NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
An Investigation of Convergent-Divergent Diffusers at Mach Number 1.85
NASA Technical Reports Server (NTRS)
Wyatt, Demarquis D; Hunczak, Henry R
1947-01-01
An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are providedmore » having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less
Conditions for supersonic bent Marshak waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qiang, E-mail: xuqiangxu@pku.edu.cn; Ren, Xiao-dong; Li, Jing
Supersonic radiation diffusion approximation is an useful method to study the radiation transportation. Considering the 2-d Marshak theory, and an invariable source temperature, conditions for supersonic radiation diffusion are proved to be coincident with that for radiant flux domination in the early time when √(ε)x{sub f}/L≪1. However, they are even tighter than conditions for radiant flux domination in the late time when √(ε)x{sub f}/L≫1, and can be expressed as M>4(1+ε/3)/3 and τ>1. A large Mach number requires the high temperature, while the large optical depth requires the low temperature. Only when the source temperature is in a proper region themore » supersonic diffusion conditions can be satisfied. Assuming a power-low (in temperature and density) opacity and internal energy, for a given density, the supersonic diffusion regions are given theoretically. The 2-d Marshak theory is proved to be able to bound the supersonic diffusion conditions in both high and low temperature regions, however, the 1-d theory only bounds it in low temperature region. Taking SiO{sub 2} and the Au, for example, these supersonic regions are shown numerically.« less
Viscous analyses for flow through subsonic and supersonic intakes
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Towne, Charles E.
1986-01-01
A parabolized Navier-Stokes code was used to analyze a number of diffusers typical of a modern inlet design. The effect of curvature of the diffuser centerline and transitioning cross sections was evaluated to determine the primary cause of the flow distortion in the duct. Results are presented for S-shaped intakes with circular and transitioning cross sections. Special emphasis is placed on verification of the analysis to accurately predict distorted flow fields resulting from pressure-driven secondary flows. The effect of vortex generators on reducing the distortion of intakes is presented. Comparisons of the experimental and analytical total pressure contours at the exit of the intake exhibit good agreement. In the case of supersonic inlets, computations of the inlet flow field reveal that large secondary flow regions may be generated just inside of the intake. These strong flows may lead to separated flow regions and cause pronounced distortions upstream of the compressor.
Characteristics of Perforated Diffusers at Free-stream Mach Number 1.90
NASA Technical Reports Server (NTRS)
Hunczak, Henry R; Kremzier, Emil J
1950-01-01
An investigation was conducted at Mach number 1.90 to determine pressure recovery and mass-flow characteristics of series of perforated convergent-divergent supersonic diffusers. Pressure recoveries as high as 96 percent were obtained, but at reduced mass flows through the diffuser. Theoretical considerations of effect of perforation distribution on shock stability in converging section of diffuser are presented and correlated with experimental data. A method of estimating relative importance of pressure recovery and mass flow on internal thrust coefficient basis is given and a comparison of various diffusers investigated is made.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive aerodynamic features of this new quiet tunnel will be a low-disturbance settling chamber, laminar boundary layers on the nozzle walls and steady supersonic diffuser flow. Furthermore, this new wind tunnel will operate continuously at uniquely low compression ratios (less than unity). This feature allows an existing non-specialist compressor to be used as a major part of the drive system. In this paper, we highlight activities associated with drive system development, the establishment of natural laminar flow on the test section walls, and instrumentation development for transition detection. Experimental results from an 1/8th-scale model of the supersonic wind tunnel are presented and discussed in association with theoretical predictions. Plans are progressing to build the full-scale wind tunnel by the end of 1993.
Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2014-01-01
A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.
Potential efficiencies of open- and closed-cycle CO, supersonic, electric-discharge lasers
NASA Technical Reports Server (NTRS)
Monson, D. J.
1976-01-01
Computed open- and closed-cycle system efficiencies (laser power output divided by electrical power input) are presented for a CW carbon monoxide, supersonic, electric-discharge laser. Closed-system results include the compressor power required to overcome stagnation pressure losses due to supersonic heat addition and a supersonic diffuser. The paper shows the effect on the system efficiencies of varying several important parameters. These parameters include: gas mixture, gas temperature, gas total temperature, gas density, total discharge energy loading, discharge efficiency, saturated gain coefficient, optical cavity size and location with respect to the discharge, and supersonic diffuser efficiency. Maximum open-cycle efficiency of 80-90% is predicted; the best closed-cycle result is 60-70%.
Supersonic throughflow fans for high-speed aircraft
NASA Technical Reports Server (NTRS)
Ball, Calvin L.; Moore, Royce D.
1990-01-01
A brief overview is provided of past supersonic throughflow fan activities; technology needs are discussed; the design is described of a supersonic throughflow fan stage, a facility inlet, and a downstream diffuser; and the results are presented from the analysis codes used in executing the design. Also presented is a unique engine concept intended to permit establishing supersonic throughflow within the fan on the runway and maintaining the supersonic throughflow condition within the fan throughout the flight envelope.
Modeling of static and flowing-gas diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman
2016-03-01
Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.
NASA Technical Reports Server (NTRS)
Tran, Donald H.
2004-01-01
A parametric study is conducted to evaluate a mixed-flow turbofan equipped with a supersonic through-flow rotor and a supersonic counter-rotating diffuser (SSTR/SSCRD) for a Mach 2.4 civil transport. Engine cycle, weight, and mission analyses are performed to obtain a minimum takeoff gross weight aircraft. With the presence of SSTR/SSCRD, the inlet can be shortened to provide better pressure recovery. For the same engine airflow, the inlet, nacelle, and pylon weights are estimated to be 73 percent lighter than those of a conventional inlet. The fan weight is 31 percent heavier, but overall the installed engine pod weight is 11 percent lighter than the current high-speed civil transport baseline conventional mixed-flow turbofan. The installed specific fuel consumption of the supersonic fan engine is 2 percent higher than that of the baseline turbofan at supersonic cruise. Finally, the optimum SSTR/SSCRD airplane meets the FAR36 Stage 3 noise limit and is within 7 percent of the baseline turbofan airplane takeoff gross weight over a 5000-n mi mission.
NASA Technical Reports Server (NTRS)
Stumpf, R.; Neumann, H. E.; Giamati, C. C.
1983-01-01
An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.
Ionospheres of the terrestrial planets
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Nagy, A. F.
1980-11-01
The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.
Chemically reacting supersonic flow calculation using an assumed PDF model
NASA Technical Reports Server (NTRS)
Farshchi, M.
1990-01-01
This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.
NASA Technical Reports Server (NTRS)
Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.
1987-01-01
Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.
Review of problems in application of supersonic combustion
NASA Technical Reports Server (NTRS)
Ferri, A.
1977-01-01
The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.
Numerical investigation of air flow in a supersonic wind tunnel
NASA Astrophysics Data System (ADS)
Drozdov, S. M.; Rtishcheva, A. S.
2017-11-01
In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.
Characterization of supersonic radiation diffusion waves
Moore, Alastair S.; Guymer, Thomas M.; Morton, John; ...
2015-02-27
Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less
Characterization of supersonic radiation diffusion waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Alastair S.; Guymer, Thomas M.; Morton, John
Supersonic and diffusive radiation flow is an important test problem for the radiative transfer models used in radiation-hydrodynamics computer codes owing to solutions being accessible via analytic and numeric methods. We present experimental results with which we compare these solutions by studying supersonic and diffusive flow in the laboratory. Here, we present results of higher-accuracy experiments than previously possible studying radiation flow through up to 7 high-temperature mean free paths of low-density, chlorine-doped polystyrene foam and silicon dioxide aerogel contained by an Au tube. Measurements of the heat front position and absolute measurements of the x-ray emission arrival at themore » end of the tube are used to test numerical and analytical models. We find excellent absolute agreement with simulations provided that the opacity and the equation of state are adjusted within expected uncertainties; analytical models provide a good phenomenological match to measurements but are not in quantitative agreement due to their limited scope.« less
Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA
2008-02-26
A gas compressor based on the use of a driven rotor having an axially oriented compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which forms a supersonic shockwave axially, between adjacent strakes. In using this method to compress inlet gas, the supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdyanamic flow path formed between the gas compression ramp on a strake, the shock capture lip on the adjacent strake, and captures the resultant pressure within the stationary external housing while providing a diffuser downstream of the compression ramp.
1978-05-01
distribution unlimited. I REPORTS ":-- r , Prepared for ARNOLD ENGINEERING DEVELOPMENT CENTER/DOTR AiR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATIONI...section and diffuser. The measurements used the JPL multlport measuring system , which simultaneously recorded the stag- nation temperature and...stagnation and static pressures were recorded by the data system . For. the experiments.at CIT, two techniques were employed. Within the first i00 cm from
Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows
NASA Technical Reports Server (NTRS)
Slater, John W.
2002-01-01
Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.
Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.
2017-01-01
Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.
STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.
VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE
The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.
2004-01-01
An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.
10' x 10' Supersonic Wind Tunnel Flexwall
2015-08-10
The flexwall section of NASA Glenn’s 10x10 supersonic wind tunnel is made up of two movable flexible steel sidewalls. These powerful hydraulic jacks move the walls in and out to control supersonic air speeds in the test section between Mach 2.0 and 3.5.
The Supersonic Axial-Flow Compressor
NASA Technical Reports Server (NTRS)
Kantrowitz, Arthur
1950-01-01
An investigation has been made to explore the possibilities of axial-flow compressors operating with supersonic velocities into the blade rows. Preliminary calculations showed that very high pressure ratios across a stage, together with somewhat increased mass flows, were apparently possible with compressors which decelerated air through the speed of sound in their blading. The first phase of the investigation was the development of efficient supersonic diffusers to decelerate air through the speed of sound. The present report is largely a general discussion of some of the essential aerodynamics of single-stage supersonic axial-flow compressors. As an approach to the study of supersonic compressors, three possible velocity diagrams are discussed briefly. Because of the encouraging results of this study, an experimental single-stage supersonic compressor has been constructed and tested in Freon-12. In this compressor, air decelerates through the speed of sound in the rotor blading and enters the stators at subsonic speeds. A pressure ratio of about 1.8 at an efficiency of about 80 percent has been obtained.
Supersonic combustion engine testbed, heat lightning
NASA Technical Reports Server (NTRS)
Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.
1990-01-01
The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.
NASA Technical Reports Server (NTRS)
Nussdorfer, Theodore J; Obery, Leonard J; Englert, Gerald W
1952-01-01
A study of a 20 degree and a 25 degree half-angle high mass-flow ratio conical supersonic inlet was made on a 16-inch ram jet in the 8- by 6-foot supersonic tunnel. A greater range of stable subcritical operation was obtained with the low mass-flow ratio inlets; a greater range was obtained with the 25 degree than with the 20 degree half-angle low mass-flow ratio inlet. The high mass-flow ratio inlet had the least drag.
Parametric analysis of diffuser requirements for high expansion ratio space engine
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Anderson, P. G.
1981-01-01
A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.
Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Hassan, H. A.
1993-01-01
Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.
Self-organized shocks in the sedimentation of a granular gas
NASA Astrophysics Data System (ADS)
Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten
2015-06-01
A granular gas in gravity heated from below develops a certain stationary density profile. When the heating is switched off, the granular gas collapses. We investigate the process of sedimentation using computational hydrodynamics, based on the Jenkins-Richman theory, and find that the process is significantly more complex than generally acknowledged. In particular, during its evolution, the system passes several stages which reveal distinct spatial regions of inertial (supersonic) and diffusive (subsonic) dynamics. During the supersonic stages, characterized by Mach>1 , the system develops supersonic shocks which are followed by a steep front of the hydrodynamic fields of temperature and density, traveling upward.
14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes that do not... RULES Operating Noise Limits § 91.819 Civil supersonic airplanes that do not comply with part 36. (a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with the...
14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes that do not... RULES Operating Noise Limits § 91.819 Civil supersonic airplanes that do not comply with part 36. (a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with the...
Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas
2014-01-01
walls of the supersonic test section after the nozzle exit diverge at a 1.5 degree angle each to provide boundary- layer relief. The static pressure in...the supersonic section is measured using a wall pressure tap in the side wall at the end of the nozzle . A 4 cm long, 5 mm diameter quartz cylinder...model is mounted in the center of the 7 cm long supersonic test section, i.e., 3.5 cm downstream of the end of the nozzle . The model extends wall-to
Supersonic Elliptical Ramp Inlet
NASA Technical Reports Server (NTRS)
Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)
2016-01-01
A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.
Supersonic coal water slurry fuel atomizer
Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John
1991-01-01
A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.
High-Tip-Speed, Low-Loading Transonic Fan Stage. Part 1: Aerodynamic and Mechanical Design
NASA Technical Reports Server (NTRS)
Wright, L. C.; Vitale, N. G.; Ware, T. C.; Erwin, J. R.
1973-01-01
A high-tip-speed, low-loading transonic fan stage was designed to deliver an overall pressure ratio of 1.5 with an adiabatic efficiency of 86 percent. The design flow per unit annulus area is 42.0 pounds per square foot. The fan features a hub/tip ratio of 0.46, a tip diameter of 28.74 in. and operates at a design tip speed of 1600 fps. For these design conditions, the rotor blade tip region operates with supersonic inlet and supersonic discharge relative velocities. A sophisticated quasi-three-dimensional characteristic section design procedure was used for the all-supersonic sections and the inlet of the midspan transonic sections. For regions where the relative outlet velocities are supersonic, the blade operates with weak oblique shocks only.
Experiments with a Supersonic Multi-Channel Radial Diffuser.
1980-09-01
unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance
A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
1988-01-01
Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy.
A qualitative view of cryogenic fluid injection into high speed flows
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Schlumberger, J.; Proctor, M.
1991-01-01
The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.
NASA Technical Reports Server (NTRS)
Bryson, Arthur Earl, Jr
1952-01-01
Report presents the results of interferometer measurements of the flow field near two-dimensional wedge and circular-arc sections of zero angle of attack at high-subsonic and low-supersonic velocities. Both subsonic flow with local supersonic zone and supersonic flow with detached shock wave have been investigated. Pressure distributions and drag coefficients as a function of Mach number have been obtained. The wedge data are compared with the theoretical work on flow past wedge sections of Guderley and Yoshihara, Vincenti and Wagner, and Cole. Pressure distributions and drag coefficients for the wedge and circular-arc sections are presented throughout the entire transonic range of velocities.
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A full Navier-Stokes analysis was performed to evaluate the performance of the subsonic diffuser of a NASA Lewis Research Center 70/30 mixed-compression bifurcated supersonic inlet for high speed civil transport application. The PARC3D code was used in the present study. The computations were also performed when approximately 2.5 percent of the engine mass flow was allowed to bypass through the engine bypass doors. The computational results were compared with the available experimental data which consisted of detailed Mach number and total pressure distribution along the entire length of the subsonic diffuser. The total pressure recovery, flow distortion, and crossflow velocity at the engine face were also calculated. The computed surface ramp and cowl pressure distributions were compared with experiments. Overall, the computational results compared well with experimental data. The present CFD analysis demonstrated that the bypass flow improves the total pressure recovery and lessens flow distortions at the engine face.
Diffusive, supersonic x-ray transport in radiatively heated foam cylinders
NASA Astrophysics Data System (ADS)
Back, C. A.; Bauer, J. D.; Hammer, J. H.; Lasinski, B. F.; Turner, R. E.; Rambo, P. W.; Landen, O. L.; Suter, L. J.; Rosen, M. D.; Hsing, W. W.
2000-05-01
Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in experiments on low density (40 mg/cc to 50 mg/cc) foams. Laser-heated Au hohlraums provided a radiation drive that heated SiO2 and Ta2O5 aerogel foams of varying lengths. Face-on emission measurements at 550 eV provided clean signatures of the radiation breakout. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. The Marshak radiation wave transport is studied in a geometry that allows direct comparisons with analytic models and two-dimensional code simulations. Experiments show important effects that will affect even nondiffusive and transonic radiation transport experiments studied by others in the field. This work is of basic science interest with applications to inertial confinement fusion and astrophysics.
SPF/DB primary structure for supersonic aircraft (T-38 horizontal stabilizer)
NASA Technical Reports Server (NTRS)
Delmundo, A. R.; Mcquilkin, F. T.; Rivas, R. R.
1981-01-01
The structural integrity and potential cost savings of superplastic forming/diffusion bonding (SPF/DB) titanium structure for future Supersonic Cruise Research (SCR) and military aircraft primary structure applications was demonstrated. Using the horizontal stabilizer of the T-38 aircraft as a baseline, the structure was redesigned to the existing criteria and loads, using SPF/DB titanium technology. The general concept of using a full-depth sandwich structure which is attached to a steel spindle, was retained. Trade studies demonstrated that the optimum design should employ double-truss, sinewave core in the deepest section of the surface, making a transition to single-truss core in the thinner areas at the leading and trailing edges and at the tip. At the extreme thin edges of the surface, the single-truss core was changed to dot core to provide for gas passages during the SPF/DB process. The selected SPF/DB horizontal stabilizer design consisted of a one-piece SPF/DB sinewave truss core panel, a trunnion fitting, and reinforcing straps. The fitting and the straps were mechanically fastened to the SPF/DB panel.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer
NASA Technical Reports Server (NTRS)
Weinstein, Maynard I
1950-01-01
An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.
NASA Technical Reports Server (NTRS)
Trimpi, Robert L
1956-01-01
From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)
Predictions of a Supersonic Jet-in-Crossflow: Comparisons Among CFD Solvers and with Experiment
2014-09-01
The transverse supersonic jet was produced using a converging-diverging nozzle with a design Mach number of 3.73, a conical expansion section half...J. F., and Erven, R. J., “Flow Separation Inside a Supersonic Nozzle Exhausting into a Subsonic Compressible Crossflw, “Journal of Propulsion and...Predictions of a Supersonic Jet-in-Crossflow: Comparisons Among CFD Solvers and with Experiment by James DeSpirito, Kevin D Kennedy, Clark
Discontinuous Galerkin method for multicomponent chemically reacting flows and combustion
NASA Astrophysics Data System (ADS)
Lv, Yu; Ihme, Matthias
2014-08-01
This paper presents the development of a discontinuous Galerkin (DG) method for application to chemically reacting flows in subsonic and supersonic regimes under the consideration of variable thermo-viscous-diffusive transport properties, detailed and stiff reaction chemistry, and shock capturing. A hybrid-flux formulation is developed for treatment of the convective fluxes, combining a conservative Riemann-solver and an extended double-flux scheme. A computationally efficient splitting scheme is proposed, in which advection and diffusion operators are solved in the weak form, and the chemically stiff substep is advanced in the strong form using a time-implicit scheme. The discretization of the viscous-diffusive transport terms follows the second form of Bassi and Rebay, and the WENO-based limiter due to Zhong and Shu is extended to multicomponent systems. Boundary conditions are developed for subsonic and supersonic flow conditions, and the algorithm is coupled to thermochemical libraries to account for detailed reaction chemistry and complex transport. The resulting DG method is applied to a series of test cases of increasing physico-chemical complexity. Beginning with one- and two-dimensional multispecies advection and shock-fluid interaction problems, computational efficiency, convergence, and conservation properties are demonstrated. This study is followed by considering a series of detonation and supersonic combustion problems to investigate the convergence-rate and the shock-capturing capability in the presence of one- and multistep reaction chemistry. The DG algorithm is then applied to diffusion-controlled deflagration problems. By examining convergence properties for polynomial order and spatial resolution, and comparing these with second-order finite-volume solutions, it is shown that optimal convergence is achieved and that polynomial refinement provides advantages in better resolving the localized flame structure and complex flow-field features associated with multidimensional and hydrodynamic/thermo-diffusive instabilities in deflagration and detonation systems. Comparisons with standard third- and fifth-order WENO schemes are presented to illustrate the benefit of the DG scheme for application to detonation and multispecies flow/shock-interaction problems.
Prediction of vortex shedding from circular and noncircular bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Mendenhall, M. R.; Perkins, S. C., Jr.
1984-01-01
An engineering prediction method and associated computer code NOZVTX to predict nose vortex shedding from circular and noncircular bodies in supersonic flow at angles of attack and roll are presented. The body is represented by either a supersonic panel method for noncircular cross sections or line sources and doublets for circular cross sections, and the lee side vortex wake is modeled by discrete vortices in crossflow planes. The three-dimensional steady flow problem is reduced to a two-dimensional, unsteady, separated flow problem for solution. Comparison of measured and predicted surface pressure distributions, flow field surveys, and aerodynamic characteristics is presented for bodies with circular and noncircular cross-sectional shapes.
NASA Technical Reports Server (NTRS)
Oswatitsch, K.
1947-01-01
The problem of the intake of air is treated for a missile flying at supersonic speeds and of changing the kinetic energy of the air into pressure with the least possible losses. Calculations are carried out concerning the results which can be attained. After a discussion of several preliminary experiments, the practical solution of the problem at hand is indicated by model experiments. The results proved very satisfactory in view of the results which had been attained previously and the values which were anticipated theoretically.
Investigation of parabolic computational techniques for internal high-speed viscous flows
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
An asymptotic analysis of supersonic reacting mixing layers
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Hussaini, M. Y.
1987-01-01
The purpose of this paper is to present an asymptotic analysis of the laminar mixing of the simultaneous chemical reaction between parallel supersonic streams of two reacting species. The study is based on a one-step irreversible Arrhenius reaction and on large activation energy asymptotics. Essentially it extends the work of Linan and Crespo to include the effect of free shear and Mach number on the ignition regime, the deflagration regime and the diffusion flame regime. It is found that the effective parameter is the product of the characteristic Mach number and a shear parameter.
Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.
1991-01-01
Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
NASA Astrophysics Data System (ADS)
Clark, Kylen D.
Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one that has been scaled to have equal aspect ratio. Comparisons of numerous parameters, such as flow angles, pressure (both static and stagnation), entropy, boundary layers and displacement thickness, vorticity, etc. paint a picture that shows the symmetric equal aspect ratio configuration to be decidedly better at producing desirable test section flow. It has been shown that virtually all parameters of interest are both more consistent and have lower deviation from ideal conditions for the symmetric equal area configuration.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2010-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.
Pioneering scramjet developments by Antonio Ferri
NASA Technical Reports Server (NTRS)
Erdos, John I.; Nucci, Louis M.
1992-01-01
The concept is summarized of a diffusive burning supersonic combustion ramjet engine (scramjet) envisioned by Antonio Ferri and some of the salient technologies are highlighted as developed by General Applied Science Labs, PIBAL, and NYU, under his direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guymer, T. M., E-mail: Thomas.Guymer@awe.co.uk; Moore, A. S.; Morton, J.
A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets inmore » both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.« less
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
Finite-rate chemistry effects in a Mach 2 reacting flow
NASA Technical Reports Server (NTRS)
Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.; Jarrett, O., Jr.; Northam, G. B.
1991-01-01
UV spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) are combined and applied to a supersonic flame. For the first time, simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are obtained with a 'single' excimer laser in a supersonic-lifted hydrogen-air diffusion flame. In the supersonic flame, a small amount of reaction occurs upstream of the lifted flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and high total enthalpy fluctuations lead to nonequilibrium values of temperature, and major and minor species concentrations. Combustion occurs farther downstream of the lifted region where slow three-body recombination reactions result in superequilibrium OH concentrations that depress the temperatures below their equilibrium values. Farther downstream, ambient air entrainment contaminates flame properties.
Laminar Flow Supersonic Wind Tunnel primary air injector
NASA Technical Reports Server (NTRS)
Smith, Brooke Edward
1993-01-01
This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.
Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John W.; Davis, David O.; Solano, Paul A.
2005-01-01
The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.
Effects of an AST program on US titanium story
NASA Technical Reports Server (NTRS)
Fitzsimmons, R. D.
1980-01-01
The singular importance of titanium as the primary structural material for an efficient advanced supersonic transport (AST) is outlined. The advantages of titanium over other metals are shown to apply to future subsonic aircraft as well as for supersonic designs. The cost problem of titanium is addressed and shown to be markedly reduced by the emerging technologies of superplastic forming/diffusion bonding sandwich, hot isostatic pressing of titanium powders, and isothermal forgings if demonstration programs should validate preliminary findings. The impact of a U.S. AST program on the United States titanium supply and demand picture is postulated.
Development and analysis of a STOL supersonic cruise fighter concept
NASA Technical Reports Server (NTRS)
Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.
1984-01-01
The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.
Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow
NASA Astrophysics Data System (ADS)
Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang
2017-07-01
Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.
Effect of Axisymmetric Aft Wall Angle Cavity in Supersonic Flow Field
NASA Astrophysics Data System (ADS)
Jeyakumar, S.; Assis, Shan M.; Jayaraman, K.
2018-03-01
Cavity plays a significant role in scramjet combustors to enhance mixing and flame holding of supersonic streams. In this study, the characteristics of axisymmetric cavity with varying aft wall angles in a non-reacting supersonic flow field are experimentally investigated. The experiments are conducted in a blow-down type supersonic flow facility. The facility consists of a supersonic nozzle followed by a circular cross sectional duct. The axisymmetric cavity is incorporated inside the duct. Cavity aft wall is inclined with two consecutive angles. The performance of the aft wall cavities are compared with rectangular cavity. Decreasing aft wall angle reduces the cavity drag due to the stable flow field which is vital for flame holding in supersonic combustor. Uniform mixing and gradual decrease in stagnation pressure loss can be achieved by decreasing the cavity aft wall angle.
Supersonic flow calculation using a Reynolds-stress and an eddy thermal diffusivity turbulence model
NASA Technical Reports Server (NTRS)
Sommer, T. P.; So, R. M. C.; Zhang, H. S.
1993-01-01
A second-order model for the velocity field and a two-equation model for the temperature field are used to calculate supersonic boundary layers assuming negligible real gas effects. The modeled equations are formulated on the basis of an incompressible assumption and then extended to supersonic flows by invoking Morkovin's hypothesis, which proposes that compressibility effects are completely accounted for by mean density variations alone. In order to calculate the near-wall flow accurately, correction functions are proposed to render the modeled equations asymptotically consistent with the behavior of the exact equations near a wall and, at the same time, display the proper dependence on the molecular Prandtl number. Thus formulated, the near-wall second order turbulence model for heat transfer is applicable to supersonic flows with different Prandtl numbers. The model is validated against flows with different Prandtl numbers and supersonic flows with free-stream Mach numbers as high as 10 and wall temperature ratios as low as 0.3. Among the flow cases considered, the momentum thickness Reynolds number varies from approximately 4,000 to approximately 21,000. Good correlation with measurements of mean velocity, temperature, and its variance is obtained. Discernible improvements in the law-of-the-wall are observed, especially in the range where the big-law applies.
Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing
2014-01-01
A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207
NASA Technical Reports Server (NTRS)
Pfenninger, W.; Syberg, J.
1974-01-01
The feasibility of quiet, suction laminarized, high Reynolds number (Re) supersonic wind tunnel nozzles was studied. According to nozzle wall boundary layer development and stability studies, relatively weak area suction can prevent amplified nozzle wall TS (Tollmien-Schlichting) boundary layer oscillations. Stronger suction is needed in and shortly upstream of the supersonic concave curvature nozzle area to avoid transition due to amplified TG (Taylor-Goertler) vortices. To control TG instability, moderately rapid and slow expansion nozzles require smaller total suction rates than rapid expansion nozzles, at the cost of larger nozzle length Re and increased TS disturbances. Test section mean flow irregularities can be minimized with suction through longitudinal or highly swept slots (swept behind local Mach cone) as well as finely perforated surfaces. Longitudinal slot suction is optimized when the suction-induced crossflow velocity increases linearly with surface distance from the slot attachment line toward the slot (through suitable slot geometry). Suction in supersonic blowdown tunnels may be operated by one or several individual vacuum spheres.
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory
NASA Technical Reports Server (NTRS)
Barnhart, Paul J.
1996-01-01
A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.
Simulation of High Power Lasers (Preprint)
2010-06-01
integration, which requires communication of zonal boundary information after each inner- iteration of the Gauss - Seidel or Jacobi matrix solver. Each...experiment consisting of a supersonic (M~2.2) converging -diverging nozzle section with secondary mass injection in the nozzle expansion downstream of...consists of a section of a supersonic (M~2.2) converging -diverging slit nozzle with one large and two small orifices that inject reactants into the
Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds
NASA Astrophysics Data System (ADS)
Goodsell, Aga Myung
The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not sufficient to warrant the resulting drag penalty at supersonic cruise. Furthermore, if maintaining laminar flow is critical to the design and some bluntness is necessary for manufacturing purposes, then the leading-edge diameter should be minimized to prevent transition and to reduce wave drag.
