativistic Electron Proton Telescope (REPT) are used to observe the seed and relativistic electrons. A superposed epoch analysis of seed and relativistic electrons vs. L shows radiation belt enhancements with much greater frequency in the ICME storms, coinciding with a much stronger and earlier seed electron enhancement in the ICME storms.

  19. North-south asymmetric thermosphere response to geomagnetic storms caused by coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Zesta, E.; Schuck, P. W.; Sutton, E. K.

    2017-12-01

    We use CHAMP and GRACE density data in a statistical and superposed epoch analysis study to investigate the thermosphere global space and time response to CME-caused geomagnetic storms in the time period of September 2001 to September 2011. In order to account for solar cycle effects, we inter-calibrate both CHAMP and GRACE data against the Jacchia-Bowman 2008 (JB2008) empirical model under a regime of very low geomagnetic activity by fitting a polynomial fit with orthogonal expansion into the modeled density. We choose two different approaches related to physical effects of CME interactions with the magnetosphere. The zero epoch times are chosen as follows: in the first case, the instance of CME impact time associated with compression effects and, in the second case, the instance of time in which the IMF Bz turns suddenly southward, associated with the storm main phase onset. In general, in the second case, the thermosphere effects are more superposed in time in comparison to the effects of the first case. We find that, on average, large scale wave structures, presumably traveling atmospheric disturbances (TADs), propagate from auroral to equatorial regions in lag times as short as 3 hours. We also find that all local time regions, i.e., the global response, takes 2 more hours to occur. In addition, our findings show that there exists a strong north-south asymmetric heating, being most pronounced in the Southern Hemisphere in the moments preceding and following the zero epoch time. We attribute this effect to a combination of several factors that affect high latitude energy input into the upper atmosphere, such as seasons, IMF By component, and universal times, that is, the dipole longitude position during the developing of the storm main phase, the crucial time for energy input and subsequent thermosphere heating during geomagnetic storms.

  20. Stratospheric Sudden Warming Effects on the Upper Thermosphere

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Kosch, M. J.; Emmert, J. T.

    2015-12-01

    It has been controversial whether a stratospheric sudden warming (SSW) event has any measurable impact on the upper thermosphere. In this study, we use long-term records of the global average thermospheric total mass density derived from satellite orbital decay data during 1967-2013. This enables, for the first time, a statistical investigation of the thermospheric density response to SSW events. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3-7% at 250-575 km around the time of polar vortex weakening. The temperature perturbation is estimated to be -7.0 K at 400 km. We suggest enhanced wave forcing from the lower atmosphere as a possible cause for the density reduction observed during SSWs.

  1. Solar terrestrial relationships related to thunderstorms and BUV dark current and ozone data

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1980-01-01

    Solar terrestrial interactions as they affect Nimbus 4 BUV dark current and possibly affect thunderstorm occurrence are investigated. A solar wind index is calculated for 1970 to 1971. Dark current enhancements appear to be associated in some way with solar proton events and the solar wind index, but additional investigations by GSFC are required before conclusions can be drawn. Superposed epoch analysis of an index of North American thunderstorm occurrence reveals a discernible increase in the index magnitude on days 1 and 2 following solar proton events. There appears to be little or no 27 day recurrence tendency in thunderstorm occurrence frequency and no association with vorticity area index on a day to day basis.

  2. Superposed epoch analysis and storm statistics from 25 years of the global geomagnetic disturbance index, USGS-Dst

    USGS Publications Warehouse

    Gannon, J.L.

    2012-01-01

    Statistics on geomagnetic storms with minima below -50 nanoTesla are compiled using a 25-year span of the 1-minute resolution disturbance index, U.S. Geological Survey Dst. A sudden commencement, main phase minimum, and time between the two has a magnitude of 35 nanoTesla, -100 nanoTesla, and 12 hours, respectively, at the 50th percentile level. The cumulative distribution functions for each of these features are presented. Correlation between sudden commencement magnitude and main phase magnitude is shown to be low. Small, medium, and large storm templates at the 33rd, 50th, and 90th percentile are presented and compared to real examples. In addition, the relative occurrence of rates of change in Dst are presented.

  3. Influence of Thunderstorms on the Structure of the Ionosphere using Composite Analysis

    NASA Astrophysics Data System (ADS)

    Nava, O.; Sutherland, E.

    2017-12-01

    It is well known in the amateur (ham) radio community that thunderstorms have a significant influence on local and long-distance high-frequency (HF) communications. This study aims to characterize the structure of the ionosphere in response to strong convective activity and cloud electrification. Superposed Epoch Analysis is applied to surface weather observations and ionosonde data at Eglin Air Force Base, Florida from August 2014 to July 2017. Preliminary results indicate that thunderstorms significantly modify the structure of the ionosphere, generating statistically different measurements of several key parameters (e.g., foEs, hmF2, ITEC) compared to clear-sky observations. Seasonal and diurnal influences between the thunderstorm and clear sky cases are also explored. Accurate characterization of the ionosphere in response to thunderstorms has important implications for the effective use of HF communications in civilian and military operations, to include emergency services, aviation, amateur radio, and over-the-horizon radar.

  4. EFFECT OF COHERENT STRUCTURES ON ENERGETIC PARTICLE INTENSITY IN THE SOLAR WIND AT 1 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessein, Jeffrey A.; Matthaeus, William H.; Wan, Minping

    2015-10-10

    We present results from an analysis of Advanced Composition Explorer (ACE) observations of energetic particles in the 0.047–4.78 MeV range associated with shocks and discontinuities in the solar wind. Previous work found a strong correlation between coherent structures and energetic particles measured by ACE/EPAM. Coherent structures are identified using the Partial Variance of Increments (PVI) method, which is essentially a normalized vector increment. The correlation was based on a superposed epoch analysis using over 12 years of data. Here, we examine many individual high-PVI events to better understand this association emphasizing intervals selected from data with shock neighborhoods removed. Wemore » find that in many cases the local maximum in PVI is in a region of rising or falling energetic particle intensity, which suggests that magnetic discontinuities may act as barriers inhibiting the motion of energetic particles across them.« less

  5. The day-to-day occurrence of equatorial plasma bubbles measured from Vanimo, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Yizengaw, E.; Francis, M.; Terkildsen, M. B.; Marshall, R. A.; Norman, R.; Zhang, K.

    2013-12-01

    An analysis of the occurrence of Equatorial Plasma Bubbles (EPBs) detected using a ground-based Global Positioning System (GPS) receiver located at Vanimo in South-east Asia will be presented. The 3-year (2000-2002) dataset employed shows that the EPB occurrence maximizes (minimizes) during the equinoxes (solstices), in good agreement with previous findings. The low-latitude ionosonde station at Vanimo is used in conjunction with the GPS receiver in an analysis of the day-to-day EPB occurrence variability during the equinox period. A superposed epoch analysis of the ionosonde data reveals that the height, and the change in height, of the F layer is 1 standard deviation (1σ) larger on the days for which EPBs were detected, compared to non-EPB days. These results are interpreted using the generalized Rayleigh-Taylor (R-T) plasma instability growth rate, for which stronger upward drift of the lower-altitude F-layer plasma promotes faster growth of EPBs after sunset. These results are then compared to the results of the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM), which surprisingly show strong similarities to the observations, despite only using geomagnetic and solar activity inputs. The TIEGCM is also used to directly calculate the hourly flux-tube integrated R-T growth rate. A superposed epoch analysis reveals that the modeled R-T growth rate is a little less than 1σ higher on average for EPB days compared to non-EPB days. The implication of this result is that the TIEGCM generates almost enough day-to-day variability in order to account for the day-to-day EPB occurrence observed during the equinox. This result isn't necessarily expected due to the model's limited altitude coverage of 100-700 km (depending on solar activity) and the lack of ionospheric observation inputs. It is thought that the remaining variability could originate from either lower altitudes (e.g. atmospheric gravity waves from the troposphere) or from higher altitudes (resulting from coupling with the magnetosphere and solar wind), or potentially both. It is concluded that the continuing advancement of numerical modeling of the thermosphere and ionosphere, coupled with altitudes above and below, is required to better understand the day-to-day EPB occurrence.

  6. Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Willis, Allan J.; Stickland, David J.; Heap, Sara R.

    1988-01-01

    High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.

  7. Superposed epoch analysis of physiological fluctuations: possible space weather connections

    NASA Astrophysics Data System (ADS)

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  8. Superposed epoch analysis of physiological fluctuations: possible space weather connections.

    PubMed

    Wanliss, James; Cornélissen, Germaine; Halberg, Franz; Brown, Denzel; Washington, Brien

    2018-03-01

    There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events-space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

  9. Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation

    NASA Astrophysics Data System (ADS)

    Ghanbari, K.; Florinski, V. A.

    2017-12-01

    Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.

  10. Observation of a 27-day solar signature in noctilucent cloud altitude

    NASA Astrophysics Data System (ADS)

    Köhnke, Merlin C.; von Savigny, Christian; Robert, Charles E.

    2018-05-01

    Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400 m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ≳ 70 ° N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.

  11. Synoptic aspects of Antarctic mesocyclones

    NASA Astrophysics Data System (ADS)

    Carleton, Andrew M.; Fitch, Mark

    1993-07-01

    The characteristic regimes (formation and dissipation areas, tracks) and synoptic environments of cold air mesocyclones over Antarctic and Subantarctic latitudes are determined for the contrasting winters (June, July, and August) of 1988 and 1989. Defense Meteorological Satellite Program (DMSP) thermal infrared (IR) imagery is used in conjunction with southern hemisphere pressure/height analyses. Outbreaks of mesocyclones ("active periods") are frequent in the Ross Sea sector in 1988. They are associated most often with areas of maximum horizontal gradient of the 1000- to 500-mbar thickness. Over higher latitudes of the Southeast Pacific in 1989, mesocyclones develop in association with a "cold pool" that migrates equatorward. The between-winter differences in mesocyclone frequencies are examined for associations with sea ice conditions and the continental katabatic winds using correlation and "superposed epoch" analysis of temperature data from selected automatic weather stations (AWSs). The results support a katabatic wind-sea ice extent-mesocyclone link for key sectors of the Antarctic.

  12. Superposed Epoch Studies of the Response of the High-Latitude Magnetosphere-Ionosphere-Thermosphere System to Solar Wind High-Speed Stream Driving

    NASA Astrophysics Data System (ADS)

    Grandin, M.; Aikio, A. T.; Kozlovsky, A.; Ulich, T.; Raita, T.

    2016-12-01

    During the declining phase of the solar cycle, the Earth's magnetosphere-ionosphere-thermosphere system is mainly disturbed by solar wind high-speed streams (HSSs). Their ionospheric response, especially at high latitudes, is not fully understood yet. The perturbations in the ionosphere last for several days. We have examined the effect of HSS in two studies, which apply the superposed epoch method to data to reveal the statistical response in the ionospheric F, E and D regions to such perturbations. We use ionosonde, geomagnetic and cosmic noise absorption data obtained from Finnish stations during 95 high-speed stream events detected between 2006 and 2008. Results show a long-lasting decrease in the F layer critical frequency foF2 between 12 and 23 MLT in summer and equinox. This depletion of the F layer is interpreted as a result of enhanced electric fields inducing ion-neutral frictional heating in the auroral and subauroral regions. The response near noon is different, since foF2 is increased shortly upon arrival of the co-rotating stream interaction region (CIR), possibly because of precipitation of particles from the dayside plasma sheet provoked by the associated solar wind pressure pulse. In the morning sector, both foF2 and foEs show increases for several days, indicating particle precipitation having a soft component. In the study of cosmic noise absorption (CNA), we observe a different response depending on the L-value of the station. Within the auroral oval (L=5-6), CNA gets maximum values in the morning sector 0-12 MLT during the first and second day following the zero epoch. Values are greater during events with longer-lasting high solar wind speed. The CNA maximum shifts to later MLT at lower L values, and in JYV (L=3.8), the maximum takes place at 14 MLT during day 4. Substorm energization events dominate during the first days at 00-01 MLT. We also address the role of Pc5 geomagnetic pulsations observed in association with CNA events. These results may contribute to improve nowcasting and forecasting of space weather activity during high-speed stream events.

  13. Evidence that one is more likely to see the aurora near Moscow than near Ann Arbor

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Immel, Thomas; Katus, Roxanne

    We present a superposed epoch analysis of solar wind drivers and geomagnetic index responses during magnetic storms, categorized as a function of universal time (UT) of the storm peak, to investigate the dependency of storm intensity on UT. Storms with Dst minimum less than - 100 nT were identified in the 1970 - 2012 era (totaling 310 events), covering four solar cycles. The storms were classified into 6 groups based on the UT of the minimum Dst (36 to 82 events per bin), then each grouping was superposed on a timeline that aligns the time of the minimum Dst. Fifteen different quantities were considered, seven solar wind parameters and eight activity indices derived from ground-based magnetometers. Statistical analyses of the superposed means against each other (between the different UT groupings) were conducted to determine the mathematical significance of similarities and differences in the time series plots. It was found that most of the solar wind parameters have essentially no significant difference between the UT groupings, as expected. The exception is solar wind velocity, which appears to be bifurcated into two levels with three of the UT groupings systematically faster than the other three (although, interestingly, not three consecutive UT bins). The geomagnetic activity indices, however, all show statistically significant differences with UT during the main phase and/or early recovery phase. Specifically, the 16, 20, and 00 UT groupings are stronger storms than those in the other UT bins. That is, storms are stronger when the Asian sector is on the nightside (American sector on the dayside) during the main phase. An inference from these findings, therefore, is that one is more likely to see the aurora near Moscow in Russia than near Ann Arbor, Michigan in the United States, even though these two cities have very similar magnetic latitudes (52 degrees).

  14. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    NASA Astrophysics Data System (ADS)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.

  15. Dependence of the High Latitude Middle Atmosphere Ionization on Structures in Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Bremer, J.; Lauter, E. A.

    1984-01-01

    The precipitation of high energetic electrons during and after strong geomagnetic storms into heights below 100 km in middle and subauroral latitudes is markedly modulated by the structure of the interplanetary magnetic field (IMF). Under relative quiet conditions the D-region ionization caused by high energetic particle precipitation (energies greater than 20 to 50 keV) depends on changes of the interplanetary magnetic field and also on the velocity of the solar wind. To test this assumption, the influence of the IMF-sector boundary crossings on ionospheric absorption data of high and middle latitudes by the superposed-epoch method was investigated.

  16. ULF geomagnetic activity effects on tropospheric temperature, specific humidity, and cloud cover in Antarctica, during 2003-2010

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; Redaelli, Gianluca; Francia, Patrizia; De Lauretis, Marcello

    2017-06-01

    In the present study we investigated the possible relationship between the ULF geomagnetic activity and the variations of several atmospheric parameters. In particular, we compared the ULF activity in the Pc1-2 frequency band (100 mHz-5 Hz), computed from geomagnetic field measurements at Terra Nova Bay in Antarctica, with the tropospheric temperature T, specific humidity Q, and cloud cover (high cloud cover, medium cloud cover, and low cloud cover) obtained from reanalysis data set. The statistical analysis was conducted during the years 2003-2010, using correlation and Superposed Epoch Analysis approaches. The results show that the atmospheric parameters significantly change following the increase of geomagnetic activity within 2 days. These changes are evident in particular when the interplanetary magnetic field Bz component is oriented southward (Bz<0) and the By component duskward (By>0). We suggest that both the precipitation of electrons induced by Pc1-2 activity and the intensification of the polar cap potential difference, modulating the microphysical processes in the clouds, can affect the atmosphere conditions.

  17. Observation of Pulsed Gamma Rays with Energies Greater than 250 keV from the Crab Nebula Pulsar NP 0532. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Orwig, L. E.

    1971-01-01

    Data from a balloon flight experiment using an Na I scintillation spectrometer were analyzed for gamma ray pulsation. The payload was carried to a nominal atmospheric depth of 3.5 g/cm2. A superposed epoch analysis was performed on a 12,000 second portion of the data spanning a total time interval of 16,700 seconds at float altitude. A positive pulsed contribution was observed at the expected apparent frequency of NP 0532 having the typical double pulse structure. The results indicate a time-averaged pulse photon flux of 0.00144 + or - 0.00057 photons/sq cm/sec in the energy interval from 250 keV to 2.3 MeV. This represents a time-averaged pulsed power of 0.000649 + or - 0.000257 keV/sq cm/sec/keV. The ratio of interpulse to main pulse was found to be 2.4 + or - 1.9. The analysis indicates a positive photon flux from 250 keV to 725 keV of 0.00120 + or - 0.00052 photons/sq cm/sec.

  18. Statistical Study on Variations of the Ionospheric Ion Density Observed by DEMETER and Related to Seismic Activities

    NASA Astrophysics Data System (ADS)

    Yan, Rui; Parrot, Michel; Pinçon, Jean-Louis

    2017-12-01

    In this paper, we present the result of a statistical study performed on the ionospheric ion density variations above areas of seismic activity. The ion density was observed by the low altitude satellite DEMETER between 2004 and 2010. In the statistical analysis a superposed epoch method is used where the observed ionospheric ion density close to the epicenters both in space and in time is compared to background values recorded at the same location and in the same conditions. Data associated with aftershocks have been carefully removed from the database to prevent spurious effects on the statistics. It is shown that, during nighttime, anomalous ionospheric perturbations related to earthquakes with magnitudes larger than 5 are evidenced. At the time of these perturbations the background ion fluctuation departs from a normal distribution. They occur up to 200 km from the epicenters and mainly 5 days before the earthquakes. As expected, an ion density perturbation occurring just after the earthquakes and close to the epicenters is also evidenced.

  19. ICME-driven sheath regions deplete the outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward or southward IMF. The main controlling factors of the loss seem to be the dynamic pressure jump at the shock and the level of solar wind dynamic pressure ULF fluctuations within the sheath. We also discuss the superposed epoch time series of the Dst index and the stand-off distance of the magnetopause during these intervals. Based on our results we suggest that the separation of the effects from different parts of the ICME (sheath, MC) will be crucial for understanding how radiation belt electrons react to the CME impact.

  20. Strong earthquakes, novae and cosmic ray environment

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    Observations about the relationship between seismic activity and astronomical phenomena are discussed. First, after investigating the seismic data (magnitude 7.0 and over) with the method of superposed epochs it is found that world seismicity evidently increased after the occurring of novae with apparent magnitude brighter than 2.2. Second, a great many earthquakes of magnitude 7.0 and over occurred in the 13th month after two of the largest ground level solar cosmic ray events (GLEs). The causes of three high level phenomena of global seismic activity in 1918-1965 can be related to these, and it is suggested that according to the information of large GLE or bright nova predictions of the times of global intense seismic activity can be made.

  1. Global stratigraphy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  2. Relation of field-aligned currents measured by AMPERE project to solar wind and substorms

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Anderson, B. J.; Chu, X.

    2016-12-01

    Magnetic perturbations measured in the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) by the Iridium constellation of spacecraft have been processed to obtain the time history of field-aligned currents (FAC) connecting the magnetosphere to the ionosphere. We find that the strength of these currents is closely related to the strength of the solar wind driver defined as a running average of the previous three hours of the optimum AL (auroral lower) coupling function. The relation is well represented by a saturation model I = A*S*Ss/(S+Ss) with I the current strength in mega Amps, S the driver strength in mV/m, Ss the saturation value of 7.78 mV/m, and A = 2.55 scales the relation to units of current. We also find that in general the upward current on the nightside increases with each substorm expansion onset defined by a combination of the SuperMag SML (SuperMag AL) and midlatitude positive bay (MPB) onset lists. A superposed epoch analysis using 700 onsets in 2010 shows the following: solar wind coupling peaks at expansion onset; dayside outward current starts to increase one hour before onset while nightside outward current starts suddenly at onset; nightside outward current reaches a peak at 28 minutes as do SML and MPB indices; FAC, SML, and MPB respectively take 1, 2, and 3 hours to decay to background. The data indicate that the substorm current wedge is superposed on a pre-existing field-aligned current system and that the location and properties of the current wedge can be studied with the AMPERE data.

  3. Multiple Spacecraft Study of the Impact of Turbulence on Reconnection Rates

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre; Goldstein, Melvyn; Figueroa-Vinas, Adolfo; Adrian, Mark; Sahraoui, Fouad

    2011-01-01

    Magnetic turbulence and secondary island formation have reemerged as possible explanations for fast reconnection. Recent three-dimensional simulations reveal the formation of secondary islands that serve to shorten the current sheet and increase the accelerating electric field, while both simulations and observations witness electron holes whose collapse energizes electrons. However, few data studies have explicitly investigated the effect of turbulence and islands on the reconnection rate. We present a more comprehensive analysis of the effect of turbulence and islands on reconnection rates observed in space. Our approach takes advantage of multiple spacecraft to find the location of the spacecraft relative to the inflow and the outflow, to estimate the reconnection electric field, to indicate the presence and size of islands, and to determine wave vectors indicating turbulence. A superposed epoch analysis provides independent estimates of spatial scales and a reconnection electric field. We apply k-filtering and a new method adopted from seismological analyses to identify the wavevectors. From several case studies of reconnection events, we obtain preliminary estimates of the spectral scaling law, identify wave modes, and present a method for finding the reconnection electric field associated with the wave modes.

  4. Analysis of the variation of atmospheric electric field during solar events

    NASA Astrophysics Data System (ADS)

    Tacza, J.; Raulin, J. P.

    2016-12-01

    We present the capability of a new network of electric field mill sensors to monitor the atmospheric electric field at various locations in South America. The first task is to obtain a diurnal curve of atmospheric electric field variations under fair weather conditions, which we will consider as a reference curve. To accomplish this, we made daily, monthly, seasonal and annual averages. For all sensor location, the results show significant similarities with the Carnegie curve. The Carnegie curve is the characteristic curve in universal time of atmospheric electric field in fair weather and one thinks it is related to the currents flowing in the global atmospheric electric circuit. Ultimately, we pretend to study departures of the daily observations from the standard curve. This difference can be caused by solar, geophysical and atmospheric phenomena such as the solar activity cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and/or specific meteorological events. As an illustration we investigate solar effects on the atmospheric electric field observed at CASLEO (Lat. 31.798°S, Long. 69.295°W, Altitude: 2552 masl) by the method of superposed epoch analysis, between January 2010 and December 2015.

  5. Empirical analysis of storm-time energetic electron enhancements

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas Paul, III

    This Ph.D. thesis documents a program for studying the appearance of energetic electrons in the Earth's outer radiation belts that is associated with many geomagnetic storms. The dynamic evolution of the electron radiation belts is an outstanding empirical problem in both theoretical space physics and its applied sibling, space weather. The project emphasizes the development of empirical tools and their use in testing several theoretical models of the energization of the electron belts. First, I develop the Statistical Asynchronous Regression technique to provide proxy electron fluxes throughout the parts of the radiation belts explored by geosynchronous and GPS spacecraft. Next, I show that a theoretical adiabatic model can relate the local time asymmetry of the proxy geosynchronous fluxes to the asymmetry of the geomagnetic field. Then, I perform a superposed epoch analysis on the proxy fluxes at local noon to identify magnetospheric and interplanetary precursors of relativistic electron enhancements. Finally, I use statistical and neural network phase space analyses to determine the hourly evolution of flux at a virtual stationary monitor. The dynamic equation quantitatively identifies the importance of different drivers of the electron belts. This project provides empirical constraints on theoretical models of electron acceleration.

  6. Sawtooth events and O+ in the plasma sheet and boundary layer: CME- and SIR-driven events

    NASA Astrophysics Data System (ADS)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Liao, J.

    2017-12-01

    The role of ionospheric ions in sawtooth events is an open question. Simulations[1,2,3] suggest that O+ from the ionosphere produces a feedback mechanism for driving sawtooth events. However, observational evidence[4,5] suggest that the presence of O+ in the plasma sheet is neither necessary nor sufficient. In this study we investigate whether the solar wind driver of the geomagnetic storm has an effect on the result. Building on an earlier study[4] that used events for which Cluster data is available in the plasma sheet and boundary layer, we perform a superposed epoch analysis for coronal mass ejection (CME) driven storms and streaming interaction region (SIR) driven storms separately, to investigate the hypothesis that ionospheric O+ is an important contributor for CME-driven storms but not SIR-driven storms[2]. [1]O. J. Brambles et al. (2011), Science 332, 1183.[2]O. J. Brambles et al. (2013), JGR 118, 6026.[3]R. H. Varney et al. (2016), JGR 121, 9688.[4]J. Liao et al. (2014), JGR 119, 1572.[5]E. J. Lund et al. (2017), JGR, submitted.

  7. The changing role of fire in conifer-dominated temperate rainforest through the last 14,000 years

    NASA Astrophysics Data System (ADS)

    Fletcher, M.-S.; Bowman, D. M. J. S.; Whitlock, C.; Mariani, M.; Stahle, L.

    2018-02-01

    Climate, fire and vegetation dynamics are often tightly coupled through time. Here, we use a 14 kyr sedimentary charcoal and pollen record from Lake Osborne, Tasmania, Australia, to explore how this relationship changes under varying climatic regimes within a temperate rainforest ecosystem. Superposed epoch analysis reveals a significant relationship between fire and vegetation change throughout the Holocene at our site. Our data indicates an initial resilience of the rainforest system to fire under a stable cool and humid climate regime between ca. 12-6 ka. In contrast, fires that occurred after 6 ka, under an increasingly variable climate regime wrought by the onset of the El Niño-Southern Oscillation (ENSO), resulted in a series of changes within the local rainforest vegetation that culminated in the replacement of rainforest by fire-promoted Eucalypt forest. We suggest that an increasingly variable ENSO-influenced climate regime inhibited rainforest recovery from fire because of slower growth, reduced fecundity and increased fire frequency, thus contributing to the eventual collapse of the rainforest system.

  8. Thermosphere Global Time Response to Geomagnetic Storms Caused by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Oliveira, D. M.; Zesta, E.; Schuck, P. W.; Sutton, E. K.

    2017-10-01

    We investigate, for the first time with a spatial superposed epoch analysis study, the thermosphere global time response to 159 geomagnetic storms caused by coronal mass ejections (CMEs) observed in the solar wind at Earth's orbit during the period of September 2001 to September 2011. The thermosphere neutral mass density is obtained from the CHAMP (CHAllenge Mini-Satellite Payload) and GRACE (Gravity Recovery Climate Experiment) spacecraft. All density measurements are intercalibrated against densities computed by the Jacchia-Bowman 2008 empirical model under the regime of very low geomagnetic activity. We explore both the effects of the pre-CME shock impact on the thermosphere and of the storm main phase onset by taking their times of occurrence as zero epoch times (CME impact and interplanetary magnetic field Bz southward turning) for each storm. We find that the shock impact produces quick and transient responses at the two high-latitude regions with minimal propagation toward lower latitudes. In both cases, thermosphere is heated in very high latitude regions within several minutes. The Bz southward turning of the storm onset has a fast heating manifestation at the two high-latitude regions, and it takes approximately 3 h for that heating to propagate down to equatorial latitudes and to globalize in the thermosphere. This heating propagation is presumably accomplished, at least in part, with traveling atmospheric disturbances and complex meridional wind structures. Current models use longer lag times in computing thermosphere density dynamics during storms. Our results suggest that the thermosphere response time scales are shorter and should be accordingly adjusted in thermospheric empirical models.

  9. Statistical analysis of solar wind stream interface induced temperature effects on the upper mesosphere and lower thermosphere over SANAE IV, Antarctica

    NASA Astrophysics Data System (ADS)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; William; Sivla, T.

    Using superposed epoch techniques, the TIMED (Thermosphere Ionosphere Mesosphere Energetic and Dynamics) and NOAA 15-18 (National Oceanic and Atmospheric Administration) satellites measurements are used to examine the response of the polar MLT (Mesosphere and Lower Thermosphere) temperature to energetic electron precipitation during solar wind stream interfaces (SI). We first investigate the relationship between the ionospheric absorption from the ground based riometer and degree of energetic electron precipitation from the MEPED (Medium Energy Proton and Electron Detectors) on board the NOAA satellites. By interpolating the energetic electron measurements from MEPED instruments, we can obtain the electron precipitation rates close in time to the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Using measurements sorted over the vicinity of SANAE IV (South Africa National Antarctic Expedition IV), we investigate if there are significant temperature effects in the MLT altitude on SI arrival at Earth. The preliminary analysis indicate that there are no temperature increase below 100 km prior to the SI triggered precipitation; whereas a clear temperature increase is observed at 95 km immediately after the SI impact. The analysis on the SI geophysical properties indicates that an enhanced magnetospheric convection resulting to heating could be responsible for the temperature modification on SI arrival.

  10. Association of corotating magnetic sector structure with Jupiters decameter-wave radio emissions

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.

    1979-01-01

    Chree (superposed epoch) analyses of Jupiter's decameter-wave radio emission taken from the new Thieman (1979) catalog show highly significant correlation with solar activity indicated by the geomagnetic Ap index. The correlation effects can be explained in terms of corotating interplanetary magnetic sector features. At times when the solar wind velocity is relatively low, about 300 to 350 km/s, a sector boundary can encounter the Earth and Jupiter almost simultaneously during the period immediately before opposition. After opposition this will not normally occur as the solar wind velocities necessary are too low. The correlation effects are much enhanced for the three apparitions of 1962-1964 during which a relatively stable and long-lived sector pattern was present. Chree analyses for this period indicate periodicities, approximately equal to half the solar rotation period, in the Jupiter data.

  11. Antarctic mesocyclone regimes from satellite and conventional data

    NASA Astrophysics Data System (ADS)

    Fitch, Mark; Carleton, Andrew M.

    1992-03-01

    Mesoscale vortices in the Antarctic, poleward of 50°S, are examined in the synoptic context for the Ross Sea sector (100°E eastward to 80°W) for transition and winter months of 1988, using DMSP (Defense Meteorological Satellite Program) thermal infrared (TIR) images. Mesoscale vortices are classified and tracked and the dominant characteristics, such as life span, speed of movement and preferred geographical locations of formation, are defined and discussed. A "superposed epoch" (compositing) method utilizing 1000 and 500mb height data identifies the dominant synoptic regimes in which mesoscale vortices tend to develop. This analysis indicates that during active or outbreak periods, a negative thickness anomaly ("cold pool") is located northeast of the Ross Sea, and mesoscale vortices tend to occur on the poleward side of that anomaly. In addition, an enhanced trough-ridge pattern is evident for the Ross Sea sector compared with the composite pattern for inactive, or dearth, periods. The active periods of mesoscale vortices appear to originate from Antarctica, possibly via the persistent katabatic outflows from the ice sheet, rather than from teleconnections to lower latitudes. Analysis of Automatic Weather Station (AWS) data for the Ross Sea region supports this notion, at least for individual cases. Confirmation of these findings for the corresponding months of additional years is continuing.

  12. Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments

    NASA Astrophysics Data System (ADS)

    Thurairajah, Brentha; Thomas, Gary E.; von Savigny, Christian; Snow, Martin; Hervig, Mark E.; Bailey, Scott M.; Randall, Cora E.

    2017-09-01

    Polar Mesospheric Cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment are used to investigate the response of PMCs to forcing associated with the 27-day solar rotation. We quantify the PMC response in terms of sensitivity values. Analysis of PMC data from 14 seasons indicate a large seasonal variability in sensitivity with both correlation and anti-correlation between PMC properties and Lyman-alpha irradiance for individual seasons. However, a superposed epoch analysis reveals the expected anti-correlation between variations in solar Lyman-alpha and variations in PMC ice water content, albedo, and frequency of occurrence. The PMC height is found to significantly correlate with 27-day variations in solar Lyman-alpha in the Southern Hemisphere (SH), but not in the Northern hemisphere (NH). Depending on instrument and property, the time lag between variations in PMC properties and solar Lyman-alpha ranges from 0 to 3 days in the NH and from 6 to 7 days in the SH. These hemispheric differences in PMC height and time lag are not understood, but it is speculated that they result from dynamical forcing that is controlled by the 27-day solar cycle.

  13. Solar wind speed and He I (1083 nm) absorption line intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakamada, Kazuyuki; Kojima, Masayoshi; Kakinuma, Takakiyo

    1991-04-01

    Since the pattern of the solar wind was relatively steady during Carrington rotations 1,748 through 1,752 in 1984, an average distribution of the solar windspeed on a so-called source surface can be constructed by superposed epoch analysis of the wind values estimated by the interplanetary scintillation observations. The average distribution of the solar wind speed is then projected onto the photosphere along magnetic field lines computed by a so-called potential model with the line-of-sight components of the photospheric magnetic fields. The solar wind speeds projected onto the photosphere are compared with the intensities of the He I (1,083 nm) absorptionmore » line at the corresponding locations in the chromosphere. The authors found that there is a linear relation between the speeds and the intensities. Since the intensity of the He I (1,083 nm) absorption line is coupled with the temperature of the corona, this relation suggests that some physical mechanism in or above the photosphere accelerates coronal plasmas to the solar wind speed in regions where the temperature is low. Further, it is suggested that the efficiency of the solar wind acceleration decreases as the coronal temperature increases.« less

  14. Temporal variation of the arterial pressure in healthy young people and its relation to geomagnetic activity in Mexico

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Sánchez de la Peña, S.; Martínez, J. L.

    2012-11-01

    We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results.

  15. How the IMF By induces a By-component on closed field lines during northward IMF Bz

    NASA Astrophysics Data System (ADS)

    Tenfjord, Paul; Østgaard, Nikolai; Strangeway, Robert J.; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Hesse, Michael; Snekvik, Kristian; Milan, Stephen E.

    2017-04-01

    We describe how the IMF By-component induces a local By-component on closed field lines during northward IMF Bz. The mechanism is the result of high-latitude reconnection on the dayside when IMF By is non-zero. We describe the dynamical process, in which tension on newly reconnected field lines redistribute the open flux asymmetrically between the two hemispheres, which leads to asymmetric energy flow into the lobes. The resulting shear flows change the magnetic field, thereby inducing a By-component on closed field lines. We use a global magnetohydrodynamics model to illustrate the mechanism. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flows are characterized by a departure from a symmetric two-cell configuration to the growth of one of the lobe cells, while the other will contract. We also present the associated timescales of the local By-component to a change in the IMF By, by both theoretical arguments and by a superposed epoch analysis between magnetic field measurements from GOES and a list of IMF By reversals. We find that the magnetosphere responds within 10 minutes and reconfigures within 40 minutes.

  16. Photometry, polarimetry, spectroscopy, and spectropolarimetry of the enigmatic Wolf-Rayet star EZ Canis Majoris

    NASA Technical Reports Server (NTRS)

    Robert, Carmelle; Moffat, Anthony F. J.; Drissen, Laurent; Lamontagne, Robert; Seggewiss, Wilhelm; Niemela, Virpi S.; Cerruti, Miguel A.; Barrett, Paul; Bailey, Jeremy; Garcia, Jorge

    1992-01-01

    New observations of the peculiar Wolf-Rayet star EZ Canis Majoris collected since 1987 are presented, and photometric, polarimetric, spectroscopic, and spectropolarimetric data are discussed. Linear polarization data are well fitted with an eccentric binary model where an additional free parameter is included to allow for epoch-dependent changes of the geometrical electron distribution in the W-R envelope. This yields a set of basic parameters, including an eccentricity e = 0.39 +/- 0.02 and an orbital inclination i = 114 deg +/- 3 deg. The spectroscopic data show global profile variations for all three observed strong emission lines He II 5412 A, C IV 5807 A, and He I 5876 A. Radial velocities of the lines vary with the 3.766-day period. Radially expanding inhomogeneities are superposed on the line profiles and variable polarization in the lines is observed.

  17. Van Allen Probes observations of outer radiation belt evolution during CME and CIR storms

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Shen, X.; Jaynes, A. N.; Shi, Q.; Tian, A.; Claudepierre, S. G.; Qin, M.; Zong, Q.; Sun, W.

    2017-12-01

    Storm time outer radiation belt evolutes dramatically. It is still an stuff problem to model and predict the evolutions. The MeV electron flux can loss, no change or increase during different storms. Most of the previous statistical results were made by low altitude polar orbiting satellites, such as SAMPEX and NOAA POES, or geosynchronous orbiting satellites, such as GOES. Although part of the electron flux observed by polar orbiting satellites can be treated as trapped electrons, they are already close to the ionosphere with pitch angles apart from 90 degrees. Geosynchronous orbiting satellites are limited to r=6.6 RE (geocentric radial distance in Earth radii). The Van Allen Probes twin spacecraft, launched on 30 August 2012 with orbit near the equatorial plane, apogee at 5.8 RE and perigee at 620 km, give us a good oppurtuinity to study the storm-time outer radiation belt evolutions. During the time period from the begining of 2013 to the end of 2016, 31 CMEs and 28 CIRs are identified from OMNI-2 dataset. Superposed epoch analysis shows that CIR-storms which increased flux closer to geosynchronous orbit consistent with earlier studies, while CME-storms likely produce deeper penetration of enhanced flux and local heating which is greater at higher energies at lower L*.

  18. Catapult current sheet relaxation model confirmed by THEMIS observations

    NASA Astrophysics Data System (ADS)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  19. A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D. C., E-mail: dbraun@cora.nwra.com

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists formore » several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.« less

  20. Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation

    NASA Technical Reports Server (NTRS)

    Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.

    2012-01-01

    The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.

  1. Solar wind modulation of UK lightning

    NASA Astrophysics Data System (ADS)

    Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke

    2013-04-01

    The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.

  2. Studies of cosmic plasma using radioastron VLBI observations of giant pulses of the pulsar B0531+21

    NASA Astrophysics Data System (ADS)

    Rudnitskii, A. G.; Karuppusamy, R.; Popov, M. V.; Soglasnov, V. A.

    2016-02-01

    The structure of the interstellar plasma in the direction of the pulsar in the Crab Nebula is studied using several sets of space-VLBI observations obtained with networks of ground telescopes and the RadioAstron space antenna at 18 and 92 cm. Six observing sessions spanning two years are analyzed. Giant pulses are used to probe the cosmic plasma, making it possible to measure the scattering parameters without averaging. More than 4000 giant pulses were detected. The interferometer responses (visibility functions) on ground and ground-space baselines are analyzed. On the ground baselines, the visibility function as a function of delay is dominated by a narrow feature at zero delay with a width of δ τ ~ 1/B, where B is the receiver bandwidth. This is typical for compact continuum sources. On the ground-space baselines, the visibility function contains a set of features superposed on each other and distributed within a certain interval of delays, which we identify with the scattering time for the interfering rays τ. The amplitude of the visibility function on ground baselines falls with increasing baseline; the scattering disk is partially resolved at 18 cmand fully resolved at 92 cm. Estimates of the scattering angle ? give 0.5-1.3mas at 18 cm and 14.0 mas at 92 cm. The measured values of ? and τ are compared to estimate the distance from the source to the effective scattering screen, which is found at various epochs to be located at distances from 0.33 to 0.96 of the distance from the observer to the pulsar, about 2 kpc. The screen is close to the Crab Nebula at epochs of strong scattering, confirming that scattering on inhomogeneities in the plasma in the vicinity of the nebula itself dominates at these epochs.

  3. Thunderstorm related variations of the ionospheric sporadic E layer over Rome

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Scotto, Carlo; Pietrella, Marco

    2013-04-01

    Meteorological events in the lower atmosphere can affect the ionosphere by electromagnetic and mechanical processes. One type of the latter ones is the internal atmospheric gravity waves (AGWs) which can often be generated by thunderstorms. According to a Superposed Epoch Analyses (SEA) using the time series of the critical frequency (foEs) and virtual height (h'Es) of the sporadic E layer and WWLLN (World Wide Lightning Location Network) lightning data over the ionospheric station of Rome (41.9° 12.5°) there is a statistically significant decrease in the foEs of the sporadic E layer after the time of the lightnings. This may indicate a sudden decrease in the electron density of the sporadic E layer associated to lightnings. In order to understand the physical explanation for this phenomenon further studies are performed as follows: a SEA for different seasons and for daytime - nightime lightnings separately. Direction of arrival of thunderstorms is also taken into account.

  4. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, evenmore » days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.« less

  5. The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval

    NASA Astrophysics Data System (ADS)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-02-01

    We present a statistical study relating the latitude of the auroral oval measured by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) SI-12 proton auroral camera to that of the Heppner-Maynard Boundary (HMB) determined from Super Dual Auroral Radar Network (SuperDARN) data during the period 2000-2002. The HMB represents the latitudinal extent of the ionospheric convection pattern. The oval latitude from the proton auroral images is determined using the method of Milan et al. (2009a), which fits a circle centered on a point 2° duskward and 5° antisunward of the magnetic pole. The auroral latitude at midnight is determined for those images where the concurrent SuperDARN northern hemisphere maps contain more than 200 data points such that the HMB is well-defined. The statistical study comprises over 198,000 two-minute intervals, and we find that the HMB is located on average 2.2° equatorward of the proton auroral latitude. A superposed epoch analysis of over 2500 substorms suggests that the separation between the HMB and the oval latitude increases slightly during periods of high geomagnetic activity. We suggest that during intervals where there are no auroral images available, the HMB latitude and motion could be used as a proxy for that of the aurora, and therefore provide information about motions of the open/closed field line boundary.

  6. Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim; silverman, vered; harnik, nili; Erlich, caryn

    2016-04-01

    Superposed epoch analysis of meteorological reanalysis data is used to demonstrate a significant connection between intraseasonal solar variability and temperatures in the stratosphere. Decreasing solar flux leads to a cooling of the tropical upper stratosphere above 7hPa, while increasing solar flux leads to a warming of the tropical upper stratosphere above 7hPa, after a lag of approximately six to ten days. Late winter (February-March) Arctic stratospheric temperatures also change in response to changing incoming solar flux in a manner consistent with that seen on the 11 year timescale: ten to thirty days after the start of decreasing solar flux, the polar cap warms during the easterly phase of the Quasi-Biennal Oscillation. In contrast, cooling is present after decreasing solar flux during the westerly phase of the Quasi-Biennal Oscillation (though it is less robust than the warming during the easterly phase). The estimated composite mean changes in Northern Hemisphere upper stratospheric (~ 5hPa) polar temperatures exceed 8K, and are potentially a source of intraseasonal predictability for the surface. These changes in polar temperature are consistent with the changes in wave driving entering the stratosphere. Garfinkel, C.I., V. Silverman, N. Harnik, C. Erlich, Y. Riz (2015), Stratospheric Response to Intraseasonal Changes in Incoming Solar Radiation, J. Geophys. Res. Atmos., 120, 7648-7660. doi: 10.1002/2015JD023244.

  7. A comparison of outer electron radiation belt dropouts during solar wind stream interface and magnetic cloud driven storms

    NASA Astrophysics Data System (ADS)

    Ogunjobi, O.; Sivakumar, V.; Mtumela, Z.

    2017-06-01

    Energetic electrons are trapped in the Earth's radiation belts which occupy a toroidal region between 3 and 7 \\hbox {R}E above the Earth's surface. Rapid loss of electrons from the radiation belts is known as dropouts. The source and loss mechanisms regulating the radiation belts population are not yet understood entirely, particularly during geomagnetic storm times. Nevertheless, the dominant loss mechanism may require an event based study to be better observed. Utilizing multiple data sources from the year 1997-2007, this study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at Earth, or when magnetic clouds (MC) arrived. Using superposed epoch analysis (SEA) technique, a synthesis of multiple observations is performed to reveal loss mechanism which might, perhaps, be a major contributor to radiation belt losses under SI and MC driven storms. Results show an abrupt slower decaying precipitation of electron peak (about 3000 counts/sec) on SI arrival within 5.05 < L < 6.05, which persist till 0.5 day before gradual recovery. This pattern is interpreted as an indication of depleted electrons from bounce lost cone via precipitating mechanism known as relativistic electron microburst. On the other hand, MC shows a pancake precipitating peak extending to lower L (Plasmapause); indicating a combination of electron cyclotron harmonic (ECH) and whistler mode waves as the contributing mechanisms.

  8. Probability of occurrence of planetary ionosphere storms associated with the magnetosphere disturbance storm time events

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.

    2014-11-01

    The ionospheric W index allows to distinguish state of the ionosphere and plasmasphere from quiet conditions (W = 0 or ±1) to intense storm (W = ±4) ranging the plasma density enhancements (positive phase) or plasma density depletions (negative phase) regarding the quiet ionosphere. The global W index maps are produced for a period 1999-2014 from Global Ionospheric Maps of Total Electron Content, GIM-TEC, designed by Jet Propulson Laboratory, converted from geographic frame (-87.5:2.5:87.5° in latitude, -180:5:180° in longitude) to geomagnetic frame (-85:5:85° in magnetic latitude, -180:5:180° in magnetic longitude). The probability of occurrence of planetary ionosphere storm during the magnetic disturbance storm time, Dst, event is evaluated with the superposed epoch analysis for 77 intense storms (Dst ≤ -100 nT) and 230 moderate storms (-100 < Dst ≤ -50 nT) with start time, t0, defined at Dst storm main phase onset. It is found that the intensity of negative storm, iW-, exceeds the intensity of positive storm, iW+, by 1.5-2 times. An empirical formula of iW+ and iW- in terms of peak Dst is deduced exhibiting an opposite trends of relation of intensity of ionosphere-plasmasphere storm with regard to intensity of Dst storm.

  9. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  10. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2012-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  11. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  12. Plasma and magnetic field variations in the distant magnetotail associated with near-earth substorm effects

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Bame, S. J.; Mccomas, D. J.; Zwickl, R. D.; Slavin, J. A.; Smith, E. J.

    1987-01-01

    Examination of many individual event periods in the ISEE 3 deep-tail data set has suggested that magnetospheric substorms produce a characteristic pattern of effects in the distant magnetotail. During the growth, or tail-energy-storage phase of substorms, the magnetotail appears to grow diametrically in size, often by many earth radii. Subsequently, after the substorm expansive phase onset at earth, the distant tail undergoes a sequence of plasma, field, and energetic-particle variations as large-scale plasmoids move rapidly down the tail following their disconnection from the near-earth plasma sheet. ISEE 3 data are appropriate for the study of these effects since the spacecraft remained fixed within the nominal tail location for long periods. Using newly available auroral electrojet indices (AE and AL) and Geo particle data to time substorm onsets at earth, superposed epoch analyses of ISEE 3 and near-earth data prior to, and following, substorm expansive phase onsets have been performed. These analyses quantify and extend substantially the understanding of the deep-tail pattern of response to global substorm-induced dynamical effects.

  13. The lunar semidiurnal tide at the polar summer mesopause observed by SOFIE

    NASA Astrophysics Data System (ADS)

    Hoffmann, C. G.; von Savigny, C.; Hervig, M. E.; Oberbremer, E.

    2018-01-01

    The polar summer mesopause, particularly the presence of noctilucent clouds (NLCs), exhibits pronounced temporal variability. Parts of this variability are thought to be caused by lunar tidal influences. We extract the semidiurnal lunar tide in various NLC related parameters by applying the superposed epoch analysis method to the dataset of the SOFIE satellite instrument. Analyzing the NLC seasons from 2007 to 2015 in the northern and southern hemisphere we, first, confirm the influence of the lunar tide on ice water content (IWC) and temperature. For both parameters the lunar influence had already recently been demonstrated in satellite measurements. Second, we apply the analysis to the variety of parameters observed by SOFIE including trace gases (H2O , O3 , CH4 , and NO), NLC properties (e.g., NLC altitudes and ice mass density), microphysical properties (e.g., particle concentration and mean radius), and mesopause properties. In all of these parameters we find signatures of the semidiurnal lunar tide, which is the first demonstration of this effect for all of these parameters. We quantify the lunar influence in terms of amplitudes and phases. Whereas the focus of the present study is providing observational evidence for the existence of lunar tidal signatures in various parameters, we do not aim at investigating the underlying mechanisms in detail, which is only possible with the utilization of comprehensive modeling approaches. Nevertheless, we briefly discuss the relations to known processes of the NLC evolution where appropriate, e.g., the relevance of the freeze-drying effect for the signature in H2O and the relation of IWC and NLC altitudes.

  14. TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, J. P.; Hoeksema, J. T., E-mail: JMason86@sun.stanford.ed, E-mail: JTHoeksema@sun.stanford.ed

    Flare occurrence is statistically associated with changes in several characteristics of the line-of-sight magnetic field in solar active regions (ARs). We calculated magnetic measures throughout the disk passage of 1075 ARs spanning solar cycle 23 to find a statistical relationship between the solar magnetic field and flares. This expansive study of over 71,000 magnetograms and 6000 flares uses superposed epoch (SPE) analysis to investigate changes in several magnetic measures surrounding flares and ARs completely lacking associated flares. The results were used to seek any flare associated signatures with the capability to recover weak systematic signals with SPE analysis. SPE analysismore » is a method of combining large sets of data series in a manner that yields concise information. This is achieved by aligning the temporal location of a specified flare in each time series, then calculating the statistical moments of the 'overlapping' data. The best-calculated parameter, the gradient-weighted inversion-line length (GWILL), combines the primary polarity inversion line (PIL) length and the gradient across it. Therefore, GWILL is sensitive to complex field structures via the length of the PIL and shearing via the gradient. GWILL shows an average 35% increase during the 40 hr prior to X-class flares, a 16% increase before M-class flares, and 17% increase prior to B-C-class flares. ARs not associated with flares tend to decrease in GWILL during their disk passage. Gilbert and Heidke skill scores are also calculated and show that even GWILL is not a reliable parameter for predicting solar flares in real time.« less

  15. Statistical validation of a solar wind propagation model from 1 to 10 AU

    NASA Astrophysics Data System (ADS)

    Zieger, Bertalan; Hansen, Kenneth C.

    2008-08-01

    A one-dimensional (1-D) numerical magnetohydrodynamic (MHD) code is applied to propagate the solar wind from 1 AU through 10 AU, i.e., beyond the heliocentric distance of Saturn's orbit, in a non-rotating frame of reference. The time-varying boundary conditions at 1 AU are obtained from hourly solar wind data observed near the Earth. Although similar MHD simulations have been carried out and used by several authors, very little work has been done to validate the statistical accuracy of such solar wind predictions. In this paper, we present an extensive analysis of the prediction efficiency, using 12 selected years of solar wind data from the major heliospheric missions Pioneer, Voyager, and Ulysses. We map the numerical solution to each spacecraft in space and time, and validate the simulation, comparing the propagated solar wind parameters with in-situ observations. We do not restrict our statistical analysis to the times of spacecraft alignment, as most of the earlier case studies do. Our superposed epoch analysis suggests that the prediction efficiency is significantly higher during periods with high recurrence index of solar wind speed, typically in the late declining phase of the solar cycle. Among the solar wind variables, the solar wind speed can be predicted to the highest accuracy, with a linear correlation of 0.75 on average close to the time of opposition. We estimate the accuracy of shock arrival times to be as high as 10-15 hours within ±75 d from apparent opposition during years with high recurrence index. During solar activity maximum, there is a clear bias for the model to predicted shocks arriving later than observed in the data, suggesting that during these periods, there is an additional acceleration mechanism in the solar wind that is not included in the model.

  16. Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.

    2015-06-01

    Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These results indicate that the lobate debris apron populations formed (or their surfaces became stable) in the Early to Middle Amazonian Epochs, and were subsequently subjected to complex degradation by erosion and sublimation and/or melting of contained ice, culminating in episodes of deposition of ice-rich mantles in the Late Amazonian Epoch.

  17. The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32

    NASA Technical Reports Server (NTRS)

    Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.

    1994-01-01

    We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range of 2.4-3.0 kpc for the source distance, which is consistent with our separate estimate of 2.4 +/- 0.4 kpc based on measurement of the NaD interstellar line profile. Adopting 2.4 kpc and E(B-V) = 0.23, the outburst absolute magnitude was M approximately equals 0.0, which is a typical value for this class of objects.

  18. Fiber-guided modes conversion using superposed helical gratings

    NASA Astrophysics Data System (ADS)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  19. Electron heating and Tp/Te variations during magnetic dipolarizations

    NASA Astrophysics Data System (ADS)

    Grigorenko, Elena; Kronberg, Elena; Daly, Patrick; Ganushkina, Natalia; Lavraud, Benoit; Sauvaud, Jean-Andre; Zelenyi, Lev

    2017-04-01

    The proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail is studied by using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19

  20. Assessing Impacts of National Scale Droughts on Cereal Production

    NASA Astrophysics Data System (ADS)

    Udmale, P. D.; Ichikawa, Y.

    2017-12-01

    Till date, several drought indices have been developed and used to monitor local to regional scale droughts on various temporal scales. However, there are no generalized criteria to define a threshold to declare a national level drought using drought indices. EM-DAT (a global database on natural and technological disasters) lists disasters (including drought) from 1900 until the present confirming one of the following criteria: 10 or more people dead; 100 or more people affected; the declaration of a state of emergency; or a call for international assistance. This data is gathered from various organizations like United Nations Institutes, Governments, etc. and do not cover all disasters or have political limitations that could affect the numbers. These criteria are neither objective nor quantitative, and accordingly may cause uncertainties when the data is used for further investigation on disaster impacts. Here we present a methodology to define drought at a national scale and its impacts on national level crop production (mainly cereals). We define drought based on the percentage of cropland area affected by drought in a country during its seasonal rainfall. For this purpose meteorological definition of drought in combination with country's cropland area is proposed to prepare a drought inventory for major cereal producing countries (1902-2012). This drought inventory together with FAO's Crop data is used to identify the impacts of drought on a national level cereal production (and yield) using Superposed Epoch Analysis for the period 1961-2012.