An Interactive, Design and Educational Tool for Supersonic External-Compression Inlets
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive design tool called VU-INLET was developed for the inviscid flow in rectangular, supersonic, external-compression inlets. VU-INLET solves for the flow conditions from free stream, through the supersonic compression ramps, across the terminal normal shock region and the subsonic diffuser to the engine face. It calculates the shock locations, the capture streamtube, and the additive drag of the inlet. The inlet geometry can be modified using a graphical user interface and the new flow conditions recalculated interactively. Free stream conditions and engine airflow can also be interactively varied and off-design performance evaluated. Flow results from VU-INLET can be saved to a file for a permanent record, and a series of help screens make the simulator easy to learn and use. This paper will detail the underlying assumptions of the models and the numerical methods used in the simulator.
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
NASA Technical Reports Server (NTRS)
Berman, H. A.; Anderson, J. D., Jr.; Drummond, J. P.
1982-01-01
The present investigation represents an application of computational fluid dynamics to a problem associated with the flow in the combustor region of a supersonic combustion ramjet engine (scramjet). The governing equations are considered, taking into account the Navier-Stokes equations, a molecular viscosity calculation, the molecular thermal conductivity, molecular diffusion, and a turbulence model. The employed numerical solution is patterned after the explicit, time-dependent, unsplit, predictor-corrector, finite-difference method given by MacCormack (1969). The calculation is concerned with the supersonic flow over a rearward-facing step with transverse H2 injection at conditions germane to the combustor region of a scramjet engine. The H2 jet acts as an effective body which essentially shields the primary flow from the rearward-facing step, thus substantially changing the wave pattern in the primary flow.
NASA Astrophysics Data System (ADS)
Huang, Wei; Wang, Zhen-guo; Li, Shi-bin; Liu, Wei-dong
2012-07-01
Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2-O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2-O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2-O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.
Diffusive, Supersonic X-ray Transport in Foam Cylinders
NASA Astrophysics Data System (ADS)
Back, Christina A.
1999-11-01
Diffusive supersonic radiation transport, where the ratio of the diffusive radiation front velocity to the material sound speed >2 has been studied in a series of laboratory experiments on low density foams. This work is of interest for radiation transport in basic science and astrophysics. The Marshak radiation wave transport is studied for both low and high Z foam materials and for different length foams in a novel hohlraum geometry that allows direct comparisons with 2-dimensional analytic models and code simulations. The radiation wave is created by a ~ 80 eV near blackbody 12-ns long drive or a ~ 200 eV 1.2-2.4 ns long drive generated by laser-heated Au hohlraums. The targets are SiO2 and Ta2O5 aerogel foams of varying lengths which span 10 to 50 mg/cc densities. Clean signatures of radiation breakout were observed by radially resolved face-on transmission measurements of the radiation flux at a photon energy of 250 eV or 550 eV. The high quality data provides new detailed information on the importance of both the fill and wall material opacities and heat capacities in determining the radiation front speed and curvature. note number.
Supersonic Cruise/Transonic Maneuver Wing Section Development Study.
1980-06-01
duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT
Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O
1958-01-01
A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.
NASA Technical Reports Server (NTRS)
Cole, G. L.; Willoh, R. G.
1975-01-01
A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.
2017-02-27
Quiet Supersonic Technology (QueSST) X-plane in the 8x6 Supersonic Wind Tunnel at NASA Glenn Research Center. This time-lapse shows the model support structure buildup and balance checkout as well as the installation of the model in the test section.
Investigation of Shock Diffusers at Mach Number 1.85. 1 - Projecting Single Shock Cones
1947-06-17
cylindrical simulated combustion chamber was used to vary the outlet area of the flow through the diffuser. The pitot -static rake , located as shown in the...Simulated combustion u chamber A 90° W •—Conical damper S Static-pressure orifice ps pitot -static "" rake ’ NATIONAL ADVISORY...recoveries were obtained with subsonic entrance flow. INTRODCJCTION For efficient conversion of the kinetic energy of a supersonic air stream into ram
Effect of heat release on the spatial stability of a supersonic reacting mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1988-01-01
A numerical study of the stability of compressible mixing layers in which a diffusion flame is embedded is described. The mean velocity profile has been approximated by a hyperbolic tangent profile and the limit of infinite activation energy taken, which reduces the diffusion flame to a flame sheet. The addition of combustion in the form of a flame sheet was found to have important, and complex, effects on the flow stability.
NASA Technical Reports Server (NTRS)
Arvin, G. H.; Israeli, L.; Stolpestad, J. H.; Stacher, G. W.
1981-01-01
The application of the superplastic forming/diffusion bonding (SPF/DB) process to supersonic cruise research is investigated. The capability of an SPF/DB titanium structure to meet the structural requirements of the inner wing area of the NASA arrow-wing advanced supersonic transport design is evaluated. Selection of structural concepts and their optimization for minimum weight, SPF/DB process optimization, fabrication of representative specimens, and specimen testing and evaluation are described. The structural area used includes both upper and lower wing panels, where the upper wing panel is used for static compression strength evaluation and the lower panel, in tension, is used for fracture mechanics evaluations. The individual test specimens, cut from six large panels, consist of 39 static specimens, 10 fracture mechanics specimens, and one each full size panel for compression stability and fracture mechanics testing. Tests are performed at temperatures of -54 C (-65 F), room temperature, and 260 C (500 F).
8- by 6-Foot Supersonic Wind Tunnel's Original Design
1949-07-21
Aerial view of the 8- by 6-Foot Supersonic Wind Tunnel in its original configuration at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and its first facility capable of running an engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study inlets and exit nozzles, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. In this photograph, the three drive motors in the structure at the left supplied power to the seven-stage axial-flow compressor in the light-colored structure. The air flow passed through flexible walls which were bent to create the desired speed. The test article was located in the 8- by 6-foot stainless steel test section located inside the steel pressure chamber at the center of this photograph. The tunnel dimensions were then gradually increased to slow the air flow before it exited into the atmosphere. The large two-story building in front of the tunnel was used as office space for the researchers.
Measurement of Vibrations from the 8- by 6-Foot Supersonic Wind Tunnel
1950-07-21
Reverend Henry Birkenhauer and E.F. Carome measure ground vibrations on West 220th Street caused by the operation of the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 8- by 6 was the laboratory’s first large supersonic wind tunnel. It was also the NACA’s most powerful supersonic tunnel, and the NACA’s first facility capable of running an engine at supersonic speeds. The 8- by 6 was originally an open-throat and non-return tunnel. This meant that the supersonic air flow was blown through the test section and out the other end into the atmosphere. Complaints from the local community led to the installation of a muffler at the tunnel exit and the eventual addition of a return leg. Reverend Brikenhauer, a seismologist, and Carome, an electrical technician were brought in from John Carroll University to take vibration measurements during the 8- by 6 tunnel’s first run with a supersonic engine. They found that the majority of the vibrations came from the air and not the ground. The tunnel’s original muffler offered some relief during the facility checkout runs, but it proved inadequate during the operation of an engine in the test section. Tunnel operation was suspended until a new muffler was designed and installed. The NACA researchers, however, were pleased with the tunnel’s operation. They claimed it was the first time a jet engine was operated in an airflow faster than Mach 2.
Experimental dynamic response of a two-dimensional, Mach 2.7, mixed compression inlet
NASA Technical Reports Server (NTRS)
Baumbick, R. J.; Neiner, G. H.; Cole, G. L.
1972-01-01
A test program was conducted on a two-dimensional supersonic inlet. Internal disturbances in diffuser exit mass flow were produced by oscillating overboard bypass doors. Open-loop dynamic responses of shock position, throat exit and diffuser exit static pressures are presented. The steady-state and dynamic coupling between ducts were also obtained. The experimental results from the two-dimensional inlet are compared to results from a similar size axisymmetric inlet and also to a transfer function synthesis program.
9x15 Low Speed Wind Tunnel Acoustic Improvements
NASA Technical Reports Server (NTRS)
Stark, David; Stephens, David
2016-01-01
The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.
9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview
NASA Technical Reports Server (NTRS)
Stephens, David
2016-01-01
The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.
Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David O.; Schoenenberger, Mark
2017-01-01
The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively. The Mach Number distribution shows small yet distinct differences between the two cases such as locations of shocks/shock reflections and a slightly different impingement point on the wall of the diffuser from the expansion at the exit of the nozzle. Similarly the temperature distribution indicates different flow recirculation patterns in the test cell. Both cases capture all the essential flow phenomena such as the shock-boundary layer interaction, plume expansion, expansion of the first stage ejectors, mixing between the engine plume and the first stage ejector flow and pressurization due to the first stage ejectors. The final paper will discuss thermal loads on the walls of the diffuser and cooling mechanisms investigated.
Construction of the 8- by 6-Foot Supersonic Wind Tunnel
1948-06-21
The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the nation’s largest supersonic facility when it began operation in April 1949. The emergence of new propulsion technologies such as turbojets, ramjets, and rockets during World War II forced the NACA and the aircraft industry to develop new research tools. In late 1945 the NACA began design work for new large supersonic wind tunnels at its three laboratories. The result was the 4- by 4-Foot Supersonic Wind Tunnel at Langley Memorial Aeronautical Laboratory, 6- by 6-foot supersonic wind tunnel at Ames Aeronautical Laboratory, and the largest facility, the 8- by 6-Foot Supersonic Wind Tunnel in Cleveland. The two former tunnels were to study aerodynamics, while the 8- by 6 facility was designed for supersonic propulsion. The 8- by 6-Foot Supersonic Wind Tunnel was used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0. A section of the tunnel is seen being erected in this photograph.
9. Photocopy of photograph (original photograph in the collection of ...
9. Photocopy of photograph (original photograph in the collection of Naval Surface Warfare Center Carderock Division, Bethesda, MD) VIEW SOUTH, SUPERSONIC WIND TUNNEL TEST SECTION, ca 1950 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
11. Photocopy of drawing (original in possession of Naval Surface ...
11. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) SUPERSONIC WIND TUNNEL BUILDING, SECTIONS AND DETAILS, MECHANICAL, 1947 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
An artificial nonlinear diffusivity method for supersonic reacting flows with shocks
NASA Astrophysics Data System (ADS)
Fiorina, B.; Lele, S. K.
2007-03-01
A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.
Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Payne, L.
1977-01-01
Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAILY, J. W. ..; RAEDER, J.; ZANKL, G.
1974-03-01
The effect of finite-rate homogeneous chemical reactions on the heat transfer rates to the walls of combustion-driven supersonic MHD generators was investigated. Experiments were performed on a 200 kW(e) combustion generator. The density of the heat flux to the wall was measured at various axial positions along both a circular cross section Hall-type channel and a diagonal wall channel with a rectangular cross section. From the results it was concluded that a substantial decrease in heat transfer rate to the walls of a combustion-driven supersonic MHD power generator was ob served which appears to occur because of chemical nonequilibrium inmore » the developing wall boundary layers. (LCL)« less
NASA Technical Reports Server (NTRS)
Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.
1990-01-01
Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.
Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.
NASA Astrophysics Data System (ADS)
Cheng, Tsarng-Sheng
1991-02-01
UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow three-body recombination reactions result in super-equilibrium OH concentrations that depress temperature below the equilibrium values. Near the equilibrium region, ambient air entrainment contaminates flame properties. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.
An oxidation and erosion test facility for cooled panels
NASA Technical Reports Server (NTRS)
Swartwout, W. H.; Erdos, J. I.; Engers, R. J.; Prescott, C.
1992-01-01
The Panel Oxidation and Erosion Testbed (POET) facility under construction at GASL to provide the required test environment is described. The POET facility comprises three major element including a vitiated air heater, a supersonic nozzle, and a test section. A hydrogen-fueld vitiated air heater will provide the oxidizing and erosive environment. The flow through the test section characterized by low supersonic speed and Mach number of 1.4 will maximize the local heat transfer rate and the local surface shear stress.
Leeward flow over delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
A survey was made of the parameters affecting the development of the leeward symmetric separated flow over slender delta wings immersed in a supersonic stream. The parameters included Mach number, Reynolds number, angle of attack, leading-edge sweep angle, and body cross-sectional shape, such that subsonic and supersonic leading-edge flows are encountered. It was seen that the boundaries between the various flow regimes existing about the leeward surface may conveniently be represented on a diagram with the components of angle of attack and Mach number normal to the leading edge as governing parameters.
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
NASA Lewis 8- by 6-foot supersonic wind tunnel user manual
NASA Technical Reports Server (NTRS)
Soeder, Ronald H.
1993-01-01
The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanOsdol, John G.
The disclosure provides an apparatus and method for gas separation through the supersonic expansion and subsequent deceleration of a gaseous stream. The gaseous constituent changes phase from the gaseous state by desublimation or condensation during the acceleration producing a collectible constituent, and an oblique shock diffuser decelerates the gaseous stream to a subsonic velocity while maintain the collectible constituent in the non-gaseous state. Following deceleration, the carrier gas and the collectible constituent at the subsonic velocity are separated by a separation means, such as a centrifugal, electrostatic, or impingement separator. In an embodiment, the gaseous stream issues from a combustionmore » process and is comprised of N.sub.2 and CO.sub.2.« less
NASA Astrophysics Data System (ADS)
Akhmetbekov, Y. K.; Bilsky, A. V.; Markovich, D. M.; Maslov, A. A.; Polivanov, P. A.; Tsyryul'Nikov, I. S.; Yaroslavtsev, M. I.
2009-09-01
Measurement results on the mean velocity fields and fields of velocity pulsations in the supersonic flows obtained by means of the PIV measurement set “POLIS” are presented. Experiments were carried out in the supersonic blow-down and stationary wind tunnels at the Mach numbers of 4.85 and 6. The method of flow velocity estimate in the test section of the blow-down wind tunnel was grounded by direct measurements of stagnation pressure in the setup settling chamber. The size of tracer particles introduced into the supersonic flow by a mist generator was determined; data on the structure of pulsating velocity in a track of an oblique-cut gas-dynamic whistle were obtained under the conditions of self-oscillations.
Numerical study of transition to supersonic flows in the edge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Rajiv, E-mail: rajiv@ipr.res.in; Artaud, Jean-François; Imbeaux, Frédéric
The plasma scrape-off layer (SOL) in a tokamak is characterized by ion flow down a long narrow flux tube terminating on a solid surface. The ion flow velocity along a magnetic field line can be equal to or greater than sonic at the entrance of a Debye sheath or upstream in the presheath. This paper presents a numerical study of the transition between subsonic and supersonics flows. A quasineutral one-dimensional (1D) fluid code has been used for modeling of plasma transport in the SOL along magnetic field lines, both in steady state and under transient conditions. The model uses coupledmore » equations for continuity, momentum, and energy balance with ionization, radiation, charge exchange, and recombination processes. The recycled neutrals are described in the diffusion approximation. Standard Bohm sheath criterion is used as boundary conditions at the material surface. Three conditions conducive for the generation of supersonic flows in SOL plasmas have been explored. It is found that in steady state high (attached) and low (detached) divertor temperatures cases, the role of particle, momentum, and energy loss is critical. For attached case, the appearance of shock waves in the divertor region if the incoming plasma flow is supersonic and its effect on impurity retention is presented. In the third case, plasma expansion along the magnetic field can yield time-dependent supersonic solutions in the quasineutral rarefaction wave. Such situations can arise in the parallel transport of intermittent structures such as blobs and edge localized mode filaments along field lines.« less
1996-12-01
Ramp AR 2........................................................ A.2 A. 9 . Test Section, No Injection or PME Ramp...B.2 B.8. Wide Ramp AR 1 ......................................................... B.2 B. 9 . Narrow Ramp AR 2...identified as a major near-field mixing factor.5 While work has continued in transverse injection, 7 ’ 9 later studies sought to produce greater
Lagrangian transported MDF methods for compressible high speed flows
NASA Astrophysics Data System (ADS)
Gerlinger, Peter
2017-06-01
This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).
Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets
NASA Technical Reports Server (NTRS)
Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.
2006-01-01
One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.
Ramjet Model and Technicians in the 8- by 6-Foot Supersonic Wind Tunnel
1952-02-21
A researcher at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory checks the setup of a RJM-2 ramjet model in the test section of the 8- by 6-Foot Supersonic Wind Tunnel. The 8- by 6 was not only the laboratory’s first large supersonic wind tunnel, but it was also the NACA’s first facility capable of testing an operating engine at supersonic speeds. The 8- by 6-foot tunnel has been used to study engine inlets, fuel injectors, flameholders, exit nozzles, and controls on ramjet and turbojet propulsion systems. The 8-foot wide and 6-foot tall test section consisted of 1-inch thick steel plates with hatches on the floor and ceiling to facilitate the installation of the test article. The two windows seen on the right wall allowed photographic equipment to be set up. The test section was modified in 1956 to accommodate transonic research. NACA engineers drilled 4,700 holes into the test section walls to reduce transonic pressure disturbances and shock waves. NACA Lewis undertook an extensive research program on ramjets in the 1940s using several of its facilities. Ramjets provide a very simple source of propulsion. They are basically a tube which ingests high speed air, ignites it, and then expels the heated air at a significantly higher velocity. Ramjets are extremely efficient and powerful but can only operate at high speeds. Therefore, they require a booster rocket or aircraft drop to accelerate them to high speeds before they can operate.
Supersonic liquid jets: Their generation and shock wave characteristics
NASA Astrophysics Data System (ADS)
Pianthong, K.; Zakrzewski, S.; Behnia, M.; Milton, B. E.
The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s.
Flamelet Model Application for Non-Premixed Turbulent Combustion
NASA Technical Reports Server (NTRS)
Secundov, A.; Bezgin, L.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Laskin, I.; Lomkov, K.; Tshepin, S.; Volkov, D.; Zaitsev, S.
1996-01-01
The current Final Report contains results of the study which was performed in Scientific Research Center 'ECOLEN' (Moscow, Russia). The study concerns the development and verification of non-expensive approach for modeling of supersonic turbulent diffusion flames based on flamelet consideration of the chemistry/turbulence interaction (FL approach). Research work included: development of the approach and CFD tests of the flamelet model for supersonic jet flames; development of the simplified procedure for solution of the flamelet equations based on partial equilibrium chemistry assumption; study of the flame ignition/extinction predictions provided by flamelet model. The performed investigation demonstrated that FL approach allowed to describe satisfactory main features of supersonic H 2/air jet flames. Model demonstrated also high capabilities for reduction of the computational expenses in CFD modeling of the supersonic flames taking into account detailed oxidation chemistry. However, some disadvantages and restrictions of the existing version of approach were found in this study. They were: (1) inaccuracy in predictions of the passive scalar statistics by our turbulence model for one of the considered test cases; and (2) applicability of the available version of the flamelet model to flames without large ignition delay distance only. Based on the results of the performed investigation, we formulated and submitted to the National Aeronautics and Space Administration our Project Proposal for the next step research directed toward further improvement of the FL approach.
Factors related to the implementation and diffusion of new technologies: a pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
In order to develop an understanding of how government intervention affects the processes of implementation and diffusion of new technologies, case studies of 14 technologies were carried out: automobiles; broadcast radio; frozen foods; black and white TV; color TV; polio vaccine; supersonic transport; fluoridation of water supplies; computer-aided instruction; basic oxygen process for steel; numerical control in manufacturing; digital computers; lasers; and integrated circuit. The key factors, their motivations for implementing/adopting the technology (or not doing so), the interactions among the key factors, and how these affected implementation/adoption are examined.
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Northam, G. B.; Wilson, L. G.
1992-01-01
A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.
Hemanth, Thayyullathil; Rajesh, Langoju; Padmaram, Renganathan; Vasu, R Mohan; Rajan, Kanjirodan; Patnaik, Lalit M
2004-07-20
We report experimental results of quantitative imaging in supersonic circular jets by using a monochromatic light probe. An expanding cone of light interrogates a three-dimensional volume of a supersonic steady-state flow from a circular jet. The distortion caused to the spherical wave by the presence of the jet is determined through our measuring normal intensity transport. A cone-beam tomographic algorithm is used to invert wave-front distortion to changes in refractive index introduced by the flow. The refractive index is converted into density whose cross sections reveal shock and other characteristics of the flow.
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The structural approach best suited for the design of a Mach 2.7 arrow-wing supersonic cruise aircraft was investigated. Results, procedures, and principal justification of results are presented. Detailed substantiation data are given. In general, each major analysis is presented sequentially in separate sections to provide continuity in the flow of the design concepts analysis effort. In addition to the design concepts evaluation and the detailed engineering design analyses, supporting tasks encompassing: (1) the controls system development; (2) the propulsion-airframe integration study; and (3) the advanced technology assessment are presented.
Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow
NASA Technical Reports Server (NTRS)
Bakirov, F. G.; Shaykhutdinov, Z. G.
1985-01-01
An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.
Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct
NASA Technical Reports Server (NTRS)
Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.
1997-01-01
Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.
Mixing Regimes in a Spatially Confined, Two-Dimensional, Supersonic Shear Layer
1992-07-31
MODEL ................................... 3 THE MODEL PROBLEMS .............................................. 6 THE ONE-DIMENSIONAL PROBLEM...the effects of the numerical diffusion on the spectrum. Guirguis et al.ś and Farouk et al."’ have studied spatially evolving mixing layers for equal...approximations. Physical and Numerical Model General Formulation We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a
Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet
NASA Astrophysics Data System (ADS)
Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis
2017-10-01
In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.
Noise Suppression Addition to the 8- by 6-Foot Supersonic Wind Tunnel
1950-08-21
The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the largest supersonic wind tunnel in the nation at the time and the only one able to test full-scale engines at supersonic speeds. The 8- by 6 was designed as a non-return and open-throat tunnel. A large compressor created the air flow at one end of the tunnel, squeezed the flow to increase its velocity just before the test section, then reduced the velocity, and expelled it into the atmosphere at the other end of the tunnel. This design worked well for initial aerodynamic testing, but the local community was literally rattled by the noise and vibrations when researchers began running engines in the test section in January 1950. The NACA’s most modern wind tunnel was referred to as “an 87,000-horsepower bugle aimed at the heart of Cleveland.” NACA Lewis responded to the complaints by adding an acoustic housing at the end of the tunnel to dampen the noise. The structure included resonator chambers and a reinforced concrete muffler structure. Modifications continued over the years. A return leg was added, and a second test section, 9 -by 15-foot, was incorporated in the return leg in the 1960s. Since its initial operation in 1948, the 8- by 6-foot tunnel has been aggressively used to support the nation's aeronautics and space programs for the military, industry, and academia.
NASA Technical Reports Server (NTRS)
Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)
1986-01-01
The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.
Comparing the efficiency of supersonic oxygen-iodine laser with different mixing designs
NASA Astrophysics Data System (ADS)
Vyskubenko, Boris A.; Adamenkov, A. A.; Bakshin, V. V.; Efremov, V. I.; Ilyin, S. P.; Kolobyanin, Yu. V.; Krukovsky, I. M.; Kudryashov, E. A.; Moiseyev, V. B.
2003-11-01
The paper presents experimental studies of supersonic oxygen-iodine laser (OIL) using twisted-flow singlet oxygen generator (SOG) over a wide range of the singlet oxygen pressures and the buffer gas flow rates. The experiments used different designs of the nozzle unit and mixing system for singlet oxygen and iodine gas with the carrier gas (such as nitrogen or helium). For a wide range of the key parameters, the study looked at the efficiency of supersonic OIL with variation of the singlet oxygen pressure. The measurements were made for different positions of the iodine injection plane with respect to the critical cross-section (both in the subsonic part of the nozzle and in the supersonic flow). The gas pressure at the nozzle unit entry was varied from 50 to 250 Torr. The total pressure loss have been found for different mixing designs. Experimental curves are given for energy performance and chemical efficiency of the supersonic OIL as a function of the key parameters. Comparison is made between the calculated and experimental data. For the optimum conditions of OIL operation, chemical efficiency of 25-30% has been achieved.
Quasi 1D Modeling of Mixed Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.
The COREL and W12SC3 computer programs for supersonic wing design and analysis
NASA Technical Reports Server (NTRS)
Mason, W. H.; Rosen, B. S.
1983-01-01
Two computer codes useful in the supersonic aerodynamic design of wings, including the supersonic maneuver case are described. The nonlinear full potential equation COREL code performs an analysis of a spanwise section of the wing in the crossflow plane by assuming conical flow over the section. A subsequent approximate correction to the solution can be made in order to account for nonconical effects. In COREL, the flow-field is assumed to be irrotional (Mach numbers normal to shock waves less than about 1.3) and the full potential equation is solved to obtain detailed results for the leading edge expansion, supercritical crossflow, and any crossflow shockwaves. W12SC3 is a linear theory panel method which combines and extends elements of several of Woodward's codes, with emphasis on fighter applications. After a brief review of the aerodynamic theory used by each method, the use of the codes is illustrated with several examples, detailed input instructions and a sample case.
Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft
NASA Technical Reports Server (NTRS)
Stitt, Leonard E.
1990-01-01
This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.
NASA Technical Reports Server (NTRS)
Yoshino, K.; Stark, G.; Esmond, J. R.; Smith, P. L.; Ito, K.; Matsui, T.
1995-01-01
High-resolution photoabsorption cross sections for eight CO bands, at wavelengths between 92.5 nm and 97.4 nm, have been measured in a supersonic jet-cooled source (approximately equals 20 K) at the Photon Factory synchrotron radiation facility. New integrated cross sections are reported for four bands between 92.5 nm and 94.2 nm. A low-temperature spectrum of the W(1)-X(0) band (95.6 nm), which was used to determine the absorbing CO column densities, is also presented. Additional jet-cooled cross section measurements were made on the L(0)-X(0), K(0)-X(0), and W(0)-X(0) bands (96.7-97.4 nm) which verify previously published results. A self-consistent set of band oscillator strengths is presented for the eight bands studied.
Thin oblique airfoils at supersonic speed
NASA Technical Reports Server (NTRS)
Jone, Robert T
1946-01-01
The well-known methods of thin-airfoil theory have been extended to oblique or sweptback airfoils of finite aspect ratio moving at supersonic speeds. The cases considered thus far are symmetrical airfoils at zero lift having plan forms bounded by straight lines. Because of the conical form of the elementary flow fields, the results are comparable in simplicity to the results of the two-dimensional thin-airfoil theory for subsonic speeds. In the case of untapered airfoils swept back behind the Mach cone the pressure distribution at the center section is similar to that given by the Ackeret theory for a straight airfoil. With increasing distance from the center section the distribution approaches the form given by the subsonic-flow theory. The pressure drag is concentrated chiefly at the center section and for long wings a slight negative drag may appear on outboard sections. (author)
HIMAT Inlet Model in the 8- by 6-Foot Supersonic Wind Tunnel
1979-02-21
A Highly Maneuverable Aircraft Technology (HiMAT) inlet model installed in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Engineers at the Ames Research Center, Dryden Flight Research Center, and Rockwell International designed two pilotless subscale HiMAT vehicles in the mid-1970s to study new design concepts for fighter aircraft in the transonic realm without risking the lives of test pilots. The aircraft used sophisticated technologies such as advanced aerodynamics, composite materials, digital integrated propulsion control, and digital fly-by-wire control systems. In late 1977 NASA Lewis studied the HiMAT’s General Electric J85-21 jet engine in the Propulsion Systems Laboratory. The researchers charted the inlet quality with various combinations anti-distortion screens. HiMAT employed a relatively short and curved inlet compared to actual fighter jets. In the spring of 1979, Larry Smith led an in-depth analysis of the HiMAT inlet in the 8- by 6 tunnel. The researchers installed vortex generators to battle flow separation in the diffuser. The two HiMAT aircraft performed 11 hours of flying over the course of 26 missions from mid-1979 to January 1983 at Dryden and Ames. Although the HiMAT vehicles were considered to be overly complex and expensive, the program yielded a wealth of data that would validate computer-based design tools.
Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor
NASA Technical Reports Server (NTRS)
O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.
2007-01-01
The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.
Noise and economic characteristics of an advanced blended supersonic transport concept
NASA Technical Reports Server (NTRS)
Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.
1982-01-01
Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.
NASA Technical Reports Server (NTRS)
Hilst, G. R.
1974-01-01
An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.
Numerical simulation of supersonic water vapor jet impinging on a flat plate
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Aono, Junya; Shima, Eiji
2012-11-01
We investigated supersonic water vapor jet impinging on a flat plate through numerical simulation. This simulation is for estimating heating effect of a reusable sounding rocket during vertical landing. The jet from the rocket bottom is supersonic, M=2 to 3, high temperature, T=2000K, and over-expanded. Atmospheric condition is a stationary standard air. The simulation is base on the full Navier-Stokes equations, and the flow is numerically solved by an unstructured compressible flow solver, in-house code LS-FLOW-RG. In this solver, the transport properties of muti-species gas and mass conservation equations of those species are considered. We employed DDES method as a turbulence model. For verification and validation, we also carried out a simulation under the condition of air, and compared with the experimental data. Agreement between our results and the experimental data are satisfactory. Through this simulation, we calculated the flow under some exit pressure conditions, and discuss the effects of pressure ratio on flow structures, heat transfer and so on. Furthermore, we also investigated diffusion effects of water vapor, and we confirmed that these phenomena are generated by the interaction of atmospheric air and affects the heat transfer to the surrounding environment.
Joint US/Russia TU-144 Engine Ground Tests
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Balser, Jeffrey S.; McCartney, Timothy P.; Richter, Charles A.; Woike, Mark R.
1997-01-01
Two engine research experiments were recently completed in Moscow, Russia using an engine from the Tu-144 supersonic transport airplane. This was a joint project between the United States and Russia. Personnel from the NASA Lewis Research Center, General Electric Aircraft Engines, Pratt & Whitney, the Tupolev Design Bureau, and EBP Aircraft LTD worked together as a team to overcome the many technical and cultural challenges. The objective was to obtain large scale inlet data that could be used in the development of a supersonic inlet system for a future High Speed Civil Transport (HSCT). The-first experiment studied the impact of typical inlet structures that have trailing edges in close proximity to the inlet/engine interface plane on the flow characteristics at that plane. The inlet structure simulated the subsonic diffuser of a supersonic inlet using a bifurcated splitter design. The centerbody maximum diameter was designed to permit choking and slightly supercritical operation. The second experiment measured the reflective characteristics of the engine face to incoming perturbations of pressure amplitude. The basic test rig from the first experiment was used with a longer spacer equipped with fast actuated doors. All the objectives set forth at the beginning of the project were met.
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
Axisymmetric Calculations of a Low-Boom Inlet in a Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Hirt, Stefanie M.; Reger, Robert
2011-01-01
This paper describes axisymmetric CFD predictions made of a supersonic low-boom inlet with a facility diffuser, cold pipe, and mass flow plug within wind tunnel walls, and compares the CFD calculations with the experimental data. The inlet was designed for use on a small supersonic aircraft that would cruise at Mach 1.6, with a Mach number over the wing of 1.7. The inlet was tested in the 8-ft by 6-ft Supersonic Wind Tunnel at NASA Glenn Research Center in the fall of 2010 to demonstrate the performance and stability of a practical flight design that included a novel bypass duct. The inlet design is discussed here briefly. Prior to the test, CFD calculations were made to predict the performance of the inlet and its associated wind tunnel hardware, and to estimate flow areas needed to throttle the inlet. The calculations were done with the Wind-US CFD code and are described in detail. After the test, comparisons were made between computed and measured shock patterns, total pressure recoveries, and centerline pressures. The results showed that the dual-stream inlet had excellent performance, with capture ratios near one, a peak core total pressure recovery of 96 percent, and a large stable operating range. Predicted core recovery agreed well with the experiment but predicted bypass recovery and maximum capture ratio were high. Calculations of offdesign performance of the inlet along a flight profile agreed well with measurements and previous calculations.
Advanced CFD Methods for Hypervelocity Wind Tunnels
2011-03-10
Mach 14 nozzle produces non-uniformities in the test section flow that are not desirable [1,2]. Calibration runs with Pitot pressure rakes suggest...flows is presented. The grid is based on the characteristic lines of the supersonic regions of the flow. This allows for grid alignment and clustering...novel grid generation scheme for hypersonic nozzle flows is presented. The grid is based on the characteristic lines of the supersonic regions of the
Diffusion and phase change characterization by mass spectrometry
NASA Technical Reports Server (NTRS)
Koslin, M. E.; White, F. A.
1979-01-01
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.
VISCOUS CHARACTERICTICS ANALYSIS
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1994-01-01
Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.
NASA Astrophysics Data System (ADS)
Firouz-Abadi, R. D.; Alavi, S. M.; Salarieh, H.
2013-07-01
The flutter of a 3-D rigid fin with double-wedge section and free-play in flapping, plunging and pitching degrees-of-freedom operating in supersonic and hypersonic flight speed regimes have been considered. Aerodynamic model is obtained by local usage of the piston theory behind the shock and expansion analysis, and structural model is obtained based on Lagrange equation of motion. Such model presents fast, accurate algorithm for studying the aeroelastic behavior of the thick supersonic fin in time domain. Dynamic behavior of the fin is considered over large number of parameters that characterize the aeroelastic system. Results show that the free-play in the pitching, plunging and flapping degrees-of-freedom has significant effects on the oscillation exhibited by the aeroelastic system in the supersonic/hypersonic flight speed regimes. The simulations also show that the aeroelastic system behavior is greatly affected by some parameters, such as the Mach number, thickness, angle of attack, hinge position and sweep angle.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr
1958-01-01
An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John; Saunders, John
2014-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, J. W.; Saunders, J. D.
2015-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Visualization of supersonic diesel fuel jets using a shadowgraph technique
NASA Astrophysics Data System (ADS)
Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.
2001-04-01
High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.
Experimental investigation of a newly designed supersonic wind tunnel
NASA Astrophysics Data System (ADS)
Wu, J.; Radespiel, R.
2015-06-01
The flow characteristics of the tandem nozzle supersonic wind tunnel at the Institute of Fluid Mechanics, Technische Universität Braunschweig, a are investigated. Conventional measurement techniques were utilized. The flow development is examined by pressure sensors installed at various streamwise positions. The temperature is measured in the storage tube and the settling chamber. The influence of flow treatment in the settling chamber on the flow quality is also studied. The flow quality of test section is evaluated by a 6-probe Pitot rake. The pressure fluctuations in the test section are studied by a sharp cone model. Eventually, good agreement between the measurements and numerical simulation of the tunnel design is achieved.
Low-speed performance of an axisymmetric, mixed-compression, supersonic inlet with auxiliary inlets
NASA Technical Reports Server (NTRS)
Trefny, C. J.; Wasserbauer, J. W.
1986-01-01
A test program was conducted to determine the aerodynamic performance and acoustic characteristics associated with the low-speed operation of a supersonic, axisymmetric, mixed-compression inlet with auxiliary inlets. Blow-in-auxiliary doors were installed on the NASA Ames P inlet. One door per quadrant was located on the cowl in the subsonic diffuser selection of the inlet. Auxiliary inlets with areas of 20 and 40 percent of the inlet capture area were tested statically and at free-stream Mach numbers of 0.1 and 0.2. The effects of boundary layer bleed inflow were investigated. A JT8D fan simulator driven by compressed air was used to pump inlet flow and to provide a characteristic noise signature. Baseline data were obtained at static free-stream conditions with the sharp P-inlet cowl lip replaced by a blunt lip. Auxiliary inlets increased overall total pressure recovery of the order of 10 percent.
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1992-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.
Dual-Pump CARS Thermometry and Species Concentration Measurements in a Supersonic Combustor
NASA Technical Reports Server (NTRS)
OByrne, Sean; Danehy, Paul M.; Cutler, Andrew D.
2004-01-01
The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center's Direct Connect Supersonic Combustion Test Facility. In this facility, hydrogen and air bum to increase the enthalpy of the test gas; O2 is then added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward facing step and another constant area section. At the end of this straight section H2 fuel is then injected at Mach 2 and at 30 deg. angle with respect to the freestream. One wall of the duct then expands at a 3 deg. angle for over 1 meter. The ensuing combustion is monitored optically through ports in the side of the combustor. CARS measurements were performed at the nozzle exit and at four different planes downstream fuel injection. Maps were obtained of the mean temperature, as well as quantitative N2 and O2 and qualitative H2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are presented for one of the planes of data.
Mass balancing of hollow fan blades
NASA Technical Reports Server (NTRS)
Kielb, R. E.
1986-01-01
A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.
Fatigue tests on big structure assemblies of concorde aircraft
NASA Technical Reports Server (NTRS)
Nguyen, V. P.; Perrais, J. P.
1972-01-01
Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.
1987-12-01
pressure between two Mach 3 flows approachs absolute zero , Pb=.04 psia for Pop= 100 psia. However, viscous effects increase the base pressure. Korst theory...this problem. Acetylene was chosen as the primary fuel because of its relatively low spontaneous ignition temperature, 581 degrees Farenheit , and high...with the corresponding test section. The exit dimension could be adjusted with a screw mechanism from zero to 2.625 inches. A bracket to hold a .250
NASA Technical Reports Server (NTRS)
Clements, T. R.
1972-01-01
A performance development program has been conducted on a short length, double-annular, ram-induction combustor. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. Performance tests were conducted at an inlet temperature and Mach number simulating engine sea level takeoff conditions. At the design temperature rise of 1600 F, combustion efficiency was 100%, pattern factor was 0.20, and combined diffuser-combustor pressure loss was 4.4% or 1.12 times the diffuser inlet velocity head. A temperature rise in excess of 2400 F with a combustion efficiency of 94% was demonstrated.
Nonequilibrium combustion effects in supersonic streams
NASA Technical Reports Server (NTRS)
Jensen, R. M.; Bryce, C. A.; Reese, B. A.
1972-01-01
This research program is a theoretical and experimental investigation of the effect of nonequilibrium conditions upon the performance of combustors employing supersonic flows. Calculations and experiments are made regarding the effects on the ignition of hydrogen of the nonequilibrium species (free radicals, atoms, water vapor, etc.) obtained using vitiated air. Results of this investigation show that the nonequilibrium free-radical content from a supersonic vitiated air source will cause early ignition of the hydrogen. An analysis of heated air expended from a high temperature source to test section conditions also indicates that there is sufficient free radical content in the incoming flow to cause early ignition. Water vapor, an inherent contaminant in the generation of vitiated air, was found to reduce the ignition delay period under the experimental conditions considered.
a Highly-Integrated Supersonic-Jet Fourier Transform Microwave Spectrometer
NASA Astrophysics Data System (ADS)
Gou, Qian; Feng, Gang; Grabow, Jens-Uwe
2017-06-01
A highly integrated supersonic-jet Fourier-transform microwave spectrometer of coaxially oriented beam-resonator arrangement (COBRA) type, covering 2-20GHz, has been recently built at Chongqing University, China. Built up almost entirely in an NI PXIe chassis, we take the advantage of the NI PXIe-5451 Dual-channel arbitrary waveform generator and the PXIe-5654 RF signal generator to create a spectrometer with wobbling capacity for fast resonator tuning. Based on the I/Q modulation, associate with PXI control and sequence boards built at the Leibniz Universitat Hannover, the design of the spectrometer is much simpler and very compact. The Fabry-Pérot resonator is semi-confocal with a spherical reflector of 630 mm diameter and a radius of 900 mm curvature and one circulator plate reflector of 630 mm diameter. The vacuum is effectuated by a three-stage mechanical (two-stage rotary vane and roots booster) pump at the fore line of a DN630 ISO-F 20000 L/s oil-diffusion pump. The supersonic-jet expansion is pulsed by a general valve Series 9 solenoid valve which is controlled by a general valve IOTA one driver governed by the experiment-sequence generation. First molecular examples to illustrate the performance of the new setup will include OCS and CF_3CHFCl.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2014-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Reduction of Altitude Diffuser Jet Noise Using Water Injection
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.
2011-01-01
A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.
Numerical and experimental investigation of VG flow control for a low-boom inlet
NASA Astrophysics Data System (ADS)
Rybalko, Michael
The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil flow visualization revealed a significant post-shock separation bubble with flow recirculation for the baseline (no VG) case that was substantially broken up in the micro-ramp VG case, consistent with simulations. Furthermore, the predicted subsonic VG performance with respect to a reduction in radial distortion (quantified in terms of axisymmetric incompressible shape factor) was found to be consistent with boundary layer rake measurements. To investigate the unsteady turbulent flow features associated with the shock-induced flow separation and the hub-side boundary layer, a detached eddy simulation (DES) approach using the WIND-US code was employed to model the baseline inlet flow field. This approach yielded improved agreement with experimental data for time-averaged diffuser stagnation pressure profiles and allowed insight into the pressure fluctuations and turbulent kinetic energy distributions which may be present at the AIP. In addition, streamwise shock position statistics were obtained and compared with experimental Schlieren results. The predicted shock oscillations were much weaker than those seen experimentally (by a factor of four), which indicates that the mechanism for the experimental shock oscillations was not captured. In addition, the novel supersonic vortex generator geometries were investigated experimentally (prior to the large-scale inlet 8'x6' wind tunnel tests) in an inlet-relevant flow field containing a Mach 1.4 normal shock wave followed by a subsonic diffuser. A parametric study of device height and distance upstream of the normal shock was undertaken for split-ramp and ramped-vane geometries. Flow field diagnostics included high-speed Schlieren, oil flow visualization, and Pitot-static pressure measurements. Parameters including flow separation, pressure recovery, centerline incompressible boundary layer shape factor, and shock stability were analyzed and compared to the baseline uncontrolled case. While all vortex generators tested eliminated centerline flow separation, the presence of VGs also increased the significant three-dimensionality of the flow via increased side-wall interaction. The stronger streamwise vorticity generated by ramped-vanes also yielded improved pressure recovery and fuller boundary layer velocity profiles within the subsonic diffuser. (Abstract shortened by UMI.)
OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A
NASA Technical Reports Server (NTRS)
Johansen, Craig T.; McRae, Colin D.; Danehy, Paul M.; Gallo, Emanuela C. A.; Cantu, Luca M. L.; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D., Jr.; Goyne, Chris P.; McDaniel, James C.
2013-01-01
Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia supersonic combustion experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optically accessible range of the combustor was imaged. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment.
Gas turbine engine with supersonic compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, II, William Byron; Lawlor, Shawn P.
A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more,more » when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.« less
NASA Technical Reports Server (NTRS)
Smith, Nathanial T.; Durston, Donald A.; Heineck, James T.
2017-01-01
In support of NASA's Commercial Supersonics Technology (CST) project, a test was conducted in the 9-by-7 ft. supersonic section of the NASA Ames Unitary Plan Wind Tunnel (UPWT). The tests were designed to study the interaction of shocks with a supersonic jet characteristic of those that may occur on a commercial supersonic aircraft. Multiple shock generating geometries were tested to examine the interaction dynamics as they pertain to sonic boom mitigation. An integral part of the analyses of these interactions are the interpretation of the data generated from the retroreflective Background Oriented Schlieren (RBOS) imaging technique employed for this test. The regularization- based optical flow methodology used to generate these data is described. Sample results are compared to those using normalized cross-correlation. The reduced noise, additional feature detail, and fewer false artifacts provided by the optical flow technique produced clearer time-averaged images, allowing for better interpretation of the underlying flow phenomena. These images, coupled with pressure signatures in the near field, are used to provide an overview of the detailed interaction flowfields.
Particle Acceleration via Reconnection Processes in the Supersonic Solar Wind
NASA Astrophysics Data System (ADS)
Zank, G. P.; le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.
2014-12-01
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = -(3 + MA )/2, where MA is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index -3(1 + τ c /(8τdiff)), where τ c /τdiff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τdiff/τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c -5 (c particle speed) spectra observed by Fisk & Gloeckler and Mewaldt et al.
Particle acceleration via reconnection processes in the supersonic solar wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zank, G. P.; Le Roux, J. A.; Webb, G. M.
An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced bymore » quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M{sub A} )/2, where M{sub A} is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ {sub c}/(8τ{sub diff})), where τ {sub c}/τ{sub diff} is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ{sub diff}/τ {sub c}. Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c {sup –5} (c particle speed) spectra observed by Fisk and Gloeckler and Mewaldt et al.« less
Investigation of Shock Diffusers at Mach Number 1.85. 2 - Projecting Double-Shock Cones
1947-06-17
pitot - static rake located as shown in figure 1(a). Total-pressure recoveries were measured for a series of tip projections varied in minimum steps...is shown. The position of the pitot -static rake with which these distributions were .measured is shown in figure 1(a). The data points correspond...Schroeder SUMMARY An Investigation has "been undertaken in the Cleveland 18- by 18-Inch, supersonic tunnel to determine the total-pressure
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1995-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.
Computational fluid dynamics study of the variable-pitch split-blade fan concept
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Elmquist, A. R.; Davis, R. L.
1992-01-01
A computational fluid dynamics study was conducted to evaluate the feasibility of the variable-pitch split-blade supersonic fan concept. This fan configuration was conceived as a means to enable a supersonic fan to switch from the supersonic through-flow type of operation at high speeds to a conventional fan with subsonic inflow and outflow at low speeds. During this off-design, low-speed mode of operation, the fan would operate with a substantial static pressure rise across the blade row like a conventional transonic fan; the front (variable-pitch) blade would be aligned with the incoming flow, and the aft blade would remain fixed in the position set by the supersonic design conditions. Because of these geometrical features, this low speed configuration would inherently have a large amount of turning and, thereby, would have the potential for a large total pressure increase in a single stage. Such a high-turning blade configuration is prone to flow separation; it was hoped that the channeling of the flow between the blades would act like a slotted wing and help alleviate this problem. A total of 20 blade configurations representing various supersonic and transonic configurations were evaluated using a Navier Stokes CFD program called ADAPTNS because of its adaptive grid features. The flow fields generated by this computational procedure were processed by another data reduction program which calculated average flow properties and simulated fan performance. These results were employed to make quantitative comparisons and evaluations of blade performance. The supersonic split-blade configurations generated performance comparable to a single-blade supersonic, through-flow fan configuration. Simulated rotor total pressure ratios of the order of 2.5 or better were achieved for Mach 2.0 inflow conditions. The corresponding fan efficiencies were approximately 75 percent or better. The transonic split-blade configurations having large amounts of turning were able to generate large amounts of total turning and achieve simulated total pressure ratios of 3.0 or better with subsonic inflow conditions. These configurations had large losses and low fan efficiencies in the 70's percent. They had large separated regions and low velocity wakes. Additional turning and diffusion of this flow in a subsequent stator row would probably be very inefficient. The high total pressure ratios indicated by the rotor performance would be substantially reduced by the stators, and the stage efficiency would be substantially lower. Such performance leaves this dual-mode fan concept less attractive than originally postulated.
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Nielsen, J. N.
1979-01-01
Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Librescu, Liviu; Marzocca, Piergiovanni
2001-01-01
The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
The control of the flutter instability and the conversion of the dangerous character of the flutter instability boundary into the undangerous one of a cross-sectional wing in a supersonic/hypersonic flow field is presented. The objective of this paper is twofold: i) to analyze the implications of nonlinear unsteady aerodynamics and physical nonlinearities on the character of the instability boundary in the presence of a control capability, and ii) to outline the effects played in the same respect by some important parameters of the aeroelastic system. As a by-product of this analysis, the implications of the active control on the linearized flutter behavior of the system are captured and emphasized. The bifurcation behavior of the open/closed loop aeroelastic system in the vicinity of the flutter boundary is studied via the use of a new methodology based on the Liapunov First Quantity. The expected outcome of this study is: a) to greatly enhance the scope and reliability of the aeroelastic analysis and design criteria of advanced supersonic/hypersonic flight vehicles and, b) provide a theoretical basis for the analysis of more complex nonlinear aeroelastic systems.
Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.
Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz
2002-10-04
Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).
Supersonic Wind Tunnel Capabilities Expanded Into Subsonic Region
NASA Technical Reports Server (NTRS)
Roeder, James W., Jr.
1997-01-01
The operating envelope of the Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Lewis Research Center was recently expanded to include operation at subsonic test section speeds. This new capability generates test section air speeds ranging from Mach 0.05 to 0.35 (32 to 240 kn). Most of the expansion in air speed range was obtained by running the tunnel's main compressor at much lower speeds than ever before. The compressor drive system, consisting of four large electric motors, was run with only one or two motors energized to obtain the lower compressor speed range. This new capability makes the 10x10 SWT more versatile and gives U.S. researchers an enhanced ability to perform subsonic propulsion and aerodynamic testing.
User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised
NASA Technical Reports Server (NTRS)
Soeder, Ronald H.
1995-01-01
This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.
Wind Tunnel Complex at the Aircraft Engine Research Laboratory
1945-09-21
This aerial photograph shows the entire original wind tunnel complex at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The large Altitude Wind Tunnel (AWT) at the center of the photograph dominates the area. The Icing Research Tunnel to the right was incorporated into the lab’s design to take advantage of the AWT’s powerful infrastructure. The laboratory’s first supersonic wind tunnel was added to this complex just prior to this September 1945 photograph. The AWT was the nation’s only wind tunnel capable of studying full-scale engines in simulated flight conditions. The AWT’s test section and control room were within the two-story building near the top of the photograph. The exhauster equipment used to thin the airflow and the drive motor for the fan were in the building to the right of the tunnel. The unique refrigeration equipment was housed in the structure to the left of the tunnel. The Icing Research Tunnel was an atmospheric tunnel that used the AWT’s refrigeration equipment to simulate freezing rain inside its test section. A spray bar system inside the tunnel was originally used to create the droplets. The 18- by 18-inch supersonic wind tunnel was built in the summer of 1945 to take advantage of the AWT’s powerful exhaust system. It was the lab’s first supersonic tunnel and could reach Mach 1.91. Eventually the building would house three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951.
Slot Nozzle Effects for Reduced Sonic Boom on a Generic Supersonic Wing Section
NASA Technical Reports Server (NTRS)
Caster, Raymond S.
2010-01-01
NASA has conducted research programs to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas. Restrictions are due to the disturbance from the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Results from two-dimensional computational fluid dynamic (CFD) analyses (performed on a baseline Mach 2.0 nozzle in a simulated Mach 2.2 flow) indicate that over-expanded and under-expanded operation of the nozzle has an effect on the N-wave boom signature. Analyses demonstrate the feasibility of reducing the magnitude of the sonic boom N-wave by controlling the nozzle plume interaction with the nozzle boat tail shock structure. This work was extended to study the impact of integrating a high aspect ratio exhaust nozzle or long slot nozzle on the trailing edge of a supersonic wing. The nozzle is operated in a highly under-expanded condition, creating a large exhaust plume and a shock at the trailing edge of the wing. This shock interacts with and suppresses the expansion wave caused by the wing, a major contributor to the sonic boom signature. The goal was to reduce the near field pressures caused by the expansion using a slot nozzle located at the wing trailing edge. Results from CFD analysis on a simulated wing cross-section and a slot nozzle indicate potential reductions in sonic boom signature compared to a baseline wing with no propulsion or trailing edge exhaust. Future studies could investigate if this effect could be useful on a supersonic aircraft for main propulsion, auxiliary propulsion, or flow control.
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions.
Study of aerodynamic noise in low supersonic operation of an axial flow compressor
NASA Technical Reports Server (NTRS)
Arnoldi, R. A.
1972-01-01
A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.
A Lagrangian Simulation of Subsonic Aircraft Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Morris, G. A.
1999-01-01
To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
Laser aircraft. [using kerosene
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Sun, K.; Jones, W. S.
1979-01-01
The concept of a laser-powered aircraft is discussed. Laser flight would be completely compatible with existing airports and air-traffic control, with the airplane using kerosene only power, up to a cruising altitude of 9 km where the laser satellite would lock on and beam laser energy to it. Two major components make up the laser turbofan, a heat exchanger for converting laser radiation into thermal energy, and conventional turbomachinery. The laser power satellite would put out 42 Mw using a solar-powered thermal engine to generate electrical power for the closed-cycle supersonic electric discharge CO laser, whose radiators, heat exchangers, supersonic diffuser, and ducting will amount to 85% of the total subsystem mass. Relay satellites will be used to intercept the beam from the laser satellite, correct outgoing beam aberrations, and direct the beam to the next target. A 300-airplane fleet with transcontinental range is projected to save enough kerosene to equal the energy content of the entire system, including power and relay satellites, in one year.
The preparation and application of white graphene
NASA Astrophysics Data System (ADS)
Zhou, Chenghong
2014-12-01
In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.
NASA Technical Reports Server (NTRS)
Wilson, E. M. (Inventor)
1969-01-01
A supersonic wind wind tunnel is described for testing several air foils mounted in a row. A test section of a wind tunnel contains means for mounting air foil sections in a row, means for rotating each section about an axis so that the angle of attack of each section changes with the other sections, and means for rotating the row with respect to the air stream so that the row forms an oblique angle with the air stream.
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.
1985-01-01
Program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. Predicted are pressure distributions and loads acting on a complete configuration including effects of body separated flow vorticity and fin-edge vortices. The computer program is based on supersonic panelling and line singularity methods coupled with vortex tracking theory. Effects of afterbody shed vorticity on the afterbody and tail-fin pressure distributions can be optionally treated by companion program BDYSHD. Preliminary versions of combined shock expansion/linear theory and Newtonian/linear theory have been implemented as optional pressure calculation methods to extend the Mach number and angle-of-attack ranges of applicability into the nonlinear supersonic flow regime. Comparisons between program results and experimental data are given for a triform tail-finned configuration and for a canard controlled configuration with a long afterbody for Mach numbers up to 2.5. Initial tests of the nonlinear/linear theory approaches show good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20 degrees.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
NASA Astrophysics Data System (ADS)
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.
Engine design considerations for 2nd generation supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Scullin, V. J.
1971-01-01
A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.
The calculation of pressure on slender airplanes in subsonic and supersonic flow
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomas, Harvard
1954-01-01
Under the assumption that a wing, body, or wing-body combination is slender or flying at near sonic velocity, expressions are given which permit the calculation of pressure in the immediate vicinity of the configuration. The disturbance field, in both subsonic and supersonic flight, is shown to consist of two-dimensional disturbance fields extending laterally and a longitudinal field that depends on the streamwise growth of cross-sectional area. A discussion is also given of couplings, between lifting and thickness effects, that necessarily arise as a result of the quadratic dependence of pressure on the induced velocity components. (author)
NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual
NASA Technical Reports Server (NTRS)
Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.
1999-01-01
This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.
Progress on a Rayleigh Scattering Mass Flux Measurement Technique
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.
2010-01-01
A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.
Control of flow separation and mixing by aerodynamic excitation
NASA Technical Reports Server (NTRS)
Rice, Edward J.; Abbott, John M.
1990-01-01
The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.
NASA Astrophysics Data System (ADS)
Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.
1991-08-01
The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.
1957-12-30
H. Julian 'Harvey' Allen in front of the NASA Ames 8_x_7 foot Supersonic Wind Tunnel test section. A blunt body model mounted in the test section is ready for testing . The 8_X_7_foot is part of the Unitary Plan WInd Tunnel Complex Note: printed in 60 year at NASA Ames Research Center by Glenn Bugos NASA SP-2000-4314
Some Effects of Leading-Edge Sweep on Boundary-Layer Transition at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Chapman, Gray T.
1961-01-01
The effects of crossflow and shock strength on transition of the laminar boundary layer behind a swept leading edge have been investigated analytically and with the aid of available experimental data. An approximate method of determining the crossflow Reynolds number on a leading edge of circular cross section at supersonic speeds is presented. The applicability of the critical crossflow criterion described by Owen and Randall for transition on swept wings in subsonic flow was examined for the case of supersonic flow over swept circular cylinders. A wide range of applicability of the subsonic critical values is indicated. The corresponding magnitude of crossflow velocity necessary to cause instability on the surface of a swept wing at supersonic speeds was also calculated and found to be small. The effects of shock strength on transition caused by Tollmien-Schlichting type of instability are discussed briefly. Changes in local Reynolds number, due to shock strength, were found analytically to have considerably more effect on transition caused by Tollmien-Schlichting instability than on transition caused by crossflow instability. Changes in the mechanism controlling transition from Tollmien-Schlichting instability to crossflow instability were found to be possible as a wing is swept back and to result in large reductions in the length of laminar flow.
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.