  1. Birkeland currents during substorms: Statistical evidence for intensification of Regions 1 and 2 currents after onset and a localized signature of auroral dimming

    NASA Astrophysics Data System (ADS)

    Coxon, John C.; Rae, I. Jonathan; Forsyth, Colin; Jackman, Caitriona M.; Fear, Robert C.; Anderson, Brian J.

    2017-06-01

    We conduct a superposed epoch analysis of Birkeland current densities from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) using isolated substorm expansion phase onsets identified by an independently derived data set. In order to evaluate whether R1 and R2 currents contribute to the substorm current wedge, we rotate global maps of Birkeland currents into a common coordinate system centered on the magnetic local time of substorm onset. When the latitude of substorm is taken into account, it is clear that both R1 and R2 current systems play a role in substorm onset, contrary to previous studies which found that R2 current did not contribute. The latitude of substorm onset is colocated with the interface between R1 and R2 currents, allowing us to infer that R1 current closes just tailward and R2 current closes just earthward of the associated current disruption in the tail. AMPERE is the first data set to give near-instantaneous measurements of Birkeland current across the whole polar cap, and this study addresses apparent discrepancies in previous studies which have used AMPERE to examine the morphology of the substorm current wedge. Finally, we present evidence for an extremely localized reduction in current density immediately prior to substorm onset, and we interpret this as the first statistical signature of auroral dimming in Birkeland current.

  2. The curving calculation of a mechanical device attached to a multi-storey car park

    NASA Astrophysics Data System (ADS)

    Muscalagiu, C. G.; Muscalagiu, I.; Muscalagiu, D. M.

    2017-01-01

    Study bunk storage systems for motor vehicles developed much lately due to high demand for parking in congested city centers. In this paper we propose to study mechanism drive bunk platforms for dynamic request. This paper aims to improve the response mechanism on a platform behavior self during operation of the system and identify hot spots. In this paper we propose to analyze the deformations of the superposed platform in the points of application of the exterior forces produced by the weight of the vehicle in a dynamic way. This paper aims to automate the necessary computation for the analysis of the deformations of the superposed platform using Netlogo language.

  3. Statistical study of interplanetary condition effect on geomagnetic storms: 2. Variations of parameters

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2011-02-01

    We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976-2000, have analyzed 798 geomagnetic storms with D st ≤ -50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/< N> are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.

  4. An Evaluation of Historical Fire Occurrence, Drought and the El Niño Southern Oscillation in the Southcentral United States

    NASA Astrophysics Data System (ADS)

    Rooney, M.; Stambaugh, M. C.

    2016-12-01

    Wildfire occurrence in the forested ecosystems of the southcentral United States is driven by conditions of drought. Historically, fire intervals varied temporally and spatially - forced by climate, humans, and environmental conditions. Thus, proxy records are required to assess the relationships between fire occurrence, drought, and the El Niño Southern Oscillation (ENSO). Fire scar data from tree-rings are well-suited to assess historical fire regimes in this region, paired with reconstructions of drought and ENSO that have been developed from networks of ring-width chronologies across the United States. This study combines fire-scar data from twelve different sites in the southcentral United States, including two new fire-history reconstructions. Fire data incorporates 665 fires across Eastern Oklahoma and Northern Texas from 1637-2014. These robust reconstructions of post oak (Quercus stellata) evaluate the variability in fire activity and its association to drought and ENSO. Climate-explained growth variance in post-oak chronologies is strong in this region, providing powerful proxy information in the derived chronologies. In general, most fires occur during the La Niña portion of the ENSO cycle. Many severe fires correspond with drought, and results from super-posed epoch analysis suggest a significant relationship between fire event years and drought conditions in the full period of record. Analysis reveals differences in the relationships of fire, drought and ENSO through time, corresponding to changes in human settlement in the region. Understanding the spatial and temporal relationships that exist between fire occurrence, drought, and ENSO aid in quantifying disturbance characteristics and their associations to climate in the forested ecosystems of the southcentral United States.

  5. Early-Childhood Neurodevelopmental Outcomes Are Not Improving for Infants Born at <25 Weeks' Gestational Age

    PubMed Central

    Kendrick, Douglas E.; Wilson-Costello, Deanne E.; Das, Abhik; Bell, Edward F.; Vohr, Betty R.; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: We compared neurodevelopmental outcomes at 18 to 22 months' corrected age of infants born with extremely low birth weight at an estimated gestational age of <25 weeks during 2 periods: 1999–2001 (epoch 1) and 2002–2004 (epoch 2). PATIENTS AND METHODS: We conducted a multicenter, retrospective analysis of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Perinatal and neonatal variables and outcomes were compared between epochs. Neurodevelopmental outcomes at 18 to 22 months' corrected age were evaluated with neurologic exams and Bayley Scales of Infant Development II. Logistic regression analyses determined the independent risk of epoch for adverse outcomes. RESULTS: Infant survival was similar between epochs (epoch 1, 35.4%, vs epoch 2, 32.3%; P = .09). A total of 411 of 452 surviving infants in epoch 1 and 405 of 438 surviving infants in epoch 2 were evaluated at 18 to 22 months' corrected age. Cesarean delivery (P = .03), surgery for patent ductus arteriosus (P = .004), and late sepsis (P = .01) were more common in epoch 2, but postnatal steroid use was dramatically reduced (63.5% vs 32.8%; P < .0001). Adverse outcomes at 18 to 22 months' corrected age were common in both epochs. Moderate-to-severe cerebral palsy was diagnosed in 11.1% of surviving infants in epoch 1 and 14.9% in epoch 2 (adjusted odds ratio [OR]: 1.52 [95% confidence interval (CI): 0.86–2.71]; P = .15), the Mental Developmental Index was <70 in 44.9% in epoch 1 and 51% in epoch 2 (OR: 1.30 [95% CI: 0.91–1.87]; P = .15), and neurodevelopmental impairment was diagnosed in 50.1% of surviving infants in epoch 1 and 58.7% in epoch 2 (OR: 1.4 [95% CI: 0.98–2.04]; P = .07). CONCLUSIONS: Early-childhood outcomes for infants born at <25 weeks' estimated gestational age were unchanged between the 2 periods. PMID:21187312

  6. Identifying individual sleep apnea/hypoapnea epochs using smartphone-based pulse oximetry.

    PubMed

    Garde, Ainara; Dekhordi, Parastoo; Ansermino, J Mark; Dumont, Guy A

    2016-08-01

    Sleep apnea, characterized by frequent pauses in breathing during sleep, poses a serious threat to the healthy growth and development of children. Polysomnography (PSG), the gold standard for sleep apnea diagnosis, is resource intensive and confined to sleep laboratories, thus reducing its accessibility. Pulse oximetry alone, providing blood oxygen saturation (SpO2) and blood volume changes in tissue (PPG), has the potential to identify children with sleep apnea. Thus, we aim to develop a tool for at-home sleep apnea screening that provides a detailed and automated 30 sec epoch-by-epoch sleep apnea analysis. We propose to extract features characterizing pulse oximetry (SpO2 and pulse rate variability [PRV], a surrogate measure of heart rate variability) to create a multivariate logistic regression model that identifies epochs containing apnea/hypoapnea events. Overnight pulse oximetry was collected using a smartphone-based pulse oximeter, simultaneously with standard PSG from 160 children at the British Columbia Children's hospital. The sleep technician manually scored all apnea/hypoapnea events during the PSG study. Based on these scores we labeled each epoch as containing or not containing apnea/hypoapnea. We randomly divided the subjects into training data (40%), used to develop the model applying the LASSO method, and testing data (60%), used to validate the model. The developed model was assessed epoch-by-epoch for each subject. The test dataset had a median area under the receiver operating characteristic (ROC) curve of 81%; the model provided a median accuracy of 74% sensitivity of 75%, and specificity of 73% when using a risk threshold similar to the percentage of apnea/hypopnea epochs. Thus, providing a detailed epoch-by-epoch analysis with at-home pulse oximetry alone is feasible with accuracy, sensitivity and specificity values above 73% However, the performance might decrease when analyzing subjects with a low number of apnea/hypoapnea events.

  7. Staging Sleep in Polysomnograms: Analysis of Inter-Scorer Variability

    PubMed Central

    Younes, Magdy; Raneri, Jill; Hanly, Patrick

    2016-01-01

    Study Objectives: To determine the reasons for inter-scorer variability in sleep staging of polysomnograms (PSGs). Methods: Fifty-six PSGs were scored (5-stage sleep scoring) by 2 experienced technologists, (first manual, M1). Months later, the technologists edited their own scoring (second manual, M2) based upon feedback from the investigators that highlighted differences between their scoring. The PSGs were then scored with an automatic system (Auto) and the technologists edited them, epoch-by-epoch (Edited-Auto). This resulted in 6 different manual scores for each PSG. Epochs were classified as scorer errors (one M1 score differed from the other 5 scores), scorer bias (all 3 scores of each technologist were similar, but differed from the other technologist) and equivocal (sleep scoring was inconsistent within and between technologists). Results: Percent agreement after M1 was 78.9% ± 9.0% and was unchanged after M2 (78.1% ± 9.7%) despite numerous edits (≈40/PSG) by the scorers. Agreement in Edited-Auto was higher (86.5% ± 6.4%, p < 1E−9). Scorer errors (< 2% of epochs) and scorer bias (3.5% ± 2.3% of epochs) together accounted for < 20% of M1 disagreements. A large number of epochs (92 ± 44/PSG) with scoring agreement in M1 were subsequently changed in M2 and/or Edited-Auto. Equivocal epochs, which showed scoring inconsistency, accounted for 28% ± 12% of all epochs, and up to 76% of all epochs in individual patients. Disagreements were largely between awake/NREM, N1/N2, and N2/N3 sleep. Conclusion: Inter-scorer variability is largely due to epochs that are difficult to classify. Availability of digitally identified events (e.g., spindles) or calculated variables (e.g., depth of sleep, delta wave duration) during scoring may greatly reduce scoring variability. Citation: Younes M, Raneri J, Hanly P. Staging sleep in polysomnograms: analysis of inter-scorer variability. J Clin Sleep Med 2016;12(6):885–894. PMID:27070243

  8. Spreading dynamics of superposed liquid drops on a spinning disk

    NASA Astrophysics Data System (ADS)

    Sahoo, Subhadarshinee; Orpe, Ashish V.; Doshi, Pankaj

    2018-01-01

    We have experimentally studied simultaneous spreading of superposed drops of two Newtonian liquids on top of a horizontal spinning disk using the flow visualization technique. An inner drop of high surface tension liquid is placed centrally on the disk followed by a drop of outer liquid (lower surface tension) placed exactly above that. The disk is then rotated at a desired speed for a range of volume ratios of two liquids. Such an arrangement of two superposed liquid drops does not affect the spreading behavior of the outer liquid but influences that of the inner liquid significantly. The drop spreads to a larger extent and breaks into more fingers (Nf) as compared to the case where the same liquid is spreading in the absence of outer liquid. The experimentally observed number of fingers is compared with the prediction using available theory for single liquid. It is found that the theory over-predicts the value of Nf for the inner liquid while it is covered by an outer liquid. We provide a theoretical justification for this observation using linear stability analysis. Our analysis demonstrates that for small but finite surface tension ratio of the two liquids, the presence of the outer interface reduces the value of the most unstable wave number which is equivalent to the decrease in the number of fingers observed experimentally. Finally, sustained rotation of the disk leads to the formation of droplets at the tip of the fingers traveling outwards.

  9. Origin of low proton-to-electron temperature ratio in the Earth's plasma sheet

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Kronberg, E. A.; Daly, P. W.; Ganushkina, N. Yu.; Lavraud, B.; Sauvaud, J.-A.; Zelenyi, L. M.

    2016-10-01

    We study the proton-to-electron temperature ratio (Tp/Te) in the plasma sheet (PS) of the Earth's magnetotail using 5 years of Cluster observations (2001-2005). The PS intervals are searched within a region defined with -19 < X ≤ -7 RE and |Y| < 15 RE (GSM) under the condition |BX| ≤ 10 nT. One hundred sixty PS crossings are identified. We find an average value of 6.0. However, in many PS intervals Tp/Te varies over a wide range from a few units to several tens of units. In 86 PS intervals the Tp/Te decreases below 3.5. Generally, the decreases of Tp/Te are due to some increase of Te while Tp either decreases or remains unchanged. In the majority of these intervals the Tp/Te drops are observed during magnetotail dipolarizations. A superposed epoch analysis applied to these events shows that the minimum value of Tp/Te is observed after the dipolarization onset during the "turbulent phase" of dipolarization, when a number of transient BZ pulses are reduced, but the value of BZ is still large and an intensification of wave activity is observed. The Tp/Te drops, and associated increases of Te often coincide either with bursts of broadband electrostatic emissions, which may include electron cyclotron harmonics, or with broadband electromagnetic emission in a frequency range from proton plasma frequency (fpp) up to the electron gyrofrequency (fce). These findings show that the wave activity developing in the current sheet after dipolarization onset may play a role in the additional electron heating and the associated Tp/Te decrease.

  10. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    NASA Astrophysics Data System (ADS)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  11. Web of Pseudostreamer and Streamer Belts and their Interplanetary Signatures

    NASA Astrophysics Data System (ADS)

    Crooker, N. U.; Owens, M. J.; McPherron, R. L.

    2012-12-01

    A new method of identifying pseudostreamer and streamer belts on potential field source surface (PFSS) maps reveals how they interconnect to form a network or web-like pattern that expands to cover the Sun at solar maximum. The method is based upon calculating the distance dS between the photospheric footpoints of field lines that are uniformly spaced in longitude at the source surface. This distance peaks sharply under the large arcades characteristic of both pseudostreamer and streamer belts, where the former (latter) mark boundaries between coronal holes with the same (different) polarities. Thus the two kinds of belts are distinguished from each other by noting whether or not a change in magnetic polarity accompanies the peak, signaling passage of the heliospheric current sheet unique to the streamer belt. To compare the plasma and composition properties of pseudostreamer and streamer belts at 1 AU, we use 12 years of ACE data to perform superposed epoch analysis centered on stream interfaces in interaction regions, where the interfaces mark the trailing boundaries of what was originally slow flow. The interfaces are sorted according to whether they bound streamers or pseudostreamers by ballistically mapping them back to traces of dS across the source surface. Preliminary results indicate sharp drops in oxygen and carbon charge state ratios as well as the elemental abundance ratio Fe/O at both streamer and pseudostreamer boundaries. Combined with the web-like pattern of streamer and pseudostreamer belts, the results are consistent with the separatrix-web model of the slow solar wind first described by Antiochos et al. [Astrophys. J., 731, 112, 2011].

  12. Changes in neurodevelopmental outcomes at 18 to 22 months' corrected age among infants of less than 25 weeks' gestational age born in 1993-1999.

    PubMed

    Hintz, Susan R; Kendrick, Douglas E; Vohr, Betty R; Poole, W Kenneth; Higgins, Rosemary D

    2005-06-01

    Increased survival rates for extremely preterm, extremely low birth weight infants during the postsurfactant era have been reported, but data on changes in neurosensory and developmental impairments are sparse. To compare neuromotor and neurodevelopmental outcomes at 18 to 22 months' corrected age for infants of <25 weeks' estimated gestational age (EGA) who were born in the 1990s. This was a multicenter, retrospective, comparative analysis of infants of <25 weeks' EGA, with birth weights of 501 to 1000 g, born between January 1993 and June 1996 (epoch I) or between July 1996 and December 1999 (epoch II), in the National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental assessments were performed at 18 to 22 months' corrected age. Logistic-regression models were constructed to evaluate the independent risk of cerebral palsy, Mental Development Index of <70, Psychomotor Development Index of <70, and neurodevelopmental impairment. A total of 366 patients in epoch I and 473 patients in epoch II were evaluated. Prenatal steroid use, cesarean section, surfactant treatment, bronchopulmonary dysplasia, and severe retinopathy of prematurity were more likely in epoch II, whereas Apgar scores of <5 at 5 minutes, patent ductus arteriosus, and severe intraventricular hemorrhage were more likely in epoch I. The prevalences of cerebral palsy, Psychomotor Development Index of <70, and neurodevelopmental impairment were similar between epochs. The prevalences of Mental Development Index of <70 were 40% for epoch I and 47% for epoch II. Regression analysis revealed that epoch II was an independent risk factor for Mental Developmental Index of <70 (epoch I versus II: odds ratio: 0.63; 95% confidence interval: 0.45-0.87) but not for other outcomes. Early childhood neurodevelopmental outcomes among infants of <25 weeks' EGA are not improving in the postsurfactant era, despite more aggressive perinatal and neonatal treatment. Later childhood follow-up assessment is needed to delineate trends in severe cognitive impairment in this extremely high-risk group.

  13. Nova Superposed on Yavine Corona

    NASA Image and Video Library

    1998-06-04

    The view from NASA's Magellan spacecraft shows a 100-km-wide nova superposed on Yavine Corona. Coronae are roughly circular, volcanic features believed to form over hot upwellings of magma within the Venusian mantle. http://photojournal.jpl.nasa.gov/catalog/PIA00150

  14. Estimating Noise in the Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Englund Mathieu, Philip; HERA Team

    2017-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope dedicated to observing large scale structure during and prior to the epoch of reionization. Once completed, HERA will have unprecedented sensitivity to the 21-cm signal from hydrogen reionization. This poster will present time- and frequency-subtraction methods and results from a preliminary analysis of the noise characteristics of the nineteen-element pathfinder array.

  15. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.

  16. The electrophysiological "delayed effect" of focal interictal epileptiform discharges. A low resolution electromagnetic tomography (LORETA) study.

    PubMed

    Clemens, Béla; Piros, Pálma; Bessenyei, Mónika; Varga, Edit; Puskás, Szilvia; Fekete, István

    2009-08-01

    Collating the findings regarding the role of focal interictal epileptiform discharges (IEDs) on CNS functions raises the possibility that IEDs might have negative impact that outlasts the duration of the spike-and-wave complexes. The aim of this study was the electrophysiological demonstration of the "delayed effect" of the IEDs. 19-channel, linked-ears referenced, digital waking EEG records of 11 children (aged 6-14 years, eight with idiopathic, three with cryptogenic focal epilepsy, showing a single spike focus) were retrospectively selected from our database. A minimum of 20 (preferably, 30), 2-s epochs containing a single focal spike-and-wave complex were selected (Spike epochs). Thereafter, Postspike-1 (Ps1), Postspike-2 (Ps2) and Postspike-3 (Ps3) epochs were selected, representing the first and second seconds (Ps1), the third and fourth seconds (Ps2) and the fifth and sixth seconds (Ps3) after the Spike epoch, respectively. Interspike epochs (Is) were selected at a distance at least 10s after the Spike epoch. Individual analysis: the frequency of interest (FOI=the individual frequency of the wave component of the IEDs), and the region of interest (ROI=the site of the IEDs) were identified by reading the raw EEG waveform and the instant power spectrum. Very narrow band LORETA (low resolution electromagnetic tomography) analysis at the FOI and ROI was carried out. Age-adjusted, Z-transformed LORETA "activity" (=current source density, amperes/meters squared) was compared in the Spike, Ps1, Ps2, Ps3 and Is epochs. the greatest (uppermost pathological) Z-scores and the greatest spatial extension of the LORETA-abnormality were always found in the Spike epochs, followed by the gradual decrease of activity in terms of severity and spatial extension in the Ps1, Ps2, Ps3 epochs. The lowest (baseline) level and extension of the abnormality was found in the Is epochs. Group analysis: average values of activity across the patients were computed for the temporal decrease of the abnormality. a clear tendency for the decrease of abnormality was demonstrated. the "delayed effect" of the IEDs was demonstrated electrophysiologically and quantified. The method may be utilized in the individual assessment of the effect of IEDs on cortical activity, the degree and temporo-spatial extension of the abnormality.

  17. Response of energetic particles to local magnetic dipolarization inside geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Motoba, T.; Ohtani, S.; Gkioulidou, M.; Takahashi, K.

    2017-12-01

    Magnetic field dipolarization and energetic particle injections are the most distinct phenomena observed in the inner magnetosphere during the substorm expansion phase. Compared to a wealth of knowledge about the phenomenology of magnetic dipolarizations and particle injections at/outside geosynchronous orbit (GEO), our understanding of them inside GEO remains incomplete because of a very limited number of previous studies. In the present study, we statistically examine the response of 1-1000 keV energetic particles to local magnetic dipolarization by performing a superposed epoch analysis of energetic particle fluxes with the zero epoch defined as the dipolarization onset times. Based on data from the Van Allen Probes tail seasons in 2012-2016, we identified a total of 97 magnetic dipolarization events which occurred closer to the magnetic equator (i.e., BH, which is antiparallel to the Earth's dipole axis, is the dominant component of the local magnetic field at least for 5 min before the onset). For major ion species (hydrogen, helium, and oxygen ions), the relative flux intensity to the pre-onset level increases at > 50 keV and decreases at < 30 keV. The hydrogen and helium ion fluxes in the hundreds of keV range sharply increase within a minute after the onset and then decay. Compared to the short-lived nature of hydrogen and helium ion flux enhancements, oxygen ion fluxes are enhanced more gradually (on the order of several minutes). The relative ion flux intensity and peak energy generally tend to increase for stronger dipolarization-related impulsive westward electric field. This suggests that the impulsive electric field is responsible for the energization and/or transport of energetic ions inside GEO. On the other hand, the electron flux enhancement first appears from several tens of keV to a few hundreds of keV, and then exhibits an inverse energy dispersion. For dipolarizations with strong impulsive westward electric fields, the relative electron flux intensity increases up to 5-10 times, in particular most significant at several tens of keV. This result suggests that the impulsive electric field acts as an efficient factor in the rapid energization of the tens-of-keV electrons. We also discuss how the response of energetic particles to dipolarization depends on MLT, radial distance, and pitch angle.

  18. Highlight of Two Superposed Deformations in the Tin Bider Impact Crater (Tinhert Plateau, Central Sahara)

    NASA Astrophysics Data System (ADS)

    Belhai, D.; Kassab, F.

    2017-07-01

    A meteorite impact structure of Tin Bider shows, In addition the classical markers of impacts, superposed structures. Those are manifested by folds with perpendicular axes which are linked to two different phases during the impact event.

  19. Topology and convection of a northward interplanetary magnetic field reconnection event

    NASA Astrophysics Data System (ADS)

    Wendel, Deirdre E.

    >From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.

  20. Automatic superposition of drug molecules based on their common receptor site

    NASA Astrophysics Data System (ADS)

    Kato, Yuichi; Inoue, Atsushi; Yamada, Miho; Tomioka, Nobuo; Itai, Akiko

    1992-10-01

    We have prevously developed a new rational method for superposing molecules in terms of submolecular physical and chemical properties, but not in terms of atom positions or chemical structures as has been done in the conventional methods. The program was originally developed for interactive use on a three-dimensional graphic display, providing goodness-of-fit indices on molecular shape, hydrogen bonds, electrostatic interactions and others. Here, we report a new unbiased searching method for the best superposition of molecules, covering all the superposing modes and conformational freedom, as an additional function of the program. The function is based on a novel least-squares method which superposes the expected positions and orientations of hydrogen bonding partners in the receptor that are deduced from both molecules. The method not only gives reliability and reproducibility to the result of the superposition, but also allows us to save labor and time. It is demonstrated that this method is very efficient for finding the correct superposing mode in such systems where hydrogen bonds play important roles.

  1. Thermospheric Nitric Oxide Response to Shock-led Storms

    PubMed Central

    Knipp, D. J.; Pette, D. V.; Kilcommons, L. M.; Isaacs, T. L.; Cruz, A. A.; Mlynczak, M. G.; Hunt, L. A.; Lin, C. Y.

    2017-01-01

    We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric ‘overcooling’. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events. PMID:28824340

  2. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    NASA Technical Reports Server (NTRS)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  3. Thermospheric Nitric Oxide Response to Shock-led Storms.

    PubMed

    Knipp, D J; Pette, D V; Kilcommons, L M; Isaacs, T L; Cruz, A A; Mlynczak, M G; Hunt, L A; Lin, C Y

    2017-02-01

    We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric 'overcooling'. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.

  4. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  5. Joint Estimation of the Epoch of Reionization Power Spectrum and Foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter; Pober, Jonathan

    2018-01-01

    Bright astrophysical foregrounds present a significant impediment to the detection of redshifted 21-cm emission from the Epoch of Reionization on large spatial scales. In this talk I present a framework for the joint modeling of the power spectral contamination by astrophysical foregrounds and the power spectrum of the Epoch of Reionization. I show how informative priors on the power spectral contamination by astrophysical foregrounds at high redshifts, where emission from both the Epoch of Reionization and its foregrounds is present in the data, can be obtained through analysis of foreground-only emission at lower redshifts. Finally, I demonstrate how, by using such informative foreground priors, joint modeling can be employed to mitigate bias in estimates of the power spectrum of the Epoch of Reionization signal and, in particular, to enable recovery of more robust power spectral estimates on large spatial scales.

  6. SpacePy - a Python-based library of tools for the space sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven K; Welling, Daniel T; Koller, Josef

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks tomore » promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the analysis methods employed in scientific studies and will give access to advanced tools to all space scientists regardless of affiliation or circumstance.« less

  7. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.

    Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.

  8. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    NASA Astrophysics Data System (ADS)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  9. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.

    PubMed

    Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent

    2018-02-01

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. The influence of volcanic stratospheric aerosols on interannual global climate variations. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andsager, K.M.

    A qualitative physical mechanism has been proposed to explain the forcing of the EI Nino/Southern Oscillation (ENSO) by low-latitude volcanic stratospheric aerosols. This mechanism is based on the normal global annual cycle resulting from the normal annual cycle in the distribution of incoming solar radiation. The presence of a volcanic stratospheric aerosol, which backscatters incoming solar radiation, is hypothesized to trigger the ENSO through an amplification of the normal annual decrease in wind strength and corresponding increase in sea surface temperatures (SST) in the eastern tropical Pacific Ocean. The observational evidence for an association between the record of volcanic eruptionsmore » and SST and the Southern Oscillation Index (SOI, Tahiti SLP minus Darwin SLP) over the last 120 years is examined using superposed epoch analysis. Composites using as key dates low-latitude volcanic eruptions suggest that these eruptions are followed by statistically significantly warm sea surface temperatures at least at the 1 percent level, if not higher, with the greatest warming generally occurring in the first three seasons after the eruption. Satellite data on the distribution of recent volcanic aerosols suggests that an aerosol must only be present over the tropics (about 20 deg S to 20 deg N) to trigger an ENSO event. For the physical mechanism by which an ENSO event may be triggered by a volcanic stratospheric aerosol, these results and the results of recent computer modeling studies imply the need for a shift away from past emphasis on surface cooling and SLP anomalies and toward consideration of stratospheric warming and changes in energy storage and transport.« less

  11. The Relationship of High-Latitude Thermospheric Wind With Ionospheric Horizontal Current, as Observed by CHAMP Satellite

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Lühr, Hermann; Wang, Hui; Xiong, Chao

    2017-12-01

    The relationship between high-latitude ionospheric currents (Hall current and field-aligned current) and thermospheric wind is investigated. The 2-D patterns of horizontal wind and equivalent current in the Northern Hemisphere derived from the CHAMP satellite are considered for the first time simultaneously. The equivalent currents show strong dependences on both interplanetary magnetic field (IMF) By and Bz components. However, IMF By orientation is more important in controlling the wind velocity patterns. The duskside wind vortex as well as the antisunward wind in the morning polar cap is more evident for positive By. To better understand their spatial relation in different sectors, a systematic superposed epoch analysis is applied. Our results show that in the dusk sector, the vectors of the zonal wind and equivalent current are anticorrelated, and both of them form a vortical flow pattern for different activity levels. The currents and zonal wind are intensified with the increase of merging electric field. However, on the dawnside, where the relation is less clear, antisunward zonal winds dominate. Plasma drift seems to play a less important role for the wind than neutral forces in this sector. In the noon sector, the best anticorrelation between equivalent current and wind is observed for a positive IMF By component and it is less obvious for negative By. A clear seasonal effect with current intensities increasing from winter to summer is observed in the noon sector. Different from the currents, the zonal wind intensity shows little dependence on seasons. Our results indicate that the plasma drift and the neutral forces are of comparable influence on the zonal wind at CHAMP altitude in the noon sector.

  12. The Extent to Which Dayside Reconnection Drives Field-Aligned Currents During Substorms

    NASA Astrophysics Data System (ADS)

    Forsyth, C.; Shortt, M. W.; Coxon, J.; Rae, J.; Freeman, M. P.; Kalmoni, N. M. E.; Jackman, C. M.; Anderson, B. J.

    2016-12-01

    Field-aligned currents, also known as Birkeland currents, are the agents by which energy and momentum is transferred to the ionosphere from the magnetosphere and solar wind. In order to understand this coupling, it is necessary to analyze the variations in these current systems with respect to the main energy sources of the solar wind and substorms. In this study, we perform a superposed epoch analysis of field-aligned currents determined by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) project with respect to substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE) technique. We examine the total upward and downward currents separately in the noon, dusk, dawn and midnight sectors. Our results show that the dusk and dawn currents have up to a 66% linear correlated with the dayside reconnection rate estimated from solar wind measurements, whereas the noon and midnight currents are not. The noon currents show little or no variation throughout the substorm cycle. The midnight currents follows the dusk currents up to 20 min before onset, after which the midnight current increases more rapidly and exponentially. At substorm onset, the exponential growth rate increases. While the midnight field-aligned currents grow exponentially after substorm onset, the auroral indices vary with a 1/6th power law. Overall, our results show that the growth and decay rates of the Region 1 and 2 current systems, which are strongest at dawn and dusk, are directly driven by the solar wind, whereas the growth and decay rates of the substorm current system, which are dominant at midnight, act independently of the upstream driver.

  13. Shocks inside CMEs: A survey of properties from 1997 to 2006

    NASA Astrophysics Data System (ADS)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  14. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 3. Deflection of the Velocity Vector

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.

    2018-06-01

    This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.

  15. Influence of interplanetary solar wind sector polarity on the ionosphere

    NASA Astrophysics Data System (ADS)

    liu, jing

    2014-05-01

    Knowledge of solar sector polarity effects on the ionosphere may provide some clues in understanding of the ionospheric day-to-day variability. A solar-terrestrial connection ranging from solar sector boundary (SB) crossings, geomagnetic disturbance and ionospheric perturbations has been demonstrated. The increases in interplanetary solar wind speed within three days are seen after SB crossings, while the decreases in solar wind dynamic pressure and magnetic field intensity immediately after SB crossings are confirmed by the superposed epoch analysis results. Furthermore, the interplanetary magnetic field (IMF) Bz component turns from northward to southward in March equinox and June solstice as the Earth passes from a solar sector of outward to inward directed magnetic fields, whereas the reverse situation occurs for the transition from toward to away sectors. The F2 region critical frequency (foF2) covering about four solar cycles and total electron content (TEC) during 1998-2011 are utilized to extract the related information, revealing that they are not modified significantly and vary within the range of 15% on average. The responses of the ionospheric TEC to SB crossings exhibit complex temporal and spatial variations and have strong dependencies on season, latitude, and solar cycle. This effect is more appreciable in equinoctial months than in solstitial months, which is mainly caused by larger southward Bz components in equinox. In September equinox, latitudinal profile of relative variations of foF2 at noon is featured by depressions at high latitudes and enhancements in low-equatorial latitudes during IMF away sectors. The negative phase of foF2 is delayed at solar minimum relative to it during other parts of solar cycle, which might be associated with the difference in longevity of major interplanetary solar wind drivers perturbing the Earth's environment in different phases of solar cycle.

  16. A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum

    NASA Technical Reports Server (NTRS)

    Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

    2011-01-01

    A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

  17. Solution of the problem of superposing image and digital map for detection of new objects

    NASA Astrophysics Data System (ADS)

    Rizaev, I. S.; Miftakhutdinov, D. I.; Takhavova, E. G.

    2018-01-01

    The problem of superposing the map of the terrain with the image of the terrain is considered. The image of the terrain may be represented in different frequency bands. Further analysis of the results of collation the digital map with the image of the appropriate terrain is described. Also the approach to detection of differences between information represented on the digital map and information of the image of the appropriate area is offered. The algorithm for calculating the values of brightness of the converted image area on the original picture is offered. The calculation is based on using information about the navigation parameters and information according to arranged bench marks. For solving the posed problem the experiments were performed. The results of the experiments are shown in this paper. The presented algorithms are applicable to the ground complex of remote sensing data to assess differences between resulting images and accurate geopositional data. They are also suitable for detecting new objects in the image, based on the analysis of the matching the digital map and the image of corresponding locality.

  18. Dynamic Breaking Tests of Airplane Parts

    NASA Technical Reports Server (NTRS)

    Hertel, Heinrich

    1933-01-01

    The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.

  19. Libration Point Orbit Utilization for Tactical Advantage in Communications, Surveillance, and Risk Mitigation

    DTIC Science & Technology

    2014-10-27

    Ephemeris model in the orbit analysis software Satellite Took Kit ( STK ). As the first step, a study was conducted to find the visibility coverage using...northern L1 and L3 halo orbits. Figure 55. Average visibility by latitude at different ephemeris epochs for an L1 orbiter from STK analysis . Figure...56. Average visibility by latitude at different ephemeris epochs for an L3 orbiter from STK analysis . Figure 57. Average percent visibility of the

  20. Examining Relativistic Electron Loss in the Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and SAMPEX data, we examine whether precipitation to the atmosphere or magnetopause encounters can account for the additional loss.

  1. Solar flares associated coronal mass ejection accompanied with DH type II radio burst in relation with interplanetary magnetic field, geomagnetic storms and cosmic ray intensity

    NASA Astrophysics Data System (ADS)

    Chandra, Harish; Bhatt, Beena

    2018-04-01

    In this paper, we have selected 114 flare-CME events accompanied with Deca-hectometric (DH) type II radio burst chosen from 1996 to 2008 (i.e., solar cycle 23). Statistical analyses are performed to examine the relationship of flare-CME events accompanied with DH type II radio burst with Interplanetary Magnetic field (IMF), Geomagnetic storms (GSs) and Cosmic Ray Intensity (CRI). The collected sample events are divided into two groups. In the first group, we considered 43 events which lie under the CME span and the second group consists of 71 events which are outside the CME span. Our analysis indicates that flare-CME accompanied with DH type II radio burst is inconsistent with CSHKP flare-CME model. We apply the Chree analysis by the superposed epoch method to both set of data to find the geo-effectiveness. We observed different fluctuations in IMF for arising and decay phase of solar cycle in both the cases. Maximum decrease in Dst during arising and decay phase of solar cycle is different for both the cases. It is noted that when flare lie outside the CME span CRI shows comparatively more variation than the flare lie under the CME span. Furthermore, we found that flare lying under the CME span is more geo effective than the flare outside of CME span. We noticed that the time leg between IMF Peak value and GSs, IMF and CRI is on average one day for both the cases. Also, the time leg between CRI and GSs is on average 0 to 1 day for both the cases. In case flare lie under the CME span we observed high correlation (0.64) between CRI and Dst whereas when flare lie outside the CME span a weak correlation (0.47) exists. Thus, flare position with respect to CME span play a key role for geo-effectiveness of CME.

  2. Dynamic Harris current sheet thickness from Cluster current density and plasma measurements

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.

    2005-01-01

    We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.

  3. Effect of Geomagnetic Storms on Ocean-Atmospheric Interactions over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S.; Karim, R.

    There is accumulated evidence from recent past literature to show the possible relation between solar and geomagnetic activity, and meteorological parameters (Pittock, 1978; Reddy et.al. 1979; Bhalme et.al. 1979; Reddy and Karim, 2003). Not many studies have been reported on the relationship between geomagnetic activity and terrestrial weather including ocean-atmospheric interactions that have significant impacts over the large-scale atmospheric circulations. Between the ocean surface and the atmosphere, there is an exchange of heat and moisture that depend in part, on temperature differences between water and air. In winter, when air-water temperature contrasts are greatest, there is a substantial transfer of sensible and latent heat from the ocean surface into the atmosphere. This energy helps to maintain the global airflow. Previous studies (Reddy and Miller, 1997; Reddy et.al. 1998, 1999) have established the relationship between ocean-atmospheric interactions and tropical cyclones/hurricanes over the Gulf of Mexico. In the present study, we investigate the relationship between Geomagnetic Storms and ocean-atmospheric interactions including heat, momentum and moisture fluxes over the Gulf of Mexico during the winter (December to February) for the period, 2001-2003.The data used in this study include, (i) Geomagnetic storms, and (ii) Buoy data (sea surface temperature, air temperature, sea level pressure and wind speed) obtained from National Data Buoy Center (NDBC). The fluxes were computed using standard bulk formulae. The statistical techniques used for data analysis include superposed epoch analysis and student test .The result of the study has pointed out a significant increase in the fluxes 1-3 days after the storm occurrence. The effect of these fluxes on Gulf coast weather is noticed. The study is important for further understanding the climate variability of large-scale circulations including ElNino/Southern Oscillation (ENSO). The results and the possible physical mechanisms for the observed relationships will be presented and discussed. NOAA/Howard University NCAS Grant supports the work

  4. Effect of coherent structures on energetic particle intensity in the solar wind

    NASA Astrophysics Data System (ADS)

    Tessein, Jeffrey A.

    Solar energetic particles in the solar wind are accelerated in both solar flares and shocks assocated with fast coronal mass ejections. They follow the interplanetary magnetic field and, upon reaching Earth, have implications for space weather. Space weather affects astronaut health and orbiting equipment through radiation hazard and electrical infrastructure on the ground with ground induced currents. Economic im- pacts include disruption of GPS and redirection of commercial polar flights due to a dangerous radiation environment over the poles. By studying how these particles interact with the magnetic fields we can better predict onset times and diffusion of these events. We find, using superposed epoch analysis and conditional statisitics from spacecraft observations that there is a strong association between energetic particles in the solar wind and magnetic discontinuities. This may be related to turbulent dissipa- tion mechanisms in which coherent structures in the solar wind seem to be preferred sites of heating, plasma instabilites and dissipation. In the case of energetic particles, magnetic reconnection and transport in flux tubes are likely to play a role. Though we focus on data away from large shocks, trapping can occur in the downstream region of shocks due to the preponderance of compressive turbulence in these areas. This thesis lays the ground work for the results described above with an intro- duction to solar wind and heliospheric physics in Chapter 1. Chapter 2 is an intro- duction to the acceleration mechanisms that give rise to observed energetic particle events. Chapter 3 describes various data analysis techniques and statistics that are bread and butter when analyzing spacecraft data for turbulence and energetic particle studies. Chapter 4 is a digression that covers preliminary studies that were done on the side; scale dependent kurtosis, ergodic studies and initial conditions for simulations. Chapter 5 contains that central published results of this thesis, that there is a strong association between energetic particle intensity and magnetic discontinuties and that the correlation is can be attributed to transport and local acceleration.

  5. A simplified competition data analysis for radioligand specific activity determination.

    PubMed

    Venturino, A; Rivera, E S; Bergoc, R M; Caro, R A

    1990-01-01

    Non-linear regression and two-step linear fit methods were developed to determine the actual specific activity of 125I-ovine prolactin by radioreceptor self-displacement analysis. The experimental results obtained by the different methods are superposable. The non-linear regression method is considered to be the most adequate procedure to calculate the specific activity, but if its software is not available, the other described methods are also suitable.

  6. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  7. THE TIME EVOLUTION OF HH 1 FROM FOUR EPOCHS OF HST IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raga, A. C.; Esquivel, A.; Reipurth, B.

    We present an analysis of four epochs of Hα and [S ii] λλ 6716/6731 Hubble Space Telescope (HST) images of HH 1. For determining proper motions, we explore a new method based on the analysis of spatially degraded images obtained convolving the images with wavelet functions of chosen widths. With this procedure, we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities, and spatial distribution of the line emission. We find that overmore » the last two decades HH 1 shows a clear acceleration. Also, the Hα and [S ii] intensities first dropped and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O iii] λ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O iii]/Hα ratio.« less

  8. Brain network segregation and integration during an epoch-related working memory fMRI experiment.

    PubMed

    Fransson, Peter; Schiffler, Björn C; Thompson, William Hedley

    2018-05-17

    The characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual, sensorimotor and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, several subnetworks, including the visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses.

    PubMed

    Cerquera, Alexander; Vollebregt, Madelon A; Arns, Martijn

    2018-03-01

    Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.

  10. Program and Portfolio Tradeoffs Under Uncertainty Using Epoch-Era Analysis: A Case Application to Carrier Strike Group Design

    DTIC Science & Technology

    2015-05-01

    Warn in_&_ Weapon system detection Electromagnetic ~stem Sea superiority Air Superiority undersea Su_e_erior~ Combat Search and Rescue Anti-Ship...izatian 5. Sy.ste m-Level Capability Assessment ~----------------------------- A tte rn ative s. Evaluat ion 6. De sign-Epoch-Era Trade space...I A tte r n ative s. An a lysis. : 10. Single-Er a 9 . Er a Con.stru ct ion Analysis 11. M utti-Era Analysis I I I I I I I I I I I

  11. The Storm Time Ring Current Dynamics and Response to CMEs and CIRs Using Van Allen Probes Observations and CIMI Simulations

    NASA Astrophysics Data System (ADS)

    Bingham, S.; Mouikis, C.; Kistler, L. M.; Fok, M. C. H.; Glocer, A.; Farrugia, C. J.; Gkioulidou, M.; Spence, H. E.

    2016-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CMEs), and co-rotating interaction regions (CIRs). Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. In addition, we identify the populations (energy and species) responsible. We find that during the storm main phase and the early recovery phase the plasma sheet particles (10-80 keV) convecting from the nightside contribute the most on the ring current pressure and current density. However, during these phases, the main difference between CMEs and CIRs is in the O+ contribution. This empirical model is compared to the results of CIMI simulations of CMEs and CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model, while different inner magnetosphere boundary conditions will be tested in order to match the empirical model results. Comparing the model and simulation results will fill our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system.

  12. Sleep-Wake Evaluation from Whole-Night Non-Contact Audio Recordings of Breathing Sounds

    PubMed Central

    Dafna, Eliran; Tarasiuk, Ariel; Zigel, Yaniv

    2015-01-01

    Study Objectives To develop and validate a novel non-contact system for whole-night sleep evaluation using breathing sounds analysis (BSA). Design Whole-night breathing sounds (using ambient microphone) and polysomnography (PSG) were simultaneously collected at a sleep laboratory (mean recording time 7.1 hours). A set of acoustic features quantifying breathing pattern were developed to distinguish between sleep and wake epochs (30 sec segments). Epochs (n = 59,108 design study and n = 68,560 validation study) were classified using AdaBoost classifier and validated epoch-by-epoch for sensitivity, specificity, positive and negative predictive values, accuracy, and Cohen's kappa. Sleep quality parameters were calculated based on the sleep/wake classifications and compared with PSG for validity. Setting University affiliated sleep-wake disorder center and biomedical signal processing laboratory. Patients One hundred and fifty patients (age 54.0±14.8 years, BMI 31.6±5.5 kg/m2, m/f 97/53) referred for PSG were prospectively and consecutively recruited. The system was trained (design study) on 80 subjects; validation study was blindly performed on the additional 70 subjects. Measurements and Results Epoch-by-epoch accuracy rate for the validation study was 83.3% with sensitivity of 92.2% (sleep as sleep), specificity of 56.6% (awake as awake), and Cohen's kappa of 0.508. Comparing sleep quality parameters of BSA and PSG demonstrate average error of sleep latency, total sleep time, wake after sleep onset, and sleep efficiency of 16.6 min, 35.8 min, and 29.6 min, and 8%, respectively. Conclusions This study provides evidence that sleep-wake activity and sleep quality parameters can be reliably estimated solely using breathing sound analysis. This study highlights the potential of this innovative approach to measure sleep in research and clinical circumstances. PMID:25710495

  13. Characterization of REM sleep without atonia in patients with narcolepsy and idiopathic hypersomnia using AASM scoring manual criteria.

    PubMed

    DelRosso, Lourdes M; Chesson, Andrew L; Hoque, Romy

    2013-07-15

    The AASM Manual for the Scoring of Sleep and Associated Events (Manual) has provided standardized definitions for tonic and phasic REM sleep without atonia (RSWA). This study used Manual criteria to characterize REM sleep in patients with narcolepsy and idiopathic hypersomnia (IH). A retrospective review of PSG data from ICSD-2 defined patients with narcolepsy or IH, performed by two board certified sleep medicine physicians. Data compiled included REM sleep epochs and the presence in REM sleep of epochs scored as sustained muscle activity (tonic), and excessive transient muscle activity (phasic) as defined by Manual criteria. PSG data from 8 narcolepsy patients (mean age: 27.5 years; age range: 11-55) showed mean ± standard deviation values for: total REM sleep epochs 205 ± 46.1; RSWA/ phasic epochs 56.1 ± 25.4; and RSWA/tonic epochs 15.0 ± 10.7. PSG data from 8 IH patients (mean age: 33.1 years; age range: 20-57) showed mean ± standard deviation values of total REM sleep epochs 163.8 ± 67.9; RSWA/phasic epochs 6.2 ± 3.5; and RSWA/tonic epochs 0.2 ± 0.4. Comparison revealed intergroup differences in phasic REM sleep (p < 0.01) and tonic REM sleep (p < 0.01) were significantly increased in narcoleptics compared to IH. Our retrospective analysis showed that RSWA phasic activity and RSWA tonic activity are significantly increased in patients meeting ICSD-2 criteria for narcolepsy compared to patients meeting ICSD-2 criteria for IH. This robust difference, with further validation, could be useful as electrophysiological criteria differentiating the two disorders and understanding the physiological differences.

  14. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    NASA Astrophysics Data System (ADS)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as proximate convection or transverse vertical circulations, can work to further deform the tropopause and to aid in the production of the two-step tropopause structure characteristic of a superposed jet. The analysis also demonstrates that the intensified transverse vertical circulation that accompanies a superposed jet serves as the primary mechanism through which it can influence the evolution of a high-impact weather event.

  15. Results From PAPER/HERA

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.

    2018-05-01

    The Precision Array for Probing the Epoch of Reionization (PAPER) was a first-generation 21 cm cosmology experiment with the specific goal of detecting the power spectrum of the 21 cm emission from the Epoch of Reionization. Analysis of PAPER data is still ongoing, but lessons learned from PAPER to date have played a critical role in designing the next-generation Hydrogen Epoch of Reionization Array (HERA) experiment. This article reviews five key design choices made by PAPER: use of a non-imaging configuration, redundancy, short baselines, small antenna elements, and a large instantaneous bandwidth. We describe the impact of these choices and the role they played in designing HERA.

  16. Using recurrence plot for determinism analysis of EEG recordings in genetic absence epilepsy rats.

    PubMed

    Ouyang, Gaoxiang; Li, Xiaoli; Dang, Chuangyin; Richards, Douglas A

    2008-08-01

    Understanding the transition of brain activity towards an absence seizure is a challenging task. In this paper, we use recurrence quantification analysis to indicate the deterministic dynamics of EEG series at the seizure-free, pre-seizure and seizure states in genetic absence epilepsy rats. The determinism measure, DET, based on recurrence plot, was applied to analyse these three EEG datasets, each dataset containing 300 single-channel EEG epochs of 5-s duration. Then, statistical analysis of the DET values in each dataset was carried out to determine whether their distributions over the three groups were significantly different. Furthermore, a surrogate technique was applied to calculate the significance level of determinism measures in EEG recordings. The mean (+/-SD) DET of EEG was 0.177+/-0.045 in pre-seizure intervals. The DET values of pre-seizure EEG data are significantly higher than those of seizure-free intervals, 0.123+/-0.023, (P<0.01), but lower than those of seizure intervals, 0.392+/-0.110, (P<0.01). Using surrogate data methods, the significance of determinism in EEG epochs was present in 25 of 300 (8.3%), 181 of 300 (60.3%) and 289 of 300 (96.3%) in seizure-free, pre-seizure and seizure intervals, respectively. Results provide some first indications that EEG epochs during pre-seizure intervals exhibit a higher degree of determinism than seizure-free EEG epochs, but lower than those in seizure EEG epochs in absence epilepsy. The proposed methods have the potential of detecting the transition between normal brain activity and the absence seizure state, thus opening up the possibility of intervention, whether electrical or pharmacological, to prevent the oncoming seizure.

  17. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  18. The impact of a dedicated patent ductus arteriosus ligation team on neonatal health-care outcomes.

    PubMed

    Resende, M H F; More, K; Nicholls, D; Ting, J; Jain, A; McNamara, P J

    2016-06-01

    The decision to perform patent ductus arteriosus (PDA) ligation is controversial. Patient selection is oftentimes poorly standardized, leading to delays in referral and inappropriate intervention. A system for PDA ligation categorization and triaging process was introduced in 2006 at a quaternary hospital in Canada to streamline referrals and enhance perioperative care. We aimed to evaluate the impact of this dedicated PDA ligation triaging system comparing pre- and postimplementation of this system. We performed a retrospective chart review. Demographic and cardiorespiratory data of neonates ⩽30 weeks gestation age at birth, who were referred for and/or had a PDA ligation performed during two distinct epochs (EPOCH 1 (2003 to 2005) and EPOCH 2 (2010 to 2012)), were analyzed. All surgeries were performed at The Hospital for Sick Children, the regional referral center for PDA ligation. The primary outcome was incidence of PDA ligation and procedural cancellations. Secondary outcomes included postoperative need for cardiovascular or respiratory support. Subgroup analysis was performed in neonates <1000 vs >1000 g at the time of surgery during both epochs. A total of 198 neonates underwent surgery with no difference in baseline demographics between epochs. The incidence of PDA ligation as a proportion of total live births under 30 weeks in Central East Region of Ontario was lower in the second epoch (EPOCH 1: 117/1092 (10.7%) vs EPOCH 2: 81/1520 (5.3%)). During the second epoch, 24% of referrals for surgery were canceled after review by our PDA ligation team. There were no overall differences in the proportion of neonates with oxygenation failure, ventilation failure or Post-Ligation Cardiac Syndrome (PLCS), after surgery, between epochs. The proportion of neonates who developed systemic hypotension was higher in patients <1000 g (n=34 (34%) vs n=17 (17.4%), P=0.01) at the time of surgery. In addition, we identified a reduction in the proportion of neonates <1000 g who developed PLCS in EPOCH 2. On the contrary, there was an increase in the proportion of neonates >1000 g who developed ventilation failure in EPOCH 2. The presence of dedicated triaging and management system enhances efficiency of referral process through careful selection of patients for PDA ligation and optimizes perioperative management. We demonstrated a reduction in the incidence of PDA ligation without any negative impact on short-term neonatal morbidity. The use of targeted neonatal echocardiography in the assessment of PDA shunt volume and guiding postoperative decision making is likely to have contributed to these findings.

  19. Strain memory of 2D and 3D rigid inclusion populations in viscous flows - What is clast SPO telling us?

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W.; Law, Richard D.

    2014-11-01

    We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.

  20. Crystallization of a Keplerate-type polyoxometalate into a superposed kagome-lattice with huge channels.

    PubMed

    Saito, Masaki; Ozeki, Tomoji

    2012-09-07

    Crystal structures of two Sr(2+) salts of the Keplerate-type polyoxometalate, [Mo(VI)(72)Mo(V)(60)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-), have been determined by single crystal X-ray diffraction. One compound exhibits a superposed kagome-lattice with huge channels whose diameters measure approximately 3.0 nm, while the arrangement of the Keplerate anions in the other compound approximates to a distorted cubic close packing.

  1. Developmental Patterns of Adverse Childhood Experiences and Current Symptoms and Impairment in Youth Referred For Trauma-Specific Services.

    PubMed

    Grasso, Damion J; Dierkhising, Carly B; Branson, Christopher E; Ford, Julian D; Lee, Robert

    2016-07-01

    By the time children reach adolescence, most have experienced at least one type of severe adversity and many have been exposed to multiple types. However, whether patterns of adverse childhood experiences are consistent or change across developmental epochs in childhood is not known. Retrospective reports of adverse potentially traumatic childhood experiences in 3 distinct developmental epochs (early childhood, 0- to 5-years-old; middle childhood, 6- to 12-years-old; and adolescence, 13- to 18-years-old) were obtained from adolescents (N = 3485) referred to providers in the National Child Traumatic Stress Network (NCTSN) for trauma-focused assessment and treatment. Results from latent class analysis (LCA) revealed increasingly complex patterns of adverse/traumatic experiences in middle childhood and adolescence compared to early childhood. Depending upon the specific developmental epoch assessed, different patterns of adverse/traumatic experiences were associated with gender and with adolescent psychopathology (e.g., internalizing/externalizing behavior problems), and juvenile justice involvement. A multiply exposed subgroup that had severe problems in adolescence was evident in each of the 3 epochs, but their specific types of adverse/traumatic experiences differed depending upon the developmental epoch. Implications for research and clinical practice are identified.