Investigation with an Interferometer of the Turbulent Mixing of a Free Supersonic Jet
NASA Technical Reports Server (NTRS)
Gooderum, Paul B; Wood, George P; Brevoort, Maurice J
1950-01-01
The free turbulent mixing of a supersonic jet of Mach number 1.6 has been experimentally investigated. An interferometer, of which a description is given, was used for the investigation. Density and velocity distributions through the mixing zone have been obtained. It was found that there was similarity in distribution at the cross sections investigated and that, in the subsonic portion of the mixing zone, the velocity distribution fitted the theoretical distribution for incompressible flow. It was found that the rates of spread of the mixing zone both into the jet and into the ambient air were less than those of subsonic jets.
Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.; Helland, Stephen M.
1994-01-01
This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.
1950-05-11
available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same
Dynamic Response of Ramjet Inlets to Downstream Perturbations.
1983-01-31
NDC -00784 UNCLASSIFIED N98814-8R-C-8481 F/S 26/4 NL EIIIIIIIII-EIIhIIIIIIIIE EllhlhllllhhI *lfl gi IIDi w,. . , 2 9,- * .t .C- 0- . 1-" "L/" wo 1. I...dual-throat model configured as a small supersonic wind tunnel . References to a diffuser in the task statements reflect these initial ideas. However, it...determination of UB requires a wind tunnel test or possibly a free jet experiment with a large jet diameter compared to the model size. 1 5 17 4 4 4~,d
Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2015-01-01
A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion
Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.
1976-01-01
A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.
Direct simulation of isothermal-wall supersonic channel flow
NASA Technical Reports Server (NTRS)
Coleman, Gary N.
1993-01-01
The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.
Development of quiet-flow supersonic wind tunnels for laminar-turbulent transition research
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1994-01-01
This grant supported research into quiet-flow supersonic wind-tunnels, between May 1990 and December 1994. Quiet-flow nozzles operate with laminar nozzle-wall boundary layers, in order to provide low-disturbance flow for studies of laminar-turbulent transition under conditions comparable to flight. Major accomplishments include: (1) the design, fabrication, and performance-evaluation of a new kind of quiet tunnel, a quiet-flow Ludweig tube; (2) the integration of preexisting codes for nozzle design, 2D boundary-layer computation, and transition-estimation into a single user-friendly package for quiet-nozzle design; and (3) the design and preliminary evaluation of supersonic nozzles with square cross-section, as an alternative to conventional quiet-flow nozzles. After a brief summary of (1), a description of (2) is presented. Published work describing (3) is then summarized. The report concludes with a description of recent results for the Tollmien-Schlichting and Gortler instability in one of the square nozzles previously analyzed.
Mercury Capsule Model in the 1- by 1-Foot Supersonic Wind Tunnel
1959-10-21
National Aeronautics and Space Administration (NASA) researchers install a small-scale model of the capsule for Project Mercury in the 1- by 1-Foot Supersonic Wind Tunnel at the Lewis Research Center. NASA Lewis conducted a variety of tests for Project Mercury, including retrorocket calibration, escape tower engine performance, and separation of the capsule from simulated Atlas and Redstone boosters. The test of this capsule and escape tower model in the 1- by 1-foot tunnel were run in January and February 1960. The 1-by 1-Foot Supersonic Wind Tunnel had a 15-inch long test section, seen here, that was one foot wide and one foot high. The sides were made of glass to allow cameras to capture the supersonic air flow over the models. The tunnel could generate air flows from Mach 1.3 to 3.0. At the time, it was one of nine small supersonic wind tunnels at Lewis. These tunnels used the exhauster and compressor equipment of the larger facilities. The 1- by 1 tunnel, which began operating in the early 1950s, was built inside a test cell in the expansive Engine Research Building. During the 1950s the 1- by 1 was used to study a variety of inlets, nozzles, and cones for missiles and scramjets. The Mercury capsule tests were among the last at the facility for many years. The tunnel was mothballed in 1960. The 1- by 1 was briefly restored in 1972, then brought back online for good in 1979. The facility has maintained a brisk operating schedule ever since.
The jet engine design that can drastically reduce oxides of nitrogen
NASA Technical Reports Server (NTRS)
Ferri, A.; Agnone, A.
1977-01-01
The NOx pollution problem of hydrogen fueled turbojets and supersonic combustion ramjets (scramjets) was investigated to determine means of substantially alleviating the problem. Since the NOx reaction rates are much slower than the energy producing reactions, the NOx production depends mainly on the maximum local temperatures in the combustor and the NOx concentration is far from equilibrium at the end of a typical combustor (L approximately 1 ft). In diffusion flames, as used in present turbojets and scramjets combustor designs, the maximum local temperature occurs at the flame and is equal to the stoichiometric value. Whereas, in the heat conduction flames, wherein the flame propagates due to a heat conduction process away from the flame to the cooler oncoming premixed unburnt gases, the maximum temperature is lower than in the diffusion flame. Hence the corresponding pollution index is also lower.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
The heat pipe startup process is described physically and is divided into five periods for convenience of analysis. The literature survey revealed that none of the previous attempts to simulate the heat pipe startup process numerically were successful, since the rarefied vapor flow in the heat pipe was not considered. Therefore, a rarefied vapor self-diffusion model is proposed, and the early startup periods, in which the rarefied vapor flow is dominant within the heat pipe, are first simulated numerically. The numerical results show that large vapor density gradients existed along the heat pipe length, and the vapor flow reaches supersonic velocities when the density is extremely low. The numerical results are compared with the experimental data of the early startup period with good agreement.
NASA Technical Reports Server (NTRS)
Holdaway, George H.; Mellenthin, Jack A.
1960-01-01
The models had aspect-ratio-2 diamond, delta, and arrow wings with the leading edges swept 45.00 deg, 59.04 deg, and 70.82 deg, respectively. The wing sections were computed by varying the section shape along with the body radii (blending process) to match the prescribed area distribution and wing plan form. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local chords in a streamwise direction. The models were tested with transition fixed at Reynolds numbers of about 4,000,000 to 9,000,0000, based on the mean aerodynamic chord of the wings. The effect of varying Reynolds number was checked at both subsonic and supersonic speeds. The diamond model was superior to the other plan forms at transonic speeds ((L/D)max = 11.00 to 9.52) because of its higher lift-curve slope and near optimum wave drag due to the blending process. For the wing thickness tested with the diamond model, the marked body and wing contouring required for transonic conditions resulted in a large wave-drag penalty at the higher supersonic Mach numbers where the leading and trailing edges of the wing were supersonic. Because of the low sweep of the trailing edge of the delta model, this configuration was less adaptable to the blending process. Removing a body bump prescribed by the Mach number 1.00 design resulted in a good supersonic design. This delta model with 10 percent less volume was superior to the other plan forms at Mach numbers of 1.55 to 2.35 ((L/D)max = 8.65 to 7.24), but it and the arrow model were equally good at Mach numbers of 2.50 to 3.50 ((L/D)max - 6.85 to O.39). At transonic speeds the arrow model was inferior because of the reduced lift-curve slope associated with its increased sweep and also because of the wing base drag. The wing base-drag coefficients of the arrow model based on the wing planform area decreased from a peak value of 0.0029 at Mach number 1.55 to 0.0003 at Mach number 3.50. Linear supersonic theory was satisfactory for predicting the aerodynamic trends at Mach numbers from 1.55 to 3.50 of lift-curve slope, wave drag, drag due to lift, aerodynamic-center location, and maximum lift-drag ratios for each of the models.
Supersonic flow around circular cones at angles of attack
NASA Technical Reports Server (NTRS)
Ferri, Antonio
1951-01-01
The properties of conical flow without axial symmetry are analyzed. The flow around cones of circular cross section at small angles of attack is determined by correctly considering the effect of the entropy gradients in the flow.
An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations
NASA Technical Reports Server (NTRS)
Singh, Jatinder; Taylor, Stephen
1997-01-01
This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.
Development of an Actuator for Flow Control Utilizing Detonation
NASA Technical Reports Server (NTRS)
Lonneman, Patrick J.; Cutler, Andrew D.
2004-01-01
Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.
Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates
NASA Technical Reports Server (NTRS)
Sislian, J. P.
1978-01-01
The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
Improvements to the missile aerodynamic prediction code DEMON3
NASA Technical Reports Server (NTRS)
Dillenius, Marnix F. E.; Johnson, David L.; Lesieutre, Daniel J.
1992-01-01
The computer program DEMON3 was developed for the aerodynamic analysis of nonconventional supersonic configurations comprising a body with noncircular cross section and up to two wing or fin sections. Within a wing or fin section, the lifting surfaces may be cruciform, triform, planar, or low profile layouts; the planforms of the lifting surfaces allow for breaks in sweep. The body and fin sections are modeled by triplet and constant u-velocity panels, respectively, accounting for mutual body-fin interference. Fin thickness effects are included for the use of supersonic planar source panels. One of the unique features of DEMON3 is the modeling of high angle of attack vortical effects associated with the lifting surfaces and the body. In addition, shock expansion and Newtonian pressure calculation methods can be optionally engaged. These two dimensional nonlinear methods are augmented by aerodynamic interference determined from the linear panel methods. Depending on the geometric details of the body, the DEMON3 program can be used to analyze nonconventional configurations at angles of attack up to 25 degrees for Mach numbers from 1.1 to 6. Calculative results and comparisons with experimental data demonstrate the capabilities of DEMON3. Limitations and deficiencies are listed.
NASA Technical Reports Server (NTRS)
Allen, J L; Beke, Andrew
1953-01-01
Force and pressure-recovery characteristics of a nacelle-type conical-spike inlet with a fixed-area bypass located in the top or bottom of the diffuser are presented for flight Mach numbers of 1.6, 1.8, and 2.0 for angles of attack from 0 degrees to 9 degrees. Top or bottom location of the bypass did not have significant effects on diffuser pressure-recovery, bypass mass-flow ratio, or drag coefficient over the range of angles of attack, flight Mach numbers, and stable engine mass-flow ratios investigated. A larger stable subcritical operating range was obtained with the bypass on the bottom at angles of attack from 3 degrees to 9 degrees at a flight Mach number of 2.0. At a flight Mach number of 2.0, the discharge of 14 percent of the critical mass flow of the inlet by means of a bypass increased the drag only one-fifth of the additive drag that would result for equivalent spillage behind an inlet normal shock without significant reductions in diffuser pressure recovery.
High Response Dew Point Measurement System for a Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.
1996-01-01
A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.
NASA Technical Reports Server (NTRS)
Re, Richard, J.; Capone, Francis J.
1998-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine boundary-reflected disturbance lengths at low supersonic Mach numbers in the octagonally shaped test section. A body of revolution that had a nose designed to produce a bow shock and flow field similar to that about the nose of a supersonic transport configuration was used. The impingement of reflected disturbances on the model was determined from static pressures measured on the surface of the model. Test variables included Mach number (0.90 to 1.25), model angle of attack (nominally -10, 0, and 10), and model roll angle.
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Heaslet, Max A
1956-01-01
For a given wing and supersonic Mach number, the problem of shaping an adjoining fuselage so that the combination will have a low wave drag is considered. Only fuselages that can be simulated by singularities (multipoles) distributed along the body axis are studied. However, the optimum variations of such singularities are completely specified in terms of the given wing geometry. An application is made to an elliptic wing having a biconvex section, a thickness-chord ratio equal to 0.05 at the root, and an aspect ratio equal to 3. A comparison of the theoretical results with a wind-tunnel experiment is also presented.
14 CFR 36.301 - Noise limits: Concorde.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise limits: Concorde. 36.301 Section 36.301 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Noise Limits for Supersonic Transport Category...
14 CFR 36.301 - Noise limits: Concorde.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise limits: Concorde. 36.301 Section 36.301 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Noise Limits for Supersonic Transport Category...
Partial admission effect on the performance and vibration of a supersonic impulse turbine
NASA Astrophysics Data System (ADS)
Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin
2018-04-01
This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X.; Florinski, V.
We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less
The aerodynamics of supersonic parachutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, C.W.
1987-06-01
A discussion of the aerodynamics and performance of parachutes flying at supersonic speeds is the focus of this paper. Typical performance requirements for supersonic parachute systems are presented, followed by a review of the literature on supersonic parachute configurations and their drag characteristics. Data from a recent supersonic wind tunnel test series is summarized. The value and limitations of supersonic wind tunnel data on hemisflo and 20-degree conical ribbon parachutes behind several forebody shapes and diameters are discussed. Test techniques were derived which avoided many of the opportunities to obtain erroneous supersonic parachute drag data in wind tunnels. Preliminary correlationsmore » of supersonic parachute drag with Mach number, forebody shape and diameter, canopy porosity, inflated canopy diameter and stability are presented. Supersonic parachute design considerations are discussed and applied to a M = 2 parachute system designed and tested at Sandia. It is shown that the performance of parachutes in supersonic flows is a strong function of parachute design parameters and their interactions with the payload wake.« less
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
Cheng, Xuemin; Yang, Yikang; Hao, Qun
2016-01-01
The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control. PMID:27763515
Cheng, Xuemin; Yang, Yikang; Hao, Qun
2016-10-17
The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.
Technology development status at McDonnell Douglas
NASA Technical Reports Server (NTRS)
Rowe, W. T.
1981-01-01
The significant technology items of the Concorde and the conceptual MCD baseline advanced supersonic transport are compared. The four major improvements are in the areas of range performance, structures (materials), aerodynamics, and in community noise. Presentation charts show aerodynamic efficiency; the reoptimized wing; low scale lift/drag ratio; control systems; structural modeling and analysis; weight and cost comparisons for superplasticity diffusion bonded titanium sandwich structures and for aluminum brazed titanium honeycomb structures; operating cost reduction; suppressor nozzles; noise reduction and range; the bicone inlet; a market summary; environmental issues; high priority items; the titanium wing and fuselage test components; and technology validation.
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M equals 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions. Also, the authors give the weakness of the scheme and suggest areas for further investigation.
Evolution of supersonic corner vortex in a hypersonic inlet/isolator model
NASA Astrophysics Data System (ADS)
Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu
2016-12-01
There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.
NASA Technical Reports Server (NTRS)
Graham, Robert C.; Hartmann, Melvin J.
1949-01-01
An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.
OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration C
NASA Technical Reports Server (NTRS)
McRae, Colin D.; Johansen, Craig T.; Danehy, Paul M.; Gallo, Emanuela C. A.; Cantu, Luca M. L.; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D., Jr.; Goyne, Christopher P.; McDnaiel, James C.
2013-01-01
Non-intrusive hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were obtained in configuration C of the University of Virginia supersonic combustion experiment. The combustion of hydrogen fuel injected through an unswept compression ramp into a supersonic cross-flow was imaged over a range of streamwise positions. Images were corrected for optical distortion, variations in the laser sheet profile, and different camera views. Results indicate an effect of fuel equivalence ratio on combustion zone shape and local turbulence length scale. The streamwise location of the reaction zone relative to the fuel injector was also found to be sensitive to the fuel equivalence ratio. The flow boundary conditions in the combustor section, which are sensitive to the fuel flow rate, are believed to have caused this effect. A combination of laser absorption and radiative trapping effects are proposed to have caused asymmetry observed in the images. The results complement previously published OH PLIF data obtained for configuration A along with other non-intrusive measurements to form a database for computational fluid dynamics (CFD) model validation.
An experimental study of the vortex wake at Mach number of 3
NASA Astrophysics Data System (ADS)
Shmakov, A. S.; Shevchenko, A. M.
2017-10-01
The results of experimental study of the flow in the wing wake at Mach number of 3 are presented. These experiments extends the data obtained in the same experimental setup at Mach numbers of 2.5 and 4 [1]. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangular half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in two cross sections located 1.5 and 6 chord length downstream of the trailing edge at wing angle of attack of 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire aemometer was made of a tungsten wire with a diameter of 10 µm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time mass flow distribution and its pulsations in the supersonic longitudinal vortex was measured at Mach number of 3.
Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.
2001-01-01
The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.
Infrared sensor and window system issues
NASA Astrophysics Data System (ADS)
Hargraves, Charles H., Jr.; Martin, James M.
1992-12-01
EO/IR windows are a significant challenge for the weapon system sensor designer who must design for high EO performance, low radar cross section (RCS), supersonic flight, durability, producibility and affordable initial and life cycle costs. This is particularly true in the 8 to 12 micron IR band at which window materials and coating choices are limited by system design requirements. The requirements also drive the optimization of numerous mechanical, optical, materials, and electrical parameters. This paper addresses the EO/IR window as a system design challenge. The interrelationship of the optical, mechanical, and system design processes are examined. This paper presents a summary of the test results, trade studies and analyses that were performed for multi-segment, flight-worthy optical windows with superior optical performance at subsonic and supersonic aircraft velocities and reduced radar cross section. The impact of the window assembly on EO system modulation transfer function (MTF) and sensitivity will be discussed. The use of conductive coatings for shielding/signature control will be discussed.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Jeracki, Robert J.
1988-01-01
An experimental investigation was conducted in the NASA Lewis 10- by 10-Foot Supersonic Wind Tunnel during subsonic tunnel operation in the aerodynamic cycle to determine the test section flow characteristics near the Advanced Turboprop Project propeller model plane of rotation. The investigation used an eight-probe pitot static flow survey rake to measure total and static pressures at two locations in the wind tunnel: the test section and the bellmouth section (upstream of the two-dimensional flexible-wall nozzle). A cone angularity probe was used to measure any flow angularity in the test section. The evaluation was conducted at tunnel Mach numbers from 0.10 to 0.35 and at three operating altitudes from 2,000 to 50,000 ft. which correspond to tunnel reference total pressures from 1960 to 245 psfa, respectively. The results of this experimental investigation indicate a total-pressure loss area in the center of the test section and a static-pressure gradient from the test section centerline to the wall. These total and static pressure differences were observed at all tunnel operating altitudes and diminished at lower tunnel velocities. The total-pressure loss area was also found in the bellmouth section, which indicates that the loss mechanism is not the tunnel flexible-wall nozzle. The flow in the test section is essentially axial since very small flow angles were measured. The results also indicate that a correction to the tunnel total and static pressures must be applied in order to determine accurate freestream conditions at the test section centerline.
Exterior of Flexible Wall at the 10- by 10-Foot Supersonic Wind Tunnel
1955-03-21
A mechanic checks the tubing on one of the many jacks which control the nozzle section of the 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 10- by 10-foot tunnel, which had its official opening in May 1956, was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. The 10- by 10 wind tunnel can be operated as a closed circuit for aerodynamic tests or as an open circuit for propulsion investigations. The 10-foot tall and 76-foot long stainless steel nozzle section just upstream from the test section can be adjusted to change the speed and composition of the air flow. Hydraulic jacks, seen in this photograph, flex the 1.37-inch thick walls of the tunnel nozzle. The size of the nozzle’s opening controls the velocity of the air through the test section. Seven General Electric motors capable of generating 25,000 horsepower produce the Mach 2.5 and 2.5 airflows. The facility was mostly operated at night due to its large power load requirements.
Calibration of the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel (1996 and 1997 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen
2012-01-01
There were several physical and operational changes made to the NASA Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel during the period of 1992 through 1996. Following each of these changes, a facility calibration was conducted to provide the required information to support the research test programs. Due to several factors (facility research test schedule, facility downtime and continued facility upgrades), a full test section calibration was not conducted until 1996. This calibration test incorporated all test section configurations and covered the existing operating range of the facility. However, near the end of that test entry, two of the vortex generators mounted on the compressor exit tailcone failed causing minor damage to the honeycomb flow straightener. The vortex generators were removed from the facility and calibration testing was terminated. A follow-up test entry was conducted in 1997 in order to fully calibrate the facility without the effects of the vortex generators and to provide a complete calibration of the newly expanded low speed operating range. During the 1997 tunnel entry, all planned test points required for a complete test section calibration were obtained. This data set included detailed in-plane and axial flow field distributions for use in quantifying the test section flow quality.
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.
2002-01-01
The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the probe by up to 0.25 in. (0.64 cm). Including the pitot probe in the CFD modeling and data interpretation lead to good agreement between measurement and prediction. Graphical inspection of the results showed that the shock waves impinging on the probe surface were highly nonuniform, with static pressure varying circumferentially among the pressure ports by over 10 percent in some cases. As part of the measurement methodology, such measurements should be routinely supplemented with CFD analyses that include the pitot probe as part of the flow-path geometry.
Preheater in the 10-by 10-Foot Supersonic Wind Tunnel
1958-04-21
The 10- by 10-Foot Supersonic Wind Tunnel at the NACA Lewis Flight Propulsion Laboratory was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10, which began operation in 1956, was the largest of the three NACA tunnels built under the act. Researchers could test engines up to five feet in diameter in the 10- by 10-foot test section. A 250,000-horsepower axial-flow compressor fan can generate airflows up to Mach 3.5 through the test section. The incoming air must be dehumidified and cooled so that the proper conditions are present for the test. A large air dryer with 1,890 tons of activated alumina soaks up 1.5 tons of water per minute from the airflow. A cooling apparatus equivalent to 250,000 household air conditioners is used to cool the air. The air heater is located just upstream from the test section. Natural gas is combusted in the tunnel to increase the air temperature. The system could only be employed when the tunnel was run in its closed-circuit propulsion mode.
NASA Technical Reports Server (NTRS)
Collette, J. G. R.
1984-01-01
A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.
Control of a Normal Shock Boundary Layer Interaction with Ramped Vanes of Various Sizes
NASA Astrophysics Data System (ADS)
Lee, Sang; Loth, Eric
2017-11-01
A novel vortex generator design positioned upstream of a normal shock and a subsequent diffuser was investigated using large eddy simulations. In particular, ``ramped-vane'' flow control devices with three difference heights relative to the incoming boundary layer thickness (0.34 δ 0.52 δ and 0.75 δ were placed in a supersonic boundary layer with a freestream Mach number of 1.3 and a Reynolds number of 2,400 based on momentum thickness. These devices are similar to subsonic vanes but are designed to be more mechanically robust while having low wave drag. The devices generated strong streamwise vortices that entrained high momentum fluid to the near-wall region and increased turbulent mixing. The devices also decreased shock-induced flow separation, which resulted in a higher downstream skin friction in the diffuser. In general, the largest ramped-vane (0.75 δ) produced the largest reductions in flow separation, shape factor and overall unsteadiness. However, the medium-sized ramped vane (0.52 δ) was able to also reduce both the separation area and the diffuser displacement thickness. The smallest device (0.34 δ) had a weak impact of the flow in the diffuser, though a 10% reduction in the shape factor was achieved.
A CFD Study of Turbojet and Single-Throat Ramjet Ejector Interaction
NASA Technical Reports Server (NTRS)
Chang, Ing; Hunter, Louis
1996-01-01
Supersonic ejector-diffuse systems have application in driving an advanced airbreathing propulsion system, consisting of turbojet engines acting as the primary and a single throat ramjet acting as the secondary. The turbojet engines are integrated into the single throat ramjet to minimize variable geometry and eliminate redundant propulsion components. The result is a simple, lightweight system that is operable from takeoff to high Mach numbers. At this high Mach number (approximately Mach 3.0), the turbojets are turned off and the high speed ramjet/scramjet take over and drive the vehicle to Mach 6.0. The turbojet-ejector-ramjet system consists of nonafterburning turbojet engines with ducting canted at 20 degrees to supply supersonic flow (downstream of CD nozzle) to the horizontal ramjet duct at a supply total pressure and temperature. Two conditions were modelled by a 2-D full Navier Stokes code at Mach 2.0. The code modelled the Fabri choke as well as the non-Fabri non critical case, using a computational throat to supply the back pressure. The results, which primarily predict the secondary mass flow rate and the mixed conditions at the ejector exit were in reasonable agreement with the 1-D cycle code (TBCC).
Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions
NASA Astrophysics Data System (ADS)
Massa, L.; Jha, P.
2012-05-01
Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.
Turbulence interacting with chemical kinetics in airbreathing combustion of ducted rockets
NASA Astrophysics Data System (ADS)
Chung, T. J.; Yoon, W. S.
1992-10-01
Physical interactions between turbulence and shock waves are very complex phenomena. If these interactions take place in chemically reacting flows the degree of complexity increases dramatically. Examples of applications may be cited in the area of supersonic combustion, in which the controlled generation of turbulence and/or large scale vortices in the mixing and flame holding zones is crucial for efficient combustion. Equally important, shock waves interacting with turbulence and chemical reactions affect the combustor flowfield resulting in enhanced relaxation and chemical reaction rates. Chemical reactions in turn contribute to dispersion of shock waves and reduction of turbulent kinetic energies. Computational schemes to address these physical phenomena must be capable of resolving various length and time scales. These scales are widely disparate and the most optimum approach is found in explicit/ implicit adjustable schemes for the Navier-Stokes solver. This is accomplished by means of the generalized Taylor-Galerkin (GTG) finite element formulations. Adaptive meshes are used in order to assure efficiency and accuracy of solutions. Various benchmark problems are presented for illustration of the theory and applications. Geometries of ducted rockets, supersonic diffusers, flame holders, and hypersonic inlets are included. Merits of proposed schemes are demonstrated through these example problems.
Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1995-01-01
This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan
2015-01-01
The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were demonstrated by the test data.
Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions
2008-05-14
survey rake installed in the test section to measure X ... -------- pitot pressure, static pressure and stagnation point heat transfer in . the...equilibrium at Figure 17. Photograph of Pitot Rake Assembly all points. This is a safe assumption, as the pressures and Mounted Inside Test Section of...measurement technique in supersonic and hypersonic test facilities, and the small size of the sensing element coupled with the insulating substrate
Supersonic laminar flow control research
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1994-01-01
The objective of the research is to understand supersonic laminar flow stability, transition, and active control. Some prediction techniques will be developed or modified to analyze laminar flow stability. The effects of supersonic laminar flow with distributed heating and cooling on active control will be studied. The primary tasks of the research applying to the NASA/Ames Proof of Concept (POC) Supersonic Wind Tunnel and Laminar Flow Supersonic Wind Tunnel (LFSWT) nozzle design with laminar flow control are as follows: (1) predictions of supersonic laminar boundary layer stability and transition, (2) effects of wall heating and cooling for supersonic laminar flow control, and (3) performance evaluation of POC and LFSWT nozzles design with wall heating and cooling effects applying at different locations and various length.
Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.
2016-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
NASA Technical Reports Server (NTRS)
Pfyl, Frank A.
1955-01-01
An experimental investigation was conducted to determine the performance characteristics an underslung nose-scoop air-induction system for a supersonic airplane. Five different nose shapes, three lip shapes, and two internal diffusers were investigated. Tests were made at Mach numbers from 0 to 1.9, angles of attack from 0 deg to approximately l5 deg, and mass-flow ratios from 0 to maximum obtainable. It was found that the underslung nose-scoop inlet was able to operate at Mach numbers from 0.6 to 1.9 over a large positive angle-of-attack range without adverse effects on the pressure recovery. Although there was no one inlet configuration that was markedly superior over the entire range of operating variables, the arrangement having a nose designed to give increased supersonic compression at low angles of attack, and a sharp lip (configuration designated N3L3) showed the most favorable performance characteristics over the supersonic Mach number range. Inlets with sizable lip radii gave satisfactory performance up to a Mach number of 1.5; however, as a result of an increase in drag, the performance of such inlets was markedly inferior to the sharp-lip configuration above Mach numbers of 1.5. Throughout the range of test Mach numbers all inlet configurations evidenced stable air-flow characteristics over the mass-flow range for normal engine operation. Analysis of the inlet performance on the basis of a propulsive thrust parameter showed that a fixed inlet area could be used for Mach numbers up to 1.5 with only a small sacrifice in performance.
S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene in supersonic jets and rare gas matrices.
Rouillé, G; Arold, M; Staicu, A; Krasnokutski, S; Huisken, F; Henning, Th; Tan, X; Salama, F
2007-05-07
The study of the S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene (BghiP, C22H12) in supersonic jets and solid rare gas matrices is reported. In the jet-cooled spectrum, the origin band position is located at 25,027.1+/-0.2 cm-1, the assignment being supported by the analysis of vibrational shifts and rotational band contours. Except for the origin band, which is weak, all bands are attributed to the fundamental excitation of nontotally symmetric b1 vibrational modes of S1. The intensity pattern is interpreted as a consequence of the weak oscillator strength of the electronic transition combined with intensity-borrowing through vibronic interaction between the S1(1A1) and S2(1B1) states. The spectra of the S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) transitions have also been measured for BghiP in solid neon and argon matrices. The comparison of the redshifts determined for either transition reveals that the polarizability of BghiP is larger in its S2 than in its S1 state. Bandwidths of 2.7 cm-1 measured in supersonic jets, which provide conditions relevant for astrophysics, are similar to those of most diffuse interstellar bands. The electronic transitions of BghiP are found to lie outside the ranges covered by present databases. From the comparison between experimental spectra and theoretical computations, it is concluded that the accuracy of empirical and ab initio approaches in predicting electronic energies is still not sufficient to identify astrophysically interesting candidates for spectroscopic laboratory studies.
Supersonic inflation of the radio lobes of NGC 1052: evidence for non-thermal particle acceleration
NASA Astrophysics Data System (ADS)
Morris, Taylor Andrew; Kraft, Ralph P.; Jones, Christine
2016-01-01
We analyze archival Chandra data of the nearby AGN NGC 1052 to determine the nature of the interaction of the radio lobes with the ambient hot gas. NGC 1052 is typically classified as a Seyfert galaxy, but has a radio bright core and extended diffuse radio lobes on kpc scales. We report the detection of X-ray bright shells around the radio lobes, suggestive of compression of the ISM by the supersonic inflation of the lobes. We determine the temperature and density of the gas in these shells and of the ambient ISM. We find that the temperature of the ISM is 0.8 keV, and that of the shells around the E and W radio lobes are 0.72 and 0.69 keV, respectively fitting a single temperature APEC model. The statistical quality of the fits is low, so systematic uncertainties dominate our ability to distinguish temperature variations between regions. NGC 1052's outburst is relatively young (9 x 1013 sec) and comparatively low power (1.9 x 1041 erg/sec). Interestingly, the density jump between the shells and the ambient ISM is larger than the maximum compression allows by the Rankine-Hugoniot conditions, suggesting that the emission from the shells is not thermal. We propose that the bubbles are highly supersonic (Mach number >5) and that the emission of the shell is due to synchrotron radiation from a population of ultrarelativistic electrons created by the powerful shock. If this interpretation is correct, NGC 1052 would be only the second AGN in which this process has been observed. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
Subsonic structure and optically thick winds from Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.
2018-06-01
Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.
NASA Technical Reports Server (NTRS)
Shaw, R. J.; Mitchell, G. A.; Sanders, B. W.
1974-01-01
The results of an experimental investigation to increase the stable airflow operating range of a supersonic, mixed-compression inlet with 60-percent internal contraction are presented. Various distributed-porous, throat stability-bypass entrance configurations were tested. In terms of diffuser-exit corrected airflow, a large inlet stable airflow range of about 25 percent was obtained with the optimum configuration if a constant pressure was maintained in the by-pass plenum. The location of the centerbody bleed region had a decided effect on the overall inlet performance. Limited unstart angle-of-attack data are presented.
Active Control of Supersonic Impinging Jets Using Supersonic Microjets
2005-01-01
Impinging Jets using Supersonic Microjets 5b. GRANT NUMBER F49620-03-1-0017 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Farrukh Alvi 5e. TASK...investigation on the use of microjets for the control of supersonic impinging jets was conducted under this research program. Supersonic impinging...aircraft structures and the landing surfaces. Prior research has shown that microjets , placed around the main jet periphery, are very effective in
Supersonic Retropropulsion Experimental Results from the NASA Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Rhode, Matthew N.; Edquist, Karl T.; Player, Charles J.
2011-01-01
A new supersonic retropropulsion experimental effort, intended to provide code validation data, was recently completed in the Langley Research Center Unitary Plan Wind Tunnel Test Section 2 over the Mach number range from 2.4 to 4.6. The experimental model was designed using insights gained from pre-test computations, which were instrumental for sizing and refining the model to minimize tunnel wall interference and internal flow separation concerns. A 5-in diameter 70-deg sphere-cone forebody with a roughly 10-in long cylindrical aftbody was the baseline configuration selected for this study. The forebody was designed to accommodate up to four 4:1 area ratio supersonic nozzles. Primary measurements for this model were a large number of surface pressures on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Preliminary results and observations from the test are presented, while detailed data and uncertainty analyses are ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, A N; Orishich, A M; Terent'eva, Ya S
The spectral characteristics of the thermal wake of a pulsating optical discharge (POD) in a supersonic air flow are studied. The POD is stimulated by radiation of a mechanically Q-switched, repetitively pulsed CO{sub 2} laser with a pulse repetition rate of 7 – 150 kHz and a power up to 4.5 kW. The flow is produced by means of the supersonic aerodynamic MAU-M setup having a conic nozzle with a critical cross-section size of 50 mm, the Mach number being 1.3 – 1.6. We describe in detail the system of optical diagnostics that allows the detection of the spectrum ofmore » the weak thermal wake glow against the background of high-power POD radiation. The glow of the thermal wake is due to the emission of light by atoms and ions of nitrogen and oxygen, carried by the flow in the form of hot low-density gas clouds (caverns). The wavelengths of the thermal wake emission and the data on the transitions, corresponding to the spectral lines are presented. (laser applications and other topics in quantum electronics)« less
NASA Technical Reports Server (NTRS)
Lansing, Donald L.
1960-01-01
A theory for the supersonic flow about bodies in uniform flight in a homogeneous medium is reviewed and an integral which expresses the effect of body shape upon the flow parameters in the far field is reduced to a form which may be readily evaluated for arbitrary body shapes. This expression is then used to investigate the effect of nose angle, fineness ratio, and location of maximum body cross section upon the far-field pressure jump across the bow-shock of slender bodies. Curves are presented showing the variation of the shock strength with each of these parameters. It is found that, for a wide variety of shapes having equal fineness ratios, the integral has nearly a constant value.
Radiant heat fluxes in supersonic flow of an inviscid gas past three-dimensional bodies
NASA Astrophysics Data System (ADS)
Apshtein, E. Z.; Vartanian, N. V.; Sakharov, V. I.; Tirskii, G. A.
Supersonic flow of an inviscid non-heat-conducting gas past three-dimensional bodies of various shapes (spheres, ellipsoids, hyperboloids, paraboloids, and power-law bodies of revolution) in the earth atmosphere is investigated numerically in the velocity range 10-18 km/s for heights of 40-80 km and densities of the incoming flow ranging from 0.003 to 0.00017 kg/cu m. It is shown that, at a constant flight velocity, the ratio of the radiant heat flux to the flux at the critical point is largely determined by the angle of the shock wave and is practically independent of the body dimensions and flight height. The results are used to develop a simplified method for determining radiant fluxes toward the nose section of three-dimensional bodies.
Rotor design of high tip speed low loading transonic fan.
NASA Technical Reports Server (NTRS)
Erwin, J. R.; Vitale, N. G.
1972-01-01
This paper describes the design concepts, principles and details of a high tip speed transonic rotor having low aerodynamic loading. The purpose of the NASA sponsored investigation was to determine whether good efficiency and large stall margin could be obtained by designing a rotor to avoid flow separation associated with strong normal shocks. Fully supersonic flow through the outboard region of the rotor with compression accomplished by weak oblique shocks were major design concepts employed. Computer programs were written and used to derive blade sections consistent from the all-supersonic tip region to the all-subsonic hub region. Preliminary test results indicate attainment of design pressure ratio and design flow at design speed with about a 1.6 point decrement in efficiency and large stall margin.
Flutter, Postflutter, and Control of a Supersonic Wing Section
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2002-01-01
A number of issues related to the flutter and postflutter of two-dimensional supersonic lifting surfaces are addressed. Among them there are the 1) investigation of the implications of the nonlinear unsteady aerodynamics and structural nonlinearities on the stable/unstable character of the limit cycle and 2) study of the implications of the incorporation of a control capability on both the flutter boundary and the postflutter behavior. To this end, a powerful methodology based on the Lyapunov first quantity is implemented. Such a treatment of the problem enables one to get a better understanding of the various factors involved in the nonlinear aeroelastic problem, including the stable and unstable limit cycle. In addition, it constitutes a first step toward a more general investigation of nonlinear aeroelastic phenomena of three-dimensional lifting surfaces.
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1980-01-01
In order to provide experimental data for comparison with newly developed finite difference methods for computing supersonic flows over aircraft configurations, wind tunnel tests were conducted on four arrow wing models. The models were machined under numeric control to precisely duplicate analytically defined shapes. They were heavily instrumented with pressure orifices at several cross sections ahead of and in the region where there is a gap between the body and the wing trailing edge. The test Mach numbers were 2.36, 2.96, and 4.63. Tabulated pressure data for the complete test series are presented along with selected oil flow photographs. Comparisons of some preliminary numerical results at zero angle of attack show good to excellent agreement with the experimental pressure distributions.
Effects of the Kelvin-Helmholtz surface instability on supersonic jets
NASA Technical Reports Server (NTRS)
Hardee, P. E.
1982-01-01
An exact numerical calculation is provided for of linear growth and phase velocity of Kelvin-Helmholtz unstable wave modes on a supersonic jet of cylindrical cross section. An expression for the maximally unstable wavenumber of each wave mode is found. Provided a sharp velocity discontinuity exists all wave modes are unstable. A combination of rapid jet expansion and velocity shear across a jet can effectively stabilize all wave modes. The more likely case of slow jet expansion and of velocity shear at the jet surface allows wave modes with maximally unstable wavelength longer than or on the order of the jet radius to grow. The relative energy in different wave modes and effect on the jet is investigated. Energy input into a jet resulting from surface instability is discussed.
Interaction of a liquid jet with an oncoming gas stream
NASA Astrophysics Data System (ADS)
Koval', M. A.; Shvets, A. I.
1987-06-01
Wind-tunnel tests were carried out to study the interaction between water jets issuing from various types of nozzles (including cylindrical) and subsonic and supersonic air streams with Mach numbers from 0.3 to 3 and Reynolds numbers from 1 x 10 to the 6th to 3 x 10 to the 7th. The following interaction structure was observed: (1) at moderate outflow velocities, the liquid jet has an extended region, which subsequently expands abruptly as a spherical or mushroom-shaped drop; (2) this drop is atomized in the peripheral region and is carried away as a gas-liquid mixture; (3) a shock wave is formed in front of the jet in the oncoming supersonic stream; and (4) a separated flow region is present in the vicinity of the cylindrical nozzle section.
Supersonic through-flow fan assessment
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1988-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan engine for supersonic cruise aircraft. It included a mean-line analysis of fans designed to operate with in-flow velocities ranging from subsonic to high supersonic speeds. The fan performance generated was used to estimate the performance of supersonic fan engines designed for four applications: a Mach 2.3 supersonic transport, a Mach 2.5 fighter, a Mach 3.5 cruise missile, and a Mach 5.0 cruise vehicle. For each application an engine was conceptualized, fan performance and engine performance calculated, weight estimates made, engine installed in a hypothetical vehicle, and mission analysis was conducted.
NASA Astrophysics Data System (ADS)
Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea
2010-12-01
Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.
NASA Technical Reports Server (NTRS)
Jameson, Antony
1994-01-01
The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limited positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves traveling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with modification of the scalar diffusion through the addition of pressure differences to the momentum equations to produce full upwinding in supersonic flow. This convective upwind and split pressure (CUSP) scheme exhibits very rapid convergence in multigrid calculations of transonic flow, and provides excellent shock resolution at very high Mach numbers.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton
1987-01-01
Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.
NASA Technical Reports Server (NTRS)
Scallion, William I.
1991-01-01
The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.
Computational study of generic hypersonic vehicle flow fields
NASA Technical Reports Server (NTRS)
Narayan, Johnny R.
1994-01-01
The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.
Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David; Schoenenberger, Mark
2017-01-01
A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.
Supersonic through-flow fan engine and aircraft mission performance
NASA Technical Reports Server (NTRS)
Franciscus, Leo C.; Maldonado, Jaime J.
1989-01-01
A study was made to evaluate potential improvement to a commercial supersonic transport by powering it with supersonic through-flow fan turbofan engines. A Mach 3.2 mission was considered. The three supersonic fan engines considered were designed to operate at bypass ratios of 0.25, 0.5, and 0.75 at supersonic cruise. For comparison a turbine bypass turbojet was included in the study. The engines were evaluated on the basis of aircraft takeoff gross weight with a payload of 250 passengers for a fixed range of 5000 N.MI. The installed specific fuel consumption of the supersonic fan engines was 7 to 8 percent lower than that of the turbine bypass engine. The aircraft powered by the supersonic fan engines had takeoff gross weights 9 to 13 percent lower than aircraft powered by turbine bypass engines.
Handbook of Supersonic Aerodynamics. Section 20. Wind Tunnel Instrumentation and Operation
1961-01-01
colored Wratten gelatin filters are mounted in a suitable holder with the sides of the strips parallel and close enough to prevent light from passing...Knoblork, F. D., "A Hot-Wire Anemometer Developed for Full-Scale 0 Airship Measurements," The Daniel Guggenheim Airship Inst., pp. 58-61, 1935. 619
Test Section Turbulence in the AEDC/VKF Supersonic/Hypersonic Wind Tunnels
1981-07-01
8 4.3 Ins t rumen ta t ion ....................................................... 18...Pressure Fluctuation Spectral Content in AEDC Tunnels A and B (Based on FY79 Pitot Probe), Af = 200 Hz...intensity, spatial distribution, and spectral content , has become increasingly important in the analysis of test data. The sector- supported model in the
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1972-01-01
Data-reduction procedures for determining free stream and post-normal shock kinetic and thermodynamic quantities are derived. These procedures are applicable to imperfect real air flows in thermochemical equilibrium for temperatures to 15 000 K and a range of pressures from 0.25 N/sq m to 1 GN/sq m. Although derived primarily to meet the immediate needs of the 6-inch expansion tube, these procedures are applicable to any supersonic or hypersonic test facility where combinations of three of the following flow parameters are measured in the test section: (1) Stagnation pressure behind normal shock; (2) freestream static pressure; (3) stagnation point heat transfer rate; (4) free stream velocity; (5) stagnation density behind normal shock; and (6) free stream density. Limitations of the nine procedures and uncertainties in calculated flow quantities corresponding to uncertainties in measured input data are discussed. A listing of the computer program is presented, along with a description of the inputs required and a sample of the data printout.
Supersonic propulsion technology. [variable cycle engines
NASA Technical Reports Server (NTRS)
Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.
1979-01-01
Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.
1976-01-01
Low-aspect-ratio highly swept arrow-wing supersonic aircraft possess high levels of aerodynamic efficiency at supersonic cruising speeds, however, their inherently poor low-speed lift characteristics require design constraints that compromise supersonic performance. The data discussed in this paper were obtained in wind tunnel tests with supersonic crusing configurations, in which propulsive-lift concepts were used to improve low-speed performance. The data show that the increased low-speed lift provided by propulsive-lift permits reduction of both wing size and installed thrust. This yields a batter engine/airframe match for improved supersonic cruise efficiency and range, while still providing acceptable take-off field lengths.
Navier-Stokes calculations for 3D gaseous fuel injection with data comparisons
NASA Technical Reports Server (NTRS)
Fuller, E. J.; Walters, R. W.
1991-01-01
Results from a computational study and experiments designed to further expand the knowledge of gaseous injection into supersonic cross-flows are presented. Experiments performed at Mach 6 included several cases of gaseous helium injection with low transverse angles and injection with low transverse angles coupled with a low yaw angle. Both experimental and computational data confirm that injector yaw has an adverse effect on the helium core decay rate. An array of injectors is found to give higher penetration into the freestream without loss of core injectant decay as compared to a single injector. Lateral diffusion plays a major role in lateral plume spreading, eddy viscosity, injectant plume, and injectant-freestream mixing. Grid refinement makes it possible to capture the gradients in the streamwise direction accurately and to vastly improve the data comparisons. Computational results for a refined grid are found to compare favorably with experimental data on injectant overall and core penetration provided laminar lateral diffusion was taken into account using the modified Baldwin-Lomax turbulence model.
NASA Technical Reports Server (NTRS)
Lewis, Carl E. (Inventor); Carlton, Lindley A. (Inventor); Saeks, Richard E. (Inventor)
2004-01-01
A control surface for an air vehicle (e.g., an aircraft, rocket, or missile) is useful for flight control at both subsonic and supersonic speeds. The control surface defines the outboardmost tip of a flight structure (e.g., a wing, tail or other stabilizer) of the air vehicle. Hence, the control surface is referred to as a `tiperon`. The tiperon has an approximately L-shaped configuration, and can be rotated relative to a fixed portion of the flight structure about a control axis. The respective surface areas of the tiperon sections forward and aft of the control axis are proportioned to place the subsonic center of pressure aft of the control axis to enhance aircraft control, and preferably also forward of the centroid of tiperon surface area. Also, the control surface sections forward and aft of the control axis are preferably mass-balanced, or at least nearly so, to enhance aircraft control at supersonic speeds. Either of the tiperon sections forward and aft of the control axis can be tapered to reduce the dependence of the moment exerted by air flow about the control axis, upon the tiperon's angle-of-attack. The tiperon also has enough surface area to control the air vehicle, even at low airspeeds. The invention is also directed to air vehicles incorporating one or more such control surfaces.
Wing-section optimization for supersonic viscous flow
NASA Technical Reports Server (NTRS)
Item, Cem C.; Baysal, Oktay (Editor)
1995-01-01
To improve the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating thin-layer Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wind design task, the present investigation concentrated on testing the feasibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with similar features: slightly cambered, parabolic profiles with sharp leading- and trailing-edges. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for the problem formulations which should contribute to an effective wing shape optimization.
NASA Astrophysics Data System (ADS)
Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.
2017-09-01
12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.
NASA Astrophysics Data System (ADS)
Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.
2018-01-01
12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.
Damping insert materials for settling chambers of supersonic wind tunnels
NASA Astrophysics Data System (ADS)
Wu, Jie; Radespiel, Rolf
2017-03-01
This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.
A supersonic fan equipped variable cycle engine for a Mach 2.7 supersonic transport
NASA Technical Reports Server (NTRS)
Tavares, T. S.
1985-01-01
The concept of a variable cycle turbofan engine with an axially supersonic fan stage as powerplant for a Mach 2.7 supersonic transport was evaluated. Quantitative cycle analysis was used to assess the effects of the fan inlet and blading efficiencies on engine performance. Thrust levels predicted by cycle analysis are shown to match the thrust requirements of a representative aircraft. Fan inlet geometry is discussed and it is shown that a fixed geometry conical spike will provide sufficient airflow throughout the operating regime. The supersonic fan considered consists of a single stage comprising a rotor and stator. The concept is similar in principle to a supersonic compressor, but differs by having a stator which removes swirl from the flow without producing a net rise in static pressure. Operating conditions peculiar to the axially supersonic fan are discussed. Geometry of rotor and stator cascades are presented which utilize a supersonic vortex flow distribution. Results of a 2-D CFD flow analysis of these cascades are presented. A simple estimate of passage losses was made using empirical methods.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen D.
1991-01-01
The main objectives of this work is to demonstrate the potential of a cryogenic adaptive nozzle to generate quiet (low disturbance) supersonic flow. A drive system was researched for the Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT) using a pilot tunnel. A supportive effort for ongoing Proof of Concept (PoC) research leading to the design of critical components of the LFSWT was maintained. The state-of-the-art in quiet supersonic wind tunnel design was investigated. A supersonic research capability was developed within the FML.
Analysis of supersonic combustion flow fields with embedded subsonic regions
NASA Technical Reports Server (NTRS)
Dash, S.; Delguidice, P.
1972-01-01
The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.
NASA Technical Reports Server (NTRS)
Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig
2010-01-01
The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight
A Free-flight Wind Tunnel for Aerodynamic Testing at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Seiff, Alvin
1954-01-01
The supersonic free-flight wind tunnel is a facility at the Ames Laboratory of the NACA in which aerodynamic test models are gun-launched at high speed and directed upstream through the test section of a supersonic wind tunnel. In this way, test Mach numbers up to 10 have been attained and indications are that still higher speeds will be realized. An advantage of this technique is that the air and model temperatures simulate those of flight through the atmosphere. Also the Reynolds numbers are high. Aerodynamic measurements are made from photographic observation of the model flight. Instruments and techniques have been developed for measuring the following aerodynamic properties: drag, initial lift-curve slope, initial pitching-moment-curve slope, center of pressure, skin friction, boundary-layer transition, damping in roll, and aileron effectiveness. (author)
New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Roeder, James W., Jr.
1998-01-01
In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.
NASA Astrophysics Data System (ADS)
Levin, V. A.; Zhuravskaya, T. A.
2017-03-01
Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.
Gas dynamics of a supersonic radial jet. Part II
NASA Astrophysics Data System (ADS)
Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.
2016-05-01
The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.
Numerical investigation of internal high-speed viscous flows using a parabolic technique
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study has been conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves are present. A set of test problems with weak shock and expansion waves have been analyzed with this modified ADD method and stable and accurate solutions were demonstrated provided the streamwise step size was maintained at levels larger than the boundary layer displacement thickness. Calculations made with further reductions in step size encountered departure solutions consistent with strong interaction theory. Calculations were also performed for a flow field with a flame front in which a specific heat release was imposed to simulate a SCRAMJET combustor. In this case the flame front generated relatively thick shear layers which aggravated the departure solution problem. Qualitatively correct results were obtained for these cases using a marching technique with the convective terms in the normal momentum equation suppressed. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
1980-11-01
CMACH $ FMACH) 132 TRJTRY STOP normal termination (test: TIME > TIMEF-0.00001 or NDIFEQ = 1) BDCOEF message warning - NAFLD exceeds blank common...BDCOEF**, NTAP7- , IUB= , NAFLD = . (Test: NAFLD > NADIM) CRFWBD STOP 001 (Test: NER > 1; equation solution singular) INVER2 STOP **Matrix is singular
The Infrared Signature of the High Altitude Supersonic Target (HAST) at Sea Level
1975-08-01
T h revr se o f: t h i p a g is b la n k ) r : -- : : - -= : - -- . .. IM TABLE OF CONTENTS Section Title Page ji I INTRODUCTION ...of merit, ,, in watts/steradian/gram/second, computed from the radiometer data (8) The infrared augmentation ratio ( Jaug /J)flow is the ratio of the
NASA Technical Reports Server (NTRS)
Boyd, John W
1951-01-01
The results of an experimental investigation of the load distribution over two triangular wings in sideslip at Mach numbers from 1.20 to 1.79 are presented and compared with theory. The two wings tested have identical plan form, 45 degrees sweepback of the leading edge, and an aspect ratio of 4.0. One model was composed of round-nose airfoil sections and the other of sharp-nose, biconvex sections. For both wings the maximum thickness of streamwise sections was 6 percent and was located at the 30-percent chord.
Comprehensive missile aerodynamics programs for preliminary design
NASA Technical Reports Server (NTRS)
Dillenius, M. F. E.; Hemsch, M. J.; Sawyer, W. C.; Allen, J. M.; Blair, A. B., Jr.
1982-01-01
Two different classes of missile aeroprediction programs have been recently developed. The first class of programs provides rapid engineering predictions and includes MISSILE1 and MISSILE2 applicable to missile configurations with axisymmetric bodies. The second class of programs consists of the DEMON series, including a simplified version NSWCDM, designed to calculate detailed loadings acting on supersonic missiles which may have non-circular body cross sections. Both classes account for high angles of attack and track vortices from canard or wing section to the tail section. Extensive comparisons with experimental data are presented including nonlinear effects of canard control.
A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream
NASA Technical Reports Server (NTRS)
Bussing, Thomas R. A.; Lidstone, Gary L.
1989-01-01
A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.
Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation
2016-04-30
AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER...public release. Final Report on Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Grant
NASA Technical Reports Server (NTRS)
Gallon, John C.; Witkowski, Allen
2015-01-01
The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.
Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo
2015-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.
Multifidelity Analysis and Optimization for Supersonic Design
NASA Technical Reports Server (NTRS)
Kroo, Ilan; Willcox, Karen; March, Andrew; Haas, Alex; Rajnarayan, Dev; Kays, Cory
2010-01-01
Supersonic aircraft design is a computationally expensive optimization problem and multifidelity approaches over a significant opportunity to reduce design time and computational cost. This report presents tools developed to improve supersonic aircraft design capabilities including: aerodynamic tools for supersonic aircraft configurations; a systematic way to manage model uncertainty; and multifidelity model management concepts that incorporate uncertainty. The aerodynamic analysis tools developed are appropriate for use in a multifidelity optimization framework, and include four analysis routines to estimate the lift and drag of a supersonic airfoil, a multifidelity supersonic drag code that estimates the drag of aircraft configurations with three different methods: an area rule method, a panel method, and an Euler solver. In addition, five multifidelity optimization methods are developed, which include local and global methods as well as gradient-based and gradient-free techniques.
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F
2015-01-01
Objective: To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). Methods: 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer® (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. Results: There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. Conclusion: SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. Advances in knowledge: It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels. PMID:25694260
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography.
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F; Xing, J-F
2015-04-01
To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer(®) (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1978-01-01
The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1973-01-01
The method presented uses a collocation technique with the nonplanar kernel function to solve supersonic lifting surface problems with and without interference. A set of pressure functions are developed based on conical flow theory solutions which account for discontinuities in the supersonic pressure distributions. These functions permit faster solution convergence than is possible with conventional supersonic pressure functions. An improper integral of a 3/2 power singularity along the Mach hyperbola of the nonplanar supersonic kernel function is described and treated. The method is compared with other theories and experiment for a variety of cases.
Feasibility of supersonic diode pumped alkali lasers: Model calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmashenko, B. D.; Rosenwaks, S.
The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.
Exhaust Nozzle Plume Effects on Sonic Boom Test Results for Isolated Nozzles
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
2011-01-01
Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-ft Supersonic Wind Tunnel at the NASA Glenn Research Center to validate the computational study. Results demonstrated how the nozzle lip shock moved with increasing nozzle pressure ratio (NPR) and reduced the nozzle boat-tail expansion, causing a favorable change in the observed pressure signature. Experimental results were presented for comparison to the CFD results. The strong nozzle lip shock at high values of NPR intersected the nozzle boat-tail expansion and suppressed the expansion wave. Based on these results, it may be feasible to reduce the boat-tail expansion for a future supersonic aircraft with under-expanded nozzle exhaust flow by modifying nozzle pressure or nozzle divergent section geometry.
NASA Technical Reports Server (NTRS)
Chapman, Rowe, Jr; Morrow, John D
1952-01-01
A modified triangular wing of aspect ratio 2.53 having an airfoil section 3.7 percent thick at the root and 5.98 percent thick at the tip was designed in an attempt to improve the lift and drag characteristics of triangular wings. Free-flight drag and stability tests were made using rocket-propelled models equipped with the modified wing. The Mach number range of the test was from 0.70 to 1.37. Test results indicated the following: The lift-curve slope of wing plus fuselage approaches the theoretical value of wing alone at supersonic Mach numbers. The drag coefficient, based on total wing area, for wing plus interference was approximately 0.0035 at subsonic Mach numbers and 0.0080 at supersonic Mach numbers. The maximum shift in aerodynamic center for the complete configuration was 14 percent in the rearward direction from the forward position of 51.5 percent of mean aerodynamic chord at subsonic Mach numbers. The variation of lift and moment with angle of attack was linear at supersonic Mach numbers for the range of coefficients covered in the test. The high value of lift-curve slope was considered to be a significant result attributable to the wing modifications.
Dhyani, Manish; Grajo, Joseph R; Bhan, Atul K; Corey, Kathleen; Chung, Raymond; Samir, Anthony E
2017-06-01
The purpose of this study was to determine the validity of previously established ultrasound shear wave elastography (SWE) cut-off values (≥F2 fibrosis) on an independent cohort of patients with chronic liver disease. In this cross-sectional study, approved by the institutional review board and compliant with the Health Insurance Portability and Accountability Act, 338 patients undergoing liver biopsy underwent SWE using an Aixplorer ultrasound machine (SuperSonic Imagine, Aix-en-Provence, France). Median SWE values were calculated from sets of 10 elastograms. A single blinded pathologist evaluated METAVIR fibrosis staging as the gold standard. The study analyzed 277 patients with a mean age of 48 y. On pathologic examination, 212 patients (76.5%) had F0-F1 fibrosis, whereas 65 (23.5%) had ≥F2 fibrosis. Spearman's correlation of fibrosis with SWE was 0.456 (p < 0.001). A cut-off value of 7.29 kPa yielded sensitivity of 95.4% and specificity of 50.5% for the diagnosis of METAVIR stage ≥F2 liver fibrosis in patients with liver disease using the SuperSonic Imagine Aixplorer SWE system. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
1997-08-01
NUMBERS Experimental Investigation of Combustion Stabilization in Supersonic Flow Using Free F6170896W0291 Recirculation Zones 6. AUTHOR(S) Dr...stabilization in supersonic flow using free recirculation zones Special contract (SPC-96-4043) with Air Force Office of Scientific Research (AFMC), USA, EOARD...of three quarterly reports and presents experimental results on self-ignition and combustion stabilization in supersonic flow using free
2007-06-01
generated by injecting liquid carbon dioxide (CO2) directly into an open-circuit blowdown Mach 2.9 supersonic wind tunnel. Rapid atomization and...Generic liquid injection atomization plume. .................................................. 51 Figure 13: Structures present during supersonic ...seed material in a supersonic wind tunnel for PIV primarily because of its self- cleaning attribute. Carbon dioxide is non-corrosive, non-flammable
Overview of NASA's Supersonic Cruise Efficiency - Propulsion Research
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.