  2. Analysis of short single rest/activation epoch fMRI by self-organizing map neural network

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter

    2000-04-01

    Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a Kolmogorov-Smirnov statistical test of all 66 time points. To remove non- periodical time courses from training an auto-correlation function and bandwidth limiting Fourier filtering in combination with Gauss temporal smoothing was used. None of the trained maps, with one, two and three epochs, were significantly different which indicates that the feature space of only one on/off epoch is sufficient to differentiate between the rest and task condition. We found, that without pre-processing of the data no meaningful results can be achieved because of the huge amount of the non-activated and background voxels represents the majority of the features and is therefore learned by the SOM. Thus it is crucial to remove unnecessary capacity load of the neural network by selection of the training input, using auto-correlation function and/or Fourier spectrum analysis. However by reducing the time points to one rest and one activation epoch either strong auto- correlation or a precise periodical frequency is vanishing. Self-organizing maps can be used to separate rest and activation epochs of with only a 1/3 of the usually acquired time points. Because of the nature of the SOM technique, the pattern or feature separation, only the presence of a state change between the conditions is necessary for differentiation. Also the variance of the individual hemodynamic response function (HRF) and the variance of the spatial different regional cerebral blood flow (rCBF) is learned from the subject and not compared with a fixed model done by statistical evaluation. We found that reducing the information to only a few time points around the BOLD effect was not successful due to delays of rCBF and the insufficient extension of the BOLD feature in the time space. Especially for patient routine observation and pre-surgical planing a reduced scan time is of interest.

  3. Wizard CD Plus and ProTaper Universal: analysis of apical transportation using new software

    PubMed Central

    GIANNASTASIO, Daiana; da ROSA, Ricardo Abreu; PERES, Bernardo Urbanetto; BARRETO, Mirela Sangoi; DOTTO, Gustavo Nogara; KUGA, Milton Carlos; PEREIRA, Jefferson Ricardo; SÓ, Marcus Vinícius Reis

    2013-01-01

    Objective This study has two aims: 1) to evaluate the apical transportation of the Wizard CD Plus and ProTaper Universal after preparation of simulated root canals; 2) to compare, with Adobe Photoshop, the ability of a new software (Regeemy) in superposing and subtracting images. Material and Methods Twenty five simulated root canals in acrylic-resin blocks (with 20º curvature) underwent cone beam computed tomography before and after preparation with the rotary systems (70 kVp, 4 mA, 10 s and with the 8×8 cm FoV selection). Canals were prepared up to F2 (ProTaper) and 24.04 (Wizard CD Plus) instruments and the working length was established to 15 mm. The tomographic images were imported into iCAT Vision software and CorelDraw for standardization. The superposition of pre- and post-instrumentation images from both systems was performed using Regeemy and Adobe Photoshop. The apical transportation was measured in millimetres using Image J. Five acrylic resin blocks were used to validate the superposition achieved by the software. Student's t-test for independent samples was used to evaluate the apical transportation achieved by the rotary systems using each software individually. Student's t-test for paired samples was used to compare the ability of each software in superposing and subtracting images from one rotary system per time. Results The values obtained with Regeemy and Adobe Photoshop were similar to rotary systems (P>0.05). ProTaper Universal and Wizard CD Plus promoted similar apical transportation regardless of the software used for image's superposition and subtraction (P>0.05). Conclusion Wizard CD Plus and ProTaper Universal promoted little apical transportation. Regeemy consists in a feasible software to superpose and subtract images and appears to be an alternative to Adobe Photoshop. PMID:24212994

  4. Wizard CD Plus and ProTaper Universal: analysis of apical transportation using new software.

    PubMed

    Giannastasio, Daiana; Rosa, Ricardo Abreu da; Peres, Bernardo Urbanetto; Barreto, Mirela Sangoi; Dotto, Gustavo Nogara; Kuga, Milton Carlos; Pereira, Jefferson Ricardo; Só, Marcus Vinícius Reis

    2013-01-01

    This study has two aims: 1) to evaluate the apical transportation of the Wizard CD Plus and ProTaper Universal after preparation of simulated root canals; 2) to compare, with Adobe Photoshop, the ability of a new software (Regeemy) in superposing and subtracting images. Twenty five simulated root canals in acrylic-resin blocks (with 20º curvature) underwent cone beam computed tomography before and after preparation with the rotary systems (70 kVp, 4 mA, 10 s and with the 8×8 cm FoV selection). Canals were prepared up to F2 (ProTaper) and 24.04 (Wizard CD Plus) instruments and the working length was established to 15 mm. The tomographic images were imported into iCAT Vision software and CorelDraw for standardization. The superposition of pre- and post-instrumentation images from both systems was performed using Regeemy and Adobe Photoshop. The apical transportation was measured in millimetres using Image J. Five acrylic resin blocks were used to validate the superposition achieved by the software. Student's t-test for independent samples was used to evaluate the apical transportation achieved by the rotary systems using each software individually. Student's t-test for paired samples was used to compare the ability of each software in superposing and subtracting images from one rotary system per time. The values obtained with Regeemy and Adobe Photoshop were similar to rotary systems (P>0.05). ProTaper Universal and Wizard CD Plus promoted similar apical transportation regardless of the software used for image's superposition and subtraction (P>0.05). Wizard CD Plus and ProTaper Universal promoted little apical transportation. Regeemy consists in a feasible software to superpose and subtract images and appears to be an alternative to Adobe Photoshop.

  5. The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.; Zhou, Limin; Liu, Weiping

    2012-09-01

    Small changes in the vorticity of winter storms, responding to solar wind variations, are found in winters from 1957 to 2011, and are greater for winters with higher levels of stratospheric volcanic aerosols. Using 1993-2011 data, the response of the vorticity area index (VAI) is shown to be of larger amplitude when the days of minima in the relativistic electron flux (REF) precipitating from the radiation belts are used, instead of heliospheric current sheet (HCS) crossings, as key days in superposed epoch analyses. The HCS crossings mostly occur within a few days of the REF minima. The VAI is an objective measure of the area of high cyclonic vorticity, and for the present work is derived from ERA-40 and ERA-Interim reanalyses of global meteorological data. The VAI dependencies on the stratospheric aerosol content (SAC) and the REF are consistent with a model in which the ionosphere-earth current density (Jz) affects cloud microphysics. One of the ways in which Jz is modulated is by changes in stratospheric column resistance (S), which is increased by stratospheric aerosols. Because S is in series with the tropospheric column resistance (T), Jz modulation by REF requires that S be not negligible with respect to T. So the Jz modulation and the VAI response appear when the SAC is very high, or the REF reductions (which also increase S) are very deep, and when the product of the SAC and the reciprocal of the REF exceeds a threshold value dependent on T.

  6. A statistical study of the low-altitude ionospheric magnetic fields over the north pole of Venus

    NASA Astrophysics Data System (ADS)

    Zhang, T. L.; Baumjohann, W.; Russell, C. T.; Villarreal, M. N.; Luhmann, J. G.; Teh, W. L.

    2015-08-01

    Examination of Venus Express (VEX) low-altitude ionospheric magnetic field measurements during solar minimum has revealed the presence of strong magnetic fields at low altitudes over the north pole of Venus. A total of 77 events with strong magnetic fields as VEX crossed the northern polar region were identified between July 2008 and October 2009. These events all have strong horizontal fields, slowly varying with position. Using the superposed epoch method, we find that the averaged peak field is about 45 nT, which is well above the average ambient ionospheric field of 20 nT, with a full width at half maximum duration of 32 s, equivalent to a width of about 300 km. Considering the field orientation preference and spacecraft trajectory geometry, we conclude that these strong fields are found over the northern hemisphere with an occurrence frequency of more than 33% during solar minimum. They do not show a preference for any particular interplanetary magnetic field (IMF) orientation. However, they are found over the geographic pole more often when the interplanetary field is in the Venus orbital plane than when it is perpendicular to the orbital plane of Venus. The structures were found most frequently in the -E hemisphere, determined from the IMF orientation. The enhanced magnetic field is mainly quasi perpendicular to solar wind flow direction, and it is suggested that these structures form in the low-altitude collisional ionosphere where the diffusion and convection times are long.

  7. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.

  8. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem

    PubMed Central

    Blarquez, Olivier; Carcaillet, Christopher

    2010-01-01

    Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years would threaten the dominant species and might override the resilience of subalpine forests. PMID:20814580

  9. Interacting dark energy: Dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.

  10. Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2017-04-01

    In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.

  11. Statistical analysis of severe magnetic fluctuations in the near-Earth plasma sheet observed by THEMIS-E

    NASA Astrophysics Data System (ADS)

    Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis

    2017-10-01

    We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside-out and outside-in substorm models can explain this increase in flow speeds before magnetic fluctuation events.

  12. Temporal and Spatial Development of dB/dt During Substorms

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Chu, X.

    2017-12-01

    Ground induced currents (GICs) due to space weather are a threat to high voltage power transmission systems. However, knowledge of ground conductivity is the largest source of errors in the determination of GICs. A good proxy for GICs is dB/dt obtained from the Bx and By components of the magnetic field fluctuations. It is known that dB/dt values associated with magnetic storms can reach dangerous levels for power transmission systems. On the other hand, it is not uncommon for dB/dt values associated with substorms to exceed critical thresholds of 1.5 nT/s [Pulkkinen et al., 2011; 2013] and 5 nT/s [Molinski et al., 2000] and the temporal and spatial changes of the dB/dt associated with substorms, unlike storms, are not well understood. Using two dimensional maps of dB/dt over North America and Greenland derived from the spherical elementary currents [Weygand et al., 2011], we investigate the temporal and spatial change of dB/dt for both a single substorm event and a two dimensional superposed epoch analysis of many substorms. Both the single event and the statistical analysis show a sudden increase of dB/dt at substorm onset followed by an expansion poleward, westward, and eastward after the onset during the expansion phase. This temporal and spatial development of the dB/dt resembles the temporal and spatial change of the auroral emissions. Substorm values of dB/dt peak shortly after the auroral onset time and in at least one event exceeded 6.5 nT/s for a non-storm time substorm. In many of our 24 cases the area that exceeds the Pulkkinen et al. [2011; 2013] threshold of 1.5 nT/s over several million square kilometers and after about 30 minutes the dB/dt values fall below the threshold level. These results address one of goals of the Space Weather Action Plan, which are to establish benchmarks for space weather events and improve modeling and prediction of their impacts on infrastructure.

  13. Near-complete teleportation of a superposed coherent state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, Yong Wook; Kim, Hyunjae; Lee, Hai-Woong

    2004-09-01

    The four Bell-type entangled coherent states, {alpha}>-{alpha}>{+-}-{alpha}>{alpha}> and {alpha}>{alpha}>{+-}-{alpha}>-{alpha}>, can be discriminated with a high probability using only linear optical means, as long as {alpha} is not too small. Based on this observation, we propose a simple scheme to almost completely teleport a superposed coherent state. The nonunitary transformation that is required to complete the teleportation can be achieved by embedding the receiver's field state in a larger Hilbert space consisting of the field and a single atom and performing a unitary transformation on this Hilbert space00.

  14. Thermalization as an invisibility cloak for fragile quantum superpositions

    NASA Astrophysics Data System (ADS)

    Hahn, Walter; Fine, Boris V.

    2017-07-01

    We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing by external classical noise. We call superpositions "fragile" if dephasing occurs particularly fast, because the noise couples very differently to the superposed states. The method consists of letting a quantum superposition evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during most of the above procedure. We validate the method by applying it to a cluster of spins ½.

  15. Positron emission tomography–computed tomography predictors of progression after DA-R-EPOCH for PMBCL

    PubMed Central

    Ng, Andrea K.; Dabaja, Bouthaina S.; Milgrom, Sarah A.; Gunther, Jillian R.; Fuller, C. David; Smith, Grace L.; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F.; Akhtari, Mani; Mawlawi, Osama; Medeiros, L. Jeffrey; Chuang, Hubert H.; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S.; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta

    2018-01-01

    Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [18F]fluorodeoxyglucose positron emission tomography–computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning–derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance (P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis (P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. PMID:29895624

  16. Positron emission tomography-computed tomography predictors of progression after DA-R-EPOCH for PMBCL.

    PubMed

    Pinnix, Chelsea C; Ng, Andrea K; Dabaja, Bouthaina S; Milgrom, Sarah A; Gunther, Jillian R; Fuller, C David; Smith, Grace L; Abou Yehia, Zeinab; Qiao, Wei; Wogan, Christine F; Akhtari, Mani; Mawlawi, Osama; Medeiros, L Jeffrey; Chuang, Hubert H; Martin-Doyle, William; Armand, Philippe; LaCasce, Ann S; Oki, Yasuhiro; Fanale, Michelle; Westin, Jason; Neelapu, Sattva; Nastoupil, Loretta

    2018-06-12

    Dose-adjusted rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) has produced good outcomes in primary mediastinal B-cell lymphoma (PMBCL), but predictors of resistance to this treatment are unclear. We investigated whether [ 18 F]fluorodeoxyglucose positron emission tomography-computed tomography (PET-CT) findings could identify patients with PMBCL who would not respond completely to DA-R-EPOCH. We performed a retrospective analysis of 65 patients with newly diagnosed stage I to IV PMBCL treated at 2 tertiary cancer centers who had PET-CT scans available before and after frontline therapy with DA-R-EPOCH. Pretreatment variables assessed included metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Optimal cutoff points for progression-free survival (PFS) were determined by a machine learning approach. Univariate and multivariable models were constructed to assess associations between radiographic variables and PFS. At a median follow-up of 36.6 months (95% confidence interval, 28.1-45.1), 2-year PFS and overall survival rates for the 65 patients were 81.4% and 98.4%, respectively. Machine learning-derived thresholds for baseline MTV and TLG were associated with inferior PFS (elevated MTV: hazard ratio [HR], 11.5; P = .019; elevated TLG: HR, 8.99; P = .005); other pretreatment clinical factors, including International Prognostic Index and bulky (>10 cm) disease, were not. On multivariable analysis, only TLG retained statistical significance ( P = .049). Univariate analysis of posttreatment variables revealed that residual CT tumor volume, maximum standardized uptake value, and Deauville score were associated with PFS; a Deauville score of 5 remained significant on multivariable analysis ( P = .006). A model combining baseline TLG and end-of-therapy Deauville score identified patients at increased risk of progression. © 2018 by The American Society of Hematology.

  17. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state scoring relative to manual classification. Conclusions Machine scoring is as effective as human scoring in detecting experimental effects in rodent sleep studies. Automated scoring is an efficient alternative to visual inspection in studies of strain differences in sleep and the temporal dynamics of sleep-related physiological parameters. PMID:26366107

  18. Examining Initial Sleep Onset in Primary Insomnia: A Case-Control Study Using 4-Second Epochs

    PubMed Central

    Moul, Douglas E.; Germain, Anne; Cashmere, J. David; Quigley, Michael; Miewald, Jean M.; Buysse, Daniel J.

    2007-01-01

    Study Objectives: To explore the sleep onset process in primary insomnia patients, new rules for scoring 4-second epochs were implemented to score sleep and artifacts during initial sleep onset. Conventional scorings in 20-second and 60-second epochs were also obtained. Methods: The start of the initial 60-second epoch of stage 1 was used to define “time zero” (t0). Sleep onset periods from 11 patients and 11 individually age- and sex-matched controls spanned from 5 minutes before t0 through 29 minutes after t0. Using the new rules, the periods were scored blind to group assignment. This t0 time-referenced the data analysis to one plausible midpoint in the sleep onset process. In parallel, latencies were time-referenced from good night time. Results: Reliability in scoring sleep and artifacts was adequate (kappa = 0.68 & 0.63, respectively, p <0.001). Group differences in sleep latencies were marginal in 60-second and 20-second scoring but significant with a definition of 4-second sleep latency. Patients had more 4-second epochs scored as awake (Mantel-Haenszel χ2 = 271, d.f. = 1, p <0.001) and containing artifact (M-H χ2 = 143, p <0.001). Patients took longer to achieve 30 continuous 4-second epochs of NREM sleep (Breslow χ2 = 4.03, d.f. = 1, p = 0.045) after t0. Patients accumulated sleep more slowly with all 3 scoring rules after t0. A slower rate of accumulating sleep after t0 was detected only with the 4-second scoring (p = 0.047). Conclusions: Evidence was present for momentary state-switching instabilities in the patients during the initial sleep onset process. Using rules for scoring small epochs may reveal such instabilities more readily than traditional scoring methods. Citation: Moul DE; Germain A; Cashmere D; Quigley M; Miewald JM; Buysse DJ. Examining initial sleep onset in primary insomnia: a case-control study using 4-second epochs. J Clin Sleep Med 2007;3(5):479-488. PMID:17803011

  19. The Reel Deal: Interpreting HST Multi-Epoch Movies of YSO Jets.

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2010-09-01

    The goal of this proposal is to bring the theoretical interpretation of Young Stellar Object jets and their environments to a new level of realism. We propose to build on the results of a successful Cycle 16 observing proposal that has obtained 3rd epoch images of HH jets. We will use Adaptive Mesh Refinement MHD simulations {developed by our team} to carry forward a detailed program of modeling and interpretation of the time-dependent behavior revealed in the new, extended multi-epoch data set. Only with the third epoch observations can we explore forces: i.e. accelerations, decelerations and structural changes to develop an accurate understanding of physical processes occurring in hypersonic, magnetized jet flows. Our studies will allow us to characterize the jets and, therefore, make the crucial link with jet central engines. We note an innovative feature of our project is its link with laboratory astrophysical experiments of jets. Our analysis of the observations will be used to determine future laboratory experiments which will explore A?clumpyA? jet propagation issues.

  20. The Statistics of Radio Astronomical Polarimetry: Disjoint, Superposed, and Composite Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straten, W. van; Tiburzi, C., E-mail: willem.van.straten@aut.ac.nz

    2017-02-01

    A statistical framework is presented for the study of the orthogonally polarized modes of radio pulsar emission via the covariances between the Stokes parameters. To accommodate the typically heavy-tailed distributions of single-pulse radio flux density, the fourth-order joint cumulants of the electric field are used to describe the superposition of modes with arbitrary probability distributions. The framework is used to consider the distinction between superposed and disjoint modes, with particular attention to the effects of integration over finite samples. If the interval over which the polarization state is estimated is longer than the timescale for switching between two or moremore » disjoint modes of emission, then the modes are unresolved by the instrument. The resulting composite sample mean exhibits properties that have been attributed to mode superposition, such as depolarization. Because the distinction between disjoint modes and a composite sample of unresolved disjoint modes depends on the temporal resolution of the observing instrumentation, the arguments in favor of superposed modes of pulsar emission are revisited, and observational evidence for disjoint modes is described. In principle, the four-dimensional covariance matrix that describes the distribution of sample mean Stokes parameters can be used to distinguish between disjoint modes, superposed modes, and a composite sample of unresolved disjoint modes. More comprehensive and conclusive interpretation of the covariance matrix requires more detailed consideration of various relevant phenomena, including temporally correlated subpulse modulation (e.g., jitter), statistical dependence between modes (e.g., covariant intensities and partial coherence), and multipath propagation effects (e.g., scintillation and scattering).« less

  1. Application Of A New Semi-Empirical Model For Forming Limit Prediction Of Sheet Material Including Superposed Loads Of Bending And Shearing

    NASA Astrophysics Data System (ADS)

    Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred

    2010-06-01

    The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.

  2. Integrating Analysis Goals for EOP, CRF and TRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; MacMillan, D.; Petrov, L.; Smith, David E. (Technical Monitor)

    2001-01-01

    In a simplified, idealized way the TRF can be considered a set of positions at epoch and corresponding linear rates of change while the CRF is a set of fixed directions in space. VLBI analysis can be optimized for CRF and TRF separately while handling some of the complexity of geodetic and astrometric reality. For EOP time series both CRF and TRF should be accurate at the epoch of interest and well defined over time. The optimal integral EOP, TRF and CRF in a single VLBI solution configuration requires a detailed consideration of the data set and the possibly conflicting nature of reference frames.

  3. Integrating Analysis Goals for EOP, CRF and TRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; MacMillan, Daniel; Petrov, Leonid

    2002-01-01

    In a simplified, idealized way the TRF (Terrestrial Reference Frame) can be considered a set of positions at epoch and corresponding linear rates of change while the CRF (Celestial Reference Frame) is a set of fixed directions in space. VLBI analysis can be optimized for CRF and TRF separately while handling some of the complexity of geodetic and astrometric reality. For EOP (Earth Orientation Parameter) time series both CRF and TRF should be accurate at the epoch of interest and well defined over time. The optimal integration of EOP, TRF and CRF in a single VLBI solution configuration requires a detailed consideration of the data set and the possibly conflicting nature of the reference frames. A possible approach for an integrated analysis is described.

  4. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    PubMed Central

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP < 1.0 predicted sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  5. Description of nighttime cough epochs in patients with stable COPD GOLD II-IV.

    PubMed

    Fischer, Patrick; Gross, Volker; Kroenig, Johannes; Weissflog, Andreas; Hildebrandt, Olaf; Sohrabi, Keywan; Koehler, Ulrich

    Chronic cough is one of the main symptoms of COPD. Ambulatory objective monitoring provides novel insights into the determinants and characteristics of nighttime cough in COPD. Nighttime cough was monitored objectively by LEOSound lung sound monitor in patients with stable COPD II-IV. In 30 patients, with 10 patients in each stage group, nighttime cough was analyzed for epoch frequency, epoch severity (epoch length and coughs per epoch), and pattern (productive or nonproductive). Cough was found in all patients ranging from 1 to 294 events over the recording period. In 29 patients, cough epochs were monitored, ranging from 1 to 75 epochs. The highest amount of cough epochs was found in patients with COPD stage III. Active smokers had significantly more productive cough epochs (61%) than nonsmokers (24%). We found a high rate of nighttime cough epochs in patients with COPD, especially in those in stage III. Productive cough was predominantly found in patients with persistent smoking. LEOSound lung sound monitor offers a practical and valuable opportunity to evaluate cough objectively.

  6. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    PubMed

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  7. Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Jones, P. D.; Moberg, A.; Osborn, T. J.; Briffa, K. R.

    Explosive volcanic eruptions are known to have an impact on surface temperatures in the two to three years after the eruption, but our ability to determine the impact is impeded by the paucity of eruptions (3-5 large events each century). We examine the response to large eruptions in instrumental temperature records for the whole Northern Hemisphere (NH) and longer European records using superposed epoch analysis. Despite the limited number of eruptions we separate the volcanoes into two groups: tropical and mid-to-high northern latitude (>40°N). The clearest response is after tropical eruptions, where the NH land temperature average cools significantly in the summer months up to three years after the eruptions, although the timing of the response differs markedly from eruption to eruption. Extending the analysis to three European regions (Fennoscandia, Central England and Central Europe) with longer temperature records shows weakly significant summer cooling after tropical eruptions over Fennoscandia, but no discernible impacts in the other two regions. The Fennoscandian series also indicates slight warming in the first, second and fourth winters (but not the third) following the eruptions, but the significance level is not reached. The lack of statistical significance (in the regional series for both summer and winter) is principally due to the greater variability of the regional series compared to the NH land temperature average, with the small number of eruptions being a contributory factor. After higher latitude eruptions significant cooling is restricted to the late summer in the NH during the eruption year, with little of significance in the longer European regional series. We also assess longer records of tree-ring density from the mid-to-high latitude regions of the NH. This analysis further highlights the dearth of major eruptions (about 20 in the last 600 years) and the differences in the spatial patterns of cooling after the eruptions. The response in the NH average of the exactlydated tree-ring density series, however, is of such a unique character, that extremely anomalous negative values can be used to determine when major eruptions occurred in the past, even though the location of the eruption remains unknown for some dates.

  8. Improved survival and neurodevelopmental outcomes among extremely premature infants born near the limit of viability.

    PubMed

    Younge, Noelle; Smith, P Brian; Gustafson, Kathryn E; Malcolm, William; Ashley, Patricia; Cotten, C Michael; Goldberg, Ronald N; Goldstein, Ricki F

    2016-04-01

    Infants born near the limit of viability are at high risk for death or adverse neurodevelopmental outcomes. It is unclear whether these outcomes have improved over the past 15 years. To determine if death and neurodevelopmental impairment have declined over the past 15 years in infants born at 22 to 24 weeks' gestation. Retrospective cohort study. We identified infants born at 22 to 24 weeks' gestation in our center in two epochs: 1998-2004 (Epoch 1) and 2005-2011 (Epoch 2). The primary outcome, death or neurodevelopmental impairment, was evaluated at 17-25 months' corrected gestational age with neurologic exams and Bayley Scales of Infant Development. Perinatal characteristics, major morbidities, and outcomes were compared between epochs. Birth weight and gestational age were similar between 170 infants in Epoch 1 and 187 infants in Epoch 2. Mortality was significantly lower in Epoch 2, 55% vs. 42% (p=0.02). Among surviving infants, late-onset sepsis (p<0.01), bronchopulmonary dysplasia (p<0.01), and surgical necrotizing enterocolitis (p=0.04) were less common in Epoch 2. Neurodevelopmental impairment among surviving infants declined from 68% in Epoch 1 to 47% in Epoch 2, p=0.02. Odds of death or NDI were significantly lower in Epoch 2 vs. Epoch 1, OR=0.31 (95% confidence interval; 0.16, 0.58). Risk of death or neurodevelopmental impairment decreased over time in infants born at 22 to 24 weeks' gestation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Reducing door-to-needle times using Toyota's lean manufacturing principles and value stream analysis.

    PubMed

    Ford, Andria L; Williams, Jennifer A; Spencer, Mary; McCammon, Craig; Khoury, Naim; Sampson, Tomoko R; Panagos, Peter; Lee, Jin-Moo

    2012-12-01

    Earlier tissue-type plasminogen activator (tPA) treatment for acute ischemic stroke increases efficacy, prompting national efforts to reduce door-to-needle times. We used lean process improvement methodology to develop a streamlined intravenous tPA protocol. In early 2011, a multidisciplinary team analyzed the steps required to treat patients with acute ischemic stroke with intravenous tPA using value stream analysis (VSA). We directly compared the tPA-treated patients in the "pre-VSA" epoch with the "post-VSA" epoch with regard to baseline characteristics, protocol metrics, and clinical outcomes. The VSA revealed several tPA protocol inefficiencies: routing of patients to room, then to CT, then back to the room; serial processing of workflow; and delays in waiting for laboratory results. On March 1, 2011, a new protocol incorporated changes to minimize delays: routing patients directly to head CT before the patient room, using parallel process workflow, and implementing point-of-care laboratories. In the pre and post-VSA epochs, 132 and 87 patients were treated with intravenous tPA, respectively. Compared with pre-VSA, door-to-needle times and percent of patients treated ≤60 minutes from hospital arrival were improved in the post-VSA epoch: 60 minutes versus 39 minutes (P<0.0001) and 52% versus 78% (P<0.0001), respectively, with no change in symptomatic hemorrhage rate. Lean process improvement methodology can expedite time-dependent stroke care without compromising safety.

  10. Reducing Door-to-Needle Times using Toyota’s Lean Manufacturing Principles and Value Stream Analysis

    PubMed Central

    Ford, Andria L.; Williams, Jennifer A.; Spencer, Mary; McCammon, Craig; Khoury, Naim; Sampson, Tomoko; Panagos, Peter; Lee, Jin-Moo

    2012-01-01

    Background Earlier tPA treatment for acute ischemic stroke increases efficacy, prompting national efforts to reduce door-to-needle times (DNTs). We utilized lean process improvement methodology to develop a streamlined IV tPA protocol. Methods In early 2011, a multi-disciplinary team analyzed the steps required to treat acute ischemic stroke patients with IV tPA, utilizing value stream analysis (VSA). We directly compared the tPA-treated patients in the “pre-VSA” epoch to the “post-VSA” epoch with regard to baseline characteristics, protocol metrics, and clinical outcomes. Results The VSA revealed several tPA protocol inefficiencies: routing of patients to room, then to CT, then back to room; serial processing of work flow; and delays in waiting for lab results. On 3/1/2011, a new protocol incorporated changes to minimize delays: routing patients directly to head CT prior to patient room, utilizing parallel process work-flow, and implementing point-of-care labs. In the pre-and post-VSA epochs, 132 and 87 patients were treated with IV tPA, respectively. Compared to pre-VSA, DNTs and percent of patients treated ≤60 minutes from hospital arrival were improved in the post-VSA epoch: 60 min vs. 39 min (p<0.0001) and 52% vs. 78% (p<0.0001), respectively, with no change in symptomatic hemorrhage rate. Conclusions Lean process improvement methodology can expedite time-dependent stroke care, without compromising safety. PMID:23138440

  11. Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Ming; Guo, Zong-Kuan; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2017-06-01

    We investigate constraints on Lorentz invariance violation in the neutrino sector from a joint analysis of big bang nucleosynthesis and the cosmic microwave background. The effect of Lorentz invariance violation during the epoch of big bang nucleosynthesis changes the predicted helium-4 abundance, which influences the power spectrum of the cosmic microwave background at the recombination epoch. In combination with the latest measurement of the primordial helium-4 abundance, the Planck 2015 data of the cosmic microwave background anisotropies give a strong constraint on the deformation parameter since adding the primordial helium measurement breaks the degeneracy between the deformation parameter and the physical dark matter density.

  12. Galileo SSI lunar observations: Copernican craters and soils

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.

    1993-01-01

    The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.

  13. The American Academy of Sleep Medicine Inter-scorer Reliability Program: Respiratory Events

    PubMed Central

    Rosenberg, Richard S.; Van Hout, Steven

    2014-01-01

    Study Objectives: The American Academy of Sleep Medicine (AASM) Inter-scorer Reliability program provides a unique opportunity to compare a large number of scorers with varied levels of experience to determine agreement in the scoring of respiratory events. The objective of this paper is to examine areas of disagreement to inform future revisions of the AASM Manual for the Scoring of Sleep and Associated Events. Methods: The sample included 15 monthly records, 200 epochs each. The number of scorers increased steadily during the period of data collection, reaching more than 3,600 scorers by the final record. Scorers were asked to identify whether an obstructive, mixed, or central apnea; a hypopnea; or no event was seen in each of the 200 epochs. The “correct” respiratory event score was defined as the score endorsed by the most scorers. Percentage agreement with the majority score was determined for each epoch and the mean agreement determined. Results: The overall agreement for scoring of respiratory events was 93.9% (κ = 0.92). There was very high agreement on epochs without respiratory events (97.4%), and the majority score for most of the epochs (87.8%) was no event. For the 364 epochs scored as having a respiratory event, overall agreement that some type of respiratory event occurred was 88.4% (κ = 0.77). The agreement for epochs scored as obstructive apnea by the majority was 77.1% (κ = 0.71), and the most common disagreement was hypopnea rather than obstructive apnea (14.4%). The agreement for hypopnea was 65.4% (κ = 0.57), with 16.4% scoring no event and 14.8% scoring obstructive apnea. The agreement for central apnea was 52.4% (κ = 0.41). A single epoch was scored as a mixed apnea by a plurality of scorers. Conclusions: The study demonstrated excellent agreement among a large sample of scorers for epochs with no respiratory events. Agreement for some type of event was good, but disagreements in scoring of apnea vs. hypopnea and type of apnea were common. A limitation of the analysis is that most of the records had normal breathing. A review of controversial events yielded no consistent bias that might be resolved by a change of scoring rules. Citation: Rosenberg RS; Van Hout S. The American Academy of Sleep Medicine inter-scorer reliability program: respiratory events. J Clin Sleep Med 2014;10(4):447-454. PMID:24733993

  14. Laser induced fluorescence of BaS: Sm phosphor and energy level splitting of Sm 3+ ion

    NASA Astrophysics Data System (ADS)

    Thomas, Reethamma; Nampoori, V. P. N.

    1990-03-01

    Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540-660nm superposed by the characteristic Sm 3+ lines. Energy level splitting pattern of Sm 3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm 3+ takes up Ba 2+ substitutional sites.

  15. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  16. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  17. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  18. Energetic electron bursts in the plasma sheet and their relation with BBFs

    NASA Astrophysics Data System (ADS)

    Duan, A. Y.; Cao, J. B.; Dunlop, M.; Wang, Z. Q.

    2014-11-01

    We studied energetic electron bursts (EEBs) (40-250 keV) in the plasma sheet (PS) and their relation to bursty bulk flows (BBFs) using the data recorded by Cluster from 2001 to 2009. The EEBs in the PS can be classified into four types. Three types of EEBs are dispersionless, including EEBs accompanied with BBFs (V > 250 km/s) but without dipolarization front (DF); EEBs accompanied with both dipolarization front (DF) and BBF; and EEBs accompanied with DF and fast flow with V < 250 km/s. One type of EEB, i.e., EEBs not accompanied with BBFs and DFs, is dispersed. The energetic electrons (40-130 keV) can be easily transported earthward by BBFs due to the strong dawn-dusk electric field embedded in BBFs. The DFs in BBFs can produce energetic electrons (40 to 250 keV). For the EEBs with DF and BBFs, the superposed epoch analyses show that the increase of energetic electron flux has two phases: gradual increase phase before DF and rapid increase phase concurrent with DF. In the PS around x = -18 RE, 60%-70% of EEBs are accompanied with BBFs, indicating that although hitherto there have been various acceleration mechanisms of energetic electrons, most of the energetic electrons in the PS are related with magnetic reconnection, and they are produced either directly by magnetic reconnection or indirectly by the DFs within BBFs. In the BBF's braking region of -12 RE < x < -10 RE, 20% of EEBs are accompanied with BBFs. The corresponding ratio between EEBs and BBFs shows a dawn-dusk asymmetry.

  19. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; Olson, C. N.; Smith, C. W.; Denton, R. E.; Thaller, S. A.; Wygant, J. R.; Reeves, G. D.; MacDonald, E. A.; Fennell, J. F.

    2017-04-01

    We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 RE occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. The fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.

  20. Erratum: "Discovery of a Second Millisecond Accreting Pulsar: XTE J1751-305"

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig; Swank, J. H.; Strohmayer, T. E.; in 'tZand, J. J. M.; Marshall, F. E.

    2007-01-01

    The original Table 1 ("Timing Parameters of XTE J1751-305") contains one error. The epoch of pulsar mean longitude 90deg is incorrect due to a numerical conversion error in the preparation of the original table text. A corrected version of Table 1 is shown. For reference, the epoch of the ascending node is also included. The correct value was used in all of the analysis leading up to the paper. As T(sub 90) is a purely fiducial reference time, the scientific conclusions of the paper are unchanged.

  1. Front-line, dose-escalated immunochemotherapy is associated with a significant progression-free survival advantage in patients with double-hit lymphomas: a systematic review and meta-analysis.

    PubMed

    Howlett, Christina; Snedecor, Sonya J; Landsburg, Daniel J; Svoboda, Jakub; Chong, Elise A; Schuster, Stephen J; Nasta, Sunita Dwivedy; Feldman, Tatyana; Rago, Allison; Walsh, Kristy M; Weber, Scott; Goy, Andre; Mato, Anthony

    2015-08-01

    'Double-hit lymphomas' (DHL), defined by concurrent MYC and BCL2 (or, alternatively, BCL6) rearrangements, have a very poor outcome compared to standard-risk, diffuse large B-cell lymphomas (DLBCL). Consequently, dose-intensive (DI) therapies and/or consolidation with high-dose therapy and transplant have been explored in DHL, although benefit has been debated. This meta-analysis compared survival outcomes in DHL patients receiving dose-escalated regimens [DI: R-Hyper-CVAD (rituximab, cyclophosphamide, vincristine, doxorubicin, dexamethasone) or R-CODOX-M/IVAC (rituximab, cyclophosphamide, doxorubicin, vincristine, methotrexate/ifosfamide, etoposide, high dose cytarabine); or intermediate-dose: R-EPOCH (rituximab, etoposide, doxorubicin, cyclophosphamide, vincristine, prednisone)] versus standard-dose regimens (R-CHOP; rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) in the first-line setting. Data were synthesized to estimate hazard ratios of dose-escalated treatments versus R-CHOP using a Weibull proportional hazards model within a Bayesian meta-analysis framework. Eleven studies examining 394 patients were included. Patients were treated with either front-line R-CHOP (n = 180), R-EPOCH (n = 91), or R-Hyper-CVAD/rituximab, methotrexate, cytarabine (R-M/C), R-CODOX-M/R-IVAC (DI) (n = 123). Our meta-analysis revealed that median progression-free survival (n = 350) for the R-CHOP, R-EPOCH and DI groups was 12·1, 22·2, and 18·9 months, respectively. First-line treatment with R-EPOCH significantly reduced the risk of a progression compared with R-CHOP (relative risk reduction of 34%; P = 0·032); however, overall survival (n = 374) was not significantly different across treatment approaches. A subset of patients might benefit from intensive induction with/without transplant. Further investigation into the role of transplant and novel therapy combinations is necessary. © 2015 John Wiley & Sons Ltd.

  2. BI Crucis - A new symbiotic star

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Carlson, E. D.

    1980-01-01

    A Mount Stromlo spectrogram of BI Cru taken in 1962 shows emission lines of H I, He I, He II, Fe II, N III, and the forbidden O III, forbidden Ne III, and forbidden S II transitions superposed on a weak bluish continuum. A spectrogram by Allen in 1974 shows emission lines of H I and Fe II and possibly weak He I, forbidden Fe II, and forbidden O I lines superposed on an M-star absorption spectrum. The object is evidently a symbiotic star showing large variations in its spectral character. Significant differences exist in the mean ion velocities and appear to be correlated with ionization potential.

  3. Interdecadal change in the Eurasia-Pacific anti-phase relation of atmospheric mass and its possible link with PDO

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Guan, Zhaoyong

    2017-02-01

    Based on the known climatic shift that occurred in 1976, we divide the present study period into two epochs: epoch-I, for 1958-1976; and epoch-II, for 1977-2002. Using ERA-40 and the 20th century reanalysis data, we investigate the interdecadal change in the Eurasia-Pacific anti-phase relation (EPAR) pattern of atmospheric mass (AM) during boreal winter before and after 1976. It is found that anomalous AM over lands is highly and negatively correlated with anomalous AM over oceans in the Northern Hemisphere during the winter season. This correlation does not change much from epoch-I to epoch-II. However, the correlation pattern of surface air pressure anomalies with variations of anomalous AM over lands changes remarkably from epoch-I to epoch-II; the EPAR pattern emerges evidently in the later period, whereas it is not significant in epoch-I. The occurrence of the EPAR pattern in epoch-II may be attributable to the Pacific Decadal Oscillation (PDO). The PDO may modulate the EPAR pattern in two ways. Firstly, the interdecadal component of the PDO as a background may modulate the intensities of the Aleutian low, East Asian trough, and westerly flow, acting as a waveguide during the warm phase (epoch-II) of the PDO. Secondly, the interannual variations of sea surface temperature anomalies in the North Pacific, in association with the PDO, may affect the interannual variations of AM, which facilitates the existence of the EPAR pattern in epoch-II only. With the teleconnection pattern having changed before and after 1976, winter climate anomalies, including rainfall and temperature, are found to be different in many regions in the Northern Hemisphere between epoch-I and epoch-II. All the results of the present work are meaningful for a better understanding of climate anomalies during boreal winter.

  4. Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs.

    PubMed

    Cunningham, Daniel J; Shearer, David A; Carter, Neil; Drawer, Scott; Pollard, Ben; Bennett, Mark; Eager, Robin; Cook, Christian J; Farrell, John; Russell, Mark; Kilduff, Liam P

    2018-01-01

    The assessment of competitive movement demands in team sports has traditionally relied upon global positioning system (GPS) analyses presented as fixed-time epochs (e.g., 5-40 min). More recently, presenting game data as a rolling average has become prevalent due to concerns over a loss of sampling resolution associated with the windowing of data over fixed periods. Accordingly, this study compared rolling average (ROLL) and fixed-time (FIXED) epochs for quantifying the peak movement demands of international rugby union match-play as a function of playing position. Elite players from three different squads (n = 119) were monitored using 10 Hz GPS during 36 matches played in the 2014-2017 seasons. Players categorised broadly as forwards and backs, and then by positional sub-group (FR: front row, SR: second row, BR: back row, HB: half back, MF: midfield, B3: back three) were monitored during match-play for peak values of high-speed running (>5 m·s-1; HSR) and relative distance covered (m·min-1) over 60-300 s using two types of sample-epoch (ROLL, FIXED). Irrespective of the method used, as the epoch length increased, values for the intensity of running actions decreased (e.g., For the backs using the ROLL method, distance covered decreased from 177.4 ± 20.6 m·min-1 in the 60 s epoch to 107.5 ± 13.3 m·min-1 for the 300 s epoch). For the team as a whole, and irrespective of position, estimates of fixed effects indicated significant between-method differences across all time-points for both relative distance covered and HSR. Movement demands were underestimated consistently by FIXED versus ROLL with differences being most pronounced using 60 s epochs (95% CI HSR: -6.05 to -4.70 m·min-1, 95% CI distance: -18.45 to -16.43 m·min-1). For all HSR time epochs except one, all backs groups increased more (p < 0.01) from FIXED to ROLL than the forward groups. Linear mixed modelling of ROLL data highlighted that for HSR (except 60 s epoch), SR was the only group not significantly different to FR. For relative distance covered all other position groups were greater than the FR (p < 0.05). The FIXED method underestimated both relative distance (~11%) and HSR values (up to ~20%) compared to the ROLL method. These differences were exaggerated for the HSR variable in the backs position who covered the greatest HSR distance; highlighting important consideration for those implementing the FIXED method of analysis. The data provides coaches with a worst-case scenario reference on the running demands required for periods of 60-300 s in length. This information offers novel insight into game demands and can be used to inform the design of training games to increase specificity of preparation for the most demanding phases of matches.

  5. Interactive Model-Centric Systems Engineering (IMCSE) Phase Two

    DTIC Science & Technology

    2015-02-28

    109 Backend Implementation...42 Figure 10. Interactive Epoch-Era Analysis leverages humans-in-the-loop analysis and supporting infrastructure ...preliminary supporting 10 infrastructure . This will inform the transition strategies, additional case application and prototype user testing. • The

  6. a Robust Registration Algorithm for Point Clouds from Uav Images for Change Detection

    NASA Astrophysics Data System (ADS)

    Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A.

    2016-06-01

    Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs over the period of one year (i.e., May 2014 and May 2015). Note that due to the coarse accuracy of the on-board GPS receiver (e.g., +/- 5-10 m) the geo-tagged positions of the images were only used as initial values in the bundle block adjustment. Normal distances, signifying detected changes, varying from 20 cm to 4 m were identified between the two epochs. The accuracy of the co-registered surfaces was estimated by comparing non-active patches within the monitored area of interest. Since these non-active sub-areas are stationary, the computed normal distances should theoretically be close to zero. The quality control of the registration results showed that the average normal distance was approximately 4 cm, which is within the noise level of the reconstructed surfaces.

  7. Sensitivity of quantitative EEG for seizure identification in the intensive care unit.

    PubMed

    Haider, Hiba A; Esteller, Rosana; Hahn, Cecil D; Westover, M Brandon; Halford, Jonathan J; Lee, Jong W; Shafi, Mouhsin M; Gaspard, Nicolas; Herman, Susan T; Gerard, Elizabeth E; Hirsch, Lawrence J; Ehrenberg, Joshua A; LaRoche, Suzette M

    2016-08-30

    To evaluate the sensitivity of quantitative EEG (QEEG) for electrographic seizure identification in the intensive care unit (ICU). Six-hour EEG epochs chosen from 15 patients underwent transformation into QEEG displays. Each epoch was reviewed in 3 formats: raw EEG, QEEG + raw, and QEEG-only. Epochs were also analyzed by a proprietary seizure detection algorithm. Nine neurophysiologists reviewed raw EEGs to identify seizures to serve as the gold standard. Nine other neurophysiologists with experience in QEEG evaluated the epochs in QEEG formats, with and without concomitant raw EEG. Sensitivity and false-positive rates (FPRs) for seizure identification were calculated and median review time assessed. Mean sensitivity for seizure identification ranged from 51% to 67% for QEEG-only and 63%-68% for QEEG + raw. FPRs averaged 1/h for QEEG-only and 0.5/h for QEEG + raw. Mean sensitivity of seizure probability software was 26.2%-26.7%, with FPR of 0.07/h. Epochs with the highest sensitivities contained frequent, intermittent seizures. Lower sensitivities were seen with slow-frequency, low-amplitude seizures and epochs with rhythmic or periodic patterns. Median review times were shorter for QEEG (6 minutes) and QEEG + raw analysis (14.5 minutes) vs raw EEG (19 minutes; p = 0.00003). A panel of QEEG trends can be used by experts to shorten EEG review time for seizure identification with reasonable sensitivity and low FPRs. The prevalence of false detections confirms that raw EEG review must be used in conjunction with QEEG. Studies are needed to identify optimal QEEG trend configurations and the utility of QEEG as a screening tool for non-EEG personnel. This study provides Class II evidence that QEEG + raw interpreted by experts identifies seizures in patients in the ICU with a sensitivity of 63%-68% and FPR of 0.5 seizures per hour. © 2016 American Academy of Neurology.

  8. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    PubMed Central

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal. PMID:29187819

  9. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.

    PubMed

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  10. End-of-treatment and serial PET imaging in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R: A paradigm shift in clinical decision making.

    PubMed

    Melani, Christopher; Advani, Ranjana; Roschewski, Mark; Walters, Kelsey M; Chen, Clara C; Baratto, Lucia; Ahlman, Mark A; Miljkovic, Milos D; Steinberg, Seth M; Lam, Jessica; Shovlin, Margaret; Dunleavy, Kieron; Pittaluga, Stefania; Jaffe, Elaine S; Wilson, Wyndham H

    2018-05-10

    Dose-adjusted-EPOCH-R obviates the need for radiotherapy in most patients with primary mediastinal B-cell lymphoma. End-of-treatment PET, however, does not accurately identify patients at risk of treatment failure, thereby confounding clinical decision making. To define the role of PET in primary mediastinal B-cell lymphoma following dose-adjusted-EPOCH-R, we extended enrollment and follow-up on our published phase II trial and independent series. Ninety-three patients received dose-adjusted-EPOCH-R without radiotherapy. End-of-treatment PET was performed in 80 patients, of whom 57 received 144 serial scans. One nuclear medicine physician from each institution blindly reviewed all scans from their respective institution. End-of-treatment PET was negative (Deauville 1-3) in 55 (69%) patients with one treatment failure (8-year event-free and overall survival of 96.0% and 97.7%). Among 25 (31%) patients with a positive (Deauville 4-5) end-of-treatment PET, there were 5 (20%) treatment failures (8-year event-free and overall survival of 71.1% and 84.3%). Linear regression analysis of serial scans showed a significant decrease in SUVmax in positive end-of-treatment PET non-progressors compared to an increase in treatment failures. Among 6 treatment failures, the median end-of-treatment SUVmax was 15.4 (range, 1.9-21.3) and 4 achieved long-term remission with salvage therapy. Virtually all patients with a negative end-of-treatment PET following dose-adjusted-EPOCH-R achieved durable remissions and should not receive radiotherapy. Among patients with a positive end-of-treatment PET, only 5/25 (20%) had treatment-failure. Serial PET imaging distinguished end-of-treatment PET positive patients without treatment failure, thereby reducing unnecessary radiotherapy by 80%, and should be considered in all patients with an initial positive PET following dose-adjusted-EPOCH-R (NCT00001337). Copyright © 2018, Ferrata Storti Foundation.

  11. Assessing REM Sleep in Mice Using Video Data

    PubMed Central

    McShane, Blakeley B.; Galante, Raymond J.; Biber, Michael; Jensen, Shane T.; Wyner, Abraham J.; Pack, Allan I.

    2012-01-01

    Study Objectives: Assessment of sleep and its substages in mice currently requires implantation of chronic electrodes for measurement of electroencephalogram (EEG) and electromyogram (EMG). This is not ideal for high-throughput screening. To address this deficiency, we present a novel method based on digital video analysis. This methodology extends previous approaches that estimate sleep and wakefulness without EEG/EMG in order to now discriminate rapid eye movement (REM) from non-REM (NREM) sleep. Design: Studies were conducted in 8 male C57BL/6J mice. EEG/EMG were recorded for 24 hours and manually scored in 10-second epochs. Mouse behavior was continuously recorded by digital video at 10 frames/second. Six variables were extracted from the video for each 10-second epoch (i.e., intraepoch mean of velocity, aspect ratio, and area of the mouse and intraepoch standard deviation of the same variables) and used as inputs for our model. Measurements and Results: We focus on estimating features of REM (i.e., time spent in REM, number of bouts, and median bout length) as well as time spent in NREM and WAKE. We also consider the model's epoch-by-epoch scoring performance relative to several alternative approaches. Our model provides good estimates of these features across the day both when averaged across mice and in individual mice, but the epoch-by-epoch agreement is not as good. Conclusions: There are subtle changes in the area and shape (i.e., aspect ratio) of the mouse as it transitions from NREM to REM, likely due to the atonia of REM, thus allowing our methodology to discriminate these two states. Although REM is relatively rare, our methodology can detect it and assess the amount of REM sleep. Citation: McShane BB; Galante RJ; Biber M; Jensen ST; Wyner AJ; Pack AI. Assessing REM sleep in mice using video data. SLEEP 2012;35(3):433-442. PMID:22379250

  12. Implementation of health information technology to maximize efficiency of resource utilization in a geographically dispersed prenatal care delivery system.

    PubMed

    Cochran, Marlo Baker; Snyder, Russell R; Thomas, Elizabeth; Freeman, Daniel H; Hankins, Gary D V

    2012-04-01

    This study investigated the utilization of health information technology (HIT) to enhance resource utilization in a geographically dispersed tertiary care system with extensive outpatient and delivery services. It was initiated as a result of a systems change implemented after Hurricane Ike devastated southeast Texas. A retrospective database and electronic medical record review was performed, which included data collection from all patients evaluated 18 months prior (epoch I) and 18 months following (epoch II) the landfall of Hurricane Ike. The months immediately following the storm were omitted from the analysis, allowing time to establish a new baseline. We analyzed a total of 21,201 patients evaluated in triage at the University of Texas Medical Branch. Epoch I consisted of 11,280 patients and epoch II consisted of 9922 patients. Using HIT, we were able to decrease the number of visits to triage while simultaneously managing more complex patients in the outpatient setting with no clinically significant change in maternal or fetal outcome. This study developed an innovated model of care using constrained resources while providing quality and safety to our patients without additional cost to the health care delivery system. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Restricted Ventilation Associated with Reduced Neurodevelopmental Impairment in Preterm Infants.

    PubMed

    Vliegenthart, Roseanne J S; Onland, Wes; van Wassenaer-Leemhuis, Aleid G; De Jaegere, Anne P M; Aarnoudse-Moens, Cornelieke S H; van Kaam, Anton H

    2017-01-01

    Restrictive use of invasive mechanical ventilation (IMV) in preterm infants reduces the risk of bronchopulmonary dysplasia (BPD). Our objective was to determine its effect on neurodevelopmental impairment (NDI) at 24 months' corrected age (CA). This retrospective single-center cohort study included all patients with a gestational age <30 weeks born in 2004/2005 (epoch 1) and 2010/2011 (epoch 2). In epoch 2, we introduced a policy of restriction on IMV and liberalized the use of respiratory stimulants in the delivery room and neonatal intensive care. Data on patient characteristics, respiratory management, short-term outcomes, mortality, BPD, and NDI at 24 months' CA were collected. Four hundred and four preterm infants were included. Compared to those in epoch 1, infants in epoch 2 were less likely to be intubated and the duration of IMV was shorter. Other noninvasive adjuvant therapies such as caffeine, doxapram, and nasal ventilation were more often used during epoch 2. There was a trend to less BPD in epoch 2 compared to epoch 1 (17 vs. 23%, adjusted OR = 0.75, 95% CI: 0.48, 1.16). Mortality did not change over time. The combined outcome death or NDI at 24 months' CA was significantly lower in epoch 2 compared to epoch 1 (24.7 vs. 33.9%, adjusted OR = 0.71, 95% CI: 0.53, 0.97). Restricted use of IMV is feasible in preterm infants and might be associated with a reduced risk of the combined outcome death or NDI at 24 months' CA. Larger studies are needed to confirm these findings. © 2017 The Author(s) Published by S. Karger AG, Basel.

  14. Inflation in a closed universe

    NASA Astrophysics Data System (ADS)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  15. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Constuction of the paleogeologic maps. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    The Post Caoris surface was derived from the geologic map by plotting all Class 1 and 2 features. To construct the Caloris surface, Class 3 craters were plotted onto the map, as well as all Class 3 plains. However, if P3 plains were adjacent to P2 units, and appeared continuous with other exposures of P3 material, the P2 unit was assumed to overlie the C3 and P3 material. The younger superposed craters were ignored with respect to the Class 3 surface. The boundaries of P3 materials were then continued under the superposed units, using a minimum of reasonable assumptions. For instance, if P2 and P4 plains were adjacent units, no P3 plains were presumed to lie under the P2 material. Similarly, all C3 craters were considered to have some deposits of impact melt after formation, even if they are mapped containing younger units. C3 craters which were superposed with younger units, C1 or C2 craters, and perhaps P2 plains, were redrawn as if later materials had not been emplaced, i.e., in their post impact, pre-degradation states.

  16. Stress analysis of circular semimonocoque cylinders with cutouts

    NASA Technical Reports Server (NTRS)

    Mccomb, Harvey G , Jr

    1955-01-01

    A method is presented for analyzing the stresses about cutouts in circular semimonocoque cylinders with flexible rings. The method involves the use of so-called perturbation stress distributions which are superposed on the stress distribution that would exist in the structure with no cutout in such a way as to give the effects of a cutout. The method can be used for any loading case for which the structure without the cutout can be analyzed and is sufficiently versatile to account for stringer and shear reinforcement about the cutout.