Economic benefits of supersonic overland operation
NASA Technical Reports Server (NTRS)
Metwally, Munir
1992-01-01
Environmental concerns are likely to impose some restrictions on the next generation of supersonic commercial transport. There is a global concern over the effects of engine emissions on the ozone layer which protects life on Earth from ultraviolet radiation. There is also some concern over community noise. The High Speed Civil Transport (HSCT) must meet at least the current subsonic noise certification standards to be compatible with the future subsonic fleet. Concerns over sonic boom represent another environmental and marketing challenge to the HSCT program. The most attractive feature of the supersonic transport is speed, which offers the traveling public significant time-savings on long range routes. The sonic boom issue represents a major environmental and economic challenge as well. Supersonic operation overland produces the most desirable economic results. However, unacceptable overland sonic boom raise levels may force HSCT to use subsonic speeds overland. These environmental and economic challenges are likely to impose some restrictions on supersonic operation, thus introducing major changes to existing route structures and future supersonic network composition. The current subsonic route structure may have to be altered for supersonic transports to avoid sensitive areas in the stratosphere or to minimize overland flight tracks. It is important to examine the alternative route structure and the impact of these restrictions on the economic viability of the overall supersonic operation. Future market potential for HSCT fleets must be large enough to enable engine and airframe manufacturers to build the plane at a cost that provides them with an attractive return on investment and to sell it at a price that allows the airlines to operate with a reasonable margin of profit. Subsonic overland operation of a supersonic aircraft hinders its economic viability. Ways to increase the market potential of supersonic operation are described.
JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.
NASA X-Plane Looks To The Future of Supersonic Flight
2017-10-11
NASA’s Low Boom Flight Demonstration experimental airplane aims to make supersonic passenger jet travel over land a real possibility by reducing the disruptive sonic boom sound associated with supersonic flight.
Historical development of worldwide supersonic aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1979-01-01
Aerodynamic problems in the development of supersonic aircraft, their solutions, and innovative design features are presented. Studies of compressibility, introduction of jets, supersonic phenomena, transonic drag and lift, longitudinal and directional stability, dynamic pressure fields, and advent of the supersonic fighter are discussed. The flight research aircraft such as the Bell X-1 and the Douglas-558, the century series models, reconnaissance aircraft, the multimission tactical fighter, and the current generation fighters such as F-16 and F-18 are described. The SCAT program is considered, along with supersonic developments in Great Britain, France, and USSR. It is concluded that the sonic boom still appears to be an inherent problem of supersonic flight that particularly affects overland commercial flight, and efforts continue for increased efficiency for economic and performance gains and increased safety for military and civilian aircraft.
Advanced Noise Abatement Procedures for a Supersonic Business Jet
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.
2017-01-01
Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.
NASA Technical Reports Server (NTRS)
Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.
2013-01-01
Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.
6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND ...
6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND TUNNEL - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Supersonic Parachute Aerodynamic Testing and Fluid Structure Interaction Simulation
NASA Astrophysics Data System (ADS)
Lingard, J. S.; Underwood, J. C.; Darley, M. G.; Marraffa, L.; Ferracina, L.
2014-06-01
The ESA Supersonic Parachute program expands the knowledge of parachute inflation and flying characteristics in supersonic flows using wind tunnel testing and fluid structure interaction to develop new inflation algorithms and aerodynamic databases.
Turbulence Model Comparisons for Supersonic Transports at Transonic and Supersonic Conditions
NASA Technical Reports Server (NTRS)
Rivers, S. M. B.; Wahls, R. A.
2003-01-01
Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-speed Research program are given. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin- Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.
Review and prospect of supersonic business jet design
NASA Astrophysics Data System (ADS)
Sun, Yicheng; Smith, Howard
2017-04-01
This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.
14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and that are operated in the United States, after July 31, 1978. (b) Airport use. Except in an... in the United States: (1) Regardless of whether a type design change approval is applied for under part 21 of this chapter, no person may land or take off an airplane covered by this section for which...
Plasma Radiation Source Development Program
2006-03-01
shell mass distributions perform belter than thin shells. The dual plenum, double shell load has unique diagnostic features that enhance our...as implosion time increases. 13. SUBJECT TERMS Zpinch x-ray diagnostics Rayleigh-Taylor instability pulsed-power x-ray spectroscopy supersonic...feature permits some very useful diagnostics that shed light on critical details of the implosion process. See Section 3 for details. We have
2010-09-01
the fixes applied during previous testing of isolated intakes. The outline of this lecture is a brief tour of some historic supersonic intakes...flow elements. 1 INTRODUCTION There is an established format for lectures , books and reviews concerning intakes, with a large section allocated to...and controlling boundary layers are necessarily included. This lecture approaches the subject from a different perspective, here we are less concerned
Experimental investigation of a transonic potential flow around a symmetric airfoil
NASA Technical Reports Server (NTRS)
Hiller, W. J.; Meier, G. E. A.
1981-01-01
Experimental flow investigations on smooth airfoils were done using numerical solutions for transonic airfoil streaming with shockless supersonic range. The experimental flow reproduced essential sections of the theoretically computed frictionless solution. Agreement is better in the expansion part of the of the flow than in the compression part. The flow was nearly stationary in the entire velocity range investigated.
Cone-Probe Rake Design and Calibration for Supersonic Wind Tunnel Models
NASA Technical Reports Server (NTRS)
Won, Mark J.
1999-01-01
A series of experimental investigations were conducted at the NASA Langley Unitary Plan Wind Tunnel (UPWT) to calibrate cone-probe rakes designed to measure the flow field on 1-2% scale, high-speed wind tunnel models from Mach 2.15 to 2.4. The rakes were developed from a previous design that exhibited unfavorable measurement characteristics caused by a high probe spatial density and flow blockage from the rake body. Calibration parameters included Mach number, total pressure recovery, and flow angularity. Reference conditions were determined from a localized UPWT test section flow survey using a 10deg supersonic wedge probe. Test section Mach number and total pressure were determined using a novel iterative technique that accounted for boundary layer effects on the wedge surface. Cone-probe measurements were correlated to the surveyed flow conditions using analytical functions and recursive algorithms that resolved Mach number, pressure recovery, and flow angle to within +/-0.01, +/-1% and +/-0.1deg , respectively, for angles of attack and sideslip between +/-8deg. Uncertainty estimates indicated the overall cone-probe calibration accuracy was strongly influenced by the propagation of measurement error into the calculated results.
The importance of quadrupole sources in prediction of transonic tip speed propeller noise
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Fink, M. R.
1978-01-01
A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.
Evolution of the Magnetic Field during Chondrule Formation in Planetary Bow Shocks
NASA Astrophysics Data System (ADS)
Mai, Chuhong; Desch, Steven; Boley, Aaron C.
2016-10-01
Recent laboratory efforts (Fu et al., 2014, 2015) have constrained the remanent magnetizations of chondrules and the magnetic field strengths they were exposed to as they cooled below their Curie points. An outstanding question is whether these fields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values in a planetary bow shock, which is one proposed mechanism for chondrule formation. We use a hydrodynamic code to model the temperature and pressure around a 3000 km-radius planetary embryo as it moves supersonically through the nebula gas. We calculate the ionization of hot, shocked gas considering thermionic emission of electrons and ions from grains and thermal ionization of potassium. We calculate the magnetic diffusion rate, including Ohmic dissipation and ambipolar diffusion (assuming a magnetic field strength comparable to 0.5 G). We compute the steady-state magnetic field around in the bow shock and find that behind the planet the field is amplified, but everywhere else it quickly diffuses out of the shocked region and recovers the background value. We consider the trajectories taken by chondrules behind the shock and present likely values of the magnetic field amplification experienced by chondrules as they cool after melting in the shock.
Gas flows in radial micro-nozzles with pseudo-shocks
NASA Astrophysics Data System (ADS)
Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.
2018-07-01
In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.
Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1999-01-01
An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
Multi-Nozzle Base Flow Model in the 10- by 10-Foot Supersonic Wind Tunnel
1964-02-21
Researchers check the setup of a multi-nozzle base flow model in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA researchers were struggling to understand the complex flow phenomena resulting from the use of multiple rocket engines. Robert Wasko and Theodore Cover of the Advanced Development and Evaluation Division’s analysis and operations sections conducted a set of tests in the 10- by 10 tunnel to further understand the flow issues. The Lewis researchers studied four and five-nozzle configurations in the 10- by 10 at simulated altitudes from 60,000 to 200,000 feet. The nozzles were gimbaled during some of the test runs to simulate steering. The flow field for the four-nozzle clusters was surveyed in the center and the lateral areas between the nozzles, whereas the five-nozzle cluster was surveyed in the lateral area only.
Manometer Boards below the 8- by 6-Foot Supersonic Wind Tunnel
1951-02-21
Analysts at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory take data readings from rows of manometers in the basement of the 8- by 6-Foot Supersonic Wind Tunnel. Manometers were mercury-filled glass tubes that indicated different pressure levels in the test section. Manometers look and function very similarly to thermometers. Pressure sensing instruments were installed on the test article inside the wind tunnel or other test facility. Each test could have dozens of such instruments installed and connected to a remotely located manometer tube. The mercury inside the manometer rose and fell with the pressure levels. The dark mercury can be seen at different levels within the tubes. Since the pressure readings were dynamic, it was necessary to note the levels at given points during the test. This was done using both female computers and photography. A camera is seen on a stand to the right in this photograph.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles
2013-01-01
coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure
NASA Technical Reports Server (NTRS)
Underwood, Matthew C.; Guminsky, Michael D.
2015-01-01
Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.
Plasma spray nozzle with low overspray and collimated flow
NASA Technical Reports Server (NTRS)
Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)
1996-01-01
An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.
High performance forward swept wing aircraft
NASA Technical Reports Server (NTRS)
Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)
1988-01-01
A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.
Streamline curvature in supersonic shear layers
NASA Technical Reports Server (NTRS)
Kibens, V.
1992-01-01
Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.
NASA Technical Reports Server (NTRS)
Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam
2015-01-01
Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets
2014-01-01
W.F. O’Brien, J.A. Schetz - Plasma torch atomizer-igniter for supersonic combustion of liquid hydrocarbon fuels // AIAA Paper 2006-7970. 6. H. Do...A. Deminsky, I. V. Kochetov, A. P. Napartovich, S. B. Leonov, - “Modeling of Plasma Assisted Combustion in Premixed Supersonic Gas Flow...1 Ignition and Flameholding in a Supersonic Combustor by an Electrical Discharge Combined with a Fuel Injector K. V. Savelkin 1 , D. A
Advanced supersonic propulsion study, phase 3
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.
1976-01-01
The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1995-01-01
Low-disturbance or 'quiet' wind tunnels are now considered an essential part of meaningful boundary layer transition research. Advances in Supersonic Laminar Flow Control (SLFC) technology for swept wings depends on a better understanding of the receptivity of the transition phenomena to attachment-line contamination and cross-flows. This need has provided the impetus for building the Laminar Flow Supersonic Wind Tunnel (LFSWT) at NASA-Ames, as part of the NASA High Speed Research Program (HSRP). The LFSWT was designed to provide NASA with an unequaled capability for transition research at low supersonic Mach numbers (<2.5). The following are the objectives in support of the new Fluid Mechanic Laboratory (FML) quiet supersonic wind tunnel: (I) Develop a unique injector drive system using the existing FML indraft compressor; (2) Develop an FML instrumentation capability for quiet supersonic wind tunnel evaluation and transition studies at NASA-Ames; (3) Determine the State of the Art in quiet supersonic wind tunnel design; (4) Build and commission the LFSWT; (5) Make detailed flow quality measurements in the LFSWT; (6) Perform tests of swept wing models in the LFSWT in support of the NASA HSR program; and (7) Provide documentation of research progress.
76 FR 30231 - Civil Supersonic Aircraft Panel Discussion
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... Gulfstream Aerospace Corporation (Gulfstream) Supersonic Acoustic Signature Simulator (SASSII) that will be... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA... demonstrate the ``Gulfstream Whisper'', the aerospace company's latest effort to provide a solution to the...
1977-02-01
SUPERSONIC -X TYPE DECELERATORS AT MACH NUMBER 8 t’z.r I # I JJ’, o,. VON KARMAN GAS DYNAMICS FACILITY ARNOLD ENGINEERING DEVELOPMENT CENTER AIR FORCE...AERODYNAMIC AND THERMAL PERFORMANCE CHARACTERISTICS OF SUPERSONIC - X TYPE DECELERATORS AT MACH NUMBER 8 ’ 7 AU THORCs,: p ; J . D. Corce , ARO, Inc...pe r fo rmance cha rac t e r i s t i c s of model nylon, Kevlar 29, and Bisbenzimidazobenzophenanthroline Supersonic -X type parachutes behind a
1983-01-01
SUPERSONIC FLIGHT OPERATIONS ’• I • IN THE RESERVE MILITARY OPERATIONS AREA . HOLLOMAN AFB, NE MEXICO ~~DEPARTMENT OF THE AIR FORCE I Environme nta IImpac...Force (b) Proposed Action: Supersonic Flight Operations in the Reserve Mill ary Operations Area in Catron County, New Mexico . (c) Responsible...Abstract: The 49th Tactical Fighter Wing (TFW) at Holloman AFB, New Mexico , proposes to fly approximately 200 supersonic sorties per month in the Reserve
Development of the triplet singularity for the analysis of wings and bodies in supersonic flow
NASA Technical Reports Server (NTRS)
Woodward, F. A.
1981-01-01
A supersonic triplet singularity was developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which gives directional properties to the perturbation flow field surrounding the panel. The theoretical development of the triplet singularity is described together with its application to the calculation of surface pressures on wings and bodies. Examples are presented comparing the results of the new method with other supersonic methods and with experimental data.
NASA Technical Reports Server (NTRS)
Mclean, F. Edward
1985-01-01
The history and status of supersonic cruise research is covered. The early research efforts of the National Advisory Committee for Aeronautics and efforts during the B-70 and SST phase are included. Technological progress made during the NASA Supersonic Cruise Research and Variable Cycle Engine programs are presented. While emphasis is on NASA's contributions to supersonic cruise research in the U.S., also noted are developments in England, France, and Russia. Written in nontechnical language, this book presents the most critical technology issues and research findings.
The calculation of downwash behind supersonic wings with an application to triangular plan forms
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Sluder, Loma; Heaslet, Max A
1950-01-01
A method is developed consistent with the assumptions of small perturbation theory which provides a means of determining the downwash behind a wing in supersonic flow for a known load distribution. The analysis is based upon the use of supersonic doublets which are distributed over the plan form and wake of the wing in a manner determined from the wing loading. The equivalence in subsonic and supersonic flow of the downwash at infinity corresponding to a given load distribution is proved.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947
A generalized theory on the noise generation from supersonic shear layers.
NASA Technical Reports Server (NTRS)
Pao, S. P.
1971-01-01
A generalization is presented of Phillips' (1960) theory of noise generation by supersonic turbulent shear layers. Both Mach wave radiation and non-Mach wave noise radiation mechanisms are considered. The range of validity of Phillips' theory has been expanded to include the low supersonic and transonic ranges. These generalizations are important not only for their analytical rigor, but also for their prospective applications to practical problems in jet noise prediction and control. The noise generation mechanisms in a supersonic jet are found to differ from those in a subsonic jet. The theory is considered to offer some prospects of answering important questions in supersonic jet noise, such as noise source distribution, mean flow refraction effects, directivity, spectrum, and efficiency of noise radiation.
Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.
Jet-noise reduction through liquid-base foam injection.
NASA Technical Reports Server (NTRS)
Manson, L.; Burge, H. L.
1971-01-01
An experimental investigation has been made of the sound-absorbing properties of liquid-base foams and of their ability to reduce jet noise. Protein, detergent, and polymer foaming agents were used in water solutions. A method of foam generation was developed to permit systematic variation of the foam density. The investigation included measurements of sound-absorption coefficents for both plane normal incidence waves and diffuse sound fields. The intrinsic acoustic properties of foam, e.g., the characteristic impedance and the propagation constant, were also determined. The sound emitted by a 1-in.-diam cold nitrogen jet was measured for subsonic (300 m/sec) and supersonic (422 m/sec) jets, with and without foam injection. Noise reductions up to 10 PNdB were measured.
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
NASA Technical Reports Server (NTRS)
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Selected Examples of NACA/NASA Supersonic Flight Research
NASA Technical Reports Server (NTRS)
Saltzman, Edwin J.; Ayers, Theodore G.
1995-01-01
The present Dryden Flight Research Center, a part of the National Aeronautics and Space Administration, has a flight research history that extends back to the mid-1940's. The parent organization was a part of the National Advisory Committee for Aeronautics and was formed in 1946 as the Muroc Flight Test Unit. This document describes 13 selected examples of important supersonic flight research conducted from the Mojave Desert location of the Dryden Flight Research Center over a 4 decade period beginning in 1946. The research described herein was either obtained at supersonic speeds or enabled subsequent aircraft to penetrate or traverse the supersonic region. In some instances there accrued from these research efforts benefits which are also applicable at lower or higher speed regions. A major consideration in the selection of the various research topics was the lasting impact they have had, or will have, on subsequent supersonic flight vehicle design, efficiency, safety, and performance or upon improved supersonic research techniques.
NASA Technical Reports Server (NTRS)
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
General Dynamics YF-16 Model in the 8- by 6-Foot Supersonic Wind Tunnel
1974-01-21
A model of the General Dynamics YF-16 Fighting Falcon in the test section of the 8- by 6-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The YF-16 was General Dynamics response to the military’s 1972 request for proposals to design a new 20,000-pound fighter jet with exceptional acceleration, turn rate, and range. The aircraft included innovative design elements to help pilots survive turns up to 9Gs, a new frameless bubble canopy, and a Pratt and Whitney 24,000-pound thrust F-100 engine. The YF-16 made its initial flight in February 1974, just six weeks before this photograph, at Edwards Air Force Base. Less than a year later, the Air Force ordered 650 of the aircraft, designated as F-16 Fighting Falcons. The March and April 1974 tests in the 8- by 6-foot tunnel analyzed the aircraft’s fixed-shroud ejector nozzle. The fixed-nozzle area limited drag, but also limited the nozzle’s internal performance. NASA researchers identified and assessed aerodynamic and aerodynamic-propulsion interaction uncertainties associated the prototype concept. YF-16 models were also tested extensively in the 11- by 11-Foot Transonic Wind Tunnel and 9- by 7-Foot Supersonic Wind Tunnel at Ames Research Center and the 12-Foot Pressure Wind Tunnel at Langley Research Center.
NASA Technical Reports Server (NTRS)
Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew
1954-01-01
An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.
The surface roughness effect on the performance of supersonic ejectors
NASA Astrophysics Data System (ADS)
Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.
2017-07-01
The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.
General purpose computer program for interacting supersonic configurations: Programmer's manual
NASA Technical Reports Server (NTRS)
Crill, W.; Dale, B.
1977-01-01
The program ISCON (Interacting Supersonic Configuration) is described. The program is in support of the problem to generate a numerical procedure for determining the unsteady dynamic forces on interacting wings and tails in supersonic flow. Subroutines are presented along with the complete FORTRAN source listing.
Supersonic transport vis-a-vis energy savings
NASA Technical Reports Server (NTRS)
Cormery, G.
1979-01-01
The energy and economic saving modifications in supersonic transportation are studied. Modifications in the propulsion systems and in the aerodynamic configurations of the Concorde aircraft to reduce noise generation and increase fuel efficiency are discussed. The conversion of supersonic aircraft from fuel oils to synthetic fuels is examined.
Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.; Coleman, R. G.
1975-01-01
The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.
Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise
NASA Technical Reports Server (NTRS)
Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.
1997-01-01
An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.
Gasdynamic Inlet Isolation in Rotating Detonation Engine
2010-12-01
2D Total Variation Diminishing (TVD): Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Total Variation Diminishing (TVD) limiter: Continuous Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate...Continuous 94 Riemann Solver Minimum Dissipation: LHS & RHS Activate pressure switch : Supersonic Activate pressure gradient switch: Normal
A corporate supersonic transport
NASA Technical Reports Server (NTRS)
Greene, Randall; Seebass, Richard
1996-01-01
This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.
NASA Technical Reports Server (NTRS)
Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I
2016-01-01
Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)
Control of Boundary Layers for Aero-optical Applications
2015-06-23
range of subsonic and supersonic Mach numbers was developed and shown to correctly predict experimentally-observed reductions. Heating the wall allows...40 3.3 Extension to supersonic speeds...boundary layers at supersonic speeds. Comparing the model prediction to the experimental results, it was speculated that while the pressure effects can
1974-07-01
AD/A-002 982 COMPARATIVE MEASUREMENTS CF TOTAL TEMPERATURE IN A SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIB- RIUM AND COMBINED...SUPERSONIC TURBULENT BOUNDARY LAYER USING A CONICAL EQUILIORIUM AND COMBINED TEMPERATURE-PRESSURE PROBE H.L.P. Vowt R.E. L" 0H.U. M.i July 1974 NAVAL...1 ~~o iotaPRO eig ature In A Supersonic Turbulent Boundary ____________ Layer Using A Conical Equilibrium and 6. 111111ORWING OR. 0111001117,~t
NASA Technical Reports Server (NTRS)
Woodward, F. A.; Landrum, E. J.
1979-01-01
A new supersonic triplet singularity has been developed which eliminates internal waves generated by panels having supersonic edges. The triplet is a linear combination of source and vortex distributions which provides the desired directional properties in the flow field surrounding the panel. The theoretical development of the triplet is described, together with its application to the calculation of surface pressure on arbitrary body shapes. Examples are presented comparing the results of the new method with other supersonic panel methods and with experimental data.
A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport
NASA Technical Reports Server (NTRS)
Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.
2000-01-01
Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.
Flow and Acoustic Properties of Low Reynolds Number Underexpanded Supersonic Jets. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hu, Tieh-Feng
1981-01-01
Jet noise on underexpanded supersonic jets are studied with emphasis on determining the role played by large scale organized flow fluctuations in the flow and acoustic processes. The experimental conditions of the study were chosen as low Reynolds number (Re=8,000) Mach 1.4 and 2.1, and moderate Reynolds number (Re=68,000) Mach 1.6 underexpanded supersonic jets exhausting from convergent nozzles. At these chosen conditions, detailed experimental measurements were performed to improve the understanding of the flow and acoustic properties of underexpanded supersonic jets.
Gas dynamics of a supersonic radial jet. Part I
NASA Astrophysics Data System (ADS)
Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.; Kundasev, S. G.
2015-11-01
The gas dynamics of a supersonic radial jet was studied under conditions close to cold spraying. The jet visualization was performed for exhaustion into submerged space with atmospheric pressure and jet impingement to a target. For the cases of swirled and unswirled supersonic radial jets, the pressure profiles measured by a Pitot tube were taken for different distances from the nozzle outlet and for different widths of supersonic part δ ex = 0.5-2 mm and for prechamber pressure in the range p 0 = 1-2.5 MPa.
Integration of a supersonic unsteady aerodynamic code into the NASA FASTEX system
NASA Technical Reports Server (NTRS)
Appa, Kari; Smith, Michael J. C.
1987-01-01
A supersonic unsteady aerodynamic loads prediction method based on the constant pressure method was integrated into the NASA FASTEX system. The updated FASTEX code can be employed for aeroelastic analyses in subsonic and supersonic flow regimes. A brief description of the supersonic constant pressure panel method, as applied to lifting surfaces and body configurations, is followed by a documentation of updates required to incorporate this method in the FASTEX code. Test cases showing correlations of predicted pressure distributions, flutter solutions, and stability derivatives with available data are reported.
Characterization of a low pressure supersonic plasma jet
NASA Astrophysics Data System (ADS)
Caldirola, S.; Barni, R.; Riccardi, C.
2014-11-01
Plasma assisted supersonic jet deposition (PA-SJD) is a technique which combines a inductively coupled plasma (ICP) with a supersonic jet for the fabrication of thin films having a desired morphology. A reactive argon-oxygen plasma is employed to dissociate an organic precursor (titanium tetra-isopropoxide for TiO2 thin films) in a first vacuum chamber which is connected through a nozzle to a lower pressure chamber. The pressure difference produces a supersonic jet, seeded with nanoparticles. Along the jet the nucleation and aggregation of nanoparticles can be controlled to obtain nanostructured depositions. We report here the results of an analysis performed with a quadrupole mass spectrometer (QMS) which was used to sample neutrals and ions from the jet at different positions along the centerline of the supersonic expansion.
Investigations for Supersonic Transports at Transonic and Supersonic Conditions
NASA Technical Reports Server (NTRS)
Rivers, S. Melissa B.; Owens, Lewis R.; Wahls, Richard A.
2007-01-01
Several computational studies were conducted as part of NASA s High Speed Research Program. Results of turbulence model comparisons from two studies on supersonic transport configurations performed during the NASA High-Speed Research program are given. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Results are presented for both transonic conditions at Mach 0.90 and supersonic conditions at Mach 2.48. A feature of these two studies was the availability of higher Reynolds number wind tunnel data with which to compare the computational results. The transonic wind tunnel data was obtained in the National Transonic Facility at NASA Langley, and the supersonic data was obtained in the Boeing Polysonic Wind Tunnel. The computational data was acquired using a state of the art Navier-Stokes flow solver with a wide range of turbulence models implemented. The results show that the computed forces compare reasonably well with the experimental data, with the Baldwin-Lomax with Degani-Schiff modifications and the Baldwin-Barth models showing the best agreement for the transonic conditions and the Spalart-Allmaras model showing the best agreement for the supersonic conditions. The transonic results were more sensitive to the choice of turbulence model than were the supersonic results.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
NASA Astrophysics Data System (ADS)
Korzun, Ashley M.
The entry, descent, and landing (EDL) systems for the United States' six successful landings on Mars and the 2011 Mars Science Laboratory (MSL) have all relied heavily on extensions of technology developed for the Viking missions of the mid 1970s. Incremental improvements to these technologies, namely rigid 70-deg sphere-cone aeroshells, supersonic disk-gap-band parachutes, and subsonic propulsive terminal descent, have increased payload mass capability to 950 kg (MSL). However, MSL is believed to be near the upper limit for landed mass using a Viking-derived EDL system. To achieve NASA's long-term exploration goals at Mars, technologies are needed that enable more than an order of magnitude increase in landed mass (10s of metric tons), several orders of magnitude increase in landing accuracy (10s or 100s of meters), and landings at higher surface elevations (0+ km). Supersonic deceleration has been identified as a critical deficiency in extending Viking-heritage technologies to high-mass, high-ballistic coefficient systems. As the development and qualification of significantly larger supersonic parachutes is not a viable path forward to increase landed mass capability to 10+ metric tons, alternative approaches must be developed. Supersonic retropropulsion (SRP), or the use of retropropulsive thrust while an entry vehicle is traveling at supersonic conditions, is one such alternative approach. The concept originated in the 1960s, though only recently has interest in SRP resurfaced. While its presence in the historical literature lends some degree of credibility to the concept of using retropropulsion at supersonic conditions, the overall immaturity of supersonic retropropulsion requires additional evaluation of its potential as a decelerator technology for high-mass Mars entry systems, as well as its comparison with alternative decelerators. The supersonic retropropulsion flowfield is typically a complex interaction between highly under-expanded jet flow and the shock layer of a blunt body in supersonic flow. Although numerous wind tunnel tests of relevance to SRP have been conducted, the scope of the work is limited in the freestream conditions and composition, retropropulsion conditions and composition, and configurations and geometries explored. The SRP aerodynamic - propulsive interaction alters the aerodynamic characteristics of the vehicle, and models must be developed that accurately represent the impact of SRP on system mass and performance. Work within this thesis has defined and advanced the state of the art for supersonic retropropulsion. This has been achieved through the application of systems analysis, computational analysis, and analytical methods. The contributions of this thesis include a detailed performance analysis and exploration of the design space specific to supersonic retropropulsion, establishment of the relationship between vehicle performance and the aerodynamic - propulsive interaction, and an assessment of the required fidelity and computational cost in simulating supersonic retropropulsion flowfields, with emphasis on the effort required to develop aerodynamic databases for conceptual design.