  17. Constraints on early events in Martian history as derived from the cratering record

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    1990-01-01

    Constrains on early events in Martian history are derived using the planet's cratering record. Variations in the shapes of the crater size-frequency distribution curves are interpreted as indicative of the size-frequency distribution of the production populations, thus providing information about the age of the unit relative to the end of the heavy bombardment period. Results from the analysis of craters superposed on heavily cratered units across the Martian surface provide constraints on the hemispheric dichotomy and the early erosional conditions on Mars.

  18. Evidence for solar wind modulation of lightning

    NASA Astrophysics Data System (ADS)

    Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.

    2014-05-01

    The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream’s source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (˜1%) but rapid decrease in galactic cosmic ray flux, a moderate (˜6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather.

  19. Restoring paleomagnetic data in complex superposed folding settings: The Boltaña anticline (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Mochales, T.; Pueyo, E. L.; Casas, A. M.; Barnolas, A.

    2016-03-01

    Complex kinematic scenarios in fold-and-thrust belts often produce superposed and non-coaxial folding. Interpretation of primary linear indicators must be based on a careful restoration to the undeformed stage following the reverse order of the deformation events. Therefore, sequential restoration to the ancient coordinate system is of key importance to obtain reliable kinematic interpretations using paleomagnetic data. In this paper, a new paleomagnetic study in the western flank of the Boltaña anticline (Southern Pyrenees) illustrates a case study of a complex tectonic setting having superposed, non-coaxial folds. The first stage of NW-SE folding linked to the oblique Boltaña anticline took place during Lutetian times. The second stage was linked to the vertical axis rotation and placed the Boltaña anticline in its present-day N-S configuration. Our data support a long-lasting Lutetian to Priabonian period with main rotational activity during the Bartonian-Priabonian; other authors support a VAR coeval with anticlinal growth. The third stage resulted in southwards tilting related to the emplacement of the N120E striking Guarga basement thrust (Oligocene-Early Miocene). Based on this deformational history, a sequential restoration was applied and compared with the classic bedding correction. At the site scale, single bedding correction gives errors ranging between 31° and - 31° in the estimation of vertical axis rotations. At the locality scale, in sites grouped in three folds (from W to E Arbella, Planillo and San Felizes), the bedding corrected data display rotation values in accordance with those found in the Ainsa Basin by other authors. Sequential restoration (based on the afore-mentioned evolution in three-steps) improves both some locality-means and the internal consistency of the data. Therefore, reasonably-constrained sequential restoration becomes essential to reconstruct the actual history of superposed folding areas.

  20. Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: Rolling averages versus fixed length epochs

    PubMed Central

    Cunningham, Daniel J.; Shearer, David A.; Carter, Neil; Drawer, Scott; Pollard, Ben; Bennett, Mark; Eager, Robin; Cook, Christian J.; Farrell, John; Russell, Mark

    2018-01-01

    The assessment of competitive movement demands in team sports has traditionally relied upon global positioning system (GPS) analyses presented as fixed-time epochs (e.g., 5–40 min). More recently, presenting game data as a rolling average has become prevalent due to concerns over a loss of sampling resolution associated with the windowing of data over fixed periods. Accordingly, this study compared rolling average (ROLL) and fixed-time (FIXED) epochs for quantifying the peak movement demands of international rugby union match-play as a function of playing position. Elite players from three different squads (n = 119) were monitored using 10 Hz GPS during 36 matches played in the 2014–2017 seasons. Players categorised broadly as forwards and backs, and then by positional sub-group (FR: front row, SR: second row, BR: back row, HB: half back, MF: midfield, B3: back three) were monitored during match-play for peak values of high-speed running (>5 m·s-1; HSR) and relative distance covered (m·min-1) over 60–300 s using two types of sample-epoch (ROLL, FIXED). Irrespective of the method used, as the epoch length increased, values for the intensity of running actions decreased (e.g., For the backs using the ROLL method, distance covered decreased from 177.4 ± 20.6 m·min-1 in the 60 s epoch to 107.5 ± 13.3 m·min-1 for the 300 s epoch). For the team as a whole, and irrespective of position, estimates of fixed effects indicated significant between-method differences across all time-points for both relative distance covered and HSR. Movement demands were underestimated consistently by FIXED versus ROLL with differences being most pronounced using 60 s epochs (95% CI HSR: -6.05 to -4.70 m·min-1, 95% CI distance: -18.45 to -16.43 m·min-1). For all HSR time epochs except one, all backs groups increased more (p < 0.01) from FIXED to ROLL than the forward groups. Linear mixed modelling of ROLL data highlighted that for HSR (except 60 s epoch), SR was the only group not significantly different to FR. For relative distance covered all other position groups were greater than the FR (p < 0.05). The FIXED method underestimated both relative distance (~11%) and HSR values (up to ~20%) compared to the ROLL method. These differences were exaggerated for the HSR variable in the backs position who covered the greatest HSR distance; highlighting important consideration for those implementing the FIXED method of analysis. The data provides coaches with a worst-case scenario reference on the running demands required for periods of 60–300 s in length. This information offers novel insight into game demands and can be used to inform the design of training games to increase specificity of preparation for the most demanding phases of matches. PMID:29621279

  1. Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon

    NASA Astrophysics Data System (ADS)

    Maraun, D.; Kurths, J.

    2005-08-01

    We present a modern method used in nonlinear time series analysis to investigate the relation of two oscillating systems with respect to their phases, independently of their amplitudes. We study the difference of the phase dynamics between El Niño/Southern Oscillation (ENSO) and the Indian Monsoon on inter-annual time scales. We identify distinct epochs, especially two intervals of phase coherence, 1886-1908 and 1964-1980, corroborating earlier findings from a new point of view. A significance test shows that the coherence is very unlikely to be the result of stochastic fluctuations. We also detect so far unknown periods of coupling which are invisible to linear methods. These findings suggest that the decreasing correlation during the last decades might be a typical epoch of the ENSO/Monsoon system having occurred repeatedly. The high time resolution of the method enables us to present an interpretation of how volcanic radiative forcing could cause the coupling.

  2. 78 FR 48421 - Publication of North American Datum of 1983 (2011) Epoch 2010.00, North American Datum of 1983...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... of 1983'' (or ``NAD 83''). The new realizations are NAD 83 (2011) epoch 2010.00 [for the North America and Caribbean tectonic plates], NAD 83 (MA11) epoch 2010.00 [for the Mariana tectonic plate] and NAD 83 (PA11) epoch 2010.00 [for the Pacific tectonic plate]. These three realizations supersede all...

  3. Statistical evaluation of substorm strength and onset times in a global MHD model

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Morley, S.; Ganushkina, N. Y.

    2016-12-01

    Magnetospheric substorms are characterized by an explosive release of energy stored in the magnetotail, resulting in a tailward plasmoid release, magnetic field perturbations which reach the ground, and a brightening of the aurora. The basic energy release process has been reproduced in magnetohydrodynamic (MHD) models of the global magnetosphere, but previous studies of substorms using MHD have been limited to case studies covering one or a few events. The lack of large-scale validation studies, and the fact that most MHD models rely on numerical or ad-hoc resistivity to produce the reconnection necessary for substorms, has led some to question the suitability of MHD for studying substorms. However, MHD models are able to capture global implications of substorms, including magnetospheric and ionospheric current systems, dipolarizations, and magnetic field perturbations at the surface, providing a compelling motivation to understand and improve substorm physics in global MHD.The present work seeks to assess the capabilities and limitations of MHD with respect to capturing substorms. We identify substorms in long (one month of simulation time) simulations and compare these to observations during the same time period. To reduce the risk of mis-identifying other phenomena as substorms, we use multiple signatures for the identification, including ground-based magnetic field in mid and high latitudes, plasmoid releases, dipolarization signatures, particle injections, and auroral imagery. We evaluate the model in terms of substorm frequency, strength, location, and timing. We model the same time period using the Minimal Substorm Model, which solves an energy balance equation based on solar wind input. This model has been previously shown to produce substorms at a realistic frequency given solar wind conditions; by comparing it to the MHD we are able to assess the relative importance of MHD physics in terms of substorm timing and occurrence rate. We compute a superposed epoch analysis (SEA) of the substorm "hits" (events that occurred in both the model and observations), "misses" (events that occurred only in observations), and false positives. The SEA result serves as a representative scenario with which we evaluate new model configurations in terms of their ability to reproduce substorm dynamics.

  4. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to electrons with energy >=4.0 MeV becoming more peaked at 90° during the storm recovery phase. The observation is consistent with but does not confirm the model. Our tests indicate that relativistic electrons are accelerated by an internal source acceleration mechanism but we do not identify a unique mechanism.

  5. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  6. A statistical study of near-Earth magnetotail evolution during substorms and pseudosubstorms with THEMIS data

    NASA Astrophysics Data System (ADS)

    Fukui, K.; Machida, S.; Miyashita, Y.; Yoshizumi, M.; Angelopoulos, V.

    2017-12-01

    Substorms and pseudosubstorms (pseudobreakups) are very similar phenomena. In terms of auroral morphology, pseudosubstorms are generally more localized and more short-lived, compared with substorms, and are not accompanied by poleward expansion. We examined auroral development for events from November 2007 through April 2010, using data from THEMIS all-sky imagers. We defined events accompanied and not accompanied by poleward expansion as substorms and pseudosubstorms, respectively. To understand the cause of auroral development, we investigated temporal and spatial development of the near-Earth magnetotail during substorms and pseudosubstorms, based on superposed epoch analysis of THEMIS data. We find that Vx begins to increase at -9.5 >X(GSM)>-11.5 Re around onset for both substorms and pseudosubstorms. This seems to be due to earthward flows caused by magnetic reconnection. The northward Bz also increases around onset at -9.5 >X>-10.5 Re both substorms and pseudosubstorms. The amount and rate of Bz change are larger for substorms than for pseudosubstorms. In the earthward (-7.5 >X>-9.5 Re) and tailward (-10.5 >X>-12.5 Re) regions, Bz increases substantially for substorms, whereas it does not increase very much for pseudosubstorms. These results indicate that dipolarization is weaker for pseudosubstorms than for substorms, and the dipolarization region does not spread extensively for pseudosubstorms. We, therefore, suggest that current disruption related to dipolarization does not develop tailward and hence auroral poleward expansion does not occur for pseudosubstorms. Meanwhile, the plasma and magnetic pressures increase at -6.5 >X>-7.5 Re after onset in association with dipolarization, particularly for substorms. The total pressure (the sum of the plasma and magnetic pressures) prior to the onset is larger in that region for substorms than for pseudosubstorms. At -7.5 >X>-8.5 Re the total pressure hardly differ between substorms and pseudosubstorms. Thus we conclude that the spatial gradient of the total pressure is a key that determines whether the current disruption takes place, that is, whether initial activation develops into a substorm or into a subsiding pseudosubstorm.

  7. Stormtime and Interplanetary Magnetic Field Drivers of Wave and Particle Acceleration Processes in the Magnetosphere-Ionosphere Transition Region

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer Mark

    The magnetosphere-ionosphere (M-I) transition region is the several thousand-kilometer stretch between the cold, dense and variably resistive region of ionized atmospheric gases beginning tens of kilometers above the terrestrial surface, and the hot, tenuous, and conductive plasmas that interface with the solar wind at higher altitudes. The M-I transition region is therefore the site through which magnetospheric conditions, which are strongly susceptible to solar wind dynamics, are communicated to ionospheric plasmas, and vice versa. We systematically study the influence of geomagnetic storms on energy input, electron precipitation, and ion outflow in the M-I transition region, emphasizing the role of inertial Alfven waves both as a preferred mechanism for dynamic (instead of static) energy transfer and particle acceleration, and as a low-altitude manifestation of high-altitude interaction between the solar wind and the magnetosphere, as observed by the FAST satellite. Via superposed epoch analysis and high-latitude distributions derived as a function of storm phase, we show that storm main and recovery phase correspond to strong modulations of measures of Alfvenic activity in the vicinity of the cusp as well as premidnight. We demonstrate that storm main and recovery phases occur during 30% of the four-year period studied, but together account for more than 65% of global Alfvenic energy deposition and electron precipitation, and more than 70% of the coincident ion outflow. We compare observed interplanetary magnetic field (IMF) control of inertial Alfven wave activity with Lyon-Fedder-Mobarry global MHD simulations predicting that southward IMF conditions lead to generation of Alfvenic power in the magnetotail, and that duskward IMF conditions lead to enhanced prenoon Alfvenic power in the Northern Hemisphere. Observed and predicted prenoon Alfvenic power enhancements contrast with direct-entry precipitation, which is instead enhanced postnoon. This situation reverses under dawnward IMF. Despite clear observational and simulated signatures of dayside Alfvenic power, the generation mechanism remains unclear. Last, we present premidnight FAST observations of accelerated precipitation that is best described by a kappa distribution, signaling a nonthermal source population. We examine the implications for the commonly used Knight Relation.

  8. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data.

    PubMed

    Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N

    2016-01-01

    To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.

  9. Climatology of GW-TIDs in the magnetic equatorial upper thermosphere over India

    NASA Astrophysics Data System (ADS)

    Manju, G.; Aswathy, R. P.

    2017-11-01

    An analysis of Gravity wave induced travelling ionospheric disturbances (GW-TIDs) in the thermosphere during high and low solar epochs is undertaken using ionosonde data at Trivandrum (8.50N, 770E). Wavelet analysis is performed on the temporal variations of foF2 and the amplitudes of waves present in two period bands of (0.5-1.5) h and (2-4) h are extracted. The real height profiles are generated at 15 min internal for the whole day (for sample days) during high and low solar activity years. The study reveals that the GW-TID activity is significantly greater for solar minimum compared to solar maximum for the period 8.5-17.5 h. Diurnally the GW-TID activity in the (2-4) h period band peaks in the post sunset hours for both high and low solar epochs. For the 0.5-1.5 h period band, the diurnal maximum in GW-TID is occurring in the post sunset hours for high solar epoch while it occurs in the morning hours around 10 h LT for low solar epoch. Seasonally the day time GW-TID activity maximizes (minimizes) for winter (vernal equinox). The post sunset time GW-TID maximizes (minimizes) either for summer/winter (vernal equinox). The other interesting observation is the anti correlation of GW-TID in upper thermosphere with solar activity for day time and the correlation of the same with solar activity in the post sunset hours. The present results for daytime are in agreement with the equatorial daytime GW-TID behaviour reported from CHAMP satellite observations. The GW-TID activity during post sunset time for equatorial region upper thermosphere has not been reported so far.

  10. Auroral Acceleration, Solar Wind Driving, and Substorm Triggering (Invited)

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.

    2010-12-01

    We use a data base of 4861 substorms identified by global UV images to investigate the substorm cycle dependence of various types of aurora, and to obtain new results on substorm triggering by external driving. Although all types of aurora increase at substorm onset, broadband (Alfvénic) aurora shows a particular association with substorms, and, especially, substorm onset. While diffuse electron and monoenergetic auroral precipitating power rises by 79% and 90% respectively following an onset, broadband aurora rises by 182%. In the first 10-15 minutes following onset, the power associated with Alfvénic acceleration is comparable to monoenergetic acceleration (also called “inverted-V” events). In general, this is not the case prior to onset, or indeed, during recovery. The rise time of the electron diffuse aurora following onset is much slower, about 50 minutes, and thus presumably extends into recovery. We also re-investigate the issue of solar wind triggering of substorms by considering not just changes in the solar wind prior to onset, but how the pattern of changes differs from random and comparable epochs. We verify that a preonset reduction of solar wind driving (“northward turning” in the simplest case of IMF Bz) holds for the superposed epoch mean of the ensemble. Moreover, this reduction is not the result of a small number of substorms with large changes. The reduction starts about 20 min prior to substorm onset, which, although a longer delay than previously suggested, is appropriate given the various propagation time delays involved. Next, we compare the IMF to random solar wind conditions. Not surprisingly, solar wind driving prior to onset averages somewhat higher than random. Although about a quarter of substorms occur for steady northward IMF conditions, more general coupling functions such as the Kan-Lee electric field, the Borovosky function, or our dΦMP/dt, show very few substorms occur following weak dayside merging. We assembled a data base of solar wind times with slightly elevated conditions, chosen to resemble the integrated driving typical before substorm onsets, but otherwise randomly occuring. We looked at how the IMF subsequently changed after these random elevations, compared to the changes preceding substorms. It turns out that mere reversion to the mean leads to a “northward turning” after the imposed selection criterion end. Thus (slightly generalizing the view of Morley and Freeman), substorms require solar wind driving which produces dayside merging, but external triggering is probably insignificant.

  11. Epoch length to accurately estimate the amplitude of interference EMG is likely the result of unavoidable amplitude cancellation

    PubMed Central

    Keenan, Kevin G.; Valero-Cuevas, Francisco J.

    2008-01-01

    Researchers and clinicians routinely rely on interference electromyograms (EMGs) to estimate muscle forces and command signals in the neuromuscular system (e.g., amplitude, timing, and frequency content). The amplitude cancellation intrinsic to interference EMG, however, raises important questions about how to optimize these estimates. For example, what should the length of the epoch (time window) be to average an EMG signal to reliably estimate muscle forces and command signals? Shorter epochs are most practical, and significant reductions in epoch have been reported with high-pass filtering and whitening. Given that this processing attenuates power at frequencies of interest (< 250 Hz), however, it is unclear how it improves the extraction of physiologically-relevant information. We examined the influence of amplitude cancellation and high-pass filtering on the epoch necessary to accurately estimate the “true” average EMG amplitude calculated from a 28 s EMG trace (EMGref) during simulated constant isometric conditions. Monte Carlo iterations of a motor-unit model simulating 28 s of surface EMG produced 245 simulations under 2 conditions: with and without amplitude cancellation. For each simulation, we calculated the epoch necessary to generate average full-wave rectified EMG amplitudes that settled within 5% of EMGref. For the no-cancellation EMG, the necessary epochs were short (e.g., < 100 ms). For the more realistic interference EMG (i.e., cancellation condition), epochs shortened dramatically after using high-pass filter cutoffs above 250 Hz, producing epochs short enough to be practical (i.e., < 500 ms). We conclude that the need to use long epochs to accurately estimate EMG amplitude is likely the result of unavoidable amplitude cancellation, which helps to clarify why high-pass filtering (> 250 Hz) improves EMG estimates. PMID:19081815

  12. Swarm observations of field-aligned currents associated with pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Gillies, D. M.; Knudsen, D.; Spanswick, E.; Donovan, E.; Burchill, J.; Patrick, M.

    2015-11-01

    We have performed a superposed epoch study of in situ field-aligned currents located near the edges of regions of pulsating aurora observed simultaneously using ground-based optical data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imager (ASI) network and magnetometers on board the Swarm satellites. A total of nine traversals of Swarm over regions of pulsating aurora identified using THEMIS ASI were studied. We determined that in the cases where a clear boundary can be identified, strong downward currents are seen just poleward and equatorward of the pulsating patches. A downward current in the range of ~1-6 μA/m2 can be seen just poleward of the boundary. A weaker upward current of ~1-3 μA/m2 is observed throughout the interior of the patch. These observations indicate that currents carried by precipitating electrons within patches could close through horizontal currents and be returned at the edges, in agreement with Oguti and Hayashi (1984) and Hosokawa et al. (2010b). In addition to confirming these earlier results and adding to their statistical significance, the contribution of this study is to quantify the upward and downward current magnitudes, in some cases using two satellites traversing the same pulsating regions. Finally, we compare Swarm's two-satellite field-aligned current product to the single-satellite results and determine that the data product can be compromised in regions of pulsating aurora, a phenomenon that occurs over widespread regions and tends to persist for long periods of time. These results underscore the importance of electrical coupling between the ionosphere and magnetosphere in regions of patchy pulsating aurora.

  13. The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis

    2016-06-01

    During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.

  14. Flare Clustering

    NASA Astrophysics Data System (ADS)

    Title, Alan; DeRosa, Marc

    2016-10-01

    The continuous full disk observations provided by the Atmospheric Imaging Assembly (AIA ) can give an observer the impression that many flare eruptions are causally related to one another. However, both detailed analyses of a number of events as well as several statistical studies have provided only rare examples or weak evidence of causal behavior. Since the mechanisms of flare triggering are not well understood, the lack of hard evidence is not surprising. For this study we looked instead for groups of flares (flare clusters) in which successive flares occur within a fixed time - the selection time. The data set used for the investigation is the flare waiting times provided by the X-ray flare detectors on the Geostationary Operational Environmental Satellites (GOES). We limited the study to flares of magnitude C5 and greater obtained during cycles 21, 22, 23, and 24. The GOES field of view includes the entire visible surface. While many flares in a cluster may come from the same active region, the larger clusters often have origins in multiple regions. The longest C5 cluster found with a linking window of 36 hours in cycles 21, 22, 23,and 24 was 54, 82, 42, and 18 days, respectively. X flares also cluster. A superposed epoch analyses demonstrates that there is a pronounced enhancement of number of C5 and and above flares that are centered on the X flare clusters. We suggest that this behavior implies that a component of the observed coordinated behavior originates from the MHD processes driven by the solar dynamo that in turn creates unstable states in the solar atmosphere. The relationship between flare clusters and magnetic centers of activity was explored as was the correlation between high flare rates and significant changes in the total solar magnetic flux,

  15. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.

    In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less

  16. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    DOE PAGES

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; ...

    2017-03-17

    In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less

  17. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  18. Superposed Redox Chemistry of Fused Carbon Rings in Cyclooctatetraene-Based Organic Molecules for High-Voltage and High-Capacity Cathodes.

    PubMed

    Zhao, Xiaolin; Qiu, Wujie; Ma, Chao; Zhao, Yingqin; Wang, Kaixue; Zhang, Wenqing; Kang, Litao; Liu, Jianjun

    2018-01-24

    Even though many organic cathodes have been developed and have made a significant improvement in energy density and reversibility, some organic materials always generate relatively low voltage and limited discharge capacity because their energy storage mechanism is solely based on redox reactions of limited functional groups [N-O, C═X (X = O, N, S)] linking to aromatic rings. Here, a series of cyclooctatetraene-based (C 8 H 8 ) organic molecules were demonstrated to have electrochemical activity of high-capacity and high-voltage from carbon rings by means of first-principles calculations and electronic structure analysis. Fused molecules of C 8 -C 4 -C 8 (C 16 H 12 ) and C 8 -C 4 -C 8 -C 4 -C 8 (C 24 H 16 ) contain, respectively, four and eight electron-deficient carbons, generating high-capacity by their multiple redox reactions. Our sodiation calculations predict that C 16 H 12 and C 24 H 16 exhibit discharge capacities of 525.3 and 357.2 mA h g -1 at the voltage change from 3.5 to 1.0 V and 3.7 to 1.3 V versus Na + /Na, respectively. Electronic structure analysis reveals that the high voltages are attributed to superposed electron stabilization mechanisms, including double-bond reformation and aromatization from carbon rings. High thermodynamic stability of these C 24 H 16 -based systems strongly suggests feasibility of experimental realization. The present work provides evidence that cyclooctatetraene-based organic molecules fused with the C 4 ring are promising in designing high-capacity and high-voltage organic rechargeable cathodes.

  19. SGR 1822-1606 (Swift 1822.3-1606): Spin-down rate and inferred dipole field strength

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Strohmayer, Tod; Kouveliotou, Chryssa

    2011-07-01

    We have been monitoring the new source Swift 1822.3-1606 (Cummings et al. GCN 12159) with RXTE. We acquired a total exposure of 20.6 ks in 5 pointings, spanning a time baseline of 5 days. We clearly detect the 8.44 s pulsations reported earlier (Pagani et al. ATel #3489, Gogus et al ATel #3491, Rea et al Atel #3501). We employed an epoch folding technique to determine the spin ephemeris. Our preliminary analysis reveal the spin period, P = 8.4377158(9) s and the spin-down rate, Pdot = 2.2(5) x 10-11 s/s (Epoch: 55758.5 MJD).

  20. Evaluation of mirrored muscle activity in patients with Complex Regional Pain Syndrome.

    PubMed

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2014-10-01

    Motor dysfunction in Complex Regional Pain Syndrome (CRPS) has been associated with bilateral changes in central motor processing, suggesting abnormal coupling between the affected and unaffected limb. We evaluated the occurrence of involuntary muscle activity in a limb during voluntary movements of the contralateral limb (i.e., mirror activity) in unilaterally affected patients to examine disinhibition of contralateral motor activity in CRPS. Mirror activity was examined during unimanual rhythmic flexion-extension movements of the wrist through in-depth analysis of electromyography recordings from the passive arm in 20 CRPS patients and 40 controls. The number of mirror-epochs was comparable for both arms in both CRPS patients and controls. Mirror-epochs in the affected arm of patients were comparable to those in controls. Mirror-epochs in the unaffected arm were shorter and showed less resemblance (in terms of rhythm and timing) to activity of the homologous muscle in the moving arm compared to mirror-epochs in controls. No evidence for disinhibition of contralateral motor activity was found during unimanual movement. Although motor dysfunction in CRPS has been associated with bilateral changes in cortical motor processing, the present findings argue against disinhibition of interhemispheric projections to homologous muscles in the contralateral limb during unimanual movement. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inserra, C.; Bulla, M.; Sim, S. A.

    2016-11-01

    We present the first spectropolarimetric observations of a hydrogen-free superluminous supernova (SLSN) at z = 0.1136, namely SN 2015bn. The transient shows significant polarization at both of the observed epochs: one 24 days before maximum light in the rest-frame, and the other at 27 days after peak luminosity. Analysis of the Q – U plane suggests the presence of a dominant axis and no physical departure from the main axis at either epoch. The polarization spectrum along the dominant axis is characterized by a strong wavelength dependence and an increase in the signal from the first to the second epoch.more » We use a Monte Carlo code to demonstrate that these properties are consistent with a simple toy model that adopts an axisymmetric ellipsoidal configuration for the ejecta. We find that the wavelength dependence of the polarization is possibly due to a strong wavelength dependence in the line opacity, while the higher level of polarization at the second epoch is a consequence of the increase in the asphericity of the inner layers of the ejecta or the fact that the photosphere recedes into less spherical layers. The geometry of the SLSN is similar to that of stripped-envelope core-collapse SNe connected to GRB, while the overall evolution of the ejecta shape could be consistent with a central engine.« less

  2. Epoch-based likelihood models reveal no evidence for accelerated evolution of viviparity in squamate reptiles in response to cenozoic climate change.

    PubMed

    King, Benedict; Lee, Michael S Y

    2015-09-01

    A broad scale analysis of the evolution of viviparity across nearly 4,000 species of squamates revealed that origins increase in frequency toward the present, raising the question of whether rates of change have accelerated. We here use simulations to show that the increased frequency is within the range expected given that the number of squamate lineages also increases with time. Novel, epoch-based methods implemented in BEAST (which allow rates of discrete character evolution to vary across time-slices) also give congruent results, with recent epochs having very similar rates to older epochs. Thus, contrary to expectations, there was no accelerated burst of origins of viviparity in response to global cooling during the Cenozoic or glacial cycles during the Plio-Pleistocene. However, if one accepts the conventional view that viviparity is more likely to evolve than to be lost, and also the evidence here that viviparity has evolved with similar regularity throughout the last 200 Ma, then the absence of large, ancient clades of viviparous squamates (analogs to therian mammals) requires explanation. Viviparous squamate lineages might be more prone to extinction than are oviparous lineages, due to their prevalance at high elevations and latitudes and thus greater susceptibility to climate fluctuations. If so, the directional bias in character evolution would be offset by the bias in extinction rates. © 2015 Wiley Periodicals, Inc.

  3. Melas Materials

    NASA Image and Video Library

    2006-05-01

    This MOC image shows dark sand dunes superposed on layered, light-toned outcrops -- interpreted to be sedimentary rocks -- in Melas Chasma. Melas Chasma is part of the enormous Valles Marineris trough system

  4. Dating Tectonic Activity on Mercury’s Large-Scale Lobate-Scarp Thrust Faults

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; E Banks, Maria

    2017-10-01

    Mercury’s widespread large-scale lobate-scarp thrust faults reveal that the planet’s tectonic history has been dominated by global contraction, primarily due to cooling of its interior. Constraining the timing and duration of this contraction provides key insight into Mercury’s thermal and geologic evolution. We combine two techniques to enhance the statistical validity of size-frequency distribution crater analyses and constrain timing of the 1) earliest and 2) most recent detectable activity on several of Mercury’s largest lobate-scarp thrust faults. We use the sizes of craters directly transected by or superposed on the edge of the scarp face to define a count area around the scarp, a method we call the Modified Buffered Crater Counting Technique (MBCCT). We developed the MBCCT to avoid the issue of a near-zero scarp width since feature widths are included in area calculations of the commonly used Buffered Crater Counting Technique (BCCT). Since only craters directly intersecting the scarp face edge conclusively show evidence of crosscutting relations, we increase the number of craters in our analysis (and reduce uncertainties) by using the morphologic degradation state (i.e. relative age) of these intersecting craters to classify other similarly degraded craters within the count area (i.e., those with the same relative age) as superposing or transected. The resulting crater counts are divided into two categories: transected craters constrain the earliest possible activity and superposed craters constrain the most recent detectable activity. Absolute ages are computed for each population using the Marchi et al. [2009] model production function. A test of the Blossom lobate scarp indicates the MBCCT gives statistically equivalent results to the BCCT. We find that all scarps in this study crosscut surfaces Tolstojan or older in age (>~3.7 Ga). The most recent detectable activity along lobate-scarp thrust faults ranges from Calorian to Kuiperian (~3.7 Ga to present). Our results complement previous relative-age studies with absolute ages and indicate global contraction continued over the last ~3-4 Gyr. At least some thrust fault activity occurred on Mercury in relatively recent times (<280 Ma).

  5. The effect of epoch length on time and frequency domain parameters of electromyographic and mechanomyographic signals.

    PubMed

    Keller, Joshua L; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Smith, Cory M; Hill, Ethan C; Schmidt, Richard J; Johnson, Glen O; Zuniga, Jorge M

    2018-06-01

    The selection of epoch lengths affects the time and frequency resolution of electromyographic (EMG) and mechanomyographic (MMG) signals, as well as decisions regarding the signal processing techniques to use for determining the power density spectrum. No previous studies, however, have examined the effects of epoch length on parameters of the MMG signal. The purpose of this study was to examine the differences between epoch lengths for EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, and MMG MPF from the VL and VM muscles during MVIC muscle actions as well as at each 10% of the time to exhaustion (TTE) during a continuous isometric muscle action of the leg extensors at 50% of MVIC. During the MVIC trial, there were no significant (p > 0.05) differences between epoch lengths (0.25, 0.50, 1.00, and 2.00-s) for mean absolute values for any of the EMG or MMG parameters. During the submaximal, sustained muscle action, however, absolute MMG amplitude and MMG MPF were affected by the length of epoch. All epoch related differences were eliminated by normalizing the absolute values to MVIC. These findings supported normalizing EMG and MMG parameter values to MVIC and utilizing epoch lengths that ranged from 0.25 to 2.00-s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Survival and developmental disability in infants with birth weights of 501 to 800 grams, born between 1979 and 1994.

    PubMed

    O'Shea, T M; Klinepeter, K L; Goldstein, D J; Jackson, B W; Dillard, R G

    1997-12-01

    Because the survival rate has increased for extremely low birth weight neonates, many have raised the concern that the rate of developmental disability among survivors will also increase. To address this concern, we analyzed changes over time in survival and major neurosensory impairment in a sample of extremely low birth weight infants born between July 1, 1979, and June 30, 1994. The study sample included 513 infants with birth weights of 501 to 800 g who were cared for in either of the two neonatal intensive care units that serve a 17-county region in northwest North Carolina and who were born to mothers residing in that region. At 1 year of age (corrected for gestation), survivors were examined by a pediatrician and were tested using the Bayley Scales of Infant Development. Major neurosensory impairment was defined as cerebral palsy, a Bayley Mental Developmental Index <68, or blindness. A total of 209/216 (97%) of survivors were examined at 1 year of age. Epoch of birth was defined as follows: epoch 1, July 1, 1979 to June 30, 1984; epoch 2, July 1, 1984 to June 30, 1989; and epoch 3, July 1, 1989 to June 30, 1994. Survival rates for epochs 1, 2, and 3 were, respectively, 24/120 (20%), 63/175 (36%), and 129/218 (59%). In contrast, the proportions with a major neurosensory impairment did not increase over time; rates for successive epochs were 6/24 (25%), 17/61 (28%), and 26/124 (21%). Rates of cerebral palsy were 3/24 (13%), 12/61 (20%), and 9/124 (7%); rates of delayed mental development were 4/24 (17%), 12/61 (20%), and 17/124 (14%); and rates of blindness were 2/24 (8%), 0/62, and 5/124 (4%), respectively. This analysis suggests that the increasing survival of extremely low birth weight neonates since the late 1970s has not resulted in an increased rate of major developmental problems identifiable at 1 year of age.

  7. Impact of umbilical cord milking and pasteurized donor human milk on necrotizing enterocolitis: a retrospective review.

    PubMed

    Sekhon, Mehtab K; Yoder, Bradley A

    2018-05-08

    Necrotizing enterocolitis (NEC) is a serious complication of prematurity. Our objective was to evaluate the impact of an umbilical cord milking protocol (UCM) and pasteurized donor human milk (PDHM) on NEC rates in infants less than 30 weeks gestational age from January 1, 2010 to September 30, 2016. We hypothesized an incremental decrease in NEC after each intervention. We performed a retrospective review of 638 infants born less than 30 weeks gestational age. Infants were grouped into three epochs: pre-UCM/pre-PDHM (Epoch 1, n = 159), post-UCM/pre-PDHM (Epoch 2, n = 133), and post-UCM/post-PDHM (Epoch 3, n = 252). The incidence of NEC, surgical NEC, and NEC/death were compared. Logistic regression was used to determine independent significance of time epoch, gestational age, birth weight, and patent ductus arteriosus for NEC, surgical NEC, and death/NEC. At birth, infants in Epoch 1 were younger than Epoch 2 and 3 (26.8 weeks versus 27.3 and 27.2, respectively, P = 0.036) and smaller (910 g versus 1012 and 983, respectively, P = 0.012). Across epochs, there was a significant correlation between patent ductus arteriosus treatment and NEC rate (P < 0.001, Cochran-Mantel-Haenszel). There was a significant decrease in rates of NEC, surgical NEC, and NEC/death between groups. Logistic regression showed this as significant for rates of NEC and surgical NEC between Epoch 1 and 3. Patent ductus arteriosus was a significant variable affecting the incidence of NEC, but not surgical NEC or death/NEC. An umbilical cord milking protocol and pasteurized donor human milk availability was associated with decreased rates of NEC and surgical NEC. This suggests an additive effect of these interventions in preventing NEC.

  8. Superposed buckle folding in the eastern Iberian Chain, Spain

    NASA Astrophysics Data System (ADS)

    Simón, José L.

    2004-08-01

    The Aliaga area (eastern Iberian Chain) shows large-scale examples of buckle superposition developed during Tertiary folding. In most cases, ENE-trending folds overprint earlier NNW-SSE-trending ones. The resulting structures are mapped, analysed, and genetically classified by comparison with analogue models described by several authors. The following types are found: standard Type 1 (1a: dome-and-basin structure, 1b: unequal-wavelength overprinted folds); modified Type 1 (1c: T-shaped 'joined' folds; 1d: T-shaped 'abutting' folds; 1e: L-shaped folds; 1f: 'snake-like' folds); standard Type 2 (2a: non-cylindrical buckling of earlier axial surfaces involving hinge replacement). Different superposed sets of flexural-slip striations record successive folding episodes in snake-like folds, and hinge replacement in the case of Type 2a superpositions. Types 1 and 2 apparently develop where the earlier folds have interlimb angles over and below 90°, respectively, which fits the results of analogue modelling and theoretical analysis by previous authors. Types 1b and 1d are associated with higher W1/W2 wavelength ratios than Types 1a and 1c. Other controlling factors are viscosity contrast and erosion processes. Specifically, erosion of competent limestone beds in the hinge zone of a NNW-SSE-trending anticline allowed the near-vertical eastern limb to be refolded into snake-like folds.

  9. Multi-dimensional photonic states from a quantum dot

    NASA Astrophysics Data System (ADS)

    Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2018-04-01

    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.

  10. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  11. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  12. Young Craters on Smooth Plains

    NASA Image and Video Library

    2000-01-15

    This image, from NASA Mariner 10 spacecraft which launched in 1974, shows young craters superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, and radial ejecta deposits.

  13. A system for automatic artifact removal in ictal scalp EEG based on independent component analysis and Bayesian classification.

    PubMed

    LeVan, P; Urrestarazu, E; Gotman, J

    2006-04-01

    To devise an automated system to remove artifacts from ictal scalp EEG, using independent component analysis (ICA). A Bayesian classifier was used to determine the probability that 2s epochs of seizure segments decomposed by ICA represented EEG activity, as opposed to artifact. The classifier was trained using numerous statistical, spectral, and spatial features. The system's performance was then assessed using separate validation data. The classifier identified epochs representing EEG activity in the validation dataset with a sensitivity of 82.4% and a specificity of 83.3%. An ICA component was considered to represent EEG activity if the sum of the probabilities that its epochs represented EEG exceeded a threshold predetermined using the training data. Otherwise, the component represented artifact. Using this threshold on the validation set, the identification of EEG components was performed with a sensitivity of 87.6% and a specificity of 70.2%. Most misclassified components were a mixture of EEG and artifactual activity. The automated system successfully rejected a good proportion of artifactual components extracted by ICA, while preserving almost all EEG components. The misclassification rate was comparable to the variability observed in human classification. Current ICA methods of artifact removal require a tedious visual classification of the components. The proposed system automates this process and removes simultaneously multiple types of artifacts.

  14. Comparison of manual sleep staging with automated neural network-based analysis in clinical practice.

    PubMed

    Caffarel, Jennifer; Gibson, G John; Harrison, J Phil; Griffiths, Clive J; Drinnan, Michael J

    2006-03-01

    We have compared sleep staging by an automated neural network (ANN) system, BioSleep (Oxford BioSignals) and a human scorer using the Rechtschaffen and Kales scoring system. Sleep study recordings from 114 patients with suspected obstructed sleep apnoea syndrome (OSA) were analysed by ANN and by a blinded human scorer. We also examined human scorer reliability by calculating the agreement between the index scorer and a second independent blinded scorer for 28 of the 114 studies. For each study, we built contingency tables on an epoch-by-epoch (30 s epochs) comparison basis. From these, we derived kappa (kappa) coefficients for different combinations of sleep stages. The overall agreement of automatic and manual scoring for the 114 studies for the classification {wake / light-sleep / deep-sleep / REM} was poor (median kappa = 0.305) and only a little better (kappa = 0.449) for the crude {wake / sleep} distinction. For the subgroup of 28 randomly selected studies, the overall agreement of automatic and manual scoring was again relatively low (kappa = 0.331 for {wake light-sleep / deep-sleep REM} and kappa = 0.505 for {wake / sleep}), whereas inter-scorer reliability was higher (kappa = -0.641 for {wake / light-sleep / deep-sleep / REM} and kappa = 0.737 for {wake / sleep}). We conclude that such an ANN-based analysis system is not sufficiently accurate for sleep study analyses using the R&K classification system.

  15. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    NASA Technical Reports Server (NTRS)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time.

  16. EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer's.

    PubMed

    Kanda, Paulo A M; Oliveira, Eliezyer F; Fraga, Francisco J

    2017-01-01

    Eyes-closed-awake electroencephalogram (EEG) is a useful tool in the diagnosis of Alzheimer's. However, there is eyes-closed-awake EEG with dominant or rare alpha rhythm. In this paper, we show that random selection of EEG epochs disregarding the alpha rhythm will lead to bias concerning EEG-based Alzheimer's Disease diagnosis. We compared EEG epochs with more than 30% and with less than 30% alpha rhythm of mild Alzheimer's Disease patients and healthy elderly. We classified epochs as dominant alpha scenario and rare alpha scenario according to alpha rhythm (8-13 Hz) percentage in O1, O2 and Oz channels. Accordingly, we divided the probands into four groups: 17 dominant alpha scenario controls, 15 mild Alzheimer's patients with dominant alpha scenario epochs, 12 rare alpha scenario healthy elderly and 15 mild Alzheimer's Disease patients with rare alpha scenario epochs. We looked for group differences using one-way ANOVA tests followed by post-hoc multiple comparisons (p < 0.05) over normalized energy values (%) on the other four well-known frequency bands (delta, theta, beta and gamma) using two different electrode configurations (parieto-occipital and central). After carrying out post-hoc multiple comparisons, for both electrode configurations we found significant differences between mild Alzheimer's patients and healthy elderly on beta- and theta-energy (%) only for the rare alpha scenario. No differences were found for the dominant alpha scenario in any of the five frequency bands. This is the first study of Alzheimer's awake-EEG reporting the influence of alpha rhythm on epoch selection, where our results revealed that, contrarily to what was most likely expected, less synchronized EEG epochs (rare alpha scenario) better discriminated mild Alzheimer's than those presenting abundant alpha (dominant alpha scenario). In addition, we find out that epoch selection is a very sensitive issue in qEEG research. Consequently, for Alzheimer's studies dealing with resting state EEG, we propose that epoch selection strategies should always be cautiously designed and thoroughly explained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Survival and Neurodevelopmental Outcomes among Periviable Infants.

    PubMed

    Younge, Noelle; Goldstein, Ricki F; Bann, Carla M; Hintz, Susan R; Patel, Ravi M; Smith, P Brian; Bell, Edward F; Rysavy, Matthew A; Duncan, Andrea F; Vohr, Betty R; Das, Abhik; Goldberg, Ronald N; Higgins, Rosemary D; Cotten, C Michael

    2017-02-16

    Data reported during the past 5 years indicate that rates of survival have increased among infants born at the borderline of viability, but less is known about how increased rates of survival among these infants relate to early childhood neurodevelopmental outcomes. We compared survival and neurodevelopmental outcomes among infants born at 22 to 24 weeks of gestation, as assessed at 18 to 22 months of corrected age, across three consecutive birth-year epochs (2000-2003 [epoch 1], 2004-2007 [epoch 2], and 2008-2011 [epoch 3]). The infants were born at 11 centers that participated in the National Institute of Child Health and Human Development Neonatal Research Network. The primary outcome measure was a three-level outcome - survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, or death. After accounting for differences in infant characteristics, including birth center, we used multinomial generalized logit models to compare the relative risk of survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, and death. Data on the primary outcome were available for 4274 of 4458 infants (96%) born at the 11 centers. The percentage of infants who survived increased from 30% (424 of 1391 infants) in epoch 1 to 36% (487 of 1348 infants) in epoch 3 (P<0.001). The percentage of infants who survived without neurodevelopmental impairment increased from 16% (217 of 1391) in epoch 1 to 20% (276 of 1348) in epoch 3 (P=0.001), whereas the percentage of infants who survived with neurodevelopmental impairment did not change significantly (15% [207 of 1391] in epoch 1 and 16% [211 of 1348] in epoch 3, P=0.29). After adjustment for changes in the baseline characteristics of the infants over time, both the rate of survival with neurodevelopmental impairment (as compared with death) and the rate of survival without neurodevelopmental impairment (as compared with death) increased over time (adjusted relative risks, 1.27 [95% confidence interval {CI}, 1.01 to 1.59] and 1.59 [95% CI, 1.28 to 1.99], respectively). The rate of survival without neurodevelopmental impairment increased between 2000 and 2011 in this large cohort of periviable infants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT00063063 and NCT00009633 .).

  18. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  19. Wayward Travelers

    NASA Image and Video Library

    2006-02-24

    This Mars Global Surveyor MOC image shows dark dunes superposed on the rippled floor of Proctor Crater in Noachis Terra. Winds blowing predominantly from east right to west left were responsible for the formation of these dunes

  20. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-03-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  1. Global trends in the awareness of sepsis: insights from search engine data between 2012 and 2017.

    PubMed

    Jabaley, Craig S; Blum, James M; Groff, Robert F; O'Reilly-Shah, Vikas N

    2018-01-17

    Sepsis is an established global health priority with high mortality that can be curtailed through early recognition and intervention; as such, efforts to raise awareness are potentially impactful and increasingly common. We sought to characterize trends in the awareness of sepsis by examining temporal, geographic, and other changes in search engine utilization for sepsis information-seeking online. Using time series analyses and mixed descriptive methods, we retrospectively analyzed publicly available global usage data reported by Google Trends (Google, Palo Alto, CA, USA) concerning web searches for the topic of sepsis between 24 June 2012 and 24 June 2017. Google Trends reports aggregated and de-identified usage data for its search products, including interest over time, interest by region, and details concerning the popularity of related queries where applicable. Outlying epochs of search activity were identified using autoregressive integrated moving average modeling with transfer functions. We then identified awareness campaigns and news media coverage that correlated with epochs of significantly heightened search activity. A second-order autoregressive model with transfer functions was specified following preliminary outlier analysis. Nineteen significant outlying epochs above the modeled baseline were identified in the final analysis that correlated with 14 awareness and news media events. Our model demonstrated that the baseline level of search activity increased in a nonlinear fashion. A recurrent cyclic increase in search volume beginning in 2012 was observed that correlates with World Sepsis Day. Numerous other awareness and media events were correlated with outlying epochs. The average worldwide search volume for sepsis was less than that of influenza, myocardial infarction, and stroke. Analyzing aggregate search engine utilization data has promise as a mechanism to measure the impact of awareness efforts. Heightened information-seeking about sepsis occurs in close proximity to awareness events and relevant news media coverage. Future work should focus on validating this approach in other contexts and comparing its results to traditional methods of awareness campaign evaluation.

  2. Between-game variation of physical soccer performance measures in highly trained youth soccer players.

    PubMed

    Doncaster, Greg; Unnithan, Viswanath

    2017-07-12

    To assess the between-game variation in measures of physical performance during 11 v 11 soccer match-play, over a short period of time, in highly trained youth soccer players. A single cohort observational study design was employed. Physical match performance data were collected from 17 male, highly trained youth soccer players (age: 13.3 ± 0.4 y) over three, 2 x 20min, 11 v 11 matches. Using 10 Hz GPS, the variables selected for analyses were total distance (TD), high-speed running (HSR), very high-speed running (VHSR), number of high-speed running efforts (HSReff) and number of very high-speed running efforts (VHSReff). Match data was also separated into cumulative 5 min epochs, to identify the peak 5 min epoch and the mean of the cumulative 5 min epochs for each match. Variability was quantified using the coefficient of variation (CV), Standard error of measurement (SEM) and intra-class correlation coefficient (ICC). Between- and within-player smallest worthwhile changes (SWC) were also calculated for each variable to aid in the interpretation of the data. Analysis of the variance between games reported a low CV for TD (3.8%) but larger CVs for HSR (33.3%), HSReff (35.4%) and VHSR and VHSReff (59.6 and 57.4 %, respectively). Analysis of 5 min epochs (peak and average) found an increase in the CVs beyond that of the values reported for the whole match. Between-player SWC in high intensity physical performance data ranged from 24.7 - 42.4 %, whereas within-player SWC ranged from 1.2 - 79.9%. The between-game variability of high and very high intensity activities in youth soccer players, across three soccer matches over a short period of time (2 weeks), is relatively 'large' and specific to the individual, thus highlighting the need for caution when interpreting physical performance data between games and players.

  3. Northern Arabia Etched Terrain

    NASA Image and Video Library

    2002-06-17

    Many places on Mars, such as in this image from NASA Mars Odyssey spacecraft of a crater superposed on the floor of a larger crater, display scabby, eroded landscapes that commonly are referred to as etched terrain.

  4. Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Rose, Cheryl A.; Song, Kyongchan

    2008-01-01

    The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed. Simple equations are developed for determining the separation of the critical energy release rates and the strengths that define the independent contributions of each bilinear softening law in the superposition. It is shown that the R-curve measured with a Compact Tension specimen test can be reproduced by superposing two bilinear softening laws. It is also shown that an accurate representation of the R-curve is essential for predicting the initiation and propagation of fracture in composite laminates.

  5. Localized wave pulses in the keyport experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, D.H.; Lewis, D.K.

    1998-02-17

    Localized wave (LW) pulses were produced using a standard Navy array in the anechoic tank at Navy Underwater Weapons Center (NUWC) Keyport. The LW pulses used were the MPS pulse first derived by Ziolkowski, and a new type of pulse based on a superposition of Gaussian beam modes. This new type is motivated by a desire to make a comparison of the MPS pulse with another broad band pulse built from solutions to the wave equation. The superposed Gaussian pulse can be described by parameters which are analogous to those describing the MPS pulse. We compare the directivity patternsand themore » axial energy decay between the pulses. We find the behavior of the pulses to be similar so that the superposed Gaussian could be another candidate in the class of low diffractive pulses known as localized waves.« less

  6. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  7. A seasonal study on the role of h'F/meridional winds in influencing the development of ESF irregularities over Indian sector

    NASA Astrophysics Data System (ADS)

    Sreekumar, Sreeba; Sripathi, S.

    2017-08-01

    In this paper, we present the seasonal variation of nighttime thermospheric meridional winds over Hyderabad as derived using dual ionosonde observations located at Tirunelveli (8.7°N, 77.7°E, Dip Lat = 0.3°N), an equatorial station and Hyderabad (17.38°N, 78.45°E, Dip Lat = 12°N), a low latitude station, respectively, over the period of April-December 2013 using h'F data as discussed in (Sreekumar and Sripathi, 2016). The calculated winds has been compared with HWM14 wind model. The results show that trends of the derived winds from the ionosonde h'F data matches well with model wind near to midnight hours in all the seasons. However, some dissimilarities were observed during early night hours. Especially, the poleward winds during early night hours for different seasons were not well reproduced by the model. Later, the study is extended to understand the role of meridional winds in causing the variability of ESF occurrence vis a vis h'F. The histogram analysis of h'F vs wind values just before ESF onset reveals that the most probable combination of wind and h'F on the ESF days are centered around 350 km and 50 m/s. Additionally, we also performed Superposed Epoch Analysis (SEA) based on longer and shorter duration ESF events. The analysis reveals the distinct differences in the longer and shorter duration ESF events of Summer and Autumn equinox where the values of h'F as well as meridional winds where such that a steep change in reduction of poleward winds prior to ESF onset supported the longer duration ESF events in both seasons. However, this steep reduction is not so significant for the shorter duration ESF events indicating that meridional winds could play a crucial role in extending the spread F durations in longer duration events. The observations clearly demonstrate the reduction of poleward wind velocities during vernal equinox as compared to Autumn equinox, where larger poleward winds were present around ESF onset times. These observations are consistent with the equinoctial asymmetry as seen during year 2013 where more number of ESF occurrences were observed during vernal equinox as compared to Autumn equinox. Additionally on seasonal basis, analysis of the significance of meridional wind magnitudes during scintillation and non scintillation days were performed. The result suggests that non scintillation days were characterized with larger poleward wind magnitudes than scintillation days during vernal equinox and summer season. However, such a trend was not seen in the Autumn equinox season. This might indicate the possible role of poleward meridional wind in reducing the number of scintillation occurences during this season in addition to weakening of PRE height.

  8. The Universe Adventure - The Plank Epoch

    Science.gov Websites

    Physics In the time before the first 10-44 seconds of the Universe, or the Planck Epoch, the laws of physics as we know them break down; the predictions of General Relativity become meaningless as distance physics models predict that during this epoch the four fundamental forces were combined into one unified

  9. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small imagemore » patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.« less

  10. Neutrino probe comparisons of supernovae as a function of redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryer, Christopher Lee

    2009-01-01

    We compare aspects of supernova explosions produced in the current epoch against those produced in the first round of star formation. Although the total final mass of stars can change dramatically between these two epochs due to different mass-loss rates from winds, their cores remam very similar. The core structure is more sensitive to the stellar evolution code than it is to the amount of metals. As such, current stellar models produce supernovae from first stars that look very similar to that of stars produced in the current epoch. The neutrino signal, a powerful probe of the inner core, ismore » identical to the few percent level for both star formation epochs. A change in the neutrino signal in the supernova population between these two star formation epochs will only arise if the initial mass function is altered.« less

  11. Expressions for the precession quantities based upon the IAU /1976/ system of astronomical constants

    NASA Technical Reports Server (NTRS)

    Lieske, J. H.; Lederle, T.; Fricke, W.; Morando, B.

    1977-01-01

    The structure of the expressions usually employed in calculating the effects of precession is examined, and a method is outlined for revising the expressions to account for changes in the fundamental astronomical constants. It is shown that the basic set of parameters, upon which depend the lengthy polynomials for computing the mean obliquity of data and the elements of the precession matrix, consists of the mean obliquity, the speed of general precession in longitude at a fixed epoch, and the system of planetary masses. Special attention is given to the motion of the ecliptic pole, formulations for a basic epoch as well as an arbitrary epoch, and ecliptic motion relative to the basic epoch. Numerical precession quantities at epoch J2000.0 (JED 2451545.0) are presented which result from the revision of astronomical constants adopted at the XVI General Assembly of the IAU.

  12. Fresh Crater with Gullies

    NASA Image and Video Library

    2010-11-12

    The crater shown in this image from NASA Mars Reconnaissance Orbiter has very few craters superposed on it, which attests to its youth. It also has very steep slopes and a sharp rim; more evidence of its young age.

  13. Effect of attochirp on attosecond streaking time delay in photoionization of atoms

    NASA Astrophysics Data System (ADS)

    Goldsmith, C.; Jaroń-Becker, A.; Becker, A.

    2018-01-01

    We present a theoretical analysis of the effect of the attochirp on the streaking time delay, intrinsic to photoionization of an atom by an attosecond laser pulse at extreme ultraviolet wavelengths superposed by a femtosecond streaking pulse. To this end, we determine the expectation value of the delay in a chirped pulse using a recently developed model formula. Results of our calculations show that the attochirp can be relevant for photoemission from the 3p shell in argon atom at frequencies near the Cooper minimum, while it is negligible if the photoionization cross section as a function of frequency varies smoothly.

  14. Preliminary analysis of Dione Regio, Venus: The final Magellan regional imaging gap

    NASA Technical Reports Server (NTRS)

    Keddie, S. T.

    1993-01-01

    In Sep. 1992, the Magellan spacecraft filled the final large gap in its coverage of Venus when it imaged an area west of Alpha Regio. F-BIDR's and some test MIDR's of parts of this area were available as of late December. Dione Regio was imaged by the Arecibo observatory and a preliminary investigation of Magellan images supports the interpretations made based on these earlier images: Dione Regio is a regional highland on which is superposed three large, very distinct volcanic edifices. The superior resolution and different viewing geometry of the Magellan images also clarified some uncertainties and revealed fascinating details about this region.

  15. Epoch Lifetimes in the Dynamics of a Competing Population

    NASA Astrophysics Data System (ADS)

    Yeung, C. H.; Ma, Y. P.; Wong, K. Y. Michael

    We propose a dynamical model of a competing population whose agents have a tendency to balance their decisions in time. The model is applicable to financial markets in which the agents trade with finite capital, or other multiagent systems such as routers in communication networks attempting to transmit multiclass traffic in a fair way. We find an oscillatory behavior due to the segregation of agents into two groups. Each group remains winning over epochs. The aggregation of smart agents is able to explain the lifetime distribution of epochs to 8 decades of probability. The existence of the super agents further refines the lifetime distribution of short epochs.

  16. EPOCH regimen as salvage therapy for adult T-cell leukemia-lymphoma.

    PubMed

    Toriyama, Eo; Imaizumi, Yoshitaka; Taniguchi, Hiroaki; Taguchi, Jun; Nakashima, Jun; Itonaga, Hidehiro; Sato, Shinya; Ando, Koji; Sawayama, Yasushi; Hata, Tomoko; Fukushima, Takuya; Miyazaki, Yasushi

    2018-04-12

    Adult T-cell leukemia-lymphoma (ATL) is an intractable hematopoietic malignancy with a very poor prognosis. Although improved responses have been achieved through intensive chemotherapy in newly diagnosed patients with aggressive ATL, most patients suffer from relapse or disease recurrence, and an effective salvage therapy, especially for candidates for allogeneic hematopoietic stem cell transplantation (allo-HSCT), is yet to be established. The efficacy of the EPOCH regimen has been reported for several lymphoid malignancies; however, its efficacy for ATL has not been sufficiently evaluated. Here, we report results of a study of the EPOCH regimen as a salvage therapy for ATL. We retrospectively analyzed patients with relapsed or refractory ATL treated in our institution, with EPOCH as a first salvage therapy. Fourteen patients with a median age of 58 years were analyzed, among whom eight achieved a response, including a complete response in one patient and partial responses in seven. Seven patients underwent allo-HSCT after EPOCH therapy; however, the median overall survival (OS) could not be determined, whereas OS at 2 years after allo-HSCT was estimated to be 85.7%. These results suggest that EPOCH is an option for salvage therapy in patients with ATL, including candidates for allo-HSCT.

  17. Survival and Neurodevelopmental Outcomes among Periviable Infants

    PubMed Central

    Younge, Noelle; Goldstein, Ricki F.; Bann, Carla M.; Hintz, Susan R.; Patel, Ravi M.; Smith, P. Brian; Bell, Edward F.; Rysavy, Matthew A.; Duncan, Andrea F.; Vohr, Betty R.; Das, Abhik; Goldberg, Ronald N.; Higgins, Rosemary D.; Cotten, C. Michael

    2017-01-01

    BACKGROUND Data reported during the past 5 years indicate that rates of survival have increased among infants born at the borderline of viability, but less is known about how increased rates of survival among these infants relate to early childhood neurodevelopmental outcomes. METHODS We compared survival and neurodevelopmental outcomes among infants born at 22 to 24 weeks of gestation, as assessed at 18 to 22 months of corrected age, across three consecutive birth-year epochs (2000–2003 [epoch 1], 2004–2007 [epoch 2], and 2008–2011 [epoch 3]). The infants were born at 11 centers that participated in the National Institute of Child Health and Human Development Neonatal Research Network. The primary outcome measure was a three-level outcome — survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, or death. After accounting for differences in infant characteristics, including birth center, we used multinomial generalized logit models to compare the relative risk of survival without neurodevelopmental impairment, survival with neurodevelopmental impairment, and death. RESULTS Data on the primary outcome were available for 4274 of 4458 infants (96%) born at the 11 centers. The percentage of infants who survived increased from 30% (424 of 1391 infants) in epoch 1 to 36% (487 of 1348 infants) in epoch 3 (P<0.001). The percentage of infants who survived without neurodevelopmental impairment increased from 16% (217 of 1391) in epoch 1 to 20% (276 of 1348) in epoch 3 (P = 0.001), whereas the percentage of infants who survived with neurodevelopmental impairment did not change significantly (15% [207 of 1391] in epoch 1 and 16% [211 of 1348] in epoch 3, P = 0.29). After adjustment for changes in the baseline characteristics of the infants over time, both the rate of survival with neurodevelopmental impairment (as compared with death) and the rate of survival without neurodevelopmental impairment (as compared with death) increased over time (adjusted relative risks, 1.27 [95% confidence interval {CI}, 1.01 to 1.59] and 1.59 [95% CI, 1.28 to 1.99], respectively). CONCLUSIONS The rate of survival without neurodevelopmental impairment increased between 2000 and 2011 in this large cohort of periviable infants. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT00063063 and NCT00009633.) PMID:28199816

  18. Repeatability and Accuracy of Exoplanet Eclipse Depths Measured with Post-cryogenic Spitzer

    NASA Astrophysics Data System (ADS)

    Ingalls, James G.; Krick, J. E.; Carey, S. J.; Stauffer, John R.; Lowrance, Patrick J.; Grillmair, Carl J.; Buzasi, Derek; Deming, Drake; Diamond-Lowe, Hannah; Evans, Thomas M.; Morello, G.; Stevenson, Kevin B.; Wong, Ian; Capak, Peter; Glaccum, William; Laine, Seppo; Surace, Jason; Storrie-Lombardi, Lisa

    2016-08-01

    We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 μm data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.

  19. Robust Analysis of Network-Based Real-Time Kinematic for GNSS-Derived Heights.

    PubMed

    Bae, Tae-Suk; Grejner-Brzezinska, Dorota; Mader, Gerald; Dennis, Michael

    2015-10-26

    New guidelines and procedures for real-time (RT) network-based solutions are required in order to support Global Navigation Satellite System (GNSS) derived heights. Two kinds of experiments were carried out to analyze the performance of the network-based real-time kinematic (RTK) solutions. New test marks were installed in different surrounding environments, and the existing GPS benchmarks were used for analyzing the effect of different factors, such as baseline lengths, antenna types, on the final accuracy and reliability of the height estimation. The RT solutions are categorized into three groups: single-base RTK, multiple-epoch network RTK (mRTN), and single-epoch network RTK (sRTN). The RTK solution can be biased up to 9 mm depending on the surrounding environment, but there was no notable bias for a longer reference base station (about 30 km) In addition, the occupation time for the network RTK was investigated in various cases. There is no explicit bias in the solution for different durations, but smoother results were obtained for longer durations. Further investigation is needed into the effect of changing the occupation time between solutions and into the possibility of using single-epoch solutions in precise determination of heights by GNSS.

  20. Indonesian Geomagnetic Maps for Epoch 2015.0 to cover of Indonesian Regions

    NASA Astrophysics Data System (ADS)

    Syirojudin, M.; Murjaya, J.; Zubaidah, S.; Hasanudin; Ahadi, S.; Efendi, N.; Suroyo, T.

    2018-03-01

    In compliance with the resolutions of IAGA (International Association of Geomagnetism and Aeronomy), Since 1960’s, every five years BMKG or Meteorology, Climatology and Geophysics Agency of Indonesia made geomagnetic field maps based on actual measurements in 53 repeat stations. It’s the map for more accurate result of Geomagnetic maps Epoch 2015.0, the number of repeat stations has been increased to 68 locations. Analysis data was conducted by spatial analyses using collocated co-kriging and kriging with external drift to map the observation data in five components, such as Declination (D), Inclination (I), Vertical (Z), Horizontal (H), and Total Geomagnetic Field (F). The data reduction used one permanent observatory i.e., Kupang Geophysical Observatory, as a reference standard. The results of this Geomagnetic Maps, that the contour lines of Indonesian geomagnetic declination in range -1 to 4.5 degree, Inclination component are -5 to -37 degree, Vertical component are -4000 to -28000 nT, Horizontal component are 36000 to 42000 nT, and Total Geomagnetic Field are 39000 to 46000 nT. In conclusion, Indonesian Geomagnetic Maps for Epoch 2015.0 can be used to compute geomagnetic data around Indonesian regions until next 5 years.

  1. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  2. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick; A.H. Boozer

    We study the effect on neoclassical transport of applying a fluctuating electrostatic spectrum, such as produced either by plasma turbulence, or imposed externally. For tokamaks, it is usually assumed that the neoclassical and ''anomalous'' contributions to the transport roughly superpose, D = D{sub nc} + D{sub an}, an intuition also used in modeling stellarators. An alternate intuition, however, is one where it is the collisional and anomalous scattering frequencies which superpose, {nu}{sub ef} = {nu} + {nu}{sub an}. For nonaxisymmetric systems, in regimes where {partial_derivative}D/{partial_derivative}{nu} < 0, this ''{nu}{sub ef} picture'' implies that turning on the fluctuations can decrease themore » total radial transport. Using numerical and analytic means, it is found that the total transport has contributions conforming to each of these intuitions, either of which can dominate. In particular, for stellarators, the {nu}{sub ef} picture is often valid, producing transport behavior differing from tokamaks.« less

  4. Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank.

    PubMed

    Collier, James H; Lesk, Arthur M; Garcia de la Banda, Maria; Konagurthu, Arun S

    2012-07-01

    Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80,500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super.

  5. Fast Modeling of Binding Affinities by Means of Superposing Significant Interaction Rules (SSIR) Method

    PubMed Central

    Besalú, Emili

    2016-01-01

    The Superposing Significant Interaction Rules (SSIR) method is described. It is a general combinatorial and symbolic procedure able to rank compounds belonging to combinatorial analogue series. The procedure generates structure-activity relationship (SAR) models and also serves as an inverse SAR tool. The method is fast and can deal with large databases. SSIR operates from statistical significances calculated from the available library of compounds and according to the previously attached molecular labels of interest or non-interest. The required symbolic codification allows dealing with almost any combinatorial data set, even in a confidential manner, if desired. The application example categorizes molecules as binding or non-binding, and consensus ranking SAR models are generated from training and two distinct cross-validation methods: leave-one-out and balanced leave-two-out (BL2O), the latter being suited for the treatment of binary properties. PMID:27240346

  6. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.

    PubMed

    Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro

    2015-07-31

    We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

  7. CAVIAR: a serial ECG processing system for the comparative analysis of VCGs and their interpretation with auto-reference to the patient.

    PubMed

    Fayn, J; Rubel, P

    1988-01-01

    The authors present a new computer program for serial ECG analysis that allows a direct comparison of any couple of three-dimensional ECGs and quantitatively assesses the degree of evolution of the spatial loops as well as of their initial, central, or terminal sectors. Loops and sectors are superposed as best as possible, with the aim of overcoming tracing variability of nonpathological origin. As a result, optimal measures of evolution are computed and a tabular summary of measurements is dynamically configured with respect to the patient's history and is then printed. A multivariate classifier assigns each couple of tracings to one of four classes of evolution. Color graphic displays corresponding to several modes of representation may also be plotted.

  8. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics.

    PubMed

    Chriskos, Panteleimon; Frantzidis, Christos A; Gkivogkli, Polyxeni T; Bamidis, Panagiotis D; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.

  9. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics

    PubMed Central

    Chriskos, Panteleimon; Frantzidis, Christos A.; Gkivogkli, Polyxeni T.; Bamidis, Panagiotis D.; Kourtidou-Papadeli, Chrysoula

    2018-01-01

    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the “ENVIHAB” facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging. PMID:29628883

  10. EEG source analysis of data from paralysed subjects

    NASA Astrophysics Data System (ADS)

    Carabali, Carmen A.; Willoughby, John O.; Fitzgibbon, Sean P.; Grummett, Tyler; Lewis, Trent; DeLosAngeles, Dylan; Pope, Kenneth J.

    2015-12-01

    One of the limitations of Encephalography (EEG) data is its quality, as it is usually contaminated with electric signal from muscle. This research intends to study results of two EEG source analysis methods applied to scalp recordings taken in paralysis and in normal conditions during the performance of a cognitive task. The aim is to determinate which types of analysis are appropriate for dealing with EEG data containing myogenic components. The data used are the scalp recordings of six subjects in normal conditions and during paralysis while performing different cognitive tasks including the oddball task which is the object of this research. The data were pre-processed by filtering it and correcting artefact, then, epochs of one second long for targets and distractors were extracted. Distributed source analysis was performed in BESA Research 6.0, using its results and information from the literature, 9 ideal locations for source dipoles were identified. The nine dipoles were used to perform discrete source analysis, fitting them to the averaged epochs for obtaining source waveforms. The results were statistically analysed comparing the outcomes before and after the subjects were paralysed. Finally, frequency analysis was performed for better explain the results. The findings were that distributed source analysis could produce confounded results for EEG contaminated with myogenic signals, conversely, statistical analysis of the results from discrete source analysis showed that this method could help for dealing with EEG data contaminated with muscle electrical signal.

  11. Mutual information analysis and detection of interictal morphological differences in interictal epileptiform discharges of patients with partial epilepsies.

    PubMed

    Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I

    1997-10-01

    The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.

  12. Identifying the locations of future eruptions within large calderas: Campi Flegrei, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Charlton, Danielle; Kilburn, Christopher; Sobradelo, Rosa; Edwards, Stephen

    2016-04-01

    Large calderas, with surface areas of 100 km2 or more, are among the most populated active volcanoes on Earth. New vents commonly open at locations across the caldera floor. An important goal for hazard mitigation, therefore, is to develop reliable methods for evaluating the most likely location for a future eruption. A preferred approach is to analyse statistically the distributions of previous vents. Using the Campi Flegrei caldera as a test case, we here examine the sensitivity of results to starting assumptions, notably the choice of data set for defining preferred vent locations. Situated immediately west of Naples, in southern Italy, Campi Flegrei poses a direct threat to more than 300,000 people. It has been in episodic unrest since the late 1950s. The unrest is the first since the last eruption in Campi Flegrei in 1538 and suggests that the caldera may have re-entered a state with an increased probability of an eruption. Since the most recent episode of caldera collapse 15.5 ka BP, at least 60 intra-caldera eruptions have occurred across the 150 km2 that make up the modern onshore area of Campi Flegrei. The eruptions have been concentrated within three epochs: 15.5-9.5 ka BP (Epoch 1, c. 27 eruptions), 8.6-8.2 ka BP (Epoch 2; c. 6 eruptions) and 4.8-3.8 ka BP (Epoch 3; c. 27 eruptions). Recent statistical studies of future vent locations have assumed that (1) only data from Epoch 3 are relevant to modern Campi Flegrei, and (2) repeated eruptions from the same vent can be incorporated, whether they are independent events or belong to a connected sequence of activity. We have relaxed these assumptions to investigate data from all epochs and to distinguish between independent and related eruptions from the same vent. Quadrat and nearest-neighbour statistics show that eruptions from Epochs 1 and 2 were distributed within an annulus 3-5 km around modern Pozzuoli, but that, in agreement with previous studies, eruptions occurred preferentially NE-ENE of Pozzuoli in Epoch 3. However, when related sequences of eruptions from the same vent are removed, the data show an even, annular distribution for all three epochs. The results suggest that, instead of a preference for the NE-ENE sector of Campi Flegrei, a new vent is expected to open within the established annular structure around Pozzuoli; that the probability of opening is similar in all locations within the annulus; and that, compared with Epochs 1 and 2, Epoch 3 was distinguished by a greater number of multiple eruptions from individual vents.

  13. Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data

    NASA Astrophysics Data System (ADS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-02-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D ≥ 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  14. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Technical Reports Server (NTRS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  15. A model and solving algorithm of combination planning for weapon equipment based on Epoch-era analysis method

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Zhang, Huaiqiang; Zhang, Kan

    2017-10-01

    Focused on the circumstance that the equipment using demand in the short term and the development demand in the long term should be made overall plans and took into consideration in the weapons portfolio planning and the practical problem of the fuzziness in the definition of equipment capacity demand. The expression of demand is assumed to be an interval number or a discrete number. With the analysis method of epoch-era, a long planning cycle is broke into several short planning cycles with different demand value. The multi-stage stochastic programming model is built aimed at maximize long-term planning cycle demand under the constraint of budget, equipment development time and short planning cycle demand. The scenario tree is used to discretize the interval value of the demand, and genetic algorithm is designed to solve the problem. At last, a case is studied to demonstrate the feasibility and effectiveness of the proposed mode.

  16. Estimation of the radial diffusion coefficient using REE-associated ground Pc 5 pulsations

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Yumoto, K.

    2010-12-01

    Pc 5 pulsations with frequencies between 1.67 and 6.67 mHz are believed to contribute to the REE in the outer radiation belt during magnetic storms, by means of the observations [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O'Brien et al., 2001, 2003] and several theoretical studies. The latter studies are roughly categorized into two themes: in-situ acceleration at L lower than 6.6 by wave-particle interactions [Liu et al., 199 9; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion from the outer to the inner magnetosphere [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible acceleration mechanism is the resonant interaction with Pc 5 toroidal and poloidal pulsations, referred as the radial diffusion mechanism. One of unsolved problems is where and which Pc 5 pulsation mode (toroidal and/or poloidal) play effective role in the radial diffusion process. In order to verify Pc 5 pulsation as the major roles for REEs, we have to examine the time variation of electron phase space density (cf. Green et al., 2004). Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients which determine the electron transportation efficiency, using ground-based magnetic field data. We estimated the radial diffusion coefficient of ground Pc 5 pulsations associated with the Relativistic Electron Enhancement (REE) in the geosynchronous orbit. In order to estimate the radial diffusion coefficient D_LL, we need the value of in-situ Pc 5 electric field power spectral density. In this paper, however, we estimated the equatorial electric field mapped from Pc 5 pulsations power spectral density on the ground. Reciprocal of radial diffusion coefficient describes the timescale T_LL for an electron to diffuse 1 Re. Applying a superposed epoch analysis about timescales T_LL of the radial diffusion for 12 REE events in 2008, we found that when the relativistic electron enhancements occur, T_LL at higher latitude (L larger than 5) is predominantly diffusional, whereas T_LL at lower latitude (L less than 4) is mainly convectional. We concluded that higher-latitude Pc 5 pulsations play more effective roles than lower latitude Pc 5 pulsations in the radial diffusion process.

  17. Solar wind driving and substorm triggering

    NASA Astrophysics Data System (ADS)

    Newell, Patrick T.; Liou, Kan

    2011-03-01

    We compare solar wind driving and its changes for three data sets: (1) 4861 identifications of substorm onsets from satellite global imagers (Polar UVI and IMAGE FUV); (2) a similar number of otherwise random times chosen with a similar solar wind distribution (slightly elevated driving); (3) completely random times. Multiple measures of solar wind driving were used, including interplanetary magnetic field (IMF) Bz, the Kan-Lee electric field, the Borovsky function, and dΦMP/dt (all of which estimate dayside merging). Superposed epoch analysis verifies that the mean Bz has a northward turning (or at least averages less southward) starting 20 min before onset. We argue that the delay between IMF impact on the magnetopause and tail effects appearing in the ionosphere is about that long. The northward turning is not the effect of a few extreme events. The median field shows the same result, as do all other measures of solar wind driving. We compare the rate of northward turning to that observed after random times with slightly elevated driving. The subsequent reversion to mean is essentially the same between random elevations and substorms. To further verify this, we consider in detail the distribution of changes from the statistical peak (20 min prior to onset) to onset. For Bz, the mean change after onset is +0.14 nT (i.e., IMF becomes more northward), but the standard deviation is σ = 2.8 nT. Thus large changes in either direction are common. For EKL, the change is -15 nT km/s ± 830 nT km/s. Thus either a hypothesis predicting northward turnings or one predicting southward turnings would find abundant yet random confirming examples. Indeed, applying the Lyons et al. (1997) trigger criteria (excluding only the prior requirement of 22/30 min Bz < 0, which is often not valid for actual substorms) to these three sets of data shows that "northward turning triggers" occur in 23% of the random data, 24% of the actual substorms, and after 27% of the random elevations. These results strongly support the idea of Morley and Freeman (2007), that substorms require initial elevated solar wind driving, but that there is no evidence for external triggering. Finally dynamic pressure, p, and velocity, v, show no meaningful variation around onset (although p averages 10% above an 11 year mean).

  18. Acceleration of Relativistic Electrons: A Comparison of Two Models

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-12-01

    Observations of relativistic electron fluxes show order of magnitude increases during some geomagnetic storms. Many electron acceleration models have been proposed to explain the flux enhancements but attempts to validate these models have yielded ambiguous results. Here we examine two models of electron acceleration, radial diffusion via enhanced ULF wave activity [Elkington et al.,1999] and acceleration by resonant interaction with whistler waves[Summers,1998; Roth et al.,1999]. Two methods are used to compare observations with features predicted by the models. First, the evolution of phase space density as a function of L during flux enhancement events is evaluated. The phase space density (PSD) is calculated at constant first, second and third adiabatic invariants using data obtained by the CEPPAD-HIST instrument and the MFE instrument onboard the Polar spacecraft. Liouville's theorem states that PSD calculated at constant adiabatic invariants does not change with time unless some mechanism violates one of the invariants. The radial diffusion model predicts that only the flux invariant will be violated during the acceleration process while acceleration by whistler waves violates the first invariant. Therefore, the two models predict a different evolution of the PSD as a function of time and L. Previous examinations of the evolution of PSD have yielded ambiguous results because PSD calculations are highly dependent on the global accuracy of magnetic field models. We examine the PSD versus L profiles for a series of geomagnetic storms and in addition determine how errors in the Tsyganenko 96 field model affect the results by comparing the measured magnetic field to the model magnetic field used in the calculations. Second, the evolution of the relativistic electron pitch angle distributions is evaluated. Previous studies of pitch angle distributions were limited because few spacecraft have the necessary instrumentation and global coverage. The CEPPAD-HIST instrument measures 16 look directions and along with measurements from the MFE experiment allows calculation of complete pitch angle distributions. The evolving orbit of the Polar spacecraft over the 6 years mission has given measurements over a wide range of L and local time. Using data extending over the entire mission we use superposed epoch analysis to examine the evolution of pitch angle distributions during flux enhancement events as a function of L, magnetic local time, and storm phase.

  19. Onset, advance and withdrawal of southwest monsoon over Indian subcontinent: A study from precipitable water measurement using ground based GPS receivers

    NASA Astrophysics Data System (ADS)

    Puviarasan, N.; Sharma, A. K.; Ranalkar, Manish; Giri, R. K.

    2015-01-01

    Southwest monsoon (SWM) normally sets over Kerala by 1st June. It subsequently advances northwards and covers the entire country by 15th July. Prior knowledge of determination of date of onset of monsoon (DOM) is vital for many applications. However, accurate determination of DOM avoiding false or 'bogus' onset still remains a challenge to meteorological community. An incorrect identification of onset may lead to declaration of early onset. India Meteorological Department (IMD) has traditionally adopted an objective method to declare onset and withdrawal of monsoon based on rainfall over some specific stations in addition to wind field and Outgoing Longwave Radiation (OLR) from a bounded region. An augmentation of existing criteria of monsoon onset using high temporal resolution tropospheric precipitable water (PW) content over a station obtained through ground based GPS receiver is proposed. It has been shown that variation of PW content is an indicator of the state of monsoon and can potentially be included in operational criteria for declaring onset and withdrawal of monsoon. In the paper, we present daily variation of PW during SWM at five stations viz. Chennai, Kolkata, Guwahati, Mumbai and Delhi. The superposed epoch analysis of PW variation for 13 days with respect to arrival and withdrawal date of SWM reveals that over Kolkata at the time of arrival of monsoon the PW (mm)/SD (Standard Deviation) increases from 48.62/2.5 (day -6) to 61.4/1.9 (day 0) and on withdrawal it decreases from 48.62/4.56 (day -6) to 22.55 mm/4.0 (day 0). Similarly in Guwahati, Mumbai and Delhi the value of PW/SD increase from 53.81/4.2, 43.10/7.2 and 44.6/5.0 mm to 62.74/1.5, 62.09/1.6 and 61.88/2.3 mm and on withdrawal it reduces to 27.12/4.2, 25.94/2.6 and 20.46/4.6 mm respectively. It is also noticed that there is a sharp variation of PW from day -2 to day 0, which indicates GPS PW can be considered as a precursor for monsoon arrival and withdrawal.

  20. An empirical probability density distribution of planetary ionosphere storms with geomagnetic precursors

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Stanislawska, Iwona; Arikan, Feza; Arikan, Orhan

    The probability of occurrence of the positive and negative planetary ionosphere storms is evaluated using the W index maps produced from Global Ionospheric Maps of Total Electron Content, GIM-TEC, provided by Jet Propulsion Laboratory, and transformed from geographic coordinates to magnetic coordinates frame. The auroral electrojet AE index and the equatorial disturbance storm time Dst index are investigated as precursors of the global ionosphere storm. The superposed epoch analysis is performed for 77 intense storms (Dst≤-100 nT) and 227 moderate storms (-100

  1. Computational time reduction for sequential batch solutions in GNSS precise point positioning technique

    NASA Astrophysics Data System (ADS)

    Martín Furones, Angel; Anquela Julián, Ana Belén; Dimas-Pages, Alejandro; Cos-Gayón, Fernando

    2017-08-01

    Precise point positioning (PPP) is a well established Global Navigation Satellite System (GNSS) technique that only requires information from the receiver (or rover) to obtain high-precision position coordinates. This is a very interesting and promising technique because eliminates the need for a reference station near the rover receiver or a network of reference stations, thus reducing the cost of a GNSS survey. From a computational perspective, there are two ways to solve the system of observation equations produced by static PPP either in a single step (so-called batch adjustment) or with a sequential adjustment/filter. The results of each should be the same if they are both well implemented. However, if a sequential solution (that is, not only the final coordinates, but also those observed in previous GNSS epochs), is needed, as for convergence studies, finding a batch solution becomes a very time consuming task owing to the need for matrix inversion that accumulates with each consecutive epoch. This is not a problem for the filter solution, which uses information computed in the previous epoch for the solution of the current epoch. Thus filter implementations need extra considerations of user dynamics and parameter state variations between observation epochs with appropriate stochastic update parameter variances from epoch to epoch. These filtering considerations are not needed in batch adjustment, which makes it attractive. The main objective of this research is to significantly reduce the computation time required to obtain sequential results using batch adjustment. The new method we implemented in the adjustment process led to a mean reduction in computational time by 45%.

  2. Detection and description of non-linear interdependence in normal multichannel human EEG data.

    PubMed

    Breakspear, M; Terry, J R

    2002-05-01

    This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex.

  3. Cosmic infinity: a dynamical system approach

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identify normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.

  4. An image engineering system for the inspection of transparent construction materials

    NASA Astrophysics Data System (ADS)

    Hinz, S.; Stephani, M.; Schiemann, L.; Zeller, K.

    This article presents a modular photogrammetric recording and image analysis system for inspecting the material characteristics of transparent foils, in particular Ethylen-TetraFluorEthylen-Copolymer (ETFE) foils. The foils are put under increasing air pressure and are observed by a stereo camera system. Determining the time-variable 3D shape of transparent material imposes a number of challenges: especially the automatic point transfer between stereo images and, in temporal domain, from one image pair to the next. We developed an automatic approach that accommodates for these particular circumstances and allows reconstruction of the 3D shape for each epoch as well as determining 3D translation vectors between epochs by feature tracking. Examples including numerical results and accuracy measures prove the applicability of the system.

  5. Analytical Prediction of Damage Growth in Notched Composite Panels Loaded in Axial Compression

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; McGowan, David M.; Davila, Carlos G.

    1999-01-01

    A progressive failure analysis method based on shell elements is developed for the computation of damage initiation and growth in stiffened thick-skin stitched graphite-epoxy panels loaded in axial compression. The analysis method involves a step-by-step simulation of material degradation based on ply-level failure mechanisms. High computational efficiency is derived from the use of superposed layers of shell elements to model each ply orientation in the laminate. Multiple integration points through the thickness are used to obtain the correct bending effects through the thickness without the need for ply-by-ply evaluations of the state of the material. The analysis results are compared with experimental results for three stiffened panels with notches oriented at 0, 15 and 30 degrees to the panel width dimension. A parametric study is performed to investigate the damage growth retardation characteristics of the Kevlar stitch lines in the pan

  6. A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.

    2012-12-01

    In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so poorly described by a Gaussian distribution that it can be considered 'heavy tailed'. Preliminary results show that disturbance events that affect >3-5% of the trees in our dataset occur approximately every 200 years. The most extreme rates (>5%) occur approximately every 500-1000 years. These statistics indicate that the 1775-1779 heavy-tail event can also be considered a 'Black Swan', the rare event that has the potential to alter a system's trajectory further than common events. Our results challenge traditional views regarding characteristic disturbance regime in humid temperate forests, and speak to the importance of punctuated climatic events in shaping forest structure for centuries. Such an understanding is critical given the potential of more frequent extreme climatic events in the future.

  7. The Latitude and Epoch for the Origin of the Astronomical Lore in MUL.APIN

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2007-05-01

    The earliest account of the Mesopotamian constellations (from which the majority of the Greek constellations derived) is a much-copied clay tablet called MUL.APIN. This tablet is a compilation of lists including heliacal rise dates, rise/set pairs, and meridian/rise pairs. The earliest dated example is from 687 BC for a cuneiform tablet found in Assyria. The date for the original astronomical observations has been claimed to be anytime from 2300 BC to soon before 687 BC, although the mainstream view is that the observations are from 1300-1000 BC. These dates are based on analysis of just a few of the observations reported in MUL.APIN. To obtain the best possible date (and latitude), I have itemized 190 observations from MUL.APIN and used a chi-square analysis which returns the best epoch and latitude along with quantified error bars. This analysis is similar to my previously reported work on the astronomical lore of Eudoxus for which I found that the original observations date to 1130+-80 BC and a latitude of 36.0+-0.9 degrees. My analysis of MUL.APIN puts the epoch for the observations at 1370+-100 BC with a latitude of 35.1+-1.2 degrees. This time and place is that of the height of the then-dominant culture of Assyria, and it also corresponds to the first expression of most of the constellations in the archaeological record. This time and place is also the same (within error bars) of the origin of Eudoxus' lore, which happens to have substantial overlaps with MUL.APIN in content. As such, it appears that some original Assyrian observer(s) created a set of observations which were passed down through the centuries by multiple paths, with one path going to the Mesopotamian tradition (through MUL.APIN) and another path going to the Greek tradition (through Eudoxus then Aratus and Hipparchus).

  8. Error analysis of high-rate GNSS precise point positioning for seismic wave measurement

    NASA Astrophysics Data System (ADS)

    Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan

    2017-06-01

    High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.

  9. Hydrological Process of Martian Surface in Hesperian epoch

    NASA Astrophysics Data System (ADS)

    Yamashiki, Y. A.; Sato, H.; Kuroki, R.; Miyamoto, H.; Hemmi, R.

    2017-12-01

    It is considered that the Mars in Noachian ecoch was much warmer temperature than current condition, with atmosphere and ocean supported by its magnetic actiity. Several valley which seems to be developed by ancient hydrological processes are obsered in Martian surface, is being considered to be built long time before. Some fluvial fun was formed during the following Hesperian epoch, which is considered as much cooler and drier than Noachian epoch. In this study, we applied Hydro-debris 2D model into Martian surface in Hesperian epoch in order to try develping surface vallay formation throughout hydrological processes. Sediment transport and associated small-scale debris-flow occurrence may be the key for valley formation, where might be the micro-habitable zone.

  10. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2017-11-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  11. GPS receiver phase biases estimable in PPP-RTK networks: dynamic characterization and impact analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Liu, Teng; Yuan, Yunbin

    2018-06-01

    The integer ambiguity resolution enabled precise point positioning (PPP-RTK) has been proven advantageous in a wide range of applications. The realization of PPP-RTK concerns the isolation of satellite phase biases (SPBs) and other corrections from a network of Global Positioning System (GPS) reference receivers. This is generally based on Kalman filter in order to achieve real-time capability, in which proper modeling of the dynamics of various types of unknowns remains crucial. This paper seeks to gain insight into how to reasonably deal with the dynamic behavior of the estimable receiver phase biases (RPBs). Using dual-frequency GPS data collected at six colocated receivers over days 50-120 of 2015, we analyze the 30-s epoch-by-epoch estimates of L1 and wide-lane (WL) RPBs for each receiver pair. The dynamics observed in these estimates are a combined effect of three factors, namely the random measurement noise, the multipath and the ambient temperature. The first factor can be overcome by turning to a real-time filter and the second by considering the use of a sidereal filtering. The third factor has an effect only on the WL, and this effect appears to be linear. After accounting for these three factors, the low-pass-filtered, sidereal-filtered, epoch-by-epoch estimates of L1 RPBs follow a random walk process, whereas those of WL RPBs are constant over time. Properly modeling the dynamics of RPBs is vital, as it ensures the best convergence of the Kalman-filtered, between-satellite single-differenced SPB estimates to their correct values and, in turn, shortens the time-to-first-fix at user side.

  12. The American Academy of Sleep Medicine Inter-scorer Reliability Program: Sleep Stage Scoring

    PubMed Central

    Rosenberg, Richard S.; Van Hout, Steven

    2013-01-01

    Study Objectives: The program provides a unique opportunity to compare a large number of scorers with varied levels of experience to determine sleep stage scoring agreement. The objective is to examine areas of disagreement to inform future revisions of the AASM Manual for the Scoring of Sleep and Associated Events. Methods: The sample included 9 record fragments, 1,800 epochs and more than 3,200,000 scoring decisions. More than 2,500 scorers, most with 3 or more years of experience, participated. The analysis determined agreement with the score chosen by the majority of scorers. Results: Sleep stage agreement averaged 82.6%. Agreement was highest for stage R sleep with stages N2 and W approaching the same level. Scoring agreement for stage N3 sleep was 67.4% and was lowest for stage N1 at 63.0%. Scorers had particular difficulty with the last epoch of stage W before sleep onset, the first epoch of stage N2 after stage N1 and the first epoch of stage R after stage N2. Discrimination between stages N2 and N3 was particularly difficult for scorers. Conclusions: These findings suggest that with current rules, inter-scorer agreement in a large group is approximately 83%, a level similar to that reported for agreement between expert scorers. Agreement in the scoring of stages N1 and N3 sleep was low. Modifications to the scoring rules to improve scoring during sleep stage transitions may result in improvement. Commentary: A commentary on this article appears in this issue on page 89. Citation: Rosenberg RS; Van Hout S. The American Academy of Sleep Medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med 2013;9(1):81–87. PMID:23319910

  13. Benefits of Bifidobacterium breve M-16V Supplementation in Preterm Neonates - A Retrospective Cohort Study.

    PubMed

    Patole, Sanjay K; Rao, Shripada C; Keil, Anthony D; Nathan, Elizabeth A; Doherty, Dorota A; Simmer, Karen N

    2016-01-01

    Systematic reviews of randomised controlled trials report that probiotics reduce the risk of necrotising enterocolitis (NEC) in preterm neonates. To determine whether routine probiotic supplementation (RPS) to preterm neonates would reduce the incidence of NEC. The incidence of NEC ≥ Stage II and all-cause mortality was compared for an equal period of 24 months 'before' (Epoch 1) and 'after' (Epoch 2) RPS with Bifidobacterium breve M-16V in neonates <34 weeks. Multivariate logistic regression analysis was conducted to adjust for relevant confounders. A total of 1755 neonates (Epoch I vs. II: 835 vs. 920) with comparable gestation and birth weights were admitted. There was a significant reduction in NEC ≥ Stage II: 3% vs. 1%, adjusted odds ratio (aOR) = 0.43 (95%CI: 0.21-0.87); 'NEC ≥ Stage II or all-cause mortality': 9% vs. 5%, aOR = 0.53 (95%CI: 0.32-0.88); but not all-cause mortality alone: 7% vs. 4%, aOR = 0.58 (95% CI: 0.31-1.06) in Epoch II. The benefits in neonates <28 weeks did not reach statistical significance: NEC ≥ Stage II: 6% vs. 3%, aOR 0.51 (95%CI: 0.20-1.27), 'NEC ≥ Stage II or all-cause mortality', 21% vs. 14%, aOR = 0.59 (95%CI: 0.29-1.18); all-cause mortality: 17% vs. 11%, aOR = 0.63 (95%CI: 0.28-1.41). There was no probiotic sepsis. RPS with Bifidobacterium breve M-16V was associated with decreased NEC≥ Stage II and 'NEC≥ Stage II or all-cause mortality' in neonates <34 weeks. Large sample size is required to assess the potential benefits of RPS in neonates <28 weeks.

  14. Autoregressive Processes in Homogenization of GNSS Tropospheric Data

    NASA Astrophysics Data System (ADS)

    Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.

    2016-12-01

    Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.

  15. Singing emotionally: a study of pre-production, production, and post-production facial expressions

    PubMed Central

    Quinto, Lena R.; Thompson, William F.; Kroos, Christian; Palmer, Caroline

    2014-01-01

    Singing involves vocal production accompanied by a dynamic and meaningful use of facial expressions, which may serve as ancillary gestures that complement, disambiguate, or reinforce the acoustic signal. In this investigation, we examined the use of facial movements to communicate emotion, focusing on movements arising in three epochs: before vocalization (pre-production), during vocalization (production), and immediately after vocalization (post-production). The stimuli were recordings of seven vocalists' facial movements as they sang short (14 syllable) melodic phrases with the intention of communicating happiness, sadness, irritation, or no emotion. Facial movements were presented as point-light displays to 16 observers who judged the emotion conveyed. Experiment 1 revealed that the accuracy of emotional judgment varied with singer, emotion, and epoch. Accuracy was highest in the production epoch, however, happiness was well communicated in the pre-production epoch. In Experiment 2, observers judged point-light displays of exaggerated movements. The ratings suggested that the extent of facial and head movements was largely perceived as a gauge of emotional arousal. In Experiment 3, observers rated point-light displays of scrambled movements. Configural information was removed in these stimuli but velocity and acceleration were retained. Exaggerated scrambled movements were likely to be associated with happiness or irritation whereas unexaggerated scrambled movements were more likely to be identified as “neutral.” An analysis of singers' facial movements revealed systematic changes as a function of the emotional intentions of singers. The findings confirm the central role of facial expressions in vocal emotional communication, and highlight individual differences between singers in the amount and intelligibility of facial movements made before, during, and after vocalization. PMID:24808868

  16. Characterizing operant hyperactivity in the Spontaneously Hypertensive Rat

    PubMed Central

    2012-01-01

    Background Operant hyperactivity, the emission of reinforced responses at an inordinately high rate, has been reported in children with ADHD and in the Spontaneously Hypertensive Rat (SHR), the most widely studied animal model of ADHD. The SHR emits behavior at hyperactive levels, relative to a normoactive strain, only when such behavior is seldom reinforced. Because of its dependence on rate of reinforcement, operant hyperactivity appears to be driven primarily by incentive motivation, not motoric capacity. This claim was evaluated in the present study using a novel strategy, based on the organization of behavior in bouts of reinforced responses separated by pauses. Method Male SHR, Wistar-Kyoto (WKY) and Wistar rats (WIS) were exposed each to a multiple variable-interval schedule of sucrose reinforcement (12, 24, 48, 96, and 192 s) between post-natal days (PND) 48 and 93. Responding in each schedule was examined in two epochs, PND 58-62 and 89-93. Parameters of response-reinforcement functions (Herrnstein's hyperbola) and bout-organized behavior were estimated in each epoch. Results SHR emitted higher response rates than WKY and WIS, but only when rate of reinforcement was low (fewer than 2 reinforcers per minute), and particularly in the second epoch. Estimates of Herrnstein's hyperbola parameters suggested the primacy of motivational over motoric factors driving the response-rate differential. Across epochs and schedules, a more detailed analysis of response bouts by SHR revealed that these were shorter than those by WKY, but more frequent than those by WKY and WIS. Differences in bout length subsided between epochs, but differences in bout-initiation rate were exacerbated. These results were interpreted in light of robust evidence linking changes in bout-organization parameters and experimental manipulations of motivation and response-reinforcement contingency. Conclusions Operant hyperactivity in SHR was confirmed. Although incentive motivation appears to play an important role in operant hyperactivity and motoric capacity cannot be ruled out as a factor, response-bout patterns suggest that operant hyperactivity is primarily driven by steeper delay-of-reinforcement gradients. Convergence of this conclusion with theoretical accounts of ADHD and with free-operant performance in children with ADHD supports the use of SHR as an animal model of ADHD. PMID:22277367

  17. Discrimination of Closely-Spaced Geosynchronous Satellites - Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts

    DTIC Science & Technology

    2010-09-01

    Discrimination of Closely-Spaced Geosynchronous Satellites – Phase Curve Analysis & New Small Business Innovative Research (SBIR) Efforts...such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change...1]) have emphasized examples of multiple satellites occupying the same geosynchronous slot, with individual satellites maneuvering about one another

  18. KELT RR Lyrae Variable Stars Observed by the NKU Schneider Observatory

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2016-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-10 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 10,000+ epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up data taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  19. Monitoring of Progressive Damage in Buildings Using Laser Scan Data

    NASA Astrophysics Data System (ADS)

    Puente, I.; Lindenbergh, R.; Van Natijne, A.; Esposito, R.; Schipper, R.

    2018-05-01

    Vulnerability of buildings to natural and man-induced hazards has become a main concern for our society. Ensuring their serviceability, safety and sustainability is of vital importance and the main reason for setting up monitoring systems to detect damages at an early stage. In this work, a method is presented for detecting changes from laser scan data, where no registration between different epochs is needed. To show the potential of the method, a case study of a laboratory test carried out at the Stevin laboratory of Delft University of Technology was selected. The case study was a quasi-static cyclic pushover test on a two-story high unreinforced masonry structure designed to simulate damage evolution caused by cyclic loading. During the various phases, we analysed the behaviour of the masonry walls by monitoring the deformation of each masonry unit. First a plane is fitted to the selected wall point cloud, consisting of one single terrestrial laser scan, using Principal Component Analysis (PCA). Second, the segmentation of individual elements is performed. Then deformations with respect to this plane model, for each epoch and specific element, are determined by computing their corresponding rotation and cloud-to-plane distances. The validation of the changes detected within this approach is done by comparison with traditional deformation analysis based on co-registered TLS point clouds between two or more epochs of building measurements. Initial results show that the sketched methodology is indeed able to detect changes at the mm level while avoiding 3D point cloud registration, which is a main issue in computer vision and remote sensing.

  20. Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk

    NASA Astrophysics Data System (ADS)

    Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen

    2013-10-01

    The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.

  1. Rainfall variability over South-east Asia - connections with Indian monsoon and ENSO extremes: new perspectives

    NASA Astrophysics Data System (ADS)

    Kripalani, R. H.; Kulkarni, Ashwini

    1997-09-01

    Seasonal and annual rainfall data for 135 stations for periods varying from 25 to 125 years are utilized to investigate and understand the interannual and short-term (decadal) climate variability over the South-east Asian domain. Contemporaneous relations during the summer monsoon period (June to September) reveal that the rainfall variations over central India, north China, northern parts of Thailand, central parts of Brunei and Borneo and the Indonesian region east of 120°E vary in phase. However, the rainfall variations over the regions surrounding the South China Sea, in particular the north-west Philippines, vary in the opposite phase. Possible dynamic causes for the spatial correlation structure obtained are discussed.Based on the instrumental data available and on an objective criteria, regional rainfall anomaly time series for contiguous regions over Thailand, Malaysia, Singapore, Brunei, Indonesia and Philippines are prepared. Results reveal that although there are year-to-year random fluctuations, there are certain epochs of the above- and below-normal rainfall over each region. These epochs are not forced by the El Niño/La Nina frequencies. Near the equatorial regions the epochs tend to last for about a decade, whereas over the tropical regions, away from the Equator, epochs last for about three decades. There is no systematic climate change or trend in any of the series. Further, the impact of El Niño (La Nina) on the rainfall regimes is more severe during the below (above) normal epochs than during the above (below) normal epochs. Extreme drought/flood situations tend to occur when the epochal behaviour and the El Niño/La Nina events are phase-locked.

  2. Installation Restoration Program Preliminary Assessment Bethel Radio Relay Station, Alaska

    DTIC Science & Technology

    1989-04-01

    third glacial stage of the Pleistocene * Epoch in North America . KNOB - A rounded eminence, as a knoll, hillock, or small hill or mountain. 3 KNOLL...Pleistocene Epoch in North America , after the Illinoian and before the Wisconsinan. SEDGE - Any of the family (Cyperaceae) of grasslike plants often found on...Pleistocene epoch in North America . I 3 GL-IO U I UREFERENCES 1. Department of the Interior List of Geological Survey Geologic and Water SupplY Reports

  3. Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s

    NASA Astrophysics Data System (ADS)

    Huang, Yanyan; Wang, Bin; Li, Xiaofan; Wang, Huijun

    2017-10-01

    The Year-to-year variability of the western Pacific subtropical high (WPSH) is primarily controlled by atmosphere-ocean interaction (AOI) between the WPSH and the Indo-Pacific warm pool dipole SST anomalies (AOI mode) and the anomalous SST forcing from the equatorial central Pacific (the CP forcing mode). In this study, we show that the impacts of the WPSH variability on Asian summer monsoon rainfall have changed after the late 1990s. Before the late 1990s (the PRE epoch), the WPSH primarily affects East Asian summer monsoon (EASM) and had little influence on Indian summer monsoon (ISM), whereas after the late 1990s (the POST epoch), the WPSH has strengthened its linkage to the ISM while weakened its relationship with the EASM. This epochal change is associated with a change in the leading circulation mode in the Asia-WP region. During the PRE (POST) epoch the WPSH variation is mainly controlled by the AOI (CP forcing) that mainly affects EASM (ISM). The epochal change of the leading mode may be attributed to the change of the ENSO properties in late 1990s: the CP types of El Nino become a leading ENSO mode in the POST epoch. This work provides a new perspective for understanding decadal changes of the ENSO-monsoon relationship through subtropical dynamics.

  4. Environmental Profile of a Community's Health (EPOCH): An Instrument to Measure Environmental Determinants of Cardiovascular Health in Five Countries

    PubMed Central

    Chow, Clara K.; Lock, Karen; Madhavan, Manisha; Corsi, Daniel J.; Gilmore, Anna B.; Subramanian, S. V.; Li, Wei; Swaminathan, Sumathi; Lopez-Jaramillo, Patricio; Avezum, Alvaro; Lear, Scott A.; Dagenais, Gilles; Teo, Koon; McKee, Martin; Yusuf, Salim

    2010-01-01

    Background The environment in which people live is known to be important in influencing diet, physical activity, smoking, psychosocial and other risk factors for cardiovascular (CV) disease. However no instrument exists that evaluates communities for these multiple environmental factors and is suitable for use across different communities, regions and countries. This report describes the design and reliability of an instrument to measure environmental determinants of CV risk factors. Method/Principal Findings The Environmental Profile of Community Health (EPOCH) instrument comprises two parts: (I) an assessment of the physical environment, and (II) an interviewer-administered questionnaire to collect residents' perceptions of their community. We examined the inter-rater reliability amongst 3 observers from each region of the direct observation component of the instrument (EPOCH I) in 93 rural and urban communities in 5 countries (Canada, Colombia, Brazil, China and India). Data collection using the EPOCH instrument was feasible in all communities. Reliability of the instrument was excellent (Intraclass Correlation Coefficient - ICC>0.75) for 24 of 38 items and fair to good (ICC 0.4–0.75) for 14 of 38 items. Conclusion This report shows data collection with the EPOCH instrument is feasible and direct observation of community measures reliable. The EPOCH instrument will enable further research on environmental determinants of health for population studies from a broad range of settings. PMID:21170320

  5. DR Tauri: Temporal variability of the brightness distribution in the potential planet-forming region

    NASA Astrophysics Data System (ADS)

    Brunngräber, R.; Wolf, S.; Ratzka, Th.; Ober, F.

    2016-01-01

    Aims: We investigate the variability of the brightness distribution and the changing density structure of the protoplanetary disk around DR Tau, a classical T Tauri star. DR Tau is known for its peculiar variations from the ultraviolet (UV) to the mid-infrared (MIR). Our goal is to constrain the temporal variation of the disk structure based on photometric and MIR interferometric data. Methods: We observed DR Tau with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) at three epochs separated by about nine years, two months, respectively. We fit the spectral energy distribution and the MIR visibilities with radiative transfer simulations. Results: We are able to reproduce the spectral energy distribution as well as the MIR visibility for one of the three epochs (third epoch) with a basic disk model. We were able to reproduce the very different visibility curve obtained nine years earlier with a very similar baseline (first epoch), using the same disk model with a smaller scale height. The same density distribution also reproduces the observation made with a higher spatial resolution in the second epoch, I.e. only two months before the third epoch. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under the programs 074.C-0342(A) and 092.C-0726(A,B).

  6. Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations

    NASA Astrophysics Data System (ADS)

    Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan

    2018-03-01

    We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.

  7. Does synchronization reflect a true interaction in the cardiorespiratory system?

    PubMed

    Toledo, E; Akselrod, S; Pinhas, I; Aravot, D

    2002-01-01

    Cardiorespiratory synchronization, studied within the framework of phase synchronization, has recently raised interest as one of the interactions in the cardiorespiratory system. In this work, we present a quantitative approach to the analysis of this nonlinear phenomenon. Our primary aim is to determine whether synchronization between HR and respiration rate is a real phenomenon or a random one. First, we developed an algorithm, which detects epochs of synchronization automatically and objectively. The algorithm was applied to recordings of respiration and HR obtained from 13 normal subjects and 13 heart transplant patients. Surrogate data sets were constructed from the original recordings, specifically lacking the coupling between HR and respiration. The statistical properties of synchronization in the two data sets and in their surrogates were compared. Synchronization was observed in all groups: in normal subjects, in the heart transplant patients and in the surrogates. Interestingly, synchronization was less abundant in normal subjects than in the transplant patients, indicating that the unique physiological condition of the latter promote cardiorespiratory synchronization. The duration of synchronization epochs was significantly shorter in the surrogate data of both data sets, suggesting that at least some of the synchronization epochs are real. In view of those results, cardiorespiratory synchronization, although not a major feature of cardiorespiratory interaction, seems to be a real phenomenon rather than an artifact.

  8. Variability Analysis based on POSS1/POSS2 Photometry

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.; Sarkissian, Alain; Sinamyan, Parandzem K.

    2012-04-01

    We introduce accurate magnitudes as combined calculations from catalogues based on accurate measurements of POSS1- and POSS2-epoch plates. The photometric accuracy of various catalogues was established, and statistical weights for each of them have been calculated. To achieve the best possible magnitudes, we used weighted averaging of data from APM, MAPS, USNO-A2.0, USNO-B1.0 (for POSS1-epoch), and USNO-B1.0 and GSC 2.3.2 (for POSS2-epoch) catalogues. The r.m.s. accuracy of magnitudes achieved for POSS1 is 0.184 in B and 0.173 mag in R, or 0.138 in B and 0.128 in R for POSS2. By adopting those new magnitudes we examined the First Byurakan Survey (FBS) of blue stellar objects for variability, and uncovered 336 probable and possible variables among 1103 objects with POSS2-POSS1 >= 3σ of the errors, including 161 highly probable variables. We have developed methods to control and exclude accidental errors for any survey. We compared and combined our results with those given in Northern Sky Variability Survey (NSVS) database, and obtained firm candidates for variability. By such an approach it will be possible to conduct investigations of variability for large numbers of objects.

  9. Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI

    NASA Astrophysics Data System (ADS)

    Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2010-10-01

    Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org

  10. MCNeil's Nebula in Orion: The Outburst History

    NASA Astrophysics Data System (ADS)

    Briceño, C.; Vivas, A. K.; Hernández, J.; Calvet, N.; Hartmann, L.; Megeath, T.; Berlind, P.; Calkins, M.; Hoyer, S.