Dynamic Supersonic Base Store Ejection Simulation Using Beggar
2008-12-01
selected convergence tolerance. Beggar accomplishes this is by using the symmetric Gauss - Seidel relaxation scheme implemented as follows [26]: [ ln+1,m...scheme (Section 2.3.3). To compute a time accurate solution to an unsteady flow problem, Beggar ap- plies Newtons Method to Eq. 2.15. The full method ...3.6. Separation Distance (x/D) . . . . . . . . . . . . . . . . . . . . 46 4.1. Drag Coefficient of Static Solutions Compared to Dynamic Solu- tions
1980-11-01
act in the sense displayed in Figure 17 of Volume II. All moments are about the store moment center COMMON /ONE/ DELTP(250),FN(250), PNLC (250),SWPPLE...linear loading pressure coefficient of Jth u-velocity panel FN(J) normal force divided by q for Jth u-velocity panel PNLC (J) panel chord through control
14 CFR 91.821 - Civil supersonic airplanes: Noise limits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...
14 CFR 91.821 - Civil supersonic airplanes: Noise limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...
14 CFR 91.821 - Civil supersonic airplanes: Noise limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...
14 CFR 91.821 - Civil supersonic airplanes: Noise limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...
Analysis and control of asymmetric vortex flows and supersonic vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1991-01-01
Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.
14 CFR 91.821 - Civil supersonic airplanes: Noise limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...
Preliminary supersonic flight test evaluation of performance seeking control
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1993-01-01
Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.
NASA Technical Reports Server (NTRS)
Freedman, M. I.; Sipcic, S.; Tseng, K.
1985-01-01
A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.
Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare
NASA Astrophysics Data System (ADS)
Unverferth, John; Longcope, Dana
2018-06-01
Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.
NASA Technical Reports Server (NTRS)
Selna, James; Schlaff, Bernard A
1951-01-01
The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.
Spring 2014 Internship Diffuser Data Analysis
NASA Technical Reports Server (NTRS)
Laigaie, Robert T.; Ryan, Harry M.
2014-01-01
J-2X engine testing on the A-2 test stand at the NASA John C. Stennis Space Center (SSC) has recently concluded. As part of that test campaign, the engine was operated at lower power levels in support of expanding the use of J-2X to other missions. However, the A-2 diffuser was not designed for engine testing at the proposed low power levels. To evaluate the risk of damage to the diffuser, computer simulations were created of the rocket engine exhaust plume inside the 50ft long, water-cooled, altitude-simulating diffuser. The simulations predicted that low power level testing would cause the plume to oscillate in the lower sections of the diffuser. This can possibly cause excessive vibrations, stress, and heat transfer from the plume to the diffuser walls. To understand and assess the performance of the diffuser during low power level engine testing, nine accelerometers and four strain gages were installed around the outer surface of the diffuser. The added instrumentation also allowed for the verification of the rocket exhaust plume computational model. Prior to engine hot-fire testing, a diffuser water-flow test was conducted to verify the proper operation of the newly installed instrumentation. Subsequently, two J-2X engine hot-fire tests were completed. Hot-Fire Test 1 was 11.5 seconds in duration, and accelerometer and strain data verified that the rocket engine plume oscillated in the lower sections of the diffuser. The accelerometers showed very different results dependent upon location. The diffuser consists of four sections, with Section 1 being closest to the engine nozzle and Section 4 being farthest from the engine nozzle. Section 1 accelerometers showed increased amplitudes at startup and shutdown, but low amplitudes while the diffuser was started. Section 3 accelerometers showed the opposite results with near zero G amplitudes prior to and after diffuser start and peak amplitudes to +/- 100G while the diffuser was started. Hot-Fire Test 1 strain gages showed different data dependent on section. Section 1 strains were small, and were in the range of 50 to 150 microstrain, which would result in stresses from 1.45 to 4.35 ksi. The yield stress of the material, A-285 Grade C Steel, is 29.7 ksi. Section 4 strain gages showed much higher values with strains peaking at 1600 microstrain. This strain corresponds to a stress of 46.41 ksi, which is in excess of the yield stress, but below the ultimate stress of 55 to 75 ksi. The decreased accelerations and strain in Section 1, and the increased accelerations and strain in Sections 3 and 4 verified the computer simulation prediction of increased plume oscillations in the lower sections of the diffuser. Hot-Fire Test 2 ran for a duration of 125 seconds. The engine operated at a slightly higher power level than Hot-Fire Test 1 for the initial 35 seconds of the test. After 35 seconds the power level was lowered to Hot-Fire Test 1 levels. The acceleration and strain data for Hot-Fire Test 2 was similar during the initial part of the test. However, just prior to the engine being lowered to the Hot-Fire Test 1 power level, the strain gage data in Section 4 showed a large decrease to strains near zero microstrain from their peak at 1500 microstrain. Future work includes further strain and acceleration data analysis and evaluation.
Supersonic reacting internal flowfields
NASA Astrophysics Data System (ADS)
Drummond, J. P.
The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flowfields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.
Supersonic reacting internal flow fields
NASA Technical Reports Server (NTRS)
Drummond, J. Philip
1989-01-01
The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Jones, R. R., III; Tam, C. K.; Massey, K. C.; Fleming, A. J.
1992-01-01
The overall objective of the described effort was to develop an understanding of the physical mechanisms involved in the flow/acoustic interactions experienced in full-scale altitude engine test facilities. This is done by conducting subscale experiments and through development of a theoretical model. Model cold jet experiments with an axisymmetric convergent nozzle are performed in a test setup that stimulates a supersonic jet exhausting into a cylindrical diffuser. The measured data consist of detailed flow visualization data and acoustic spectra for a free and a ducted plume. It is shown that duct resonance is most likely responsible by theoretical calculations. Theoretical calculations also indicate that the higher discrete tones observed in the measurements are related to the screech phenomena. Limited experiments on the sensitivity of a free 2-D, C-D nozzle to externally imposed sound are also presented. It is shown that a 2-D, C-D nozzle with a cutback is less excitable than a 2-D C-D nozzle with no cutback. At a pressure ratio of 1.5 unsteady separation from the diverging walls of the nozzle is noticed. This separation switches from one wall to the opposite wall thus providing an unsteady deflection of the plume. It is shown that this phenomenon is related to the venting provided by the cutback section.
Pdf prediction of supersonic hydrogen flames
NASA Technical Reports Server (NTRS)
Eifler, P.; Kollmann, W.
1993-01-01
A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.
NASA Technical Reports Server (NTRS)
Morris, O. A.
1977-01-01
A wind tunnel investigation has been conducted to determine the longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise fighter configuration with a design Mach number of 2.60. The configuration is characterized by a highly swept arrow wing twisted and cambered to minimize supersonic drag due to lift, twin wing mounted vertical tails, and an aft mounted integral underslung duel-engine pod. The investigation also included tests of the configuration with larger outboard vertical tails and with small nose strakes.
A model of transverse fuel injection applied to the computation of supersonic combustor flow
NASA Technical Reports Server (NTRS)
Rogers, R. C.
1979-01-01
A two-dimensional, nonreacting flow model of the aerodynamic interaction of a transverse hydrogen jet within a supersonic mainstream has been developed. The model assumes profile shapes of mass flux, pressure, flow angle, and hydrogen concentration and produces downstream profiles of the other flow parameters under the constraints of the integrated conservation equations. These profiles are used as starting conditions for an existing finite difference parabolic computer code for the turbulent supersonic combustion of hydrogen. Integrated mixing and flow profile results obtained from the computer code compare favorably with existing data for the supersonic combustion of hydrogen.
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1948-01-01
A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.
Experiments on free and impinging supersonic microjets
NASA Astrophysics Data System (ADS)
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
NASA Technical Reports Server (NTRS)
Clark, Ian G.; Adler, Mark; Manning, Rob
2015-01-01
NASA's Low-Density Supersonic Decelerator Project is developing and testing the next generation of supersonic aerodynamic decelerators for planetary entry. A key element of that development is the testing of full-scale articles in conditions relevant to their intended use, primarily the tenuous Mars atmosphere. To achieve this testing, the LDSD project developed a test architecture similar to that used by the Viking Project in the early 1970's for the qualification of their supersonic parachute. A large, helium filled scientific balloon is used to hoist a 4.7 m blunt body test vehicle to an altitude of approximately 32 kilometers. The test vehicle is released from the balloon, spun up for gyroscopic stability, and accelerated to over four times the speed of sound and an altitude of 50 kilometers using a large solid rocket motor. Once at those conditions, the vehicle is despun and the test period begins. The first flight of this architecture occurred on June 28th of 2014. Though primarily a shake out flight of the new test system, the flight was also able to achieve an early test of two of the LDSD technologies, a large 6 m diameter Supersonic Inflatable Aerodynamic Decelerator (SIAD) and a large, 30.5 m nominal diameter supersonic parachute. This paper summarizes this first flight.
Pulsed Ejector Wave Propogation Test Program
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Slater, John W.; Paxson, Daniel E.
2003-01-01
The development of, and initial test data from, a nondetonating Pulse Detonation Engine (PDE) simulator tested in the NASA Glenn 1 x 1 foot Supersonic Wind Tunnel (SWT) is presented in this paper. The concept is a pulsed ejector driven by the simulated exhaust of a PDE. This pro- gram is applicable to a PDE entombed in a ramjet flowpath, i.e., a PDE combined-cycle propulsion system. The ejector primary flow is a pulsed, uiiderexpanded, supersonic nozzle simulating the supersonic waves ema- nating from a PDE, while the ejector secondary flow is the 1 x 1 foot SWT test section operated at subsonic Mach numbers. The objective is not to study the detonation details, but the wave physics including t,he start- ing vortices, the extent of propagation of the wave front, the reflection of the wave from the secondary flowpath walls, and the timing of these events of a pulsed ejector, and correlate these with Computational Fluid Dynamics (CFD) code predictions. Pulsed ejectors have been shown to result in a 3 to 1 improvement in LID (length-to-diameter) and a near 2 to 1 improvement in thrust augmentation over a steady ejector. This program will also explore the extent of upstream interactions between an inlet and large, periodically applied, backpressures to the inlet as would be present due to combustion tube detonations in a PDE. These interactions could result in inlet unstart or buzz for a supersonic mixed compression inlet. The design of the present experiment entailed the use of an 2-t diagram characteristics code to study the nozzle filling and purging timescales as well as a series of CFD analyses conducted using the WIND code. The WIND code is a general purpose CFD code for solution of the Reynolds averaged Navier-Stokes equations and can be applied to both steady state and time-accurate calculations. The first, proof-of-concept, test entry (spring 2001) pressure distributions shown here indicate the simulation concept was successful and therefore the experimental approach is sound.
Flow field investigation in a bulb turbine diffuser
NASA Astrophysics Data System (ADS)
Pereira, M.; Duquesne, P.; Aeschlimann, V.; Deschênes, C.
2017-04-01
An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. The flow has been investigated in the transition part of the diffuser using two LDV measurement sections. The transition part is a diffuser section that transforms from a circular to a rectangular section. The two measurement sections are at the inlet and outlet of the diffuser transition part. The turbine has been operated at three operating points, which are representative of different flow patterns at the diffuser exit at overload. In addition to the average velocity field, the analysis is conducted based on a backflow occurrence function and on the swirl level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.
The Physics of Boundary-Layer Aero-Optic Effects
2012-09-01
various models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed...models to predict aero-optical effects for both subsonic and supersonic Mach numbers, laser beam sizes and non- adiabatic walls. The developed models were... Supersonic Facilities .................................................................................................... 8 3.3 2-D Wavefront Data
Mapping the Interactions between Shocks and Mixing Layers in a 3-Stream Supersonic Jet
NASA Astrophysics Data System (ADS)
Lewalle, Jacques; Ruscher, Christopher; Kan, Pinqing; Tenney, Andrew; Gogineni, Sivaram; Kiel, Barry
2015-11-01
Pressure is obtained from an LES calculation of the supersonic jet (Ma1 = 1 . 6) issuing from a rectangular nozzle in a low-subsonic co-flow; a tertiary flow, also rectangular with Ma3 = 1 insulates the primary jet from an aft-deck plate. The developing jet exhibits complex three-dimensional interactions between oblique shocks, multiple mixing layers and corner vortices, which collectively act as a skeleton for the flow. Our study is based on several plane sections through the pressure field, with short signals (0.1 s duration at 80 kHz sampling rate). Using wavelet-based band-pass filtering and cross-correlations, we map the directions of propagation of information among the various ``bones'' in the skeleton. In particular, we identify upstream propagation in some frequency bands, 3-dimensional interactions between the various shear layers, and several key bones from which the pressure signals, when taken as reference, provide dramatic phase-locking for parts of the skeleton. We acknowledge the support of AFRL through an SBIR grant.
Cold Collisions in a Molecular Synchrotron
NASA Astrophysics Data System (ADS)
van der Poel, Aernout P. P.; Zieger, Peter C.; van de Meerakker, Sebastiaan Y. T.; Loreau, Jérôme; van der Avoird, Ad; Bethlem, Hendrick L.
2018-01-01
We study collisions between neutral, deuterated ammonia molecules (ND3 ) stored in a 50 cm diameter synchrotron and argon atoms in copropagating supersonic beams. The advantages of using a synchrotron in collision studies are twofold: (i) By storing ammonia molecules many round-trips, the sensitivity to collisions is greatly enhanced; (ii) the collision partners move in the same direction as the stored molecules, resulting in low collision energies. We tune the collision energy in three different ways: by varying the velocity of the stored ammonia packets, by varying the temperature of the pulsed valve that releases the argon atoms, and by varying the timing between the supersonic argon beam and the stored ammonia packets. These give consistent results. We determine the relative, total, integrated cross section for ND3+Ar collisions in the energy range of 40 - 140 cm-1 , with a resolution of 5 - 10 cm-1 and an uncertainty of 7%-15%. Our measurements are in good agreement with theoretical scattering calculations.
Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe
NASA Astrophysics Data System (ADS)
Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.
2014-08-01
A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.
NASA Astrophysics Data System (ADS)
Zudov, Vladimir N.; Tretyakov, Pavel K.
2017-10-01
The effect of a focused pulsed-periodic beam of a CO2 laser on initiation and evolution of combustion in subsonic and supersonic flows of homogeneous fuel-air mixtures (CH4 + air) is experimentally studied. The beam generated by the CO2 laser propagates across the flow and is focused by a lens at the jet axis. The flow structure is determined by a schlieren system with a slot and a plane knife aligned in the streamwise direction. The image is recorded by a high speed camera with an exposure time of 1.5 μs and a frame frequency of 1000 s-1. The structure of the combustion region is studied by an example of inherent luminescence of the flame at the wavelengths of OH and CH radicals. The distribution of the emission intensity of the mixture components in the optical discharge region is investigated in the present experiments by methods of emission spectroscopy.
Nanostructured tracers for laser-based diagnostics in high-speed flows
NASA Astrophysics Data System (ADS)
Ghaemi, S.; Schmidt-Ott, A.; Scarano, F.
2010-10-01
The potential application of aggregates of nanoparticles for high-speed flow diagnostics is investigated. Aluminum nanoparticles around 10 nm in diameter are produced by spark discharge in argon gas. Through rapid coagulation and oxidation, aggregates of small effective density are formed. They are characterized by microscopy and their aerodynamics and optical properties are theoretically evaluated. The performance of the aggregates is experimentally investigated across an oblique shock wave in a supersonic wind tunnel of 3 × 3 cm2 cross-section at Mach 2. Particle image velocimetry is used to quantify the time response of the aggregates. The investigations are also carried out on compact titanium agglomerates to provide a base for comparison. The results yield a relaxation time of 0.27 µs for the nanostructured aluminum aggregates, which is an order of magnitude reduction with respect to the compact titanium nanoparticles. This work demonstrates the applicability of nanostructured aggregates for laser-based diagnostics in supersonic and hypersonic flows.
Measurements of Supersonic Wing Tip Vortices
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James
1994-01-01
An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
Feasibility and benefits of laminar flow control on supersonic cruise airplanes
NASA Technical Reports Server (NTRS)
Powell, A. G.; Agrawal, S.; Lacey, T. R.
1989-01-01
An evaluation was made of the applicability and benefits of laminar flow control (LFC) technology to supersonic cruise airplanes. Ancillary objectives were to identify the technical issues critical to supersonic LFC application, and to determine how those issues can be addressed through flight and wind-tunnel testing. Vehicle types studied include a Mach 2.2 supersonic transport configuration, a Mach 4.0 transport, and two Mach 2-class fighter concepts. Laminar flow control methodologies developed for subsonic and transonic wing laminarization were extended and applied. No intractible aerodynamic problems were found in applying LFC to airplanes of the Mach 2 class, even ones of large size. Improvements of 12 to 17 percent in lift-drag ratios were found. Several key technical issues, such as contamination avoidance and excresence criteria were identified. Recommendations are made for their resolution. A need for an inverse supersonic wing design methodology is indicated.
Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Dwoyer, Douglas L.
1987-01-01
A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.
Judgements of relative noisiness of a supersonic transport and several commercial-service aircraft
NASA Technical Reports Server (NTRS)
Powell, C. A.
1977-01-01
Two laboratory experiments were conducted on the relative noisiness of takeoff and landing operations of a supersonic transport and several other aircraft in current commercial service. A total of 96 subjects made noisiness judgments on 120 tape-recorded flyover noises in the outdoor-acoustic-simulation experiment; 32 different subjects made judgments on the noises in the indoor-acoustic-simulation experiment. The judgments were made by using the method of numerical category scaling. The effective perceived noise level underestimated the noisiness of the supersonic transport by 3.5 db. For takeoff operations, no difference was found between the noisiness of the supersonic transport and the group of other aircraft for the A-weighted rating scale; however, for landing operations, the noisiness of the supersonic transport was overestimated by 3.7 db. Very high correlation was found between the outdoor-simulation experiment and the indoor-simulation experiment.
Experimental Investigation of Laser-sustained Plasma in Supersonic Argon Flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperber, David; Eckel, Hans-Albert; Moessinger, Peter
Laser-induced energy deposition is widely discussed as a flow control technique in supersonic transportation. In case of thermal laser-plasma upstream of a blunt body, a substantial adaptation of shock wave geometry and magnitude of wave drag is predicted. Related to the research on laser supported detonation, the paper describes the implementation of laser-sustained plasma in a supersonic Argon jet. The stable plasma state is generated by the intersection of a Q-switched Nd:YAG-laser and a continuous wave CO{sub 2}-laser beams, for ignition and maintenance of the plasma respectively. A miniature supersonic Ludwieg tube test facility generates a supersonic jet at velocitiesmore » of Mach 2.1. Modifications of the flow and plasma conditions are investigated and characterized by Schlieren flow visualisation, laser energy transmission and plasma radiation measurements. The results include the discussions of the flow field as well as the required laser and gas parameters.« less
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
High power gas laser - Applications and future developments
NASA Technical Reports Server (NTRS)
Hertzberg, A.
1977-01-01
Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.
Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles
NASA Astrophysics Data System (ADS)
Dykas, Sławomir; Szymański, Artur; Majkut, Mirosław
2017-06-01
This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles. By nature, atmospheric air always contains a certain amount of water vapor. The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) "half-nozzle", referred to as a transonic diffuser, with a much slower expansion rate. The calculations were performed using an in-house CFD code. The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air. The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.
Enhanced Performance of Streamline-Traced External-Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.
2015-01-01
A computational design study was conducted to enhance the aerodynamic performance of streamline-traced, external-compression inlets for Mach 1.6. Compared to traditional external-compression, two-dimensional and axisymmetric inlets, streamline-traced inlets promise reduced cowl wave drag and sonic boom, but at the expense of reduced total pressure recovery and increased total pressure distortion. The current study explored a new parent flowfield for the streamline tracing and several variations of inlet design factors, including the axial displacement and angle of the subsonic cowl lip, the vertical placement of the engine axis, and the use of porous bleed in the subsonic diffuser. The performance was enhanced over that of an earlier streamline-traced inlet such as to increase the total pressure recovery and reduce total pressure distortion.
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1993-01-01
A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1974-01-01
Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.
Evaporating Spray in Supersonic Streams Including Turbulence Effects
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.
2006-01-01
Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.
Adaptive Aft Signature Shaping of a Low-Boom Supersonic Aircraft Using Off-Body Pressures
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2012-01-01
The design and optimization of a low-boom supersonic aircraft using the state-of-the- art o -body aerodynamics and sonic boom analysis has long been a challenging problem. The focus of this paper is to demonstrate an e ective geometry parameterization scheme and a numerical optimization approach for the aft shaping of a low-boom supersonic aircraft using o -body pressure calculations. A gradient-based numerical optimization algorithm that models the objective and constraints as response surface equations is used to drive the aft ground signature toward a ramp shape. The design objective is the minimization of the variation between the ground signature and the target signature subject to several geometric and signature constraints. The target signature is computed by using a least-squares regression of the aft portion of the ground signature. The parameterization and the deformation of the geometry is performed with a NASA in- house shaping tool. The optimization algorithm uses the shaping tool to drive the geometric deformation of a horizontal tail with a parameterization scheme that consists of seven camber design variables and an additional design variable that describes the spanwise location of the midspan section. The demonstration cases show that numerical optimization using the state-of-the-art o -body aerodynamic calculations is not only feasible and repeatable but also allows the exploration of complex design spaces for which a knowledge-based design method becomes less effective.
NASA Astrophysics Data System (ADS)
Katz, A.; Waichman, K.; Dahan, Z.; Rybalkin, V.; Barmashenko, B. D.; Rosenwaks, S.
2007-06-01
The dissociation of I II molecules at the optical axis of a supersonic chemical oxygen-iodine laser (COIL) was studied via detailed measurements and three dimensional computational fluid dynamics calculations. Comparing the measurements and the calculations enabled critical examination of previously proposed dissociation mechanisms and suggestion of a mechanism consistent with the experimental and theoretical results obtained in a supersonic COIL for the gain, temperature and I II dissociation fraction at the optical axis. The suggested mechanism combines the recent scheme of Azyazov and Heaven (AIAA J. 44, 1593 (2006)), where I II(A' 3Π 2u), I II(A 3Π 1u) and O II(a1Δ g, v) are significant dissociation intermediates, with the "standard" chain branching mechanism of Heidner et al. (J. Phys. Chem. 87, 2348 (1983)), involving I(2P 1/2) and I II(X1Σ + g, v). In addition, we examined a new method for enhancement of the gain and power in a COIL by applying DC corona/glow discharge in the transonic section of the secondary flow in the supersonic nozzle, dissociating I II prior to its mixing with O II(1Δ). The loss of O II(1Δ) consumed for dissociation was thus reduced and the consequent dissociation rate downstream of the discharge increased, resulting in up to 80% power enhancement. The implication of this method for COILs operating beyond the specific conditions reported here is assessed.
Analysis of a Channeled Centerbody Supersonic Inlet for F-15B Flight Research
NASA Technical Reports Server (NTRS)
Ratnayake, Nalin A.
2010-01-01
The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.
Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983
NASA Technical Reports Server (NTRS)
Hoffman, S.
1984-01-01
A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.
Validation of OVERFLOW for Supersonic Retropropulsion
NASA Technical Reports Server (NTRS)
Schauerhamer, Guy
2012-01-01
The goal is to softly land high mass vehicles (10s of metric tons) on Mars. Supersonic Retropropulsion (SRP) is a potential method of deceleration. Current method of supersonic parachutes does not scale past 1 metric ton. CFD is of increasing importance since flight and experimental data at these conditions is difficult to obtain. CFD must first be validated at these conditions.
Preliminary Investigation of a New Type of Supersonic Inlet
NASA Technical Reports Server (NTRS)
Ferri, Antonio; Nucci, Louis M
1952-01-01
A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered a particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and, therefore, is practical for use on supersonic airplanes and missiles. Experimental results confirming the theoretical analysis give pressure recoveries which vary from 95 percent for Mach number 1.33 to 86 percent for number 2.00. These results were originally presented in a classified document of the NACA in 1946.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
Supersonics Project - Airport Noise Tech Challenge
NASA Technical Reports Server (NTRS)
Bridges, James
2010-01-01
The Airport Noise Tech Challenge research effort under the Supersonics Project is reviewed. While the goal of "Improved supersonic jet noise models validated on innovative nozzle concepts" remains the same, the success of the research effort has caused the thrust of the research to be modified going forward in time. The main activities from FY06-10 focused on development and validation of jet noise prediction codes. This required innovative diagnostic techniques to be developed and deployed, extensive jet noise and flow databases to be created, and computational tools to be developed and validated. Furthermore, in FY09-10 systems studies commissioned by the Supersonics Project showed that viable supersonic aircraft were within reach using variable cycle engine architectures if exhaust nozzle technology could provide 3-5dB of suppression. The Project then began to focus on integrating the technologies being developed in its Tech Challenge areas to bring about successful system designs. Consequently, the Airport Noise Tech Challenge area has shifted efforts from developing jet noise prediction codes to using them to develop low-noise nozzle concepts for integration into supersonic aircraft. The new plan of research is briefly presented by technology and timelines.
NASA Technical Reports Server (NTRS)
Magee, Todd E.; Fugal, Spencer R.; Fink, Lawrence E.; Adamson, Eric E.; Shaw, Stephen G.
2015-01-01
This report describes the work conducted under NASA funding for the Boeing N+2 Supersonic Experimental Validation project to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 -to 2020 timeframe (NASA N+2 generation). The primary goal of the project was to develop a low-boom configuration optimized for minimum sonic boom signature (65 to 70 PLdB). This was a very aggressive goal that could be achieved only through integrated multidisciplinary optimization tools validated in relevant ground and, later, flight environments. The project was split into two phases. Phase I of the project covered the detailed aerodynamic design of a low boom airliner as well as the wind tunnel tests to validate that design (ref. 1). This report covers Phase II of the project, which continued the design methodology development of Phase I with a focus on the propulsion integration aspects as well as the testing involved to validate those designs. One of the major airplane configuration features of the Boeing N+2 low boom design was the overwing nacelle. The location of the nacelle allowed for a minimal effect on the boom signature, however, it added a level of difficulty to designing an inlet with acceptable performance in the overwing flow field. Using the Phase I work as the starting point, the goals of the Phase 2 project were to design and verify inlet performance while maintaining a low-boom signature. The Phase II project was successful in meeting all contract objectives. New modular nacelles were built for the larger Performance Model along with a propulsion rig with an electrically-actuated mass flow plug. Two new mounting struts were built for the smaller Boom Model, along with new nacelles. Propulsion integration testing was performed using an instrumented fan face and a mass flow plug, while boom signatures were measured using a wall-mounted pressure rail. A side study of testing in different wind tunnels was completed as a precursor to the selection of the facilities used for validation testing. As facility schedules allowed, the propulsion testing was done at the NASA Glenn Research Center (GRC) 8 x 6-Foot wind tunnel, while boom and force testing was done at the NASA Ames Research Center (ARC) 9 x 7-Foot wind tunnel. During boom testing, a live balance was used for gathering force data. This report is broken down into nine sections. The first technical section (Section 2) covers the general scope of the Phase II activities, goals, a description of the design and testing efforts, and the project plan and schedule. Section 3 covers the details of the propulsion system concepts and design evolution. A series of short tests to evaluate the suitability of different wind tunnels for boom, propulsion, and force testing was also performed under the Phase 2 effort, with the results covered in Section 4. The propulsion integration testing is covered in Section 5 and the boom and force testing in Section 6. CFD comparisons and analyses are included in Section 7. Section 8 includes the conclusions and lessons learned.