    2004-05-01

    We present a sequence of I-band images obtained at the Venezuela 1 m Schmidt telescope during the outburst of the nebula recently discovered by J. W. McNeil in the Orion L1630 molecular cloud. We derive photometry spanning the preoutburst state and the brightening itself, which is a unique record including 14 epochs and spanning a timescale of ~5 years. We constrain the beginning of the outburst at some time between 2003 October 28 and November 15. The light curve of the object at the vertex of the nebula, the likely exciting source of the outburst, reveals that it has brightened ~5 mag in about 4 months. The timescale for the nebula to develop is consistent with the light-travel time, indicating that we are observing light from the central source scattered by the ambient cloud into the line of sight. We also show recent FLWO optical spectroscopy of the exciting source and of the nearby HH 22. The spectrum of the source is highly reddened; in contrast, the spectrum of HH 22 shows a shock spectrum superposed on a continuum, most likely the result of reflected light from the exciting source reaching the HH object through a much less reddened path. The blue portion of this spectrum is consistent with an early B spectral type, similar to the early outburst spectrum of the FU Orionis variable star V1057 Cygni; we estimate a luminosity of L~219 Lsolar. The eruptive behavior of McNeil's Nebula, its spectroscopic characteristics and luminosity, suggest that we may be witnessing an FU Ori event on its way to maximum. By further monitoring this object, we will be able decide whether or not it qualifies as a member of this rare class of objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory of Venezuela, operated by CIDA for the Ministerio de Ciencia y Tecnología, and at the Fred Lawrence Whipple Observatory (FLWO) of the Smithsonian Institution.

  11. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.

  12. Effects of tectonic plate deformation on the geodetic reference frame of Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.

    2013-05-01

    Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.

  13. A process model of technology innovation in governmental agencies: Insights from NASA’s science directorate

    NASA Astrophysics Data System (ADS)

    Szajnfarber, Zoe; Weigel, Annalisa L.

    2013-03-01

    This paper investigates the process through which new technical concepts are matured in the NASA innovation ecosystem. We propose an "epoch-shock" conceptualization as an alternative mental model to the traditional stage-gate view. The epoch-shock model is developed inductively, based on detailed empirical observations of the process, and validated, to the extent possible, through expert review. The paper concludes by illustrating how the new epoch-shock conceptualization could provide a useful basis for rethinking feasible interventions to improve innovation management in the space agency context. Where the more traditional stage-gate model leads to an emphasis on centralized flow control, the epoch-shock model acknowledges the decentralized, probabilistic nature of key interactions and highlights which aspects may be influenced.

  14. Pilot usage of decoupled flight path and pitch controls

    NASA Technical Reports Server (NTRS)

    Berkhout, J.; Osgood, R.; Berry, D.

    1985-01-01

    Data from decoupled flight maneuvers have been collected and analyzed for four AFTI-F-16 pilots operating this aircraft's highly augmented fly-by-wire control system, in order to obtain spectral density, cross spectra, and Bode amplitude data, as well as coherences and phase angles for the two longitudinal axis control functions of each of 50 20-sec epochs. The analysis of each epoch yielded five distinct plotted parameters for the left hand twist grip and right hand sidestick controller output time series. These two control devices allow the left hand to generate vertical translation, direct lift, or pitch-pointing commands that are decoupled from those of the right hand. Attention is given to the control patterns obtained for decoupled normal flight, air-to-air gun engagement decoupled maneuvering, and decoupled air-to-surface bombing run maneuvering.

  15. Cosmological dynamics of brane f(R) gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghani, Zahra; Sepangi, Hamid Reza; Shahidi, Shahab, E-mail: z_haghani@sbu.ac.ir, E-mail: hr-sepangi@sbu.ac.ir, E-mail: s_shahidi@sbu.ac.ir

    2012-02-01

    The cosmological dynamics of a brane world scenario where the bulk action is taken as a generic function of the Ricci scalar is considered in a framework where the use of the Z{sub 2} symmetry and Israel junction conditions are relaxed. The corresponding cosmological solutions for some specific forms of f(R) are obtained and shown to be in the form of exponential as well as power law for a vacuum brane space-time. It is shown that the existence of matter dominated epoch for a bulk action in the form of a power law for R can only be obtained inmore » the presence of ordinary matter. Using phase space analysis, we show that the universe must start from an unstable matter dominated epoch and eventually falls into a stable accelerated expanding phase.« less

  16. Cosmic infinity: a dynamical system approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-López, Mariam; Marto, João; Morais, João

    2017-03-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-form models. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable that washes away any potential divergence of the system. The richness of 3-form models allows us as well to identifymore » normally hyperbolic non-isolated fixed points. We apply this analysis to three physically interesting situations: (i) a pre-inflationary era; (ii) an inflationary era; (iii) the late-time dark matter/dark energy epoch.« less

  17. Nonlinear analysis of EEG for epileptic seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hively, L.M.; Clapp, N.E.; Daw, C.S.

    1995-04-01

    We apply chaotic time series analysis (CTSA) to human electroencephalogram (EEG) data. Three epoches were examined: epileptic seizure, non-seizure, and transition from non-seizure to seizure. The CTSA tools were applied to four forms of these data: raw EEG data (e-data), artifact data (f-data) via application of a quadratic zero-phase filter of the raw data, artifact-filtered data (g- data) and that was the residual after subtracting f-data from e-data, and a low-pass-filtered version (h-data) of g-data. Two different seizures were analyzed for the same patient. Several nonlinear measures uniquely indicate an epileptic seizure in both cases, including an abrupt decrease inmore » the time per wave cycle in f-data, an abrupt increase in the Kolmogorov entropy and in the correlation dimension for e-h data, and an abrupt increase in the correlation dimension for e-h data. The transition from normal to seizure state also is characterized by distinctly different trends in the nonlinear measures for each seizure and may be potential seizure predictors for this patient. Surrogate analysis of e-data shows that statistically significant nonlinear structure is present during the non-seizure, transition , and seizure epoches.« less

  18. Smoothed Particle Inference Analysis of SNR RCW 103

    NASA Astrophysics Data System (ADS)

    Frank, Kari A.; Burrows, David N.; Dwarkadas, Vikram

    2016-04-01

    We present preliminary results of applying a novel analysis method, Smoothed Particle Inference (SPI), to an XMM-Newton observation of SNR RCW 103. SPI is a Bayesian modeling process that fits a population of gas blobs ("smoothed particles") such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. This technique has important advantages over analysis techniques which implicitly assume that remnants are two-dimensional objects in which each line of sight encompasses a single plasma. By contrast, SPI allows superposition of as many blobs of plasma as are needed to match the spectrum observed in each direction, without the need to bin the data spatially. This RCW 103 analysis is part of a pilot study for the larger SPIES (Smoothed Particle Inference Exploration of SNRs) project, in which SPI will be applied to a sample of 12 bright SNRs.

  19. W.E.B. Du Bois and Filipino/a American Exposure Programs to the Philippines: Race Class Analysis in an Epoch of "Global Apartheid"

    ERIC Educational Resources Information Center

    Viola, Michael Joseph

    2016-01-01

    The article highlights the ongoing relevance of W.E.B. Du Bois for the global analysis of race and class. Engaging scholarly debates that have ensued within the educational subfields of critical race theory (CRT) and (revolutionary) critical pedagogy, the article explores how a deeper engagement with Du Bois's ideas contributes theoretically and…

  20. Enabling Design for Affordability: An Epoch-Era Analysis Approach

    DTIC Science & Technology

    2013-04-01

    Analysis on the DoD Pre-Milestone B Acquisition Processes Danielle Worger and Teresa Wu, Arizona State University Eugene Rex Jalao, Arizona State...Management Best Practices Brandon Keller and J. Robert Wirthlin Air Force Institute of Technology The RITE Approach to Agile Acquisition Timothy Boyce...Change Kathryn Aten and John T . Dillard Naval Postgraduate School A Comparative Assessment of the Navy’s Future Naval Capabilities (FNC) Process

  1. Does weather affect daily pain intensity levels in patients with acute low back pain? A prospective cohort study.

    PubMed

    Duong, Vicky; Maher, Chris G; Steffens, Daniel; Li, Qiang; Hancock, Mark J

    2016-05-01

    The aim of this study was to investigate the influence of various weather parameters on pain intensity levels in patients with acute low back pain (LBP). We performed a secondary analysis using data from the PACE trial that evaluated paracetamol (acetaminophen) in the treatment of acute LBP. Data on 1604 patients with LBP were included in the analysis. Weather parameters (precipitation, temperature, relative humidity, and air pressure) were obtained from the Australian Bureau of Meteorology. Pain intensity was assessed daily on a 0-10 numerical pain rating scale over a 2-week period. A generalised estimating equation analysis was used to examine the relationship between daily pain intensity levels and weather in three different time epochs (current day, previous day, and change between previous and current days). A second model was adjusted for important back pain prognostic factors. The analysis did not show any association between weather and pain intensity levels in patients with acute LBP in each of the time epochs. There was no change in strength of association after the model was adjusted for prognostic factors. Contrary to common belief, the results demonstrated that the weather parameters of precipitation, temperature, relative humidity, and air pressure did not influence the intensity of pain reported by patients during an episode of acute LBP.

  2. Super: a web server to rapidly screen superposable oligopeptide fragments from the protein data bank

    PubMed Central

    Collier, James H.; Lesk, Arthur M.; Garcia de la Banda, Maria; Konagurthu, Arun S.

    2012-01-01

    Searching for well-fitting 3D oligopeptide fragments within a large collection of protein structures is an important task central to many analyses involving protein structures. This article reports a new web server, Super, dedicated to the task of rapidly screening the protein data bank (PDB) to identify all fragments that superpose with a query under a prespecified threshold of root-mean-square deviation (RMSD). Super relies on efficiently computing a mathematical bound on the commonly used structural similarity measure, RMSD of superposition. This allows the server to filter out a large proportion of fragments that are unrelated to the query; >99% of the total number of fragments in some cases. For a typical query, Super scans the current PDB containing over 80 500 structures (with ∼40 million potential oligopeptide fragments to match) in under a minute. Super web server is freely accessible from: http://lcb.infotech.monash.edu.au/super. PMID:22638586

  3. Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for Reproducibility at Every Step of Processing, Going From Individual Sensor Space Representations to an Across-Group Source Space Representation.

    PubMed

    Andersen, Lau M

    2018-01-01

    An important aim of an analysis pipeline for magnetoencephalographic (MEG) data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer his or her questions. The example question being answered here is whether the so-called beta rebound differs between novel and repeated stimulations. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The data analyzed are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. The processing steps covered for the first analysis are MaxFiltering the raw data, defining, preprocessing and epoching the data, cleaning the data, finding and removing independent components related to eye blinks, eye movements and heart beats, calculating participants' individual evoked responses by averaging over epoched data and subsequently removing the average response from single epochs, calculating a time-frequency representation and baselining it with non-stimulation trials and finally calculating a grand average, an across-group sensor space representation. The second analysis starts from the grand average sensor space representation and after identification of the beta rebound the neural origin is imaged using beamformer source reconstruction. This analysis covers reading in co-registered magnetic resonance images, segmenting the data, creating a volume conductor, creating a forward model, cutting out MEG data of interest in the time and frequency domains, getting Fourier transforms and estimating source activity with a beamformer model where power is expressed relative to MEG data measured during periods of non-stimulation. Finally, morphing the source estimates onto a common template and performing group-level statistics on the data are covered. Functions for saving relevant figures in an automated and structured manner are also included. The protocol presented here can be applied to any research protocol where the emphasis is on source reconstruction of induced responses where the underlying sources are not coherent.

  4. Geomagnetic Polarity Epochs: Sierra Nevada II.

    PubMed

    Cox, A; Doell, R R; Dalrymple, G B

    1963-10-18

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  5. Geomagnetic polarity epochs: Sierra Nevada II

    USGS Publications Warehouse

    Cox, A.; Doell, Richard R.; Brent, Dalrymple G.

    1963-01-01

    Ten new determinations on volcanic extrusions in the Sierra Nevada with potassium-argon ages of 3.1 million years or less indicate that the remanent magnetizations fall into two groups, a normal group in which the remanent magnetization is directed downward and to the north, and a reversed group magnetized up and to the south. Thermomagnetic experiments and mineralogic studies fail to provide an explanation of the opposing polarities in terms of mineralogic control, but rather suggest that the remanent magnetization reflects reversals of the main dipole field of the earth. All available radiometric ages are consistent with this field-reversal hypothesis and indicate that the present normal polarity epoch (N1) as well as the previous reversed epoch (R1) are 0.9 to 1.0 million years long, whereas the previous normal epoch (N2) was at least 25 percent longer.

  6. VizieR Online Data Catalog: S4 1030+61 VLBA observations, 2009-2014 (Kravchenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Hovatta, T.; Ramakrishnan, V.

    2018-02-01

    The source S4 1030+61 was observed (code S2087E) with the VLBA of the National Radio Astronomy Observatory (NRAO) during four sessions: 2010-05-24, 2010-07-09, 2010-08-28 and 2010-10-18 (noted as 'epochs' below). We supplemented our analysis with the data obtained within the MOJAVE programme. Observations are done at 15.4GHz with VLBA at 10 epochs: 2009-06-25, 2009-12-26, 2010-12-24, 2011-04-11, 2011-05-26, 2011-07-15, 2012-01-02, 2012-03-27, 2012-11-11 and 2013-07-08. Public data (http://www.astro.caltech.edu/ovroblazars/) of S4 1030+61 observations within the OVRO 40-m Telescope monitoring programme were used in the analysis. Observations are done at 15GHz in a 3GHz bandwidth from 2008-06-20 to 2014-01-21 about twice per week. The γ-ray fluxes in the range 0.1-200GeV were obtained with the LAT onboard the space Fermi γ-ray observatory from 2008-08-04 to 2014-02-23. (3 data files).

  7. Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2018-05-01

    We extend our MCMC sampler of 3D EoR simulations, 21CMMC, to perform parameter estimation directly on light-cones of the cosmic 21cm signal. This brings theoretical analysis one step closer to matching the expected 21-cm signal from next generation interferometers like HERA and the SKA. Using the light-cone version of 21CMMC, we quantify biases in the recovered astrophysical parameters obtained from the 21cm power spectrum when using the co-eval approximation to fit a mock 3D light-cone observation. While ignoring the light-cone effect does not bias the parameters under most assumptions, it can still underestimate their uncertainties. However, significant biases (~few - 10 σ) are possible if all of the following conditions are met: (i) foreground removal is very efficient, allowing large physical scales (k ~ 0.1 Mpc-1) to be used in the analysis; (ii) theoretical modelling is accurate to ~10 per cent in the power spectrum amplitude; and (iii) the 21cm signal evolves rapidly (i.e. the epochs of reionisation and heating overlap significantly

  8. VLTI-Pionier Imaging of the Carbon AGB Star R Sculptoris and the Supergiant V766 Centauri

    NASA Astrophysics Data System (ADS)

    Wittkowski, Markus

    2018-04-01

    I will present reconstructed images of the carbon-rich AGB star R Scl and of the supergiant V766 Cen, both recently obtained from VLTI-PIONIER data. The images are compared to state-of-the art atmosphere and wind models. The images of R Scl exhibit a complex structure within the stellar disk. This structure is most likely caused by giant convection cells, resulting in large-scale shock fronts, and their effects on clumpy molecule and dust formation seen against the photosphere. Images of V 766 Cen were obtained at three epochs. The first epoch shows a complex elongated structure within the photospheric disk, consistent with a red supergiant harboring giant photospheric convection cells. The second and third epochs show a qualitatively and quantitatively different structure with significantly increased contrast, which is not compatible with current models of convection. Instead we interpret the 2016 and 2017 epochs as showing a previously suggested close eclipsing companion in front of the primary, which was located behind the primary at the 2014 epoch. Finally, I will show preliminary reconstructed images of a small sample of further red supergiants.

  9. System and method for generating attitude determinations using GPS

    NASA Technical Reports Server (NTRS)

    Cohen, Clark E. (Inventor)

    1996-01-01

    A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.

  10. The James Webb Space Telescope Mission

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2017-01-01

    The universe is 13.7 billion years old. Hubble can look back in time to observe an epoch during which the universe was approximately 1 billion years old, and has seen some galaxies at even earlier epochs.

  11. Time-Resolved Surveys of Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Eyer, Laurent; Eggenberger, Patrick; Greco, Claudia; Saesen, Sophie; Anderson, Richard I.; Mowlavi, Nami

    We describe the information that can be gained when a survey is done multi-epoch, and its particular impact in open cluster research. We first explain the irreplaceable information that multi-epoch observations are giving within astrometry, photometry and spectroscopy. Then we give three examples of results on open clusters from multi-epoch surveys, namely, the distance to the Pleiades, the angular momentum evolution of low mass stars and asteroseismology. Finally we mention several very large surveys, which are ongoing or planned for the future, Gaia, JASMINE, LSST, and VVV.

  12. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1975-01-01

    A simple climatological model of Mars indicates that its climate may be more sensitive to luminosity changes than earth's because of strong positive feedback mechanisms at work on Mars. Mariner 9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale solar luminosity variations. The climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch.

  13. KELT RR Lyrae Variable Stars Observed by NKU Schneider and Michigan State Observatories

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Brueneman, Stacy; Hicks, Logan; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph; Paegert, Martin; Smith, Horace A.

    2017-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 70% of the entire sky, and has a long-time-baseline of up to 11 years with a very high cadence rate of less than 20 minutes. This translates to upwards of 11,000 epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up multi-color photometry taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We also have archival photometry of these stars from the Michigan State Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  14. Reconstructing the past outburst history of Eta Carinae from WFPC2 proper motions

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2016-10-01

    The HST archive contains multiple epochs of WFPC2 images of the nebula around Eta Carinae taken over a 15-year timespan, although only the earliest few years of data have been analyzed and published. The fact that all these images were taken with the same instrument, with the same pixel sampling and field distortion, makes them an invaluable resource for accurately measuring the expanding ejecta. The goal of a previously accepted AR proposal was to analyze the full set of appropriate continuum-filter HST images to place precise constraints on the avereage ejection date of the Homunculus Nebula; this analysis is now complete (Smith et al 2016) and the nebula appears to have been ejected in the second half of 1847. Here we propose to continue this project by constraining the motion of the more extended and much older Outer Ejecta around Eta Carinae. Older material outside the main bipolar nebula traces previous major outbursts of the star with no recorded historical observations. We propose an ambitious reduction and analysis of the complete WFPC2 imaging dataset of Eta Car. These data can reconstruct its violent mass-loss history over the past thousand years. We have already started this by analyzing two epochs of ACS F658N images, and astonishingly, these data suggested two previous eruptions in the 13th and 15th centuries assuming ballistic motion. WFPC2 images will extend the baseline by 10 yr, and critically, more than 2 epochs allow us to measure any deceleration in the ejecta. We will also analyze Doppler shifts in ground-based spectra in order to reconstruct the 3D geometry of past mass ejection. This AR proposal will fund the final year of a PhD thesis.

  15. A jackknife approach to quantifying single-trial correlation between covariance-based metrics undefined on a single-trial basis.

    PubMed

    Richter, Craig G; Thompson, William H; Bosman, Conrado A; Fries, Pascal

    2015-07-01

    The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as reaction time (RT), or may co-fluctuate with the correlation between activity in other brain areas. Yet, quantifying the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all observations) and then correlating these values. Because the correlation is calculated between jackknife replications, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to conventional correlation for simulated paired data that are defined per observation and therefore allow the calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs, where the only viable alternative analysis approaches are based on some form of epoch subdivision, which results in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches, particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can be applied to relate fluctuations in any smooth metric that is not defined on single observations. Copyright © 2015. Published by Elsevier Inc.

  16. Be Stars in M31

    NASA Astrophysics Data System (ADS)

    Peters, Matthew L.; Wisniewski, John; Choi, Yumi; Williams, Ben; Lomax, Jamie; Bjorkman, Karen; Durbin, Meredith; Johnson, Lent Cliff; Lewis, Alexia; Lutz, Julie; Sigut, Aaron; Wallach, Aislynn; Dalcanton, Julianne

    2018-01-01

    We identify Be candidate stars in M31 using two-epoch F625W + F658N photometry from HST/ACS+WFC3 combined with the Panchromatic Hubble Andromeda Treasury (PHAT) Catalog. Using the PHAT catalog allows us to extract stellar parameters such as surface temperature and gravity, thereby allowing us to identify the main sequence B type stars in the field of view. Be candidate stars are identified by comparing their HST narrow-band Hα excess magnitudes with that predicted by Kurucz spectra. We find 314 Be candidate stars out of 5699 B + Be candidate stars (5.51%) in our first epoch and 301 Be candidate stars out of 5769 B + Be candidate stars (5.22%) in our second epoch. Our Be fraction, while lower than that of the SMC, LMC, and MW, is possibly consistent with the fact the M31 has a higher metallicity than the other galaxies because Be fraction varies inversely with metallicity. We note that earlier spectral types have the largest Be fraction, and that the Be fraction strictly declines as the spectral type increases to later types. We then match our Be candidate stars with clusters, establishing that 39 of 314 are cluster stars in epoch one and 36 of 301 stars are cluster stars in epoch two. We assign ages, using the cluster age to characterize cluster Be candidate stars and star formation histories to characterize field Be candidate stars. Finally, we determine which Be candidate stars exhibited disk loss or disk growth between epochs, finding that, of the Be stars that did not show source confusion or low SNR in one of the epochs, 65 / 265 (24.5%) showed disk loss or renewal, while 200 / 265 (75.5%) showed only small changes in Hα excess. Our research provides context for the parameters of candidate Be stars in M31, which will be useful in further determining the nature of Be stars. This paper was supported by a grant from STScI via GO-13857.

  17. Paleoclimatological perspective on the hydrometeorology of the Mekong Basin

    NASA Astrophysics Data System (ADS)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2012-11-01

    During recent decades the Mekong River has experienced substantial interannual variations between droughts and major floods. The causes of these variations have been sought in climate change and dam construction. However, so far little research has addressed whether these recent variations are significantly different to long-term variations in the past. Hence, the aim of our paper is to place the recent variations between droughts and floods into a historical and paleoclimatological context. To achieve this we analysed the Mekong's meteorological conditions over the period 1300-2005 with a basin scale approach by using the Monsoon Asia Drought Atlas (MADA), which is a Palmer Drought Severity Index (PDSI) dataset derived from tree-ring growth records. The correlation analyses, both in time and frequency domains, showed correlation between MADA and the Mekong's discharge over the period 1910-2005 which suggests that MADA can be used as proxy for the hydrometeorology of the Mekong Basin. We found that the meteorological conditions of the Mekong varied at multi-annual, decadal and centennial scales over the study period. We found two especially distinct features: firstly, multi-annual and decadal variation between prolonged wet and dry epochs; and secondly, epochs with higher or lower interannual variability between very dry and wet years. Furthermore we found two epochs with exceptionally large interannual variability, one at the beginning of 17th century and the other in the post 1950 epoch. Both epochs are characterized by distinct increases in variability between very wet and dry years. The variability in the post 1950 epoch is much higher compared to any of the other epochs included in this study. Thus, during recent decades the climate in the Mekong has exhibited features that have not been experienced for at least several centuries. These findings call for further climate research, particularly regarding increased climate variability, and resilient adaptation and development approaches in the basin.

  18. Was the Universe actually radiation dominated prior to nucleosynthesis?

    NASA Astrophysics Data System (ADS)

    Giblin, John T.; Kane, Gordon; Nesbit, Eva; Watson, Scott; Zhao, Yue

    2017-08-01

    Maybe not. String theory approaches to both beyond the Standard Model and inflationary model building generically predict the existence of scalars (moduli) that are light compared to the scale of quantum gravity. These moduli become displaced from their low energy minima in the early Universe and lead to a prolonged matter-dominated epoch prior to big bang nucleosynthesis (BBN). In this paper, we examine whether nonperturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the strength of the couplings, and we find that unless the moduli become strongly coupled, the matter-dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications where the lightest moduli are near the TeV scale, a matter-dominated epoch will persist until the time of big bang nucleosynthesis.

  19. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  20. Cosmological viability conditions for f(T) dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch,more » then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.« less

  1. SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Collioud, A.; Charlot, P.

    2018-02-01

    We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.

  2. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  3. Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton

    NASA Astrophysics Data System (ADS)

    Silaban, Herlan; Zarlis, Muhammad; Sawaluddin

    2017-12-01

    Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.

  4. Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy. II. The population with kinematically offset broad Balmer emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin; Shen, Yue; Bian, Fuyan

    2014-07-10

    A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup –1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (∼sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selectedmore » a sample of 399 quasars with kinematically offset broad Hβ lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad Hβ lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup –1}), we explore the parameter space with smaller (a few hundred km s{sup –1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad Hβ lines in 24 of the 50 objects, of ∼10-200 km s{sup –1} yr{sup –1} with a median measurement uncertainty of ∼10 km s{sup –1} yr{sup –1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either Hα or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and the average acceleration between two epochs, which could be explained by orbital phase modulation when the time separation between two epochs is a non-negligible fraction of the orbital period of the motion causing the line displacement. We discuss the implications of our results for the identification of sub-pc BBH candidates in offset-line quasars and for the constraints on their frequency and orbital parameters.« less

  5. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  6. Signal Processing of Shock-Wave Overpressure Records

    DTIC Science & Technology

    1981-08-01

    SUPERPOSED GAGE-MOUNT RINGING. UNCLASSIFIED FIG. . FORIERSPECRUM O AN - WAV WIT SUPRPSE GAE-OUT RNGNG UNCLASSIFIED SM No. 1021 󈨏- 925 Pa E 0. 00 0"a... midi rfit-valotinrent pmn -ri or grant number oquiprancr mcxlel designation. firnite iamem. militlary project codte irlri ir. I, tir, IlII. 46winl

  7. Baroreflex dysfunction in sick newborns makes heart rate an unreliable surrogate for blood pressure changes.

    PubMed

    Govindan, Rathinaswamy B; Al-Shargabi, Tareq; Massaro, An N; Metzler, Marina; Andescavage, Nickie N; Joshi, Radhika; Dave, Rhiya; du Plessis, Adre

    2016-06-01

    Cerebral pressure passivity (CPP) in sick newborns can be detected by evaluating coupling between mean arterial pressure (MAP) and cerebral blood flow measured by near infra-red spectroscopy hemoglobin difference (HbD). However, continuous MAP monitoring requires invasive catheterization with its inherent risks. We tested whether heart rate (HR) could serve as a reliable surrogate for MAP in the detection of CPP in sick newborns. Continuous measurements of MAP, HR, and HbD were made and partitioned into 10-min epochs. Spectral coherence (COH) was computed between MAP and HbD (COHMAP-HbD) to detect CPP, between HR and HbD (COHHR-HbD) for comparison, and between MAP and HR (COHMAP-HR) to quantify baroreflex function (BRF). The agreement between COHMAP-HbD and COHHR-HbD was assessed using ROC analysis. We found poor agreement between COHMAP-HbD and COHHR-HbD in left hemisphere (area under the ROC curve (AUC) 0.68) and right hemisphere (AUC 0.71). Baroreflex failure (COHMAP-HR not significant) was present in 79% of epochs. Confining comparison to epochs with intact BRF showed an AUC of 0.85 for both hemispheres. In these sick newborns, HR was an unreliable surrogate for MAP required for the detection of CPP. This is likely due to the prevalence of BRF failure in these infants.

  8. Consciousness, the brain, and spacetime geometry.

    PubMed

    Hameroff, S

    2001-04-01

    What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule subunit proteins ("tubulins") within certain brain neurons, remain coherent, and recruit more superposed tubulins until a mass-time-energy threshold (related to quantum gravity) is reached. At that point, self-collapse, or objective reduction (OR), abruptly occurs. We equate the pre-reduction, coherent superposition ("quantum computing") phase with pre-conscious processes, and each instantaneous (and non-computable) OR, or self-collapse, with a discrete conscious event. Sequences of OR events give rise to a "stream" of consciousness. Microtubule-associated proteins can "tune" the quantum oscillations of the coherent superposed states; the OR is thus self-organized, or "orchestrated" ("Orch OR"). Each Orch OR event selects (non-computably) microtubule subunit states which regulate synaptic/neural functions using classical signaling. The quantum gravity threshold for self-collapse is relevant to consciousness, according to our arguments, because macroscopic superposed quantum states each have their own spacetime geometries. These geometries are also superposed, and in some way "separated," but when sufficiently separated, the superposition of spacetime geometries becomes significantly unstable and reduces to a single universe state. Quantum gravity determines the limits of the instability; we contend that the actual choice of state made by Nature is non-computable. Thus each Orch OR event is a self-selection of spacetime geometry, coupled to the brain through microtubules and other biomolecules. If conscious experience is intimately connected with the very physics underlying spacetime structure, then Orch OR in microtubules indeed provides us with a completely new and uniquely promising perspective on the difficult problems of consciousness.

  9. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The VLA Sky Survey (VLASS): Overview and First Results

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.; VLASS Survey Team, Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is a 5520 hour spectropolarimetric synoptic survey covering the 33885 square degrees of the sky above Declination -40 degrees from 2-4 GHz at 2.5" angular resolution using the upgraded Karl G. Jansky Very Large Array (VLA). Over the survey duration of 7 years, each area of the sky will be covered in 3 epochs spaced 32 months apart, to a projected depth of 0.12mJy/beam rms noise per epoch and 0.07mJy/beam for 3 epochs combined. The VLASS employs on-the-fly mosaicking (OTFM) to rapidly scan the sky with a net speed of approximately 20 sq. degrees per hour. The high-level science goals for the survey include the identification and precise location of radio transients, the measurement of magnetic fields in our galaxy and beyond, and the study of radio emission from galaxies and active galactic nuclei throughout the Universe. The ability of the VLASS to see through dust allows us to unveil phenomena such as hidden cosmic explosions, emission from deep within our galaxy, and supermassive black holes buried within host galaxies.The VLASS was proposed in 2014 by our community-led Survey Science Group (SSG). VLASS Pilot observations were taken in mid-2016, and the first epoch covering half the area (VLASS1.1) commenced in September 2017. The raw data from the VLASS are available in the NRAO archive immediately with no proprietary period. The Basic Data Products (BDP) that will be produced by the survey team are public and will additionally include: calibrated visibility data, quick-look continuum images (with a goal of posting to the archive within 1 week of observation), single-epoch and cumulative combined-epoch images, spectral image cubes, and basic object catalogs. Single-epoch and cumulative images are in intensity and linear polarization (Stokes IQU). In addition to the BDP provided by NRAO and served through the NRAO archive, there are plans for Enhanced Data Products and Services to be provided by the community in partnership with the VLASS team.In this presentation we describe the science goals, survey design, and technical implementation for the VLASS, and highlight results from the Pilot and the first epoch observations taken so far.

  11. A New Approach to X-ray Analysis of SNRs

    NASA Astrophysics Data System (ADS)

    Frank, Kari A.; Burrows, David; Dwarkadas, Vikram

    2016-06-01

    We present preliminary results of applying a novel analysis method, Smoothed Particle Inference (SPI), to XMM-Newton observations of SNR RCW 103 and Tycho. SPI is a Bayesian modeling process that fits a population of gas blobs (”smoothed particles”) such that their superposed emission reproduces the observed spatial and spectral distribution of photons. Emission-weighted distributions of plasma properties, such as abundances and temperatures, are then extracted from the properties of the individual blobs. This technique has important advantages over analysis techniques which implicitly assume that remnants are two-dimensional objects in which each line of sight encompasses a single plasma. By contrast, SPI allows superposition of as many blobs of plasma as are needed to match the spectrum observed in each direction, without the need to bin the data spatially. The analyses of RCW 103 and Tycho are part of a pilot study for the larger SPIES (Smoothed Particle Inference Exploration of SNRs) project, in which SPI will be applied to a sample of 12 bright SNRs.

  12. High-resolution VLBA Observations of Three 7 mm SiO Masers toward VX Sgr at Five Epochs

    NASA Astrophysics Data System (ADS)

    Su, J. B.; Shen, Z.-Q.; Chen, X.; Yi, Jiyune; Jiang, D. R.; Yun, Y. J.

    2012-07-01

    VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1→0 (v = 1, 2) 28SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring. In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1→0 (v = 0) 29SiO line emission is also detected, but is too weak to produce any VLBI map.

  13. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.

    PubMed

    Chang, Hsiang-Chih; Lee, Po-Lei; Lo, Men-Tzung; Lee, I-Hui; Yeh, Ting-Kuang; Chang, Chun-Yen

    2012-05-01

    This study proposes a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) independent of amplitude-frequency and phase calibrations. Six stepping delay flickering sequences (SDFSs) at 32-Hz flickering frequency were used to implement a six-command BCI system. EEG signals recorded from Oz position were first filtered within 29-35 Hz, segmented based on trigger events of SDFSs to obtain SDFS epochs, and then stored separately in epoch registers. An epoch-average process suppressed the inter-SDFS interference. For each detection point, the latest six SDFS epochs in each epoch register were averaged and the normalized power of averaged responses was calculated. The visual target that induced the maximum normalized power was identified as the visual target. Eight subjects were recruited in this study. All subjects were requested to produce the "563241" command sequence four times. The averaged accuracy, command transfer interval, and information transfer rate (mean ± std.) values for all eight subjects were 97.38 ± 5.97%, 3.56 ± 0.68 s, and 42.46 ± 11.17 bits/min, respectively. The proposed system requires no calibration in either the amplitude-frequency characteristic or the reference phase of SSVEP which may provide an efficient and reliable channel for the neuromuscular disabled to communicate with external environments.

  14. Diagnostic thresholds for quantitative REM sleep phasic burst duration, phasic and tonic muscle activity, and REM atonia index in REM sleep behavior disorder with and without comorbid obstructive sleep apnea.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Duwell, Ethan J; Timm, Paul C; Sandness, David J; Boeve, Bradley F; Silber, Michael H

    2014-10-01

    We aimed to determine whether phasic burst duration and conventional REM sleep without atonia (RSWA) methods could accurately diagnose REM sleep behavior disorder (RBD) patients with comorbid OSA. We visually analyzed RSWA phasic burst durations, phasic, "any," and tonic muscle activity by 3-s mini-epochs, phasic activity by 30-s (AASM rules) epochs, and conducted automated REM atonia index (RAI) analysis. Group RSWA metrics were analyzed and regression models fit, with receiver operating characteristic (ROC) curves determining the best diagnostic cutoff thresholds for RBD. Both split-night and full-night polysomnographic studies were analyzed. N/A. Parkinson disease (PD)-RBD (n = 20) and matched controls with (n = 20) and without (n = 20) OSA. N/A. All mean RSWA phasic burst durations and muscle activities were higher in PD-RBD patients than controls (P < 0.0001), and RSWA associations with PD-RBD remained significant when adjusting for age, gender, and REM AHI (P < 0.0001). RSWA muscle activity (phasic, "any") cutoffs for 3-s mini-epoch scorings were submentalis (SM) (15.5%, 21.6%), anterior tibialis (AT) (30.2%, 30.2%), and combined SM/AT (37.9%, 43.4%). Diagnostic cutoffs for 30-s epochs (AASM criteria) were SM 2.8%, AT 11.3%, and combined SM/AT 34.7%. Tonic muscle activity cutoff of 1.2% was 100% sensitive and specific, while RAI (SM) cutoff was 0.88. Phasic muscle burst duration cutoffs were: SM (0.65) and AT (0.79) seconds. Combining phasic burst durations with RSWA muscle activity improved sensitivity and specificity of RBD diagnosis. This study provides evidence for REM sleep without atonia diagnostic thresholds applicable in Parkinson disease-REM sleep behavior disorder (PD-RBD) patient populations with comorbid OSA that may be useful toward distinguishing PD-RBD in typical outpatient populations. © 2014 Associated Professional Sleep Societies, LLC.

  15. Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.

    PubMed

    Owens, Justin M; Angell, Linda; Hankey, Jonathan M; Foley, James; Ebe, Kazutoshi

    2015-09-01

    Distracted driving has become a topic of critical importance to driving safety research over the past several decades. Naturalistic driving data offer a unique opportunity to study how drivers engage with secondary tasks in real-world driving; however, the complexities involved with identifying and coding relevant epochs of naturalistic data have limited its accessibility to the general research community. This project was developed to help address this problem by creating an accessible dataset of driver behavior and situational factors observed during distraction-related safety-critical events and baseline driving epochs, using the Strategic Highway Research Program 2 (SHRP2) naturalistic dataset. The new NEST (Naturalistic Engagement in Secondary Tasks) dataset was created using crashes and near-crashes from the SHRP2 dataset that were identified as including secondary task engagement as a potential contributing factor. Data coding included frame-by-frame video analysis of secondary task and hands-on-wheel activity, as well as summary event information. In addition, information about each secondary task engagement within the trip prior to the crash/near-crash was coded at a higher level. Data were also coded for four baseline epochs and trips per safety-critical event. 1,180 events and baseline epochs were coded, and a dataset was constructed. The project team is currently working to determine the most useful way to allow broad public access to the dataset. We anticipate that the NEST dataset will be extraordinarily useful in allowing qualified researchers access to timely, real-world data concerning how drivers interact with secondary tasks during safety-critical events and baseline driving. The coded dataset developed for this project will allow future researchers to have access to detailed data on driver secondary task engagement in the real world. It will be useful for standalone research, as well as for integration with additional SHRP2 data to enable the conduct of more complex research. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.

  16. Post-Flare Giant Arches - Unanswered Questions

    NASA Astrophysics Data System (ADS)

    West, M. J.; Seaton, D. B.; Dennis, B. R.; Palmerio, E.; Savage, S. L.

    2017-12-01

    Recent observations from the SWAP EUV imager on-board PROBA2 and SXI X-ray observations from the GOES satellite have shown that post-flare giant arches and regular post-flare loops are one and the same thing. However, it is still not clear how certain loop systems are able to sustain prolonged growth to heights greater than half a solar-radii. In this presentation we further explore the energy deposition rate above post-flare loop systems through high-energy RHESSI observations. We also explore the difference between the growth of different loop systems through an epoch analysis. The epoch analysis is initially performed over the period when the STEREO satellites were in quadrature with PROBA2 allowing us to assess the difference between their on-disk and on-limb signatures. Giant arches are generally characterised by their height of growth when observed close to the solar limb, but due to the optically thin nature of the EUV solar atmosphere, projection effects and the scarcity of events occurring within 5 degrees of the limb it is not understood how common these events are. Using the analysis during the quadrature period we gain a better understanding of how rare these events are, and by determining characteristic on disk signatures we can combine our data set with magnetogram observations to better understand their magnetic evolution.

  17. Multiwavelength Observations of GRB 110731A: GeV Emission From Onset to Afterglow

    DOE PAGES

    Ackermann, M.; Ajello, M.; Asano, K.; ...

    2013-01-09

    In this paper, we report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for whichmore » simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. Lastly, the observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.« less

  18. Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.

    2013-02-01

    We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.

  19. Testing deformation hypotheses by constraints on a time series of geodetic observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2018-01-01

    In geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth's surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.

  20. Designing Successful Next-Generation Instruments to Detect the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Hydrogen Epoch of Reionization Array (HERA) team, Murchison Widefield Array (MWA) team

    2018-01-01

    The Epoch of Reionization (EoR) signifies a period of intense evolution of the Inter-Galactic Medium (IGM) in the early Universe caused by the first generations of stars and galaxies, wherein they turned the neutral IGM to be completely ionized by redshift ≥ 6. This important epoch is poorly explored to date. Measurement of redshifted 21 cm line from neutral Hydrogen during the EoR is promising to provide the most direct constraints of this epoch. Ongoing experiments to detect redshifted 21 cm power spectrum during reionization, including the Murchison Widefield Array (MWA), Precision Array for Probing the Epoch of Reionization (PAPER), and the Low Frequency Array (LOFAR), appear to be severely affected by bright foregrounds and unaccounted instrumental systematics. For example, the spectral structure introduced by wide-field effects, aperture shapes and angular power patterns of the antennas, electrical and geometrical reflections in the antennas and electrical paths, and antenna position errors can be major limiting factors. These mimic the 21 cm signal and severely degrade the instrument performance. It is imperative for the next-generation of experiments to eliminate these systematics at their source via robust instrument design. I will discuss a generic framework to set cosmologically motivated antenna performance specifications and design strategies using the Precision Radio Interferometry Simulator (PRISim) -- a high-precision tool that I have developed for simulations of foregrounds and the instrument transfer function intended primarily for 21 cm EoR studies, but also broadly applicable to interferometer-based intensity mapping experiments. The Hydrogen Epoch of Reionization Array (HERA), designed in-part based on this framework, is expected to detect the 21 cm signal with high significance. I will present this framework and the simulations, and their potential for designing upcoming radio instruments such as HERA and the Square Kilometre Array (SKA).

  1. Color Reproduction with a Smartphone

    ERIC Educational Resources Information Center

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  2. Dielectric Breakdown Characteristics of Oil-pressboard Insulation System against AC/DC Superposed Voltage

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami

    This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.

  3. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  4. Four "E"pochs: The Story of Informatization.

    ERIC Educational Resources Information Center

    Duff, Alistair S.

    2003-01-01

    Informatization is a term of Japanese provenance denoting major systemic change from the application of information technology. Proposes a theory of post-war informatization focusing on information services in libraries, specifically computerized information retrieval. Describes four electronic epochs: offline, online, CD-ROM, and Internet, and…

  5. Application of COMSOL to Acoustic Imaging

    DTIC Science & Technology

    2010-10-01

    Marquardt (LM) (2 epochs), followed by Broyden, Fletcher, Goldfarb, and Shannon (BFGS) (2 epochs) followed by scaled conjugate gradient ( SCG )(100...Use Matlab’s excellent Neural Network Toolbox  Optimization techniques considered:  Scaled‏Con jugate‏ Gradient‏ (“ SCG ”)‏ - fast  One‏Step

  6. VizieR Online Data Catalog: MOJAVE. VIII. Faraday rotation in AGN jets. (Hovatta+, 2012)

    NASA Astrophysics Data System (ADS)

    Hovatta, T.; Lister, M. L.; Aller, M. F.; Aller, H. D.; Homan, D. C.; Kovalev, Yu. Y.; Pushkarev, A. B.; Savolainen, T.

    2013-10-01

    Our sample consists of 191 AGNs observed within the MOJAVE Very Long Baseline Array (VLBA) survey (Lister et al., 2009, cat. J/AJ/137/3718, Paper V). It includes 134 sources of the complete flux density-limited MOJAVE-1 sample. The rest of the sources belong to the MOJAVE-2 sample (http://www.physics.purdue.edu/astro/MOJAVE/allsources.html), which includes sources from the 2cm survey (Kellermann et al. 2004, cat. J/ApJ/609/539), gamma-ray blazars, and other sources with unusual jet properties. The sources were observed with VLBA in 2006 over 12 epochs with about monthly separation, each epoch containing 18 sources (except for epoch 2006 February 12, which included only 14 sources and epoch 2006 April 28, which included 17 sources). The observations were made in dual polarization mode using frequencies centered at 8.104, 8.424 (X band), 12.119, and 15.369GHz (U band). (2 data files).

  7. Analysis of 21-cm tomographic data

    NASA Astrophysics Data System (ADS)

    Mellema, Garrelt; Giri, Sambit; Ghara, Raghuna

    2018-05-01

    The future SKA1-Low radio telescope will be powerful enough to produce tomographic images of the 21-cm signal from the Epoch of Reionization. Here we address how to identify ionized regions in such data sets, taking into account the resolution and noise levels associated with SKA1-Low. We describe three methods of which one, superpixel oversegmentation, consistently performs best.

  8. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506

    NASA Astrophysics Data System (ADS)

    Sun, Shangyu; Guainazzi, Matteo; Ni, Qingling; Wang, Jingchun; Qian, Chenyang; Shi, Fangzheng; Wang, Yu; Bambi, Cosimo

    2018-05-01

    We present a multi-epoch X-ray spectroscopy analysis of the nearby narrow-line Seyfert I galaxy NGC 5506. For the first time, spectra taken by Chandra, XMM-Newton, Suzaku, and NuSTAR - covering the 2000-2014 time span - are analyzed simultaneously, using state-of-the-art models to describe reprocessing of the primary continuum by optical thick matter in the AGN environment. The main goal of our study is determining the spin of the supermassive black hole (SMBH). The nuclear X-ray spectrum is photoelectrically absorbed by matter with column density ≃ 3 × 1022 cm-2. A soft excess is present at energies lower than the photoelectric cut-off. Both photo-ionized and collisionally ionized components are required to fit it. This component is constant over the time-scales probed by our data. The spectrum at energies higher than 2 keV is variable. We propose that its evolution could be driven by flux-dependent changes in the geometry of the innermost regions of the accretion disk. The black hole spin in NGC ,5506 is constrained to be 0.93± _{ 0.04 }^{0.04} at 90% confidence level for one interesting parameter.

  9. Cyclical Changes in the Pleistocene Climate from an Analysis of Biogenic Silica in a Bottom Sediment Core Sample of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Dergachev, V. A.; Dmitriev, P. B.

    2017-12-01

    An inhomogeneous time series of measurements of the percentage content of biogenic silica in the samples of joint cores BDP-96-1 and BDP-96-2 from the bottom of Lake Baikal drilled at a depth of 321 m under water has been analyzed. The composite depth of cores is 77 m, which covers the Pleistocene Epoch to 1.8 Ma. The time series was reduced to a regular form with a time step of 1 kyr, which allowed 16 distinct quasi-periodic components with periods from 19 to 251 kyr to be revealed in this series at a significance level of their amplitudes exceeding 4σ. For this, the combined spectral periodogram (a modification of the spectral analysis method) was used. Some of the revealed quasi-harmonics are related to the characteristic cyclical oscillations of the Earth's orbital parameters. Special focus was payed to the temporal change in the parameters of the revealed quasi-harmonic components over the Pleistocene Epoch, which was studied by constructing the spectral density of the analyzed data in the running window of 201 and 701 kyr.

  10. Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features.

    PubMed

    Lin, Lung-Chang; Chen, Sharon Chia-Ju; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng; Ouyang, Chen-Sen

    2017-03-01

    The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.

  11. HIGH-RESOLUTION VLBA OBSERVATIONS OF THREE 7 mm SiO MASERS TOWARD VX Sgr AT FIVE EPOCHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, J. B.; Shen, Z.-Q.; Chen, X.

    2012-07-20

    VX Sgr is a red supergiant at an adopted distance of 1.6 kpc with intense 43 GHz SiO maser emission. In this paper, we present the high-resolution very long baseline interferometry (VLBI) observations of SiO masers toward VX Sgr at five epochs. We used the Very Long Baseline Array to map the J = 1{yields}0 (v = 1, 2) {sup 28}SiO masers and confirmed a ring-like structure. In the first two epochs, the v = 1 masers form a ring, but v = 2 maser spots residing only in the southern and northern regions do not form a complete ring.more » In the third epoch, the two masers are distributed in a ring structure and the v = 2 masers are a bit closer to the central star. In the last two epochs, many new maser spots appear and overlap each other. These overlapping maser spots can be related to the shock waves and reflect the collisional pumping. We compare the observations with the pumping models and speculate that the real pumping mechanism may be complex in VX Sgr and vary with time. The J = 1{yields}0 (v = 0) {sup 29}SiO line emission is also detected, but is too weak to produce any VLBI map.« less

  12. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  13. Multiepoch Spectropolarimetry of SN 2011fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milne, Peter A.; Williams, G. Grant; Smith, Paul S.

    2017-01-20

    We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has allowed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behaviormore » is more common in subluminous SNe Ia than in normal events, such as SN 2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch, a λ 4600–5000 Å complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si ii λ 6355 Å absorption line. This is common for SNe Ia, but for SN 2011fe the polarization of this feature increases after maximum light, whereas for other SNe Ia, that polarization feature was strongest before maximum light.« less

  14. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  15. The Topology and Properties of Mercury's Tail Current Sheet

    NASA Astrophysics Data System (ADS)

    Al Asad, M.; Johnson, C.; Philpott, L. C.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury from March 2011 until April 2015, measuring the vector magnetic field inside and outside the magnetosphere. MESSENGER repeatedly encountered the tail current sheet (TCS) on the nightside of the planet. We examined 1s magnetic field data within 20 minutes of the magnetic equator position on 2435 orbit to characterize the shape and properties of Mercury's TCS and investigate its response to solar wind conditions. Identification of the TCS from vector magnetic field data used the following criteria: (1) a rapid rotation in the field direction from anti-sunward in the southern tail lobe to sunward in the northern lobe, accompanied by (2) a decrease in the field magnitude and (3) an increase in field variability. The current sheet was encountered on 606 orbits allowing the probability of encountering the tail current sheet in the equatorial plane to be mapped. Orbits on which the TCS was identified were binned spatially and superposed epoch analysis used to determine the field magnitude at the edge of the TCS, from which its time-averaged 3D shape was extracted. The TCS has an inner edge at 1.5 RM downtail in the midnight plane with a thickness of 0.34 RM, extends to the observation limit of 2.8 RM, decreasing in thickness to 0.28 RM. The thickness of the TCS increases in the dawn/dusk directions to 0.7 RM at 1.8 RM downtail and ± 1.5 RM from the noon-midnight plane and it warps towards the planet in the dawn/dusk directions. No strong correlations were found between the time-averaged shape and position of the TCS and solar wind conditions such as the solar wind ram pressure and the magnetic disturbance index, nor with parameters that control these conditions such as heliocentric distance. However, it is likely that the TCS does respond to these conditions on time scales too short to be characterized with MESSENGER data. In addition to mapping the shape of the current sheet, we observed that many TCS crossings exhibit the magnetic characteristics of a bifurcated current sheet rather than a typical Harris-type structure. In fact, we found that more TCS encounters can be classified as bifurcated (34%) than Harris-like (15%). This suggests the bifurcated TCS structure may be more stable and common in Mercury's magnetosphere than at Earth.

  16. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    PubMed Central

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources. PMID:26958464

  17. Persistent warmth across the Benguela upwelling system during the Pliocene epoch

    NASA Astrophysics Data System (ADS)

    Rosell-Melé, Antoni; Martínez-Garcia, Alfredo; McClymont, Erin L.

    2014-01-01

    A feature of Pliocene climate is the occurrence of "permanent El Niño-like" or "El Padre" conditions in the Pacific Ocean. From the analysis of sediment cores in the modern northern Benguela upwelling, we show that the mean oceanographic state off Southwest Africa during the warm Pliocene epoch was also analogous to that of a persistent Benguela "El Niño". At present these events occur when massive southward flows of warm and nutrient-poor waters extend along the coasts of Angola and Namibia, with dramatic effects on regional marine ecosystems and rainfall. We propose that the persistent warmth across the Pliocene in the Benguela upwelling ended synchronously with the narrowing of the Indonesian seaway, and the early intensification of the Northern Hemisphere Glaciations around 3.0-3.5 Ma. The emergence of obliquity-related cycles in the Benguela sea surface temperatures (SST) after 3 Ma highlights the development of strengthened links to high latitude orbital forcing. The subsequent evolution of the Benguela upwelling system was characterized by the progressive intensification of the meridional SST gradients, and the emergence of the 100 ky cycle, until the modern mean conditions were set at the end of the Mid Pleistocene transition, around 0.6 Ma. These findings support the notion that the interplay of changes in the depth of the global thermocline, atmospheric circulation and tectonics preconditioned the climate system for the end of the warm Pliocene epoch and the subsequent intensification of the ice ages.

  18. Does High Protein Intake During First Week of Life Improve Growth and Neurodevelopmental Outcome at 18 months Corrected Age in Extremely Preterm Infants?

    PubMed

    Buddhavarapu, Siddartha; Manickaraj, Saranya; Lodha, Abhay; Soraisham, Amuchou Singh

    2016-09-01

    To examine whether high protein intake during the first week of life alters the growth and neurodevelopmental outcomes at 18 mo corrected age (CA) in preterm infants born < 29 wk. This was a retrospective cohort study of preterm infants (<29 wk) before and after introduction of nutritional policy targeting higher protein intake during the first week of life. The authors compared the growth and neurodevelopmental outcomes at 18 mo CA between infants born before (epoch 1) and after (epoch 2) the introduction of nutrition policy. Of 171 eligible infants who completed follow-up at 18 mo CA, 87 (51 %) were in post intervention group (epoch 2). The mean (± SD) gestational age (26.3 ± 1.49 wk vs. 26.2 ± 1.48 wk) and birth weight (947 ± 220 g vs. 924 ± 225 g) were similar between the two groups. At 18 mo CA, there were no significant differences in the growth and neurodevelopmental impairment rates between the two groups. Logistic regression analysis revealed that high protein intake (>3.5 g/kg/d) was not associated with improved neurodevelopmental outcome (OR 1.49, 95 % CI 0.52-4.26). High protein intake during the first week of age was not associated with better growth or neurodevelopmental outcome at 18 mo CA in preterm infants.

  19. A Dwarf Dissolving? - A Kinematic Analysis of Andromeda XXVII and the Northern Arc

    NASA Astrophysics Data System (ADS)

    Collins, Michelle; Rich, R. M.; Chapman, S. C.; Ibata, R.; Irwin, M.; McConnachie, A. W.