High-Fidelity Multidisciplinary Design Using an Integrated Design Environment
2007-08-14
Leovirivakit and A. .Jamneson, -- Case Studies ini Aero-St ruc(t ural NWing Planiforiii aiid Section Op- tifiization". 22`1~ AIAA Applied Aerodynamaiics...design of complete aircraft configurations. The work was focused on four main areas: (1) Flow solution algorithms for unstructured meshes, (2) Aero...Multi-Fidelity Design Optimization Studies for Supersonic lIets" . 13"’" AIAA Aerospace Sciences Meeting kc E’xhibit, AIAA Paper 2005- (0531, Reno. NV
1980-11-01
IZPT,ITH,IDEL,NTAP7,IAR,IAN,IUB, IGB(7) ,IVB,IU,IV,IW,IVA,IWA, ICP, IPHI,IYB,NAG,NAP,NAV,NAS, NASHK, NAFLD ,IAO,IDO,ISKO,TYIMI,IZIM,ISVN,ISKP,NRING,IROW...locations in blank common required in SOLVE NASHIK maximum locations in blank common required in BSHOCK NAFLD maximum locations in blank common
Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos
2009-01-01
In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale supersonic wind tunnel testing of a rigid DGB parachute with entry-vehicle to validate two high fidelity computational fluid dynamics (CFD) tools. The computer codes utilized Large Eddy Simulation and Detached Eddy Simulation numerical approaches to accurately capture the turbulent wake of the entry vehicle and its coupling to the parachute bow-shock. The second phase was the development of fluid structure interaction (FSI) computational tools to predict parachute response to the supersonic flow field. The FSI development included the integration of the CFD from the first phase with a finite element structural model of the parachute membrane and cable elements. In this phase, a 4% of full-scale supersonic flexible parachute test program was conducted to provide validation data to the FSI code and an empirical dataset of the MSL parachute in a flight-like environment. The final phase is FSI simulations of the full-scale MSL parachute in a Mars type deployment. Findings from this program will be presented in terms of code development and validation, empirical findings from the supersonic testing, and drag performance during supersonic operation.
Numerical simulation of liquid droplet breakup in supersonic flows
NASA Astrophysics Data System (ADS)
Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing
2018-04-01
A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.
NASA Technical Reports Server (NTRS)
Neiner, G. H.; Dustin, M. O.; Cole, G. L.
1979-01-01
A stability-bleed system was installed in a YF-12 flight inlet that was subjected to internal and external airflow disturbances in the NASA Lewis 10 by 10 foot supersonic wind tunnel. The purpose of the system is to allow higher inlet performance while maintaining a substantial tolerance (without unstart) to internal and external disturbances. At Mach numbers of 2.47 and 2.76, the inlet tolerance to decreases in diffuser-exit corrected airflow was increased by approximately 10 percent of the operating-point airflow. The stability-bleed system complemented the terminal-shock-control system of the inlet and did not show interaction problems. For disturbances which caused a combined decrease in Mach number and increase in angle of attack, the system with valves operative kept the inlet started 4 to 28 times longer than with the valves inoperative. Hence, the stability system provides additional time for the inlet control system to react and prevent unstart. This was observed for initial Mach numbers of 2.55 and 2.68. For slow increase in angle of attack at Mach 2.47 and 2.76, the system kept the inlet started beyond the steady-state unstart angle. However, the maximum transient angles of attack without unstart could not be determined because wind-tunnel mechanical-stop limits for angle of attack were reached.
NASA Technical Reports Server (NTRS)
Cavalleri, R. J.; Agnone, A. M.
1972-01-01
A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.
The role of finite-difference methods in design and analysis for supersonic cruise
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
Why and Whither Hypersonics Research in the US Air Force
2000-12-01
of strong interest in high supersonic and hypersonic flight. Actual flight achievements—notably the first supersonic flight by the XS - 1 on 14...Air Force is sponsoring Future Strike Aircraft studies with Boeing, Lockheed Martin, and Northrop Grumman . Under these studies, subsonic, supersonic...SMC/XRD) MSE Technology Applications, Inc. Northrop Grumman Air Combat Systems Orbital Sciences Corporation Boeing Phantom Works 18 May 2000
A system for aerodynamic design and analysis of supersonic aircraft. Part 4: Test cases
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1980-01-01
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Representative test cases and associated program output are presented.
Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements
NASA Technical Reports Server (NTRS)
Tedder, Sarah Augusta Umberger
2010-01-01
Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.
Analytical and computational studies on the vacuum performance of a chevron ejector
NASA Astrophysics Data System (ADS)
Kong, F. S.; Jin, Y. Z.; Kim, H. D.
2016-11-01
The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.
Apparatus and method for the acceleration of projectiles to hypervelocities
Hertzberg, Abraham; Bruckner, Adam P.; Bogdanoff, David W.
1990-01-01
A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.
Molecular Carbon in the Galaxy: Laboratory and Observational Studies
NASA Technical Reports Server (NTRS)
Saykally, Richard James
2003-01-01
In a collaboration with the Mats Larsson group from Stockholm, we carried out a new measurement of the rate of dissociative recombination of H(sup *, sub j), using a new pulsed supersonic beam source of rotationally cold H(sup *, sub j). This source was first designed and characterized in our lab by IR cavity ringdown spectroscopy, determining a rotationaYtranslationa1 temperature of 20-60K, depending on conditions. This new source was then taken to Stockholm for the recombination rate studies at the CRYRING storage ring. The recombination rate constant measured against temperature yields values consistent with the most recent calculations, whereas previous experimental measurements varied over a range of 10(exp 4) and were poor agreement with theory. This is a crucial achievement for understanding the ion chemistry of diffuse clouds. Moreover, this result in combination with recent observations implies a greatly enhanced (factor of 40) cosmic ray ionization rate in a diffuse cloud (zeta Persei) relative to previous studies. The implications of this are discussed in our recent Nature paper. An enhanced cosmic-ray flux towards zeta Persei inferred from a laboratory study of the H(sup *, sub j)-e(sup -) recombination rate.
Performance potential of air turbo-ramjet employing supersonic through-flow fan
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1989-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.
Fluid Structure Interaction of Parachutes in Supersonic Planetary Entry
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2011-01-01
A research program to provide physical insight into disk-gap-band parachute operation in the supersonic regime on Mars was conducted. The program included supersonic wind tunnel tests, computational fluid dynamics and fluid structure interaction simulations. Specifically, the nature and cause of the "area oscillation" phenomenon were investigated to determine the scale, aerodynamic, and aero-elastic dependence of the supersonic parachute collapse and re-inflation event. A variety of non-intrusive, temporally resolved, and high resolution diagnostic techniques were used to interrogate the flow and generate validation datasets. The results of flow visualization, particle image velocimetry, load measurements, and photogrammetric reconstruction will be presented. Implications to parachute design, use, and verification will also be discussed.
Preliminary design of a supersonic Short-Takeoff and Vertical-Landing (STOVL) fighter aircraft
NASA Technical Reports Server (NTRS)
1990-01-01
A preliminary study of a supersonic short takeoff and vertical landing (STOVL) fighter is presented. Three configurations (a lift plus lift/cruise concept, a hybrid fan vectored thrust concept, and a mixed flow vectored thrust concept) were initially investigated with one configuration selected for further design analysis. The selected configuration, the lift plus lift/cruise concept, was successfully integrated to accommodate the powered lift short takeoff and vertical landing requirements as well as the demanding supersonic cruise and point performance requirements. A supersonic fighter aircraft with a short takeoff and vertical landing capability using the lift plus lift/cruise engine concept seems a viable option for the next generation fighter.
Two-Dimensional Bifurcated Inlet/Engine Tests Completed in 10- by 10-Foot Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Saunders, John D.
1999-01-01
A Two-Dimensional Bifurcated (2DB) Inlet was successfully tested in NASA Lewis Research Center s 10- by 10-Foot Supersonic Wind Tunnel. These tests were the culmination of a collaborative effort between the Boeing Company, General Electric, Pratt & Whitney, and Lewis. Extensive support in-house at Lewis contributed significantly to the progress and accomplishment of this test. The results, which met or exceeded many of the High-Speed Research (HSR) Program goals, were used to revise system studies within the HSR Program. The HSR Program is focused on developing low-noise, low-polluting, high-efficiency supersonic commercial aircraft. A supersonic inlet is an important component of an efficient, low-noise vehicle.
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Bobbitt, Percy J
1956-01-01
Velocity potentials, pressure, distributions, and stability derivatives are derived by use of supersonic linearized theory for families of thin isolated vertical tails performing steady rolling, steady yawing, and constant-lateral-acceleration motions. Vertical-tail families (half-delta and rectangular plan forms) are considered for a broad Mach number range. Also considered are the vertical tail with arbitrary sweepback and taper ratio at Mach numbers for which both the leading edge and trailing edge of the tail are supersonic and the triangular vertical tail with a subsonic leading edge and a supersonic trailing edge. Expressions for potentials, pressures, and stability derivatives are tabulated.
Method and apparatus for starting supersonic compressors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawlor, Shawn P
A supersonic gas compressor with bleed gas collectors, and a method of starting the compressor. The compressor includes aerodynamic duct(s) situated for rotary movement in a casing. The aerodynamic duct(s) generate a plurality of oblique shock waves for efficiently compressing a gas at supersonic conditions. A convergent inlet is provided adjacent to a bleed gas collector, and during startup of the compressor, bypass gas is removed from the convergent inlet via the bleed gas collector, to enable supersonic shock stabilization. Once the oblique shocks are stabilized at a selected inlet relative Mach number and pressure ratio, the bleed of bypassmore » gas from the convergent inlet via the bypass gas collectors is effectively eliminated.« less
Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor
NASA Technical Reports Server (NTRS)
Hirt, Stefanie M.; Arend, David J.; Wolter, John D.
2017-01-01
The test section of the 8- by 6-Foot Supersonic Wind Tunnel at NASA Glenn Research Center was modified to produce the test conditions for a boundary-layer-ingesting propulsor. A test was conducted to measure the flow properties in the modified test section before the propulsor was installed. Measured boundary layer and freestream conditions were compared to results from computational fluid dynamics simulations of the external surface for the reference vehicle. Testing showed that the desired freestream conditions and boundary layer thickness could be achieved; however, some non-uniformity of the freestream conditions, particularly the total temperature, were observed.
Supersonic laser spray of aluminium alloy on a ceramic substrate
NASA Astrophysics Data System (ADS)
Riveiro, A.; Lusquiños, F.; Comesaña, R.; Quintero, F.; Pou, J.
2007-12-01
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying. In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate. In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO 2 laser and a supersonic jet of Argon. Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.
On the axisymmetric stability of heated supersonic round jets
2016-01-01
We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Computation of multi-dimensional viscous supersonic jet flow
NASA Technical Reports Server (NTRS)
Kim, Y. N.; Buggeln, R. C.; Mcdonald, H.
1986-01-01
A new method has been developed for two- and three-dimensional computations of viscous supersonic flows with embedded subsonic regions adjacent to solid boundaries. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases relevant to internal supersonic flow is presented and compared with data. Comparison between data and computation are in general excellent thus indicating that the computational technique has great promise as a tool for calculating supersonic flow with embedded subsonic regions. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Computation of multi-dimensional viscous supersonic flow
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Kim, Y. N.; Mcdonald, H.
1986-01-01
A method has been developed for two- and three-dimensional computations of viscous supersonic jet flows interacting with an external flow. The approach employs a reduced form of the Navier-Stokes equations which allows solution as an initial-boundary value problem in space, using an efficient noniterative forward marching algorithm. Numerical instability associated with forward marching algorithms for flows with embedded subsonic regions is avoided by approximation of the reduced form of the Navier-Stokes equations in the subsonic regions of the boundary layers. Supersonic and subsonic portions of the flow field are simultaneously calculated by a consistently split linearized block implicit computational algorithm. The results of computations for a series of test cases associated with supersonic jet flow is presented and compared with other calculations for axisymmetric cases. Demonstration calculations indicate that the computational technique has great promise as a tool for calculating a wide range of supersonic flow problems including jet flow. Finally, a User's Manual is presented for the computer code used to perform the calculations.
Aerodynamic Design Opportunities for Future Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Bauer, Steven X. S.; Flamm, Jeffrey D.
2002-01-01
A discussion of a diverse set of aerodynamic opportunities to improve the aerodynamic performance of future supersonic aircraft has been presented and discussed. These ideas are offered to the community in a hope that future supersonic vehicle development activities will not be hindered by past efforts. A number of nonlinear flow based drag reduction technologies are presented and discussed. The subject technologies are related to the areas of interference flows, vehicle concepts, vortex flows, wing design, advanced control effectors, and planform design. The authors also discussed the importance of improving the aerodynamic design environment to allow creativity and knowledge greater influence. A review of all of the data presented show that pressure drag reductions on the order of 50 to 60 counts are achievable, compared to a conventional supersonic cruise vehicle, with the application of several of the discussed technologies. These drag reductions would correlate to a 30 to 40% increase in cruise L/D (lift-to-drag ratio) for a commercial supersonic transport.
Supersonic wings with significant leading-edge thrust at cruise
NASA Technical Reports Server (NTRS)
Robins, A. W.; Carlson, H. W.; Mack, R. J.
1980-01-01
Experimental/theoretical correlations are presented which show that significant levels of leading edge thrust are possible at supersonic speeds for certain planforms which match the theoretical thrust distribution potential with the supporting airfoil geometry. The analytical process employed spanwise distribution of both it and/or that component of full theoretical thrust which acts as vortex lift. Significantly improved aerodynamic performance in the moderate supersonic speed regime is indicated.
2013-01-01
flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a
NASA Astrophysics Data System (ADS)
Nikiforov, G. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.
2018-05-01
The influence of density inhomogeneity on aerodynamic characteristics of a blunt cylinder has been studied experimentally. The inhomogeneity of the supersonic free stream was obtained by injection of a thin helium jet into the main air stream. The interaction of the density inhomogeneity of the supersonic flow and shock wave resulted in a decrease of drag and heat flux on the blunt cylinder.
Supersonic Research Display for Tour
1946-03-21
On March 22, 1946, 250 members of the Institute of Aeronautical Science toured the NACA’s Aircraft Engine Research Laboratory. NACA Chairman Jerome Hunsaker and Secretary John Victory were on hand to brief the attendees in the Administration Building before the visited the lab’s test facilities. At each of the twelve stops, researchers provided brief presentations on their work. Topics included axial flow combustors, materials for turbine blades, engine cooling, icing prevention, and supersonic flight. The laboratory reorganized itself in October 1945 as World War II came to an end to address newly emerging technologies such as the jet engine, rockets, and high-speed flight. While design work began on what would eventually become the 8- by 6-Foot Supersonic Wind Tunnel, NACA Lewis quickly built several small supersonic tunnels. These small facilities utilized the Altitude Wind Tunnel’s massive air handling equipment to generate high-speed airflow. The display seen in this photograph was set up in the building that housed the first of these wind tunnels. Eventually the building would contain three small supersonic tunnels, referred to as the “stack tunnels” because of the vertical alignment. The two other tunnels were added to this structure in 1949 and 1951. The small tunnels were used until the early 1960s to study the aerodynamic characteristics of supersonic inlets and exits.
Development of a quiet supersonic wind tunnel with a cryogenic adaptive nozzle
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1993-01-01
The main objective of this work is to develop an interim Quiet (low-disturbance) supersonic wind tunnel for the NASA-Ames Fluid Mechanics Laboratory (FML). The main emphasis is to bring on-line a full-scale Mach 1.6 tunnel as rapidly as possible to impact the NASA High Speed Research Program (HSRP). The development of a cryogenic adaptive nozzle and other sophisticated features of the tunnel will now happen later, after the full scale wind tunnel is in operation. The work under this contract for the period of this report can be summarized as follows: provide aerodynamic design requirements for the NASA-Ames Fluid Mechanics Laboratory (FML) Laminar Flow Supersonic Wind Tunnel (LFSWT); research design parameters for a unique Mach 1.6 drive system for the LFSWT using an 1/8th-scale Proof-of-Concept (PoC) supersonic wind tunnel; carry out boundary layer transition studies in PoC to aid the design of critical components of the LFSWT; appraise the State of the Art in quiet supersonic wind tunnel design; and help develop a supersonic research capability within the FML particularly in the areas of high speed transition measurements and schlieren techniques. The body of this annual report summarizes the work of the Principal Investigator.
Pilot Deployment of the LDSD Parachute via a Supersonic Ballute
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; O'Farrell, Clara; Gallon, John C.; Clark, Ian G.; Witkowski, Allen; Woodruff, Paul
2015-01-01
The Low Density Supersonic Decelerator (LDSD) Project required the use of a pilot system due to the inability to mortar deploy its main supersonic parachute. A mortar deployed 4.4 m diameter supersonic ram-air ballute was selected as the pilot system for its high drag coefficient and stability relative to candidate supersonic parachutes at the targeted operational Mach number of 3. The ballute underwent a significant development program that included the development of a new liquid methanol-based pre-inflation system to assist the ballute inflation process. Both pneumatic and pyrotechnic mortar tests were conducted to verify orderly rigging deployment, bag strip, inflation aid activation, and proper mortar performance. The ballute was iteratively analyzed between fluid and structural analysis codes to obtain aerodynamic and aerothermodynamic estimates as well as estimates of the ballute's structural integrity and shape. The ballute was successfully flown in June 2014 at a Mach number of 2.73 as part of the first LDSD supersonic flight test and performed beyond expectations. Recovery of the ballute indicated that it did not exceed its structural or thermal capabilities. This flight set a historical precedent as it represented the largest ballute to have ever been successfully flown at this Mach number by a NASA entity.
Properties of Supersonic Evershed Downflows
NASA Astrophysics Data System (ADS)
Esteban Pozuelo, S.; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2016-12-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.
Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors
NASA Technical Reports Server (NTRS)
Farassat, F.; Brentner, Kenneth S.
1997-01-01
High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.
PROPERTIES OF SUPERSONIC EVERSHED DOWNFLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozuelo, S. Esteban; Rubio, L. R. Bellot; Rodríguez, J. de la Cruz, E-mail: sara.esteban@astro.su.se
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regionsmore » during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.« less
Supersonic Free-Jet Combustion in a Ramjet Burner
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Dippold, Vance F., III
2010-01-01
A new dual-mode ramjet combustor concept intended for operation over a wide flight Mach number range is described. Subsonic combustion mode is similar to that of a traditional ram combustor which allows operation at higher efficiency, and to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle. The maximum flight Mach number of this scheme is governed largely by the same physics as its classical counterpart. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated. Given the parallel nature of the present scheme, overall flowpath length is less than that of present dual-mode configurations. Cycle analysis was done to define the flowpath geometry for computational fluid dynamics (CFD) analysis, and then to determine performance based on the CFD results. CFD results for Mach 5, 8, and 12 flight conditions indicate stable supersonic free-jet formation and nozzle reattachment, thereby establishing the basic feasibility of the concept. These results also reveal the structure of, and interactions between the free-jet and recirculating combustion chamber flows. Performance based on these CFD results is slightly less than that of the constant-pressure-combustion cycle analysis primarily due to these interactions. These differences are quantified and discussed. Additional CFD results at the Mach 8 flight condition show the effects of nozzle throat area variation on combustion chamber pressure, flow structure, and performance. Calculations with constant temperature walls were also done to evaluate heat flux and overall heat loads. Aspects of the concept that warrant further study are outlined. These include diffuser design, ramjet operation, mode transition, loss mechanisms, and the effects of secondary flow for wall cooling and combustion chamber pressurization. Also recommended is an examination of system-level aspects such as weight, thermal management and rocket integration as well as alternate geometries and variable geometry schemes.
NASA Technical Reports Server (NTRS)
Whitcomb, R. T. (Inventor)
1976-01-01
An airfoil is examined that has an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency. Diagrams illustrating supersonic flow and shock waves over the airfoil are shown.
Rain Impact Damage to Supersonic Radomes
1974-10-01
Harris [321. Padomes from three of these tests have been examined in the course of the present work, and some observacions will be made concerning the...outputs, respectively, which are given by the formnu- las in Sections II, III, IV, and V. That is: PCTA -. Percentage of area eroded VONE + Accumulated...of balatnoo of mass to the particle-phase material contained la the region bounded by the line * 0 and the streamline x constant:. Doing this it ia
NASA Technical Reports Server (NTRS)
Nelson, Herbert C; Rainey, Ruby A; Watkins, Charles E
1954-01-01
Linearized theory for compressible unsteady flow is used to derive the velocity potential and lift and moment coefficients in the form of oscillating rectangular wing moving at a constant supersonic speed. Closed expressions for the velocity potential and lift and moment coefficients associated with pitching and translation are given to seventh power of the frequency. These expressions extend the range of usefulness of NACA report 1028 in which similar expressions were derived to the third power of the frequency of oscillation. For example, at a Mach number of 10/9 the expansion of the potential to the third power is an accurate representation of the potential for values of the reduced frequency only up to about 0.08; whereas the expansion of the potential to the seventh power is an accurate representation for values of the reduced frequency up to about 0.2. The section and total lift and moment coefficients are discussed with the aid of several figures. In addition, flutter speeds obtained in the Mach number range from 10/9 to 10/6 for a rectangular wing of aspect ratio 4.53 by using section coefficients derived on the basis of three-dimensional flow are compared with flutter speeds for this wing obtained by using coefficients derived on the basis of two-dimensional flow.
NASA Astrophysics Data System (ADS)
Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.
2007-05-01
The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but reduces climate impact compared to the base case.
NASA Astrophysics Data System (ADS)
Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.
2007-10-01
The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but reduces climate impact compared to the base case.
Supersonic Cruise Research 1979, part 1
NASA Technical Reports Server (NTRS)
1980-01-01
Aerodynamics, stability and control, propulsion, and environmental factors of the supersonic cruise aircraft are discussed. Other topics include airframe structures and materials, systems integration, and economics.
Affordable/Acceptable Supersonic Flight: Is It Near?
NASA Technical Reports Server (NTRS)
Darden, Christine M.
2003-01-01
The author takes a historical look at supersonic flight and humankind's first encounter with the sonic boom. A review is given from the 1950s to the present of the quest to understand the sonic boom, quantify its disturbance on humans and structures, and minimize its effect through aircraft design and operation. Finally, the author reminds readers that sonic boom is only one factor, though critical, in enabling an economically viable commercial supersonic aircraft.
Effects Of Suspension-Line Damping On LADT #3 And Supersonic BLDT Parachute Inflation Dynamics
NASA Technical Reports Server (NTRS)
Poole, Lamont R.
1972-01-01
A two-body computerized mathematical model is used to calculate planar dynamics of the LADT #3 and supersonic BLDT parachute inflations. Results indicate that the calculated loads and motions of the LADT #3 inflation are not affected appreciably by variation in the suspension-line damping coefficient. However, variation of the coefficient results in significant changes in the calculated loads and strain rates of the supersonic BLDT inflation.
Surface Microwave and Surface Transversal Pulsed-Periodic Discharges in Supersonic Flow
2004-03-01
plasmas of different types of gas discharges near the surface of Aerodynamic models and in the boundary layers. Also, the contractor will develop modes...regions near the surface. The following experimental work will be done in supersonic air flow (Mɚ) at pressures between 1 and 200 Torr: a...198 CHAPTER IX NUMERICAL CALCULATION OF CHARACTERISTICS OF SUPERSONIC FLOW NEAR A FLAT PLATE WITH MICROWAVE DISCHARGE ON ITS SURFACE
Research in Natural Laminar Flow and Laminar-Flow Control, part 3
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Part 3 of the Symposium proceedings contains papers addressing advanced airfoil development, flight research experiments, and supersonic transition/laminar flow control research. Specific topics include the design and testing of natural laminar flow (NLF) airfoils, NLF wing gloves, and NLF nacelles; laminar boundary-layer stability over fuselage forebodies; the design of low noise supersonic/hypersonic wind tunnels; and boundary layer instability mechanisms on swept leading edges at supersonic speeds.
The challenges and opportunities of supersonic transport propulsion technology
NASA Technical Reports Server (NTRS)
Strack, William C.; Morris, Shelby J., Jr.
1988-01-01
The major challenges confronting the propulsion community for civil supersonic transport applications are identified: high propulsion system efficiency at both supersonic and subsonic cruise conditions, low-cost fuel with adequate thermal stability at high temperatures, low noise cycles and exhaust systems, low emission combustion systems, and low drag installations. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful airplane that satisfies environmental constraints.
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1976-01-01
An integrated system of computer programs was developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. Schematics of the program structure and the individual overlays and subroutines are described.
Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes
NASA Astrophysics Data System (ADS)
Pilyugin, N. N.; Khlebnikov, V. S.
2010-09-01
Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
Supersonic cruise aircraft research: An annotated bibliography
NASA Technical Reports Server (NTRS)
Tuttle, M. H.
1980-01-01
This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.
2010-01-25
study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was
Numerical Modeling and Combustion Studies of Scram Jet Simulation
2014-12-01
and this work is dedicated to them. xiii Chapter 1 1 Introduction 1.1 Background and Overview Scramjet ( Supersonic Combustion Ramjet) is a type of...engine that op- erates under supersonic airflow conditions. The efficiency in its propulsion system over ramjet has made it a very active research...from the boundary layer of the wall [41]. Moreover, when the crossflow is supersonic , as is the case in the Scramjet configuration, some additional
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.
1975-01-01
An integrated system of computer programs has been developed for the design and analysis of supersonic configurations. The system uses linearized theory methods for the calculation of surface pressures and supersonic area rule concepts in combination with linearized theory for calculation of aerodynamic force coefficients. Interactive graphics are optional at the user's request. This part presents a general description of the system and describes the theoretical methods used.
NASA Technical Reports Server (NTRS)
Esparza, V.
1975-01-01
Experimental aerodynamic investigations were conducted in the Arnold Engineering Development Center (AEDC) Von Karman Facility Tunnel A on a scale model of the space shuttle orbiter. The objectives of this test were: (1) determine supersonic differential elevon/aileron lateral control optimization, (2) determine supersonic elevon hinge moments, (3) determine the supersonic effects of the new baseline 6-inch elevon/elevon and elevon/fuselage gaps, and 4) determine the supersonic effects of the new short (VL70-008410) OMS pods. Six-component aerodynamic force, moment, and elevon hinge moment data were recorded.
Experimental Investigation of Supersonic Coplanar Jets within Ejectors
NASA Technical Reports Server (NTRS)
Papamoschou, Dimitri
2001-01-01
This experimental and theoretical work involved reduction of supersonic jet noise using Mach Wave Elimination (MWE), a method that suppresses noise by means of a gaseous layer that envelops the supersonic jet. Also explored was a new method for mixing enhancement in which an axial, secondary flow enhances mixing in a primary flow. The research is relevant to the advent of future supersonic transports that must adhere to the same take-off and landing restrictions as ordinary subsonic aircraft. To reduce noise, one needs to understand the fundamental fluid mechanics of the jet, namely its turbulent structure and mean-flow characteristics, and to perform high-quality noise measurements. The results generated are applicable to free jets as well as to jets within ejectors.
Benefits of advanced propulsion technology for the advanced supersonic transport
NASA Technical Reports Server (NTRS)
Hines, R. W.; Sabatella, J. A.
1973-01-01
Future supersonic transports will have to provide improvement in the areas of economics, range, and emissions relative to the present generation of supersonic transports, as well as meeting or improving upon FAR 36 noise goals. This paper covers the promising propulsion systems including variable-cycle engine concepts for long-range supersonic commercial transport application. The benefits of applying advanced propulsion technology to solve the economic and environmental problems are reviewed. The advanced propulsion technologies covered are in the areas of structures, materials, cooling techniques, aerodynamics, variable engine geometry, jet noise suppressors, acoustic treatment, and low-emission burners. The results of applying the advanced propulsion technology are presented in terms of improvement in overall system takeoff gross weight and return on investment.
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.
2002-01-01
NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.
NASA's hypersonic propulsion program: History and direction
NASA Technical Reports Server (NTRS)
Wander, Steve
1992-01-01
Research into hypersonic propulsion; i.e., supersonic combustion, was seriously initiated at the Langley Research Center in the 1960's with the Hypersonic Research Engine (HRE) project. This project was designed to demonstrate supersonic combustion within the context of an engine module consisting of an inlet, combustor, and nozzle. In addition, the HRE utilized both subsonic and supersonic combustion (dual-mode) to demonstrate smooth operation over a Mach 4 to 7 speed range. The propulsion program thus concentrated on fundamental supersonic combustion studies and free jet propulsion tests for the three dimensional fixed geometry engine design to demonstrate inlet and combustor integration and installed performance potential. The developmental history of the program is presented. Additionally, the HRE program's effect on the current state of hypersonic propulsion is discussed.