    2013-01-01

    We report internal kinematics for an unusual M31 dwarf spheroidal galaxy, And XXVII, which is superposed against the Northern Arc Stream feature, isolated in the PandAS (Pan-Andromeda Archaeological Survey). In contrast to the coherent, cold velocity fields of most Andromeda dwarf spheroidals, And XXVII has a trimodal velocity distribution spanning 100 km/sec, with a relatively cold central peak at -530 km/sec , and a velocity dispersion of sigma= 8 km/sec. While all of the candidate members are < 2' (or approximately one half light radii, ~600 pc) from the core, the full velocity range is not consistent with a system of luminosity Mv=-7.9. We propose that And XXVII may be in the process of dissolving into the Northern Arc.

  20. Interpreting statistics of small lunar craters

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D.; Greeley, R.

    1977-01-01

    Some of the wide variations in the crater-size distributions in lunar photography and in the resulting statistics were interpreted as different degradation rates on different surfaces, different scaling laws in different targets, and a possible population of endogenic craters. These possibilities are reexamined for statistics of 26 different regions. In contrast to most other studies, crater diameters as small as 5 m were measured from enlarged Lunar Orbiter framelets. According to the results of the reported analysis, the different crater distribution types appear to be most consistent with the hypotheses of differential degradation and a superposed crater population. Differential degradation can account for the low level of equilibrium in incompetent materials such as ejecta deposits, mantle deposits, and deep regoliths where scaling law changes and catastrophic processes introduce contradictions with other observations.

  1. The Corporate University's Role in Managing an Epoch in Learning Organisation Innovation

    ERIC Educational Resources Information Center

    Dealtry, Richard

    2006-01-01

    Purpose: The purpose of this paper is to set the scene for some radical epochal thinking about the approach and future strategic directions in the management of organisational learning, following the author's earlier editorial theme concerning the need for exploration and innovation in organisational learning management.…

  2. Assessment of Differing Definitions of Accelerometer Nonwear Time

    ERIC Educational Resources Information Center

    Evenson, Kelly R.; Terry, James W., Jr.

    2009-01-01

    Measuring physical activity with objective tools, such as accelerometers, is becoming more common. Accelerometers measure acceleration multiple times within a given frequency and summarize this as a count over a pre-specified time period or epoch. The resultant count represents acceleration over the epoch length. Accelerometers eliminate biases…

  3. The Differential Effects of Task Complexity on Domain-Specific and Peer Assessment Skills

    ERIC Educational Resources Information Center

    van Zundert, Marjo J.; Sluijsmans, Dominique M. A.; Konings, Karen D.; van Merrienboer, Jeroen J. G.

    2012-01-01

    In this study the relationship between domain-specific skills and peer assessment skills as a function of task complexity is investigated. We hypothesised that peer assessment skills were superposed on domain-specific skills and will therefore suffer more when higher cognitive load is induced by increased task complexity. In a mixed factorial…

  4. Cardiorespiratory phase synchronization during normal rest and inward-attention meditation.

    PubMed

    Wu, Shr-Da; Lo, Pei-Chen

    2010-06-11

    The cardiac and respiratory systems can be viewed as two self-sustained oscillators with various interactions between them. In this study, the cardiorespiratory phase synchronization (CRPS) quantified by synchrogram was investigated to explore the phase synchronization between these two systems. The synchrogram scheme was applied to electrocardiogram (ECG) and respiration signals. Particular focus was the distinct cardiac-respiratory regulation phenomena intervened by inward-attention meditation and normal relaxation. Four synchronization parameters were measured: frequency ratio, lasting length, number of epochs, and total length. The results showed that normal rest resulted in much weaker CRPS. Statistical analysis reveals that the number of synchronous epochs and the total synchronization length significantly increase (p=0.024 and 0.034 respectively) during meditation. Furthermore, a predominance of 4:1 and 5:1 rhythm-ratio synchronizations was observed during meditation. Consequently, this study concludes that CRPS can be enhanced during meditation, compared with normal relaxation, and reveals a predominance of specific frequency ratios. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  5. Activity associated with the solar origin of coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Webb, D. F.; Hundhausen, A. J.

    1987-01-01

    Solar coronal mass ejections (CMEs) observed in 1980 with the HAO Coronagraph/Polarimeter on the Solar Maximum Mission (SMM) satellite are compared with other forms of solar activity that might be physically related to the ejections. The solar phenomena checked and the method of association used were intentionally patterned after those of Munro et al.'s (1979) analysis of mass ejections observed with the Skylab coronagraph to facilitate comparison of the two epochs. Comparison of the results reveals that the types and degree of CME associations are similar near solar activity minimum and at maximum. For both epochs, most CMEs with associations had associated eruptive prominences, and the proportions of association of all types of activity were similar. A high percentage of association between SMM CMEs and X-ray long duration events is also found, in agreement with Skylab results. It is concluded that most CMEs are the result of the destabilization and eruption of a prominence and its overlying coronal structure, or of a magnetic structure capable of supporting a prominence.

  6. Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion

    NASA Astrophysics Data System (ADS)

    Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan

    2010-10-01

    We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.

  7. "God has sent me to you": Right temporal epilepsy, left prefrontal psychosis.

    PubMed

    Arzy, Shahar; Schurr, Roey

    2016-07-01

    Religious experiences have long been documented in patients with epilepsy, though their exact underlying neural mechanisms are still unclear. Here, we had the rare opportunity to record a delusional religious conversion in real time in a patient with right temporal lobe epilepsy undergoing continuous video-EEG. In this patient, a messianic revelation experience occurred several hours after a complex partial seizure of temporal origin, compatible with postictal psychosis (PIP). We analyzed the recorded resting-state EEG epochs separately for each of the conventional frequency bands. Topographical analysis of the bandpass filtered EEG epochs revealed increased activity in the low-gamma range (30-40Hz) during religious conversion compared with activity during the patient's habitual state. The brain generator underlying this activity was localized to the left prefrontal cortex. This suggests that religious conversion in PIP is related to control mechanisms in the prefrontal lobe-related processes rather than medial temporal lobe-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. "Fairy Tale for Pioneers": Deconstruction of Official Ideology in Memories about Artek 1960s-1980s

    ERIC Educational Resources Information Center

    Kozlova, Anna

    2016-01-01

    This article focuses on the memories of the Soviet pioneer camp Artek among camp leaders and Pioneers who visited this camp in the 1960s-1980s. The study examines the interaction between the ideology discourse of the late Soviet epoch about Artek and personal autobiographical memories. Turning to analysis of narrative structure and the pragmatic…

  9. Affordability Tradeoffs Under Uncertainty Using Epoch-Era Analysis

    DTIC Science & Technology

    2013-09-30

    Procedia Computer Science , Retrieved from: http://www.elsevier.com Bobinis, J., Haimowitz, J., Tuttle, P., & Garrison, C. (2012, October). Affordability...commercial products. Dr. Rhodes received her PhD in Systems Science from the T.J. Watson School of Engineering at Binghamton University. She serves on...components, evaluate feedback, and be adaptive to evolving system behaviors . As affordability is a concept evaluated over time, such a method can

  10. Outgassing History and Escape of the Martian Atmosphere and Water Inventory

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Chassefière, Eric; Karatekin, Özgür; Morschhauser, Achim; Niles, Paul B.; Mousis, Olivier; Odert, Petra; Möstl, Ute V.; Breuer, Doris; Dehant, Véronique; Grott, Matthias; Gröller, Hannes; Hauber, Ernst; Pham, Lê Binh San

    2013-01-01

    The evolution and escape of the martian atmosphere and the planet's water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet's origin and lasted ˜500 Myr. Because of the high EUV flux of the young Sun and Mars' low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ˜4-4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.

  11. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    PubMed

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  12. Simultaneously constraining the astrophysics of reionization and the epoch of heating with 21CMMC

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2017-12-01

    The cosmic 21 cm signal is set to revolutionize our understanding of the early Universe, allowing us to probe the 3D temperature and ionization structure of the intergalactic medium (IGM). It will open a window on to the unseen first galaxies, showing us how their UV and X-ray photons drove the cosmic milestones of the epoch of reionization (EoR) and epoch of heating (EoH). To facilitate parameter inference from the 21 cm signal, we previously developed 21CMMC: a Monte Carlo Markov Chain sampler of 3D EoR simulations. Here, we extend 21CMMC to include simultaneous modelling of the EoH, resulting in a complete Bayesian inference framework for the astrophysics dominating the observable epochs of the cosmic 21 cm signal. We demonstrate that second-generation interferometers, the Hydrogen Epoch of Reionization Array and Square Kilometre Array will be able to constrain ionizing and X-ray source properties of the first galaxies with a fractional precision of the order of ∼1-10 per cent (1σ). The ionization history of the Universe can be constrained to within a few percent. Using our extended framework, we quantify the bias in EoR parameter recovery incurred by the common simplification of a saturated spin temperature in the IGM. Depending on the extent of overlap between the EoR and the EoH, the recovered astrophysical parameters can be biased by ∼3σ-10σ.

  13. Causal Conceptions in Social Explanation and Moral Evaluation: A Historical Tour.

    PubMed

    Alicke, Mark D; Mandel, David R; Hilton, Denis J; Gerstenberg, Tobias; Lagnado, David A

    2015-11-01

    Understanding the causes of human behavior is essential for advancing one's interests and for coordinating social relations. The scientific study of how people arrive at such understandings or explanations has unfolded in four distinguishable epochs in psychology, each characterized by a different metaphor that researchers have used to represent how people think as they attribute causality and blame to other individuals. The first epoch was guided by an "intuitive scientist" metaphor, which emphasized whether observers perceived behavior to be caused by the unique tendencies of the actor or by common reactions to the requirements of the situation. This metaphor was displaced in the second epoch by an "intuitive lawyer" depiction that focused on the need to hold people responsible for their misdeeds. The third epoch was dominated by theories of counterfactual thinking, which conveyed a "person as reconstructor" approach that emphasized the antecedents and consequences of imagining alternatives to events, especially harmful ones. With the current upsurge in moral psychology, the fourth epoch emphasizes the moral-evaluative aspect of causal judgment, reflected in a "person as moralist" metaphor. By tracing the progression from the person-environment distinction in early attribution theories to present concerns with moral judgment, our goal is to clarify how causal constructs have been used, how they relate to one another, and what unique attributional problems each addresses. © Her Majesty the Queen in Right of Canada, as represented by Defence Research and Development Canada 2015.

  14. On the Hipparcos Link to the ICRF derived from VLA and MERLIN radio astrometry

    NASA Astrophysics Data System (ADS)

    Hering, R.; Walter, H. G.

    2007-06-01

    Positions and proper motions obtained from observations by the very large array (VLA) and the multi-element radio-linked interferometer network (MERLIN) are used to establish the link of the Hipparcos Celestial Reference Frame (HCRF) to the International Celestial Reference Frame (ICRF). The VLA and MERLIN data are apparently the latest ones published in the literature. Their mean epoch at around 2001 is about 10 years after the epoch of the Hipparcos catalogue and, therefore, the data are considered suitable to check the Hipparcos link established at epoch 1991.25. The parameters of the link, i.e., the angles of frame orientation and the angular rates of frame rotation, are estimated by fitting these parameters to the differences of the optical and radio positions and proper motions of stars common to the Hipparcos catalogue and the VLA and MERLIN data. Both the estimates of the angles of orientation and the angular rates of rotation show nearly consistent but insignificant results for all samples of stars treated. We conclude that not only the size of the samples of 9 15 stars is too small, but also that the accuracy of the radio positions and, above all, of the radio proper motions is insufficient, the latter being based on early-epoch star positions of low accuracy. The present observational data at epoch 2001 suggest that maintenance of the Hipparcos frame is not feasible at this stage.

  15. Assessing Temporal Behavior in LIDAR Point Clouds of Urban Environments

    NASA Astrophysics Data System (ADS)

    Schachtschneider, J.; Schlichting, A.; Brenner, C.

    2017-05-01

    Self-driving cars and robots that run autonomously over long periods of time need high-precision and up-to-date models of the changing environment. The main challenge for creating long term maps of dynamic environments is to identify changes and adapt the map continuously. Changes can occur abruptly, gradually, or even periodically. In this work, we investigate how dense mapping data of several epochs can be used to identify the temporal behavior of the environment. This approach anticipates possible future scenarios where a large fleet of vehicles is equipped with sensors which continuously capture the environment. This data is then being sent to a cloud based infrastructure, which aligns all datasets geometrically and subsequently runs scene analysis on it, among these being the analysis for temporal changes of the environment. Our experiments are based on a LiDAR mobile mapping dataset which consists of 150 scan strips (a total of about 1 billion points), which were obtained in multiple epochs. Parts of the scene are covered by up to 28 scan strips. The time difference between the first and last epoch is about one year. In order to process the data, the scan strips are aligned using an overall bundle adjustment, which estimates the surface (about one billion surface element unknowns) as well as 270,000 unknowns for the adjustment of the exterior orientation parameters. After this, the surface misalignment is usually below one centimeter. In the next step, we perform a segmentation of the point clouds using a region growing algorithm. The segmented objects and the aligned data are then used to compute an occupancy grid which is filled by tracing each individual LiDAR ray from the scan head to every point of a segment. As a result, we can assess the behavior of each segment in the scene and remove voxels from temporal objects from the global occupancy grid.

  16. Brain-computer interface controlled functional electrical stimulation system for ankle movement.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Abiri, Ahmad; Nenadic, Zoran

    2011-08-26

    Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that enables the direct brain control of foot dorsiflexion in able-bodied individuals. A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion. Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit BCI-FES mediated dorsiflexion of the contralateral foot. Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and 0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no omissions), and one subject had a single false alarm. This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

  17. Can sleep quality and wellbeing be improved by changing the indoor lighting in the homes of healthy, elderly citizens?

    PubMed Central

    Sander, Birgit; Markvart, Jakob; Kessel, Line; Argyraki, Aikaterini; Johnsen, Kjeld

    2015-01-01

    The study investigated the effect of bright blue-enriched versus blue-suppressed indoor light on sleep and wellbeing of healthy participants over 65 years. Twenty-nine participants in 20 private houses in a uniform settlement in Copenhagen were exposed to two light epochs of 3 weeks with blue-enriched (280 lux) and 3 weeks blue-suppressed (240 lux) indoor light or vice versa from 8 to 13 pm in a randomized cross-over design. The first light epoch was in October, the second in November and the two light epochs were separated by one week. Participants were examined at baseline and at the end of each light epoch. The experimental indoor light was well tolerated by the majority of the participants. Sleep duration was 7.44 (95% CI 7.14–7.74) hours during blue-enriched conditions and 7.31 (95% CI 7.01–7.62) hours during blue-suppressed conditions (p = 0.289). Neither rest hours, chromatic pupillometry, nor saliva melatonin profile showed significant changes between blue-enriched and blue-suppressed epochs. Baseline Pittsburgh Sleep Quality Index (PSQI) was significantly worse in females; 7.62 (95% CI 5.13–10.0) versus 4.06 (95% CI 2.64–5.49) in males, p = 0.009. For females, PSQI improved significantly during blue-enriched light exposure (p = 0.007); no significant changes were found for males. The subjective grading of indoor light quality doubled from participants habitual indoor light to the bright experimental light, while it was stable between light epochs, although there were clear differences between blue-enriched and blue-suppressed electrical light conditions imposed. Even though the study was carried out in the late autumn at northern latitude, the only significant difference in Actiwatch-measured total blue light exposure was from 8 to 9 am, because contributions from blue-enriched, bright indoor light were superseded by contributions from daylight. PMID:26181467

  18. Minimizing Interrater Variability in Staging Sleep by Use of Computer-Derived Features

    PubMed Central

    Younes, Magdy; Hanly, Patrick J.

    2016-01-01

    Study Objectives: Inter-scorer variability in sleep staging of polysomnograms (PSGs) results primarily from difficulty in determining whether: (1) an electroencephalogram pattern of wakefulness spans > 15 sec in transitional epochs, (2) spindles or K complexes are present, and (3) duration of delta waves exceeds 6 sec in a 30-sec epoch. We hypothesized that providing digitally derived information about these variables to PSG scorers may reduce inter-scorer variability. Methods: Fifty-six PSGs were scored (five-stage) by two experienced technologists, (first manual, M1). Months later, the technologists edited their own scoring (second manual, M2). PSGs were then scored with an automatic system and the same two technologists and an additional experienced technologist edited them, epoch-by-epoch (Edited-Auto). This resulted in seven manual scores for each PSG. The two M2 scores were then independently modified using digitally obtained values for sleep depth and delta duration and digitally identified spindles and K complexes. Results: Percent agreement between scorers in M2 was 78.9 ± 9.0% before modification and 96.5 ± 2.6% after. Errors of this approach were defined as a change in a manual score to a stage that was not assigned by any scorer during the seven manual scoring sessions. Total errors averaged 7.1 ± 3.7% and 6.9 ± 3.8% of epochs for scorers 1 and 2, respectively, and there was excellent agreement between the modified score and the initial manual score of each technologist. Conclusions: Providing digitally obtained information about sleep depth, delta duration, spindles and K complexes during manual scoring can greatly reduce interrater variability in sleep staging by eliminating the guesswork in scoring epochs with equivocal features. Citation: Younes M, Hanly PJ. Minimizing interrater variability in staging sleep by use of computer-derived features. J Clin Sleep Med 2016;12(10):1347–1356. PMID:27448418

  19. Long-Term Neurodevelopmental Outcomes of Premature Infants in Singapore.

    PubMed

    Teo, Charmaine M; Poon, Woei Bing; Ho, Selina Ky

    2018-02-01

    Neonatal care advances have resulted in improved survival but have raised concerns of increase in neurodevelopmental impairment. This study looked at long-term neurodevelopmental outcomes at ages 5 and 8 years of very low birthweight infants born in the 2000s as compared to the 1990s. Neurodevelopmental assessment at 2 years old was compared to that at 5 and 8 years to determine if assessment at 2 years was predictive of later outcomes. A retrospective cohort study of consecutive infants with birthweight less than 1250 grams admitted to a tertiary centre in Singapore between January 1994 to December 1995 (Epoch I) and January 2004 to December 2005 (Epoch II) were included. Neurodevelopmental impairment was defined as having intelligence quotient (IQ) of less than 70, cerebral palsy, legal blindness, or hearing impairment requiring hearing aids. Mean gestational age was lower for Epoch II compared to Epoch I (28.1 ± 2.5 vs 29.4 ± 2.7 weeks, P = 0.004). Death or neurodevelopmental impairment rates did not differ (24.3% and 17.1% at 5 years old, P = 0.398; 29.1% and 25.0% at 8 years old, P = 0.709). There was improvement in visual impairment rate at 8 years in Epoch II (10.7% vs 34.0%, P = 0.024). Mean IQ was better in Epoch II (109 and 107 vs 97 and 99 at 5 [ P = 0.001] and 8 years [ P = 0.047], respectively). All infants with no neurodevelopmental impairment at 2 years remained without impairment later on. Over a decade, neurodevelopmental outcomes did not worsen despite lower mean gestational age. Long- term improvement in IQ scores and a reduction in visual impairment rates were seen. Our data suggests that children without neurodevelopmental impairment at 2 years are without impairment later on; therefore, they may need only developmental monitoring with targeted assessments instead of routine formal IQ assessments.

  20. A description of communication patterns during CPR in ICU.

    PubMed

    Taylor, Katherine L; Ferri, Susan; Yavorska, Tatyana; Everett, Tobias; Parshuram, Christopher

    2014-10-01

    Deficiencies in communication in health care are a common source of medical error. Preferred communication patterns are a component of resuscitation teaching. We audio-recorded resuscitations in a mixed paediatric medical and surgical ICU to describe communication. In the intensive care unit, resuscitation events were prospectively audio-recorded by two trained observers (using handheld recorders). Recordings were transcribed and anonymised within 24h. We grouped utterances regarding the same subject matter from beginning (irrespective of response) as a communication epoch. For each epoch, we describe the initiator, audience and content of message. Teamwork behaviours were described using Anesthesia Nontechnical Skills framework (ANTS), a behavioural marker system for crisis-resource management. Consent rates from staff were 139/140 (99%) and parents were 67/92 (73%). We analysed 36min 57s of audio dialogue from 4 cardiac arrest events in 363h of prospective screening. There were 180 communication epochs (1 every 12s): 100 (56%) from the team-leader and 80 (44%) from non-team-leader(s). Team-leader epochs were to give or confirm orders or assert authority (61%), clarify patient history (14%) and provide clinical updates (25%). Non-team-leader epochs were more often directed to the team (65%) than the team-leader (35%). Audio-recordings provided information for 80% of the ANTS component elements with scores of 2-4. Communication epochs were frequent, most from the team-leader. We identified an 'outer loop' of communication between team members not including the team-leader, responsible for 44% of all communication events. We discuss difficulties in this research methodology. Future work includes exploring the process of the 'outer loop' by resuscitation team members to evaluate the optimal balance between single leader and team suggestions, the content of the outer loop discussions and in-event communication strategies to improve outcomes. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  1. HST Archival Imaging of the Light Echoes of SN 1987A

    NASA Astrophysics Data System (ADS)

    Lawrence, S. S.; Hayon, M.; Sugerman, B. E. K.; Crotts, A. P. S.

    2002-12-01

    We have undertaken a search for light echo signals from Supernova 1987A that have been serendipitously recorded in images taken near the 30 Doradus region of the Large Magellanic Cloud by HST. We used the MAST interface to create a database of the 1282 WF/PC, WFPC2 and STIS images taken within 15 arcminutes of the supernova, between 1992 April and 2002 June. These 1282 images are grouped into 125 distinct epochs and pointings, with each epoch containing between 1 and 42 separate exposures. Sorting this database with various programs, aided by the STScI Visual Target Tuner, we have identified 63 pairs of WFPC2 imaging epochs that are not centered on the supernova but that have a significant amount of spatial overlap between their fields of view. These image data were downloaded from the public archive, cleaned of cosmic rays, and blinked to search for light echoes at radii larger than 2 arcminutes from the supernova. Our search to date has focused on those pairs of epochs with the largest degree of overlap. Of 16 pairs of epochs scanned to date, we have detected 3 strong light echoes and one faint, tentative echo signal. We will present direct and difference images of these and any further echoes, as well as the 3-D geometric, photometric and color properties of the echoing dust structures. In addition, a set of 20 epochs of WF/PC and WFPC2 imaging centered on SN 1987A remain to be searched for echoes within 2 arcminutes of the supernova. We will discuss our plans to integrate the high spatial-resolution HST snapshots of the echoes with our extensive, well-time-sampled, ground-based imaging data. We gratefully acknowledge the support of this undergraduate research project through an HST Archival Research Grant (HST-AR-09209.01-A).

  2. Validation of Photoplethysmography-Based Sleep Staging Compared With Polysomnography in Healthy Middle-Aged Adults.

    PubMed

    Fonseca, Pedro; Weysen, Tim; Goelema, Maaike S; Møst, Els I S; Radha, Mustafa; Lunsingh Scheurleer, Charlotte; van den Heuvel, Leonie; Aarts, Ronald M

    2017-07-01

    To compare the accuracy of automatic sleep staging based on heart rate variability measured from photoplethysmography (PPG) combined with body movements measured with an accelerometer, with polysomnography (PSG) and actigraphy. Using wrist-worn PPG to analyze heart rate variability and an accelerometer to measure body movements, sleep stages and sleep statistics were automatically computed from overnight recordings. Sleep-wake, 4-class (wake/N1 + N2/N3/REM) and 3-class (wake/NREM/REM) classifiers were trained on 135 simultaneously recorded PSG and PPG recordings of 101 healthy participants and validated on 80 recordings of 51 healthy middle-aged adults. Epoch-by-epoch agreement and sleep statistics were compared with actigraphy for a subset of the validation set. The sleep-wake classifier obtained an epoch-by-epoch Cohen's κ between PPG and PSG sleep stages of 0.55 ± 0.14, sensitivity to wake of 58.2 ± 17.3%, and accuracy of 91.5 ± 5.1%. κ and sensitivity were significantly higher than with actigraphy (0.40 ± 0.15 and 45.5 ± 19.3%, respectively). The 3-class classifier achieved a κ of 0.46 ± 0.15 and accuracy of 72.9 ± 8.3%, and the 4-class classifier, a κ of 0.42 ± 0.12 and accuracy of 59.3 ± 8.5%. The moderate epoch-by-epoch agreement and, in particular, the good agreement in terms of sleep statistics suggest that this technique is promising for long-term sleep monitoring, although more evidence is needed to understand whether it can complement PSG in clinical practice. It also offers an improvement in sleep/wake detection over actigraphy for healthy individuals, although this must be confirmed on a larger, clinical population. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Binary-corrected velocity dispersions from single- and multi-epoch radial velocities: massive stars in R136 as a test case

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Hénault-Brunet, V.

    2014-02-01

    Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org

  4. Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Abellán, F. J.; Arroyo-Torres, B.; Chiavassa, A.; Guirado, J. C.; Marcaide, J. M.; Alberdi, A.; de Wit, W. J.; Hofmann, K.-H.; Meilland, A.; Millour, F.; Mohamed, S.; Sanchez-Bermudez, J.

    2017-09-01

    Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27-36 M⊙ red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase. Aims: Here, we aim at imaging observations of V766 Cen to confirm the presence of the close companion. Methods: We used near-infrared H-band aperture synthesis imaging at three epochs in 2014, 2016, and 2017, employing the PIONIER instrument at the Very Large Telescope Interferometer (VLTI). Results: The visibility data indicate a mean Rosseland angular diameter of 4.1 ± 0.8 mas, corresponding to a radius of 1575 ± 400 R⊙. The data show an extended shell (MOLsphere) of about 2.5 times the Rosseland diameter, which contributes about 30% of the H-band flux. The reconstructed images at the 2014 epoch show a complex elongated structure within the photospheric disk with a contrast of about 10%. The second and third epochs show qualitatively and quantitatively different structures with a single very bright and narrow feature and high contrasts of 20-30%. This feature is located toward the south-western limb of the photospheric stellar disk. We estimate an angular size of the feature of 1.7 ± 0.3 mas, corresponding to a radius of 650 ± 150 R⊙, and giving a radius ratio of 0.42+0.35-0.10 compared to the primary stellar disk. Conclusions: We interpret the images at the 2016 and 2017 epochs as showing the close companion, or a common envelope toward the companion, in front of the primary. At the 2014 epoch, the close companion is behind the primary and not visible. Instead, the structure and contrast at the 2014 epoch are typical of a single RSG harboring giant photospheric convection cells. The companion is most likely a cool giant or supergiant star with a mass of 5+15-3 M⊙. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 092.D-0096, 092.C-0312, and 097.D-0286.Olivier Chesneau was PI of the program 092.D-0096. He unfortunately passed away before seeing the results coming out of it. This Letter may serve as a posthumous tribute to his inspiring work on this source.

  5. Severe hypercalcaemia and hypophosphataemia with an optimised preterm parenteral nutrition formulation in two epochs of differing phosphate supplementation.

    PubMed

    Mulla, Shaveta; Stirling, Susan; Cowey, Sarah; Close, Rosie; Pullan, Sara; Howe, Rosalind; Radbone, Lynne; Clarke, Paul

    2017-09-01

    To compare in two epochs of differing phosphate provision serum calcium, phosphate, potassium, and sodium concentrations and the frequency of abnormality of these electrolytes and of sepsis in preterm infants who received an optimised higher amino acid-content formulation. Retrospective cohort study at a single tertiary-level neonatal unit. Preterm infants given parenteral nutrition (PN) in the first postnatal week during two discrete 6-month epochs in 2013-2014. In epoch 1 the Ca 2+ :PO 4 molar ratio of the PN formulation was ~1.3-1.5:1 (1.7 mmol Ca 2+ and 1.1 mmol PO 4 per 100 mL aqueous phase) and in epoch 2 was 1.0:1 via extra phosphate supplementation (1.7 mmol Ca 2+ and 1.7 mmol PO 4 per 100 mL). Peak calcium and nadir phosphate and potassium concentrations, and proportions with severe hypercalcaemia (Ca 2+ >3.0 mmol/L), hypophosphataemia (PO 4 <1.5 mmol/L), and hypokalaemia (K + <3.5 mmol/L) within the first postnatal week. In epoch 2, peak calcium concentrations were lower than in epoch 1 (geometric means: 2.83 mmol/L vs 3.09 mmol/L, p value<0.0001), fewer babies were severely hypercalcaemic (10/49, 20%, vs 31/51, 61%, p value<0.0001); nadir plasma phosphate concentrations were higher (means: 1.54 mmol/L vs 1.32 mmol/L, p value=0.006), and there were fewer cases of hypophosphataemia (17/49, 35% vs 31/51, 61%, p value=0.009) and hypokalaemia (12/49, 25% vs 23/51, 45%, p value=0.03). Reverting from a PN Ca 2+ :PO 4 molar ratio of 1.3-1.5:1 to a ratio of 1.0:1 was associated with a lower incidence and severity of hypophosphataemia and hypercalcaemia. For preterm infants given higher concentrations of amino acids (≥2.5 g/kg/day) from postnatal day 1, an equimolar Ca 2+ :PO 4 ratio may be preferable during the first postnatal week. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. 3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts

    NASA Astrophysics Data System (ADS)

    Kagiwada, Tadao; Harada, Hiroyuki

    Loosening of the wheel nuts, which fix the disk wheels of automobiles to the wheel hub, may be the cause of accidents where the wheel falls off while the automobile is running. When the transverse force of wheel bolts exceeds a certain proportion of the bolt shaft force, the wheel nut begins to loosen. Further, the force on the bolt shaft may also be influenced by the loads acting to the wheel through the moment caused by the offset of the wheel. This study determined the 3-dimensional deformation of the disk wheels and the transverse forces on the wheel bolt by 3-dimensional numerical analysis. The results established that the transverse force was influenced by the bolt shaft force caused by the bolt fastening and was superposed on that due to the load, and that it fluctuated greatly during the revolution of the wheel. This phenomenon may be a large factor in the loosening of wheel nuts.

  7. Preliminary Breakdown: Physical Mechanisms and Potential for Energetic Emissions

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Beasley, W. H.

    2014-12-01

    Observations and analysis of the preliminary breakdown phase of virgin negative cloud-to-ground (-CG) lightning strokes will be presented. Of primary interest are the physical processes responsible for the fast electric field "characteristic" pulses that are often observed during this phase. The pulse widths of characteristic pulses are shown to occur as a superposed bimodal distribution, with the short and long modes having characteristic timescales on the order of 1 microsecond and 10 microseconds, respectively. Analysis of these pulses is based on comparison with laboratory observations of long spark discharge processes and with recently acquired high-speed video observations of a single -CG event. It will be argued that the fast electric field bimodal distribution is the result of conventional discharge processes operating in an extensive strong ambient electric field environment. An important related topic will also be discussed, where it will be argued that preliminary breakdown discharges are capable of generating energetic electrons and may therefore seed relativistic electron avalanches that go on to produce pulsed energetic photon emissions.

  8. How big, and how long-lasting, will an extreme burst above threshold be ? Lessons from self-organised criticality

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chapman, S. C.; Hnat, B.

    2011-12-01

    The idea that there might not be a typical scale for energy release in some space physics systems is a relatively new one [see e.g. mini-review of early work in Freeman and Watkins, Science, 2002; & Aschwanden, Self Organized Criticality (SOC) in Astrophysics, Springer, 2011]. In part it resulted from the widespread approximate fractality seen elsewhere in nature. SOC was introduced by Bak et al [PRL, 1987] as a physical explanation of such widespread space-time fractality. SOC inspired the introduction into magnetospheric physics of "burst" diagnostics by Takalo [1993] & Consolini [1996]. These quantified events in a time series by "size" (integrated area above a fixed threshold) and "duration", and revealed a long tailed population of events across a broad range of sizes, subsequently also seen in solar wind drivers like Akasofu's epsilon function [Freeman et al, PRE & GRL, 2000]. Spatiotemporal bursts have an interest beyond SOC, however. Estimating the probability of a burst of a given size and duration bears directly on the problem of correlated extreme events, or "bunched black swans" [e.g. Watkins et al, EGU, 2011 presentation at the URL below]. With a view both to space physics and this wider context we here consider an interesting development of the burst idea made by Uritsky et al [GRL, 2001]. These authors adapted the spatiotemporal spreading exponent [e.g. Marro & Dickman, Nonequilibrium phase transitions in lattice models, 1999], calculating a superposed epoch average of surviving activity in bursts after their first excursion above a threshold. In a 1D time series, the 1-minute AL auroral index (averaged over 5 minutes), they found scaling behaviour up to ~ 2 hours. We investigate the relationships between exponents found by this method and other, more widely known exponents governing a fractal (or multifractal) time series such as the self-similarity exponent H and long-range dependence exponent d. We conclude by discussing the applications of these techniques to problems such as the forecasting the probability of a single short-lived large burst versus that of a long correlated sequence of more moderate exceedences above a threshold.

  9. The storm time ring current dynamics and response to CMEs and CIRs using Van Allen Probes observations and CIMI simulations

    NASA Astrophysics Data System (ADS)

    Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina

    2017-04-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.

  10. Changes in the Silicate Dust Features of the Symbiotic Star R Aquarii Prior to the Upcoming 2022 Eclipse and Periastron Events

    NASA Astrophysics Data System (ADS)

    Omelian, Eric; Sankrit, Ravi; Helton, Andrew; Gorti, Uma; Wagner, R. Mark

    2018-01-01

    The symbiotic star, R Aquarii (R Aqr) consists of a dusty, pulsating Mira (period 387 days) and a hot white dwarf (WD) that orbit each other with a period of about 44 years. Based on the light curve from ca. 1890 CE onwards, and associated nebular and jet activity, it has been established (with a high degree of confidence) that the WD eclipses the Mira around the time of the periastron passage. One of the phenomena associated with this phase in the orbit is enhanced accretion onto the WD, which in turn energizes the jet outflow. The next eclipse is imminent, and it is estimated that periastron will occur in 2022. Infrared observations of R Aqr have established that the emission consists of a thermal spectrum with an effective temperature of about 2500 K with superposed silicate dust features. These silicate features are known to vary with time, and UKIRT spectra taken within a single Mira phase have shown that some of the variation is correlated with the pulsation of the dust envelope of the AGB star.We have used the FORCAST instrument on SOFIA to observe R Aqr during Cycles 4 and 5 as part of an ongoing monitoring of the system as it goes through eclipse and periastron. Photometry between 6 and 37 μm, and spectra covering the 10 and 18 μm silicate features have shown significant changes in the spectrum compared with earlier data in the same wavelength range obtained by ISO at an epoch closer to apastron. We present our data along with archival data from other IR observatories and use them to characterize the changes in the silicate emission. These data are presented along with model calculations using DUSTY and RADMC-3D that we have used to explore the changes in dust properties that are necessary to explain the differences in the emission profiles. We also present our plans for continued monitoring of R Aqr through the upcoming eclipse, which is required in order to separate the effects of pulsation from the longer-term orbital effects on the dust profiles.

  11. Visualizing the Anthropocene: Human Land Use History and Environmental Management

    Treesearch

    Richard D. Periman

    2006-01-01

    The term “Anthropocene” defines the current, human-dominated, geological epoch of human-caused environmental influences. Some researchers believe that the beginning of this epoch coincides with the inception of the Industrial Revolution (Crutzen and Stoermer 2000). Research is revealing that humans have affected environments on global and local scales for millennia....

  12. A Cepheid Distance to NGC 4603 in the Centaurus Cluster

    NASA Technical Reports Server (NTRS)

    Madore, B.; Newman, J.; Zepf, S.; Davis, M.; Freedman, W.; Madore, B.; Stetson, P.; Silbermann, N.; Phelps, R.

    1999-01-01

    In an attempt to use Cepheid variables to determine the distance to the Centaurus cluster, we have obtained images of NGC 4603 with the Hubble Space Telescope for 9 epochs (totalling 24 orbits) over 14 months in the F555W filter and 2 epochs (totalling 6 orbits) in the F814W filter.

  13. Combinations of Epoch Durations and Cut-Points to Estimate Sedentary Time and Physical Activity among Adolescents

    ERIC Educational Resources Information Center

    Fröberg, Andreas; Berg, Christina; Larsson, Christel; Boldemann, Cecilia; Raustorp, Anders

    2017-01-01

    The purpose of the current study was to investigate how combinations of different epoch durations and cut-points affect the estimations of sedentary time and physical activity in adolescents. Accelerometer data from 101 adolescents were derived and 30 combinations were used to estimate sedentary time, light, moderate, vigorous, and combined…

  14. Toward a Communication Theory Focused on Humankind's Future.

    ERIC Educational Resources Information Center

    Ternent, William A.; Ternent, Janet A.

    This speech presents a model of human communication which integrates the existential philosophy of Martin Buber with the communication views of Jonas Salk. In his book, "The Survival of the Wisest," Salk characterizes an "Epoch A" to describe the values and behaviors of the past and an "Epoch B" to describe the necessary values and behaviors for…

  15. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    ERIC Educational Resources Information Center

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r01222031@ntu.edu.tw, E-mail: yuezhenniu@gmail.com

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitativemore » agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.« less

  17. Mean Energy Density of Photogenerated Magnetic Fields Throughout the EoR

    NASA Astrophysics Data System (ADS)

    Durrive, Jean-Baptiste; Tashiro, Hiroyuki; Langer, Mathieu; Sugiyama, Naoshi

    2018-05-01

    There seems to be magnetic fields at all scales and epochs in our Universe, but their origin at large scales remains an important open question of cosmology. In this work we focus on the generation of magnetic fields in the intergalactic medium due to the photoionizations by the first galaxies, all along the Epoch of Reionization. Based on previous studies which considered only isolated sources, we develop an analytical model to estimate the mean magnetic energy density accumulated in the Universe by this process. In our model, without considering any amplification process, the Universe is globally magnetized by this mechanism to the order of, at least, several 10-18 G during the Epoch of Reionization (i.e. a few 10-20 G comoving).

  18. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    ERIC Educational Resources Information Center

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  19. Monogamy relations of quantum entanglement for partially coherently superposed states

    NASA Astrophysics Data System (ADS)

    Shi, Xian

    2017-12-01

    Not Available Project partially supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000902), the National Natural Science Foundation of China (Grant Nos. 61232015, 61472412, and 61621003), the Beijing Science and Technology Project (2016), Tsinghua-Tencent-AMSS-Joint Project (2016), and the Key Laboratory of Mathematics Mechanization Project: Quantum Computing and Quantum Information Processing.

  20. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.

    1984-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  1. Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion

    NASA Technical Reports Server (NTRS)

    Ghosh, M. K.; Hamrock, B. J.; Brewe, D.

    1985-01-01

    A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.

  2. Experimentally superposing two pure states with partial prior knowledge

    NASA Astrophysics Data System (ADS)

    Li, Keren; Long, Guofei; Katiyar, Hemant; Xin, Tao; Feng, Guanru; Lu, Dawei; Laflamme, Raymond

    2017-02-01

    Superposition, arguably the most fundamental property of quantum mechanics, lies at the heart of quantum information science. However, how to create the superposition of any two unknown pure states remains as a daunting challenge. Recently, it was proved that such a quantum protocol does not exist if the two input states are completely unknown, whereas a probabilistic protocol is still available with some prior knowledge about the input states [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403]. The knowledge is that both of the two input states have nonzero overlaps with some given referential state. In this work, we experimentally realize the probabilistic protocol of superposing two pure states in a three-qubit nuclear magnetic resonance system. We demonstrate the feasibility of the protocol by preparing a families of input states, and the average fidelity between the prepared state and expected superposition state is over 99%. Moreover, we experimentally illustrate the limitation of the protocol that it is likely to fail or yields very low fidelity, if the nonzero overlaps are approaching zero. Our experimental implementation can be extended to more complex situations and other quantum systems.

  3. Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below

    NASA Technical Reports Server (NTRS)

    Chen, Falin; Chen, C. F.

    1989-01-01

    Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm x 12 cm x 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60 and 90 percent glycerin-water solutions, and 100 percent glycerin. The depth ratio d, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger d in order to keep the temperature difference across the tank within reasonable limits. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed: (1) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (2) an eightfold decrease in the critical wavelength between d = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen and Chen, 1988).

  4. Transfer of Orbital and Spin angular momentum from non-paraxial optical vortex to atomic BEC

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Mondal, Pradip Kumar; Majumder, Sonjoy; Deb, Bimalendu

    2017-04-01

    Allen and co-workers first brought up the realization that optical vortex can carry well defined orbital angular momentum (OAM) associated with its spatial mode. Spin angular momentum (SAM) of the light, associated with the polarization, interacts with the internal electronic motion of the atom. The exchange of orbital angular momentum (OAM) between optical vortex and the center-of-mass (CM) motion of an atom or molecule is well known in paraxial approximation. We show that, how the total angular momentum (TAM) of non-paraxial optical vortex is shared with atom, in terms of OAM and SAM. Both the angular momenta are now possible to be transferred to the internal electronic and external CM motion of atom. Here we have studied how the Rabi frequencies of the excitations of two-photon Raman transitions with respect to focusing angles. Also, we investigate the properties of the vortex superposed state for a Bose-Einstein condensate condensate by a single non-paraxial vortex beam. The density distribution of the vortex-antivortex superposed state has a petal structure which is determined by the quantum circulations and proportion of the vortex and antivortex.

  5. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents.

    PubMed

    de Zambotti, Massimiliano; Baker, Fiona C; Willoughby, Adrian R; Godino, Job G; Wing, David; Patrick, Kevin; Colrain, Ian M

    2016-05-01

    To validate measures of sleep and heart rate (HR) during sleep generated by a commercially-available activity tracker against those derived from polysomnography (PSG) in healthy adolescents. Sleep data were concurrently recorded using FitbitChargeHR™ and PSG, including electrocardiography (ECG), during an overnight laboratory sleep recording in 32 healthy adolescents (15 females; age, mean±SD: 17.3±2.5years). Sleep and HR measures were compared between FitbitChargeHR™ and PSG using paired t-tests and Bland-Altman plots. Epoch-by-epoch analysis showed that FitbitChargeHR™ had high overall accuracy (91%), high sensitivity (97%) in detecting sleep, and poor specificity (42%) in detecting wake on a min-to-min basis. On average, FitbitChargeHR™ significantly but negligibly overestimated total sleep time by 8min and sleep efficiency by 1.8%, and underestimated wake after sleep onset by 5.6min (p<0.05). Within FitbitChargeHR™ epochs of sleep, the average HR was 59.3±7.5bpm, which was significantly but negligibly lower than that calculated from ECG (60.2±7.6bpm, p<0.001), with no change in mean discrepancies throughout the night. FitbitChargeHR™ showed good agreement with PSG and ECG in measuring sleep and HR during sleep, supporting its use in assessing sleep and cardiac function in healthy adolescents. Further validation is needed to assess its reliability over prolonged periods of time in ecological settings and in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Measures of Sleep and Cardiac Functioning During Sleep Using a Multi-Sensory Commercially–Available Wristband in Adolescents

    PubMed Central

    de Zambotti, Massimiliano; Baker, Fiona C.; Willoughby, Adrian R.; Godino, Job G.; Wing, David; Patrick, Kevin; Colrain, Ian M.

    2016-01-01

    To validate measures of sleep and heart rate (HR) during sleep generated by a commercially-available activity tracker against those derived from polysomnography (PSG) in healthy adolescents. Sleep data were concurrently recorded using FitbitChargeHR™ and PSG, including electrocardiography (ECG), during an overnight laboratory sleep recording in 32 healthy adolescents (15 females; Age, mean±SD: 17.3±2.5 years). Sleep and HR measures were compared between FitbitChargeHR™ and PSG using paired t-tests and Bland-Altman plots. Epoch-by-epoch analysis showed that FitbitChargeHR™ had high overall accuracy (91%), high sensitivity (97%) in detecting sleep, and poor specificity (42%) in detecting wake on a min-to-min basis. On average, FitbitChargeHR™ significantly but negligibly overestimated total sleep time by 8min and sleep efficiency by 1.8%, and underestimated wake after sleep onset by 5.6min (p<0.05). Within FitbitChargeHR™ epochs of sleep, the average HR was 59.3±7.5 bpm, which was significantly but negligibly lower than that calculated from ECG (60.2±7.6 bpm, p<0.001), with no change in mean discrepancies throughout the night. FitbitChargeHR™ showed good agreement with PSG and ECG in measuring sleep and HR during sleep, supporting its use in assessing sleep and cardiac function in healthy adolescents. Further validation is needed to assess its reliability over prolonged periods of time in ecological settings and in clinical populations. PMID:26969518

  7. Introducing the Event Related Fixed Interval Area (ERFIA) Multilevel Technique: a Method to Analyze the Complete Epoch of Event-Related Potentials at Single Trial Level

    PubMed Central

    Vossen, Catherine J.; Vossen, Helen G. M.; Marcus, Marco A. E.; van Os, Jim; Lousberg, Richel

    2013-01-01

    In analyzing time-locked event-related potentials (ERPs), many studies have focused on specific peaks and their differences between experimental conditions. In theory, each latency point after a stimulus contains potentially meaningful information, regardless of whether it is peak-related. Based on this assumption, we introduce a new concept which allows for flexible investigation of the whole epoch and does not primarily focus on peaks and their corresponding latencies. For each trial, the entire epoch is partitioned into event-related fixed-interval areas under the curve (ERFIAs). These ERFIAs, obtained at single trial level, act as dependent variables in a multilevel random regression analysis. The ERFIA multilevel method was tested in an existing ERP dataset of 85 healthy subjects, who underwent a rating paradigm of 150 painful and non-painful somatosensory electrical stimuli. We modeled the variability of each consecutive ERFIA with a set of predictor variables among which were stimulus intensity and stimulus number. Furthermore, we corrected for latency variations of the P2 (260 ms). With respect to known relationships between stimulus intensity, habituation, and pain-related somatosensory ERP, the ERFIA method generated highly comparable results to those of commonly used methods. Notably, effects on stimulus intensity and habituation were also observed in non-peak-related latency ranges. Further, cortical processing of actual stimulus intensity depended on the intensity of the previous stimulus, which may reflect pain-memory processing. In conclusion, the ERFIA multilevel method is a promising tool that can be used to study event-related cortical processing. PMID:24224018

  8. The Hydrogen Epoch of Reionization Array Dish. II. Characterization of Spectral Structure with Electromagnetic Simulations and Its Science Implications.

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Bradley, Richard; Deboer, David; Hewitt, Jacqueline; Parsons, Aaron; Aguirre, James; Ali, Zaki S.; Bowman, Judd; Cheng, Carina; Neben, Abraham R.; Patra, Nipanjana; Thyagarajan, Nithyanandan; Venter, Mariet; de Lera Acedo, Eloy; Dillon, Joshua S.; Dickenson, Roger; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Klima, Patricia; Kohn, Saul; Schaffner, Patrick; Shelton, John; Saliwanchik, Benjamin; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch

    2016-11-01

    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish’s design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA’s suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA’s ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at a relatively low cost. We find that electromagnetic resonances in the HERA feed’s cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (-40 dB at 200 ns), which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k ∥ ≲ 0.2 h Mpc-1, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.

  9. Environmental Profile of a Community’s Health (EPOCH): An Ecometric Assessment of Measures of the Community Environment Based on Individual Perception

    PubMed Central

    Corsi, Daniel J.; Subramanian, S. V.; McKee, Martin; Li, Wei; Swaminathan, Sumathi; Lopez-Jaramillo, Patricio; Avezum, Alvaro; Lear, Scott A.; Dagenais, Gilles; Rangarajan, Sumathy; Teo, Koon; Yusuf, Salim; Chow, Clara K.

    2012-01-01

    Background Public health research has turned towards examining upstream, community-level determinants of cardiovascular disease risk factors. Objective measures of the environment, such as those derived from direct observation, and perception-based measures by residents have both been associated with health behaviours. However, current methods are generally limited to objective measures, often derived from administrative data, and few instruments have been evaluated for use in rural areas or in low-income countries. We evaluate the reliability of a quantitative tool designed to capture perceptions of community tobacco, nutrition, and social environments obtained from interviews with residents in communities in 5 countries. Methodology/ Principal Findings Thirteen measures of the community environment were developed from responses to questionnaire items from 2,360 individuals residing in 84 urban and rural communities in 5 countries (China, India, Brazil, Colombia, and Canada) in the Environmental Profile of a Community’s Health (EPOCH) study. Reliability and other properties of the community-level measures were assessed using multilevel models. High reliability (>0.80) was demonstrated for all community-level measures at the mean number of survey respondents per community (n = 28 respondents). Questionnaire items included in each scale were found to represent a common latent factor at the community level in multilevel factor analysis models. Conclusions/ Significance Reliable measures which represent aspects of communities potentially related to cardiovascular disease (CVD)/risk factors can be obtained using feasible sample sizes. The EPOCH instrument is suitable for use in different settings to explore upstream determinants of CVD/risk factors. PMID:22973446

  10. SSC San Diego Biennial Review 2003. Vol 3: Intelligence, Surveillance, and Reconnaissance

    DTIC Science & Technology

    2003-01-01

    following: • Improving a Commander’s situational analysis, awareness, and planning by leveraging the concepts of Smart Push (time-sensitive situational...The node FPGA implements a universal asynchronous receive and transmit ( UART )-style detector to decode the data stream. The data are then briefly...hypothetical sound sources at various points within a five-dimensional search grid over a short processing epoch. Historically, this has been

  11. Determination of nongeometric effects: equivalence between Artmann's and Tamir's generalized methods.

    PubMed

    Perez, Liliana I; Echarri, Rodolfo M; Garea, María T; Santiago, Guillermo D

    2011-03-01

    This work shows that all first- and second-order nongeometric effects on propagation, total or partial reflection, and transmission can be understood and evaluated considering the superposition of two plane waves. It also shows that this description yields results that are qualitatively and quantitatively compatible with those obtained by Fourier analysis of beams with Gaussian intensity distribution in any type of interface. In order to show this equivalence, we start by describing the first- and second-order nongeometric effects, and we calculate them analytically by superposing two plane waves. Finally, these results are compared with those obtained for the nongeometric effects of Gaussian beams in isotropic interfaces and are applied to different types of interfaces. A simple analytical expression for the angular shift is obtained considering the transmission of an extraordinary beam in a uniaxial-isotropic interface.

  12. The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.

    2018-05-01

    The Square Kilometre Array (SKA) Epoch of Reionisation and Cosmic Dawn (EoR/CD) experiments aim to explore the growth of structure and production of ionising radiation in the first billion years of the Universe. Here I describe the experiments planned for the future low-frequency components of the Observatory, and work underway to define, design and execute these programs.

  13. Geomagnetic reversal in brunhes normal polarity epoch.

    PubMed

    Smith, J D; Foster, J H

    1969-02-07

    The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent.

  14. Accounting for phase drifts in SSVEP-based BCIs by means of biphasic stimulation.

    PubMed

    Wu, Hung-Yi; Lee, Po-Lei; Chang, Hsiang-Chih; Hsieh, Jen-Chuen

    2011-05-01

    This study proposes a novel biphasic stimulation technique to solve the issue of phase drifts in steady-state visual evoked potential (SSVEPs) in phase-tagged systems. Phase calibration was embedded in stimulus sequences using a biphasic flicker, which is driven by a sequence with alternating reference and phase-shift states. Nine subjects were recruited to participate in off-line and online tests. Signals were bandpass filtered and segmented by trigger signals into reference and phase-shift epochs. Frequency components of SSVEP in the reference and phase-shift epochs were extracted using the Fourier method with a 50% overlapped sliding window. The real and imaginary parts of the SSVEP frequency components were organized into complex vectors in each epoch. Hotelling's t-square test was used to determine the significances of nonzero mean vectors. The rejection of noisy data segments and the validation of gaze detections were made based on p values. The phase difference between the valid mean vectors of reference and phase-shift epochs was used to identify user's gazed targets in this system. Data showed an average information transfer rate of 44.55 and 38.21 bits/min in off-line and online tests, respectively. © 2011 IEEE

  15. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  16. VizieR Online Data Catalog: Cordoba Carte du Ciel-Astrographic Catalog, CCAC (Orellana+, 2010)

    NASA Astrophysics Data System (ADS)

    Orellana, R. B.; de Biasi, M. S.; Bustos Fierro, I. H.; Calderon, J. H.

    2010-07-01

    This is Cordoba Carte du Ciel-Astrographic Catalog (CCAC) constructed from four Carte du Ciel and one Astrographic Catalog photographic plates for first epoch positions in the region of the open cluster Collinder 132. The plates were digitized using the MAMA measuring machine from the Paris Observatory. Stars from Tycho-2 catalogue (Hog et al., 2000, Cat. I/259) were used as reference stars. Every plate was reduced independently from the others adopting a first order polynomial in the measured coordinates. Proper motions were calculated using the CCAC positions as first epoch, and as second epoch the positions given by UCAC2 (Zacharias et al., 2004, Cat. I/289) and USNO-B1.0 (Monet et al., 2003, Cat. I/284). (2 data files).

  17. International Geomagnetic Reference Field: the 12th generation

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Finlay, Christopher C.; Beggan, Ciarán D.; Alken, Patrick; Aubert, Julien; Barrois, Olivier; Bertrand, Francois; Bondar, Tatiana; Boness, Axel; Brocco, Laura; Canet, Elisabeth; Chambodut, Aude; Chulliat, Arnaud; Coïsson, Pierdavide; Civet, François; Du, Aimin; Fournier, Alexandre; Fratter, Isabelle; Gillet, Nicolas; Hamilton, Brian; Hamoudi, Mohamed; Hulot, Gauthier; Jager, Thomas; Korte, Monika; Kuang, Weijia; Lalanne, Xavier; Langlais, Benoit; Léger, Jean-Michel; Lesur, Vincent; Lowes, Frank J.; Macmillan, Susan; Mandea, Mioara; Manoj, Chandrasekharan; Maus, Stefan; Olsen, Nils; Petrov, Valeriy; Ridley, Victoria; Rother, Martin; Sabaka, Terence J.; Saturnino, Diana; Schachtschneider, Reyko; Sirol, Olivier; Tangborn, Andrew; Thomson, Alan; Tøffner-Clausen, Lars; Vigneron, Pierre; Wardinski, Ingo; Zvereva, Tatiana

    2015-05-01

    The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth's magnetic field.

  18. Color reproduction with a smartphone

    NASA Astrophysics Data System (ADS)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-10-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition and understand how colors are made on digital displays.

  19. Mechanical Properties of Fibre-Reinforced Composites Tested under Superposed Hydrostatic Pressures

    DTIC Science & Technology

    1975-11-01

    The carbon fibres were Harwell Type II surface treated with a smn strength of 2240 K1v-2 and a noen diameter of 9.08 Pa. The glans fibres were Owens ... Corning type 810C. The fibres were pulled by means of a slteel cord cast, via a brasum scro, into the end of the 4 fibre b6ndles. The rods produced

  20. Like/dislike analysis using EEG: determination of most discriminative channels and frequencies.

    PubMed

    Yılmaz, Bülent; Korkmaz, Sümeyye; Arslan, Dilek Betül; Güngör, Evrim; Asyalı, Musa H

    2014-02-01

    In this study, we have analyzed electroencephalography (EEG) signals to investigate the following issues, (i) which frequencies and EEG channels could be relatively better indicators of preference (like or dislike decisions) of consumer products, (ii) timing characteristic of "like" decisions during such mental processes. For this purpose, we have obtained multichannel EEG recordings from 15 subjects, during total of 16 epochs of 10 s long, while they were presented with some shoe photographs. When they liked a specific shoe, they pressed on a button and marked the time of this activity and the particular epoch was labeled as a LIKE case. No button press meant that the subject did not like the particular shoe that was displayed and corresponding epoch designated as a DISLIKE case. After preprocessing, power spectral density (PSD) of EEG data was estimated at different frequencies (4, 5, …, 40 Hz) using the Burg method, for each epoch corresponding to one shoe presentation. Each subject's data consisted of normalized PSD values (NPVs) from all LIKE and DISLIKE cases/epochs coming from all 19 EEG channels. In order to determine the most discriminative frequencies and channels, we have utilized logistic regression, where LIKE/DISLIKE status was used as a categorical (binary) response variable and corresponding NPVs were the continuously valued input variables or predictors. We observed that when all the NPVs (total of 37) are used as predictors, the regression problem was becoming ill-posed due to large number of predictors (compared to the number of samples) and high correlation among predictors. To circumvent this issue, we have divided the frequency band into low frequency (LF) 4-19 Hz and high frequency (HF) 20-40 Hz bands and analyzed the influence of the NPV in these bands separately. Then, using the p-values that indicate how significantly estimated predictor weights are different than zero, we have determined the NPVs and channels that are more influential in determining the outcome, i.e., like/dislike decision. In the LF band, 4 and 5 Hz were found to be the most discriminative frequencies (MDFs). In the HF band, none of the frequencies seemed offer significant information. When both male and female data was used, in the LF band, a frontal channel on the left (F7-A1) and a temporal channel on the right (T6-A2) were found to be the most discriminative channels (MDCs). In the HF band, MDCs were central (Cz-A1) and occipital on the left (O1-A1) channels. The results of like timings suggest that male and female behavior for this set of stimulant images were similar. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, P; Wang, J; Zhong, H

    Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less

  2. [Walking abnormalities in children].

    PubMed

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional specialization of the cortex through the spinal stepping generator-fastigial nucleus-thalamus-cortex pathway. Early detection of locomotion failure and early adjustment of this condition through environmental factors can prevent the development of higher cortical dysfunction.

  3. Mount Etna: 3-D and 4-D structure using seismic tomography

    NASA Astrophysics Data System (ADS)

    Nunn, C.; Julian, B. R.; Foulger, G. R.; Patanè, D.; Ibáñez, J. M.; Briole, P.; Mhanna, N.

    2015-12-01

    We investigate the time-varying structure of Etna, an active stratovolcano in eastern Sicily, using seismic tomography. In volcanic systems, it is thought that the presence of fluids, cracks and pressurized gases can rapidly and drastically change the elastic properties of the host rocks. Recent work suggests that changes beneath Etna are detectable with seismic methods, and that these changes can be linked to volcanic activity. Temporal changes to Earth structure are commonly investigated by carrying out separate tomographic inversions for different epochs. However, repeated inversions of the same area are expected to vary, even if the structure itself does not change. This is due to variations in the seismic ray distribution and to observational errors. Potentially, changes between epochs which are due to experimental limitations can be misinterpreted as changes to the structure of the volcano. Consequently, we use a new tomographic program, TOMO4D, that inverts multiple data sets simultaneously [Julian & Foulger, Time-dependent seismic tomography, GJI, 2010]. This code imposes constraints which minimise the differences calculated between two epochs. The remaining structural variations are thus truly required to fit the data, and reflect changes which almost certainly exist between the two epochs. We have selected and relocated ~400 local earthquakes with at least 5 P and 5 S observations. They cover a period which includes several eruptions, from 1st November 2000 to 31st December 2006. We divide our data into different epochs and invert two epochs simultaneously. The models show a seismically fast central region, surrounded by a slower outer region. This suggests a central system of dykes or sills surrounded by volcanic sediments and country rock. At depths of 0-4 km below sea level the seismically fast region is not below the summit crater but is offset to the southwest. By monitoring the changes to the elastic parameters of the host rocks we observe temporal changes within the volcano. The technique has potential for long-term volcano monitoring and hazard assessment since it could be applied to monitoring changes from month to month.

  4. Patients with mild cognitive impairment have an abnormal upper-alpha event-related desynchronization/synchronization (ERD/ERS) during a task of temporal attention.

    PubMed

    Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio

    2015-03-01

    There are several evidences indicating that an impairment in attention-executive functions is present in prodromal Alzheimer's disease and predict future global cognitive decline. In particular, the issue of temporal orienting of attention in patients with mild cognitive impairment (MCI) due to Alzheimer's disease has been overlooked. The present research aimed to explore whether subtle deficits of cortical activation are present in these patients early in the course of the disease. We studied the upper-alpha event-related synchronization/desynchronization phenomenon during a paradigm of temporal orientation of attention. MCI patients (n = 27) and healthy elderly controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial responses were measured, respectively, before and after the motor response. Then, upper-alpha responses were compared to upper-alpha power during eyes-closed resting state. The time course of the task was characterized by two different behavioral conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event epoch (after button pressing), in which the subject was in a post-motor response condition. The principal findings are: (1) during the waiting epoch, only healthy elderly had an upper-alpha ERD at the level of both temporal and posterior brain regions; (2) during the post-motor epoch, the aMCI patients had a weaker upper-alpha ERS on prefrontal regions; (3) only healthy elderly showed a laterality effect: (a) during the waiting epoch, the upper-alpha ERD was greater at the level of the right posterior-temporal lead; during the post-motor epoch, the upper alpha ERS was greater on the left prefrontal lead. The relevance of these findings is that the weaker upper-alpha response observed in aMCI patients is evident even if the accuracy of the behavioral performance (i.e., button pressing) is still spared. This abnormal upper-alpha response might represent an early biomarker of the attention-executive network impairment in MCI due to Alzheimer's disease.

  5. Constraining the Movement of the Spiral Features and the Locations of Planetary Bodies Within the AB Aur System

    NASA Technical Reports Server (NTRS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K.; Fukagawa, Misato; Abe, Lyu

    2016-01-01

    We present a new analysis of multi-epoch, H-band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the systems spectral energy distribution (SED) and H-band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope dominated, can plausibly reproduce AB Aurs SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aurs spirals originate within the disk. In light of this, we also analyzed the movement of spiral structures in multi-epoch H-band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be 47 au.

  6. CONSTRAINING THE MOVEMENT OF THE SPIRAL FEATURES AND THE LOCATIONS OF PLANETARY BODIES WITHIN THE AB AUR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomax, Jamie R.; Wisniewski, John P.; Hashimoto, Jun

    We present a new analysis of multi-epoch, H -band, scattered light images of the AB Aur system. We use a Monte Carlo radiative transfer code to simultaneously model the system’s spectral energy distribution (SED) and H -band polarized intensity (PI) imagery. We find that a disk-dominated model, as opposed to one that is envelope-dominated, can plausibly reproduce AB Aur’s SED and near-IR imagery. This is consistent with previous modeling attempts presented in the literature and supports the idea that at least a subset of AB Aur’s spirals originate within the disk. In light of this, we also analyzed the movementmore » of spiral structures in multi-epoch H -band total light and PI imagery of the disk. We detect no significant rotation or change in spatial location of the spiral structures in these data, which span a 5.8-year baseline. If such structures are caused by disk–planet interactions, the lack of observed rotation constrains the location of the orbit of planetary perturbers to be >47 au.« less

  7. Classification of epilepsy types through global network analysis of scalp electroencephalograms

    NASA Astrophysics Data System (ADS)

    Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young

    2006-04-01

    Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.

  8. The Simultaneous Medicina-Planck Experiment: data acquisition, reduction and first results

    NASA Astrophysics Data System (ADS)

    Procopio, P.; Massardi, M.; Righini, S.; Zanichelli, A.; Ricciardi, S.; Libardi, P.; Burigana, C.; Cuttaia, F.; Mack, K.-H.; Terenzi, L.; Villa, F.; Bonavera, L.; Morgante, G.; Trigilio, C.; Trombetti, T.; Umana, G.

    2011-10-01

    The Simultaneous Medicina-Planck Experiment (SiMPlE) is aimed at observing a selected sample of 263 extragalactic and Galactic sources with the Medicina 32-m single-dish radio telescope in the same epoch as the Planck satellite observations. The data, acquired with a frequency coverage down to 5 GHz and combined with Planck at frequencies above 30 GHz, will constitute a useful reference catalogue of bright sources over the whole Northern hemisphere. Furthermore, source observations performed in different epochs and comparisons with other catalogues will allow the investigation of source variabilities on different time-scales. In this work, we describe the sample selection, the ongoing data acquisition campaign, the data reduction procedures, the developed tools and the comparison with other data sets. We present 5 and 8.3 GHz data for the SiMPlE Northern sample, consisting of 79 sources with δ≥ 45° selected from our catalogue and observed during the first 6 months of the project. A first analysis of their spectral behaviour and long-term variability is also presented.

  9. Accuracy of Automatic Polysomnography Scoring Using Frontal Electrodes

    PubMed Central

    Younes, Magdy; Younes, Mark; Giannouli, Eleni

    2016-01-01

    Study Objectives: The economic cost of performing sleep monitoring at home is a major deterrent to adding sleep data during home studies for investigation of sleep apnea and to investigating non-respiratory sleep complaints. Michele Sleep Scoring System (MSS) is a validated automatic system that utilizes central electroencephalography (EEG) derivations and requires minimal editing. We wished to determine if MSS' accuracy is maintained if frontal derivations are used instead. If confirmed, home sleep monitoring would not require home setup or lengthy manual scoring by technologists. Methods: One hundred two polysomnograms (PSGs) previously recorded from patients with assorted sleep disorders were scored using MSS once with central and once with frontal derivations. Total sleep time, sleep/stage R sleep onset latencies, awake time, time in different sleep stages, arousal/awakening index and apnea-hypopnea index were compared. In addition, odds ratio product (ORP), a continuous index of sleep depth/quality (Sleep 2015;38:641–54), was generated for every 30-sec epoch in each PSG and epoch-by-epoch comparison of ORP was performed. Results: Intraclass correlation coefficients (ICCs) ranged from 0.89 to 1.0 for the various sleep variables (0.96 ± 0.03). For epoch-by-epoch comparisons of ORP, ICC was > 0.85 in 96 PSGs. Lower values in the other six PSGs were related to signal artifacts in either derivation. ICC for whole-record average ORP was 0.98. Conclusions: MSS is as accurate with frontal as with central EEG derivations. The use of frontal electrodes along with MSS should make it possible to obtain high-quality sleep data without requiring home setup or lengthy scoring time by expert technologists. Citation: Younes M, Younes M, Giannouli E. Accuracy of automatic polysomnography scoring using frontal electrodes. J Clin Sleep Med 2016;12(5):735–746. PMID:26951417

  10. A comparison of video review and feedback device measurement of chest compressions quality during pediatric cardiopulmonary resuscitation.

    PubMed

    Hsieh, Ting-Chang; Wolfe, Heather; Sutton, Robert; Myers, Sage; Nadkarni, Vinay; Donoghue, Aaron

    2015-08-01

    To describe chest compression (CC) rate, depth, and leaning during pediatric cardiopulmonary resuscitation (CPR) as measured by two simultaneous methods, and to assess the accuracy and reliability of video review in measuring CC quality. Resuscitations in a pediatric emergency department are videorecorded for quality improvement. Patients aged 8-18 years receiving CPR under videorecording were eligible for inclusion. CPR was recorded by a pressure/accelerometer feedback device and tabulated in 30-s epochs of uninterrupted CC. Investigators reviewed videorecorded CPR and measured rate, depth, and release by observation. Raters categorized epochs as 'meeting criteria' if 80% of CCs in an epoch were done with appropriate depth (>45 mm) and/or release (<2.5 kg leaning). Comparison between device measurement and video was made by Spearman's ρ for rate and by κ statistic for depth and release. Interrater reliability for depth and release was measured by κ statistic. Five patients underwent videorecorded CPR using the feedback device. 97 30-s epochs of CCs were analyzed. CCs met criteria for rate in 74/97 (76%) of epochs; depth in 38/97 (39%); release in 82/97 (84%). Agreement between video and feedback device for rate was good (ρ = 0.77); agreement was poor for depth and release (κ 0.04-0.41). Interrater reliability for depth and release measured by video was poor (κ 0.04-0.49). Video review measured CC rate accurately; depth and release were not reliably or accurately assessed by video. Future research should focus on the optimal combination of methods for measuring CPR quality. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. A search for changing look quasars in second epoch imaging

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph; Myers, Adam; McGreer, Ian

    2018-01-01

    Over nearly two decades, the Sloan Digital Sky Survey has compiled a catalog of over half a million confirmed quasars. During that period approximately ten percent of these objects have been spectroscopically observed in two or more epochs over baselines of ten or more years. This led recently to the discovery of the largest change in luminosity ever before observed in a quasar. The dimming emission was a reflection of very significant changes in continuum and broad line properties, the source had effectively transitioned from a Type I quasar to a Type II AGN. Since then several more "changing look" quasars have been discovered in multi-epoch SDSS spectroscopy. Among them are objects with rising and falling luminosities, appearing and disappearing broad lines. The origin of this behavior is still very uncertain, currently favored is the scenario in which an accreting black hole is simply starved of fuel. Other plausible scenarios include flaring due to stellar tidal disruption close to the black hole or large changes in accretion flow, which can occur during transitions between radiatively efficient and inefficient accretion regimes. Monitoring of larger numbers of changing look quasars will help to elucidate these ideas.In this poster, we report on the progress of a pilot study in which we hope to learn how to select changing look quasars in multi-epoch imaging. This will allow us to take advantage of the entire SDSS quasar catalog rather than just the ten percent of objects with multi-epoch spectroscopy. Comparing archival SDSS and more recent Legacy Survey imaging over ten-year baselines we select objects whose photometry is consistent with the large changes in luminosity expected in changing look quasars. We aim to build up a catalog of both transitioned and transitioning objects for future monitoring.

  12. Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

    NASA Astrophysics Data System (ADS)

    Jarvis, Matt J.; Bowler, Rebecca A. A.; Hatfield, Peter W.

    2018-05-01

    Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.

  13. Multi-epoch BVRI Photometry of Luminous Stars in M31 and M33

    NASA Astrophysics Data System (ADS)

    Martin, John C.; Humphreys, Roberta M.

    2017-09-01

    We present the first four years of BVRI photometry from an on-going survey to annually monitor the photometric behavior of evolved luminous stars in M31 and M33. Photometry was measured for 199 stars at multiple epochs, including 9 classic Luminous Blue Variables (LBVs), 22 LBV candidates, 10 post-RGB A/F type hypergiants, and 18 B[e] supergiants. At all epochs, the brightness is measured in the V-band and at least one other band to a precision of 0.04-0.10 mag down to a limiting magnitude of 19.0-19.5. Thirty three stars in our survey exhibit significant variability, including at least two classic LBVs caught in S Doradus-type outbursts. A hyperlinked version of the photometry catalog is at http://go.uis.edu/m31m33photcat.

  14. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    NASA Astrophysics Data System (ADS)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  15. Pleasant and Unpleasant Odors Influence Hedonic Evaluations of Human Faces: An Event-Related Potential Study.

    PubMed

    Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej

    2015-01-01

    Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600-950 ms). In the 620-640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations.

  16. Pleasant and Unpleasant Odors Influence Hedonic Evaluations of Human Faces: An Event-Related Potential Study

    PubMed Central

    Cook, Stephanie; Fallon, Nicholas; Wright, Hazel; Thomas, Anna; Giesbrecht, Timo; Field, Matt; Stancak, Andrej

    2015-01-01

    Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs). Healthy, young participants (N = 20) rated neutral faces presented after a 3 s pulse of a pleasant odor (jasmine), unpleasant odor (methylmercaptan), or no-odor control (clean air). Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600−950 ms). In the 620−640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (>600) and ultra-late (>900 ms) latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations. PMID:26733843

  17. Tracking EEG changes in response to alpha and beta binaural beats.

    PubMed

    Vernon, D; Peryer, G; Louch, J; Shaw, M

    2014-07-01

    A binaural beat can be produced by presenting two tones of a differing frequency, one to each ear. Such auditory stimulation has been suggested to influence behaviour and cognition via the process of cortical entrainment. However, research so far has only shown the frequency following responses in the traditional EEG frequency ranges of delta, theta and gamma. Hence a primary aim of this research was to ascertain whether it would be possible to produce clear changes in the EEG in either the alpha or beta frequency ranges. Such changes, if possible, would have a number of important implications as well as potential applications. A secondary goal was to track any observable changes in the EEG throughout the entrainment epoch to gain some insight into the nature of the entrainment effects on any changes in an effort to identify more effective entrainment regimes. Twenty two healthy participants were recruited and randomly allocated to one of two groups, each of which was exposed to a distinct binaural beat frequency for ten 1-minute epochs. The first group listened to an alpha binaural beat of 10 Hz and the second to a beta binaural beat of 20 Hz. EEG was recorded from the left and right temporal regions during pre-exposure baselines, stimulus exposure epochs and post-exposure baselines. Analysis of changes in broad-band and narrow-band amplitudes, and frequency showed no effect of binaural beat frequency eliciting a frequency following effect in the EEG. Possible mediating factors are discussed and a number of recommendations are made regarding future studies, exploring entrainment effects from a binaural beat presentation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Technical Reports Server (NTRS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; hide

    2016-01-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  19. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. II. CHARACTERIZATION OF SPECTRAL STRUCTURE WITH ELECTROMAGNETIC SIMULATIONS AND ITS SCIENCE IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Neben, Abraham R.

    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish’s design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA’s suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA’s ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effectivemore » for increasing the sensitivity of EoR experiments at a relatively low cost. We find that electromagnetic resonances in the HERA feed’s cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (-40 dB at 200 ns), which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k {sub ∥} ≲ 0.2 h Mpc{sup -1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.« less

  20. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Chou, Yi; Ng, C.-Y.; Lin, Lupin Chun-Che; Yen, David Chien-Chang

    2017-07-01

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparable to the local spin-up rate of OAO 1657-415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ˜1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.

  1. Evolution of Spin, Orbital, and Superorbital Modulations of 4U 0114+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Ng, C.-Y.; Chou, Yi

    2017-07-20

    We report a systematic analysis of the spin, orbital, and superorbital modulations of 4U 0114+650, a high-mass X-ray binary that consists of one of the slowest spinning neutron stars. Using the dynamic power spectrum, we found that the spin period varied dramatically and is anticorrelated with the long-term X-ray flux variation that can be observed using the Rossi X-ray Timing Explorer ASM, Swift BAT, and the Monitor of All-sky X-ray Image. The spin-up rate over the entire data set is consistent with previously reported values; however, the local spin-up rate is considerably higher. The corresponding local spin-up timescale is comparablemore » to the local spin-up rate of OAO 1657−415, indicating that 4U 0114+650 could also have a transient disk. Moreover, the spin period evolution shows two ∼1000-day spin-down/random-walk epochs that appeared together with depressions of the superorbital modulation amplitude. This implies that the superorbital modulation was closely related to the presence of the accretion disk, which is not favored in the spin-down/random-walk epochs because the accretion is dominated by the direct wind accretion. The orbital period is stable during the entire time span; however, the orbital profile significantly changes with time. We found that the depth of the dip near the inferior conjunction of the companion is highly variable, which disfavors the eclipsing scenario. Moreover, the dip was less obvious during the spin-down/random-walk epochs, indicating its correlation with the accretion disk. Further monitoring in both X-ray and optical bands could reveal the establishment of the accretion disk in this system.« less

  2. The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.

    2016-07-01

    We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.

  3. Omega VLF timing revision 1

    NASA Technical Reports Server (NTRS)

    Swanson, E. R.; Kugel, C. P.

    1972-01-01

    The report specifically discusses time dissemination techniques, including epoch determination, frequency determination, and ambiguity resolution. It also discusses operational considerations including equipment, path selection, and adjustment procedure. epoch (the actual location or timing of periodic events) is shown to be both maintainable and calibratable by the techniques described to better than 3-microsecond accuracy; and frequency (the uniformity of the time scale) to about one part in 10 to the 12th power.

  4. Observing the epoch of galaxy formation.

    PubMed

    Steidel, C C

    1999-04-13

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

  5. Electro-oculography-based detection of sleep-wake in sleep apnea patients.

    PubMed

    Virkkala, Jussi; Toppila, Jussi; Maasilta, Paula; Bachour, Adel

    2015-09-01

    Recently, we have developed a simple method that uses two electro-oculography (EOG) electrodes for the automatic scoring of sleep-wake in normal subjects. In this study, we investigated the usefulness of this method on 284 consecutive patients referred for a suspicion of sleep apnea who underwent a polysomnography (PSG). We applied the AASM 2007 scoring rules. A simple automatic sleep-wake classification algorithm based on 18-45 Hz beta power was applied to the calculated bipolar EOG channel and was compared to standard polysomnography. Epoch by epoch agreement was evaluated. Eighteen patients were excluded due to poor EOG quality. One hundred fifty-eight males and 108 females were studied, their mean age was 48 (range 17-89) years, apnea-hypopnea index 13 (range 0-96) /h, BMI 29 (range 17-52) kg/m(2), and sleep efficiency 78 (range 0-98) %. The mean agreement in sleep-wake states between EOG and PSG was 85% and the Cohen's kappa was 0.56. Overall epoch-by-epoch agreement was 85%, and the Cohen's kappa was 0.57 with positive predictive value of 91% and negative predictive value of 65%. The EOG method can be applied to patients referred for suspicion of sleep apnea to indicate the sleep-wake state.

  6. A 2 epoch proper motion catalogue from the UKIDSS Large Area Survey

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Lucas, Phil; Burningham, Ben; Jones, Hugh; Pinfield, David; Smart, Ricky; Andrei, Alexandre

    2013-04-01

    The UKIDSS Large Area Survey (LAS) began in 2005, with the start of the UKIDSS program as a 7 year effort to survey roughly 4000 square degrees at high galactic latitudes in Y, J, H and K bands. The survey also included a significant quantity of 2-epoch J band observations, with epoch baselines ranging from 2 to 7 years. We present a proper motion catalogue for the 1500 square degrees of the 2 epoch LAS data, which includes some 800,000 sources with motions detected above the 5σ level. We developed a bespoke proper motion pipeline which applies a source-unique second order polynomial transformation to UKIDSS array coordinates of each source to counter potential local non-uniformity in the focal plane. Our catalogue agrees well with the proper motion data supplied in the current WFCAM Science Archive (WSA) DR9 catalogue where there is overlap, and in various optical catalogues, but it benefits from some improvements. One improvement is that we provide absolute proper motions, using LAS galaxies for the relative to absolute correction. Also, by using unique, local, 2nd order polynomial tranformations, as opposed to the linear transformations in the WSA, we correct better for any local distortions in the focal plane, not including the radial distortion that is removed by their pipeline.

  7. ENSO shifts and their link to Southern Africa surface air temperature in summer

    NASA Astrophysics Data System (ADS)

    Manatsa, D.; Mukwada, G.; Makaba, L.

    2018-05-01

    ENSO has been known to influence the trends of summer warming over Southern Africa. In this work, we used observational and reanalysis data to analyze the relationship between ENSO and maximum surface air temperature (SATmax) trends during the three epochs created by the ENSO phase shifts around 1977 and 1997 for the period 1960 to 2014. We observed that while ENSO and cloud cover remains the dominant factor controlling SATmax variability, the first two epochs had the predominant La Niña (El Niño)-like events connected to robust positive (negative) trends in cloud fraction. However, this established relationship reversed in the post-1997 La Niña-like dominated epoch which coincided with a falling cloud cover trend. It is established that this deviation from the previously established link within the previous epochs could be due to the post-1998 era in which SATmin was suppressed while SATmax was enhanced. The resulting increase in diurnal temperature range (DTR) could have discouraged the formation of low-level clouds which have relatively more extensive areal coverage and hence allowing more solar energy to reach the surface to boost daytime SATmax. It is noted that these relationships are more pronounced from December to March.

  8. An Exploratory Data Analysis System for Support in Medical Decision-Making

    PubMed Central

    Copeland, J. A.; Hamel, B.; Bourne, J. R.

    1979-01-01

    An experimental system was developed to allow retrieval and analysis of data collected during a study of neurobehavioral correlates of renal disease. After retrieving data organized in a relational data base, simple bivariate statistics of parametric and nonparametric nature could be conducted. An “exploratory” mode in which the system provided guidance in selection of appropriate statistical analyses was also available to the user. The system traversed a decision tree using the inherent qualities of the data (e.g., the identity and number of patients, tests, and time epochs) to search for the appropriate analyses to employ.

  9. Theoretical study of high-order harmonic generation from the hydrogen molecular ion with a dichromatic spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Hu; Wang, Yan-Jun; Miao, Xiang-Yang

    2018-05-01

    We theoretically investigate the enhancement of high-order harmonic generation by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation from the hydrogen molecular ion in a dichromatic inhomogeneous laser field. An ultrabroad supercontinuum up to 300 orders spectral width is generated. It is found that not only the inhomogeneity, but also the dichromatic field contributes to the significant extension of the harmonic cutoff compared with a monochromatic inhomogeneous laser field. Meanwhile, the long quantum paths can be suppressed and short ones can be enhanced by selecting optimized inhomogeneous parameter β, intensity and carrier envelope phase of the dichromatic inhomogeneous laser field. Furthermore, by superposing a properly selected range of the harmonic spectrum in the continuum region, an isolated 29-as pulse is generated. Both the classical theory and quantum time-frequency analysis are adopted to explain the physical mechanism.

  10. Mortality Trends in Pediatric and Congenital Heart Surgery: An Analysis of The Society of Thoracic Surgeons Congenital Heart Surgery Database.

    PubMed

    Jacobs, Jeffrey P; He, Xia; Mayer, John E; Austin, Erle H; Quintessenza, James A; Karl, Tom R; Vricella, Luca; Mavroudis, Constantine; O'Brien, Sean M; Pasquali, Sara K; Hill, Kevin D; Husain, S Adil; Overman, David M; St Louis, James D; Han, Jane M; Shahian, David M; Cameron, Duke; Jacobs, Marshall L

    2016-10-01

    Previous analyses of The Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database have demonstrated a reduction over time of risk-adjusted operative mortality after coronary artery bypass grafting. The STS Congenital Heart Surgery Database (STS CHSD) was queried to assess multiinstitutional trends over time in discharge mortality and postoperative length of stay (PLOS). Since 2009, operations in the STS CHSD have been classified according to STAT (The Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery) Congenital Heart Surgery Mortality Categories. The five STAT Mortality Categories were chosen to be optimal with respect to minimizing variation within categories and maximizing variation between categories. For this study, all index cardiac operations from 1998 to 2014, inclusive, were grouped by STAT Mortality Category (exclusions: patent ductus arteriosus ligation in patients weighing less than or equal to 2.5 kg and operations that could not be assigned to a STAT Mortality Category). End points were discharge mortality and PLOS in survivors for the entire period and for 4-year epochs. The Cochran-Armitage trend test was used to test the null hypothesis that the mortality was the same across epochs, by STAT Mortality Category. The analysis encompassed 202,895 index operations at 118 centers. The number of centers participating in STS CHSD increased in each epoch. Overall discharge mortality was 3.4% (6,959 of 202,895) for 1998 to 2014 and 3.1% (2,308 of 75,337) for 2011 to 2014. Statistically significant improvement in discharge mortality was seen in STAT Mortality Categories 2, 3, 4, and 5 (p values for STAT Mortality Categories 1 through 5 are 0.060, <0.001, 0.015, <0.001, and <0.001, respectively). PLOS in survivors was relatively unchanged over the same time intervals. Sensitivity analyses reveal that the finding of declining risk-stratified rates of discharge mortality over time is not simply attributable to the addition of more centers to the cohort over time. This 16-year analysis of STS CHSD reveals declining discharge mortality over time, especially for more complex operations. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. The W40 region in the gould belt: An embedded cluster and H II region at the junction of filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, K. K.; Ojha, D. K.; Kumar, M. S. N.

    We present a multiwavelength study of the W40 star-forming region using infrared (IR) observations in the UKIRT JHK bands, Spitzer Infrared Array Camera bands, and Herschel PACS bands, 2.12 μm H{sub 2} narrowband imaging, and radio continuum observations from GMRT (610 and 1280 MHz), in a field of view (FoV) of ∼34' × 40'. Archival Spitzer observations in conjunction with near-IR observations are used to identify 1162 Class II/III and 40 Class I sources in the FoV. The nearest-neighbor stellar surface density analysis shows that the majority of these young stellar objects (YSOs) constitute the embedded cluster centered on themore » high-mass source IRS 1A South. Some YSOs, predominantly the younger population, are distributed along and trace the filamentary structures at lower stellar surface density. The cluster radius is measured to be 0.44 pc—matching well with the extent of radio emission—with a peak density of 650 pc{sup –2}. The JHK data are used to map the extinction in the region, which is subsequently used to compute the cloud mass—126 M {sub ☉} and 71 M {sub ☉} for the central cluster and the northern IRS 5 region, respectively. H{sub 2} narrowband imaging shows significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio continuum analysis shows that this region has a blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission spectral energy distribution analysis is used to obtain physical parameters of the overall photoionized region and the IRS 5 sub-region. This multiwavelength scenario is suggestive of star formation having resulted from the merging of multiple filaments to form a hub. Star formation seems to have taken place in two successive epochs, with the first epoch traced by the central cluster and the high-mass star(s)—followed by a second epoch that is spreading into the filaments as uncovered by the Class I sources and even younger protostellar sources along the filaments. The IRS 5 H II region displays indications of swept-up material that has possibly led to the formation of protostars.« less

  12. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.

    PubMed

    Park, Eun-Hyoung; Eide, Per Kristian; Zurakowski, David; Madsen, Joseph R

    2012-12-01

    The pathophysiology of normal pressure hydrocephalus (NPH), and the related problem of patient selection for treatment of this condition, have been of great interest since the description of this seemingly paradoxical condition nearly 50 years ago. Recently, Eide has reported that measurements of the amplitude of the intracranial pressure (ICP) can both positively and negatively predict response to CSF shunting. Specifically, the fraction of time spent in a "high amplitude" (> 4 mm Hg) state predicted response to shunting, which may represent a marker for hydrocephalic pathophysiology. Increased ICP amplitude might suggest decreased brain compliance, meaning a static measure of a pressure-volume ratio. Recent studies of canine data have shown that the brain compliance can be described as a frequency-dependent function. The normal canine brain seems to show enhanced ability to absorb the pulsations around the heart rate, quantified as a cardiac pulsation absorbance (CPA), with properties like a notch filter in engineering. This frequency dependence of the function is diminished with development of hydrocephalus in dogs. In this pilot study, the authors sought to determine whether frequency dependence could be observed in humans, and whether the frequency dependence would be any different in epochs with high ICP amplitude compared with epochs of low ICP amplitude. Systems analysis was applied to arterial blood pressure (ABP) and ICP waveforms recorded from 10 patients undergoing evaluations of idiopathic NPH to calculate a time-varying transfer function that reveals frequency dependence and CPA, the measure of frequency-dependent compliance previously used in animal experiments. The ICP amplitude was also calculated in the same samples, so that epochs with high (> 4 mm Hg) versus low (≤ 4 mm Hg) amplitude could be compared in CPA and transfer functions. Transfer function analysis for the more "normal" epochs with low amplitude exhibits a dip or notch in the physiological frequency range of the heart rate, confirming in humans the pulsation absorber phenomenon previously observed in canine studies. Under high amplitude, however, the dip in the transfer function is absent. An inverse relationship between CPA index and ICP amplitude is evident and statistically significant. Thus, elevated ICP amplitude indicates decreased performance of the human pulsation absorber. The results suggest that the human intracranial system shows frequency dependence as seen in animal experiments. There is an inverse relationship between CPA index and ICP amplitude, indicating that higher amplitudes may occur with a reduced performance of the pulsation absorber. Our findings show that frequency dependence can be observed in humans and imply that reduced frequency-dependent compliance may be responsible for elevated ICP amplitude observed in patients who respond to CSF shunting.

  13. Notes of the Design of Two Supercavitating Hydrofoils

    DTIC Science & Technology

    1975-07-01

    Foil Section Characteristics Definition Tulin Two -Term Levi - Civita Larock and Street Two -Term three pararreter Prcgram and Inputs linearized two ...36 NOMENCLATURE Symbol Description Dimensions AIA 2 Angle distribution multipliers in Levi - radians Civita Program AR Aspect ratio CL Lift coefficient...angle of attack radian B Constant angle in Levi - Civita program radian 6 Linearized angle of attack superposed degrees C Wu’s 1955 program parameter

  14. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  15. Radial Mixing in Turbomachines.

    DTIC Science & Technology

    1988-02-01

    boundary layers. In a different approach (see 2.7), the flow is considered as a superposition of (1) a main inviscid primary flow, and (ii) viscous boundary...considered as the ’ primary flow’. The secondary flow due to an eventual non-free vortex behaviour is next computed from passage averaged vorticity and...continuity equations. The obtained velocities are superposed on the primary flow and therefore affect the subsequent steps. The end-wall boundary

  16. Superposed ridges of the Hesperia Planum area on Mars

    NASA Technical Reports Server (NTRS)

    Raitala, Jouko

    1988-01-01

    Mare ridges of the Hesperia Planum area form linear, reticular and circular structures. The main factors effective in mare ridge formation have been: (1) a large areal, or maybe even global, shortening and compression, (2) major crustal tectonics, and (3) the moderation of tectonic movements by the megaregolith discontinuity layer(s) between surface lavas and the bedrock leaving the compressional thrust to dominate over other fault movements in surface tectonics.

  17. Spectral Classification of MASTER J174041.78+272632.4

    NASA Astrophysics Data System (ADS)

    Silverman, J. M.; Cohen, D. P.; Filippenko, A. V.

    2012-06-01

    We report that inspection of a CCD spectrum (range 340-1000 nm), obtained on June 27.4 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that MASTER J174041.78+272632.4 (ATel #4213) is a Galactic variable star. Hydrogen Balmer absorption superposed with weak, narrow emission is detected at redshift 0. The spectrum roughly resembles that of a B[e] star.

  18. Chocolate tablet aspects of cytherean Meshkenet Tessera

    NASA Technical Reports Server (NTRS)

    Raitala, J.

    1993-01-01

    Meshkenet Tessera structures were mapped from Magellan data and several resemblances to chocolate tablet boudinage were found. The complex fault sets display polyphase tectonic sequences of a few main deformation phases. Shear and tension have contributed to the areal deformation. Main faults cut the 1600-km long Meshkenet Tessera highland into bar-like blocks which have ridge and groove pattern oriented along or at high angles to the faults. The first approach to the surface block deformation is an assumption of initial parallel shear faulting followed by a chocolate tablet boudinage. Major faults which cut Meshkenet Tessera into rectangular blocks have been active repetitively while two progressive or superposed boudinage set formations have taken place at high angles during the relaxational or flattening type deformation of the area. Chocolate tablet boudinage is caused by a layer-parallel two-dimensional extension resulting in fracturing of the competent layer. Such structures, defined by two sets of boudin neck lines at right angles to each other, have been described by a number of authors. They develop in a flattening type of bulk deformation or during superposed deformation where the rock is elongated in two dimensions parallel to the surface. This is an attempt to describe and understand the formation and development of structures of Meshkenet Tessera which has complicated fault structures.

  19. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, O.B.; Lear, K.L.

    1998-03-10

    The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

  20. Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer

    DOEpatents

    Spahn, Olga B.; Lear, Kevin L.

    1998-01-01

    A semiconductor structure. The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g. Al.sub.2 O.sub.3), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3-1.6 .mu.m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation.

  1. On sufficient statistics of least-squares superposition of vector sets.

    PubMed

    Konagurthu, Arun S; Kasarapu, Parthan; Allison, Lloyd; Collier, James H; Lesk, Arthur M

    2015-06-01

    The problem of superposition of two corresponding vector sets by minimizing their sum-of-squares error under orthogonal transformation is a fundamental task in many areas of science, notably structural molecular biology. This problem can be solved exactly using an algorithm whose time complexity grows linearly with the number of correspondences. This efficient solution has facilitated the widespread use of the superposition task, particularly in studies involving macromolecular structures. This article formally derives a set of sufficient statistics for the least-squares superposition problem. These statistics are additive. This permits a highly efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets that are composed from its constituent vector sets under addition or deletion operation, where the sufficient statistics of the constituent sets are already known (that is, the constituent vector sets have been previously superposed). This results in a drastic improvement in the run time of the methods that commonly superpose vector sets under addition or deletion operations, where previously these operations were carried out ab initio (ignoring the sufficient statistics). We experimentally demonstrate the improvement our work offers in the context of protein structural alignment programs that assemble a reliable structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this task is available online under an open-source license.

  2. The Carnegie Supernova Project I. Photometry data release of low-redshift stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Anderson, J. P.; Contreras, C.; Heinrich-Josties, E.; Morrell, N.; Phillips, M. M.; Anais, J.; Boldt, L.; Busta, L.; Burns, C. R.; Campillay, A.; Corco, C.; Castellon, S.; Folatelli, G.; González, C.; Holmbo, S.; Hsiao, E. Y.; Krzeminski, W.; Salgado, F.; Serón, J.; Torres-Robledo, S.; Freedman, W. L.; Hamuy, M.; Krisciunas, K.; Madore, B. F.; Persson, S. E.; Roth, M.; Suntzeff, N. B.; Taddia, F.; Li, W.; Filippenko, A. V.

    2018-02-01

    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction and the light-curve and progenitor star properties of the sample. The analysis of an accompanying visual-wavelength spectroscopy sample of 150 spectra will be the subject of a future paper. Based on observations collected at Las Campanas Observatory.Tables 2-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A134

  3. 21CMMC with a 3D light-cone: the impact of the co-evolution approximation on the astrophysics of reionization and cosmic dawn

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2018-07-01

    We extend 21CMMC, a Monte Carlo Markov Chain sampler of 3D reionization simulations, to perform parameter estimation directly on 3D light-cones of the cosmic 21 cm signal. This brings theoretical analysis closer to the tomographic 21 cm observations achievable with next generation interferometers like the Hydrogen Epoch of Reionization Array and the Square Kilometre Array. Parameter recovery can therefore account for modes that evolve with redshift/frequency. Additionally, simulated data can be more easily corrupted to resemble real data. Using the light-cone version of 21CMMC, we quantify the biases in the recovered astrophysical parameters if we use the 21 cm power spectrum from the co-evolution approximation to fit a 3D light-cone mock observation. While ignoring the light-cone effect under most assumptions will not significantly bias the recovered astrophysical parameters, it can lead to an underestimation of the associated uncertainty. However, significant biases (˜few - 10σ) can occur if the 21 cm signal evolves rapidly (i.e. the epochs of reionization and heating overlap significantly), and (i) foreground removal is very efficient, allowing large physical scales (k ≲ 0.1 Mpc-1) to be used in the analysis or (ii) theoretical modelling is accurate to within ˜10 per cent in the power spectrum amplitude.

  4. Analysis of photometric light curves solution for massive contact OB binary stars. LY Aurigae, BH Centauri, SV Centauri

    NASA Astrophysics Data System (ADS)

    Avvakumova, E. A.

    2010-01-01

    We searched for signs of the presence of circumstellar gaseous matter in photometric data for massive contact early-type binaries by analyzing residual curves (the dependence of the difference between the observed and theoretical brightness variations on the orbital-period phase) for three such stars. The residual curves make it possible to estimate the influence of gas in the common envelope on the observed light curves for different phase intervals and to qualitatively describe the character of the distortion of the light from the system’s components. Changes of the residual curves from filter to filter indicate varying conditions in the circumstellar matter. Changes of the residual curves from one observation epoch to another indicate varying conditions in the circumstellar matter. We compared the residual curves obtained for different photometric bands and epochs via a correlation analysis. The distortion of light from the components of LY Aurigae in the ultraviolet differs from that in the visual. The distortion of light from the components of SV Centauri is appreciable, but not selective, and does not vary in time, while the distortion of light from BH Centauri possesses a strong selective component. A comparison of the radii computed for the components of BH Centauri and SV Centauri shows that the gas distribution near these binaries varies in time.

  5. Evaluation and analysis of real-time precise orbits and clocks products from different IGS analysis centers

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Yang, Hongzhou; Gao, Yang; Yao, Yibin; Xu, Chaoqian

    2018-06-01

    To meet the increasing demands from the real-time Precise Point Positioning (PPP) users, the real-time satellite orbit and clock products are generated by different International GNSS Service (IGS) real-time analysis centers and can be publicly received through the Internet. Based on different data sources and processing strategies, the real-time products from different analysis centers therefore differ in availability and accuracy. The main objective of this paper is to evaluate availability and accuracy of different real-time products and their effects on real-time PPP. A total of nine commonly used Real-Time Service (RTS) products, namely IGS01, IGS03, CLK01, CLK15, CLK22, CLK52, CLK70, CLK81 and CLK90, will be evaluated in this paper. Because not all RTS products support multi-GNSS, only GPS products are analyzed in this paper. Firstly, the availability of all RTS products is analyzed in two levels. The first level is the epoch availability, indicating whether there is outage for that epoch. The second level is the satellite availability, which defines the available satellite number for each epoch. Then the accuracy of different RTS products is investigated on nominal accuracy and the accuracy degradation over time. Results show that Root-Mean-Square Error (RMSE) of satellite orbit ranges from 3.8 cm to 7.5 cm for different RTS products. While the mean Standard Deviations of Errors (STDE) of satellite clocks range from 1.9 cm to 5.6 cm. The modified Signal In Space Range Error (SISRE) for all products are from 1.3 cm to 5.5 cm for different RTS products. The accuracy degradation of the orbit has the linear trend for all RTS products and the satellite clock degradation depends on the satellite clock types. The Rb clocks on board of GPS IIF satellites have the smallest degradation rate of less than 3 cm over 10 min while the Cs clocks on board of GPS IIF have the largest degradation rate of more than 10 cm over 10 min. Finally, the real-time kinematic PPP is carried out to investigate the effects of different real-time products. The CLK90 has the best performance and mean RMSE of 26 globally distributed IGS stations in three components are 3.2 cm, 6.6 cm and 8.5 cm. And the second-best positioning results are using IGS03 products.

  6. Hubble imaging of V1331 Cygni: proper motion study of its circumstellar structures

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Stecklum, B.; Linz, Hendrik

    2016-05-01

    Aims: The young star V1331 Cyg received previous attention because it is surrounded by an optical, arc-like reflection nebula. V1331 Cyg is commonly considered to be a candidate for an object that has undergone an FU-Ori (FUOR) outbreak in the past. This in turn could lead to a time-varying appearance of the dusty arcs that may be revealed by multi-epoch imaging. In particular, a radial colour analysis of the dust arcs can then be attempted to check whether the radial grain size distribution was modified by a previous FUOR wind. Methods: Second-epoch imaging of V1331 Cyg was obtained by us in 2009 using the Hubble Space Telescope (HST). By comparing this to archival HST data from 2000, we studied the time evolution of the circumstellar nebulae. After a point spread function subtraction using model point spread functions, we used customised routines to perform a proper motion analysis. The nebula expansion was derived by deconvolving and correlating the two-epoch radial brightness profiles. Additional data from other facilities - TLS, UKIDSS, Spitzer, and Herschel - were also incorporated to improve our understanding of the star in terms of environment, viewing angle, bipolar outflow length, and the FUOR phenomenon. Results: The outer dust arc is found to be expanding at ≈14.8 ± 3.6 km s-1 on average. The expansion velocity for the inner ring is less consistent, between 0.8 km s-1 and 3.0 km s-1. The derived radial colour profiles do not indicate a spatial separation of the dust grain sizes. The Herschel 160 μm images show for the first time thermal emission from dust probably residing in the outer arc. By viewing V1331 Cyg almost pole-on, the length of the bipolar outflow exceeds previous estimates by far. Conclusions: The outer arc expansion timescale is consistent with the implantation time of the CO torus, which supports the hypothesis of an outburst that occurred a few thousand years ago. The azimuthal colour variation of the outer arc is probably due to changes of the scattering angle, imposed by a tilt or helical geometry of the dust configuration.

  7. Effectiveness of the HuCare Quality Improvement Strategy on health-related quality of life in patients with cancer: study protocol of a stepped-wedge cluster randomised controlled trial (HuCare2 study)

    PubMed Central

    Caminiti, Caterina; Iezzi, Elisa; Passalacqua, Rodolfo

    2017-01-01

    Introduction Our group previously demonstrated the feasibility of the HuCare Quality Improvement Strategy (HQIS), aimed at integrating into practice six psychosocial interventions recommended by international guidelines. This trial will assess whether the introduction of the strategy in oncology wards improves patient’s health-related quality of life (HRQoL). Methods and analysis Multicentre, incomplete stepped-wedge cluster randomised controlled trial, conducted in three clusters of five centres each, in three equally spaced time epochs. The study also includes an initial epoch when none of the centres are exposed to the intervention, and a final epoch when all centres will have implemented the strategy. The intervention is applied at a cluster level, and assessed at an individual level with cross-sectional model. A total of 720 patients who received a cancer diagnosis in the previous 2 months and about to start medical treatment will be enrolled. The primary aim is to evaluate the effectiveness of the HQIS versus standard care in terms of improvement of at least one of two domains (emotional and social functions) of HRQoL using the EORTC QLQ-C30 (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 items) questionnaire, at baseline and at 3 months. This outcome was chosen because patients with cancer generally exhibit low HRQoL, particularly at certain stages of care, and because it allows to assess the strategy’s impact as perceived by patients themselves. The HQIS comprises three phases: (1) clinician training—to improve communication-relational skills and instruct on the project; (2) centre support—four on-site visits by experts of the project team, aimed to boost motivation, help with context analysis and identification of solutions; (3) implementation of Evidence-Based Medicine (EBM) recommendations at the centre. Ethics and dissemination Ethics committee review approval has been obtained from the Ethics Committee of Parma. Results will be disseminated at conferences, and in peer-reviewed and professional journals intended for policymakers and managers. Trial registration number NCT03008993; Pre-results. PMID:28988170

  8. Black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these results to recent reverberation mapping studies. We then present an error budget which summarizes the minimum observable uncertainties as well as the amount of additional scatter and/or systematic offset that can be expected from the individual sources of error investigated.

  9. Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei

    NASA Astrophysics Data System (ADS)

    Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.

    2014-12-01

    We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.

  10. Observing the epoch of galaxy formation

    PubMed Central

    Steidel, Charles C.

    1999-01-01

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years. PMID:10200244

  11. VizieR Online Data Catalog: Proper motions and photometry of stars in NGC 3201 (Sariya+, 2017)

    NASA Astrophysics Data System (ADS)

    Sariya, D. P.; Jiang, I.-G.; Yadav, R. K. S.

    2017-07-01

    To determine the PMs of the stars in this work, we used archive images (http://archive.eso.org/eso/esoarchivemain.html) from observations made with the 2.2m ESO/MPI telescope at La Silla, Chile. This telescope contains a mosaic camera called the Wide-Field Imager (WFI), consisting of 4*2 (i.e., 8 CCD chips). Since each CCD has an array of 2048*4096 pixels, WFI ultimately produces images with a 34*33arcmin2 field of view. The observational run of the first epoch contains two images in B,V and I bands, each with 240s exposure time observed on 1999 December 05. In the second epoch, we have 35 images with 40s exposure time each in V filter observed during the period of 2014 April 02-05. Thus the epoch gap between the data is ~14.3 years. (2 data files).

  12. Validation of Regression-Based Myogenic Correction Techniques for Scalp and Source-Localized EEG

    PubMed Central

    McMenamin, Brenton W.; Shackman, Alexander J.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.

    2008-01-01

    EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect - even in low frequencies, such as alpha (8–13Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development. PMID:19298626

  13. Coordinated neuronal activity enhances corticocortical communication

    PubMed Central

    Zandvakili, Amin; Kohn, Adam

    2015-01-01

    Summary Relaying neural signals between cortical areas is central to cognition and sensory processing. The temporal coordination of activity in a source population has been suggested to determine corticocortical signaling efficacy, but others have argued that coordination is functionally irrelevant. We reasoned that if coordination significantly influenced signaling, spiking in downstream networks should be preceded by transiently elevated coordination in a source population. We developed a metric to quantify network coordination in brief epochs, and applied it to simultaneous recordings of neuronal populations in cortical areas V1 and V2 of the macaque monkey. Spiking in the input layers of V2 was preceded by brief epochs of elevated V1 coordination, but this was not the case in other layers of V2. Our results indicate that V1 coordination influences its signaling to direct downstream targets, but that coordinated V1 epochs do not propagate through multiple downstream networks as in some corticocortical signaling schemes. PMID:26291164

  14. Evolution of the luminosity function of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1985-01-01

    A nonparametric procedure for determination of the evolution of the luminosity function of extragalactic objects and use of this for prediction of expected redshift and luminosity distribution of objects is described. The relation between this statistical evolution of the population and their physical evolution, such as the variation with cosmological epoch of their luminosity and formation rate is presented. This procedure when applied to a sample of optically selected quasars with redshifts less than two shows that the luminosity function evolves more strongly for higher luminosities, indicating a larger quasar activity at earlier epochs and a more rapid evolution of the objects during their higher luminosity phases. It is also shown that absence of many quasars at redshifts greater than three implies slowing down of this evolution in the conventional cosmological models, perhaps indicating that this is near the epoch of the birth of the quasar (and galaxies).

  15. Geomagnetic polarity epochs: Nunivak Island, Alaska

    USGS Publications Warehouse

    Cox, A.; Dalrymple, G.B.

    1967-01-01

    New paleomagnetic and potassium-argon dating measurements have been made of basalt flows from Nunivak Island, Alaska, with the following results. (1) The best estimate of the age of the Brunhes/Matuyama polarity epoch boundary is found to be 0.694 m.y. (2) The best estimate of the age of the Gauss/Gilbert boundary is 3.32 m.y. (3) Three normally magnetized flows with ages from 0.93 to 0.88 m.y. are in accord with previous estimates of the age and duration of the Jaramillo normal event. (4) One normally magnetized flow with an age of 1.65 ?? 0.09 m.y. supplies additional evidence for the Gilsa?? normal event. (5) Two new normal events are identified within the Gilbert reversed epoch, the "Cochiti normal event" with an age of 3.7 m.y. and the "Nunivak normal event" with an age of 4.1 m.y. ?? 1967.

  16. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions Based on a Bank of Norm-Inequality-Constrained Epoch-State Filters

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.; Markley, F. L.; Alfriend, K. T.; Wright, C.; Arcido, J.

    2011-01-01

    Sequential probability ratio tests explicitly allow decision makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models 1he null hypothesis 1ha1 the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming highly-elliptical orbit formation flying mission.

  17. Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis

    NASA Astrophysics Data System (ADS)

    Libanov, M.; Mironov, S.; Rubakov, V.

    2016-08-01

    We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as t → -∞. The result remains valid in theories with additional matter that obeys the Null Energy Condition and interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with kination (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).

  18. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  19. RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbuhl, E.; Mutel, R. L.; Lynch, C.

    2015-09-20

    The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emissionmore » model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of the order of 10 G and 10{sup 5} cm{sup −3}, respectively, in the source region.« less

  20. A unified universe

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Jain, Rajeev Kumar

    2018-05-01

    We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction R^2 and the leading non-local term R1/\\square ^2R to the classical gravitational action. We find that the inflationary phase driven by R^2 term gracefully exits in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation-matter equality, the non-local term starts to dominate inducing an accelerated expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. This scenario thus provides a unified picture of inflation and dark energy in a single framework by means of a purely gravitational action without the usual need of a scalar field.

Top